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DECISION RULES FOR UNBIASED INVENTORY ESTIMATES
P, Argentiero
D. Koch
ABSTRACT
This paper presents an efficient and sccurate procedure for estimating inven-

tories from remote sensing scenes, In place of the conventional and expensive
full dimensional Bayes decision rule, a one—dimensional feature extraction and
classification technique is employed. It is shown that this efficient decision rule
can be used to develop unbiased inventory estimates and that for large sample
sizes typical of satellite derived remote sensing scenes, resulting accuracijes are
comparable or superior 0 more expensive alternative procedures. Mathematical
details of the procedure are provided in the body of the report and in the

Appendix.

Results of a numerical simulation of the technique using statistics obtained
from an observed LANDSAT scene are included, The simulation demonstrates

the effectiveness of the technique in computing accurate inventory estimates,
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DECISION RULES FOR UNBIASED INVENTORY ESTIMATES

I,  INTRODUCTION

A sateliite based remote sensing scene is usuitlly composed of a large number of multidimen-
sional samples each of which censists of radiation intensities obtained from a specific ground area.
For the purposes of interpretation and information extraction, it is frequently useful to assume
that the portion of the Earth’s surface under observation in a scene includes a small number of
identifiable classes of ground cover, To interpret the scene a decision rule is required which
allocates the samples among the classes. For many applications, it is iniportant to know how
cach class of ground cover is distributed throughout a scene, When this type of information is
conveyed by means of a color coded display it is called a thematic map., When thematic mapping
is needed it is cssential for a decision rule to correctly classify as many samples as possible. It
is known that under a reasonable set of assumptions a Bayes or maximum likelihood classifier
minimizes the global error rate, Hence, this continucs to be the most commonly used classifica~

tion procedure for applications which require thematic mapping.

Some applications call for only an estimate of the proportion of a scene accounted for by
cach class of ground cover, This is referred to as inventory estimation. The information needed
for inventory estimation is different in character from what is needed for thematic mapping. For
instance, when only the proportions of a scene allucated to each class are estimated, a certain
amount of cancellation of errors of commission and omission is possible. In the case of thematic
mapping no such cancellation can occur, Hence, it should not surprise that the minimal error
rate criterion might not be the most appropriate basis for choosing a decision rule for inventory

estimation.



This paper presents a procedure for inventory estimation which is both efficient and accurate,

In place of the conventional and expensive Bayes decision rule, a one dimensional feature extractic
andclassification technique is employed, It is shown that this computationally inexpensive declsio
rule can be used to develop unbiased inventory estimates and that for the large sample sizes typical
of satellite derived remote sensing scenes, resulting accuracies are comparable to those of any alter-
native procedure, Section 2 and the Appendix provide the mathematical details of this approach to
inventory estimation, Section 3 shows the results of a numerical simulation of the technique using

class statistics obtained from an observed LANDSAT scenc. Scetion 4 provides a summary of the

results,
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2. INVENTORY ESTIMATION

Inventory estimates can be obtained from a remote sensing scene by applying a decision rule to
cach sample and then determining by a simple counting procedure the proportions of the total
sample set allocated to each class, The quality of the resulting estimates will depend on the choice
of a decision rule. In order to choose intelligently it is useful to analyze the simple relationship
which exists between the statistical propertics of a decision rule and the expected values of errors in
inventory estimates.

Assume that a total of N samples are to be allocated among K classes, Assume further that a

decision rule has been chosen and associate with this decision rule & confusion matrix C defined as

C(i, j) = conditional probability that a sample from
class j is assigned to class i.

In addjtion, define the fotlowing symbols:

N; = number of samples from class i included in
the total sample set.

