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FOREWORD

This report documents the results of Task 3, Construction Svstem Shuttle
.Integration of the Space Construction S y stem Analysis Stud.:, Contract NAS9-15118.
The effort was conducted by the Satellite Systems Division, Space Svstems Croup
of Rockwell International Corporation, for the National Aeronautics and Space
Administration (NASA), .Johnsen Space Center (JSC).

R

The study was conducted under the direction of Ellis Katz, Study Manager.
Th-^ following persons made significant contributions to the information contained
herein.

R. E. Cook

Dr. E. P. French
J. A. Roebuck
J. Sampson

Major documents resulting from Part I of the contract effort are listed
below:

Space Construction System Analysis,
Project Systems and "fission Descriptions,
task i final Report, SSD 79-0077,
April 26, 1979

E

Spice Construction System Anal ysis, Task 2 Final Report —

Sy !tem Analysis of Spice Construction, SSD 79-0123,
June 1979

Space Construction System .lnalvsis, Task 3 Final Report—
Construction Svstem Shuttle Integration, SSD 79-0124,
June 1979

Space Construction Data Base, SSD 79-0:'
.June 1979

Space Construction System Analysis, S pecial Emphasis
Studies Final Report, SSD 79-0126, .Tune 1979
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1.0 INTRODUCTION

Task 1 of the Npaee Coll.LI'UCtion System Anal ysis study was concerned with
the desicn definition of selected s y stem projects; the results of the task are
reported in Rockwell Report SSD 79-0077. In Task 2, reported in SSD 79-0123,

n 	 the flight system projects were analyzed to determine the potential methods
for in-space construction of the hardware elements comprising these systems.
One of the basic assumptions of Task 2 was that all space construction operLi-
tion.s would be conducted from the Shuttle orbiter.

Task 3, the subject of this report, considered the implications and impacts

devolving upon the orbiter by its utilization as a space construction facility
for the selected flight system projects.

The information presented in this report should be regarded as preliminary
and subject to change and expansion as dictated b y the end-to-end construction

anal ysis to be performed during Part II of this study.

This report is organized Into sections which treat each of the orbiter
subsystems and operations for which some measure of construction Impact is
projected.
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2.0 SUBSYSTEM INTERFACES

2.1 ELECTRICAL

There are two major issues regarding the electrical aspects of using the
rbiter as a construction base: maximum power and total energy.

The power requirements for corstruction have been discussed in Section 3.0,
Construction Support Services, of Task 2 final report (SSD 79-0123). These are
summarized in Table 2.1-1. Since the detailed integrated construction scenario
has not been generated, the operations to he performed in parallel have not
been identified; thus, the total power requirements are unknown. Ho-ever, a
review of the major power usages from Cable 2.1-1 indicates that the individual
peak requiremen t, are not likel y to be additive. Therefore, there is a good
possibility tl • .t we can keep within the orbiter capability of 7 kW continuous
with 12 kw peaks for 15 minutes every three (tour:,. If the overall construction
power profile shows significant times with requirements above 7 kW, four options
are available:

1. Reduce parallel power usages—Rescheduling construction activities
ma y be acceptable.

Run tine dedicated fuel cell at the reouired power levels —This may
cause the fuel cell life to be shortened, but ma\ prove to be more
cost effectiv,^ than other means.

Add batteries to handle peak loafs and recharge .luring slack
periods—Extra equipment must be mounted in the bay with the
resultant payload weight and volume losses.

Add new fuel cell—:Again, the equipment must be moulted in the
bav and the weight and volume penalties accepted.

For all construction operations, thi orbiter is expected to be in the standa.d
powered-down mode where the level requirements are 13 kW. In this mode all
necessary orb.-ter s y stems will he operating.

