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VTOL CONTROLS FOR SHIPBOARD LANDING

by

Christopher Graham McMuldroch

Submitted to the Department of Aeronautics and Astronautics on May 11,
1979, in partial fulfillment of the requirements for the degree of Master
of Science. :

ABSTRACT

The problem of landing a VIOL aircraft on a small ship in rough
seas using an automatic controller is examined. The controller design
uses the linear quadratic gaussian results of modern control theory.
Performance bounds and control requirements are obtained for two control
concepts.

Linear time invariéht dynamic models are developed for the aircraft,
ship and wave motions. The VIOL is modelled at stationary hover, sup-
ported by a lift fan in the nose and a pair of lift/cruise fans at the
wing roots. Thrust control dynamics are modelled as first order, while
aerodynamic effects are omitted. The ship is modelled at cruising speed
in waves typical of sea state five conditions. The wave model, which
drives ship motion, is shaped white noise with a theoretical Neumann Spec-
trum. All states are assumed measurable without reconstruction or noise.

The first control concept is a "hover controller", which commands
the aircraft to track position and orientation of the ship deck. An
important goal is to use only low levels of control power. Commands for
this task are generated by the solution of the steady state linear quad-
ratic gaussian regulator problem. Analytical performance and control
requirement tradeoffs are obtained.

The second control concept is a "landing controller", which is
designed to command the aircraft from stationary hover along a smooth,
low control effort trajectory, to a touchdown on a predicted crest of
ship motion. The design problem in this case is formulated and solved
as an approximate finite-time linear quadratic stochastic regulator.
Performance and control results are found by Monte Carlo simulationms.

Thesis Supervisor: Gunter Stein, Ph.D.

Title: Adjunct Professor of Electrical
Engineering
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CHAPTER 1

INTRODUCTION

fn recent years, interest in vertical take-off and landing (VTOL)
aircraft has been demonstrated by a number of studies on potential uses,
designs, and technologies required for'éuch Vehic1es;

Among their many uses, one of the most interesting and significant is
the operation of VIOL vehicles from ships at sea. These aircraft could be
carried on smaller ships posséssing far fewer resources than conventional
aircraft carriers. By virtue of combining the hover capability of rotary
wing aircraft and the cruise efficiency of fixed wing vehicles, VIOL air-
craft would bring the benefits of long range air support to ships previously

only capable of carrying helicopters.

Several VTOL aircraft design concepts have been proposed (1,2,3;4,5). =~ ==

One of these is a small lift/cruise fan vehicle supported in hover by
three thrust fans: one in the aircraft nose, and the other two at the wing
roots. These fans are driven by three gas turbine engines interconnected
by shafts or gas ducts in a manner permitting power excﬁange among the fans
without increasing engine power. This provides engine-out séfety and rapid
vehicle attitude control.

One of the critical problems of ship-borne VIQOL operation is the
control of landing under severe wave and wind conditions. Thé vehicles
must be capable of achieving soft touchdowns with very limited control
authority (thrust to weight capability) under motion conditions as
severe as '""sea state five" ( 12 ). Roughly speaking, this corresponds

to wave heights of six feet or more and wind speeds as high as twenty
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knots. This thesis investigates two concepts for automatic control of

landings under these conditions.

1.1 Background References and Previous Work

A qualitative introduction to recent VIOL ideas is found in refer-
ences (1, 2, 3, 4, 5). The first four of these describe various V/STOL
vehicles and concepts. The last also describes V/STOL requirements
including shipboard landings. More detailed papers on a wide range of
V/STOL topics are located in reference ( 6 ).

The results of a landing controller design and evaluation, which
include a manually piloted shipboard landing task, are reported in
reference ( 7 ), "Design and Evaluation of an Integ;ated Flight Control
System Concept for Manual IFR VIOL Operations', by Verﬁbghk. Me?éigg: N
and Ronald M. Gerdes. The basic shipboard landing problem in this
reference 1s similar to the one investigated here. In both cases, the
g§al 1s to land VTOL aircraft accurately and gently abeoard a ship at
sea. However, there are scme notable differences. First, the reference
addresses a manually piloted landing problem, rather than an automatic
one.as.done here. Secondly, the aircraft modelled was a transport
aircraft with six thrust fans, not a small vehicle with only three fans
as is used in this report. Next, the ship motions modelled in the
reference are generated by a combination of sinusoidal components;
whereas the ones modelled here are stochastic. Finally, the control
design techniques in the reference were classical in contrast to the

N

modern approach followed in this work.
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1.2 Qbjective, Approach and Contributions

A

The objective of this work is to design a landing controller to
guide a VIOL aircraft from stationmary hover along a smooth trajectory
to a gentle landing on the ship deck. At the same time, the control
authority used to follow the trajectory is to be kept small. The in-
tent is to achieve these obiectives with design techniques based on
modern linear quadratic control. Besides outlining design techniques,
the results are also intended to provide design guideiines and per-
formance bounds for eventual practical landing control implementations.
It is not a goal of this research to form a detailed engineering design.

Three steps were used to reach these objectives. The first step
was to construct mathematical models for each of the-system's cﬁmpoﬁenté;
including VIOL aircraft, ship, and ocean waves. The second step was the
design of a ship deck chasing "hover controller”. The performance of
this design motivated the third step, which was the design of a "landing
controller'. This second controller guides the aircraft to a predicted
peak of ship deck motiom.

The aircraft .modelled is a small VIOL with three 1ift fans whose
thrust magnitude and direction can be varied to control traﬁslational
and rotational motion. Ship motion is represented by three parallel
second order systems for pitch, heave and roll, respectively. These
three systems are driven by a pair of sixth order wave models, which
in turn are driven by independent white noises. The wave models approxi-

mate the theoretical Newmann wave spectrum. Ship model parameters are
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chosen to represent a small ship of about 400 foot length in sea state
five conditiﬁns. To date, pitch-heave dynamics only have been used in
the control design stu&ies.

The hover control goal is to make the aircraft track the ship
landing deck motion at constant vertical separation. Implemented for
automatic‘landings, the vertical separation command would be replaced
by a smoothly decreasing function. The controller design is a steady
state 1ine#r quadratic regulator chosen to minimize weighted separation
error and vertical thrust control effort. Curves of separation error
versus vertical thrust control are generated. In addition, a curve for
the required vertical sensor and control bandwidths versus control
effort is determined.

The thrust to weight requirements of the above controller indicate
that an alternative approach is desirable for low control power landings.
The approach taken is to predict ship deck motion forward to a peak.

Then a smooth nominal trajectory is computed and followed to the pre-
dicted peak point and time. The nominal trajectories are generated by

a finite end-time linear quadratic regulator using a low order aircraft
model. Monte Carlo simulations of this nonlinear landing algorithm

show that the réquired control authority is reduced by a factor of

almost two over that required by the hover controller. This demonstrates
the potential utility of ship motion prediction.

This study demonstrates how modern control theory can be applied
to the VIOL shipboard landing problem. "First iteratiom" control designs
have been generated which provide basic performance trade-off information

for shipboard VIOL operation. Low touchdown velocities can be achieved
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provided that the control bandwidth exceeds the ship motion.spectrum
peak at approximately one radian/second, Mofeover, ship motion pre-
diction appears to offer a promising way to reduce the control require-
ments. These findings are tentative, of course, because idealistic
modelling and sensing assumptions were made in the design. However,
the work has been structured so that more detailed investigations can
be made of performance variations with serodynamic effects, ground
effects, sea state conditions, sensor constraints, human piloting

considerations, and inclusion of full longitudinal and lateral dynamics.

1.3 Qverview of the Chapters

The material in Chapters Two through Five corresponds directly
with the synopsis presented above. Chapter Two presents the model.
Linear, time-invariant aircraft, wave, and ship models are developed
from the nonlinear equations and frequency domain information available
in the literature. Chapter Three presents the hover controller design
and evaluation. This controller is studied with the initial intention
of generalizing it for landiqg control, The high control authority
required there leads to the landing controller in Chapter Four. This
more promising controller is developed and then evaluated by Monte
Carlo simulations. Chapter Five presents general conclusions, and

suggests avenues for further investigation.
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CHAPTER 2

MODELLING
2.1 Introduction

The physical system to be modelled has three subsystems: aircraft,
ship, and waves. For each of these, a linearized model is derived based
on a nominal condiﬁion and simplifying assumptions. This chapter dis-
cusses the coordinate systems employed and the nominal configuration of
aircraft, ship, and waves. WNext, the representation of the overall model
as the augmeﬁtation of'its subsystems is presented. Following this
general discussion, the model of eacg subsystem 1s derived. In Chapter 3,
a low order ship motion model is used for comparison of results with the
normal wave-ship model. This low order model is also derived in this

chapter.

2.2 Coordinate Systems

Figures (2.2.1, 2, and 3) illustrate the coordinate systems used.
The aircraft and ship each have two associated coordinate systems. Each
of these are standard, orthogonal, right-handed reference frames. They
are referred to as "body frameé" fixed to the vehicle axes of symmetry
and "earth frames" fixed to the earth vertical and horizontal directioms.
The x-axes all point nominally forward, the z-axes point nominally down-
ward, and the y-axes are oriented to the right completing the right-
handed frames. Note the effect of the z-axes definition. Heights above
the cénter of rotation have positive altitude and heave, but negative
z~-coordinate. For the aircraft, the body fixed coordinate sysfem is

centered at the center of mass. For the ship, the corresponding frame
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frame is located at a point approximating the center df rotation. The
earth reference frame for the ship moves with the ship center of rota-
tion, but maintains a constant height and a steady orientation with the
Xpg and Ypg-axes locally horizontal, z-axis vertical, and x-axis parallel
to the ship velocity vector. The aircraft earth frame is fixed with
respect to the ship-earth frame. It is centered at some constant desired
height aﬁove the nominal position of the ship landing deck.

The following is a summary of the axes labels and other geometry:

Ship body axes ¥pg* Ypg> Zgg’
Ship earth axes Xpgr Ygg 2ggs
Ship body heave axis hBS;

Ship earth heave axis hES;

Ship landing point (SLP) is at ship coordinates

(%gp» Ysrp® Zsrp) Where ygip = 0;
Ship pitch angle es;

Ship roll angle ¢S;

Ship yaw angle g (ws =0);

Alrcraft body axes BT Yra® Zga’

Aircraft earth axes XEA’ YEA’ zEA;
Aircraft pitch angle 8,:

A,
Aircraft roll angle -¢A;
Aircraft yaw angle wA;

Aircraft position relative to the ship deck in earth

coordinates z, g’

Aircraft pitch orientation relative to the ship eA—S;
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Heading angle of the wind over the ship deck eAW;

Heading angle of wind and waves over ocean GW.

The three drawings above and the notation just introduced are useful in
describing the relative position of the vehicles. The ship is steaming
into the wind and waves at an angle GW, so that the wind over the deck

crosses at an angle eAW (8,, = 0 in the design work to date). This is

AW

the heading angle maintained by the hovering aircraft in order to avoid

excessive sideforces. The aircraft position, z and orientation, 8

A-S’ A-S?
relative to the ship landing point (or pad) are quantities to be controlled.

2.3 Overall Model

2.3.1 Augmented Model Dynamical Equation

The overall linearized model of the aircraft, ship and waves is
written as an augmented matrix differential equation. This equation is
given in Table (2.3.1.1) to indicate the augmented nature of the model.
The notation used for this equation is explained below:

q§,_é are the overall model state vector and its derivative;

u is the vector of aircraft controls;

EOW is the vector of noises driving the wave mode1;

A is the linearized, open loop, augmented or overall system matrix;

B is the overall system control input matrix;

B is the overall system plant noise input matrix;

N

Xy» X5 Xguous Xgup are the subsystem state vectors for the air-

craft, ship, ocean wave pitch-heave model, and ocean wave roll
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THE OVERALL LINEARIZED OPEN LOOP AUGMENTED MODEL EQUATION

é = Ax + Bu + BNQOW
| | |
A l 0 | 0 | 0
0 | Ag | Asuph | Asur
A T S e e e
0 | 0 | . | 0
0 0 0 A
_ B o e
0 0 [ o
B B (e o e e - B = -— — ———————
N
L _ B 0
0 0 | By
A _
e Powrn
p: = 0 T | - - -
_ _TowPH oW | Powr
EouR

TABLE 2.3.1.1
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model, respectively;

Powpr’ PowRr are the pitch-heave and roll ocean wave model noise
inputs;
AA, AS’ A.OW are the aircraft, éhip and the ocean wave model system

matrices: note pitch-heave and roll waves have the same system

matrix;
BA’ BOW are the aircraft and ocean wave model input matrices. ..
Again Bow is shared by the two models;

ASWPH’ ASWR are the coupling matrices driving ship motiqn from the

pitch~heave and roll wave models respectively.