~

N‘ -+ number of sampies estimated to be in class?
by applying the decision rule and counting
the number of samples allocated to class i,

T i actual number of samples from class j that
arc assigned by the decision rule to class i

Our first relationship is

N[ =j=l ni,j (1)

The symbol i represents a4 binomial random variable with mean and variance given by
t)

E( ;) = NjC(,J) (2a)



E(LE(n, ) ~n51%) = N;C (D[ ~C(1L)] (2b)

Hence
A § .
ENp - 2 N;CG) (3)
Define
Ni
p
N
. N
pp >
Equation 3 yields
E@) = 5 poad (4

At this point it is useful to introduce matrix notation, Define K dimensional column vectors P and

Pas
~
P 5
p | P2 , P = P.z
R
Pk Px

The symbol Prepresents a vector of correct proportions of the scene accounted for by each of the
K classes, The symbol ﬁ represents the proportions estimated by applying the decision rule and
counting the number of samples allocated to each of the K classes, The information included in

equation 4 can be expressed in matrix form as

CcP = B (5)



Equation § implies that inventory estimates obtained from the application of a gi

rule are unbiased il and only if the associated confusion matrix is the identity matrix,

Assume that the confusion matrix C is invertible and define a vector f’_ of modifie

estimates as

It follows that f’_ is an unbiased estimator of P, Let D represent the covariance matrix

E([P_—P]{B.—P)T)=Clp(CclyT

From the definition of P and equations | and 2b, one can show that the ith diagor
of Djs
Iy
DG = —8 N C G, (1 = C))
N2 121

Since

C(L, (1 —C(i,)) <%
it follows that an upper bound on a diagonal element of D is

. 1
D) < '4—15

We have shown thal a sulficient condition for the derivation of unbiased iﬂventory estin
use of a decision rule whose confusion matrix is computable and invertible, The varianc
ing unbiased inventory estimates are bounded by terms which are proportional to 4N wi
total sample size. Hence for large sample sizes typical of satellite derived remote sensing

inventory estimates given by the right side of equation 6 should be very accurate,



Based on the results of this section, we can specily the following criteria for choosing a deci-
sfon rule for inventory estimation

A) computational efficiency

B} the computability of the associated confusion matrix

C) the invertibility of the assoclated confusion matrix.
With regard to criterion B it is worth mentioning that there is no available practical algorithm for

computing the confusion matrix of a multidimensional Bayes classificr, For this reason as well as
tor reasons of computational cfficiency, the conventional Bayes or maximum likelihood decision rule

is not an optimal choice lor use in inventory estimation,

In order to satisfy criterion A, our search for an appropriate decision rule was limited to those
which employ dimensionality reduction, A simple example of dimensionality reduction is the setec~
tion of certain subcomponents of the sample vectors for use in classification. This is referred to as
feature selection with the components as features. On a more sophisticated level, one can introduce
a priori information or specific problem knowledge to determine relationships among sample vector
components. These relationships implicitly define a dimensionality reducing transformation, This
procedure is called feature extraction, But since useful problem knowledge is not always available,
the feature extraction approach preferred for cur application depends entirely on training sample
statistics. With this approach one attempts to {Ind the dimensionality reducing transformation con-
ditioned on training sample statistics which optimizes a performance measure, The advantages of
this type of feature extraction when applied to remote sensing data are its ability to be implemented

in an autonomous or non-interactive fashion, and i{s interdisciplinary character.

In the case of 3 one dimensional Bayes decision rule it is possible to compute the associated

confusion matrix, Details of the computation are provided in the Appendix. FHence, in order to



satisfy criterian B attention can be restricted to lincar one dimensional feature extraction and Bayes
clnssification procedures, This approach to inventory estimation can be outlined us follows:
A) lincarly map all samples onto one dimension,
B) obtain one dimensiongd o priori class statistics from training sample statistics by applying
the usual laws for the behavior of first and second order moments under lincar truns-

formations,

) employ a normality assumption and allocate the one dimensional samples among classes
using the conventional Bayes or maximum likelihood decision rule,

D) construct a vector of inventory estimates by determining the proportion of the total
sample set allocated to each class

E)  use thealporithm desceribed i the Appendix to compute the confusion matrix of the one
dimensional Bayes decision rule.