Even though the 7-kW maximum continuous power pr,,rided b y the orbiter for
construction ma y be adequate, the 50 kWh of energy definitely will not.
Figure 2.1-1 presents the energy requirements as a function of on-orbit cott-
struetion time. Tlhe three baseline orbiter cr yo tank sets provide orbiter
energy for slightl y over seven days, .:s the orbiter operating at 13 kl%' contin-
uous requires 31 2 kWlh per day . Therefore, afte r seven da ys, the energ y to
operate the orbiter is chargeable to the construction operation. Thus, there
is a sharp increase in energy requirement at this point. As noted in the

figure, the energy requirements are based on construction being performed as
a two-shift operation, or lb hours out of ever y _-^-ihour period. Three options
are available to provide the needed energy; these are discussed below.
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Table 2.1-1. Electrical Power Requirements

ITEM

POWER REO'0 iPEAKI

SPACE FAB ERECTABLE

BEAM MACHINE 2 KW NJ 

CONST	 FIXTURE 2 • 5 KW 2	 ) KW
WELDERS

TRANSLATION
S1VING ARM

RMS 1.8 KW 1.8 KW

MANNED REMOTE WORKSTATION 0.5 KW 0.5 KW

CONST COMMAND AND CONTROL TBD TBD

ILLUMINATION 2 - ) KW )	 KW

CONST CKCKOUT TBD TBD

ASSUME - CONTINUOUS USAGE FOR 16 HR/DAY FOR CONSTRUCTION

ORBITER POWER -- 13 KW CONTINUOUS, 24 HR/DAY

4 CRYO KITS	 OQO^

M

— ---- --	 --- --- 
QJO^\O?3CRYO  KITS —

(.
N

9-1/4 GAYS	
,	 2 CRYO KITS MAXIMUM

^4	 (MAXIMUM WITH KITS
O	 UNDER LINER)

1 CRYO KIT \

3000

> 2000
CD6"W
W

1000

0
5	 10
	

15

ON-ORBIT CONSTRUCTION TIME (DAYS)

Figure ..1-1. Power and Energy Availability
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_)pt_.)n i. Below- li:;er cryo kits. There is currentl y space for
one set (and possibl y two) under the liner. Figure 2.1-1 shows
that mission times of slightly over nine da ys can be attained
with two tank sets. The fluid and electrical interfaces cur-
rentl y a%ist for extra cryo tank sets. Thus, no modifications
to the orbiter are required.

Option 2. Cryo kits in payload ba y . A4ditional cryo tank sets
(1 to 4) can be installed in the bay by the ust of a wafer pack-
aging concept as shown in Figure 2.1-2. If the maximum of four

sets are used, the mission time can be increased to approximately
13 days (at maximum average power levels). The advantage of
installing extra tank sets in the bay with the wafer type of sup-
port structure is the shorter installation time. Tile tanks can
be installed in the wafer "off line" (not a part of the payload
installation allocation). The installation of the wafer in the
bay, including connection of the fluid and electrical inter-
faces is expected to he zonsiderably less than the time necessary
to install. and connect individual cr yo tanks under the liner.

The disadvantage of this option is the use of valuable ba y volume
(48 inches). Since most construction cargos are volume-limited
and not weight-limited, this option may be undesirable.

Figure 2.1-2. :Alternative Cryo Wafer hit

• Option 3. Power extension package (PEP). PEP would nearly

double the maximum mission time from i to 14 days without the

addition of cryo kits. However, PEP requires a dedicated RMS
and probably would require orbiter attitude control during
construction to maintain the solar arra y in the desired

orientation.

2-3
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_.2 :AVIONICS

A comparison of space construction requirements has shown all are within
the current orbiter avionics capability. :ommunications between the orbiter,
-round, and EVA construction personnel will use the standard CHF, S-band and

K-band orbiter equipment wit.a the K-ba,.d also used for orbiter to construction
fixture rendezvous and docking operations. As with most payloads, space con-

struction will require its special control and display panels at the payload
station (YS) of the aft flight deck (AFD). The current thoughts of having
the major portion of the construction fixture operations automated and con-
trolled by self-contained hardware and software should result in adequate
control and monitoring space and volume capabilit y at the AFD.

'.3 REACTION CONTROL

For normal Shuttle space operations the orbiter reaction control s- item
(RCS) provides the control for rendezvous maneuvers and for attitude control
during the mission operations. However, the studies performed on space con-
struction indicate that space construction operations in a free-drift mode are
acceptable and, therefore, no attitude control is requir ,_-d when the orbiter is
berthed to the construction project. Consequently, the orbiter will command
the RCS inhibit mode to prevent RCS firing during construction.