The elements of the subsystem matrices are determined in the sections
that follow. In the standard mo&el with the standard wave-ship models,
there are a total of 36 states. The equation for the overall model
using the low order ship model is shown in Table (2.3.1.2). This model
is driven by B> which acts directly on the ship model. The low order

model has 24 states.
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THE OVERALL LINEARIZED OPEN LOOP MODEL USING THE LOW ORDER SHIP MODEL

X+ Ax + Bu + B

A 0
A = l Al
0 I AS
B 3
B = ___ﬁ.__
0
0
B =
N
BS

TABLE 2.3.1.2




42

2.3.2 Overall Model Output Equation

The overall model output is basically the augmentation of all the
individual model outputs; however, in addition, other outputs are included.
From thé aircraft and ship outputs of position and orientation are formed
the additional outputs of relative aircraft-ship vertical separation and
pitch orientation, as well as their relative rates. This is done by
differencing the appropriate outputs of the aircraft and ship. In Table

(2.3.2.1), these additional outputs are denoted Ia-g and are obtained by:

X,

Togs = G | (2.3.2.1)
Xs

In the table, the following notation is.uéed i;>a&éiti;arto”£h;;lof»the
previous section:
y is the overall model output vector;
C is the output matrix;
Yu Igo Yowpn® XOWR are the output vectors for the aircraft,
ship, pitch-heave, and roll ocean wave models, respectively.
C

C c are the output matrices of the aircraft, ship,

A’ 7s’ Tow

and two identical ocean wave models.

This completes the discussion of the overall system model.
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OVERALL MODEL OUTPUTS

STANDARD MODEL OUTPUT EQUATION

TABLE 2.3.

o | o
~§= 75"
Cow | 0
0 | Con
R
P Iy ,
—i;—l

2.1
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2.4 Aircraft Model

I

2.4.1 Introduction

The aircraft chosen for this study is a representative small VTOL
vehicle with both conventional flight and vertical takeoff and landing
capabilities. The model is based on reference ( 8§ ). Figure 2.4.1.1
illustrates this vehicle type. A 1lift fan is set in the nose with fore
and aft, as well as lateral, thrust deflection louvers. This fan 1s shut
down and doors are closed over it during conventional flight, Two more
fans are located at the wing roots, one on each éide of the fuselage.
Each 6f these has a nozzle at the outlet for fore and aft thrust deflgc—
tion and louvers for lateral deflection. In conventional flight, the.
nozzles are rotated up to produce horizontal forward aircrafﬁ motion.

The three fans are»dfivenfw'three turbine engines through shaft inter—.
connections permitting interchange of power among the fans. During hover
(the only flight regime discussed here), all the fans are set to generate
direct 1lift forces. The other forces and moments'acting on the aircraft
are due to aerodynamic and ram drag effects. Each of these effects can
be described by nonlinear equations, and linearized for control design
and analysis burposes. These nonline;r equations and their linearized
counterparts are presented in the next section. Following that, the

linearization procedure is outlined.

2.4.2 Model Equations

This section summarizes the original fundamental dynamic and kine-

matic relationships, the general linearized form, and then the complete
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linearized aircraft state space model. Section (2.4.3) describes the
details of the linearization.
The fundamental dynamic and kinematic relationships are stated in

» four equatioms:

' . > =
Newton's Law: w EE (2.4.2.1)
' i i ics: : = ‘(2.4.2.2
Translational kinematics Iz XE (2.4.2.2)
Angular momentum: EE = m (2.4.2.3)
Rotational kinematics: _é = T, w,) (2.4.2.4)

=’ =B

The force and moment on the aircraft, éE and o, are cohposed of
aerodynamic, ram drag, gravitational, and fan forces and moments...The i .o
fan forces are commanded by the aircraft landing controller. They are
assumed to be generated in a linear manner about their nominal values

from the controller commands.

The fundamental equations are linearized in Section (2.4.3). The
results are stated below. ©Note that the linearization is about stationary

hover: v, = 0; 9, wy =0, 8 =0, ¢c=0, and u = 0. Also note that

EE =
because aerodynamic forces are proportiomal to the square of airspeed, they
are not small during hover over the ship deck, but they have been neglected
to date.
The linearized translational motion equations are stated:
Newton's Law:
sv. = cEeg + 1ies ] (2.4.2.3)
“E m B =B g =
Force summation:

3f. =

fg = ¢f (2.4.2.6)

[¢ )
h
5]
+
(@2}
jn

r



Ram drag forces:

F : N
8, = T Sy + 1'5 ey (2.4.2.7)

Fan control forces:

Sf, = T AF (2.4.2.8)
Translational kinematics:

= 2.4.2,
Sz, = Sv, (2.4.2.9)

Coordinate transformation:

B
= 2.4.2.10
QXB CEGEE ( )
The rotational motion equations follow:
Angular momentum: ;
&98 = IM GEB + IA ﬁ@B (2.4.2.11)

Torque summation:
SQB = §EF + ﬁgR (2.4.2.12)

Ram drag torque:

= ) 2.4.2.
fm, = T, Su. + Ty iy (2.4.2.13)
Fan control torque:

Smy = Ty AF (2.4.2.14)

Rotational kinematics:

8B = T suw (2.4.2.15)
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The fan control force components given by (Af are assumed to be

generated as follows from the command u:

Force components:

= = 2
Af BFAu BFBTE (2.4.2.16)
Control state dynamics:

& ot ou (2.4.2.17)

The complete linearized open lcop matrix differential state equation
for the hovering aircraft can be written using the above equatiomns.

Table (2.4.2.1) presents this equation, which is of the form:

X, = A+ B (2:4.2.18) . -

The numerical values of AA and BA are given in Table (2.4.2.2). 4 math-

ematical block diagram of the linearized VIOL aircraft model is showm
\
in Figure (2.4.2.1). This £figure presents the model structure graphically.

2.4.,3 Linearization of the Equations of Moticn

The aircraft equations of motion can be divided into two parts:
translational motions and rotational motions. In this section, these
motions are derived as functions of fan and ram drag forces and moments.
To date, aerodynamic effects are neglected. Next, these forces and mo-
ments are derived in terms of fan forces, aircraft velocity, and aircraft
angular veloecity. Finally, the generation of fan forces from the controls

is described.
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AIRCRAFT LINEARIZED OPEN LOOP MATRIX DIFFERENTIAL STATE EQUATION
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np'w
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1.0416 0 O
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LINEAR AIRCRAFT MODEL B MATRIX

0 0 0
0 0 /0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

TABLE (2.4.2.2) (Continued)
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A general discussion of equations of motion for an arbitrary sys-
tem is found in reference ( 9 ). The forms and values of the matrices
used in the aircraft model linear state equation are presented in Appen-

dix (2.4.3.1).

Translational motions are caused by forces through Newton's Law of

motion, which is a statement of momentum conservation:
= my (2.4.3.1)

In this equation, m is the mass to which the force QE gives acceleration

éE in the earth frame E (which is considered as imertial in this deriva-
tion). Linearizing this equation and substituting in the nominal values

for Yo = 0 givas:

1
vy = I O% (2.4.3.2)

Rewriting this equation with the force in the body frame yields the

following equation:

1 E . F .
Sv = = (Clqdf, + T 2.4.3.3
g a (g 95 g °2) (2.4.3.3)
E - , , .
where CB is the transfomration from body to earth coordinates for the
' F .
nominal aircraft trim orientation, and T9 is the transformation between

out of trim aircraft orientation § and the resulting earth frame forces.

- _ T . . , . . .
Note 38 = (¥, 5, 2) . With aercdynamics neglectad, S£f, is composed of

3

fan and ram drag components. 5§B is given by:

L3 Iy ¥ o5
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The ram drag term GQR is a function of linear and angular aircraft

velocities as derived in Appendix (2.4.3.2):
8fp = - Mpv, + MR X wy | (2.4.3.5)

Linearized, this equation’is written

€, = T

F
=R w

F
GQB + TV 638 (2.4.3.6)

where F . F . ) ,
Tm = =M and TV = MR (gcﬁ X) . The fan forces term is given by:

§

o g

Af (2.4.3.7)

£F=

where Af is composed of the fan control force components. The kinematic

relationship giving aircraft earth frame position Iz is very simple. The

nominal value of Iz is zero, so the linearized equation is given directly:

GEE = 63% (2.4.3.8)

The final translational motion equation required is a velocity transforma-

tion:
v. = C2 v (2.4.3.9)
=B E —E T
Linearized about Yo = 0, this gives
Sv, = CB §v (2.4.3.10)
-B E —E ' T

Rotational motions are caused by torques through the following

equations:

By = o (2.4.3.11)
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where o is the torque acting on the aircraft, while EE is the aircraft
angular momentum. This equation is a statement of angular momentum

conservation. Writing it in the body frame gives:
my = Hy +wp X Hy (2.4.3.12)

The VIOL aircraft angular momentum has two parts: H; is the momentum of

the engine cores and fans in the body reference frame. It is assumed to

be constant. 1 is the angular momentum of the aircraft viewed as an

B4

entirely rigid body with inertia tensor I, and angular velocity w,. The

B B

following equation sums these two components:
EB = IBQB + BI (2.4.3.13)

Substitﬁting this into equation (2.4.3.12) and then linearizing gives:

Smy = Iy Swy + Swgy * H (2.4.3.14)
where the zero nominal angular velocity We = 0 has been inserted.
Multiplying this equation by I;l and introducing the notation IM = Igl,
and IA where

I, Swg = - Ip dwy x H; (2.4.3.15)
gives the linearized result:

aéB = I,0m, + I, 8w (2.4.3.16)

The linearized moments GEB are composed of fan moments GEF and ram drag
moments GER in the body frame. Again, aerodynamic effects, if modelled,

would also contribute moments. The linearized moments sum to give SEB:
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GEB = 62? + GQR (2.4.3.17)
The fan moments are a function of the control force components Af:

Sm, = Ty Af (2.4.3.18)

The ram drag moments, like the ram drag forces, are generated by angular
and linear velocities. They are given by the equation derived in

appendix (2.4.3.2):

my = -MR-Xxy - im"i’-s (2.4.3.19)
Li izd hi d setti TM = -1I.and TM = (.M_R x)gives the
nearizing this and s ng © - a v 'Mk—cﬁ gi s.

following equation for the ram drag moments:
B M
GER = Tw GQB + TV 625 (2.4.3.20)

To describe the aircraft orientation, Euler angles are used. The nominal
aircraft orientation is heading ¢ = 0°, pitch angle 6 = 0°, and roll
angle ¢ = 0°. Euler angle rates are integrated to determine the angles
which are written in vector formas § = (y, 8, ¢)T.’ Note &6 =8
since the nominal § is zero. Euler angle rates are gi&en by reference

(8),
§ = T(8, wy) (2.4.3.21)

Linearizing this equation yields:

.« _ .8 )
88 = T dug (2.4.3.22)
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This completes the description of the aircraft motion model given
the fan forces. The description of the command and actuator, coordina-
tion and dynamics follows.

The generation of fan forces and moments from commands is accom-
plished in four steps. The command u is passed through simple dynamics
to give the command state vector c¢. This is transformed into actuator
variables represented by Au, which in turn are transformed into the force
components of the fans, Af. Finally the total fan forces, ;F, and
moments, M., are obtained by a pair of transformations acting on Af. An
expansion of this description follows.

The command y has six components representing the commanded inputs
to the x,yyz,9,¢$, and Y motidns. In component form it is written as
u = (8x, 8y, &z, 8¢, &6, 6w)T. The dynamics given the command states
are uncoupled and first order. For example, ch is the state of a first
order dynamical system whose only input is §x. The overall command state

generator system is described by the equation:

¢ = A c + u (2.4.2.23)

where ¢ = (8x_, 68y, 8z , §¢ , &6 _, Sy )?. These dynamics are used
= e c c c c c

to model the accumulated dynamics of the control system, control actua-

tors, and thrust generating mechanism. Au is chosen as a zero matrix so

the open loop command states are the integrals of the command components.

The next step in the generation of the forces and moments is the trans-

formation from command states to actuator variables. This transformation,

shown in the next equation, is chosen to yield uncoupled aircraft motions
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from the uncoupled motion commands:

Ag = Bnc | (2.4.3.24)

Ay contains longitudinal zndlateral thrust deflection angles, and thrust

magnitude deviations for each of the three fans. The quantities are

T

AB,, AS 3 AFGl’ AFGZ’ AFG3) ; BT transforms

3* T T2

command states into actuator variables by the following scheme. A for-

Au = (Aal, Aaz, Aa A8
ward motion command state ch is converted to equal aftward deflections

in each lift/cruise fan nozzle and in the forward 1ift fan louvers.
Likewise, lateral and vertical command states Gyc and Gzc are converted
~to lateral thrust deflection and thrust increase respectively. Roll

is gé;;;ated by equal and opposite thrust level variations in the 1lift/
cruise fans. 666, the pitch command state, is transformed into increased
1lift fan thrust and decreased 1lift/cruise fan thrusts in amounts causing
rotation and not translation. Yaw command state Gwc is similarly trans-
formed into yawing moment by deflecting the 1ift fan thrust to one side
and the lift/cruise fan thrusts to the opposite side. The following
equation describes how. the actuator variables Au transform intoifan force

components:

Af = B; Au (2.4.3.25)

T
where Af = (AFxl’ AFXZ, AFXB’ AFyl, AFyZ’ AFy3, Ale, AFZZ, AFz3)

gives the force components for each of the three fans. These fan com-

ponents are combined to form the total forces on the aircraft by:
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F
SEF = TF Af (2.4.3.26)
T
where agF = (XF’ YF’ ZF) . Similarly, the moments are given by:
Sm, = T Af (2.4.3.27)
o F 2t
. T .
vwhere 59? = (LF, MF’ NF) has roll, pitch, and yaw moments respectively

as elements.

