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ABSTRACT

This research represents an extensive study of the Augmented

Lagrangian (ALAG) Penalty Function Algorithm for optimizing nonlinear

mathematical models. The mathematical models of interest are

deterministic in nature and finite dimensional optimization is assumed.

A detailed review of penalty function techniques in general and the ALAG

technique in particular is presented. Numerical experiments are conducted

utilizing a number of nonlinear optimization problems to identify an

efficient ALAG Penalty Function Technique for computer implementation.
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I. INTRODUCTION

The current advanced stage of development of the theoretical

framework of -unconstrained optimization has served as a powerful force

for unification of the subject which, until some years ago, consisted

of a collection-of disjointed algorithms. The evolution of these

algorithms depended strongly on practical computation of solution to

specific problems. The interplay of theory and algorithms has made

it possible to transfer theoretical progress into improved algorithms.

Powell (P5) has reviewed comprehensively modern algorithms and

the effect of theoretical work on the design of practical algorithms

for unconstrained optimization. Murray (Mil) has presented the main-

.stream of developments in numerical methods for unconstrained optimization.

Much of the current research has been focused on understanding, comparing,

improving and extending the available numerical methods instead of

devising totally new algorithmic concepts. These refinements and modifi-

cations are .not expected to significantly improve the efficiency of existing

algorithms (G2).

At present a robust collection of potent and sophisticated general

purpose algorithms for unconstrained optimization is available as high-

quality software (G2). These algorithms have been tested and proven to

be efficient and reliable for solving a variety of typical test problems

and practical problems. Successful development of such algorithms for

unconstrained optimization has been the springboard for the more recent

success in the design of algorithms for constrained problems.



Availability of efficient numerical methods for solving

unconstrained optimization problems has motivated the design of

algorithms that convert a constrained problem to a sequence of

unconstrained problems which have the property that successive

solutions of the unconstrained problems converge to the solution of

the constrained problem. This transformation approach has been

systematically employed in the development of numerical algorithms

for constrained optimization for more than a decade. In recent years

a substantial body of theory has been established for these transfor-

mation techniques and many computational algorithms have been

proposed (B4), (Fl), (L3).

To review briefly the transformation technique, consider the

following inequality constrained nonlinear programming problem. Let

(2)
f(X) and c. (X) i = l,2,....,m be real valued functions of class C'x/ i "u
on a nonempty open set L in an n-dimensional Euclidean space E

PI : Minimize f (£) over all X £ L .

Subject to c. (X) > 0, i = 1,2, . . . . ,m

where feasible region F is a nonempty compact set.

F = {X : c. (X) > 0 i= 1,2, ,m, Xe L, L c. En>
'v j_ % = 'v

Methods for solving PI via unconstrained minimization have been

classified, described and analyzed in detail by Lodtsma (L3). Para-

metric transformation methods solve PI by reducing the computational

process to .a sequence of successive unconstrained minimizations of a

compound function defined in terms of the objective function f (X),



the constraint functions c. (X) i = l,2,....,m and one or more

controlling parameters. By gradually removing the effect of the

constraints in the compound function by controlled changes in the value

of one or more parameters a sequence of unconstrained problems is

generated. Successive solutions of these unconstrained problems

converge to a solution of the. original constrained problem. The

advantage of this approach lies in the fact that the constraints need

not be dealt with separately and that efficient numerical methods for

computing unconstrained extrema can be applied.

During recent years the parametric transformation technique known

as the Augmented Lagrangian (ALAG) Penalty Function Technique has

gained recognition as one of the most effective type of methods for

•solving constrained minimization problems. In the opinion of many

researchers in this field, the ALAG penalty function technique is the

best method available for solving problems with nonlinear constraints

in the absence of special structure (B4). The disadvantages of the method

are negligible and the advantages are strong, especially the lack of

numerical difficulties and the ease of using the unconstrained minimi-

zation routine. The method has global convergence at an ultimately

superlinear rate, the computational effort per minimization falls off

rapidly, initial starting point need not be feasible and the function is

defined for all values of the parameters (F7).

The ALAG penalty function technique is a balance between the

classical penalty function technique and the Lagrangian primal-dual

method which are both parametric transformation techniques. The design

of this method was motivated by efforts to overcome the numerical in-



stability of the penalty function technique near the solution (P3),

(H2) and attempts to eliminate the "duality gap" in nonconvex

programming (R6). The classical penalty function technique and the

Lagrangian p»imal-dual method are briefly reviewed and the development

of the ALAG penalty function technique by.the merger of the penalty

idea with the primal-dual philosophy is traced in section 2. The

ALAG penalty, function technique is described, reviewed and discussed in

section 3. The results of numerical investigations are presented in

section 4. The symbols, mathematical terms and related concepts used

in this work are defined briefly in appendix A. The method of solving

a nonlinear problem using the ALAG penalty function technique is

illustrated with numerical examples in appendix B.



II. REVIEW OF RELATED MINIMIZATION TECHNIQUES

2.1 Penalty Function Technique

The pertalty methods have been extensively used in numerical optimiza-

tion for more than a decade. The penalty function approach has been popular,

as evidenced by applications to practical problems (D3), because it is

conceptually simple and easy to implement. It permits a transparent program

structure as it is fully based on unconstrained minimization. These methods

are applicable to a broad class of problems, even those involving noncpnvex

constraints. The most attractive feature of these methods is the fact that

they take advantage of the powerful unconstrained minimization methods that

have been developed in recent years.

The penalty function technique is a sequential parametric transformation

method. It is an iterative algorithm that requires the solution of an

unconstrained optimization problem at each iteration. In these methods

the objective function f(X) is minimized using an unconstrained minimization
Oi

technique while maintaining implicit control over the constraint violations

by penalizing the objective function at points which violate or tend to

violate the constraints. The solution X* to the constrained minimization
-v

problem Pi is approached from outside the feasible region f and these

methods are also referred to as exterior point methods. The penalty

function technique has been popularized mainly through the work of Fiacco

and McCormick (Fl). Fiacco and McCormick (Fl) developed the Sequential

Unconstrained Minimization Techniques (SUMT) for nonlinear programming

using penalty function and related concepts. A chronological survey of

the development of the penalty methods and detailed discussion and analysis



of penalty and related methods are presented in reference (Fl).

The penalty function method for PI consists of sequential minimizations

of the form

minimize P(X, a), X e L £ En

P(X, a) is the penalty function with control parameter o > 0. This function

is designed to impose an increasing penalty on the objective function as

constraint violation increases. The control parameter a is used effectively

to increase the magnitude of penalty.

The penalty function transformation may be represented as

m
P(X, a) = f(X) + a S n.(c.(X)), a > 0 where [1]

i\j 'V 1=1 3- 3- 'X/

n.(t) is defined as the loss function with the following properties.

(i) n.(t) is continuous on -°° < t < m

(ii) for inequality constraint c.(X) > 01 ̂  -

n. (t) -> °° as t ->- -» and n. (t) = 0 for t > 0

(iii) for equality constraint c.(X) = 0
1 ̂

n.(t) > 0 Vt, n.(t) = 0 for t = 0 and

n (t) -> « as t -»• ±°°

Usually the loss function, n.(t), is chosen such that when the objective

(2)function and the constraint functions are of class C , P(X, a) is twice
Oi

differentiable. P(X, o) is defined on an open set L S E and P(X, o) -> °°
'V /V

as constraint violation increases.

Several different loss functions have been proposed for use in the

penalty function algorithm and these are discussed by Fiacco and McCormick
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(Fl). The most commonly and widely used loss function is the quadratic

loss function. For an inequality constraint c.(X) > 0, quadratic loss
i >\, =

2
function is n (c (X)) = [min (0, c (X))] . For an equality constraint

1 i -v 1 ̂
c.(X) = 0, th£ quadratic loss function is n.(c.(X)) = (c.(X)) .
i ̂  i i -v i %

An elaborate treatment of the penalty function algorithm can be found

in (Fl), (L5) and (Zl) for a general nonlinear problem. The basic algorithm

may be represented as follows:

(k)
(i) Select an infinite sequence {a } which is monotonically

increasing as k -»• °°. Find X i F> where F is the feasible
a.

region defined by the constraint functions. Set k = 0.

(ii) Set k = k + 1.

(iii) Minimize P(X, â ') to find X(â ) = X^' starting the
f\j rO 'Y*

(k-1)minimization from X . Return to (ii) if convergence is

not satisfied.

Convergence tests in step (iii) are usually based on the magnitude of

quantities such as (f(X(k)) - f(X(k~1})) and || X(k) - X(k~1) || where || X ||

is the Euclidean norm of the vector X. Other convergence criteria are

discussed by Fiacco and McCormick'(Fl). It is assumed that the function

(k)
f(X) is bounded below so that a solution X to the unconstrained minimization

*\, 'Xf

(k)
in step (iii) exists for each a . In step (i) the initial starting point

X^ ' is outside the feasible region F and the trajectory corresponding to
<\j

the sequence {X . } generated by the algorithm lies outside F. Therefore
•v

penalty function methods are also known as exterior-point methods. Any

(k)
limit point of the sequence {X } generated by the penalty method is a

solution X* to the constrained minimization problem PI (H4), (L5), (Zl).



The penalty function technique might be regarded as a "primal" approach

to implicitly account for the constraints, although its connections with

duality are known (Fl), (L5), (Zl). The approximation of the constrained

problem by the unconstrained penalty problem becomes more and more exact as

the control parameter a -> °°. However considerable computational difficulties

are experienced with the traditional penalty function algorithm as o -> °°.

These difficulties are delineated in detail in references (L3), (L5), (M5),

(Rll). The computational difficulties arise from P(X, a) forming an increasingly
'v

steep-sided valley as the control parameter is increased to allow the

unconstrained solutions to approach the constrained solution to Pi from

outside the active constraints. In particular, the Hessian matrix of the

penalty function [1] becomes extremely ill-conditioned as a increases.

This leads to numerical instabilities during unconstrained minimizations

of the penalty function and slow convergence of the algorithm.

Attempts to overcome these computational difficulties have resulted

in several modifications (Fl), (F2), (L3) to the penalty function technique.

Hestenes (H2) and Powell (P3), at about the same time, independently

proposed modifications that resulted in a new method related to the penalty

function technique. In this new -method penalty terms are added to the

Lagrangian associated with the original constrained problem. Hestenes (H2)

termed this the "Multiplier Method". It has become known as the Augmented

Lagrangian Penalty Function Technique in subsequent discussions. This

method alleviated some of the computational difficulties associated with

the traditional penalty function technique (F8) and achieved better

convergence properties than the method of penalty functions (HA). This

method is reviewed briefly in Chapter 3.



2.2 Lagrangian Primal-Dual Method

The Lagrangian primal-dual method transforms a constrained convex

programming problem into a sequence of unconstrained minimizations of the

classical Lagrangian associated with the constrained minimization problem.

The constrained problem PI becomes a convex programming problem when the

objective function f(X) is convex and the constraints c.(X) i = 1, 2, ..., m
a. la.

are concave. The concept of the primal-dual method was first implemented

by Arrow, et al. (Al) in the differential gradient scheme for approaching

the saddle-point of the Lagrangian L(X, X) associated with a convex program.
Oi "(j

The Lagrangian associated with the convex problem PI may be represented as

m _
L(X, X) = f (X) - E X. c.(X), X £ L %• En, X e E . [2]

'X* *\j fYi • i 1 •*- 'Xf 'Xl *\» •-v 1=j_

m m
where E is the nonnegative orthant of m-dimensional Euclidean space E

m
and the vector X e E, is called a vector of multipliers.

Suppose that a point X* satisfies the constraints of the convex program

PI and the problem functions are of class C . If there exists a vector

X* such that

X* > 0, X.* c.(X*) = 0 V i and VL(X*, X*) =0, [3]
— i i a. a, <\, i\,

then X* is a global solution to the convex program PI. The vector X* is
a. ^

said to be the vector of Lagrange multipliers associated with X*. If the
. - a.

gradients of the active constraints at X* are linearly independent, then X*
<\i • a.

is a regular point of the feasible region F and there exists a vector of

Lagrange multipliers X* satisfying [3]. The conditions in [3] are called
a.

the Kuhn-Tucker first-order necessary conditions for X* to be a solution to
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PI and for the convex program PI, these are also sufficient conditions for

X* to be a global solution. For a nondifferentiable convex problem PI let
<\j

n m

there exist an X* e E and a X* e E. such that the pair (X*, X*) is the
^ >\j ^ ^

saddle-point of the Lagrangian L(X, X) -associated with the convex program
* . 'x. a.- .

PI, i.e., L(X*, X) < L(X*, X*) < L(X, X*). Then X* is the global solution
r\, r\j ~ ^ ^ — 1 > r l > . r\,

to the convex program PI and X* is the vector of Lagrange multipliers
a.

associated with X*.
oj

The differential gradient scheme of Arrow, et al. (Al) for a convex

program may be viewed as a small-step primal-dual method where estimates

of X* and X* are modified at each iteration to exploit the saddle-point
'Xi Oi

nature of L(X, X) near (X*, X*). This structure of the method is revealed
f\, <\, f\j ^ • .

by the system of difference equations formulated by Uzawa (Al) to represent

the differential gradient method. Davis (Dl) represents the iterations in

this method as

B - L C X , x
(k))

r\, 1 1 <Vi 'Vi 'Vi

(k+1) _ (k) -1 (k) (k)
X = mm ID, X - a. o VXL(.X , X J

where a and a are scalars representing step-size, VL(X, X) is the gradient
X 2. . <\( <\, o>

of L(X, X) with respect to X, VXL(X, X) is the gradient of L(X, X) with
'X- % f\j 'X/X< •'X; 'X. 'X/ 'Xi

respect to X and B and B are positive definite matrices of order n and
r\j 1 i

(0) (0) m

m respectively. The algorithm may be started at any Xv ' e F and X e E,.
'X, »\» "*"

As the constrained problem in the above method is convex, the

Lagrangian L(X, X) is also convex with respect to X. The iterations on
'x/ a. <\/

(k)
X , therefore, are descent iterations on L(X, X) and update of multipliers
r\j 'Xl "Xl
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X may be viewed as ascent iterations on L(X, X). The X update may
O. i\, r\, %

also be regarded as approximate solutions to the associated dual problem

(k)
at X^ . The dual associated with PI is .

<\,

m
Dl": Maximize l/(X) over all X e E

a. >̂ +

l/(X) = infimum L(X, X) , X e L .
'Xi 'V 'Vi *X»

The Lagrangian L(X, X) is minimized over X e L for a sequence of multiplier
"(j Oi TJ

(k)
vectors X and the algorithm is a primal-dual method. Methods that are

a.

similar in concept to this algorithm are described by Powell (PA) , Bertsekas

(B4) , and Lasden (LI) .

The algorithms based on Lagrangian primal-dual method are not susceptible

to numerical instabilities such as those discussed in connection with the

penalty method. Primal-dual methods are based on the viewpoint that the

Lagrange multipliers X* are also fundamental unknowns associated with a
%

constrained problem. This is due to the reason that Lagrange multipliers

measure sensitivities and often have meaningful interpretations as prices

associated with constraint resources (H4) , (L5). Useful duality results

for convex programs have been presented by Luenberger (L5) and Zangwill (Zl) .

Various formulations of the duality theory for nonlinear convex programs

using the classical Lagrangian have been reworked and extended by Geoffrion

(Gl) so as to facilitate, more readily, computational and theoretical

applications. Methods based on the classical Lagrangian for solving a

constrained problem PI have been reviewed by Lootsma (L3) .

The Lagrangian primal-dual method is known to have serious disadvantages

(R3) , (R6) . The most restrictive one is that the constrained problem must
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be convex In order for the dual problem to be well defined and X iterations
<\>

to be meaningful. In general inf (PI) > sup (Dl) and the equality holds

good only for the convex problem PI. For nonconvex problems only the

inequality hcvlds in the above relationship and in such cases a duality gap

is said to exist. For nonconvex problems Everett (E2) introduced a primal

dual method called generalized Lagrange multiplier method. This and other

associated methods are summarized by Lootsma (L3). Even though Everett (E2)

suggested some methods of handling the duality gap, the method has been

found to be useful only for certain nonlinear problems with special structure.

The method is of importance in the decompoisition of large-scale problems

with separable functions. In such cases minimization of the Lagrangian can .

be carried out efficiently due to the special structure of the constrained

problem (E2), (LI), (L5).