The o peration scenario of the RCS for berthing is a function of the geometry
f the structure under construction and the control method employed on the struc-
sre. In general, the structure will be relatively long, compared to orbiter

dimensions, and will be Rra ,+ity-gradient stabilized. Therefore, the orbiter
maneuvers for berthing are unique compared to near-term berthing operations which
present-da y studies, and man-in-the-loop simulations, have addressed. Secondly,
because of the ver y low attitude stiffness of gravity-gradient control and the
large surface areas of the structure, it is required that orbiter operations do
not upset or disturb the structure attitude and libration rate.

The remote man';aiator s y stem (RMS) promises to be a useful tool for berth-

.nK to *.he platform. Because the structure inertias are comparable to those of
the orbiter, the orientation of both bodie s, will change due to the forces and
moments exerted by the RIMS. The RCS will be required to provide proper relative
orientations without interfering with RMS operation.

The revisit/berthing maneuver, therefore, will require RCS control. Thl
maneuver ma y require precision RCS control on translation and attitude in order
to effect RMS engagement for berthing control. Figure 2.3-1 indicates the
region of acceptable initial translation rates and initial rotation rates that
will permit safe RMS engagement and, consequently, a successful berthing to the

construction project.

RCS issues associated with the berthing operation sr, (l) possible control
s ystem software revisions. and (2) control s ystem cap.4C:1 it y considering jet
inhibit constraints and structure ;Hass properties. Ti:.? software for orbiter

attitude control and _jet selection ma y not be suitable for the unique require-

ments of berthing large payloads.



Sat*11 1• Systems Division„ Rockwell
Space Systems Group	 i International

Further studies are required to assure RCS contr-1 system capability to

perform the berthing manvuv.•r required to be within the Xi-IS capture capability.

0,2
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o , DEG/SEC

Figure 2.3-1. ^:IJSUre Requirements

2.4 CREW SUPPORT

None of the individual operations investigated in Task 2 has identified the
need for more than threo crew membe ; (two EVA and one at the aft flight deck
(AFD). A1iuming one dedicated orb i t r crew member, the basic orbiter capability_
of 2S man-da ys of expendables will be exceeded for missions beyond seven days.
However, the orbiter has storage capaciry for a maximum of 	 man-days (payload
is charged with the weight for crew expendables between 28 and 42 man-da y s and
for both weight and volume be yond w' man-day s). The integrated construction
anal y sis ma y indicate a desirabilit y to perform operations simultan.ously,
thus increasing the crew size. The addition of the required crew expendables
is not expected to create a problem for tht- construction project. as the indi-
vidual Shuttle flights are normall y not weight- or volume-limited. but dimension-
limited. Titus, storage space for relatively small volume of crew expendable:
packages is expected to be no problem.

The current orbiter capability of two -'-man EVA's for construction will not
be adequate if the integrated methods anal y sis finds the potential of significant
EVA operation to he reality. Additional Shuttle-t ype tanks can be used, each
providing nitrogen for approximately 4.7 repressurizations of the airlock
(4.7 EVA's). Preliminar y indications are that one or more tanks can be added
under the payload bay liner. However, modifications to the orbiter will be
required for tank mounting and to provide the necessar y 	interfaces for

\, kits.

:.5 SOFTWARE

It is expected that a significant portion of the automatic operations to
be performed b y the construction fixtures will be controlled b y minicomputers
within the fixtures, with onl y the basic functions controlled through rile
orbiter computer. Software- for basic operations to pr.)vide orbiter damage

avoidance control for the RMS and RMS/cherr ,,• picker will be required.

2-3
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2.6 LIGHTING

Space construction ^-erations using the orbiter as a base are characterized
by requirements for some transport and assembl y operations at considerable dis-
tance from the relatively well-lighted payload ba y . However, to minimise power

demandi for such lighting, it is desirable to perform as many as possible of the
critical, detailed assembly and deployment operations of smaller components,
struts, modules, etc., within or ver y_ near to the payload ba y . This guideline
must be tampered by consideration of cargo packaging and use of docking ports

which ma y block off light from certain lamps. Where TV cameras are used to per-
ioLm or observe remote operations, selected orbiter lamps (as well as others
for construction) may require special shields to prevent "blooming" of the
images of the lamps when directly viewed b y the TV cameras.

