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3! °	 PREFACE
ki

This re ort constitutes ap	 pre-presentatiai publication,,

of a paper and results to be presented at the GAMM Workshop

the	 of Inviscid Trans-on "Numerical Methods for	 Computation
^

=
r

onic Flow with Shock Waves". 	 This conference will be held

at the Aeronautical Research Institute (FFA), Stockholm,
Ti.

Sweden on September 18-19, 1979.

This report includes the conference paper, all results

obtained for the various workshop test cases, and approximate

iso-mach line - lots for the supercritical cases.p	 p
t

This work was primarily suppor ,I:E:d by NASA Grant NSG1174

and partially supported b 	 the Texasy	 Engineering Experiment

' Station.
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TEST PROBLEMS FOR INVISCID TRANSONIC FLOW
t

a Leland A. Carlson*
i

Texas A&M University
f College Station, Texas, 	 77843

I.	 Intrcaduction

This paper will briefly discuss some of the results ob-
;t tained in the process of solving the testp	 g	 problems for the

GAMM Workshop on "Numerical Methods for the Computation of
Inviscid Transonic Flow with Shock Waves" with the TRANDES
program.	 Briefly,	 this method, 1 - 5 utilizes the full,	 invis-
cid,	 perturbation-potential flow equation in a Cartesian grid
system that is stretched to infinity. 	 This ^5quation is rep-
resented by a non-conservative system of finite difference
equations that includes at supersonic points a rotated differ-

`' -ence scheme and is solved by column relaxation.	 The solution
usually starts from a zero perturbation potential on a very
coarse grid (typically 13 x 7) followed by several grid 'haly=-
ings until a final solution is obtained on a fine grid (97x49).
Occasionally, for cases having high local Mach numbers, the
solution must be started on the coarse grid (25 x 13).	 Since
the airfoil does not coincide with the grid points,	 the sur-
face boundary conditions are represented as two-term Taylor
series about dummy points inside the airfoil. 	 On the outer
boundaries,	 the exact infinity conditions are uscld.	 This
method can,	 if desired, include the effects of weak viscous
interaction or be used in the design mode. 	 2-6

All of the results presented at the workshop and in this
paper were obtained at the rate of 10 4 pts/sec on an Amdahl
470/V6 using a FORTG compiler and single precision arithmetic
(less than 7 significant digits). 	 A typical run took 4-8 min-
utes, although good engineering results were obtained in one
minute on the medium grid; and convergence was obtained on the
medium grid to at least a maximum cyclic perturbation change
of Tess than 5E-5. 	 On the fine grid, the Amax was usually
larger due to significant digit error in the far-field.	 It E
should be noted that the workshop cases were run 1.5-5.0 times
longer than usual due to the availability of computer time
from TAMU,-and that the TRANDES program has never been opti-
mized for time.

In order to maintain the goal of common discretization,
the grid stretchings were setup so that the number of airfoil
points,	 number of wake points,	 ox and Ay at the trailing edge,
and the location of the last finite vertical grid'column

' -matched the suggested grids as closely as possible. 	 For cases
involving large supersonic zones, the y-grid was extended so
that the last finite horizontal grid line was subsonic. Other-
wise, the rotated difference scheme might have usyd undefined

1 values.

* professor, Aerospace Engineering Department
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for the test cases appear to show correct trends. (I.E. For
ffi C	 0.0 --MOO = 0.72,	 CD =	 .0004;	 Mw = 0.8,	 CD = 0.0100;	 M yL

0.85,	 CD = 0.0381;	 M. = 0.95,	 CD	 0.0989)

b.	 Bump in Channel

Thi% problem was solved by treating the bump as a sym-
metrical airfoil in a solid wall wind-tunnel.	 The solution
used 41 points on the upper surface, 16 in the wake, 21 pts
vertically from the centerline to the wall, 	 AXte	0.0251,

}$ AYt,e = 0.03,	 and	 = 0 on the channel walls. 	 For the up-y

stream/downstream infinity conditions two approaches were

Y
tried.	 The first used the asymptotic form derived by Murmane
while the second had 0	 = 0 imposed and allowed the solution
to float.	 The resultsxon the bump and between it and the
wall were identical.	 However, some slight differences were
observed upstream and downstream, with the floating solution
showing less blockage type influence.	 While the floating
approach is easier to implement, it is more prone to signif-
icant digit errors due to the magnitude of the floating
potential {0(l)	 instead of 0(0.1)).

3 Finally, several other upstream/downstream boundary con-
ditions were imposed, such as 0 =4; and all yielded essen-
tially the srune results.	 Since the channel case was coded
rapidly for the workshop, this lack of sensitivity may be
due to either coding errors or a' special `feature of the test{
case.

C.	 RAE 282

This problem was solved using the same grid as for the
NACA 0012 cases.	 During the solutions, it was discovered

i ` that the subcritical results were sensitive to the location'i
of the first and last points on the airfoil, which are
normally at 0.01c and 0.99c (X4 = 0.49). 	 The initial results ='
(solid line, Fig. 2) indicated a possible peak in C pu near

I' the leading edge. 	 To resolve this peak, the first points
were moved to 0.005c and 0.995c (X4 = 0.495),	 and slightly
different results were obtained as shown on Fig. 2.	 Inter-
estingly, EPSS had to be increased to 1.0 for this second,
case due to the appearance of supersonic points on the
coarser grinds.	 Obviously, the Cartesian grid placement
sometimes affects the airfoil effective a 	 and it is probably
best to correlate results versus CL rather than a. e

d.	 CAST 7

Again the basic NACA 0012 grid was used.	 Here, in both a
the subcrtical and supercritical cases, oscillations were
observed in C	 at 0.03c and in C	 at 0.92c.	 Sipce the sur-
face slopes w6e also oscillatory pYn these areas, it is be-
lieved this behavior was due to the sparsity of the given
coordinates` and the use of spline fits to determine the comp-
utational ordinates and scopes. 	 Also, in both cases, the