For a convex program, if X* is the optimal solution to the constrained
"u

problem with corresponding Lagrange multiplier vector X*, then X* is the
>\j <\,

unconstrained minimizer of L(X, X*). However, if X* is a local solution to
a. a. . ^

a nonconvex program with corresponding Lagrange multiplier vector X*, then

^
X* may not be the unconstrained local minimizer of L(X, X*) and L(X, X*) may
^ r\j ^ ^ Oi

even have negative second derivatives at X* in certain directions normal
Oi

to the feasible manifold F (R3). Since curvature at a point is determined

by the second partial derivatives, attempts were made to make the Lagrangian

associated with nonconvex programs a convex function by adding quadratic

penalty terms to it. This concept was first suggested by Arrow and Solow (Al)

in connection with the solution of a nonconvex equality constrained problem

using the differential gradient method. Arrow and Solow augmented the

classical Lagrangian with quadratic penalty terms and this 'elegant idea
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made the new augmented Lagrangian locally convex. This idea was independently

reconsidered in an entirely different algorithmic context for equality

constrained problems by Hestenes (H2), Powell (P3) and Haarhoff and Buys (Hi).

The algorithms that resulted from these efforts belong to the Augmented

Lagrangian Penalty Function Technique which is reviewed in Section 3.
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III. AUGMENTED LAGRANGIAN PENALTY FUNCTION TECHNIQUE

3.1 Introduction

The ALA'G penalty function technique may be reviewed from two entirely

different points of view. The first view-point is that the methods that

belong to this technique modify the Lagrangian associated with a nonconvex

or a weakly convex constrained problem to have a local convexity property.

This is because the characterization of solution to a constrained problem

in terms of a saddle-point of the Lagrangian depends heavily on convexity

properties of the underlying problem. The local saddle-point property is

obtained by the presence of a convexifying parameter in the Lagrangian

which makes the associated Hessian positive definite for large enough, but

•finite, values of the parameter. Following this idea of local convexification

many different modifications of the classical Lagrangian have been proposed

to close the duality gap in nonconvex programming (Al), (A2), (M2).

The second viewpoint is to consider the technique and the quadratic

penalty function method within a common generalized penalty function frame-

work. The approach here is to circumvent instabilities associated with the

classical penalty function method by adding penalty terms to the Lagrangian

function. The advantages of using a first-order penalty furnction have

been listed by Lootsma (L3) and McCormick (M5) . Therefore methods that

augment the Lagrangian with quadratic penalty terms are considered in detail.

The development of the ALAG penalty function technique is traced from the

second viewpoint.
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3.2 Review of the Technique for Equality Constrained Problem

3.2.1 Equality Constrained Problem

The equality constrained problem P2 may be represented as follows:

•

P2: Minimize f(X)
^

Subject to c.(X) =0 i = 1, 2, ..., m m < n
1 ^ ~ • '

(2)f(X) and c.(X) i = 1, 2, ..., m are real-valued functions of class C

defined on a nonempty open set L SL. E . The Lagrangian associated with P2

is

m
L(X, X) = f (X) - Z X, c (X), X e Em.. [4]

l\t *\j f\j i 11 f\j f\.±=1

The gradient and Hessian of this Lagrangian with respect to X are VL(X, X)

2
and V L(X, X) respectively.

*\/ f̂ j

Let X* be an optimal solution to P2 and the problem functions f(X)

(2)and c.(X), i = 1, 2, ..., m be of class C in an open neighborhood of X*.

The following are assumed to hold good at X*.

(i) The point X* is a regular point of the feasible set
"u

F = {X: c.(X) = 0 i = 1, 2, ..., m, X e L S En}

Let N* = N(X*) be the nxm matrix [Vc,, Vc0, ..., Vc ].
r\j i\j J. >\, Z ^ m

The regularity of the feasible set at X* is satisfied when

N* is of full rank.

(ii) There exists an unique Lagrange multiplier vector X* such

that the following first-order necessary conditions for

local optimality at X* are satisfied.

X* e Em, c.(X*) = 0 Vi and VL(X*. X*) = 0. . [5]
f\j 1 'V; /\J *X> *\>
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(iii) The second-order necessary conditions for local optimality

at X* are that in addition to [5]
^

YT V2L(X*, X*) Y > 0 . V Y e V^ E" [6]
^ 'Xi % Oj — ^

V = {Y: YT Vc. = 0 Vi}
>\> "u O, 1

(iv) The second-order sufficient conditions for X* to be an isolated
"c

local minimum are that in addition to [5]

YT V2L(X*, X*) Y > 0 V nonzero Y e V [7]
^ O> "\j <\, ^ •

(v) Strict complementarity holds at X*, i.e. , X.* ̂  0 Vi
it 1-

3.2.2 Powell - Hestenes Augmented Penalty Function

Powell (P3) suggested the following penalty function to solve P2.

, m 2

<Kx, e, s) = f(x) +± z o.(c.(x) - e.)
*\i <\i r\j 2. -I 1 1 O> !

= f(X) + \ (c(X) - 6)TS (c(X) - 6) [8]

where 9 e Em, C(X) is a vector of constraint functions c . (X) i = 1, 2, ..., m
o> 'Vi 'v • ' i *\<

and S is a diagonal matrix of order m with, diagonal elements a. > 0. Let

a e E be a vector with a. as components. While the classical penalty
/\, "*•*" i

function for P2 contains at most m control parameters, the above function

depends on 2m parameters which are the components of 6 and a. The mainf\j i\,

difference between classical quadratic penalty function and [8] is the

introduction of parameters 9. In [8] quadratic penalty terms have been
<Vi

added to the Lagrangian associated with P2.

The augmented penalty function (j> is used in the algorithm as follows.
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Algorithm Al:

(i) Select 9(1) =0., k = 0, S(1) = I and X(0) i F.
o> >\j

(ii) k = k + 1

(iii) Minimize <J>(X, 9 (k) , S(k)) to find

= X(6 , S ) starting the unconstrained
*\i ^

minimization from X . .
>\,

(k)(iv) If C(X ) is converging sufficiently rapidly to zero then

e(k+l?= 6(k)
'Vl ^

= s(k) and return to

otherwise

(i/io) e(k)^
1Q g(k) and return to

•In step (ii) <|> is minimized with respect to X without constraints for fixed
<v/

(k) (k)
values of 6 and S and this is the inner iteration of the algorithm.

^ (k) (k)
Step (iii) is the outer iteration in which 6 and S are changed to

%
(k)force constraint satisfaction and cause the sequence of solutions {X }
^

to converge to X* at a reasonably fast rate.
^

The scheme for adjusting 0 parameters in the outer iteration is

(k)
based on the observation that if Xvr"' is the minimizer of <j>(X, 9 V~' , S

*v/ a. ^
(k)

in the inner iteration, then X is also a solution of the problem

Minimize f(X) X e L <= En

Subject to C(X) =

In order to solve the equality constrained problem P2 it is sufficient to

find 6(k) and S(k) such that X(k) = X(9(k), S(k)) solves the system of
'Vi f\, *\i 1*

nonlinear equations
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C(X(6(k), S)) - 0. • [9]

The above system of equations is in terms of 2m parameters 8 and a
i i

(k) (k)
i = 1, 2, . . . , m. One vector of parameters 0 or. a may be fixed and

[9] then is a* system of m equations in m remaining parameters.

(k)
If 6 is fixed, then [8] reduces to a basic penalty transformation.f\j

Specifically when 0 parameters are set to zero, $ becomes the classical
<\j

quadratic penalty function. In such a case convergence of the sequence

(k)
{X } to X* is ensured by letting a. -*• °°, i = 1, 2 . . . , ra. This leads
a- 'v i

to numerical instabilities and slow convergence. Therefore in Powell's

(k) (k)
method S is held constant and 0 is changed to force constraint<\,

satisfaction through iterative solution of [9]. Powell (P2) derived a

(k) (k)
simple correction for adjusting 0 parameters when S is fixed by

'V

•applying generalized Newton iteration to solve [9]. This correction is

represented as

(k) '

(k) (k) (k)
By definition X is the unconstrained minimizer of <j>(X, 6 , S ).

Oj "\> O;

Therefore V4>(X(k), 0 (k) , S(k)) = 0, i.e.,

Vf(X(k)) + I a.(C.(X(k)) - 0.(k)) VC.(X(k)) = 0. [11]

Continuity of C(X) in the neighborhood of the local minimizer X* of P2
<X> 'Xi • 'Vi

(\r\ df-V

implies that the matrix N(XV ') is of full rank for Xv ' sufficiently close

/U\

to X*. When Xv ' is in the neighborhood of X* and when Xv ' ->- X* the estimates

X(k) =-S(k) (C(X(k)) -0) [12]
i\,
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exist and have as limit points the unique values X* = S* 9*, where 9* and S*

are the parameters corresponding to X*. Hence the final value of the

product S 9, in the limiting sense, is a constant and may considered to be

independent of S when S is fixed and 9 is adjusted to let 9 -»- 6*. Due to
• <\, "" <\,

this reason, when S is increased in step (iii) of algorithm Al to improve

the rate of convergence of the sequence {max|c.(X . • )|) to 0 and {X } to
, i ^

X*, 6 is decreased to keep S 9 a constant.

Convergence of the algorithm is measured using the sequence {max|c.(X )|),

Under the assumptions in 3.2.1 and when the Hessian matrix of <}> is positive

definite at X*, Powell (P2) proved that the rate of .convergence is linear

and the convergence ratio depends on I/a. for a. > a1. The threshold value

a' is a large but finite positive real number. Therefore by choosing S to

be large so that S is close to S', where S1 = a'I, the algorithm can be

made to have linear convergence at any arbitrary rate. Superlinear convergence

is achieved when a. -> °°. In Powell's algorithm the rate of convergence is

taken to be satisfactory when the maximum residual, max|c.(X )|, of the

system of equations [9] is reduced by a factor of four on each iteration.

The reason for preferring the slower rate of convergence implied by the use

of factor four is that faster convergence tends to make the inner iterations

(k)
more difficult (P2). When the sequence {max|c.(X )|) either fails to

converge or converges to zero at too slow a rate, S is increased by a

factor of ten. The choice of factor ten to increase S is arbitrary.

Numerical evidence indicates that the value of a is seldom required to

2
be greater than 10 to ensure rapid convergence (Rll).

The Hessian matrix of 4> depends on both 9 and S. The change in this

matrix is dominated by the increase in S (P2). This is another reason
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for using a factor of ten to increase S when the rate of convergence is

slow and keeping S constant when rate of convergence is satisfactory. If

S is chosen to be large in the initial iteration, instead of gradually

increasing S, the Hessian of <|> becomes ill-conditioned and the unconstrained
•

minimization of <J> in the inner iteration becomes very difficult to perform.

Further for a large S, an arbitrary starting point X ' and arbitrary values
'Vi

(k)
of 0 parameters, the sequence (X } may not converge to X*. Therefore S

a, . • r\, <^
(k) (k)is increased so as to force X into a region in which sequence {X }

^ <\,

locally converges to X*. Once this region is reached, S is kept constant

(k)
and 6 parameters are adjusted so as to let X -»• X*. Further the gradual

<\, <x, %

increase of S is designed to make <f> continuous and continuously dif ferentiable

with respect to X for all values of the parameters. In Powell's algorithm

the minimizations in the inner iteration are not beset by computational

difficulties associated with the basic penalty function transformations.

The minimizations are well scaled and progressively less computational

(k)
effort is required as k increases and X ->• X*.

1j "Vi

Hestenes (H2) , independently of Powell and at about the same time,

proposed a similar method for solving P2 and he called it the method of

multipliers. The method is based on the observation that if X* is a
^

nonsingular minimum of P2, there exists a multiplier vector X* and a constant
Oj

a such that X* affords an unconstrained local minimum to the function

T(X, X*, S) = f(X) - X*T C(X) + 1/2 (C(X))T SC(X) . [13]
'V.'V. O > ' X < f \ , ' V i O f ' X . ' V ' X i

where S = ol. Conversely, if C(X*) = 0 and X* affords a minimum to [13],
^ 'Vi 'Vi

then X* affords a minimum to P2. In the method of multipliers a large
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positive constant a is suitably chosen and is held fast. The augmented

penalty function considered is

T(X,.X, S) = f(X) - XT C(X) + 1/2 (C(X))T SC(X) [14]
i r r i

where X e B and 8 is an arbitrary compact subset of E . The function in/v>

[14] is sequentially minimized for successive estimates X of the unique
a. .

Lagrange multiplier vector X* at X*.
"Xi î

(k) (k)The unconstrained minimization of T(X, X , S) for an estimate X
r\, <\, %

(k) (k)
of X* is the inner iteration. Let X = X(X , S) be an unconstrained

^ -v i,
(k) (k)minimizer of T(X, X , S) . In the outer iteration the estimate X is

a. a/ ^
(k)updated so as to cause X -> X*. Hestenes suggested the following formula

'V O;

(k)for adjusting the multiplier vector X

a.

where S = o I, 0 < a <. a, a = yo and 0 < y < 1- The relation

(k)[15] is derived from the observation that X is a local minimizer of
-v

(k) (k+1)
T(X, X , S) and X is chosen so that first order necessary conditions
^ <\, ^ .

(k)are satisfied at X for P2. Hestenes (H2) did not analyze the convergence

of the method, but subsequently (H4) established that the method converges

linearly and superlinear convergence may be achieved when a -»• °°. In

practical applications very fast linear convergence occurs for a large

but finite value of o. Convergence is induced by not only a large value

of a but also by multiplier iteration [15] (F8) .

In Powell's method when S is fixed and 6 parameters are adjusted to
'V

(k)let X ->- X*, the unique Lagrange multiplier vector X* = S 6*, where 6*
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corresponds to the vector of parameters at X*. This implies that a
'Xi

connection can be established between the augmented function <f> in [8] and

T in [14] using the relationship

i V i = 1> 2> '"' m'

From [8], [14] and [16],

1 m 2
<KX, 0, S) = T(X, X, S) +± Z \ .la.. [17].

r\j <\, >\j f\j L ._•] J- 1

The difference between <f> and T is independent of X. If X(6, S) and X(X, S)
'X- <V; O. 'X/ O>

are unconstrained minimizers of <j> and T respectively for any S and if 6 and
a.

X are related as in [16], then X(6, S) = X(X, S). Therefore the iterative
<\, fx, Oi *\J i\,

-methods suggested by Powell and Hestenes for changing 9 and X parameters
'Vi 'Xi

are the same.

In view of the equivalence relationship [17] between cf> and T, the

numerical algorithm Al is discussed in terms of the augmented penalty

function T. - In the outer iteration adjustment of X parameters using [15]
%

is considered, assuming that 6 and X are related by [16]. The algorithm
f\, 'Xi

Al is discussed and analyzed using X parameters to emphasize the primal-dual
<\j

(k)
nature of the method which iterates with an approximation X to the

'V,

(k)
Lagrange multipliers X* in such a way as to make X •*• \*.

'Xi ^

The algorithm Al is now modified and denoted as the Powell-Hestenes

augmented penalty function algorithm A2. The convergence of the algorithm

is measured in terms of B = max|c.(X)|.
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Algorithm A2:

(i) Select X(1) = X(0), S(1) = S(0), k = 0, arbitrary starting

point X(0) and B(1) = B_ where B0 > max!c.(X
(0))I.

'v. 0 0 = . ' i <\, 'i
(ii) k = k + 1

(iii) Minimize T(X, X(k), S(k)) to find X(k) = X(X(k), S(k))

(k-1)starting the unconstrained minimization from X
a.

(iv) Find V = {i: |c±(X
(k))| > B(k)/4}.

If max|c (X(k))| > B(k), set B(k+1) - B(k). Go to (vii).
• 1 *\; ^
1

(v) B(k+1) = max|ci(X
(k))|. If B(k+1) < E stop. The E is a

i
specified tolerance for B.

(vi) If B(k+1> < B(kV4 or X(k) = X0^
*\» ^

set X - A<k> - S(k) C(X(k))

, go to (ii).

(vii) Set X(k+1> = X(k)

Ck+11 Ck} ^yixi^j.y i f*. VR./ TT'• TIo. - 10 o Vi e V,
i i

go to (ii).