A significant portion of the electrical power load discussed in Section 2.1
may be devoted to illumination of construction fixtures, construction equipment,
and the project itself. To hold such power and energy demands to a minimum, a
variety of approaches have been described and discussed in the Task 2 final
report, System :Anal y sis of Space Construction (SSD 79-0123). Figure 2.6-1
illustrates several t ypes of lamps which may be used in a t ypical integrated
construction operation. The kev concept for selection and location of such
luminaires is to use a small number of lamps to efficiently illuminate only the
critical work areas and transport obstacles, and then only when work is actively
going on in the vicinity of such areas. Implementation of this approach involves
turning off any specialized lamps not specificall y needed for a current task by
means of switches on the payload control console in the orbiter cabin.

LOCAL
SPOT LIGHT

COLLISION
ORBITER
	

AVOIDANCE
PAYLOAD BAY s
	

BEACONS
LIGHTS -

STD. ORBITER
FLOOD LIGHT

Figure 2.6 -1. Space Construction Lighting Concept
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Also, maximum use should be made of localized, portable lighting provided
by lamps on the manned maneuvering unit (t!MU), the extravehicular mobility unit
(space suit), portable (battery powered) lamps, the remote manipulator system
(RMS), and the cherry picker.

On the sunlit side of orbit the TV systems, which are provided on the orbiter
and construction fixtures for remote viewing of construction operations, may
need special automatic protection from direct view of sunlight by means of a
combination of shades, sensors, and filter or iris controls. Space construction
probably will require a large number of TV cameras with a variety of viewing
directions. Manual monitoring of all L, , %.:h cameras could place an unacceptable
workload on the crew.

2.7 HEAT REJECTION

During the construction of large structures in space, the free interaction
of the orbiter with its environment will be modified. In particular, elements
of the structure may either block incoming thermal radiation or intercept and
reradiate it toward the orbiter. In the first case, heat loads on the orbiter
would be decreased. Of greater concern is the second case, in which reradiated
(and reflected) radiation may overburden the capabilities of the orbiter radia-
tors.

There are two basic flight system projects under consideration, the SPS
test article and the communications platform. However, different orientations
and stages of construction multiply the number of cases so that a complete
survey of all of them is not practical at this time. In order to achieve an
understanding of the magnitude of the problem, several cases (which are believed
to be representative of worst-case conditions) have been analyzed. Because the
SPS test article presents a large area occupied by an opaque solar blanket, it
is believed to be the structure more likely to overheat the orbiter radiators.
Two basic construction patterns have been considered in which the array is
oriented vertically (see Figure 2.7-1) and transversely (Figure 2.7-2) with
respect to the orbiter. In each case, the linear structure is translat':-j past
the orbiter while the solar array blanket is unrolled and attached, `jay by ba"'.
Clearly, the thermal effect of the array on the orbiter will increase progres-
sively as the amount of structure covered by the solar array b'_arket incr,2ases.
In order to assess this, two stages were considered for each orientation--an
early stage where one 20X41.6-m bay has been covered, and the final stage where
all five bays have been covered.

The relevant thermal properties of the solar array and the orb..ter radiators
were taken from a recent Rockwell study. The radiation incident on the soi.ar
blanket was estimated from the curves provided in a NASA stud}, Simplified
Thtrma_' Estimation Techniques ror Large Space Structures, NASA C:2 1:5253,
October 1977. During construction the orbiter and structure are in a free-drift
mode and thus may take anv orientation. A most unfavorabl: one w;:.s assumed for
the present analysis. The array was assumed to receive solar radiation at normal
incidence and earth radiation (emission and albedo) from the sidL , . Table 2.7-1
summarizes the properties and conditions for the numerical calculations, and the
appendix presents the results of the thermal analysis.

2  7
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Figure 2.7-•1. SPS Test .Article "-Axis
Construction Orientation
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Table 7.7-1. Thermal Properties and
Environmental Factors

ASSUMED VALE

SOLAR PANEL, FRONT

a l 0.76

c l 0.82

SOAR P ANEL. REAR

as 0.11•

c i 0.75

ORBITER RADIATOR

O 0.11•
r

Cr 0.7S

INCIDENT	 RADIATION

IVC	 DIRECT	 SOLAR	 (ONE	 SIDE) 1353 W/o'

A I	 REFLECTED SOLAR	 (EACH	 SIDE) IN

ET	EARTH	 EMISSION	 (EACH	 SIDE) 70

• a	 INCREASES WITH SPACE	 EXPOSURE. MOWFVER, CONSTRUCTION
WILL	 OC% 'R 	 EARLY	 IN	 A RRA Y 	 LIFE.