2.5 Wave Model

2.5.1 Introduction

The purpose of the wave model is to generate the stochastic vari-
ation of sea surface height at some point along the ship's length. This
is used as the disturbance driving the ship motion model. The use of
sea surface height to drive ship motion is a commonly used approximation
(10). It is a major simplification of the distributed hydrodynamic
forces acting on a ship hull, but it does result in an overall wave-ship
model whose response is characteristic of actual ship motion. General
wave surface and ship motion modelling are described in reference (10 ).

The Neumann ideal power spectrum fcr wind generated waves is chosen
as the starting point for the wave modelling. Reference (11 ) gives
this spectrum. However, for control design and systems analysis, a
linear time invariant dynamic system driven by a gaussian whité noise
and written in state space form is desired for the wave model. Therefore,
the result of the wave modelling is such a state space representation

having an output spectrum approximating the Neumann spectrum.
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The sea condition, and ship speed and heading are required to
specify the wave spectrum encountered by the ship. Ship informatiom is
needed in order to transform the wave spectrum from that seen at a
stationary point to that seen from the moving ship. The sea and ship are
given specifications which provide a realistic, challenging situation
for the aircraft landing controller to operate in. The specifications
are for a "sea state five" (defined in reference (12 )), a ship heading
such that the relative wind over the deck is undisturbed by the ship's
superstructure, and a ship speed compromising low wind speed over the
ship deck and high through the water ship speed. The wind speed gene-
rating the sea state five ocean waves is set at 16 knots (1Q). 1In
steady st&te-;;;r a wide stretch of ocean where the waves will not be
fetch limited, the wave heights will reach over 6.5 feet about 30% of
the time. (This is generally called the significant wave height,
measured from trough to crest.) The corresponding period of these waves
will be 7 seconds ( 10). Ship velocity through the water is chosen so
that the wind sweeps the ship landing pad at not more than 20 knots,
and at a heading (GAW) near 45°., This angle avoids air turbulence ovef
the pad due to the ship superstructure. The specification of a low
relative wind speed keeps aircraft aerodynamic forces small; and, hence,
hélps to justify neglecting those forces. In addition, the ship should
be cruising at a maneuverablg speed. For these reasons, the ship
velocity is chosen at about 10 knots, and at an angle (GW) of 70° into

the wind and waves.

The following section describes the ideal wave spectrum and the
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final model. The derivation of the latter is outlined in the subsequent

sections.

2.5.2 Model Equations

This section gives the form of the ideal Neumann spectrum for both
fixed and moving observers. Then the state space approximation adopted
as the stochastic wave model is presented. The following two sections
describe how this model is obtained from the ideal spectrum.

The Neumann power spectrum for wind generated ocean waves has the

following general form as a function of wave frequency W
S(y) = au Sexp {'Zb“;z} (2.5.2.1)

where a and be are constants depending on the wave height and perdod
characteristic of sea conditions as explained in the next section. Trans-
forming this spectrum into the one observed from onboard the ship moving

with speed v, and heading Sw into the waves gives Se(we):

S

Se(we) = azw;}G exp { _me;z H1 - (4vswecosew/g ] -1/2

(2.5.2.2)

where:
1/2 -1
W, = {-1 +[1 +'(4vswecosew)/g] } [(ZVSCOSOW)/g]

(2.5.2.3)

Note g is the acceleration due to gravity. In figure (2.5.2.1), the
amplitude spectrum (Se(we))l/2 is plotted for comparison with the finite

order state space model. Note that due to the exponential factor the
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ideal spectruﬁ drops off faster than any finite order model spectrum at
low frequencies.

The finite order model was chosen so that its amplitude spectrum
would match the ideal amplitude spectrum, (Seﬁne))l/z, closely. This
model was formulated with the constraints of finite order, simple struc-
ture, and gaussian white noise input. The result is shown in Table |
(2.5.2.1). The amplitude spectrum of this model is plbtted in Figure
(2.5.2.1). For the decade of frequencies centered at the peak amplitude,
the ideél and model spectra match well. Outside this range the spectra
diverge, but the divergence is only significant at low and high fre-
quencies where the amplitudes are very small.

The output-of the model is extended in the ship modelling

’ yOW’
sections, where it is used as the ship model input. Ship pitch and
heave inputs are related by phase, which can be accounted for in the
output vector of the wave model; however, no phase relationship of roll
with pitch or heave was determined, so the roll input is generated by a
second, identical, independently driven wave model.

In the next two sections, the state space model development is

described in more detail beginning in the following section with a more

detailed explanation of the Neumann ideal wave spectrum.

2.5.3 1Ideal Ocean Wave Spectrum

Various spectral densities for ocean waves are available to naval
architects in frequency domain analysis of ship motions ( 10, 11 ). of

these spectra, the theoretical Neumann spectrum is chosen here. It is
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OCEAN WAVE STATE SPACE MODEL

Xu = Aodow v BovPow

Yow = Cowow

Yow

= - 2 -
[ -cwj, -2cw,€, 0, C, 0, 0] xg,

TABLE (2.5.2.1)

Continued...

ow
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OCEAN WAVE STATE SPACE MODEL (CONTINUED)

0 1 0 0 0 0
-.50126 -.92040 O 1 0 0
0 0 0 1 0 0
0 0 -.50410 -.92300 O 1
0 0 0 0 0 1

0 0 0 0 -.49844 -.91780

y = [ -8.0555 -14.750 0 15.980 0 0 ] b3

TABLE (2.5.2.1) (Continued)

.12810

ow
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simple, yet approximates actual samplé power spectral densities reasonably
well. As presented in reference (1l ), it has two parameters, TW and Hl/3’
which characterize average apparent wave period and minimum height of the
1/3 largest waves, respectively. (In the modelling, TW is assumed to be

the period of waves of height H .) The Neumann expression for the wave

1/3

power per unit frequency, mw, as seen by a stationary observer is:

3/2 -6 -2
S(w,) = H§/3TW<3/8w) (T /2 exp {(=3/2)(w T /2m) 7}

(2.5.3.1)

Travelling on the ship through the waves, a transformed or distorted
spectrum is observed. The transformed spectrum can be obtained using a
Jacobian transformation. This transfor&éiion comes about in the foi—
lowing way. A moving observer sees th; same physical waves, as a sta-
tionary observer, but at a different frequency and power density, say
Se(we). The new observed frequency is w, called the frequency of encounter.
Since both observers must see the same total wave power, the following

equality holds:

r° d s’ 2.5

0 S(mw) W T ) Se(me)dwe (2.5.3.2)
The Jacobian transformation, or change of variables formula (13 ), gives:

s.@) = Sy %“_’g (2.5.3.3)
e = £

e
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To solve this expression for S;(wé), the frequency tranformationm,

w, = f(ww), given in reference (10 ) is required. This reference
derives f(ww) from the prdperties of deep water waves and the frequency-
wavelength-velocity of observer doppler shift relationshiip. The result

is:

w, = f(mw) = wwcosew(-(vs/g)mW + l/coseW ) (2.5.3.4)

or

1/2
-1 + (1 + Awevscosew/g) /

W o= ;
W 2vgcost /g (2.5.3.5)

where is the frequency observed by a stationary observer, v, is the
Wy s

ship speed, Sw is the ship heading with respect to the direction of the

wind and wave source, and g is the acceleration due to gravity. The final

expression for Se(“e) is:

‘ 4v_cosg -1/2
Solwg) = =5 exp {——%} (1 + S L e ] (2.5.3.6)
where
3/4 -5/2
= 5
a Hl/3(3/128n ) TW (2.5.3.7)
-2

and ey is given by equation (2.5.3.5). This is the power spectral den-
sity used to determine the linear finite dimensional stochastic wave
model in the next section.

An altermative derivation of Se(@e) can be accomplished based on

the Taylor "frozen field" hypothesis used for wind gust modelling (14 ).
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The frozen field hypothesis assumes that the spatially-distributed gust
process W(x,t) is a fixed field in time which moves spatially at velocity

vé. Hence, it has the property:

For ocean waves, the hypothesis would be applied to individual wave
frequency components, which may be thought of as fixed in time, but
moving spatially with frequency-dependent velocity vp(w).

The next section explains how a state space model of the ocean waves

is derived, whose spectrum approximates the Neumann spectrum.

2.5.4 Model Derivation s

The purpose of this section is to describe the derivation of a state
space ocean wave model having approximately the same spectrum as the
Neumann spectrum in the previous section.

The Neumann spectrum of quation (2.5.3.6) represents an infinite
order linear system. The reason is that it contains an exponential
factor, which at low frequencies causes the spectrum to drop off faster
than that of any finite order system. On the other hand, it is desirable
to have a simple; low order model for computations and analysis. The
construction of such a model follows; |

Modelling 1s a system identification problem: a structure must be
hypothesized, and its parameters estimated. The hypothesized structure
is a gaussiaﬁ white noise driven single input-single output (SISO) system.

‘Its dynamics consist of three nearly identical second order damped
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oscillators in cascade. This structuré has the advantage that it con-
tains only three parameters affecting the output, while satisfactorily
matching the ideal spectrum of the previous section. The small variation
in the parameters among the three second order systems is to aid numerical

algorithms. The model transfer function is:

"
Ocean surface height (s) = Cs (2.5.4.1)

noise input 3 2 2
121 (s + Zimnis + wni)

where s is the Laplace variable, C is the root locus gain, b.')ni 1s the
ith second order system natural frequency, and § is the common damping
ratio of the cascaded second order systems. The state space differential
equation for this is written in Table (2.5.2.1).

Having chosen a hypothesized structure, its parameters need to be
estimated. This is accomplished by matc£ing the square roots of the
power spectral densities of the finite order model with the infinite
order ideal reference spectrum. If y is the output of a single output

system with power spectrum S(w), then the quantity under consideration is:

/2

S 2 BE (7)) - n(e) D nern 1 @)Y2 (2.5.4.2)

where

m(t) = Efy(t)] . (2.5.4.3)

and ?F{°} (w) is the Fourier transform, while E is the expectation
operator. For single input-single output linear time invariant systems

of the model form given in Table (2.5.2.1), the square root of the power
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spectrum is:

/2 -1 /2

(Sow(m))l = | Cow(IWI = Ay

1
ow  Bowl (SPgy(w))

A (2.5.4.4)
where Spow(m) is the power spectrum of the input pow(t). Since pow(t) is
white noise, Spow(w) is a constant, independent of frequency. (S(m))l/2
is refered to as the amplitude spectral density.

Four specific features of the ideal and model amplitude spectra are
matched. These are: peak amplitude.and frequency, peak width, and roll
off in the first decade on each side of the peak. The roll off towards
low frequencies is obtained by four zeroes at the origin of the root
locus plot. Four poles located at the ideal amplitude spectrum peak
cancel the effect of the four zerces at high frequencieg:r;ﬁile two more -
poles at the same location produce the desired high frequency roll off.
Thus, the attenﬁation away from the peak is determined by the model
structure itself. Since the peak frequeﬁcy for a second order system
with a zero at the origin is near its natural frequency W, » the values of
mnl’ Wios W3 are chosen near the ideal spectrum peak at 0.708 radians/
second. The values used are: 0.706, 0.708, and 0.710. The damping
ratio is set so the width of the model and ideal amplitude spectra
roughly match over the first decade of drop from the peak. The value
used is § = 0.65. For comparison, the ideal Neumann and the model
amplitude spectra are presented in figure (2;5.2.1). Verification of
the model validity is by the close match illustrated in this figure. A
further check is made in Section (2.6.5) where a simulation?i§ presented

to #erify the overall wave-ship model behavior.
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The wave model parameter fit was made by e&e judgement; however, a
better fit might be obtained with a more precise method such as minimum
least square error fit. In view of the fact that the ideal wave spectra
are themselves only rough approximations of wave behavior, more elaborate

fitting methods were not deemed to be justified.

2.6 Ship Motion Model

2.6.1 Introduction

This model represents the dynamics of the ship by transforming ocean
surface. height into ship motion response. In particular, the landing
deck motions are represented. The model has inputs for the roll and
pitch-heave dynamics of the ship, and outputs for the fesulting orienta-
tional and translational landing pad motions. Fore-and-aft sway, yaw and
lateral sway are not modelled since it is assumed that Eheir responses
are smaller than the others, and so less important to the aircraft
landing problem. The ship modelled is a representative small ship like
those of the Allen M. Sumner Class. Ships of this class are described
in reference (15).. They are approximately 400 feet in length and dis-
place roughly 3000 tons. As described in the wave model introduction,
the ship is assumed to be cruising at -10 knots, with a heading angle of
70° into the waves. The waves are generated by a 16 knot wind. Ship
motion magnitude parameters are sized to produce typical ship roll,
pitch, and heave amplitudes of 5 degrees, 2 degrees, and 5 feet, res-
pectively, as suggested by reference ( 7 ). The heave amplitude cor-

responds to about one foot of heave per foot rise in the sea surface;
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however, roll and pitch do not appear to correspond with a simiiar static
relationship using wave slope.