When second order sufficiency conditions hold good at X* for P2, there exists
Oi

a a1 > 0 such that for o. > a1 Vi, the Hessian matrix of both (j>(X, 6*, S)

and T(X, X*, S) at X* is positive definite and X* is a strong local minimum

of <j.(X, 6*, S) and T(X, X*, S) (B2), (B7), (F8), (H2) . It should be noted
'V ^ 'V/

that the local convexity of <j>(X, 9*, S) and T(X, X*, S) near X* is established

without any assumptions about the convexity of problem P2. The aim of the

(k) (k)
algorithm A2 is to .keep S constant and adjust X so as to cause X -*• X*.

f\j *V *X»



24

Therefore in subsequent discussions it is assumed that a. > a1 Vi have been

chosen and held fast so that (j> and T are locally convex. Due to this reason

the explicit dependence of X on S is dropped and X(X, S) is represented as
f\j ^ 'V

X(X).
% <\, •

Haarhoff and Buys (HI) proposed a numerical algorithm very similar to

the Powell-Hestenes method. They were motivated by the following observations

about the traditional quadratic penalty function approach to solve P2. Let

the quadratic penalty function for P2 be

m 2
P(X, a) = f(X) + a Z (c.(X)) , a > 0.

Let X(a) be an unconstrained minimizer of P(X, a) for a large value of
'o r\j

control parameter a and X* be a local minimizer of P2. The gradient of
<v

P(X, a) is zero at X(a) but the gradient at X* is Vf(X*). Therefore, in the
'Y/ f\, . 'V . i\, O.

usual case when Vf(X*) is nonzero, X(a) and X* have to be different. Let X
'V ^ ^ ^ ^

be a solution to the under-determined system of equations C(X) =0. At X
a. <\j a.

the gradient of P(X, a) is Vf(X) which is generally, not zero. Therefore X
>\j Oi "Xi Ĵ

and X(a) are different and for any finite value of a, X(o) is neither a
"u . ^

solution to P2 nor satisfies C(X) = 0. Usually X(o) tends to X* when a -> °°
a/ 'v/ *v> a.

(L5), (Zl). From these observations Haarhoff and Buys added a linear

combination of constraints to P(X, a) to obtain
a.

T(X, X, S) - f (X) - AT C(X) + ̂  (C(X))T SC(X), S =• ol
"

where X e E and o > 0. This function achieved their objective, i.e.,
a.

balanced the gradient of f(X) in the vicinity of the minimum by a linear
^

combination of gradients of constraint functions C(X).
r\, <\j
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The augmented penalty function proposed by Haarhoff and Buys is .

identical to the Powell-Hestenes augmented penalty function for P2. However .

the numerical algorithm of Haarhoff and Buys has some distinct features.

They noted that the multiplier updates [15] are valid only when the function

(k) (k)
T(X, X , S) is minimized exactly for each X and that it is better to

*V *\j 'X*

(k)
terminate the inner iterations when a better value of T(X, X , S) is

obtained. They suggested that the multipliers.in the outer iteration be

obtained from the first order necessary condition.

Vf(X(k)) = N(X(k)) X, X e Em. . [18]

The condition [18] represents an over-determined system of n equations in m

(k)
parameters. Taking the scalar product of [18] with each VC.(X ), the

<\, i a,

following system of equations is obtained.

NT(X(k)) Vf(X(k)) = NT(X(k)) N(X(k)) X, X e Em. [19]
^ <\, ̂  ^ a. a. a.

The expression in [19] represents a system of m equations in m parameters

X that may easily be solved for X. This, in effect, is a least squares'
'V ^

solution to [18]. The vector of multipliers X is an estimate of the unique
a/

Lagrange multiplier vector X* at X* and X tends to A*.
% >\j -V ^

Haarhoff and Buys were more concerned with computational considerations

than with convergence or duality aspects of the algorithm. They suggested

that the problem functions be scaled so that the gradients are of the same

magnitude and o. be on the order of ten. In this algorithm a. i = 1, 2, ..., m

are kept constant and in the inner iteration the variable metric method of
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fir)

Davidon-Fletcher-Powell (DFP) is used to minimize T(X, X • ., S). The
^ ^2 - 1

approximation to [V T] is updated using the DFP update formula (Mil).

A restoration step is included in the inner iteration and in this step T

is minimized without using derivatives in a direction that leads to the

satisfaction of linearized constraints. Other numerical aspects of the

algorithm, such as the various stopping criteria for inner and outer

2 -1
iterations and updating the approximation to inverse Hessian [V T] are

discussed in reference (HI).

The elegant idea of local convexification of the Lagrangian was first

introduced by Arrow and Solow (Al). They suggested addition of quadratic

penalty terms to the classical Lagrangian to arrive at a modified Lagrangian

that was locally convex. They were motivated by adaptation of the

differential gradient scheme, developed by Arrow, et al. (Al) for

approaching saddle points of convex programs, to nonconvex programs. Their

differential gradient method is a small step-size algorithm while those

of Hestenes, Powell and Haarhoff and Buys are large step-size methods.

In the above contributions to the augmented penalty function technique

duality concepts were not employed. Primal-dual interpretation of the

technique was analyzed by Buys (B7), Luenberger (L5), Rockafellar (R12)

and Bertsekas (B2), (B3). A detailed review of the duality results may

be found in reference (F8). The duality results are summarized briefly

in the next section.

3.3 Review of the Technique for a Constrained Problem with Equalities

and Inequalities

3.3.1 Constrained Problem

The problem P3 with equality and inequality constraints is represented

as
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P3: Minimize f(X), 'X e L £: E"

Subject to c.(X) = 0 i = 1, 2, ..., k
i %

c.(X) > 0 i = k+1, ..., m, 0 < k < n.
i <\, - = =

The real valued functions f(X) and c.(X) Vi are defined on a nonempty open
a, x •>

set L£ E . Let X* be a local optimal solution to P3. The problem functions

(2)
are of class C on L and specifically in an open neighborhood of X*. The

Lagrangian associated with P3 is

rp m

L(X, A) = f(X) - A C(X), A e E , X e L £; E . [20]

The following conditions are assumed to hold good at X* (Fl), (M13).

(1) X* is a regular point of the feasible region
a.

F = (X: C. (X) = 0, 1 < i < k and C.(X) > 0, k < i < m}

Let E = {i: 1 < i < k}

I = {i: C.(X*) =0, k < i < m}. The X* is a regular point
i <\, • — ^

of F when {VC.(X*)} i e E £ I is a linearly independent set,
i\, 1 <\,

(2) There exists an unique Lagrange multiplier vector A* e E

such that the Kuhn-Tucker conditions are satisfied at (X*, A*)

C.(X*) = 0 i e E

C.(X*) > 0 A.* > 0, A.* C.(X*) =0 i £ e [21]
1 *\y — '1 — 3. 'Xj

VL(X*, A*) = 0
'X/ f\j r\j

These are first-order necessary conditions for local optimality

at X* and (X* A*) e E° satisfying [21] is termed a Kuhn-
'X, 'X. 'X.

Tucker point.
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(3) Second-order necessary conditions for local optimality of X*
a.

are that in addition to [21]

YT V2 L(X*. A*) Y > 0 VY e /* SrEn . [22]
~

where

V* = {Y: YT VC.(X*) = 0, i e E S I* and
'v 'v ,̂ i <\,

YT VC.(X*) > 0, i e I-I*},
-

I is the index set of active inequalities, I* is the index set

of strongly active inequalities and I - I* is the index set of

weakley active constraints. However the following weaker

second-order necessary condition is usually assumed instead

of [22] (Fl), (Mil).

YT V2L(X*, A*) Y > 0 V Y e V£. En [23]
% % 'v a/ - %

V = {Y: YT VC. (X*) = 0, i e E <~l}.
i\j i\, r\j 1 'X,

(4) Strict complementarity holds at (X*, A*) when
a. 'x.

A.* j 0 for each 1 < i < m for which C.(X*) = 0. [24]
1 = 1 'V,

A weaker form of [24] is

A.* > 0 and C.(X*) = 0, i e I. [25]
i i -x,

(5) Second-order sufficient conditions for X* to be an isolated
>\,

local minimum are that in addition to [21] and [23]

YT V2(X*, A*) Y > 0 V nonzero Ye/*. [26]
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However the condition [26] is usually replaced by the verifiable

condition (Mil),

.YT V2L(X*, X*) Y > 0 V nonzero Y e V. [27]

3.3.2 Powell - Hestenes - Rockafellar Penalty Function

The augmented Lagrangian penalty function for P3 is obtained by

combining the Powell-Hestenes penalty function T and the Rockafellar penalty

function T. The combined function may be represented as

TDU1,(X, X, a) = f(X) - E [X, C.(X) - ̂  ° • C,2(X)] +
i e E - - • * , ' - - • * .

[28]

\ E [a (C (X) -)2 - X 2/a ]
2

where

X. X.
(C.(X) - —) = min [(C.CX) - —), 0]
i o, a. la. a.

,-m cma e c,, , X e E .
"~"

In [28], the factor X./a. represents a penalizing threshold for the ith

inequality constraint. The multipliers X. Vi are unconstrained and this

is an useful property of the augmented penalty function T . Further the
r HK

function T possesses a number of strong properties not exhibited by the
PHR

classical Lagrangian L(X, X). The following properties of TD make it
r. f\j r UK

ideal for use in. a primal-dual algorithm for solving P3.

Let M(X) be the index set of the inequalities that contribute to

the quadratic penalty term in T for an estimate, X, of the Lagrange
Jr UK f\j
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multiplier vector A*.
'V

•-M(X) = {i: i i E, C±(X) < A /oi}. [29]

Equivalently,,

M(A) = {i: ± \. E, A. - a. C.(X) > 0}. . [30]
•\» 1 1 1 *\/

At the local optimum (X*, A*) of P3, M(A*) is the index set, I*, of the

strongly active inequalities. By the strict complementarity assumption,

I = I* and therefore M(A*) represents the active inequality constraints at

the local optimum (X*, A*). Further the set EUM(A) represents the
*\» *\t ^

inactive inequality constraints at the intermediate approximation (X, A) to

the solution (X*, A*). Let L = E LTM(A). Then,
'v <x, a.

L = {i: i i E. C.(X) > A./a }. [31]
1^ — 11

Equivalently,

L = {i: i i E, A. - a. C . ( X ) > 0}. [32]
•vl 1 1 <X/ —

Using the above results the augmented penalty function T may be
FHK.

represented as follows.

r_UD (X, A, a) = f (X) - E (A. - ~ a . C . ( X ) ) C . ( X )
F H K ' V - ' X . ' X . - X . j ,T7 v r / - > \ X / l l ' X , 1ieE M ( A )

[33]

1 v -. 2,
- Z A. /a..
2 . T i i
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The representation of T in [33] clearly illustrates that it is obtained
rHK

by combining the Powell-Hestenes penalty function T and the Rockafellar

penalty function T.

Mangasarian (M2) associated a wide class of Lagrangians with the

nonconvex program P3. The unconstrained stationary points and local saddle-

points of each Lagrangian were shown to be related to the Kuhn-Tucker points

or local or global solutions of P3 (M2), The Lagrangians considered by

Mangasarian (M2) were twice differentiable globally. The augmented penalty

function T belongs to the general class of Lagrangians investigated by
rnK

Mangasarian (M2) . However the penalty function T̂ .,-, is twice continuously
rHK

differentiable in X except at points where X. - a. c.(X) =0, i e M(X).
ft 1 1 1 *"\j f\j

By the strict complementarity condition, X. - a. c.(X*) ̂  0 for i e H(X*~) ,
1 X 1 'X/ 'V •

i.e., i e I. Therfore T is twice continuously differentiable in an open
rHK

neighborhood about (X*, X*).
Oj Oj

Mangasarian (M2) established the properties of the general class of

Lagrangians for P3. As T is a member of this class of Lagrangians,
PHR

the following properties hold good for T_.._. (M2) . .These properties of T
rnK rHK

also were established by Rockafellar (R6). For a e E , (X*, X*) is a
f\j * * *\; f\j

Kuhn-Tucker point of P3 if and only if it is a stationary point of T „.
rHK

2
For large but finite a., V T_, is positive definite (M2), (A3) and

1 rHK

T (X*, X, o) < T (X*, X*, a) < T (X, X*, a)
rnK f\j r\j r\j — rni\. r\j *\, ^v» — rntv r\j f\,

.V X e E , X e A where A is some open neighborhood of X*. Conversely, if

(X*, X*) is a saddle-point satisfying [34], then X* is a solution of P3

for X e A.

[34]
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A duality theory in terms of extended Lagrangians was presented by

Mangasarian (M2). The' augmented dual problem may be represented as

D3: Maximize g(X, a).
a.

g(X, a) = inf T (X, X, a)
f\j f\j V / tllx i\f r\j

[35]

The augmented dual function g(X, a) is concave in (X, a) and is strictly

nondecreasing in a. If the point (X*,. X*) satisfies the optimality conditions

and if a is sufficiently large, then (X*, X*) is an isolated local maximum

of D3. Conversely, if (X*, X*) is a global or local solution of D3, then

the optimality conditions for P3 are satisfied at (X*, X*)

Let X(X) = X(X, a) be an unconstrained minimizer of T (X, X, a) for
^ ro 'V 'Y/ *\» Jrrlix 'X; Oj' 'x/

.X in an open neighborhood of X*. Then the dual function at this point may

be expressed as

g(X, a) = T (X (X), X, a) = T (X).
<\, r\, rtiK 'x, % r\j a> rnK <\,

Useful duality results for multiplier iterations may be summarized as

follows (F8).

f^ -C±(X(X)) i e E

-min(Ci(X (X)), XVo^) i £ E

[36]

9X. [37]

Let N be a matrix with Vc. (X) , i e E1TM(X) as columns and G be the Hessian
^ i <\, %

oE TpRR. Then _ .

PHR

T -1
-N G N

0

0

-s-1

i e EVM(X)

i e EVM(X)

[38]
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Because X* = X(X*, a) for large a, the optimality conditions and the
a. a. ^ ^

expressions [37] and [38] imply that T is concave in A for X close to
PHR r\, r̂

X* is a strong unconstrained maximizer of ?_..,_,.
% rnK

The above results indicate that the problem P3 may be solved by
*

locating a saddle-point of T „„_,. The saddle-point theory and local duality
rnK

results suggest a primal-dual algorithm for solving P3. The algorithm

consists of inner and outer iterations and is similar to the algorithm A2.

(kl fkl (kl
In the inner iteration, k, for fixed X^ ' and ov , T_,UD (X, X

v , <T ') is
% r\j rHR r\j >\, %

minimized with respect to X starting the unconstrained minimization from
<\,

X . The initial starting point X need not be feasible and may be
'V 'V

(k) (k) (k)chosen arbitrarily. Let X = X(X , a ) be the unconstrained minimizer
'Vi o> 'V "\J

(k) (k) (k)of T (X, X , a ). In the outer iteration a is increased so as to
' '

force (Xv , Xv y) into a region about (X*, X*) and X^ J is adjusted so
o> % ^ f\, %

fk"> ^kl
as to ensure X v ' -> X* and Xv ' -+ X*.

"Vi 'V/ *\/ <\,

The duality relationships [37] and [38] suggest gradient and Newton

steps for adjusting X in the outer iteration so as to maximize the dual
.0.

function; Mangasarian (M2) analyzed the method of multipliers with a

gradient step for adjusting X in the outer iteration.

= x(k) + gvx M [39]

'U rVA/ rnK <\j

He established the linear convergence of this algorithm with exact

minimizations in the inner iteration and a large but finite a. He also
%

investigated the relation between 3 and the speed of convergence of the .

method.

The convergence and duality analyses presented by Rockafellar (R6)

also are valid for the primal-dual algorithm for P3.. Rockafellar (R6)



established the convergence of the algorithm with inexact minimizations in

the inner iteration. Pierre and Lowe (P2) comprehensively reviewed the

technique for P3 and presented a numerical algorithm, test problems and

computational results. In this implementation of the ALAG penalty function

technique in a numerical algorithm, a simple gradient step for adjusting

X was used in the outer iteration.

x(k) + svx (X). [40]
f\, *\i rnK. ^

The penalty parameters a. were monotonically increased in the outer iteration.

The linear constraints were also' included in the penalty term. A constraint

with upper and lower bounds was treated as two separate constraints. This

approach introduces two dual variables for such a constraint.

Fletcher (F8) suggested second-order X iteration updates. He also

^
devised a Newton-like iteration for updating X using estimates of G in [38].

a.

In the numerical experiments, Fletcher (F8) used a quasi-Newton method for

unconstrained minimization of T_11T) and built-up estimate of G. The change
JrHK

in G was accounted for when a was changed. The computational results
•Xi

presented by Fletcher (F8) indicate that the Newton-like algorithm for

updating X is more efficient that the gradient step for adjusting X. In

^ ^
these numerical experiments the penalty constants a. were also adjusted

(F8). Fletcher (F8) showed that this scheme for adjusting a. never fails

to induce convergence of the algorithm and avoids increasing o. by an

arbitrary factor of 10.