From tIiis anal y SLs, the solar panel of the 5PS te:t article is expected to
create the largest radiator heat Loads during construction. uncovered structural
elements will have so much open area that their configuration factors with respect
to the orbiter radiator will be quite low. One exception could be the large
microwave antennas on communication platforms. A 20-m dish above and near the
orbiter could .•esult in configuration factors comparable to the solar array
le.g., 0.1 to 0.3). However the reflective surface of the dash would not be
nearly as hot, nor would it emit as efficiently.

A nearby dish could present heating problems of another kind. If the sur-
face were specular, it could act as a solar concentrator, producing an intense
hot spot in its focal region at a distance of about one-half the radius of
curvature. For this reason, it will he necessar y either to avoid specular sur-
faces, or to ensure chat neither equipment nor personnel are allowed to enter
the fecal zone..

The additional iieat load on the orbiter resultin- from the construction

of the SPS lest :Article ("Y" axis array orientation) is approximately 15,000
BTU/hr. Even if the orbiter radiator heat rejection capability, as affected

L,v orbiter orientation, and the o ,7erall heat rejection requirements are equal
so that this delta heat load must be accommodated by boiling; water in the flash
evaporator, no problem is created. 15,000 BTU/hr is equivalent to approximately

15 lbs/hr of water. The water boiling capabilit y of the flash evaporator is
31 lbs/hr and approximatel y_ 16 lbs/iii of hater is leing generated by the fuel

cells.

2-10
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3.1) si'KuL:*rL'KAI. PROVISIONS

Packaging of cargo to fly on the Shuttle must be given careful considera-
tion so that neither the material being carried nor the orbiter will be damaged
as a result of the liftoff and landing forces. Location of the cargo in the
bay is also of concern to assure proper orbiter control capabilit y during the
flight to orbit and return operations.

A cargo cradle concept, which will interface with the orbiter payload
support attachment fittings, will minimize the ground operations task of pack-
aging the various construction and project components. The cradle will allow
prepackaging of a payload manifest in advance of the installation into the
payload bay. Tile prepackaging operation will consider the e.g. limitations and
the on-orbit accessibilit y requirements.

.l Lit-NDIYG AND LIFTOFF LOADS

The orbiter provide: structural support attachment points along tilt' length
of the cargo bay as indicated on Figure 3.1-1. Of the potential 172. attach
points on the longerons. 118 are normally usable for nondeployable payloads and
102 for deployahle payloads. Some potential attach points are u nusable bt•cause
Of payload bay door drive linkage. remote manipulator system base end supports,
and orbiter s y stem components. There are 117 attach points along the keel.
These attach points, longeron and keel, are onl y available with the use of bridge
fittings. The standard longeron bridge fitting is illustrated in Figure 3.1-"
and the keel bridge in Figure 3.1-3.
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Figure 3.1-1. Standard/Orbiter Pay load :lttachmont Locations
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Figure 3.1-2. Longeron Bridge Fitting Installation

KEEL BRIDGE
t^	

FITTING

1
KEEL ATTACH
FITTING

^	 VJ

Figure 3.1-3. Reel Bridge and active :eel Fittin>;	

11

(Closed Position)
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The preliminary limit-load factors and angular accelerations shown in
Table 3.1-1 apply to rigid payloads attached directl y to the orbiter at any
location in the cargo bay. These load factor y shall be used for preliminary
design of payload primary structure and for determination of preliminary
orbiter/payload interface loads. Load factors at specific points within the
payload will depend upon payload design characteristics and mounting methods.
Payloads that are cantilevered or that have substantial internal flexibility
ma y experience higher load factors than those shown in the table.

Table 3.1-1. Carrier/Pavload Design Limit-Load Factors

ANGULAR ACCELERATION"

