EFFECT OF THE ATMOSPHERE ON THE CLASSIFICATION OF LANDSAT DATA

(E79-10235) CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTIFICO E TECNOLOGICO

INSTITUTO DE PESQUISAS ESPACIAIS
The purpose of this work was to develop a suitable computer program to correct computer compatible tapes, obtained from LANDSAT MSS data, and to study its effect on percentage of correct classification. The LOWTRAN-3 program, developed by the Air Force Geophysics Laboratories and based on a semi-empirical model, was used to calculate the atmospheric transmittance, in conjunction with Turner's model for correction of satellite data for atmospheric interference. It improved the contrast between different natural targets in the MSS LANDSAT data of Brasilia, Brazil. It also improved the classification accuracy of sugar canes by about 9% in the MSS LANDSAT data of Ribeirão Preto, São Paulo, Brazil.
ABSTRACT

The purpose of this work was to develop a suitable computer program to correct computer compatible tapes, obtained from LANDSAT MSS data, and to study its effect on percentage of correct classification of the same data, using automatic pattern recognition techniques.

I. INTRODUCTION

Radiation from remotely sensed objects in the earth's environment is attenuated in its passage through the atmosphere. With the advent of LANDSAT, Skylab and other advanced earth monitoring satellites, it has become increasingly important to know to what extent the atmosphere affects the classification accuracy of sugar cane by about 9%, in the MSS LANDSAT data of Brasilia, Brazil.

The Brazilian Institute of Space Research (INPE) operates a data receiving and a data processing station for the LANDSAT satellite and processes MSS data in the form of photographs, as well as computer compatible tapes. The objectives of the present project were: (1) To develop a suitable, computationally efficient, computer program to correct the tapes of LANDSAT's multispectral scanner (MSS) data for atmospheric interference, and (2), to study the effect of atmospheric interference on the

quality of LANDSAT MSS images for visual photo-interpretation and (3) the percentage of correct classification of atmosphere transmission, in conjunction with Turner's model for correction of satellite data for atmospheric interference. It improved the contrast between different natural targets in the MSS LANDSAT data of Brasilia, Brazil. It also improved the classification accuracy of sugar cane by about 9%, in the MSS LANDSAT data of Ribeirão Preto, São Paulo, Brazil.

1979 Machine Processing of Remotely Sensed Data Symposium

179 REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
(1 to 30 μm) does not include the visible wavelength region, it is not suitable for our purpose. (4) LOWTRAN 3 Method. The LOWTRAN 3 program is based on a semi-empirical model and calculates the transmission (averaged over a 20 cm⁻¹ interval) for a given atmospheric path³, at steps of 5 cm⁻¹, from 350 cm⁻¹ to 40,000 cm⁻¹ (0.25 to 26.5 μm).

The main assumptions made in this program are that the atmosphere can be represented by a 33-layer model, and that the average transmittance over a 20 cm⁻¹ interval (due to molecular absorption) can be represented by a single parameter model, determined empirically using both laboratory transmittance data and available molecular line constants. The absorption coefficients for water vapor, ozone, and the combined effects of the uniformly mixed gases (CO₂, H₂O, CH₄, CO, N₂, and O₂) are digitized in this program.

A choice of six model atmospheres (1962 U.S. Standard Atmosphere, Tropical (15°N), Midlatitude Summer (45°N, July), Midlatitude Winter (45°N, January), Subarctic Summer (60°N, July), and Subarctic Winter (60°N, January), is given, with an option for a seventh model, which can be inserted as a set of radiosonde data. The aerosol attenuation is calculated for a given visual range, using an interpolation/extrapolation scheme, with two aerosol models, based on measurements of continental aerosols under moderate visibility conditions (5 km and 23 km at sea level). The altitude, pressure, temperature, water vapor density, and ozone density for six model atmospheres, as well as the number of particles per cm³ for two haze models, are provided as basic input data.

This program was used for calculating the transmittance of the atmosphere because it is reasonably accurate, user-oriented, computationally very efficient, well documented and revised by the Air Force Geophysics Laboratories at regular periods of time, utilizing recent laboratory measurements and theoretical calculations.

III CORRECTION OF LANDSAT MSS DATA FOR ATMOSPHERIC INTERFERENCE

Computer compatible tapes of LANDSAT MSS data were corrected using the "atmospheric model for correction of spacecraft data", as given by Turner (1972). This model assumes a plan-parallel atmosphere but can be applied to the case of a realistic spherical atmosphere, if the nadir view angle is small, or if the satellite's altitude is not too great. The target gas assumed to be diffuse. The eight parameters needed by the model are wavelength, azimuth and zenith angles of the sun, azimuth and nadir view angles of the sensing device, height of the sensing device above the terrain, visual range at the ground, and average background terrain albedo.

The day, month, year, and local time of the satellite, along with the longitude and latitude of the ground scene, were used in a separate computer program to obtain the solar azimuth and zenith angles. The background terrain spectral albedo was estimated by the values of spectral reflectance of the known types of ground covers available in the literature. It was found that changing the scanning angle of the satellite from 6° to 10° had almost no effect on the calculated transmittance of the atmosphere. The elapsed time on a B-6700 computer to correct 4 images, each of 512 × 512 pixels, is 15 minutes.