Buys and Gonin (B9) performed sensitivity analysis with the aid of

the ALAG penalty function T D. Similar sensitivity results were developed
PHR
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by Armacost and Fiacco (A3) using augmented Lagrangian function TpHR-
 In

these analyses the following parametric mathematical programming problem

was considered.

P3(a): Minimize f(X, a), X e En, a e Ev [41]

Subject to c.(X, a) = 0, i = 1, 2, ..., k
-̂ 'X/ Oj

c.(X, a) > 0, i = k+1, k+2, ..., m
1 f\/ f\j

0 < k < n

In [41] a is the vector of sensitivity parameters. In these analyses, the

problem functions were assumed to be twice continuously differentiable

in (X, a) in a neighborhood of (X*, a*) and for some a*, the conditions

in 3.4.1 were assumed to hold at (X*, a*, X*). The X* is the vector of

Lagrange multipliers associated with a solution X* to P3 (a*).
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IV. NUMERICAL RESULTS

4.1. Introduction

Numerical experiments have been conducted to identify the most efficient

ALAG Penalty Function Technique for computer implementation. These numerical

exercises, include testing individual unconstrained optimizers and constrained

optimizers utilizing a wide range of inequality and equality constrained

nonlinear optimization problems. Phase one of these numerical experiments

involved testing a number of popular unconstrained optimization algorithms.

The most effective of these algorithms were then incorporated into ALAG

Penalty Function routines for the solution of constrained optimization

problems.

4.2 Unconstrained Optimizing Algorithms

Two different classes of algorithms for solving the unconstrained

optimization problems have been tested on several sample problems. The

first class of algorithms tested were those that do not require derivative

functions. These algorithms make use of finite difference approximations

for derivatives or work solely with the given problem function in seeking

an optimum. The second class of unconstrained optimizers require explicit

first derivative functions. The unconstrained optimization techniques are

identified in the following table and discussed in (L5).

These algorithms performance on a number of sample problems is

described in Table II. Based on the results presented in Table II and

computer programming considerations algorithms 4, 5 and 7 were incorporated

into computerized ALAG Penalty Function routines and tested with a number
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TABLE I

UNCONSTRAINED OPTIMIZERS TESTED

Derivative Free Optimizers

1.. Hooke-Jeeves Pattern Search Algorithm
2. Powell's Algorithm
3. Stewarts Adaptation of the Davidon-Fletcher-Powell

Algorithm
4. Fletcher's Finite Difference Technique for a

Complimentary Davidon-Fletcher-Powell Algorithm

First Derivatives Required

5. Complimentary Davidon-Fletcher-Powell Algorithm
6. Davidon's Variance Algorithm
7. Complimentary Davidon-Fletcher-Powell Algorithm

(with no line searches)
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of inequality and equality constrained nonlinear optimization problems.

4.3 ALAG Constrained Optimizing Algorithms

The selected ALAG routines were tested on many of the example constrained
• .

problems presented in (B6). Table III summarizes the computational results

achieved for these example problems where the algorithms tested were

1. ALAG algorithm with unconstrained optimizer 5 (see Table I).

2. ALAG algorithm with unconstrained optimizer 7 (see Table I).

3. ALAG algorithm with unconstrained optimizer 4 (see Table I).
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TABLE III

COMPUTATIONAL RESULTS FOR NONLINEAR CONSTRAINED PROBLEMS

•

Problem (See Reference (B6))

12-1

12-3

12-5

12-8

12-10

12-14

12-15

12-17

12-18

12-23

-12-25

Number of Function
and Gradient
Evaluations

Number of
Unconstrained
Problems

Algorithm

1

44

19

42

57

42

27

21

80

147

32

172

2

33

24

62

49

31

74

30

120

193

45

174

3

167

96

166

99

72

121

118

*

*

122

326

1

3

2

3

3

2

2

2

5

7

3

7

2

3

3

3

4

,2

3

3

9

9

3

6

3

5

4

5

5

4

5

4

*

*

5

9

*Did not converge to correct solution.



APPENDIX A

MATHEMATICAL CONCEPTS AND PENALTY FUNCTION TECHNIQUES

1. Introduction

Symbols, mathematical terms and related concepts are defined and briefly

reviewed in this section. The topics that are directly connected with this

work are alone considered. The terms and definitions are those commonly used

in standard books on Nonlinear Programming (H4), (H5), (L4), (L5), (Ml). A

detailed information about the following concepts may be found in the above

references.

2. Euclidean n-Dimensional Space

In this work real-valued functions on a set L in an Euclidean space E

are considered. By an Euclidean space E is meant a linear space whose points

T
are representable by n-tuples X = (x1, x_, ..., x ) . The nonnegativef\. -L £ • it

n n n
orthant of E is denoted as E+ and the positive orthant of E. is denoted

n
as £-)-.[_. A point is represented as a column vector UAJjig capital letters

with underscore X, Y, ..., or lower case letters with underscore a, b, ...,
t\i • r\j '\/ *\/

or Greek letters with underscore a, X, .... The components of a vector are

real numbers represented by lower case letters with subscript. The set of

real numbers is denoted as E. The real numbers in E are represented by

lower case letters a, b, ..., and Greek letters a, 3, ..., without subscript

or with subscript a , a , ..., a , a , .... Superscript in parentheses -Lt>

used to represent an element of a sequence of vectors or real numbers.

Subscript -U> also used to distinguish different vectors X , X , ....

A linear space En is a set of elements X, Y, ..., called vectors,
*\» 'V

for which the operations of addition of vectors and multiplication of



vectors by scalars a, b, ... are defined and the Euclidean norm of a vector

is defined as

II v II _ /, 2 2 . 21/2

Linearity implies that if a c E, b e E, x e E and y e E , then ax + by e E
'V % 'X, <\,

A subspace L of E is a subset of E such that L is a linear space with the

n
same operations as those defined in E and with the same scalar field. A

,-n
subspace L of E is also called a linear manifold.

3. Sets

The set F of elements X in E satisfying a property P(X) is represented

as

F = {X: P(X)}.
a.

A member Y of the set F is denoted as y e F and if Y is not a member of F,
<x/ <v 'v

then y ^ F. The union of two sets A and B in E is the set of elements that
a.

belong to either A or B.

A S-B = {X: X e A or X e B}.
a. a. ^

The intersection of two sets A and B is the set of elements that belong to

both A and 8.

AS=B = {X: X e A and X e 8}.
'V; ^ r\j

If every element of A is also a member of 8, then A is a proper subset of

B, i.e., A£:8. If. A B, then A may be a proper subset of 8 or may be 8



itself. The complement of a set A is denoted as ̂  and it consists of

elements not in A. If a e E and b e E, etc., [a, b] denotes the set of

real numbers a < x < b. . If x e (a, b] then a < x < b.

A real-valued function f (X) defined on a subset F of E is represented
a/

as f(X): E ->• E. The minimization of f(X) over the set F is represented

as

Minimize f(X)
X e F ^

If F is the space E , then the minimization is unconstrained. Otherwise

the minimization is constrained.

4. Linearly Independent Set of Vectors

A set of m vectors X.. , X X is said to be a set of linearly
f\ĵ - 'V̂  'xJfi

independent vectors if a relation.of the form

a,X.. + a0X0 + . .. + a X =0
1̂ 1 2̂ 2 rn̂ m

holds only when the scalars a.. , a , ...» a are all zero. The vectors are

linearly dependent if they are not linearly independent. A set of n linearly

independent vectors is a basis for E . The dimension of a space is the

number of vectors in a basis for that space. Let a set of m linearly

independent vectors in En define a subspace B of E . The set of all

vectors in E which are orthogonal to B is a subspace called the orthogonal

complement of B and is denoted by B . Any vector X e E may be uniquely
"\>

represented as X = Y + Z where Y e B and Z e B .
b̂ 'V *\t 'V* 'V

5. Characterization of Neighborhood of a Point, Sets and Sequences



5.1 Neighborhood of a Point

The e-neighborhood of a point1 X* in E is the set of points X lying in

the open sphere or ball of radius e > 0 and X*. The e-neighborhood of X* =
Oj • 'V

{X: || x-X* ||«< e}. In general it is not necessary to restrict a neighborhood

of a point to be an e-neighborhood. Therefore a neighborhood of a point X*

is defined as any open set containing X*.

5.2 Nature of a Point X With Respect to a Set F in £n

A point X is an interior point of F. if F contains an e-neighborhood of

X . A point X is an accumulation point or a limit point of F if every

e-neighborhood of X contains a point X ^ X belonging to F. A limit point

of F need not be in F. A point X is an isolated point of F if X is in F

but is not a limit point of F. A point X is a boundary point of F if every

e-neighborhood of X contains points in F and points not in F. A point X

is an exterior point of F if it is interior to the complement of F.

5.3 Characterization of a Set in Terms of the Points in it

A set F. in E is open if all of its points are interior points.

Equivalently, F is open if given X e F and 3 and e > 0 3 || Y-X || < e
/\; f\j f\j

implies Y e F. It is closed if it contains its limit points. Equivalently,
"u

F is closed if X e F and X ->• X implies X e F. The closure of any set F

in En is the smallest closed set containing F. The boundary of a set is

that part of the closure that is not in the interior. A set F is bounded

if there exists a positive number r such that || X || < r for every X e F.

A closed and bounded set is said to be compact. A neighborhood of a set

F is an open set V containing F. By an e-neighborhood of F is meant a set

of points each of which lies in an e-neighborhood of some point X in F.
'V/



The e-neighborhood of F is the union of the e-neighborhoods of its points.

If A CL, E is a bounded set of real numbers, then the smallest real

number y such that x < y Vx e A is called the least upper bound or supremum

of A and is denoted as

y = sup(x) or y = sup{x: x e A},
x e A

Similarly, the greatest lower bound or infimum y of a set A is denoted as

y. = inf(x) or y = inf{x: x e A},
x e A

5.4 Characterization of a Sequence
/,\ °°

A sequence of vectors is represented as {X }, ' or as {X } when ther ^ k=0 ^
(k)

index set is implicitly understood. The sequence {X } is said to converge
^

to the limit X* if || X - X* || -*• 0 as k -»• «. Equivalently , X* is the limit
'V f\, Oi *\»

(k)
point of the sequence {X } if for every e > 0 there is an integer p such .

•X"

(k)
that X is in the e-neighborhood of X* whenever k > p . Each of the symbols

a. ^

> x*", "lira X(k) =.X*" and lira X(k) = X*.

(k) (k)
signifies that X* is the limit of the sequence {Xv '}. If Xv •*- X* and

"V <\» »Vi Oi .

{Y(k)} is a subsequence of {X(k)}, then Y(k) -»• X*. A sequence {X(k)} is a
•\, i/ ^ • 'v 'v/

Cauchy sequence if

lim X -X =0.

A sequence {X '} in En converges if and only if it is a Cauchy sequence.



A sequence (X } is bounded if there is a finite positive number r such
a.

that |j X II < r for every integer k. A point X* is an accumulation point
f\j — ^

(k)
or .a cluster point of a sequence {X } if it is the limit of a subsequence

of{X(k)>. .
•x.

A set F in E is closed if and only if the limits of convergent sequences

in F are in F. Every bounded sequence {X^ } of points in En possesses a
a.

(k)convergent subsequence. Let {r } be a bounded sequence of real numbers

and I/ = supfr : i > k}. . Then {I/ } converges to a real number q*

called the limit superior of {r } and I/* = lim
k-*»

5.4.1 Order of Convergence of a Sequence

(k)Let {r } be a sequence of. real numbers converging to r*. The order

(k)of convergence of {r } is defined as the supremum of nonnegative numbers

p satisfying

- *0 < lim
- r*|p

This definition of the order of convergence is a step-wise concept as it

defines bounds on the progress made in moving from kth term to (k+l)th term.

The order of convergence is determined only by the properties of the sequence

when k ->• °°. It is a measure of the speed of convergence of the "tail" of

(k)the sequence {r }.' A large value of p implies a high speed of convergence.

If the sequence has pth order of convergence and if

0 - lim ̂  - r*'



then asymptotically

_r*| = 3|r
(k).-r*|p.

When p •= 2 the sequence has second order convergence.

(k)
If the sequence {r } has an order of convergence equal to unity, then.

it is said to converge linearly to r*. The sequence converges to r* linearly

with convergence ratio 3 if

• (k+1) _ -
lim -L- ^-L = 3 < 1.

_ *

A linearly convergent sequence with convergence ratio 3 is said to have a

(k)
tail that converges at least as fast as the geometric sequence {d3 } for

some constant d. Therefore linear convergence is sometimes referred to as

geometric convergence. The smaller the convergence ratio, the faster is the

rate of convergence. When p = 1 and 3 = 0 , the rate of convergence is said

to be superlinear. The convergence of any order greater than unity is also

superlinear.

The average convergence rates may be used to place bounds on the

average progress per step over a large number of steps. However in comparing

convergence of different sequences, the step-wise convergence rates are

usually used. When the 'sequences are well behaved and the limits involved

in the definition of convergence rates exist the step-wise and average

convergence rates coincide. Additional information on the convergence of

sequences may be found in (L5).

(k)
The convergence properties of a sequence of vectors (X } are defined



with respect to a function that converts the sequence of vectors into a

sequence of numbers. If f(X): E -*• E is defined on E , the convergence
r\,

(k)
of .{X } to X* can be defined in terms of the convergence of f(X) to f(X*).'

a, >\, O. -\/

(k)The function f(X) used in this way to measure the convergence of {X } is
^ ^

called the error function.

In optimization theory, the objective function f(X) or the function
"uj

|| X - X* || is chosen as the error function to analyze the convergence of
r\j ^ .

(k)
the sequence of intermediate solutions (X } to X*. The order of convergence

^ ^
of a sequence is insensitive to the particular error function used and hence

the particular error function used to measure convergence is not really

very important (L5).

The order of convergence of a sequence is a local convergence property

and is a measure of the ultimate speed of convergence. It is generally used

to determine the relative advantage of one algorithm to another. The global

convergence property is concerned with whether starting at an arbitrary

point the sequence generated will converge to a limit point or a solution.

6. Matrix Notation

A matrix with m rows and n .columns is denoted as an mxn matrix. A

diagonal matrix with n rows is denoted as a diagonal matrix of order n.

A diagonal matrix with unity as diagonal elements is denoted as the identity

matrix I. The double subscript notation is used to represent the elements

of a matrix. A matrix H with elements h.. is represented as H = {h..}.

T
The transpose of a matrix B is written as B . A square matrix is said to

be nonsingular if its determinant is not zero. The inverse of a nonsingular

square matrix G is denoted as G . A matrix N whose columns are X, , X , ..., X
'



is represented as N = [X , X X ]. A vector X e En is a matrix with

n rows and one column. A row vector is represented as the transpose of a

column vector. The determinant of a matrix H is denoted as |H|.

7. Eigenvalues and Quadratic Forms

Let H be a square matrix of order n. A scalar X and a nonzero vector

X e E satisfying HX = XX are said to be an eigenvalue and an eigenvector

respectively of H. The number X is the eigenvalue of H corresponding to

the eigenvector X. All the eigenvalues of H are obtained by solving the

characteristic polynomial of degree n in X, |H - IX| =0.

T
If the square matrix H of order n is symmetric, i.e., H = H , then

(i) The eigenvalues of H are real.

(ii) Let X and X be distinct eigenvalues of H and X and X be the

Tcorresponding eigenvectors, then X X = 0.

The matrix H is positive definite when

T(a) The quadratic form X H X is positive definite, i.e.,

XT H X > 0 V nonzero X e En.

(b) All its eigenvalues are positive,- i.e., X. > 0 Vi.

(c) The determinants of the leading principal minors of H are positive.

The leading principal minors of H are represented as

H. = {h..} (i,j = 1, 2, .... p).
P 13

The matrix H is positive semidefinite when

T(a) The quadratic form X H X is positive semidefinite, i.e.,

XT H X > 0 V nonzero X e En and

T n
X H X = 0 for some nonzero X e E .
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(b) The eigenvalues X. > 0 Vi and X. = 0 for at least one but

not all i.

The leading principal minor test cannot be used to determine semidef initeness

of the matrix. H. When some of the determinants of the leading principal minors

are zero, the. test will not provide information about the def initeness of H.