LIMIT-LOAD FACTOR! 9	 1	 RN

d X f)Y d2

NX NY N2 (• RIGHT (. NOSE (• NOSE
ChRRItQ /
PIYLOAO

FLIGHT EVENT (. AFT) (•	 RIGHT) (•UP) WING ON) UP) LEFT) WEIGHT

ASCENT
0.2 11.0 ±2.5 •0.1 !0.15 •0.15

32
A

-BOOST MAX, N	 INTEL VEHICLE 2.9 •0.6 -0.1 *0.2 !0.25 •0.25 Ur TO
X - - - 64K LB

-cAB POST-STAGING -1.1 !0.12 0.6

-BOOST MAX,	 N,	 ORBITER -3.1Y 0.0 I	 -0.6 •0.25 •0.25

DESCENT

•TAEM:	 PI:CM MANEUVER
1.01

(
0 2.S 0 0 0

-0.15
I

0.25 0 2.5 I	 0 -0.11 0

0.97 0 1.0 0 0 0 Uf r0
32K LB

0

• TAEM:	 ROLL MANEUVER 0.65 !0.12 1.96 • 1.28 0.02 !0.13

• TAEM:	 YAW MANEUVER 0.90 .1.25 1.0 0 0 0

0.03 +1.24 1.0 0 0 •0.12

-LANDING l.B •1.0 4.2 •0.25 1.25 •0.3

-2.0 1.0 1	 -0.3 1 +0.25 1	 0.15 1 tO.3

' LIMIT-LOAD FACTOR	 IS DEFINED AS THE TOTAL EXTERNALLY APPLIED LOAD PER UNIT WEIGHT AT THE c.g. 	 OF

THE CARRIER/PAYLOAD AND CAVRIES THE SIGN CF THE EXTERNALLY APPLIED LOAD.
" CENTER OF ROTATION	 IS AT CARRIER/PAYLOAD c.g.

Typical load factors for liftoff and landing are presented. However,
during these events, external forces are highly transient and significant
elastic response occurs. Pa y load responses will depend upon payload geometry,
stiffness, and mass characteristics. Therefore, until sufficient payload case
history is collected, final design values for orbiter payload interface forces
and payload design loads must be determined by coupled orbiter payload dynamic
analyses for these transient flight events.

To provide for crew safet y during emergency Landing, the large equipment
items, pressure vessels, payload attachments, and supporting structure must
withstand the leads associated with the following ultimate load factors, acting

separately.

Longitudinal Lateral Vertical
(+	 '1f t) (+ Right) (+ Up)

+4.5 +1.5 +4.5

-1.5 -1.5 -2.0
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3.2 CENTER OF GRAVITY

All items chargeable to cargo, regardless of location (i.e., within payload
ba y , below payload ba y , in cabin, ete.1, Shall be included in the calculation to
determine the location of the cargo e.g. The cargo e.g. '.s shall be .onstrained
,.cithin the three- limit envelopes defined below:

1. \-Axis—Cargo e.g. shall be calculated using the equations shown in
Figure 3.2-1.

2. Y-Axis—Center-of-gravity limits shall be calculated using the
equations shown in Figure 3.2-2.

3. Z-Axis—Total cargo e.g. limits shall he calculated using the
equations shown in Figure 3.2-3. Center-of-gravity limits for
cargo items mounted on the payload bay attachments shall be
as shown in Figure 3.2-3. In addition to there cargo Z. e.g.
limits, the Zo c.g. limits for the summation of all payloads
mounted on attachment fittings in the payload hav_ are defined
by Carve ABCDEFGN'IT (Figure 3.2-3).

&__ PA I I I d1M CARGO OE S I M

LAL"CM WEIGHT

65000 LBS (29684 Ki)
\ 65000

C A$0	 ONLY
3	 L

I

M11
S \

CARGO C.G. AFT I 	 LIMIT

vAXIMLI4 CARGO CESIGN
LANDING •EIGHT (40k%L

MISSION)	 32000 LIS
CARGO C.G. —+

FIX 
X 
	 LIMIT

(14SIS XG)

.^2	 to STATION (IMCMES)	 1302

EQUATIONS FOR CALCULATING CARGO X  ( STATION) C.S. LIMITS

1076.7 W C - 3.10.106

	

FWD LIMIT	 ---

WC

	

AFT LIMIT	
1108.95 W, • 3.4xIOS

We

WMERE WC • CARGO WEIGHT IN LIS

Figure 33.2-1. Allowable Cargo C.G. Limits (Along X-axis)

During an abort, if the cargo c.g. is not within the entr y and 'Landing

design limits, the orbiter (with cargo included) must provide the means to
attain an in-limits e.g. location prior to (1) ET separation, for an RTLS
abort; or (2) entry ind landing, for an on-orbit abort. The orbiter shall

similarl y be capabit^ of accommodating OMS kit(s) e.g. variations.
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4.0 GROUND iPERATiONS