The next section describes the linear, time invariant ship model and
its origins. The other sections describe the identification of dymamics,
the calculation of outpufs, and the verification of the overall wave-ship

model.

2.6.2 Model Equations

»

This section prese?ts a brief review of the ship motion modelling,
and then gives the model results.

The ship motion analysis techniques used in the modelling are found
in reference (10) and in reference ( 16 ). The second is the ci;;;ic
paper in the field. In these references, the basic assumption is that
the overall ship response is the superposition of responses to the fre-
quency components of the ocean waves. The important result is that to
a good approximation, the ship response to irregular seas can be repre-
sented by a cascade of the wave model and a shaping filter, where the
filter represents the dynamic response of the ship to the waves. Another
result is that longitudinal and lateral ship dynamics may be tieated as
uncoupled for most theoretical and experimental analyses. For the ship
modelled here, coupled pitch and heave dynamics data is available from
a towing tank experiment (17 ). However, data onb rolling motions has
not been located. This lack of roll data is overcome by observing and
modifying typical rolling data for other ships ( 18, 19 ). Since rolli

dynamics are not-.used in the control system design and analysis, the
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purpose of including roll is to generate a complete modei éf the major
ship responses. Recall from the introduction that surging, yawing, and
swaying are not expected to be as important as pitch, heave, and roll
responses, and so are not modelled.

Characteristics of the shaping filter representing ship response
are used for the identification of the state space ship model parameters.
In this linear time invariant model, pitch, heave, and roll modes are
each represented by a separate second order approximation of a pass band
filter. ‘To generate the desired phase between pitch and heave, the heave
input is lagged behind the pitch input. Since the ship inputs are wave
model outputs, the single wave model output is augmented to include a
second phase lagged quantity. The two wave output quantities used for
ship inputs are Ypu and Tawe Since no roll-pitch phase relationship
could be determined, roll is driven by a separate identical, but statis-
tically independent wave model. The lack of roll information can be
attributed to two factors. Rolling motions are not as critical as
pitching and heaving in determining a ship's ability to maintain heading
and speed in rough seas; and in those cases where rolling is unacceptable,
it can often be reduced to acceptable levels, with the use of roll damping
devices.

The end result of the modelling is shown in the tables. The ship
model equation with the three independent second order pass band filters
representing roll R, pitch P, and heave H dynamics is shown in Table
(2.6.2.1). In this equation, W, is the natural frequency and & the damp-
ing ratio.of the indicated dynamics. Yawe Tew Yy 2F° the three ship

inputs from the wave models. Next, the output equation is given in Table
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SHIP STATE SPACE MODEL DYNAMICS

(The output equation follows in Table 2.6.2.2))

X5 = AgXxg * By Fyge

TABLE (2.6.2.1)

0 1 0 0 , 0 0 Xp1
) L
_mnR 2u“nRgR 0 0 0 0 xRZ
0 0 0 1 0 0
2 | | *m1 .
Q 0 - -anPEP 0 0 Y
0 0 0 0 0 1 X
2 -—

0 0 0 0 -0y anHEH X0

0 0 0 Yrw

1 0 0 Yoy

0 0 0 Yew

0 1 0

0 o] 0

¢] 0 1

(Table continued on next
page)
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(continuation of Table (2.6.2.1))

g dd

%p2
%11
a2

0 0 0 0
-0.10693 -0.02616 0 0

0 0 0 0
0 0 -0.42641 -0.3265
0 0 0 0
0 0 0 0

0 0 0O Y rw

1 0 0 Ypy

0 0 0O Yaw

0 1 0

0 0 0

0 0 1

TABLE (2.6.2.1) continued

0

-0.42641 -0.31344

0

2
1|,
*p2
*u1
%2
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(2.6.2.2). (XELP’ Yerp® ZELP) is the position of the landing pad in
earth coordinates, while (¢s, es, ws) are the Euler angles of the ship
orientation. In this equation, CS is generated by the matrices TESC’
* %
SSl’ SSI’ SSZ’ and SSZ' These are described in Section (2.6.4). The
coupling structure between the wave output and ship input is presented
in Table (2.6.2.3). XouPH and Zowr 3re the state vectors of the wave
models associated with the ship pitch-heave and roll dynamics inputs,
respectively. Wy and 62 are also from the wave model. Finally, the
overall wave-ship model is written in Table (2.6.2.4). In the overall
structure, note that pOWPH and pOWR are independent gaussian white

nolse sources driving the two wave models.,

In the next section, the ship dynamics identification is described.

2.6.3 Ship Dynamic Modelling

This section discusses the identification of the structure.and
parameter values for the ship model. The discussion begins with the
important analysis references and sources of data. Then it proceeds to
the model structure and parameter estimation.

The modelling approach for the ship was to take the frequency
domain response representation of references (16) and (10) and approx-
imate it in the time domain by a low order linear system. The ship
motion data for estimating the model parameters came from several sources.
For the ship modelled, as for many ships, only pitch-heave information

was available. For roll, information on other ships was employed. Data
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0.29136
0
0.01821
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SHIP MODEL OUTPUT EQUATION

X
Tesc © 551
*
531
Tesc * Ss2
*
%2
0 -0.16000 0
0 0 0
0 1.7500 0
0 .0 o
0 0.01000 0
0 R ¢ I 0
0 0 -0.16000
0.29136 0 0
0 0 1.7500
0.01821 0 0
0 0 0.01000
0 0 0

TABLE 2.6.2.2

Jr

0

0

-0.12610
0

0

g d

*p2
11
%12
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WAVE OUTPUT - SHIP INPUT COUPLING

Iysc = Swsc | Zowrm
ZoWR
Yrw 0 | Cow XowpH
Ypw | ° Cow | Q Xour
Yaw Cog l 0

Cow = [ -}, -2Cu,g,, 0, ¢, 0,0 ]

CPH = [ -chz, '2qc¢0252 + qus 03 qC, 0, Q ]

(¢]
]

[ -8.0555, -1.4750, 0, 15.980, 0, 0 ]

[ -4.0696, 3.2535, 0, 8.0731, 0, O ]

Cer

TABLE (2.6.2.3)




79

OVERALL WAVE-SHIP MODEL STRUCTURE

I N E R B B L N R
Zowpg | = | 0 | Aow "o Zower | | Bow 0| | Powr
ZowR 0 0 | Aow ZowR 0" Bow
Is Cs o o I

o |7 |0 w0 ||t
Lowr o o | Cow Lowr

TABLE (2.6.2.4)
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from the following sources was'used for the parameter estimation. Experi-
mental towing tank pitching and heaving data for a model of the 383 foot
long Allen M. Sumner Class destroyer was obtained from reference (17).
Data was also available from model tests of a similar 500 foot ship in
reference (20). Full scale rolling data fgr a 364 foot destroyer was
found in reference (19). In reference (18), model data was found for
the pitching, heaving and rolling of an aircraft carrier.

‘'The model structure 1is:inow familiar. It is a compromise between
simplicity and realism, while taking into account the available data.
The response of the ship to ocean surface height is assumed to be linear.
Léngitudinal and lateral dynamics are decoupleds and, in fact, pitch and
heave are decoupled, except for a relative phase relation at their inputs.
Qualitatively, the response of the ship to waves is roughly like a pass
band over a narrow frequency range. In fact, the three modes behave much
like highly tuned second order systems. The refefences (10), (17) and
(21) illustrate this characteristic. In these references, the response
amplitude operator is plotted. This is the square of the magnitude of a
system's amplitude response. Based on this observation, each mode of
response is hypothesized as a second arder system. The overall ship model
is thus three independent second order systems driven by individual in-
puts as shown in the previous section, Table (2.6.2.1). The ship state

vector, 55, is given:

' T
X5 = (%15 Xpos ¥pys Xpos Xgps Xgo) (2.6.3.1)

where for each mode R, P, and H, the first state is proportional to the

orientation or height of the ship in the earth frame, and the second
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state 1s the derivative of the first. Magnitude scaling is accomplished
at the output.

Pitch and heave parameters were estimated first. The.parameters are
the natural frequency and damping ratio of each mode. Reference (17)
was the primary source of data here. The first step was to plot amﬁlitude
response as a function of frequency of eﬁcounter. For a given speed, with
the ship heading directly into regular waves, the motion amplitude was
recorded for various wavelengths. This information from the report can
be plotted as motion amplitude Qersus wave frequency. A transformation
yields a plot of amplitude versus frequency of encouﬁter for the given
ship velocity. The transformation from w to w, is the same one used in
the wave model derivation.

For the pitching case, it is easy to find the resonant frequency to

use as the natural frequency. A value of wop = 0.65 radians/second was

P
selected. By comparing the attenuation of the response magnitude at two
frequencies, a damping ratio can be determined. The value EP = 0.25
was selected.

For heave, the data does not show a peak. From reference (20),
however, information was available for a 500 foot destroyer. There, the
heave and pitch resonant frequencies were the same. On this basis, W

was chosen equal to Wop e The heave mode damping ratio was set close to

the pitch damping ratio since the amplitude responses have about the

same attentuation rate near the resonant frequency. The model value is

EH = 0.24.




82

A pitch-heave phase relationship was given in reference (17 ). This
was used to generate separate pitch and heave mode inputs to the ship
from the wave model output. As shown in Table (2.6.2.3), this was accom—
plished by giving one wave model two outputs, You and YW (Note the
second wave model -drives the roll mode.) The phase relation is as follows.
For very low frequency waves, that is ones with long wavelengths, pitch
will lead heave by 90 degrees of phase. This is because pitch will be
at the maximum positive value when the ship center of rotation heaves
upwards through the mean position as the ship climbs a wave to its peak.
At the crest of the heave motion, the pitch ;ttitude will return to zero,
and so on. At a wavelength corresponding to the frequency of encounter
equal to about 0.68 radians/second, the data shows that pitch leads heave
by only approximately 60 degrees. These two phases.suggest the following
frequency domain relation between Ypy» the wave output driving ship pitch,

and Yau? the output driving ship heave:

1

q(s+b)s vy

Yaw (2.6.3.2)

where q = 0.51 is set to give the heave and pitch inputs the same magni-
tude at pitch and heave natural frequency, and b = 1.3 gives the desired
phase relation. The equation for Yew in the time domain is given in
Table (2.6.2.3). |

Roll motion data for the Allen M. Sumner Class was not found; how-
ever, data from other ships was uséd as a gﬁide for modelling a second
order system‘to it. From reference ( 18) and other reports, it was

noted that the rolling frequency of a ship is about half the pitching
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and heaving frequency. Thus, w.p = 0.33 was selected. From the same
report, an estimate of the roll damping ratio was made. The ship was
an aircraft carrier with a length to breadth ratio of 7.7, and its
damping ratios were EH = 0.26, EP = (.20, and ER = 0,032, These values
roughly £it the ratio:

length . EP ~ Eg

beam. ER = sR (2.6.3.3)

Assuming this is also approximately true for the Summer Class destroyer,
where the length/beam ratio is'9.4, the value 0.027 would be chosen for
ER' Another report, reference ( 19), for a 364 foot destroyer gave data
from which its damping ratio was calculated at ER = 0,05. As a compro-
mise between these two values, the damping ratio for the model was set
at ER = 0.04.

C o phase relation’is known for roll with respect to pitch, so the
roll mode of the model is driven by an independently excited copy of the
wave model, as stated before. The wave model output exciting roll is
designated Yew 28 shown in Table (2.6.2.3).

In the next section, the output equations and the scaling of the

motions are discussed.

2.6.4 Ship Model OQutputs

This sectioh describes the outputs of the ship model.
The ship responses desired in the output are those of the landing
pad (LP) in earth coordinates. The output vector includes the landing

pad position, velocity, orientation and angular rate. It is written:
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¥s = Cgrpe Yerpe Zmee %0 % Ys» e Ve Zmre’

. ° « T .
95> Og» ¥g) (2.6.4.1)

where (xELP’ YgLp® zELP) is the position and (¢s,'es, ws) are the Euler
angles of the landing pad orientation. Note that ws = 0 and @S =0,
since yawing motion is not modelled. |

The ship state vector must first be scale& to the correct magnitude
before the output is computed. The desired magnitudes are expressed as
root mean square (rms) values. They are 5 degrees, 2 degrees and 5 feet
respectively for roll, pitch and heave. To achieve these valueé, the
scale factors AMPRLL, AMPPCH, and AMPHVE ére calculated to give the cor-
rect corresponding diagonal elements of the steady state,: state covariance
matrix. The values are shown in Table (2.6.4.1). There, the matrix S

S1

scales the roll, pitch and heave states, while S 5 scales the rates.

S
The motion at the landing pointvis found by multiplying the scaled
states by TESC’ which is given in Table (2.6.4.2). To retain the pro-
perties of linearity, TESC is evaluated at the nominal orientation of
the ship, GS = 0, ¢S = 0. The quantitdies Xgrp® Ysip® and Zg1p in TESC
are the coordinates of the landing péd in ship coordinates. The values
are -175.0, 0.0, and -16.0 feet respectively. XSLP was chosen about
half the length of the ship aft of the center of rotation, while the
vertical deck position Zgrp is estimated at 16.0 feet above the center
of rotation. (Note vertical !distances are positive downwards in earth

and ship coordinate systems.) Ysrp is set to zero, directly on the

ship center line.
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S1

S Scales roll, pitch and heave states to radians and feet.