A matrix H .is indefinite when

(a). The quadratic form XT H X is indefinite, i.e., XT H X < 0 for
'V 'X/ ^ %

some nonzero X e E and X H X > 0 for other nonzero X e E .
^ Oi \> ^

(b) The eigenvalues X . < 0 for some i and X . > 0 for some j .
J ,

(c). Let |H. | , i = 1, 2, ...,nbe determinants of the leading principal

minors of H. The matrix H is indefinite if |H.| ^ 0 Vi and

IH |/|H I < 0 for some i and IH I / J H I > 0 for some j.
i' i-l j ' j-1

8. Norm and Condition Number of a Matrix

The norm of a square matrix H of order n, subordinate to the vector

i, „ „ „ I|HS|! „ „norm X , is defined as H = max u n — . The norm H relative
II x H # o HJ.II

"Xi

to the Euclidean norm || X || is

T T

| | H | | = max [i_!_-V/2, X £ En.
X * 0 XT X ^

Therefore the norm ||.H || relative to the Euclidean norm of a vector X in E
a.

T
is the square root of the largest eigenvalue of H H. If H is a symmetric

matrix, then || H || is the largest eigenvalue of H and || H || is the

reciprocal of the smallest eigenvalue of H. Let X and X be the largest
J6 -O

and smallest eigenvalues of H. Then the condition number r of the matrix
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H is defined as r = X /X . .The matrix H is said to be well-conditioned if
i(j -O

the value of r is close to 1. If the value of r is very large, the matrix

H is said to be ill-conditioned. The ill-conditioning of H increases as

the value of r increases .
•

9. Functions

A real valued function f (X) defined on a subset L of E is represented
^

as f(X): E -> E. A function f(X) is said to be continuous on a set L if it
<\t TJ

is continuous at each point X in L. It is continuous at a point X in L if
%o ô

f(X) •> f(X ) whenever X e L and X ' ->• X . Equivalently , f(X) is continuous at
r\j <\j° ^ *\i i\fl ^

X if given e > 0 there is a 6 > 0 such that II X - X II < 6 implies
0,0 . ' -\, -\,o "

|f(X) - f (X ) | < e. A set of real-valued functions c.(X), i = 1, 2, .... m
^ o>° i \,

may be regarded as a single vector function C(X) : E •->• E . Such a vector
o> a/

function is said to be continuous on an open set L C. E if each of its

component functions is continuous on L.

(k) (k)A real valued function f(X) is said to be of class C or f e C on
a.

an open set L Sr E if it is continuous and possesses continuous partial

(k+1) (k)
derivatives of all orders < k. If f e C on L, it is of class C on

L. The gradient of f e c' ' at X* is the column vector
'Y,

no.

C2")
If f e C , the- Hessian of f at X* is the square symmetric matrix of order

<\i

n denoted as V2f(X*) or F(X*)
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If the vector-valued function C(X): £n ->- Em is of class C^ , its gradient
f\l 'X/ r» y~i

OL, .

at X* is the mxn matrix, VC(X) = (7-̂ >v* Vi, j = 1, 2, .... n, called
t\j f\j *~Vj o X, A.

Jacobian of C at X*. If a vector X e Em and if the real-valued function

X C: E -> E is of class C^ ', the gradient of X C at any point X is

V[XTC] = [VC]T X.

T m
The Hessian of X C at any point X is equal to Z X. V C (X).

i=l ""
The set of points satisfying the equation f(X) = c, where c e E and

a.

f: E •*• E, forms a level surface of f. If f is of the form f(X) =
n . ^
£ a x + b, a. not all zero, then the level surfaces of f are (n-1)

dimensional hyperplanes and Vf is the normal to the hyperplanes. In general,

if f e C^ ' and Vf ± 0 at X in L, then Vf(X ) is the .normal at X to .the

level surface f(X) = f(X ). If f e C^ ', d is a direction vector in En
*\j Oĵ  ^

and F is the Hessian of f, then the directional derivative of f at a point

X in the d
r\,

is d'T F d.

TX in the direction d is d Vf and the second derivative of f in that direction

Let f e" C be defined on an open set L 5z E and X e L. In an open

neighborhood of X , f may be represented using the following Taylor series

f(X) = f(X ) + (X-X )T Vf(X ) + j (X-X )T V2f(X,)(X-X )
Oj *\̂  f\j f\ĵ ' 'X; *\t \̂J f\J *\J *\t

+ r(X X-X )
•x,-1- >\, f\J-

L

where r(X , X-X1) is the remainder term. The remainder term satisfies the

relation (H4)

r(X,, AX) .
lim —^ ^- = 0 where AX = X -. X .
AX-+0 || AX || * ^ ^
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Therefore the quadratic approximation to f(X) about X_ is the Taylor series

f (X) = . f ( X ) + AXT V f ( X . ) + i AXT V 2 f (X . ) AX, AX = X - X, .
r\j r\jl. t\, r\,- r\jL f. r\, • /^J. <X, 'Vi 'Xi "Xi-l

10. Implicit*Function Theorem

The implicit function theorem is concerned with the conditions under

which a set of equations g.(X, A) = 0 1 = 1 , 2, ..., n, X e En, A e Em,

g.: E -»• E Vi can be solved for X as a function of A, i.e., as X(A). Let
1 *\j <\j <\, 'X*

g. Vi be continuous and have continuous first and second order partial

derivatives with respect to X on an open set 8 En+m. Let g: En+m -> En

be a vector-valued function with g. as elements. Let Vg be the nxn Jacobian

matrix of g with respect to X.

Suppose that g.(X, A) =.0 i = 1, 2, ..., n and |Vg| ^ 0 at a point

(X*, A*) in 8. Then there exists a continuous function X(A) on a neighborhood
'X* *\j 'X' *V

A£E.Em of A* and a constant e > 0 such, that X(A*) = X*, g.(X(A), A) = 0 Vi,
'X' i\j ̂ r\j 1- f\, <\j ^

A e A. Further g.(X, A) =0, || X - X(A) || < e, A e A only when X = X(A) .
^ ' X . ' X . ' X .

If the functions g.(X, A) Vi are of class C on 8, then the function X(A)

(2)
is also of class C on A.

11. Local and Global Minima of a Function on a Set

Let f(X): E -*- E be defined on an open bounded set L£. E . A point
a.

X* e L is said to be a relative minimum point or a local minimum point of
a,

f over L if there is an e > 0 such that f(X*) < f(X) V X e L and || X - X* || < e,

The point X* is said to be a strict local minimum point or strict relative
i>

minimum point or an isolated local minimum point of f over if there exists

an e > 0 such that

f(X*) < f(X) V X e L, X i X* and || X - X* |j < e.
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A point X* e L is said to be a global minimum point of f over L if

f(X*) < f(X) V X e L. The point X* is said to be a strict global minimum
f\j • *\j Vi

point of f over L if

f(X*) < f(X) V X e L, X t X*.

A point X* is a local (global) maximum point of f(X) over L if it is a local

(global) minimum point of -f.(X) . . A point that maximizes or minimizes f oh L

is called an extreme point of f on L.

12. Infimum and Supremum of a Function on a Set

Let f(X): E ->• E be defined on an open bounded set L S^E . The infimum
a.

of f on L is the greatest lower bound of f on S. It is the largest number,

~oo < a < oo} such that f (X) > a holds for all X e L. It is denoted as

"inf f(X)" or "inf f(X) on L" or "inf f(X)". Equivalently,
V r~ I f

\J ' f
\J *\JAG L.

a = inf { f ( X ) : X e L} if

(i) a < f (X) V X e L

(ii) there is a sequence {X } e L such that

lim f(X(k)) = a

A point X* in L minimizes f(X) on L if and only if f(X*) = inf f(X). When

a minimizing point X* e L exists, f(X*) is the infimum as well as the

minimum of f(X) on L. If f(X): E ->• E is a continuous function defined
'V • 'V

On a compact set F̂ .E , then there exists a point X* such that f(X*) =

inf f(X) on L.
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The supremum of f over L is the least upper bound of f on L. It is the

smallest real number, -°° < 3 < °°, such that f(X) < 3 ¥ X e L. It is denoted

as "sup f(X)" or "sup f(X)" or "sup f(X) on L". Equivalently,
XeL . -v.

*

sup{f(X): X e L} = inf{-f(X): XeL}.
a.

A point X* maximizes f(X) on L if and only if f(X*) = sup f(X).

13. . Convex Sets and Convex Functions

13.1 Convex Sets

A set FJ£ E is said to be a convex set if for every X.. , X e F and

0 < a < 1,

. ax, + (1-a) X. e F.

Geometrically, a set is a convex set if the line segment joining any two

points in the set lies in the interior of that set. If 3X. + (1-3) X. e F
rx,! 2̂.

for every X , X e F and 3 e E, then the set F is said to be an affine set
Or"-. O/

or a linear variety.

The closure of a convex set is convex. The intersection and union of

any number of convex sets is convex. The null set is assumed to be convex.

The convex set defined by every convex linear combination of a finite number

of points in E is a simplex in E . The convex hull of a set S is the

smallest convex set containing S. The closure of a convex hull of S is

the closed convex hull of S.

13.2 Convex and Concave Functions
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A function f(X): E -> E defined on a convex set L is said to be convex

on L if for every X , X e L and 0 < a < 1,
Ojl r\,2. — —

f(aX + (1-a) X ) < af(X ) + (1-a) f(X ).

If for X ± X , 0 < a < 1, X , X e L

fXaXj^ + (1-a) X2) < aftXj^) + (1-a) f(X2),

then f(X) is said to be strictly convex on L. A function f(X) is said to be

(strictly) concave on L if -f(X) is (strictly) convex on L. A positive linear

combination of convex functions is convex.

If f(X): E -»• E defined on a convex set L^. E is of class C on L,
a.

then f(X) is convex on L if and only if

f(X2) > f(Xx) + Vf(X1) (X2 - ^

for all points X , X e L.
a.1 Oj2

If for all Xn, X0 e L,

f(X ) > f(X ) + Vf(X ) (X - X )
"V-2 0̂ 1 Ojl Ojl <\,Z

/ 9^
then f is strictly convex on L. If f(X) is of class Cv ' on a convex set L,

%

then f(X) is convex on L if and only if at each point X e L the Hessian
a, 'x,

matrix F of f is positive semidefinite. If F is positive definite V X e L,

then f is strictly convex on L. .

13.3 Convex Sets Defined by Convex and Concave Functions
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Let f(X): E -»• E be a convex function defined on a convex set L. The
'V'

set F = {X: f(X) < a, X e L} is a convex set for every a e E. If f(X) is

a concave function defined on a convex set L, then the set

9

F = {X: f(X) > a, X e L}

is a convex set for every a e E.

If f(X) is linear or affine, then f(X) < a defines an open half space,

f(X) < a defines a closed half space and f(X) = 0 defines an (n-1) dimensional
<\, ~ 'b

hyperplane. The intersection of a finite number of closed half spaces is a

convex polytope. A nonempty bounded convex polytope is a convex polyhedron.

A convex set may be defined by linear equalities. However nonlinear

equalities cannot define a convex set. A detailed treatment of convex sets

and convex functions may be found in references (H4), (L5), (Ml), (Rl), (Zl),

(Z2).

14. Penalty and Barrier Function Methods

Consider the inequality constrained problem PI. The feasible region F

is defined as follows.

F = {X: c.(X) > 0, 1 < i < m}.
^ 1 -X. = = =•

The interior of the feasible region F is defined as

F = {X: c.(X) > 0, 1 < i < m}.

The exterior of the feasible region F is denoted as F.
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14.1 Barrier Function Method

The barrier function method is a transformation technique. The barrier

function transformation for PI may be represented as

B(X,u) = f(X) + I P.(C.(X)), U> 0.
^ • ~ ^ . i i ̂  /"1=

The function B(X,u) is defined so that a barrier is constructed at the
<\, / .

boundary of the feasible region F. A solution X* to PI is approached from
'V

the set F by modifying the barrier function using the control parameter tl.

The set F is assumed to be nonempty and this means that any boundary point

of F may be approached from a point in the set F. This also implies that

the barrier function is not a suitable transformation for equality constraints.

In the function B(X,Ll), the second term is the barrier term. For IX > 0,
i, '

this term is bounded and is defined continuously on the interval c.(X) > 0.
i ̂

Further p . (t) -* », as t ->• 0 . =, The commonly used barrier functions are (Fl) ,

(RID

(i) The inverse barrier function p.(c.(X)) = (c.(X))~ .
i i ̂  i -\,

(ii) The logarithmic barrier function p.(c.(X) = -£n(c.(X)).
1 1 r\j . 1 i\,

The function B(X,u ) is defined on F and twice continuously differentiable
'V •/ • -L

in FT. Further B(X,u) > 0 and B(X,u.) -»• °° as c (X*) -> 0 for any i.
I r\j I — r^ I 1

Therefore a barrier is established at the boundary of the feasible region.

This barrier prevents a search procedure for locating a solution X* to PI
r\,

from leaving the feasible region. As B(X,U.) is defined on F and the method
•̂  '• !

operates in F , the barrier function method is also called an interior-point

method. If c.(X*) = 0, then as X -»• X*, the growth of p.(c.(X)) is controlled
i >\i i i f\,a/

or cancelled by decreasing U.
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The barrier function method may be summarized as follows. Select a

(k)
sequence {u. } such that for each k,

For each k, minimize B(X, u ) to find Xv ' = X(^ '), starting the
l\j * f\j *\j F

•unconstrained minimization from X ~ . The initial starting point X

must be in F . The stopping criteria for each unconstrained minimization

i Ck\ (\r ~\} . ii (k^ Clf-1 "> i.
* •* j l ^ / T r \ " ' / \ *- /TT V IV -^ / \ I l l \ r \ / x r V ^ ^ y imay be based on | f (X ) - f (X ) | or || X - X ||.

(k)Let {X } be the sequence generated by the method. Then any limit

point of this sequence is optimal for PI (Zl) . The behavior of B(X,n) may

be interpreted in the following way (Rll). Let c.(X*) = 0 for some i. As

-* c (X*) = 0, p.(c.(Xv^)) -»• °° and
O> ' X ' . l f x , 1 l l / X , 0.

(k)However if U. is decreased, then p (c.(X )) can be allowed to increase
' i i <\j

(k) (k)
without increasing B(X , U.) • The monotonically decreasing sequence { n

is chosen in such a way that

(k) (k)
(i) B(X , ix ) monotonically decreases.

'V

(ii) B(X, ,. ') is twice continuously differentiable in F .
a.

(iii) c.(X(k)) •» 0, X(k) i- X*, and f(X(k)) -f f(X*).
i- % 'Vi ^ o> . 'v

As the search for X* is started at X e F , the barrier at the boundary of
f\, t\, L

F restricts the search procedure and the sequence, {Xv }, of minimizing

points of B(X, U ) to the interior of F. The method is therefore called

an interior-point method.

The strengths and weaknesses of the method are discussed in detail

in reference (Rll). The method facilitates the solution of PI using an

unconstrained minimization technique and the constraints need not be
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accounted for explicitly. The convergence of the method has been established

(Fl) when the problem functions are continuous and X* is at the boundary of
•Xi

F or in the closure of F . Fiacco and McCormick (Fl) established that there

(k)
exist a sequence {M } and a corresponding sequence of minimizing points

Ck")
generated by the algorithm such that Xv ' -*• X* as k -»• «. Similar convergence

properties and convergence of the other related sequences have been proved

by Luenberger (L5) and Zangwill (Zl).

The method does not require very strong constraint qualifications and

it converges to a local minimum of PI where the Kuhn-Tucker conditions may

(k)
or may not hold. By monitoring the convergence of the sequences {C(X )}

(k)
and {X }, structural information about the problem PI may be obtained.

The most commonly sought structural information is the set of active

(k) (k) • (k)
constraints at X . The vector X is an estimate of X of the

f\j "\» 'V

Lagrange multiplier vector X* at X*. The method converges even when the

(k)
minimization of B(X, u ) is inexact for each k (Rll).

The weaknesses of the barrier function method are of a computational

nature and are most serious when the controlling parameter u is small. The

numerical difficulties associated with the algorithm arise due to the ill-

(k)
conditioning of the Hessian of B(X, M ). The condition number of the

^ *

(k) (k)
Hessian of B(X, ̂  ) increases as decreases. This causes B(X, n ) to

have steep-sided valleys and makes the search for an unconstrained minimum

(k) (k)
of B(X, IJL ') difficult. In the algorithm, u is gradually decreased so

(k)
as to make B(X, n ) twice continuously differentiable and to reduce the

(k)
ill-conditioning, of the Hessian of B(X, U ). The feature that restricts

f\j f

the general application of the method is that it requires the initial point
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to be feasible and the search for X^ J is as difficult as the problem to
ti

be solved. Further the method cannot handle equality constraints.