IV EXPERIMENTAL RESULTS

LANDSAT MSS data of Brazilia, Brazil, were corrected using this algorithm and available radiosonde data. Figures 1 to 3 show the original image in band 4 (0.5 to 0.6 μm), band 7 (0.8 to 1.1 μm) and a color composite, respectively. Figures 4 to 6 show the respective figures 1 to 3 corrected for atmospheric interference.

Note that the corrected images have better contrast between natural targets, thus making it easier to discriminate between them by photo-interpretation. In addition, one can see textural features of certain areas like vegetation, roads, etc., better in the corrected images.

To arrive at an estimate of change in percent of correct classification, after correction for atmospheric interference, LANDSAT MSS Data of Rubiáceo Preto (July 1, 1977), was corrected for atmospheric interference using this algorithm. The Department of Remote Sensing of Earth Resources of INPE had classified the sugar cane in this area, using aerial photography. The original and corrected images gave classification accuracies of 78% and 88%, respectively, using the single-cell option of image-100 as compared to the results obtained by aerial photography. Image-100 is a data processing system marketed by the General Electric Co. to extract thematic information and enhance...
multispectral imagery. Further experiments need to be done to establish if correcting LANDSAT MSS data for atmospheric interference significantly improves, statistically, the percentage of correct classification. Future plans include more experiments with the current algorithm, using a pixel-by-pixel maximum likelihood gaussian classifier, as well as a sample classifier, making the current algorithm computationally more efficient, and comparing the results to those of other algorithms of correcting satellite data for atmospheric interference reported in the literature, with respect to their effect on classification accuracy.

We gratefully acknowledge the assistance of Dr. Celso de Renna e Souza, Head, Informatics Division (INPE) and the Department of Remote Sensing (INPE) for their assistance with this work. In addition, the authors would like to thank Dr. Nelson de Jesus Parada, Director of INPE, for his permission to publish this work.

REFERENCES


Figure 1. Original Image in Band 4.

Figure 2. Original Image in Band 7.

1979 Machine Processing of Remotely Sensed Data Symposium
Figure 3. Original Image - Composite color

Figure 4. Corrected Image in Band 4.

1979 Machine Processing of Remotely Sensed Data Symposium
Title of Your Paper
Effect of the Atmosphere on the Classification of LANDSAT Data

Author/Session Chairman Biographical Information

Please supply the following information for each author. Additional copies of this form are provided.

Ravindra Kumar
Title
Associate Researcher (equivalent to associate professor in U.S.A.)

Instituto de Pesquisas Espaciais (INPE/CNPq)
C.P. 515, 12200 - São José dos Campos, SP, Brazil
22-99777, Ext. 237

Your brief biographical sketch must fit within the inner line of this rectangle. Please keep typing flush left near the inner left line.

Ravindra Kumar received B. Tech. (Hons.) degree from the Indian Institute of Technology, Kharagpur, India in 1968. He received M.S. and Ph.D. degrees from school of engineering and LARS, Purdue University in 1970 and 1973 respectively. Since Jan 1974, he has been with the Instituto de Pesquisas Espaciais (INPE/CNPq). He has taught graduate courses, guided graduate students and published about 35 papers in the general area of "Remote Sensing of Agriculture and Earth Resources". He is a member of Sigma Xi.
Effect of the Atmosphere on the Classification of LANDSAT Data

Tsutomu Morimoto

Research Assistant

Instituto de Pesquisas Espaciais (INPE/CNPq)

C.P. 515, 12200 - São José dos Campos, SP - Brazil

22-9977, Ext. 220

Tsutomu Morimoto received B.Sc. degree in Physics from FFCL UNESP - Rio Claro, São Paulo, Brazil and M.Sc. in Meteorology from Instituto de Pesquisas Espaciais (INPE/CNPq) in 1978. He has been a graduate research assistant at INPE since 1974. His research interests are in physical meteorology and climatology.
Effect of the Atmosphere on the Classification of LANDSAT Data

Title of Your Paper:

AUTHOR'S SESSION CHAIRMAN BIOGRAPHICAL INFORMATION

Please supply the following information for each author. Additional copies of this form are provided.

Name: Luiz Carlos Baldicero Molion

Associate Researcher (equivalent to associate professor in USA)

Instituto de Pesquisas Espaciais (INPE/CNPq)

C.P., 515, 12200 - Sao Jose dos Campos, SP - Brazil

22-9977; Ext. 220

Luiz Carlos Baldicero Molion received B.Sc. Degree in Physics from the University of Sao Paulo, Brazil in 1969. He received Ph.D. degree from the department of meteorology, University of Wisconsin in 1975. Since 1970, he has been with the Instituto de Pesquisas Espaciais (INPE/CNPq). He has been teaching graduate courses, guiding graduate students and doing research in the general areas of micrometeorology, climatology and physical meteorology.