S1
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SHIP STATE SCALING MATRICES

S Scales roll, pitch and heave derivative states to

S2

AMPRLL

0.01821
0

0

radians/second and feet/second

0 0 0

v AMPPCH 0

0 0 0
AMPRLL 0 0

0 0 AMPPCH

0 "0 0

0 0 0

0 0.01 0

0 0 0
0.01821 0 0

0 0 0.01

0 0 0

TABELE (2.6.4.1)

AMPHVE

1.261
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COORDINATE TRANSFORMATION FROM SHIP STATES TO SHIP LANDING'PAD POSITION
IN THE EARTH FRAME

Abbreviations: s represents sine
¢ represents cosine

The subscript. S on 8 and ¢ is dropped.

secd>ySLP + ses¢zsLP —sestP +'ces¢ySLP - c6c¢ZSLP 0
Tesc = | ~%%%gp  * 9%g1p 0 0
c9c¢ySLP . ces¢zSLP -chSLP - ses¢ySLP - s6c¢zsLP -1
nomi-
nal
8 =0
=0
0.0 -16.0 0.0
TESC = 16.0 0.0 0.0
0.0 175.0 -1.0

TABLE (2.6.4.2)
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s The output matrix CS is given in Table (2.6.2.2). The first three
outputs are the landing pad position, formed by first scaling the
position states by SSl’ and then transforming them to give the pad
coordinates. Similarly, the rates are obtained by scaling the rate
states by SSZ’ and then transforming them to giwve pad position velocities.
The second and fourth triplets of outputs are the angular orientations

do the scaling. However, the third element for

and rates. SS and Ss

1l 2

height is zeroed, so the third element represents yaw orientation or

rate; hence the notation S%*

*
$1 and SS

2°

2.6.5 Overall Wave-Ship Model Verification

Qualitative features of the ship motion model behavior are verified
in this section. |

Typical time histories of ship motions in seaways are available for
various ships and sea conditions. A typical pitch motion trace for a
ship in a seaway is taken from reference (1l6), and redrawn in
Figure (2.6.5.1). No time scale was given for this trace in the reference.
Nevertheless, two characteristics may be noted. First, the period is
very regular; and second, the pitch amplitude varies quite irregularly.
The regularity of the period corresponds to the concentration of power
in the ship motion power spectral density almost entirely at the natural
frequency. For comparison, a segment of a simulation of the wave-ship
model is also shown in the figure. Qualitatively, the simulation trace

displays the same two characteristics as the actual ship motionm.
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2.6.6 Low Order Ship Motion Model

This section describes a simpler model for ship motion. In the hover

control chapter, it is used in a coﬁparison demonstrating the effect of

modelling accuracy on hover control performance. Historically, this model

preceded the separate cascaded wave and ship models of the previous sec-
tions. Those models were formulated when the low order model was found
to be an insufficiently accurate representation of typical ship motion.
The problem with this model is that it provides a relatively broad pass-
band of motion energy, while true ship motion actually occurs in a quite
narrow passband. A comparison between the two models is shown in Figure
(2.6.6.1).

In the low order model, each mode of ship motion (designated by i),
is assumed to be driven directly by an independent, zero mean, gaussian,
white noise Py of intensity 1.0. The response i to input i is second

order wiph transfer function:

response 1 _ 8y 3
(s) (2.6.6.1)

input i (sz + Zsiwnis + w;i)

The natural frequency w4 is chosen as 0.52, 0.97 and 1.0 radians/second
for roll, pitch and heave, respectively. These values are according to
references ( 22) and (7). The gain g4 is set so the root mean square
output amplitudes would be 5 degrees, 2 degrees and 5 feet, as done in
reference ( 7 ) and in the standard model. The damping ratio £, is set
to a small value, 0.05, to give a highly tuned second order response.

The resulting algebraic form is identical to that for the regular ship
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model shown in Table (2.6.2.1), with the exception that the input is no
T T .
longer (yRW’ Ypu? wa) y but (pR, Pps pH) . The output equation is also
the same. The final low order ship model dynamics are shown in Table
(2.6.6.1). Since the output equation is the same as in Table (2.6.2.2),

it is not repeated here.




g

92

LOW ORDER SHIP MODEL DYNAMICS

B ot A%+ oBgg
0 1 0 0 0 0
-0.275 -0.0524 0 0 0 0
0 0 0 1 0 0
0 0  -0.935 -0.0967 O 0
0 0 0 0 0 1
0 0 0 0  -1.02 -0.101
0 0 0 Py
100 oy
0 0 0 oy
01 0
0 0 0
00 1

TABLE (2.6.6.1)
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CHAPTER 3

HOVER CONTROL

3.1 Introduction

In this chapter, a hover controller design for the VIOL aircraft
vertical and pitch dynamics is developed. The purpose of the controller
is to hover the aircraft at a constant vertical distance above the
landing pad of the ship. Both of these vehicles are described in the
modelling chapter. The challenge to the controller is the random motion
of the ship; which cannot be predicted exactly. For this problem, as it
will be defined in this chapter, the derived design is optimal. There is
no other design solution whose performance would be better. However;
this does not exclude a redefinition of the problem to obtain another
more desirable design. A second problem and approach are in fact recom-
mended here, and investigated in the next chapter. The recommendation
comes about because the design solution of this chapter is representative
of the optimal design under idealistic assumptions, and could easily
become unacceptable under realistic conditions

This chapter has three main parts. They are: the design goals,
the method to achieve the goal, and the results of the hover controller
design. The first part explains the goals of hover control, including
the basic assumptions and the theoretical tools available for the con-
troller design. The second part explains how the assumptions and theory
are employed in the design method. Finally, the third part discusses the

results and how well they achieve the desired goal.




94

3.2 Control Problem Definition

3.2.1 Design Goals

The design goal is to determine an aircraft, shipboard landing
technique based on modern control theory. An important constraint is
that the technique should require oniy a small amount of thrust control
authority. 1In this chapter, the goal is posed as a tracking problem.

The aircraft is to hover at a constant separation above the ship deck,

as illustrated in figure (3.2.1.1). In this task, it is desired to
minimize the deviation of the aircraft from its desired tracking position.
The steady state linear quadratic gaussian (SSLQG) regulator gives the
optimal solution to this tracking problem when both the aircraft and

ship equations of motion are linearized about their nominal operating
point; and their separation is defined as an output for which :a quadratic
cost function is chosen; The SSQLG regulator solution provides a steady
state control law which minimizes this cost in the presence of gaussian

white plant noise. No other control can reduce the cost further.

3.2.2 Assumptions

Certain assumptions in addition to those made in the linearized
model are useful. The model gives.linear equations for the aircraft
dynamics near stationary hover, and for the ship moving at a comstant
velocity in ocean waves., To simplify the control design and analysis,
the following additional assumptions are made.

The first assumption is complete state measurement. This not
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only simplifies the control dynamics, but is an iﬁportant key to the
interpretation of results as being representative of the 'best
theoretically achievable" performance. Under practical circumstances,
measurements are made with noisy sensors of quantities related to, but
not necessarily identical with, the ones of :interest. TFor feedback
control, the elemeﬁts of the system state are the desired quantities.
Thus, an estimator such as a Kalman filter is generally required to
estimate the quantities. The form of the estimator depends on the.
measurements available. In general, it infroduces additional dynamics
into .the overall system, retarding the overall system response. By
assuming that uncorrupted state méasurements are directly a&ailable,
the estimator is not necessary and the best possible performance is
achieved. Results presented here should therefore be interpreted as
lower performaﬁce bounds not necessarily attainable in practice.

The second assumption concerns lateral-longitudinal decoupling.
For the ship model, this assumption is justified in Chapter Two, where
the ship is represented as two separate decoupled systems, with roll
motions entirely separate from pitch and heave motions. As noted in
Chapter Two, this is common practice in ship motion modelling. The
aircraft model, on the other hand, is not comstructed with separate long-
itudinal and lateral directional dynamics (although that is also common
procedure for conventional aircraft ( 9 )). Indeed, the linear aircraft
model exhibits some coqpling terms between the two types of dynamics.

However, these terms are quite weak and can be neglected for most

early analysis.
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The next level of assumption is that forward'horizontal aircraft
dynamics do not éouple into .vertical tramslation and pitch orientation
dynamics. This may also be verified by refering back to the aircraft
model. Hence, the aircraft is left with only vertical and pitch motion
dynamics for the design and evaluation.

Finally, as an aid to simplifying the design procedure, it is
sometimes assumed that vertical and pitch dynamics also decouple. This
is a much cruder approximation and is retained only to make certain

design decisions and not for the design evaluation.

3.2.3 Optimization Problem

The optimal controller for the tracking problem is presented in
this section. Sincé the system is linear, with additive gaussian white
plant noise, and the performance index can be expressed as a quadratic
cost function defined over an infinite time interval; the steady state
linear quadratic gaussian (SSLQG) regulator is the optimal conﬁroller.

The SSLQG optimal controler problem and soiution is given in ref-
erences ( 23) and ( 24). It can be stated as follon:

Find a feedback control law u(t) = u(x(t)) to minimize

the quadratic cost functional,

1 o7 T
J=E{lm 5 , (z(e)Qt) + w (e)Ru(t)de }
T
(3.2.3.1)
subject to the comstraints,
x(t) = Ax(t) + Bu(t) + Boo(t) (3.2.3.2)

y(t) = Cx(t) ) (3.2.3.3)
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where (A, B) is atabilizable,
A, C) is detectable?
P 1is a gaussian white noise process,
and E{ * } isvtheuexpectation.Operator.
Q = QT > 0 is the per unit time quadratic cost associated with
the response of y(t),
T

R = R >0 is the per unit time quadratic cost of the control

u(t).

The form of the feedback control u(x(t)) is also given in the above

references. u(x(t)) follows:

The cost functional J is minimized by,
u(x(t)) = Gx(t) = -R 1B'P x(t) (3.2.3.4)

where P is the ﬁniéue symmetric positive semidefinite solution of
the matrix algebraic Riccati equation (MARE),
0 = pa+A®P - pBRIBT + @ (3.2.3.5)

Note that for given system state and response equations
(3.2.3.2) and (3.2.3.3), an SSLQG regulator design is uniquely deter-
mined by the response a;d control vector quadratic cost weighting
matrice; Q and R. Also note that the control problem formulated above
is a special case of the more general onewhere A, B, BN’ C, Q, and R
are time varying.

The implementation of the feedback gains results in a closed loop

system whose state equation is written:
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= (A-BRB®)x + Bo (3.2.3.6)
or using the notatiomn:

Ag =A-3C = A- 3R~ 1pTp (3.2.3.7)

the state equation becomes:

X = Agx * By

In the overall system of the aircraft, ship and waves; only the

aircraft is controllable. Therefore, the closed loop system matrix, ACL
has the form shown in Table (3.2.3.1), where: |

AA is the aircraft open loop system matrix,

A 1is the ship system matrix,

A.OW is the ocean wave system matrix,

BA is the aircraft input matrix,

GA is the matrix by which the aircraft states are fed back

to the aircraft controls,
GS is the ship state vector feedforward matrix to the aircraft,
GOW is the ocean wave state vector feedforward matrix to the

aircraft.
Figure (3.2.3.1) is a block diagram of the hover controller. In the
figure, the ocean wave and ship models are combined for compactness. AWS’
BWS and CWS represent the combined ocean wave and ship state vector feed-
forward matrix.

For the hover control problem having only vertical and pitch

dynamics, the following correspotndences are also made to the general




100

OVERALL CLOSED LOOP SYSTEM MATRIX

A = [ A - | BG ]

CL
¢ = F o\ | G | Cow 1
| |
Ba TP Pa%s L PaPow _
T BN |__f.9___|___AES__
0 | 0 l Ay

TABLE (3.2.3.1)
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control problem stated above. p is the zero mean, gaussian, white noise
driving the wave model. u is the control vector driving the aircraft.
Note, u has two elements, altitude control and pitch control. In the
quadratic weighting matrix R, these are weighted by rGZA and rSGA' The
response y for ship tracking is chosen as shown:

z{aireraft) ~ z(ship deck) 2y g

- = (3.2.3.8)
8(aircraft) - 8(ship deck) 8)—s

Therefore, the controlled variables are the vertical position and pitch
orientation tracking errors of the aircraft with respect to the ship.

The corresponding diagonal elements of Q are q and q . The
‘ Zp-s 9s-5
weighting 4, causes the wvertical position of the aircraft to match
A-S
that of the ship. A constant non-zero separation, however, does not

change the system dynamiés, so Z may be viewed as the deviation of

A-S
the aircraft from its desired position with respect to the ship. g
A-S

likewise causes the aircraft to match the ship's pitch attitude.

3.3 Controller Design and:Evaluation Method

3.3.1 Design Method

This section discusses how the assumptions and theory are employed
in the design procedure. The design procedure begins with the design
of a basic hover controller for the case of a stationary ship deck. That

is, for the case when the ship has no motion. This design is developed in
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two steps, The first step is to get a controller for the pitch dynamics
only. The second step is to use this desigﬁ for pitch, and determine the
additional controller structure needed to get a satisfactory controller
for coupled pitch~heave dynamics., The basic design's quadratic weightings
are then used to handle the ship motion tracking problem. The aircraft
model is augmented by the ship and wave mddels, and the, aircraft altitude
and pitch quadratic cost weightings are transfered to the aircraft-ship
separation and orientation outputs. By varylng the two output weightings
in unison, controller desligns are obtained that reflect the relative
importance of tracking performance compared to control effort cost.