) premultiply the vector of inventory estimates by the inverse of the confusion matrix to

abtain unbiagsed estimates,

[f the procedure outlined in steps A through F . ere to begin with a one dimensional linear
trausformation chosen more or less at random the probable result would be failure at step F because
the confusion matrix in question is apt to be singular, Hence, to satis{y criterion C a computationaily
efficient procedure 1s required lor choosing the coefTicients of & one dimensjonal linear transforma-
tion such that the resulting confusion matrix used in step F is invertible. Since the elements of a
confusion matrix sre positive and the columns must sum to one, a Jogical candidate is the feature
extraction whose associated confusion matrix llas maximum trace. Notice that this choice also has
the property that among all possible linear one dimensional feature extractions, it provides the mini-
mal error rate when a priori class probabilities are equal. In this sense. it is the optimal one dimen-

sional feature extraction. The coeflicjents of the optimal one dimensional feature extraction can be



obtained by means of a conventional multidimensional optimization procedure which is outlined in
the Appendix, This feature exicaction is recommender’ for use in the inventory estimation process

described in steps A through F and is used in the numerical example of Scction 3.

wr



3. A NUMERICAL SIMULATION

The feature extraction and classification scheme described in Seetion 2 and the Appendix
wis wcorporated into a computer program on the HP9825A programmable desk calculator, The
program is in the 1P basic language and occupics about 4000 bytes of the available memory, The
input to the program consists of four dimensional mean vector and covariance matrices, and con~
vergence cuntrol parameters for the Newton-Raphson optimization procedure. The cutput of
the program consists of a four dimensional vector V which defines the one dimensional feature
extraction, the means and variances of the resulting one dimensional classes, and the confusion

matrix,

For this numerical simulation class statistics were obtained from a LANDSAT 2 scene obtained
over Finney County, Kansas during May of 1975 [1]. The five classes consisted of two types of
winter wheat and thre. . wnfuser crops. The class statistics were obtained from well known sites in
Finney County, The four channels are those of the Multispectral Scanner on board the LANDSAT 2.
The sizes of the training sample sets range from about one hundred to about three hundred, The
class statistics are shown in Table 1. Awmong the several factors which limit the accuracy of a Bayes

decision rule in classifying remote sensing data are

A) Significant deviations of class populations from normality
B) Errors introduced by small sample sizes
C) Training samples are not randomly selected from the populations in question and, thus, are

not representative,

Because this simulation ignores such factors, mig-lassification probabilities will be somewhat opti-

mistic compared to what might be obtzined in an actual application. To measure the quality of our
feature extraction and classification procedure it was decided to compare its performance to that of
a Bayes decision rule operuting on all four channeis of the Multispectral Scanner data. This decision

rule is optimal in the sense thad it minimizes global misclassification probability, The performance



Table |

Statistics of LANDSAT-2 MSS Signatures Acquired May 1975 Over

Finney County, Kansas

(1) 184 Pixels of Non-Wheat

Covariance Matrix

Channel Mean Std. Dev. | 2 3 4

| 27.7 12.7 Sym

2 245 25.0 63.4 METR

3 75.1 -51.4 -140.7 415.5

4 374 -30.8 -84.2 242.1 143.4
[{(2) 3335 Pixels of Non-Wheat

| 34.7 3.6 12.7

2 40 .4 5.5 17.2 30.0

3 47.0 5.2 8.8 99 27.3

4 19.7 2.5 0.6 -1.2 10.4 6.0
1(3) 324 Pixels of Non-Wheat

| 333 1.6 2.6

p ; 2.7 2.6 7.2

3 44.1 6.4 4.3 2.5 41.2

4 18.7 33 1.9 0.3 19.9 11.1
(4) 106 Pixels of Winte: Wheat

1 28.5 2.4 5.8

2 27.5 4.0 7.4 16.2

3 51.2 5.2 -6.0 -14.4 26.7

4 24.0 3.0 4.3 -8.9 14.1 9.0
(5) 127 Pixels of Winter Wheat

| 21.5 2.7 7.3

2 16.7 4.2 10.3 18.0

b 54.9 5.1 4.1 4.9 26.0

4 29.1 2.8 -1.0 -2.8 11.4 8.1
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of the four dimensional Bayes classifier was determined by means of a monte carlo program written
for the HPOR2SA programmable desk calculator, The assumptions of the monte carlo simulation
were