14.2 Penalty Function Method
•.

The penalty function transformation for PI may be represented as

m
P(X, o) = f(x) + a E n.(c.(X)), a > 0.
^ ^ . -, i i ̂

properties of the loss functions n.(c.(X)) and P(X, a) are discussed in
i i 'v 'Xi

detail in Chapter 2. Additional information may be found in references (Fl) ,

(L5) , (Zl) , (Z2) . The penalty function designed to impose an increasing

penalty on the objective function as the search point X moves away from F
^

and the constraint violation increases. The loss functions n.(t) are defined

•for -oo < t < «> and therefore the penalty function is defined on E . This

implies that both equality and inequality constraints can be handled by the

penalty function transformation technique. When X e F, the loss term is
^

zero and when X £ F penalty is imposed on F(X) depending on how far X is away
a, >\, ^

from F. Therefore the algorithm may be started at any X e E and specially

X(0> e F or X<°> £ F.^ r\,

The loss functions n. Vi are usually chosen so that P(X, a) is twice
i ^

dif ferentiable. However the following loss functions also are used in

souie algorithms.

(i) Zangwill's loss function for inequalities c . (X) > 0
i ̂  =

n,(c.(X)) = -min (0, c.(X))
i i o , i »v

(ii) Absolute value loss function for equalities c.(X) = 0
. . . i %

n.(c
1 1

= c
a,
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The basic penalty function algorithm is described in Chapter 2.

(k)The use of monotonically increasing control parameter o in the

algorithm may be interpreted as follows. When X is in F, the increase
'v

(k)
in a increases the penalty weight associated with the loss term

(k)o Z n. (c.(X)). Due to this increase in the penalty weight associated
•± * i *

with the loss term, in the subsequent unconstrained minimization of

(X,
o>
(k.)v '

(k+1) (k)P(X, ov ') the loss term is reduced and hence c . (Xv ') ->- 0, permitting

X*. .The structure of P(X, o) also implies that for large a, the
a > a . . a .

minimum of P(X, a) will be in a region where a I n.(c.(X)) is small. The
<\, . 1 ! 'V

gradual increase in a is designed to make P(X, a) continuously dif ferentiable
'Vi

and reduce the ill-conditioning of the Hessian of P(X, o).

(k)The convergence of X to X* and the existence of a corresponding
a. a,

(k)monotonically increasing sequence {a } have been established by Fiacco

and McCormick (Fl) , Luenberger (L5) , Zangwill (Zl) . The condition number

of the Hessian of P increases as 0 increases. The penalty function P(X, a)
a.

forms increasingly steep-sided valley as a increases and this leads to

numerical instabilities in the unconstrained minimization of P(X, a). Due
a,

to this reason, it is not possible to solve PI in one step via P(X, a) by
<\,

choosing a large a. The gradual increase in o makes the successive

unconstrained minimization problems easily to solve. In the penalty

function method the solution X* is approached from outside F and therefore
i)

the method also is known as the exterior-point method. Lootsma (L3) has

comprehensively reviewed and classified the loss functions and barrier

functions. Duality analysis of the methods is developed in references

(Fl), (L5) and (Zl) .
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14.3 Mixed Interior Point - Exterior Point Method

Fiacco and McCormick (Fl) proposed and developed a mixed interior

point - exterior point method for solving P3. The equality constraints

are handled by the penalty function method and inequalities are taken into

account using the barrier function method. The methods that solve a

constrained problem by sequential unconstrained minimizations were termed

Sequential Unconstrained Minimization Techniques (SUMT) by Fiacco and .

McCormick (Fl). The most popular form of SUMT uses a quadratic loss function

to handle equalities and a logarithmic barrier function for inequalities.

P(X, a) = f(X) = ̂  E Sin c±(X) + a I (c±(X))
2 a > 0.

. ̂ .. ^ i^E ^ ieE ^

In the above function E is the index set of equality constraints. The

properties of the mixed function are the same those reviewed above for

(k)
penalty and barrier transformations. The sequence X converges to X*

when o -»• °°. Additional information about the properties, convergence and

computational considerations of the mixed methods may be found in reference

(L3), (Fl).

15. Duality Theory and Duality Gap

15.1 The Primal Problem

Let the primal problem be defined as follows.

P: Minimize f(X), X e L .̂En

subject to c. (X). > 0 i = 1, 2, . . . , m
H. f\j "™ " "

f(X): En -> E, c.(X): En + E Vi.



The problem functions are defined on the nonempty open convex set L. The

problem P is assumed to have at least one feasible solution and the set

{X: X e L, c±(X) > cO

-n
in E is compact and nonnull for every choice of a. e E . These assumptions

imply that a finite optimal value of P is attained in the feasible region

F (R13) . Equivalently, -°° < min (P) < °°. The optimal value of P, in general,

is inf (P) . Equivalently, the optimal value of P is the inf f(X) subject to
'Yi

X e L and c . (X) > 0. However, if X* is a minimizer of P in F, then min (P) =
% i i\, — ^i

inf (P) . The conditions imposed on P imply the existence of a solution X* to
a.

P. Therefore in subsequent discussions the optimal value of P is denoted as

min (P) .

The classical Lagrangian, L(X, X) , associated with P is defined as
>\, i\j

follows (R13).

L(X, X) : E + E
<v <\j

- X C(X), X e

L(X, X) = ̂
-°° otherwise

Since f(X) > L(X, X), sup L(X, X) = f(X) when X is feasible. The optimal
^ "~ % ^ %% ^ ^

value of P also may be represented as

min (P) = inf (P) = inf sup L(X, X).
XeL

A vector X* is a Kuhn-Tucker vector for P if
• 'V,
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inf (P) = inf L(X, X*).

The optimality in P may be characterized by the general saddle point condition,

X* e E
^ +

Min L(X, X*) = L(X*, X*) = Max L(X*, X)
XeL ^ ^ ^ * jn ^ ^
^ Xefc

15.2 The Dual Problem and Duality Gap

The dual problem is defined as

D: Maximize v(X) , X e Em

v(X) = inf L(X, X)
^ XeL ^ ^

The optimal value of the dual is

sup (D) = sup inf L(X, X)
, m XeL ^ ^
Xe ^

Since. min (P) = inf sup L(X, X), min (P) > sup (D) or in general,
XeL cm ^ ^
^ XeE

r\,

inf (P) > sup (D) . If inf (P) > sup (D) , a duality gap is said to exist

between the primal problem P and the dual problem D. If there exists a X
' 'Y.

at which the maximum in D is attained, then sup (D) = max (D) . If X*
'Xj

solves D and min (P) = max (D) , then X* is a Kuhn- Tucker vector of P.
'Xj

15.3 Global Optimality and Primal-Dual Method

The necessary condition for optimality may be expressed as follows.

-25-
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If X* is a global minimum of P and min (P) = max (D), then the above saddle

point condition holds. The sufficient condition may be reformulated as

follows. If X* satisfies the above saddle point condition, then it is a

global min of^ P and min (P) - max (D). Further the vector X* in the saddle

point relation is a global maximizer of D. This vector X* is a Kuhn-Tucker

vector for P.

The saddle point condition is always sufficient condition for optimality.

However it is a necessary condition that is required to establish the duality

relation min (P) = max (D). This duality relation is equivalent to the

existence of a Kuhn-Tucker vector X* of P. The primal-dual methods exploit

this duality relation to solve the associated nonlinear problem. In the

ideal case, the dual function v(X) may be maximized to get X* and then

L(X, X*) may be minimized to get X*. This method of solving P is possible

only for some simple problems. The numerical algorithms based on the duality

(k) (k)
relationship generate a maximizing sequence {X } for D and for each X ,

(k) (k)
generate X as a solution to min L(X, X ). The sequences are generated

(k) (k)
so that X ->' X* and X -> X*. The saddle-point condition may be used to

design primal-dual numerical algorithms for solving P only if the duality

relationship min (P) = max (D) holds. The satisfaction of this duality

relationship depends on the nature of problem functions and the form of

the Lagrangian function L(X, X) associated with P.

15.4 Convex Duality

If P is a convex, program then the compactness assumption is fulfilled

when the set

{X: X e I, C(X) > 0}
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is compact and nonnull. The duality theory for convex programs has been

reviewed in detail by Geoffrion (Gl) and Rockafellar (R12), (R13). For a

convex program a Kuhn-Tucker vector X* ususally exists and the saddle-point

condition is always sufficient for the optimality of P at X*. Rockafellar

(R13) established that for a convex program P, min (P) = sup (D) (R13).

The point (X*, X*) is a saddle-point of L(X, X) on L x E™, if and only if

X* solves P and X* solves D. If X* solves D, then for X* to solve P it is

necessary and sufficient that (R13)

. (i) X* minimizes L(X, X*) on X e L

(ii) c±(X*) > 0, X* > 0 for c.(X*) =0.

Geoffrion (Gl) and Lasden (Ll) presented the computational applications

of the duality theory for convex programs. Several other possible "duals"

of P have been proposed using the Lagrangian function L(X, X) = f(X) -
*\j 'X/ 'X/

T m
X C(X), X e E_j_ . The following dual formulations are reviewed and

compared by Geoffrion (Gl).

(i) Geoffrion dual G

G: Maximize { inf (f(X) - XT C(X))}
Fm X e L ^ ^ ^ ̂

A E t <v,
*\/ *4"

(ii) Wolfe dual W

W: Maximize f(X) - XT C(X)

X > 0
f\j = •

X e L S En

Vf(X) - E X Vc = 0
*x» *\/ , i f\, ii
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(iii) Stoer, Mangasarian and Ponstein dual

SMP: Maximize f(X) - XT C(X)
>\j f\, f\, f\,

X > 0
Oi =

Subject to

X minimize f(X) - XT C(X) over L.

15.5 Duality in Nonconvex Programs

The dual formulation D of P is based on L(X, A) and has inherent limitations

(R13). The implicit feasible set in D is

m
{A: X e E+ , v(X) > -»}

and it is difficult to determine a representation of this set. This implies

that it is difficult to determine whether the inf L(X, X) over X e L is
*"b *"V/ *\*

finite and attained.' Further even if X* minimizes L(X, X*) and X* solves D,

X* may not solve P unless there is only one solution to P. The dual formulation

D is meaningful only in the convex case, since only in this case it is possible

to establish the relation min (P) = sup (D) (R13).

Rockafellar (R12), (R13) and Mangasarian (M2) showed that by associating

a different Lagrangian with P, the duality gap in nonconvex programs may be

eliminated. A wide variety of Lagrangians may be associated with P and each

choice corresponds to a different dual problem. Even though great flexibility

is afforded by the theory in the choice of the Lagrangian for P, not all of

these are of practical value in computation. The Rockafellar's augmented

Lagrangian f(X, A, o) is a member of a wide class of Lagrangians and has
*\r *\j f\t

proved to be useful to developing primal-dual numerical algorithms for

solving P. The duality theory in terms of y(X, A, o) for nonconvex programs
'V* *\t *\i
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is reviewed in Chapter 3. Detailed analysis of the duality theory based on

, X, o) may be found in (R6), (R12) and (R13). The duality theory based
'v.

, X, o) for convex programs was investigated by Rockafellar (R4), (R5)

15.6 Partial Duality

It is not necessary to include the.Lagrange multipliers of all the

constraints of a problem in the definition of the dual function (Gl), (L5).

The duality can be defined with respect to any subset of the constraints.

If a constraint is used to define the Lagrangian associated with P, it has

a dual variable of its own. If a constraint is assigned to define the set

L, it will not possess a dual variable. Consider the convex problem P with

the constraints partitioned so that the dual is defined with respect to the

constraints belonging to the index set J. Let p be the number of indices in

J. Then the partial dual of P in terms of L(X, X) and with respect to the

set J may be represented as . . .

PD: maximize v(X), X e EP

v(.X) = inf L(X, X) X e L, X e EP

c.(X) > 0 i ^ J.

The choice of assignment of a constraint depends on the structure of the

problem, or the nature of the theoretical analysis or the ease of evaluating

v(X).
'V-
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APPENDIX B

COMPUTERIZED ALAG ALGORITHM AND APPLICATION

1. Introduction
•

An ALAG penalty function algorithm to solve the equality and

inequality constrained problem P3' (see Chapter 3) is presented. An

equality constrained problem and an inequality constrained problem are

solved using this numerical algorithm. The algorithm and the examples

supplement the review of the ALAG penalty function technique reviewed

within this report. This numerical algorithm was investigated by

Fletcher (F8) . This algorithm incorporates the parameter iterations

that have been proven to be efficient (F8) . A Quasi-Newton method that

_utilizes a complimentary Davidson-Fletcher-Powell update [F4] for solving

unconstrained problems is used in the inner iterations,

2. ALAG Penalty Function Algorithm for Equality and Inequality

Constrained Problem.

The equality and inequality constrained problem P3 is defined in

section 3.4.1. To simplify the presentation of the numerical algorithm

in the next section, following notations are used.

E : The index set of equalities

Sc . : The scale factor for ith constraint
i

(k)
WW. : The scaled constraint violation for ith constraint in

i

iteration k

Sci
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(k) n
E and c > g

i . Sc. T i = i

(k)
AKK : The largest scaled .constraint violation in iteration k

AKK(k> C= max •! WW.(k){
1 I l J

AKV ' : Initial value of AKK V / in iteration k

AKMIN : The relative error tolerance required in the constraint .

fkl
residuals c.. When AKJC ' < AKMIN the algorithm is

terminated. This is the stopping criterion for the

outer iteration.

EPS. The tolerance in x. for unconstrained minimization
i i

(k)
c. : The current value or residual of ith constraint in

iteration k.

(k)
M(X ): The index set of constraints that contribute to the ALAG

(k) I"
penalty function. M(,X ) = 1 i : i e E or

i i E and c.(k) < 9.(k)j

(k)
p : The number of indices in M(X ).

(k)- (k)
(AX.) : The Powell-Hestenes correction for X. in kth iteration

(k) (k)
(AX ) : The Newton correction for X. in kth iteration,

i N i

Algorithm A3

(i) Select

the initial starting point X ,

the initial estimate of parameter vector 9

the initial penalty constants a. , V i
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(ii) k = k + 1

(iii) Minimize 0 (X, 9 ', ov ' ) to find

(k) (k) (k)
X = X_ (0 , a ), starting the unconstrained

minimization from X

• Use Broyden's Quasi-Newton method for unconstrained

minimization of 4> (X, 6 c/k))

$ (X, 9(k), o(k)) = f(X) + 1/2 -L a.(k) [C. -9.(k)]
ieE """ L 1

+ i E 0,ao (c _e.oo
 2

0, C. - 9. > 0
(c - e )_ = 11-

(c - e.), c. - 9. < o

During the unconstrained minimization of $, an estimate of the Hessian

of $ is built-up using the first order information about f (X) , c. (X)

(k) (k)
and the change in X. The estimate of the Hessian of $ at (X ,9 ,

(k) (k)
o ) is represented as G(o ).

(iv) Estimate

(k) (k) (k)
the Lagrange multiplier estimates X. = a. 9.

(k)
the constraint residuals c. ,

(k)
the scaled constraint violations WW. "" ,

(k)
the largest scaled constraint violation AKK

Ck")
If AKK^ ' < AKMIN, stop.

Ck")
If AKKV ' > AKV J go to (viii) . Otherwise go to (v) .

(v) Estimate (AA . )
i PH

i|E X. * 0, C. < 0, X.(k) - o.(k) C.(k) > 0
* i i i i .1

(k) _ (k) ,
PH - ~ Xi 1 * E' Ai * °' Ci < °'

1 (k) n (k) (k)
A . — O . - L: *•• I
1 1 1
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the constraint tolerance AKMIN

the tolerance EPS. on variable x.
i i

the constraint scale factors Sc.i

the initial upper bound on constraint violation AK

k = 0

If k = 1, go to (vi).

(k) „ (k-1)If < EPS., stop.

Otherwise go to (vi).

(vi) Find R = j i : i e E or i i E and

A . + 0 and c .
i i

(k) <

Let p be the number of indices in R and

Y(k) _ (Y (k) Y (k) (k) T p
I ~ *Y! ' Y2 ' ---- ' Yp

 J e h

Estimate Y. = (AX.) , i e R.

(k)
The Y. , i e R are determined by solving the following

subproblem.

Min

Q(Y.(k>) - • Z C. Y.(k) + | Y(N G^ N)
ieR 1 x

where G is the estimate of the Hessian of $ and the

columns of N are the gradients of c., i e R .
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(vii) X.(k+1) = A.(k) + Y.(k) i e R.