Design method details follow. In the basic design, both pitch and
vertical control are weighted by unity. For complete design freedom,
these could be varied independently. However, since the pitch and verti-
cal dynamics of the aircraft are approximately uncoupled, the pitch-heave
control problem can be separated into a vertical control problem and a
pitch control problem. In each of these, the important quantity is the
relative weighting of output to input. Hence, the choice of unity con-
trol weightings. Note that in particular, the vertical dynamics do not
affect the pitch dynamics, so the results of step two do not alter those
of step one.

The two step'design method generates a basic controller that is
completely determined by two output and two control weightings. The
basic design is for hover control, that maintains the airc;aft in a
horizontal attitude over a fixéd ship deck at a constant vertical sepa-

ration. The commanded separation is defined to be zero for convenience.
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A suitable basic pitch control design is one having a response band-
width typical of piloted fighter aircraft. Reference ( 9 ) gives pilot
ratings versus aircraft handling qualities. Bandwidthé suitable for
manual control were chosen, beéause aircraft behaving significantly
different under automatic and manual control, or unlike conventional
aircraft, may receive poor pilot acceptance. In fact; similar manual/
automatic behavior may be a safety consideration, required to prevent
undesirable transients‘in situations where the pilot is forced to switch
from automatic to manual control. Of course, for good ship motion track-
ing, the bandwidths must also be at least as large as the dominant ship
motion frequencies.

For ﬁaking baﬁdwi&thiéséimétes; thé ﬁuttefworﬁh pélevpéttef; i§
‘useful. An explanation follows. Pitch and heave dynamics are two
approximately uncoupled, third order, single input—sinélé output sytems
(pitch control input and pitch output and altitude control input and
altitude output). (As usual, all states are assumed to be available for
feedback control.) Neither has transfer function zeroes, and so the
SSLQ regulator produces third order Butterworth pole patterﬁs for each.
These patterns are generated by varying the relative quadratic cost
weighting magnitudes of the input and output. As the output weighting
is increased, the poles approach a common magnitude and move radially
outward from the origin along asymptotes. A detailed explanation can be
found in reference ( 23). Since the poles of such Butterworth patterns
all have the same magnitude, this magnitude is used as a convenient

measure of system bandwidth. In addition, the Butterworth pattern is
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useful for design because it indicates that by increasing the output
weighting, while holding the input weighting constant, the closed loop
system disturbance rejection bandwidth can be made as wide as desired.

To adapt the basic design to track a moving ship deck, the system
is first augmented to include the ship and wave states of interest. For
the ship, pitch énd heave states are required, and for the waves a com-
plete model with the pitch and heave outputs is needed. Secondly, the
penalty weightings are transfered to the aircraft to ship relative pitch
and vertical separation. They become qu;S and qupS. The weightings
determined for the basic design now only indicate estimates of the ones
required. However, the determination of these basic weightings provides
useful experience in estimating the magnitude of weighting changes in
the quadratic cost functional and the corresponding performance changes.
The final choice of qupS and qupS is made by scaling them both simul-
taneously. Since these are the only non-zero. elements of the Q matrix,
this is just a scaling of Q. Scaling Q to get a final design is an
arbitrary, but convenient, choice, since it reduces the design parameters
down to one. In addition, by varying all of Q simultaneously, the rela-
tive importance of pitch and heave performance is maintained.

Having desctribed the design method, it is appropriate to discuss

how designs are evaluated. This is the topic of the next sectionm.

3.3.2 Performance Evaluation Method

Quantities like tracking error, control effort, and bandwidth are

of interest in deciding the acceptability of a tracking controller.
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Several of these can be estimated from the steady state covariance
equation, while bandwidth can be obtained from the system pole locatioms.
The list of quantities calculated for controller performance evalu-
ation follows:
(1) rms aircraft to ship relative vertical separation:

o feet

Zp-s

(2) rms aircraft to ship relative vertical velocity:

U; feet/second

A-S
(3) rms aircraft to ship relative pitch orientation:

8 degrees
A-S

(4) rms alrcraft to ship relative pitch rate:

o degrees/second
A-S

(5) rms aircraft vertical control actuator authority:

- percent of nominal

(6) rms aircraft vertical control rate of change:

percent of nominal/second

(7) vertical loop bandwidth: radians/second

The first six of these quantities are calculated from the steady
state covariance equation for the outputs and states. In evaluation,
three root-mean square (3rms) values are used, since they are rarely
exceeded. The last quantity, vertical loop bandwidth is the magnitude
of the closed loop system eigenvalues associated with the vertical
dynamics. Recall that this bandwidth estimate is by virtue of the

Butterworth pole configuration discussed in the previous section. The
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pitch loop bandwidth could be determined similarly. However, it is found
that the pitch loop requirements of this system are relatively easy to
satisfy compared to the vertical loop omes. As a result, only orientation
and rate behavior are recorded for the pitch a%is.

The steady state root-mean-square deviations of the outputs and
states are determined by the following method ( 23, 25 ). Let y be the
vector of quantities whose rms values are desired: Write y in terms of

the state vector x as:

7 = Cx (3.3.2.1)

The the covarinace matrix of y is given by:

cov(y) = cPC , (3.3.2.2)

where
cov(x) = P (3.3.2.3)

In turn, P 1is the steady state solution of the covariance equation:

e p o= oA T T
0 = P = A P + PA, + BVB (3.3.2.4)

where AcL is the closed loop system matrix, 3B ﬁhe noise input matrix, and
/ .
V the covariance intensity of the driving, zero mean, gaussian, white

noise p of the closed loop system:

x + Bp (3.3.2.5)

x o= AgE

The lrms, l-sigma, or 1 standard deviation values of y are just the square
roots of the diagonal elements of cov(y). l-sigma values, however, are
not themselves indicative of the maximum excursions of the elements.

From probability theory, it is known, that for a gaussian random variable,
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the percéntage of outcomes within 1, 2 and 3 standard deviations of the
mean is 68.3%, 95.47 and 99.7% respectively.(computed using reference
(26)). For ergodic stochastic processes, "percentage of the.outcomes"
can be substituted with "percentage of the time'". For the plots presented
in the design evaluation, 3rms values are chosen. These values are ex-
ceeded only 0.3% of the time, and are therefore conservative estimates

of maximum or ultimate levels for design specifications.

3.4 Controller Design and Evaluation

3.4,1 Introduction

The following sections describe ;he hover controller design and
evaluation. The first section discusses the basic controller for hover
at a fixed point. As described earlier, this design is developed in
two steps. The first gfep is the choice of a pitch dynamics controller.
In the second step, vertical dynamics are included and a correspondingly
augmented controller is chosen. The basic controller is converted and
used as an initial ship motion tracking controller design in the subse-
quent section. That section reports on the tradebff between tracking
performance and control cost obtained from scaling the output weighting
matrix of the quadratic performance index. Finally, a section is in-
cluded on the effect of ship modelling accuracy. There, the performance
results for a low order ship motion model are compared to the results

obtained for the standard wave-ship model.
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3.4.2 Quadratic Weights for the Basic Design

The two step scheme outlined in the design method section was used
to choose a basic design for the hover control regulator. |

Step one is the design of a pitch controller. This is designed as a
single input controller with full state feedback by weighting the pitch
control input and the pitch attitude output in the quadratic performance
index. For each ratio of these weights, a set of feedback gains and
closed loop pole locations is determined. The Butterworth pole pattern
for this system is shown in Figure (3.4.2.1). The input weighting is
unity as explained in the design method section, and the weight qu is
10.0. This gives closed loop pole location magnitudes and bandwidths of
about 3 radians/second, which is typical of acceptable piloted aircraft
responses ( 9 ).

Step two is the inclusion of vertical control. The s&stem is now
sixth order, with two inputs and two weightéd outputs. However, the
coupling between pitch and heave is not strong, so the choice of qZA,
the vertical position state weighting, does not influence the closed
loop eigenvalues of thevpitch.dynamics. The pole location pattern for
the vertical dynamics is shown in Figure (3.4.2.2). The vertical posi-
tion weighting, qZA, is chosen to be 0.01, giving a closed loop vertical
response bandwidth of about 1.5 radians/second (Reference ( 7 ) suggests
similar attitude and flight path dynamic bandwidths at 2,0 and 1.25
radians/second respectively.) The fact that vertical bandwidth 1s less

than the pitch bandwidth reflects physical constraints. Attitude control

power of the VIOL aircraft is obtained by rerouting power between the
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fans, without requiring any change in the overall engine output power.
This can be done relatively quickly. Héwever, vertical control requires
varying the engine output power, which is a slower process. In addition,
vertical thrust is limited by the aircraft weight and maximum available
engine thrust. This last constraint is-eépfessed as a thrust to weight
ratio, T/W. For stationary, undisturbed hover T/W is 1.0. Typically;
experimental VIOL vehicles have a maﬁimum T/W capability on the order daf
1.05 to 1.3 (27, 28).

The two weightings chosen: above specify the initial point or basic
design for the tracking controller. The latter has aircraft-ship rela-
tive pitch and vertical separation outputs as :controlled responses. Thus,
the initial quadratic weightings for the tracking hover controller are

dg = 10.0 and 4y = 0,01,
A-S A~S

3.4.3 Tracking Controller Performance

This section surveys the performance characteristics of the ship
motion tracking hover controller. The basic design of the last section
is the starting point for a study of the relation between tracking per-
formance and control cost as quadratic ratios are varied. The covariance
analysis and bandwidth estimation scheme described earlier shows how
tracking errors go to zero and control effort becomes large; while the
bandwidth and the weightings ratio increase.

These results are illustrated in the plots of Figures (3.4.3.1),

(3.4.3.2) and (3.4.3.3). Each of these plots has aircraft vertical
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control actuator authority magnitude as the abscissa, and one of the other
six quanfitieleisted in section (3.3.2) as the ordinate. Control actu-
atgr authority is presented as aircraft thrust to weight ratio. This is
defined as 1.0 (the thrust to weight for stationary, undisturbed hover),
plus the 3rms actuator level (in fractions of the amount for statiomary

hover). The ordinate quantities 2z 5] é«_s, and vertical

A~s* Za-s® a-s’ Vi
thrust rate of change are plotted as 3rms values. The vertical control
bandwidth is taken as the vertical actuator eigenvalue magnitude in

radians/second. The index along each curve is q, the ratio q equal to 1.0

gives the basic design. The output quadratic weighting matrix is given:

Q = DIaGc [ o, Q@ >0, 50,...,0 ] (3.4.3.1)
: A-S A-S . ,
where
dq =q « 10.0 (3.4.3.2)
A-S
q, =q ¢+ 0.01 (3.4.3.3)
A-S

The control input quadratic weighting matrix is given:
R = DIAG [ Tse o Tsy ] = pIacf 1.0, 1.0 ] (3.4.3.4)
A-S A-S
The first four of the plots indicate that as thrust to weight (f/W)
is increased, the aircraft hover tracking performance improves. This
trend corresponds to iﬁcreasing the output weighting matrix magnitude
q: the more heavily the position and orientation errors are penalized
with respect to control, the smaller these errors are kept, and the

more control and thus actuator effort is used.
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Figure (3.4.3.3) indicates that at the same time tracking errors
decrease and thrust to weight increases, the rate of change of thrust to
weight (or actuator rates) increases. Similarly, the bandwidths of the
aircraft dynamics increase.

The T/W = 1.0 point on the curves represents the condition when the
aircraft 1s hovering at a fixed altitude. Separation errors are not
weighted at all at this point, so vertical separation, relative velocity,
pitch, and pitch rate are due only to ship motion. Thus, for example,
the 3rms ship motion is 12.5 feet (above and below the mean).

The vertical control bandwidth curve has an interesting shape. It
is quite flat near T/W = 1.1. 1In this region, the bandwidth of the
aircraft vertical motion is between 0.5 and 1.0 radiaqs/second; To ex-
plain this, note that the magnitude of the closed loop pole locations
increase with the output weighting. On the other hand, T/W only increases
at frequencies where ship motion has significant power. Therefore, band-
width increases at low frequencies, but T/W does not. At ship motion
frequencies, T/W increases significantly causing the curve to flatten.
Then at high frequencies, where ship motions are small, T/W increases
very slowly; however, bandwidth continues to grow and the curve rises
sharply again.

To demonstrate tracking improvement due to increased thrust to weight,
simulations are shown in figures (3.4.3.4) and (3.4.3.5) for two different
output weighting magnitudes. Table (3.4.3.1) gives the parameters of
these simulations. In the figures, the aircraft and ship motions are

superimposed, so the difference represents tracking error as usual. (In




Design Parameters for the VIOL Tracking Simulations in Figures 3.4.3.4 and 3.4.3.5

Simulation Output Welghting Control Weighting Thrust to Weight Tracking error
q q e T/W z,
O-s | Za-s 5o L5z ' A-S
(1 + 3 rms) (3 rms, feet)
1 0.1 0.0001 1.0 1.0 1.08 6.9
2 1.0 0.001 1.0 1.0 1.16 2.4

Table 3.4.3.1

8TT
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a physical realization, a non-zero separation would be included, which
would be slowly decreased to zero to achieve a landing.) As the table
shows, the factor of 10 increase in the output weighting between these
two simulations leads to a thrust to weight increase of a factor of 2,
from 8% to 16% control authority. At the same time, the corresponding
vertical tracking error decreases by a factor of about 3. The simulation

plots clearly illustrate this tracking improvement.