A. The five class populations are normally distributed

B. The class statistics are those of Table |

C. A priori class probabilities are equal

D. Monte carlo sample sizes are sufficiently large that sampling error is insignificant.

One thousand samples were obtained from each class and classified into one of the five classes
according to a four dimeasional Bayes decision rule as described in the Appendix. The element in th
ith row and the ith column of the confusion matrix was estimated as the proportion of samples cho-
sen from the jth class which were assigned to the ith class. The estimated confusion matrix is shown
in Table 2. The table aso shows the expected values of inventory estimates as obtained from the
four dimensional Bayes decision rule. In this case expected values of inventory estimates can be ob-
tained by averaging the rows of the confusion matrix, From Tabie 2 it is also seen that the com-

bined misclassification probability for classes 4 and § which are associated with winter wheat is 0.1.

Table 2
Contusien Matrix for Four Dimensional Bayes Classifier
Class 1 2 3 4 5
1 0.81 0.01 0.01 0,01 0.02
2 0.02 0.58 0.12 0.03 0
3 0.08 0.34 0.84 0.03 V]
4 0.07 0.07 0.03 0.88 0.06
5 0,02 0 0 0.05 0.92
Expected
l\"'“"” o 0.17 0.15 0.26 0.22 0.20
nventory
Estimate




The statistics shov. = in Table 1 were used as input to the one dimensional feature extraction
and classification program. For this simulation a priori class probabilities were assumed to be
equal. Hence the correct value for cach class inventory estimate is 0.2, The resulting confusion
matrix along with expected values of inventory estimates are shown in Table 3. The confusion
matrix was compuied analytically according to the methods described in the Appendix. The
combined misclassification probability for classes 4 and § is 0.14, However, expected values of
inventory estimates for winter wheat classes 4 and 5 are seen to be considerably worse than cor-
responding estimates for the optimal four dimensional Bayes classifier. The primary reason is
errors of commission introduced by misclassification of samples (vom class | into classes 4 and §.
But section 2 describes how the confusion matrix can be used to correct inventory estimates to
yield unbiased estimates, A« in Section 2, let P be a five dimensional vector representing inven-
tory estimates for the five classes, Repeating Equation 6, an unbiased inventory estimate '15_ for

these classes can be obtained as
P=C!'p (11)

where C is the confusion matrix given in Table 3.

Table 3
Confusion Matrix for One Dimensional Feature Extraction and Bayes Classifier
Class 1 ? 3 4 5
| 0.22 0 0 0 0.04
2 0.07 0.39 0.20 0.03 0
3 0.04 0.54 0.78 0.04 0
4 0.34 0.07 0.02 0.84 0.08
5 0.34 0 0 0.09 0.88
Expected
Valne of 0.05 0.14 0.28 0.27 0.26
Inventory o ' . ' ’
Estimate




An explicit form for clis

—~

4.85 ~0.01 0
-1.02 400 -1.02

cl = 0.54 -2.75 1.99
-1.73 =027 0.04
-1.70 -0.03 0
From Table 3 we hav:

0,05
: 0.14
P = 0.28
0,27
0.26

Also
EP) = CUE®P)
Equations 11,12, 13 and 14 yield

0.2
0.2
E(P) = 0.2
0.2
0.2

0.02
~0.10
0.01
1.20
-1.13

-0.22
0.06
-0.03
-0.03
1.23

(12)

(13)

(14)

(15)

Equation 15 is a logical consequence of the unbiased property of ﬁ_ as an estimator, But the results

of this simulation serve as a useful numerical check on the vaiidity of our development,

13



4, SUMMARY

The results of this paper suggest that o decision rule used for inventory estimation should
satisfy the following criteria

A) computational efficiency

B) the computability of the associated confusion matrix

C) the invertibility of the associated confusion matrix,
When criteria B and C are satisfied, it is shown that unbjased inventory estimates can be construcied,
The variances of these estimates are bounded by terms which are proportional to 1/N where N is the
total sample size, Hence, for the large sample sizes typical of satellite based remote sensing scenes

very accurate inventory estimates should be achievable,

The computational procedure recommended in this paper and which satisfies the above criteria
is outlined in steps A through F as given in Section 2, with the one dimensional {eature extraction
chosen so as to maximize the trace of the associated confusion matrix, The mathematical details of
the confusion matrix computation and the required optimization process are included in the Appen~

dix.