2 <k> = 4
i

If Z . (k ) > 1, o.<k+1> = Z . ( k> o. (k) and d. ( k ) = (2 . ( k ) - l )a . ( k ) , is R.

(k) < 1< 1, o. n (k) . , (k) _ ,
= o. and d. = U, i e R.l i

) =G(a(k))+ND
(kV

*

AK(k) = AKK(k)

go to (ix).

(viii) Find D = j i

Set o.
i
(k+1)

AK(k) or

WW < 4 WW
(k)?

. andA.1 1

i J

(k+1) _ . (k)= A .
1

The change in c is = 9 , i e D, and

Ykl i
d±

v ' = 0, i ^ D. Let be the diagonal matrix

(k) (k)
with d. as elements. The estimate G(o ) of the

Hessian of $• is 'adjusted to account for the change in o(k)

as follows.

- G(a (k )) D(k) N(k)T
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(k)
The columns of N are the gradients of constraints whose

indices.are in D

(k) .. (k-1)
If - x. < EPS., stop.

Otherwise go to (ix).

(ix) 9.(k+1) = A (k+1Va (k+1) V
i i i i

go to (ii).

3. Numerical Examples

3.1. Example 1: Equality constrained Problem

Minimize : f (X) = (X;L - I)
2 + (^ - x^2 + (x2 - x

Subject to C;L (X) = X]L + x
2 + x^ - 2 - 3 /2 = 0

c2 (X) = x2 - x
2 + XA + 2 - 2 /2 = 0

c3 (X) = Xlx5 - 2 = 0

Starting point X(0) = (2,2,2,2,2)

Solution point X = (1.1911, 1.3626, 1.4728, 1.635, 1.679)

* _2
Optimal objective function value f = 7.8776 X 10

The relative error tolerance in constraint residuals AKMIN = 0.0008

The error tolerance in variables EPS. = 0.00001 V i
i



36

Outer Iteration 1

X° = (2,2,2,2,2)

9(1) = (0,0,0) .

SC = (7.75736, 1.0, 2.0)

o(1) = (0.03323, 2.0, 0.5)

.AK(1> = 10 X 106°

Inner iteration

X(1) = (1.15955, 1.28716, 1.38550, 1.46505, 1.70426)

C(1) = (-.76667, 0.00417, -0.023827)

WW(1) = (0.09883, 0.00417, 0.01191)

= 0.09883

Updating of parameters

3 Active Constraints i = 1,2,3

AX(1) = (0.08186, - 0.06302, -.12599), X(1) = 0

o increased to 0.29414

' increased to 52.44928

increased to 23.15088
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Outer Iteration 2

X(1) = (1.15955, 1.28716, 1.38550, 1.46505, 1.70426)

9(2) = (.27830,- -.00120, -.00544)

(2)
av ' = (0.29414, 52.44928, 23.15088)

AK(2) = 0.09883

Inner iteration

= (1.19807, 1.37601, 1.48774, 1.66416, 1.66479)

(2)
Cv ' = (0.14175, -.00162, -0,00546)

WW(2) = (0.01827, 0.00162, 0.00273)

AKK^2"* = 0.01827

Updating of parameters

f 71
Av ' = (0.08186, -0.06302, -0.1259.9)

AA(2) = (-0.04160, 0.06244, 0.10922)

3 active constraints i = 1,2,3.

(2)a increased to 55.921

Outer Iteration 3

X(2) = (1.19807, 1.37601, 1.48774, 1.66416, 1.66479)
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9 = (.13687, -0.00001, -0.00072)'

(•3-)
cT ' = (0-.29414, 55.921, 23.1509)

= 0.0182)

Inner iteration

X(3) = (1.1914, 1.36313, 1.47324, 1.63544, 1.67807)

Cv ' = (0.00452, -0.00031, -0.00074)

WW(3) = (0.00058, 0.00031, 0.00037.), AKKV~" = 0..00058

f (X(3) ) = 0.07895.

This is the optimal solution for specified stopping criterion

AKMIN = 0.0008.

3.2 Example 2: Inequality constrained problem

Minimize f (X) = 2 - -^ (x̂ x̂ x )

Subject to c. (X) = x. > 0 i = 1,2, ,5

Ci+5 (X) = i ~ Xi + ° i = 1>2' ---- '5

Starting point X =? (2,2,2,2,2)

Solution point X = (1,2,3,4,5)
'V

ft
Optimal objective function value f =1.0.

The relative error tolerance in constraint residuals AKMIN = 0.0008

The error tolerance in variables EPS. = 0.0001i
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Outer Iteration 1

X° =(2,2,2,2,2)

Sc = 1.0 V i
i

a(1) = 3.46667 V i

AK(1) = 10 X 106°

Inner iteration

X(1) = (1.35159, 2.21458, 3.15082, 4.11547, 5.0933)

WW(1) = (0,0,0,0,0,0,35159, .21458, .15082, .11547, .0933)
'

AKK(1) = .35159

Updating of parameters

5 Active constraints 1 = 6 , 7, 8, 9, 10.

AX(1) = (0,0,0,0,0, .99039, .4847412, .3084211, .2188432, .1978085)

a? increased to 4.83063

o0 increased to 5.6865
o •

a increased to 6.2857

a increased to 5.3862
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Outer Iteration 2

X(i;> = (1.35159, 2.21458, 3.15082, 4.11547, 5.0933)

(2)
€T ' = (0,0,0,0,0, .28569, 0.10035, 0.05424, 0.03482, 0.03673)

(2)
cT ' = (3:46667, 3.46667, 3.46667, 3.46667, 3.46667, 3.46667,

4.8306, 5.68664, 6.28569, 5.3862)

AK ( 2 ) = 0.35159

Inner iteration

X/ '' = (1.00438, 2.004, 3.0049, 4.0054, 5.00085)

(2)
WW^ J = (0 ,0 ,0 ,0 ,0 , 0.00438, 0.00395, 0.00486, 0.005399, 0.000854)

• (2)
AKKV } = 0.00539

Updating of parameters

(2)
Xv ' = (0,0,0,0,0, 0.99039, 0.48474, 0.308421, 0.21884, 0.197808)

= (0,0,0,0,0, 0.01006, 0.01533, 0.025028, 0.031898, 0.00273)

5 active constraints i = 6,7,8,9,10

(2)
a, increased to 4.68405
. 6

C2) '
a ' increased to 8.76983

Outer Iteration 3

= C1.0043, 2.0039, 3.0049, 4.0054, 5.0009)
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9(3) = (0,0,0,0,0, 0.2136, 0.1035, 0.05864, 0.03989, 0.02287)

cT ' = (3.46667,. 3.46667, 3.46667, 3.46667, 3.46667,

4.68405, 4.8306, 5.6866, 6.2857, 8.7698)

AK(3) = 0.00540

Inner iteration

= (1,2,3,4,5)

WW(3) = (0,0,0,0,0, 0.00011, 0.000031, 0.000031, 0.00013, 0.000067)

f (X(3)) = 1.00018, AKK(3) = 0.00013

This is the optimal solution for specified stopping criterion

AKMIN = 0.0008.
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APPENDIX C

COMPUTER PROGRAM DOCUMENTATION

•

This particular section of the report contains the pertinent

documentation for the computer programs designed and implemented in

conjunction with this research grant. Three different computer programs

were developed all based upon the Augmented Lagrangian Penalty Function

technique for Nonlinear Programming. These programs differ from each

other primarily as a function of the type of unconstrained optimizer

used. These programs are entitled ALAG1 through ALAG3. ALAG1 and ALAG2

require closed form gradient equations for the functions to be optimized.

Whereas ALAG3 does not require gradient information be supplied by the .

"user.

TABLE I. Unconstrained Optimizers for ALAG
Computer Programs

Computer Program . . Unconstrained Optimizer

ALAG 1 Fletcher algorithm using a quasi-
Newton complimentary Davidon-Fletcher-
Powell update formula (P4).

ALAG 2 Variable metric method without line
searches as proposed and analyzed by
Powell (P5)

ALAG 3 Same method as ALAG1 except derivatives
are estimated by differences
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COMPUTER PROGRAM: ALAG 1

LANGUAGE: FORTRAN

TECHNICAL REFERENCES: (F8), (P4)



ALAG 1

1. PURPOSE: To minimize a function F (x) = f (X-, ..., X )
~~ 1 n

subject to both equality and inequality constraints.

Derivatives of all functions must be supplied in a

user subroutine entitled ALAGB (see item 5). An

initial estimate of the solution (not necessarily

feasible) must be specified. This computer program

is developed from algorithm of section

2. USE: CALL ALAG1 (N,M,K,X,EPS, AKMIN, DFN, MAXFN, IPR1,

IPR2, IW, MODE)

N An INTEGER set to the number of variables

n (N _> 2).

M An INTEGER set to the total number of

constraints m (M >_ 1) .

K An INTEGER set to the total number of

equality constraints k.

X A REAL array of N elements in which the initial

estimate of the solution must be set. ALAG1

returns the solution x in X.

EPS A REAL array of N elements, in which the

tolerances for the unconstrained minimizations

must be set. EPS (I) should be set so that

EPS (I)/X (I) = AKMIN, roughly speaking.



AKMIN A REAL number in which the relative error

.- tolerance required in the constraint residuals

must be set. ALAG1 will exit when max{|c.(x)|/

scaling factor for c.} _<_ AKMIN for the active

constraints {i}.

DFN A. REAL number in which the likely reaction in

F(x) must be set. This is done in the same

way as for QNWTA - see the QNWTA description.

MAXFN An INTEGER in which the maximum number of calls

of ALAGB on any one unconstrained minimization

must be set.

IPR1 An INTEGER controlling the frequency of printing

from ALAG1. Printing occurs every IPR1 iterations,

except for details of increases to the c. which

are always printed. No printing at all occurs

(except for error diagnostics) if IPR1 = 0.

IPR2 An INTEGER controlling the frequency of printing

fr'om QNWTA. IPR2 should be set as described in

the QNWTA documentation.

IW An INTEGER giving the amount of storage available

in COMMON/ALAGL/W(.). Set to 2500 unless wishing

to change the restrictions (see Section 5).

MODE An INTEGER controlling the mode of operation of

ALAG1. If any positive definite estimate is

available of the hessian matrix of the penalty
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function, set |MODE| = 2 or 3, otherwise set

|MODE| = 1 (see QNWTA description). If

estimates of the a. and 0. parameters are

available (see item 8) set MODE < 0, otherwise

set MODE > 0. A normal setting for a one-off

job with no information available is MODE = 1.

3. . LABELED COMMON AREAS: .

Certain labeled COMMON areas must be declared and set on entry to ALAG1.

COMMON/ALGAGE/C(150) Set scale factors (>0) for the constraints in

C(l), C(2),....,C(M). Choose the magnitude of

these scale factors to give an indication of

the constraints evaluated about the initial

approximation x. If any constraints are violated

by an amount greater in modulus than that which

is set, then the setting is increased accordingly.

These scale factors are transferred to C(M+1),

C(M+2) ,C(2M) by ALAG1.

COMMON/ALAGF/GC(25,50) Set the derivatives of any linear constraints on

entry rather than in ALAGB. This is the most

efficient and the numbers are not disturbed.

The manner of setting is described in item 4.

If MODE < 0 is used, then set the parameters

G1,02, ..., 0m in T(l), T(2),...,T(M) and the

parameters o^c^, .. . ,ô  in T(M+1),T(M+2),...,T(2M).

The meaning of these parameters may be found in

section of this report.

COMMON/ALAGG/T(150)



COMMON/ALAGI/G2P(325) If |MODE| = 2 or 3 set the estimated hessian

matrix of the penalty function in G2P(1) ,'.'..,

G2P(N-(N+l)/2). The manner of setting is that

described in QNWTA under the heading MODE.

Local storage for ALAG1 is through labeled COMMON areas. These

have been set on the assumption that N <_ 25 and M <_-50. If it is desired

to remove either or both of these .restrictions, then it is necessary to

increase the storage available in some or all of these areas. This can

be done by defining the named COMMON areas in the users MAIN with the

increased storage settings, in which case the extra storage will be

effective throughout the whole program. The complete list of labeled

COMMON used by ALAG1 and the corresponding values of N and M are as follows.

COMMON/ALAGC/F,M,K,IS,MK,NU independent of N and M

D/G(50) 2N

E/C(150) 3M

" . F/GC(25,50) N,M

" G/T(150) 3M

H/GP(50) u (u = max(M,N))

" I(G2P(325) . • N- (N+D/2

J/V(50) u

K/WW(150) 3y

L/W(2500) u2

M/ZZUOO) 2p

N/LTUOO) . 2M
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4. ACCURACY: This iterative.algorithm terminates normally when

.the following convergence condition is met:

• max { | c . (x) | /scaling factor for c.} _<_ AKMIN for

i an element of the set of active constraint indices.

A diagnostic message for abnormal termination is

printed when the program is unable to achieve the

requested accuracy. This may be due to (i) a

mistake in programming ALAGB, (ii) there is no

feasible point (in which case a .-*•<*> and c. ->• constant

^ 0), (iii) EPS has been set too large relative to

AKMIN, (iv) the problem is too ill-conditioned.

OTHER ROUTINES: ALAG1 requires the use of ALAGB, ALAGZ, BQDMA,

MULDA, MULDB, MULDE, and QNWTA

ALAGB: USER SUBROUTINE The user must define a subroutine headed by

SUBROUTINE ALAGB(N,M,X)

REAL X(l)

COMMON/ALAGC/F

COMMON/ALAGD/G(50) "

COMMON/ALAGE/C(150)

COMMON/ALAGF/GC(25,50)

This subroutine takes the vector X and sets

(1) F(x) in F; (2) CjCx),..., cm(x) in C(l),...,C(M);

(3) (3F/3X ,...,3F/9X )|- in G(l),...,G(N);
I n

(4) (8c / ,...,3c / )|- in
Al n

GC (N,I) for I = 1,;..,M.



ALAGZ: This subroutine evaluates the augmented function comprised

of the original objective function and penalty terms that is to be

optimized.

SUBROUTINE ALAGZ (N, X, PHI, GPHI)

N and X as previously defined.

PHI is the value of the augmented function evaluated at X.

GPHI is the gradient of the augmented function evaluated at X.

BQDMA: The purpose of BQDMA is to find the values that minimize a

quadratic of n variables subject to upper and lower bounds on some or

all of the variables.

. The quadratic is defined by

Q(X) = 1/2 X*- AX - B^t

Subject to:

BL. <_ X. <_ BU. i = 1,. . . ,N.

SUBROUTINE BQDMA (N,A,IA,B,BL,BU,X,Q,LT,K,G)

N . an INTEGER which must be.set by the user to the number

of variables.

A a REAL, two dimensional array, each dimension at least

N; the elements in the upper triangle A(I,J) Iĵ Ĵ N must

be set by the user to the corresponding A., in (1), and. .

will remain untouched by the subroutine. Elements

A(I,J) N>I>J are used, as working space.

IA an INTEGER giving the first dimension of A in the

statement which assigns space to A.

B a REAL array of at least N elements. The user must set

B(I). B is not overwritten by BQDMA.
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BL a REAL array of at least N elements. The user must

set BL(I) to the lower bound on the I variable.

If the bound is non-existent, set it to a very small

number like -1E75. BL is not overwritten by BQDMA.

BU a REAL array of at least N elements. The user must

set BU(I) to the upper bound on the I variable.

If the bound is non-existent, set it to a very large

number. BU is not overwritten by BQDMA.

X a REAL array of at least N elements. BQDMA returns

the solution in X(I).

Q a REAL variable in which BQDMA returns the solution

value of the quadratic.

LT an INTEGER array of at least N elements, set by

BQDMA to a permutation of the integers 1,2,...,N

(see K and G below)

K an INTEGER set by BQDMA to the number of free

variables at the solution (those not 'on their bounds).

These are the variables LT(1), LT(2),...,LT(K).

G a REAL array of at least 3*N elements. G(l), ,G(N)

are set by BQDMA to the gradient evaluated at the

solution point. G is indirectly addressed so that

G(I) contains the gradient with respect to the LT(I)

variable, whence G(l),....,G(K) will be found to be

zero. G(N+1),...,G(3*N) are used by BQDMA as working

space.
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MULDA is a subroutine for use in problems which involve the

T
addition or subtraction of rank one matrices a zz to positive

definite or semi-definite symmetric matrices A stored in factored

T
form A = LDL , such that the resulting N x N matrix

T
A = A + a zz

is also known to be positive definite or semi-definite. Note that L is

lower triangular with £..=1, and D is diagonal with d. > 0.
11 i —

SUBROUTINE MULDA (A, N, Z, SIG, W, IR, MK, EPS)

A A REAL one dimensional array of N*(N+l)/2 elements

T
in which the matrix A=LDL must be given in factored

form. The order in which elements of L and D are

stored is d1>
£21'£31'""£Nl'd2'£32"<"£N2'

d,, ,,£,„, „, ,rd,,. The factors of the matrixN-l N,N-1 N .