3.4.4 Sensitivity to Ship Modelling Accuracy

This section presents evidence that the accuracy of ship motion
modelling significantly affects the performance capabilities of the
tracking controller.

The performance curves obtained to this point have been for a ship-
wave model whose longitudinal dynamics are tenth order, and approximate
ship responses to waves having a Neumann ocwanTwavé spectrum. However,
before this model was developed, a less sophisticated fourth order model
was used, Both the tenth order "standard model" and the fourth order
"low order model" are described in Chapter Two.

Figure (3.4.4.1) gives the vertical separation error versus thrust
to weight for tracking the low order model. The first difference to
be noted is that at T/W = 1.0, the separation, again due to ship motion
alone, is almost 17 feet (3rms) rather than the 12.5 feet (3rms) for the
standard model. This is because pitch and heave motions in the low order
model are independent, and so their effect on the landing deck motion

variance is additive. 1In the standard ship-wave model, these motions
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are correlated in a way that yields less motion at the landing deck. The
otﬁef difference is the rate at which tracking error is decreased with
increased thrust to weight. This rate is very slow for the low order
model. The reason for this behavior is that the spectrum of ship motionms
for the simple model is not nearly so peaked as for the sophisticated
model, and so there is a much wider spread of frequencies over which
ship motions are significant. Thus, the low order model requires higher
values of T/W to arrive at the same level of tracking performance as the
standard model. A sketch of the magnitude spectra of the two models was
given in Figure (2.6.6.1).

Figure (3.4.4.2) shows the vertical control bandwidth for thé low
order model. Compared to the corresponding figure (3.4.3.3) for the
standard model, the vertical control bandwidth increases much more slowly
with thrust to weight, indicating the wide range of frequencies over
which the low order model has significant motion energy. In addition,
the peak motions now occur near one radian/second. They also have larger
amplitude requiring a larger increase in aircraft T/W to track them.
Although plots are not given, pitch tracking performance shows similar
trends.

These comparisons of the ship tracking performance capabilities
of the hover controlle; demonstrate the importance of accurate ship
motion modelling for meaningful assessments of aircraft hovering per-
formance, and associated control system bandwidth and thrust to weight

requirements.
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3.4.5 Conclusions

The goal of the hover controller was to make the aircraft track the
ship deck motion as closely as possible, using only a small amount of
vertical actuator control authority. The results obtained are perfor-
mance curves illustrating the trade-off between tracking errors and
required aircraft’thrust to weight ratio, and the relationship between
closed loop system bandwidth for vertical dynamics and the thrust to
weight ratio. These curves are indicative of the "best'" performance
achievable by the VIOL aircraft.

Although only vertical and pifch dynamics are considered, the design
method and analysis technique could be used for generating a complete
full dynamics tracking controller.

Modelling accuracy was found to be very important in obtaining
meaningful results. A low order ship model having a significantly
wider power spectrum than the more accurate standard model, required a
controller with much higher actuator authority than the standard one.

The results of this chapter motivate the landing controller design
in Chapter Four. To meet a goal of reducing touchdown velocities to
about one foot per second or less, the hover controller requires a
thrust to weight ratio greater than 1.1 (figure (3.4.3.1)). However,
the maximum ratio of current VIOL aircraft is only about 1.3 (27 , 28 ).
Thus, the control effort used by the hover controller is a large: frac-
tion of the available authority. This motivates the search for an al-
ternative design to achieve good landing performance at lower actuator

control levels. Chapter Four discusses one such alternative design.
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CHAPTER 4

4.1 Introduction LANDING CONTIROL

In this chapter, a landing controller design for the VIOL aircraft
is developed. The purpose of the controller is to land the aircraft on
the ship deck beginning with the aircraft hovering at some initial alti-
tude. The design bf this chapter is motivated by the performance of
the hover controller in the previous chapter. There it was found that
simple ship deck tracking requires potentially high lavels of control
authority to achieve low relative velocities suitable for landings. The
objective of the landing controller in this chapter is to reduce this
thrust to weight requirement. |

This chapter is divided into four main parts. The introduction
presents the basic concept of the proposed landing controller. Part two
states an optimal control problem whose theoretical solution implements
the concept. Only a suboptimal solution has been obtained for this
problem. These are developed in part three, the analysis and design.
Fiﬁally, the last part gives an evaluation of the resulting controller.

The goal of the new controller is to reduce the control actuator
levels required to land, below those required by the tracking controller.
To achievethis:igoal, -the new controller exploits the predictability
of ship motion and lands the aircraft at a peak of wertical ship deck'-
motion, as sketched in Figure (4.1.1). A simple calculation shows how
low the required actu;tor level could be in a situation where the peak is
predicted‘perfectly. The calculation is just the control effort required

by a bang-bang controller to move amass between two points in a given time
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with zero initial and final velocities. Gravity is not a factor in the
calculation, since the aircraft model is linearized about stationary
hover. The calculation goes as follows. Denote the initial and final

times'of the trajectory by 't. and tF’ respectively. During the first

I
half of the trajectory, from_time ts to %(tF - tI), the acceleration of
the mass is +a. At the end of the interval, its position will be
%a(%(tF - tI))z. During the last half of the trajectory, the acceleration
will be -a, and the mass will have moved an additional distance equal to

the first. When the mass comes to rest, the total change in position

AS will be:

2

) ' (4.1.1)

1
45 ;2 (tp-tp)

The acceleration level to move the mass the distance AS is therefore:

2

a = 4AS/(t:F -t) ' (4.1.2)

I
For tF - tI = 10 secohds (the natural period of the ship is roughly 9.6
seconds), and AS = 8 feet (for hover at 13 feet above mean sea height
and descending to a peak 5 feet above the mean height), the acceleration
magniéude is Ia[ = 0,32 feet/secondz. This corresponds to a control
actuator level of about ome percent of the nominal stationary hover
requirement. The hover controller of the last chapter required an actu-
ator authority roughly an order of magnitude larger than this value.

In addition to the potentially reduced thrust requirements, other
benefits may be realized by this landing control strategy over the hover
controller. The first advantage is that ship and wave states are not

required aboard the aircraft. The only information needed about the

ship is the prediction of the time and position at which the landing pad
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will reach a crest. Compared to the ship state vector, this is less
complex information to tramsmit. Furthermore, it may be possible to
transmit the information at a lowgr rate than would be necessary for
tracking control. The required update rate remains to be determined

however, before the magnitude of this benefit can be ascertained.

4.2 Control Problem

4.2.1 Optimization Problem Statement

The cause of high thrust to weight ratios in the aircraft ship
motion tracking controller is the presence of significant power at high
frequencies in the motion spectrum of the ship. The goal of the new
controller is to eliminate this effect. Ideally this controller com—
mands the aircraft from stationary hover at some initial height along
a trajectory of low vertical actuator control levels, towards a height
and time when the ship deck motion will reach a crest, ending with zero
relative aircraft-ship deck separation and velocity. This ideal behavior
can be expressed in terms of the following quadratic optimal contfol
problem.

Find a feedback control law u(t) = u(x(t)) to minimize

the quadratic cost functional
.
3w = E{ yT(eB y(e) + £ T H(0Q(0x(0) + w ORI dt )
t
I (4.2.1.1)

subject to the constraints

x(t) = Ax(t) + Bu(t) + Bo(t); x(t)) = x, . (4.2.1.2)
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'x(t) - Clg_(t) (4.2.1.3)

where the terminal time is defined by

tp = minimum {argument [minimum ng(T)]}

. T >t (4.2.1.4)
I
Pp = P§.Z 0 is the quadratic cost associated with the

end time response.z(tF), Q(t) = QT(t) > 0 and R(t) = R?(t)'> 0
are the per unit time costs associated with the response y(t) and
control u(t) respectively; and (A,B) is stabilizable and (4,C) is
detectable.
In the quadratic cost functional PF’ Q(t)and R(t) should be chosen so
the resulting aircraft trajectories use low vertical control effort
and have small terminal errors y(t).

This stochastic control problem is the standard finite terminal
time problem, except that the performance index J is a random variable
depending upon the ship motion, and thus on p(t) for tO'i t < tE through
the relation of equation (4.2.1.4). While a formal solution to this
optimal control problem with random end time is not known, the following

heuristic design provides a reasonable approximate solution.

4.,2.2 An Approximate Solution

To take advantage of existing results for linear quadratic control
problems, the solution of the optimization problem in Section (4.2.1) was
approximated by treating the best currently available estimates of
terminal time and corresponding deck position as fixed deterministic

parameters. An explanation of the resulting algorithm follows.
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The aircraft is initially assumed to be at stationary hover a safe
distance above the ship landing deck. Ship motion is predicted ahead
to the next crest. The time and height of this crest are compared with
the current time and aircraft altitude to determine if a landing on the
crest is possible. If not, the aircraft is commanded to remain at its
original position. Otherwise, a landing is initiated. Using the pre-
dicted crest time and height, a nominal aircraft trajectory to the end-
point is computed via the standard time varying linear quadratic regul-
ator problem. This trajectory is then followed by the aircraft using
a steady state linear quadratic gaussian (SSLQG) regulator to control
trajectory deviations. At certain intervals in time, new predictions
of the ship motion peak are made and the nominal trajectory updated.

All the gains used in this design can be calculated prior to the
landing. The trajectory following SSLQG gains used for tracking the
desired trajectory are, of course, constant and precomputable. Gains
for the nominal trajectory itself are precomputable and independent
of thé vertical height through which the aircraft must move, the initial
vertical velocity of the aircraft, and the time required for the man-
euver. They are only functions of time~to-go and thus, can be stored
as a single time varying set of gains. During a landing approach, these
stored nominal gains are used to compute a new nominal trajectory each

time an updated estimate of the end point and time are available.
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- 4.3 Analysis and Design

4.3.1 Assumptions

Here the additional assumptions beyond those posed for the modelling
and the hover controller are stated. All the previous assumptions leading
to the linearized model of the aircraft-ship system, and the design of
the longitudinal hover controller in the previous chapters are required.
For emphasis, it should be remembered that the ability to decouple air-
craft pitch and heave dynamics was used and aircraft states were con-
sidered to be perfectly known. In a&dition, predictions of ship landing
pad motion extrema are now required. In the simulations used for eval-
uation of the controller, peaks are identified via a state space model,
but in fac£ the method of prediction is not important. Ship and wave

state measurements are not required as key elements of the algorithm.

4,3.2 Touchdown Prediction Analysis

An approximate analysis of touchdown errors is made in this section.
The results are given in Table (4.3.2.1). The expected velocity errors
are used in section (4.3.6) to obtain a bound on the nominal aircraft
landing trajectory update frequency, and the expected time errors are
compared with the simulation results of Section (4.4.1).

A touchdown occurs when the relative aircraft-ship velocity is

greater than zero at the first moment t,, when their separation is zero:

T
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EXPECTED TOUCHDOWN ERRORS

PREDICTION TIME OAé (t.) GA; (t.) EXPECTED EXPECTED
ty sitr s tF/ TOUCHDOWN TOUCHDOWN
VELOCITY | TIME ERROR
seconds feet feet/secound| feet/second seconds
1.0 0.05 0.14 0.45 0.18
2.0 0.17 0.20 0.80 0.32

Table 4.3.2.1
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2, g(t) 2 0 (4.3.2.1)

z, o(t) = 0 (4.3.2.2)

A touchdown is characterized by its time, the vertical position of
the ship deck, and the relative aircraft-ship vertical velocity. The
landing controller is designed to generate a near zero.velocity touch~-
down between the aircraft and ship by commanding the aircraft along a
trajectory, which terminates with zero velocity and meets the ship deck
at its predicted crest height and time. However, the actual touchdown
has different values due to uncertainties in the aircraft and ship
trajectories. In the present model, the aircraft motion is deterministic
once it has been given a commanded trajectory, so all the uncertainties
are presently due to ship motion only. ‘

The reiative separation and velocity of the aircraft and ship can
be written as the sum of their deterministic and stochastic components
as follows:

zy g(t) =E {z, ()} + Az, (t) (4.3.2.3)

z, () =Elz,_ (D} + 8z, () (4.3.2.4)

Equation (4.3.2.3) is illustrated in Figure (4.3.2.1).
Rewriting these equations with the bar notation for mean, noting
that the uncertainties are due only to the ship (AzA_S(t) = - Azs(t),

AéA_S(t) = -Aéé(t)), and then dropping the subscripts yields:

(t) z(t) + Az(t) (4.3.2.5)

~25-5

~Zyg(®)

z(t) + Az(t) (4.3.2.6)
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z(t) and ;(t) are approximated'by

2(t) = a(t - cF)z (4.3.2.7)

2(t) = 2a(t - cF)' (4.3.2.8)

where a4 = 1,259, This approximates to second order a cosine wave that
peaks at the predicted endtime tF’ and has the same typical period (9.6
seconds) and rms amplitude (4.2 feet) as ship deck motion. For the
ideal case where the aircraft has reached the end of its trajectory and
is nearly stationary, the approximate z(t) and ;(t) represent the total
expected aircraft-ship separation and relative velocity. As is clear
from Figure (4.3.2.1), actual touchdowns will occur early and at slightly
negative positions. The deviations existing at touchdown time tp can be

approximated by the values of te that would occur "if the aircraft and

ship could pass through each other after touchdown'". This is illustrated

by the dotted line. If for the interval between t.. and tF’ the velocity

T
deviation AZ(t) is assumed to be constant, then a reasonable approximation

for the touchdown deviations are given in terms of deviations at to by:

Az\(tF) = d2(ty) + Bdley) (b = £)) (4.3.2.9)

Bzt = Az(t) | (4.3.2.10)

The touchdown time can be found by substituting equation (4.3.2.10)
into (4.3.2.9), then substituting the result and equation (4.3.2.7) into

(4.3.2.5) with zArS(tT) equal to zero:

tg = tp = (Aé(tF) + (Aéz(cF) - 4aAz(tF))l/2/2a (4.3.2.11)
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The touchdown velocity is obtained by substituting this last expres-

sion along with equations (4.2.3.8) and (4.3.2.10) into (4.3.2.6):
zArSCtT) = -Az(tF) - Za(tT - tF) (4.3.2.12)
- @ity - dadz(e P (4.3.2.13)

To second order in Aé(tF) this is:

2 gt = (~baaz(e)/?