A preliminary investigation of the ground operation for space construction
cargos at KSC indicates the advisability of ha%ing a facility similar to the
Operations and Checkout (O&C) building used by Spacelab. While there wall be
nc functional interfaces between cargo elements, the need for physical integra-
tion is expected to be a time-consuming operation. This problem can be minimized
by a dedicated "staging" area where the individual items of the cargo caa be
accumulated, checked out, and packaged into a cargo cradle compatible with the
orbiter structural attach provisions. The lack of functional interfaces between
the cargo and cargo elements and the minimal functional interfaces oetween the
cargo and the orbiter eliminate the need for anv orbiter functional simulator.
Thus, the ground support equipment need only include a simple physical simulation
of the orbiter cargo bay and all necessary slings, strong backs, cranes, etc.,
to handle the cargo elt=ents. All preparation of the cargo will be performed
"off line" and thus not impact the standard ground turnaround time for the
orbiter. The facility will include the capability to install the various cargo
elements into the standard cargo cradle for transportation to the orbiter for
transfer to the payload bay in the horizontal position at the Orbiter Processing
Facilit y (OPF).
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APPENDIX

CALCULATIONS OF THEKIAL EFFECTS OF SOLAR ARRAYS
ON ORBITER RADIATORS

A preliminary analysis was performed of the heat-rejection capability of

Lite orbiter during a worst-case orientation for constructing the solar array
assembly of the SPS test article project. For this case, the solar array sur-
faces receive'direct solar radiation on one side and reflected solar and earth

emission radiation on both sides. The ke y thermal properties and environmental

factors are listed in Table A-1. For simplicity, it will be assumed that thermal
gradients through the panel are negligible and that the temperature is always
steady state. During normal panel operation, a fraction of the absorbed energy
is removed in the form of electrical power. However, during construction, all
absorbed energy must be reradiated and the panel will run hotter as a result.
An energy balance yields the following expression for panel temperature:*

/(1 9C+A Z ) a 1 +A Z -, z--E	 (E:	 2)

	

`r	 (A-1)

	

TP - 
4 V
	 o (Ei+EZ)

For the values in Table A-1, the panel temperature reaches 344 Q K (71%).

Table A-1. Thermal Properties and
Environmental Factors

ASSUMED VALVE

SOLAR PANEL, FRONT

at 0.76

C l 0.82

SOLAR PANEL, REAR

ai 0.11•

C l 0.75
ORBITER RADIATOR

a 0.11*

C
r 0.75

INCIDENT	 RADIATION

tsc DIRECT SOLAR	 (ONE	 SIDE) 1353 W/s+'
A i	 REFLECTED SOLAR	 (EACH SIDE) 130

ET	 EARTH	 EMISSION	 (EACH	 SIDE) 70

* a	 INCREASES WITH	 SPACE	 EXPOSCRE. HOWEVER,	 CONSTRUCTION
WILL OCCUR	 EARLY	 IN	 A Q QAr	 LIFE.

*Mathematical nomenclature is defined in Table A-4 at the end of this appendix.
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The opened radiator panels of the orbiter lie roughly in a plane per , 	-
dicular to the solar panel under construction (see Figures A-1 and A-2.
the purposes of this study, the radiator has been subdivided into 12 equsl
rectangular areas, assumed t. 	 plane and exactly perpendicular to the solar
panel. it has been further assumed that the individual areas are small enough
to be treated as differentials with respe-t to the entire solar panel. The
idealized relationship is shown in Figure A-3.

^' 1 r I
I ^- ^ ^	

i I I

I-	 i	 •^I	 I^	 rt

_-f	
`I	

r	 ^,	 r' I	
W, 15Imo,, 

I	
M ^I / '	 ^'^ 1 _	

-+►^. I I ^1 ^^ _ I	 ^^	 I" r r

\	 ^.	 1 f _ ^	 ^	 r	 1,

1'	 I

Figure A-l. SPS Test Article Z-Axis Construction orientation
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^	 1	 1	 ^ t	 1

,^ ^I fl^i` (	TI

I	 ^'I

//^ / ^^	 I	 I 1 1 11	 ^ ^ I I 1

Figure A- Z 	SPS Test :Article
-Axis Construction Orientation
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b,	
b