—T
A = A + a zz will overwrite those of A on exit.

N An INTEGER (N>jL) which must be set to the dimension

of the problem.

Z A REAL one dimensional array of N elements in which

the vector z must be set, The array Z is overwritten

by the routine.

SIG A REAL variable in which the scalar a must be set.

SIG is not restricted to +., but if SIG<0 then it

must be known from other considerations that A is

positive definite or semi-definite, apart from the

effects of round-off error.
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W A REAL array of N elements. If SIG>0 then W is

not used, and the name of any pne dimensional array

can be inserted in the calling sequence. If

SIG<0 then W is used as. work space. In addition for .

SIG<0 it may be possible to save time by setting in

W the vector v defined by Lv=z. The ways in which

this can occur are described under MK below.

IR An INTEGER to be .set so that ,|lR| is the rank of A.

If the rank of A is expected to be different from that

of A, set IR<0. On exit from MULDA, IR(̂ O) will

contain the rank of A.

MK An INTEGER to be set only when SIG<0, as follows.

If the vector v defined by Lv=z has not been calculated

previously, set MK=0. If MULDA has been used previously

to calculate A ' z, then v is a by-product of this

calculation and is stored in the W parameter of MULDE.

In this case transfer v to the W parameter of MULDA

and set MK=1. If z has been calculated as z = Au for

some arbitrary vector u using MULDD, then again v is

a by-product of the calculation and is available in the

W parameter of MULDD. In this case (or any other in

which v is known) set v in the W parameter of MULDA

and set MK=2.

EPS A REAL variable to be set only when SIG<0 and A is

expected to have the same rank as A. In certain ill-
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conditioned cases a non-zero diagonal element

of D might become so small as to be indeterminate.

. Two courses of action are possible. One is to

introduce a small perturbation in order that A

keeps the same rank as A. This is the normal course

of action and is achieved by setting EPS equal to

the relative machine precision e. The other course

of action is to let the rank of A be one less than

the. rank of A. This is achieved by setting EPS

equal zero.

MULDB - factorizes a positive definite symmetric matrix given in

. . A. This matrix is then used in MULDA.

SUBROUTINE MULDB (A, N, 1R)

A Must contain the elements of A in the order

all'a21' ' ' * 'aNl'a22'a32' ' ' -3N2' ' ' ' 'Vl.N-l^N.N-l^

that is as successive columns of its lower triangle).

On exit A will be overwritten by the factors L and D

in the form described in MULDA.

N . Order of the matrix A,

IR An INTEGER set by MULDB to the rank of the factori-

zation. If the factorization has been performed

successfully IR=N will be set. .If IR<N then the

factorization has failed because A is not positive

definite (possibly due to round-off error). In this

case the factors of a positive semi-definite matrix
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of rank IR will be found in A. However the

results of this calculation are unpredictable,

. and MULDB should not be used in an attempt to

factorize positive semi-definite matrices.

MULDE calculates the vector z* = A z where A is in factored form

SUBROUTINE MULDE (A, N, Z, W, IR)

A Must be set in factored form.

N Order of the matrix A.

2 A REAL array of N elements to be set to the vector z.

_1
On exit Z contains the vector z* = A z.

W A REAL array of N elements which is set by MULDE

to be vector v defined by Lv=z. If this vector is

not of interest, replace W by Z in the calling

sequence to obviate the need to supply extra storage.

IR An INTEGER which must be set to the rank of A.

QNWTA finds the minimum of a function F(x) of several variables

given that the gradient vector can be calculated. This routine is based

upon a quasi-Newton method described by Fletcher in (F8).

SUBROUTINE QNWTA (FUNCT, N, X, F, G, H, W, DFN, EPS, MODE, MAXFN,

IPRINT, IEXIT).

FUNCT An IDENTIFIER of the users subroutine.

N An INTEGER to be set to the number of variables (N _>_ 2) .

X A REAL ARRAY of N elements in which the current estimate

of the solution is stored. An initial approximation
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must be set in X on entry to QNWTA and the best

estimate obtained will be returned on exit.

F A REAL number in which the best value of F(x)

corresponding to X above will be returned.

G A REAL ARRAY of N elements in which the gradient

vector corresponding to X above will be returned.

Not to be set on entry.

H A REAL ARRAY of N*(N+l)/2 elements in which an

estimate of the hessian matrix is stored. The

matrix is represented in the product form LDL

where L is a lower triangular matrix with unit

diagonals and D is a diagonal matrix. The lower

triangle of L is stored by columns in H excepting

that the unit diagonal elements are replaced by

the corresponding elements of D. The setting of

H on entry is controlled by the parameter MODE.

W A REAL ARRAY of 3*N elements used as working space.

DFN ' . A REAL number which must be set so as to give QNWTA

an estimate of the likely reduction to be obtained in

F (x) .. DFN is used only on the first iteration so

an order of magnitude estimate will suffice. The

information can be provided in different ways

depending upon the sign of DFN which should be set

in one of the following ways:
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DFN>0 the setting of DFN itself will be

taken as the likely reduction to be

obtained in F(x).
•

DFN=0 it will be assumed that an estimate of

the minimum value of F(x) has been set

in argument F, and the likely reduction

in F(x) will be computed according to

the initial function value.

DFN<0 a multiple |DFN| of the modulus of the

initial function value will be taken as

an estimate of the likely reduction.

EPS A REAL ARRAY of N elements to be set on entry to

the accuracy required in each element of X.

MODE An INTEGER which controls the setting of the initial

estimate of the hessian matrix in the parameter H.

The following settings of MODE are permitted.

MODE=1 An estimate corresponding to a unit

matrix is set in H by QNWTA.

MODE=2 QNWTA assumes that the hessian matrix

itself has been set in H by columns of

its lower triangle, and the conversion

• . p x
to LDL form is carried out by QNWTA.

The hessian matrix must be positive definite.

MODE=3 QNWTA assumes that the hessian matrix has

been set in H in product form. This is.
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MAXFN

IPRINT

IEXIT

convenient when using the H matrix

from one problem as an initial

estimate for another, in which case

the contents of H are passed on

unchanged.

An INTEGER set to the maximum number of calls of

FUNCT permitted.

An INTEGER controlling printing. Printing occurs

every |IPRINT| iterations and also on exit, in the form

Iteration No, No of calls of FUNCT, IEXIT (on

exit only).

Function value

X(1),X(2),...,X(N) 8 to a line

. G(l),G(2),...,G(N) 8 to a line

The values of. X and G can be suppressed on inter-

mediate iterations by setting IPRINT<0. All

intermediate printing can be suppressed by setting

IPRINT=MAXFN+1. All printing can be suppressed by

setting .IPRINT=0.

An INTEGER giving the reason for exit from QNWTA.

This will be set by QNWTA as follows:

IEXIT=0 (MODE=2 only). The estimate of the

hessian matrix is not positive definite.

IEXIT=1 The normal exit in which |DX(1)|<EPS(I)

for all 1=1,2,...N, where DX(I) is the

change in X on an iteration.
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T
IEXIT=2 G DX>^0. Not possible without rounding

error. Probable cause is that EPS is

set too small for computer word length.

IEXIT=3 FUNCT called MAXFN times.
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COMPUTER PROGRAM: ALAG 2

LANGUAGE: FORTRAN

TECHNICAL REFERENCES: (F8), (P5)
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The ALAG2 program differs from ALAG1 only in the type of uncon-

strained optimizer routine employed. Therefore, this section will only

document this, routine and the user is referred to the documentation

on ALAG1 (except for the ALAG1 routine, QNWTA) as being applicable to

ALAG2. The unconstrained optimizer routine for ALAG2 is VAMMA. The.

purpose of VAMM is to calculate the minimum value of a multivariate

function. This routine uses the BFGS variable metric method without

line searches of the type analyzed by Powell (P5).

SUBROUTINE VAMMA (FUNG, N, X, F, G, SCALE, ACC, W, MAXFN)"

FUNG The name of the subroutine provided by the

user. It must be declared in an EXTERNAL

statement.

N An integer whose value must be set to the

number of variables.

X An array of at least n elements, set by the

user to initial values of the variables

(x, ,x ,...,x ). Usually computing time is
1 2. n

saved if these estimates are close to the

final solution. They are changed automatically

to the values that give the least calculated

value of the objective function.

F A real variable that is set automatically to the

least calculated value of the objective function.

G An array of at least n elements that are set

automatically to the components of the first
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SCALE

ACC

W

MAXFN

derivative vector of F for the final values

of the variables. Small values indicate a

successful calculation.

An array of at least n elements, whose i

component (l<i<n) must be set to a positive value

that is a suitable change to make to x. initially

in the minimization calculation. About 10% of

the total expected change in x. is often a good

value. This array is called SCALE because its

elements should reflect the relative sizes of

V.X., , X . . . , X ) .
1 2. n

A real number that defines the required accuracy.

The calculation finishes when, for i=l,2,...,n.

changes in x. of size ACC*SCALE(i) do not reduce

the objective function. When in doubt about the

value of ACC it is usually best to choose a small

value.

An array of at least -rn(n+13) elements that is used

as working space. On exit from the subroutine the

first yn(n+l) locations of W give the final approxi-

mation of the second derivative matrix, stored in

the factored form used by subroutine MULDA.

An INTEGER set to the maximum number of calls of

FUNC permitted.
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BLOCK COMMON for VAMMA

COMMON/VAMMA/IPRINT,LP,MAXFUN,MODE,NFUN

The five integers called IPRINT,LP,MAXFUN,MODE and NFUN are present
•

in a common block in order that they can be reached by the user.

In most calculations they can be ignored, but sometimes they are

useful, their purpose being as follows.

IPRINT This has a default value of zero, and is

unchanged by VAMMA. If IPRINT=0, then no

printing occurs except perhaps the diagnostic

message mentioned below. Otherwise the value

of the .objective function is printed every

|IPRINT| iterations. If IPRINT>0 the values

of X(.) and G(.) are printed also. If IPRINT/0

the final values of F,X(.) and G(.) are always

printed.

LP . This has a default value of 6, and is the stream

number for any output from VAMMA.

MAXFUN This has a default value of zero, in which case

it does not influence the calculation. However,

if it is positive, then VAMMA finishes automatically

when the user subroutine is called MAXFUN times.

Normal convergence can occur earlier.

MODE This has a default value of one, in which case the

initial approximation to the second derivative

matrix is set automatically to a positive diagonal
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matrix. However, if a suitable positive

definite approximation is known, then it may

be passed to VAMMA in the first -rn(n+l)

locations of W by setting MODE=2 or MODE=3.

When MODE=2 these elements of W must contain

the lower triangle of the Hessian approximation,

B say, in the order Bu>B2i'
B3i' • • • »Bni'

B ,B ,...,B ,...,B B B . When
2.2. 32 n2 n-1 n-1 n n-1 n n

MODE=3 the Hessian approximation must be given

in the factored form used by subroutine MULDA,

which is also the form used to provide the

Hessian approximation in W at the return from

VAMMA. A check for positive definiteness is made

automatically by VAMMA, and if it fails a diagnostic

message is printed. In this case the calculation

proceeds as though MODE-1, but the actual value of

MODE is not changed.

NFUN This integer is set by VAMMA to the number .of times

it-calls the user subroutine.
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COMPUTER PROGRAM: ALAG3

LANGUAGE: FORTRAN

TECHNICAL REFERENCES: (F8)
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The ALAG3 program differs from ALAG1 and ALAG2 in the type of

unconstrained optimizer routine employed. Therefore, this section .

will only document this routine and the user is referred to the

documentation on ALAG1 as being applicable to ALAG3. The unconstrained

optimizer routine employed within ALAG3 is referred to as FDQNW. The

purpose of FDQNW is to calculate the minimum value of a multivariate

function. The method used is the quasi-Newton method of ALAG1 in which

derivatives are estimated by finite difference techniques.

SUBROUTINE FDQNW (FUNCT, N, X, F, G, H, W, DFN, XM, HH, EPS, MODE,

MAXFN, IPRINT, IEXIT)

FUNCT The name of the subroutine provided by the

user. It must be declared in an EXTERNAL

statement.

N ' An INTEGER to be set to the number of variables

(N>.2). •

X . . " A REAL ARRAY of N elements in which the current

estimate of the solution is stored. An initial

approximation must be set in X on entry to FNQNW

and the best estimate obtained will be returned

on exit.

F ' A REAL number in which the best value of F(x)

corresponding to X above will be returned.

G A REAL ARRAY of N elements which is used to store

an estimate of the gradient vector VF(x). Not

to be set on entry.
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H A REAL ARRAY of N*(N+l)/2 elements in which an

2
estimate of the hessian matrix 9 F/(3x.8x.) is

• stored. The matrix is represented in the product

T
form LDL where L is a lower triangular matrix

with unit diagonals and D is a diagonal matrix.

The lower triangle of L is stored by columns in

H excepting that the unit diagonal elements are

replaced by the corresponding elements of D. The

setting of H on entry is controlled by the

parameter MODE.

W A REAL ARRAY of 3*N elements used as working space.

DFN A REAL number which must be set so as to give FDQNW

an estimate of the likely reduction to be obtained

in F (x). DFN is used only on the first iteration so

an order of magnitude estimate will suffice. The

information can be provided in different ways

depending upon the sign of DFN which should be set

in one of the following ways:

DFN>0 the setting of DFN itself will be

taken as the likely reduction to be

obtained in F (x).

DFN=0 it.will be assumed that an estimate of

the minimum value of F (x) has been set

in argument F, and the likely reduction

in F (x) will be computed according to

the initial function value.
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DFN<0 a multiple |DFN| of the modulus of

the initial function value will be taken as

an estimate of the likely reduction.

XM . A REAL ARRAY of N elements to be set on entry so

that XM(I) > 0 contains an indication of the

magnitude of X(I). This quantity need not be set

precisely as it is merely used in scaling the problem.

HH A REAL number to be set so that HH*XM(I) contains

a step length to be used in calculating G(I) by

differences. Set HH equal to 2 where t is the

number of significant binary digits in the calculation

•of F.

EPS A REAL number to be set on entry so that the accuracy

required in X(I) is EPS*XM(I) for all I, (EPS > 0).

MODE An INTEGER which controls the setting of the initial

estimate of the hessian matrix in the parameter H.

The following settings of MODE are permitted.

MODE=1 An estimate corresponding to a unit

matrix is set in H by FDQNW.

MODE=2 FDQNW assumes that the hessian matrix

itself has been set in H by columns

of its lower triangle, and the conversion

T
to LDL form is carried out by FDQNW.

The hessian matrix must be positive definite.
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MAXFN

IPRINT

IEXIT

MODE=3 FDQNW assumes that the hessian matrix

has been set in H in product form. This is

convenient when using the H matrix from one

problem as an initial estimate for another,

in which case the contents of H are passed on

unchanged.

An INTEGER set to. the maximum number of calls of

FUNCT permitted. Up to 2N more calls may be taken

if the limit is exceeded whilst evaluating a gradient

vector by differences.

An INTEGER controlling printing. Printing occurs

every |IPRINT| iterations and also on exit, in the

form

Iteration No., No of calls of FUNCT, IEXIT (on

exit only).

Function value

A(1),X(2), .-. .,X(N) 8 to a line.

G(1),G(2),...,G(N) 8 to a line

The values of X and G can be suppressed on inter-

mediate iterations by setting IPRINT<0. All

intermediate printing can be suppressed by setting

IPRINT=MAXFN+1. All printing can be suppressed by

setting IPRINT=0.

An INTEGER giving the reason for exit from FDQNW.

This will be set by FDQNW as follows:
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IEXIT=0 (MODE=2 only). The estimate of

the hessian matrix is not positive

definite.

IEXIT=1 The normal exit in which |DX(I)|<EPS(I)

for all 1=1,2,...,N, where DX(I) is

the change in X on an iteration.

T
IEXIT=2 G DX>0. Either due to rounding errors

because EPS is set too small for the

computer word length, or to the

truncation error in the finite difference

formula for G being dominant.

IEXIT=3 FUNCT called MAXFN times.
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