The computational algsrithms needed for this approach to inventory estimation were program-
med for a small desk top computing machine and a simulated inventory estimation was performed
using class statistics obtaincd from an observed LANDSAT scene, The simulation demonstrated the

unbiased nature of resulting inventory estimates,

14
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APPENDIX

OPTIMAL ONE DIMENSIONAL FEATURE EXTRACTION

Asgsume K normal random variables n (9, ), 1= 1,2, ... K each of dimension N, Samples
are chosen from these populations according to a probability law defined by a priori class proba-
bilitles P, i=1,2,.., K, The problem is to classify each sample by assigning it to the class from
which it was chosen. In this case the Bayes classifier can be obtained by defining K functions, each

with an Ndimensional argument
S (X) = X-g)' &t (Xt iZ-20P,i=1,2,...K (1)
Assign g sample X to the class indexed by i if and only if
S (X) < SJ- (X) for all j not equal to i, (2)

The decision rule defined by equation 2 can be shown to minimize risk under a zero-one loss matrix
[27. It also maximizes likelihood. Hence, by the Neyman-Pearson Lemma [3], it minimizes the

global probability of misclassification.

If the number of samples to be classified is large and if the integers N and K are relatively large,
the above defined decision rule can be expensive to implement. An alternative is to map the N di-
mensional samples to a one dimensional space and perform the Bayes classification in one dimen-
sion, Let V be the N dimensional vector which defines the transformation. Each N dimensional

sample X to be classified is mapped onto a scalar x by
X = VIx 3)

The classification probler; can be redefined in the following fashion. Assume K one dimensional

normal random variables p (i, @y),i= 1, 2, ... K. The required means and variances are defined as

17



o= Vig,i=1,2,...K (4a)

o = VT 5, V,i=1,2,...K (4b)

The scalar X defined by equation 3 can be considered as having been chosen from one of the above
defined populations according to a probability law deflined by a prior! class probabilitics =1,

2,... K, Define the K functions

f (X) =

TRY
X f‘) + ol -2mP,i=1,2,...K (5)

Yl

The scalar X, and hence the vector X, is assigned to the class indexed by i if and only if
i (X< fi (X) for all j not equal to i, (6)

For every vector V, equations 3 through 6 provide a well defined decision rule with which one
can associate a global misclassification probability P, Our object is to obtain a V which minimizes

P. Represent the relationship between V and P as
P = F(V) (N

We require an explicit and executable algorithm for the function symbotlized in equation 7. Given

that, conventional multidimensional optimization techniques can be used to contplete our task,
For any vector V, associate a so-called confusion matrix Dy, defined as follows:

Dy [4,j] — conditional probability that a sample chosen from 8)
class i is assigned to class j under the decision rule
defined by equations 3 through 6

It follows that
P = 1“'51 Pi Dv[i,i] (9)
i=

18
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For equation 9 to be of use, a computable expression for the elements of Dy must be provided.
For simplicity of exposition we assume that if i # §, oy # ¢;. It is not difficult to modify the resulls

to account for duplications,
For each j, define the set T} as follows

1 = {all x such that fj (x) < fix,i=1,2,... K} (10)

Then

Dyl[i,ji = Jp 1 (1, 0) AX (11)
J
It remains to provide an explicit description of the sets Ty, j=1, 2,... K.