/	 1
a ^%

a'

c \

dA (RADIATOR ELEMENT)

Figure A-3. Idealized Solar Panel--
Radiator Geometry

A differential area located at distance Y on a perpendicular drawn from
the cor..er of a finite rectangle of sides a and ^ has the configuration factor

	

F(x,B,Y)?1 ITan- 	- 1 	 Tan-i^/a
	

(A-2)

B y applying ,,onfiguratiott factor ilgebra to the geometry of "figure A-3, values
for the solar panel offset as shown are

F
AdA 0 F(a+a',b+b,c) - F(a+a.,bl,c)

F(a l ,b+b l ,c)	 + F(a',bl,c)	
(A-3)

Configuration factors for the f3ur cases considered were calculated from
Equation A-3 and are tabulated in Tablc- A-2. The 12 radiator areas are numbered
consecucivel:. row by row, beginning with the rear left-hand area.

Table A-2 illustrates two significant aspects of Lne problem. First, the
configuration factors, and the radiator heatinst which is proportional to them,
increase very little after the first ba y has been installed. Thus, near maxi-
mum heat loads from the panel could be encountered -almost anytime during the
installation of the solar array blankets. Secondl y , there are substantial dif-
ferences in heat load, depending oil 	 construction pattern. Transverse con-
struction is clearly less demanding from the thermal point of view.

Radiator heat loads due to the presence of the solar panel under construc-
tion arise both from thermal emission and from diffuse reflection of the incident
solar radiation. The emission load on a given element of area is

	

dO
•	 (A-4)e	 (ElErQTP^) Fi
i

A-4
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lal,le A-2. Solar Panel-Radiator Area
Configuration Factors

RADIATOR

AREA NC
VERTICAL	 CONSTPUC-10 . 4 TRANSVERSE	 CCNSTRUCTION

04E	 5 1- v F''.E	 01S CNE	 7 a. FIVE	 IIA+

1 193 .399
I

.090 .091

I .308 .315 .202 :o5

3 .178 .187 .170 .175

4 .349 •357 .077 .078

S .285 .294 .177 .180

6 .180 .191 .153 .157

7 .219 .238 .020 .021

8 .186 .206 .072 .073

9 •100 .165 .081 .080

10 .196 .218 .015 .015

11 .168 .190 .057 .058

12 .137 160 .069 .071

If it is assumed that all reflected solar radiation is isotropic, the additional

thermal load is

d0(1-a )

dA

	 (Isc

	 r r e r FidAi (A-5)

The sum of the two loads has been integrated over the entire orbiter
radiator. The results are given in Table A-3.

Table A-3. Heat Loads on Orbiter Radiators
During SPS Test Article Construction

TM VMA	 '.OAI.OAD FR OM ARRAY ('.IATT^
ONE	 BAY	 FIVE BAYS

:OMPLETEO	 COMPLETED

VERTICAL	 ( "j"	 AXIS)	 ARRAY	 ORIENTATION:

ARRAY EMISSION 8600 9100
REFLECTED SOLAR 1400 1500

TOTAL 0000 75- 0-o

TRANSVERSE	 ("Y" AXIS)	 ARRAY ORIENTATION:

ARRAY	 EMISSInN 3700 3800

REFLECTED SCLAR 6o0 600

TOTAL Z 300 =00

As may be seen. the thermal loads are. substantial, partieulari-. , for the
vertical construction pattern. For compariscia purposes, the unobstructed heat-

rejection capabilit y for the orbiter radiator s ystem varies from 5900 watts

(20,000 Btu/hr) under unfavorable orientation to 19,300 watts (100,000 Btu/hr)

when viewing deep space.
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The mathematical nom_nclatute is defined in Table A-4.

Table A-4. Mathomatical Nomenclature

Svmbol Explanation

a,	 a' See Figure A-3

A Area

A•' Reflected solar radiation

b,	 b',	 c See Figure A-3

F Configuration factor

Em Earth emissior radiation

I s Solar constant

Energy flow rate

T Absolute temperature

Creel: Letters

Solar absorptivity

n f3 d	 Rectangular coordinates

E	 Thermal emissivit%-

9	 .1ngle between panel and orbiter
operations

Q	 Stefan-Boltzmann constant

Subscripts

1 Front surface

' Near surface

mitted

i Area element	 i

p Solar panel

.
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