C	 _



a

aft Cpl bucket turned around at the TE and approached stag-
r

nation.	 This behavior is reasonable due to the large TE angle
k (12.50).	 In actuality, viscous effects would mitijate.this

trend.

e.	 KORN 1

They basic NACA 0012 grid was also used for this case.
For the design point, the resultant C--distribution was close

' to the theoretical hodograph values and was almost shockless.
Again some sensitivity to the grid size and , X4 value was
observed,.,. eas can be seen in Fig. 	 3.	 Also,	 a double precision
calculation (16 digits) was made and essentially yielded the

„ same results as with single precision ('7 digits).	 However,
for the 16 digit case the Amax on the fine grid was steadily
decreasing instead of oscillatory and smaller (6E-5 vs;. 2E-4).

III.	 Conclusions 	;.

Except for,the NACA 0012, 	 M. = 0.95 case,	 all test	 r
problems were solved straight-forwardly and appeared to be
converged or close to convergence. 	 The only difficulty was
some sensitivity to grid placement, which is typical of the
Cartesian formulation.-- Again, note that all results were
obtained in single precision (less than -7 significant digits)
on an Amdahl 470/V6.
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Summary of Test Problem Results

Problem Airfoil MCO a CL CD CMC4 EPSS
a

Comments

A-1 ( i)i NACA 0012 0.72 0.0 0 0'0 0.. 0004 0.0 ---- -

{F iii) << 0. 63 2. 0 ° 0..339 - 0.0002._ - 0.002 ----
II(i) 0.80 0.0 0 0.0 0.0100 0.0 0.4

(il) 11 0.85 0.0 0 0.0 0.0381 _	 0.0 ,0.-6-
(iil) it 0.95 0.00 0.0 0.0958 0.0 1.0r`
(iv) 0.80 1.25 0 0.321 0.0199 -0.035 0.6
( V ) " 0.85 1.000 0.283 0.0444 -0.075 0.8
B Bump 0.85 0.00 0.0 0.0240 0.0 0.6	 _ Murman Asymptotic

0.0 0.0236 0.0 0.4 Floater
C-I RAE 2822 0.676 1.0 0 0.551 0.0047 -0,.106 '0.4 X4 = 0.49

0.574 -0.0043 -0.109 1.0 X4 = 0.495
II 0.75'3.0° 1.154 0.0583 -0.210 0^8

D-I CAST 7 0.70 -1.0 0 0.436 0.0065 -0.138 ----
I I ► ' 0.76 0.5 0 0.898 0.0259 -04210 0.8

G-I KORN 1 0.75 0.1! 15 0 0.622 0.0012 -0.160 0.4	 X4 =-.4925, Single Precision

r 0.609 0.0074 .--0.148 0.4 X4 = .49, FFA Grid
o t^•	 _ ^ 0.606 0.0058 -0.147 0.4 X4 _ .49, St'd Grid

0.624 0.0012 -0.150 0.4	 X4 = .4925, Double Precision
G-II 1.00 0.833 0.0181 -0.171 0.6
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KACA 0012
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o
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225 Secs Total
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200	 49x25 1E-5
g_ 400	 97x49	 1E-6
0

-0.60	 -0.U0	 -0.20	 =0.00	 0.20	 n_un- -	 n an



4

y
i

u

1
I

1

4	 ,I

ii

NACA 0012

Mo=.63,a =2,0°
10429 Pts/sec
222 Secs Total

I

,



i

^i	

I

I_

C.

4	 .

C	 ^,

u^
,

NACA 0012

M.= .63, a =2.00 g

10429 Pts/sec - l

222 Secs Total

a°o
o 6 1.

i

.f, S

LE

0
Q

°

I i

0

CL	 CD CMC4	 EPSS
° 0.339'-.0002 -.002  ----

LE
- Iteration History

Grid	 Cycles -eO(nax)
8 13x7 	 380 11-6

25x13	 400 5E-6
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NACA 0012
•Q^ M =0.95,a=0.00

9035 Pts/sec
2219 Sec Total
Special Long Run

0

T .

CL ,
V a

-o.y o.o	 e.q es	 ^^ 1.^.	 to	 %-q	 2.8	 3,z

0.1

CL CD	 CMC4	 EPSS.

0.4 0.0 0.0958	 0.0 ....._	 1.0 -

! Iteration History
Grid Cycles.	 -AA .(max)-- ------ -	 -
-25x25 48003E-6
49x49 2

400. _ ..	
1E-50.`

97x97 120,0	 8E-4 -	 -	 - ----- ---	 ---	 - --	 --

Figure 10: Case. A-II(iii),,Airfoil C P Di-stribution-versus X/C,into wake region
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Figure 14: Case A-II(iv),Airfoil C Distribution versus Y/C
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4.2% Circular Arc Bump
^ in Parallel Channel.....

l

y M^=0.85 j
i

9781 Pts/sec i	 }
584 Sec Total

,

1	 i z

j

C 0.0-
V

j

:. O.

1

CL	 CD	 CMC4	 EPSS
0.0	 0.0240	 0.0	 i	 0.6

Iteration' Histor-
o.b Gr id	 Cycles	 D^(max^r i

..
19x11 	 590	 1E-6
37x21 ,	1420;	 .,i'	 1E=6
73x41	 15001	 lE-5

i' Symbol	 Location i
•

o.d
' Lower Wall

O	 Upper Wall I

Figure 18: Case B,"Bump" C',Distribution versus X/Co
.,
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CAST 7
M =0.70,a=-1.0° s
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0284 Sec Total
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0
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