-1/2

+%(-aAz(tF)) 8z%(e)  (4.3.2.14)

The expected touchdown velocity is found by evaluating:
E {z,_o(t)| z,_o(tp) >0, z, ((t) =0} (4.3.2.15)

The conditions on z ) and z (tT) in this expectation are satis-

a-s (Fr A-S
fied by all trajectories such that Az(tF) < 0 (plus some other trajec-

toreis, which are neglected). Hence,

E{z,_(tp) |z, o(t) >0, z,_(t;) =0}

/2 /

= E {(bonz(e)? + Foanz(e ) A2(e) Jaz(e) <0}

(4.3.2.16)
The expectation is over Az(tF) < 0 and all Ai(tF), which are gaussian

random variables with zero means and variances depending on t_, where

F
tr is measured with respect to the time when the ship state vector was
last updated. Statistics for Az(tF) and A;(tF) are computed at the end

of this section. They are approximately independent with standard

deviations GAZS(tF) and GAés(tF) known as functions of tF.
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The resulting equation for the touchdown velocity can be written

/2 1/2

E {E { (~batz(e)’
Az(tF)‘ Aé(tF)

+ %(-aAz(tF))- 2z () [Az(ep) < 0 }}

(4.3.2.17)

‘2 *
but the expectation of Az (tF) with respect to Az(tF) is just cAz(tF)’

and the probability density for Az(tF) over non~positive values 1s

1 2
(z|z < 0) = V2/n (l/cAz(tF)) exp{ -5 (Z/UAz(tF)) }
(4.3.2.18)

PAzIAz<0
Therefore the expectation reduces to:

E { (bodz(e )% + l—f(-aAz(:F)>'l’Za§;(tF)| dz(t) <0 }
z

/2 /

. 0 1 1 -1/2_ .
= J3T% (1/°Az(tF)) o [(=4az)™' " + Z(-a2) GAz(tF) ]

exp{ - %(Z/G

\
Az(CF)) } 4z (4.3.2.19)

The two terms of the integral are given in reference ( 26 ). Evaluating

the constants gives:

E{ z, (t)]|z, (e >0, z, (t) =07}
5 1/2 -1/2 5.
= 1.8450Az(tF) + 0.3832(0Az(tF)) oAz(tF) (4.3.2.20)

Numerical values for this expression are given in Table (4.3.2.1).
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The expectation of touchdown time error tF - tT, can be found by
noﬁing that the expectation of A;(tF) in equation (4.3.2.11) is zero.
The remaining term in (4.3.2.11) is the expectation of the touchdown

velocity divided by 2c. Hence,

E{tg-ty] z_o(t) >0,z . (c)= 01}
= (T z,_((t)|z, () >0, z,_(t) =0} (4.3.2.21)

Table (4.2.3.1) gives these expectations as well.

An expression for the expected ship deck position is not required
8ince in this agalysis all collisions occur at zs(tT) equal to zero.

In actual touchdowns, however, the expected ship deck position is often
above the predicted height at touchdown since the aircraft trajectory
is designed such that it does not dip below the predicted end point.

The supporting calculation of the variances of Ais(tF) and Azs(tF)
follows.

The growth of ship motion prediction uncertainties (GAzs(t)’cA;S(t))
is calculated by solving the time varying covariance equation for the
ship deck wvertical position and velocity. The state space ship model
was used to determine the quantities required in order to solve the co-
variance equation:” The solution P(;)'is the state covariance matrix for
the ship and wave states at time t. The initial condition for the solu=~
tion P(0) is equal to the zero matrix. This indicates that all the |
states are perfectly known at time t= Q. The matrix differential equa-

tion (given earlier in equation (3.3.2.4)) is:
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P(t) = AP(t) + P(t)AT + BVB- (4.3.2.22)

with initial condition:

P(0) =0 (4.3.2.23)

A, B and V are respectively system, noise input, and noise intensity
matrices for the wave-ship model. The output covariance matrix was
then found from:

Cov(y(t)) = C(e)B(r)cT (L) (4.2.3.24)

For this analysis, the outputs were ship landing pad vertical position
and velocity. The results are shown in Figures (4.3.2.2), k4.3.2.3)

and (4.3.2.4). These give rms position and velocity, and the correlation
of position and velocity.

Since the output y(t) is thg result of a linear system driven by
a gaussian process, it too is gaussian, and so 68% of all outcomes are
within 1 rms (one standard deviation) of the mean, 95% within 2 rms,
and over 997 within 3 rms. (Recall this result was also used in Section
3.3.2).) Thus, in the prediction error plots, 68% of ali the times a
certain prediction is made, the outcome will actually Ilie about a
predicted mean, within a symmetric band having the half width indicated
on the plot.

Note that the regular rising and leveling trand of the prediction
error plots is a sinusoidal form superimposed on a smoothly increasing
curve. The sinusoid has a period of about 4 or 5 seconds. This is
about one half the period of the ship motion. The same phenomenon

also occurs for a single second order damped system and in the analysis
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of a sinusoidal wave with random amplitude A. The sinusoidal wave co-
variance result is derived here. Let the sinusoidal wave be given as:
y(t) = A sin (wt) (4.3.2.25)

where the amplitude A is zero mean gaussian random variable, with

variance ¢?. Then:

E{ y(t) } sin (wt) E {A} =0 (4.3.2.26)

E{ [y(t) - E{ y(©)} 12} = E{ y(©)2 }

Cov{ y(t) }

= gin?(wt) E {A?} = g2sin?(wt)

= % o%(1 - cos 2ut) (4.3.2.27)

The squaring of the sinusoidal wave yiélds a frequency component in
the covariance twice that of the original wave form. This corresponds
to the observations made above for thé ship motion.

The ship vertical position and velocity correlation is shown in
" Figure (4.3.2.4). The plot shows that position and velocity become
less and less correlated in time. This means that knowing position
or velocity will not generally help in determiqing the other. This is
an important reason for rejecting landing control strategies that simply
command hover at some fixed altitude until the ship rises high enough
to contact the aircraft. Because ship position and velocity are umn-
correlated in steady state, the conditional distribution of ship
velocities given ship height is the same at any height. Therefore, no

altitude, even very high ones, will reduce the variation of ship
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velocities at impact. Note that a simple second order damped oscillator
also has this uncorrelated x, X property. For example, write the second

order system as

x = Ax + Bp (4.3.2.28)

. - 'T . - . '
where x = [x,%x]", and p is a zero mean gaussian white noise with inten-

sity 1.0. Let the matrices A and B have the form:

A=

0 1
(4.3.2.29)

~-w? ~28w

(4.3.2.30)

' 0
B=
q1/2

Then the steady state solution of the state covariance equation

(equation (4.3.2.22)) is given by:

q/4&w} 0

0 q/4&w

(4.3.2.31)

where the two zero elements indicate that x and % are uncorrelated,

as claimed.

4.3,3 Nominal Trajectory Design

The purpose of the nominal trajectory is to guide the aircraft
down to a predicted landing position using very little vertical control
actuator effort. To accomplish this, a linear quadratic control prob-
lem with a finite end time is set up and solved. The gains used to

calculate a nominal trajectory during a landing are only dependent
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on predicted time-to-go and are stored as a function of that time. With
the gains and nominal trajectory dynamics model available, only the ini-
tial and final points and times are required to compute a nominal
trajectory and its controls.
The general form of the finite end time controller problem and
solution are given as referefzces (29) and (23). They are as follows:
Find a feedback control law u(t) = u(x(t)) to minimize

the quadratic cost functional

T e 7 T,
J(u) = 3y (ep)Poy(ty) + J 7y (0)Q(e)z(e) + u (£)R(t)u(t)dt
I

v (4.3.3.1)
subject to the constraints of
dynamics x(t) = Ax(t) + Bu(t) (4.3.3.2)
response | y(t) = Cx(t) (4.3.3.3)
initial conditions _§(t1) = %, (4.3.3.4)
desired final conditioms Z(tF) =0 (4.3.3.5)
where (4,B) is stabilizable and (4,C) is detectable, P, =P} >0

is 't:he quadratic ~cost associated with the final response y_(tF),
Q(t) = QT(t) >0 is the per unit time quadratic cost associated
with the response y(t), and R(t) = RT(t) > 0 is the per unit time
quadratic cost associated with the control u(t).

The form of the feedback control u(z(t)) is given as follows:
u(x(t)) = 6(Ox(t) = -R T(e)BTR(t)x(t) (4.3.3.6)
where P is the unique symmetric positive semidefinite solution of

the matrix differential Riccati equation
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l;(t) = P(t)A + ATR(t) - P(t)BR—l(t)BTP(t) + Q(¢t) (4.3.3.7)

with terminal condition P(tF) = PF‘
Note that the Riccati equétion is solved backwards in time from the
end point, so the solution, and thus the géins can be stored as a
function of "time-to-go" to the end.

Using the assumption that aircraft vertical dynamics can be de-
coupled from a2ll other-degrees.of freedom, the -nominal. trajectory compu-
tations are reduced to those for the third order vertical dynamics,
which are given in Table (4.3.3.1). The states are deviation from the
desired vertical end point X5 vertical velocity X5 and vertical
acceleration Xqe By the choice of the output matrix CN’ the states
are the outputs. The choice of control cost weighting R(t) is made
unity as a refefence level against which the output weighting Q(t) is
compared in the cost functional. Q(t) has only one nonzero element

(t) which weights the positiom. . (t) has the following form:

oM Inom

ayoy(t) = CONST-exp{ - %(c - £ )2/a? } (4.3.3.8)

The characteristic shape of qNOM(t) is shown in Figure (4.3.3.1). This
form weights the position more heavily near the end of its trajectory
than near the beginning, so that the feedback control solution will
cause the deviation from the desired end position to approach zero
smoothly. Note, qNOM(t) can be written as a function of time=to—go, tTG’

by setting t to tF minus t (t) has three parameters. CONST is

76" InoM

the scale factor indicating the importance of position error compared

to the control effort, U 1s the parameter determining the width of the
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NOMINAL TRAJECTORY DYNAMICS

z () = Agx (t) + Bgu (1)

zN(t) = Gy () = x.(0)

0 1.0 0
AN = 0 0 32.2
0 0 0
BN = 0
0
l.o
1.0 0 0
CN = 0 1.0 0
0 0 1.0

Table 4.3.3.1
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of the weighting in time and so indicates how soon the position error
becomes important, and tM i1s the time at which the error is weighted
most heavily. The effect of making tM < tF is to cause’the velocity of
the aircraft to be small as it reaches tM’ for although position is
weighted mostly at tM, it is also weighted beyond tM indicating that

the position error should remain near zero after tM' Since this weight-
ing (tM < tF) causes the aircraft to reach the desired position and
approximately zero velocity‘at ﬁM,_the gains obtained from solving this
problem are shifted, so that those at time ty are considered to be the

final gains of a problem ending at tM. The gains from O to t, are

F
unused. The‘option of making t, < t; is referred to as "shifting the
nominal trajectory gains".

Two nominal trajectories are compared in Figures (4.3.3.2) and
(4.3.3.3). In these figures the néminal trajectory parameters are:

CONST = 0.1 feet 2

1.0 second

(o)
Y

Figure (4.3.3.2) has a trajectory length of 6.0 seconds, while Figure

5.0 seconds

(4.3.3.3) has a trajectory length of 2.0 seconds. The short trajectory
is shown to indicate how position errors 2.0 seconds before landing
are reduced only partially, while in the longer one they were almost
completely eliminated.

The values of CONST, 0 and (tF - tM) given above provided an
initial set of nominal trajectory parameters for the design evaluation.

They were selected because they produce smooth trajectories over time
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