Foreach i < K and j < K define the sets §; ; as

By = {all x such that f‘j <f (x)} (12)
Then

Ty= Ay (13)

From equation 5 and 6 it follows that the boundary points of  are the solution of the quadratic

equation
Ax? + Bx + C=0 (i4)
with
1 1
= o e e 15
A sz 012 ( a)
24 21
B=—es — s 15b
o o2 (15b)
L G (Uj"‘ (Pj)
= - — ~) =28 == 15
¢ 0'12 Ui2 8 Uiz) n Pi ( C)

19



Define the boundary points of §; j s

T = min -B+yB7-4AC -B~/BZ-4AC (160
P 24 T :
-5+ VITT4AC  -B-VBT<4AC
Hence,
[Ty pgs Tagl il0y <o
i = { (17)
[—00, T' JJ] U [TZJJI lx}] Ifgj s f

It will be convenient to represent the set of boundary points of an arbitrary set S by the symbolism
b (s). From cquation 17

b8y = Ty UTa,y (18)

From rquations 13 and 17 it follows that the set Ty can be represented as the disjoint union of a

finite set of intervals and that
b('l‘j) c l,Jb(Bj,j) (19}

When the elements of b( Ty} are linearly ordered according to size, left sided and right sided bound-~
ary points must alternate. Hence, to reconstruct the set Tj it is sufficient to know which elements
of LlJb (ﬁu) are elements of b (T)) and the slassification of the smallest clement in b (Ty) as either a
left sided or a right sided boundary point. For cach element z € Lin (B; 4), 2 is placed in b(Ty)if and
only if foreach i < K

T <2< Ty, ifg <o

(20)
s Tl,i,j orz> T2,I,J! if‘oj>ai

Order the elements of b (T}) by increasing size to create the indexed set {sj_m] . There exists an

< zand ani< Ksuch that

20



5,0 % Tei @2h
Classify s;,; as either a left sided or right sided boundary point according to the following rule

2= 1and oy <o

2=2and g, >°’|‘ -+ left sided

(22)
R=1and ¢; <g

= right sided
2=2and a|>aj] right sid

In order to conveniently compute the integral on the right side of equation 11, transform the indexed

sct {sj.,,,] into the indexed set {rj'm} by the mapping
G = m =)o (23)

Let Q be the index of the largest element in { rj'm} and let d(x) represent che discribution function
of the standard norm: i random variable, Then Dy [ij] can be computed as follows when §1 isa

right sided boundarv poiut
. . Q-2
Dy (il = 1 —d(yy,q) +d(ry, )+ 222 d(rj,041) = d(ny,2) (24)
and when s ; is a left sided boundary point
. Q-1
Dylij) = 2 d(ge1) - d(yg) (25)

Equations 8 through 25 give explicit expression to the functional relationship syimbolized by
equation 7. The vector V which minimizes P can be estimated by a conventional multidimensional
Newton-Rapiison it *ration procedure [4], This procedure requires all first and second order deriv-
atives of P with respect to the elements of V. These derivatives can be obtained analytically by
implicit differentiation and the application of the chain rule on equations 9, 15, 16, 23, 24, and 28.
A sufficiently accurate first guess is also required. An adequate first guess can be obtained as follows.

The Fisher criterion [5] for class separability betwreen classes indexed by i and j is given by

21



fu = (‘ul *Fj)zl(ﬂlz + sz) (-?-U)
The feature extraction procedure which maximizes £ ; is defined by the vector V; ; which is
Vig =+ E)rtm -0 (27

The first guess Vg is obtained as the average V; | over all pairs (i, j), i < K, j < i, Hence

2K-21 K K ,
Kl 2 5 W) (=8

Vo =

For some applications, the correct classification of samples of certain types may be more im-
partant than correct classification of samples of other types, Hence, it is worthwhile to introduce

a simple generatization to the feature extraction procedure defined by equations 3 through 28, Let

G be a K dimensional vector consisting of zeroes and ones. Instead of choosing a V to minimize the

global probability of misclassification as defined by equation 9, choose a V which minimizes
K‘! al - * .
Pg = I GUP (L DylijD (29)

The symbol Pg; represents the probability of misclassification of samples chosen from ] classes
indexed by an integer i such that G(i) = 1, The generalization is obtained by substituting equation

29 for equation 9. The rest of the development pgivert by equations [0 through 28 is left undisturbed,
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