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DECISION RULES FOR UNBIASED INVENTORY ESTIMATES

P. Argentiero
D. Koch

ABSTRACT

This paper presents an efficient and accurate procedure for estimating inven-

tories from remote sensing scenes. In place of the conventional and expensive

full dimensional Bayes decision rule, a one-dimensional feature extraction and

classification technique is employed. It is shown that this efficient decision rule

can be used to develop unbiased inventory estimates and that for large sample

sizes typical of satellite derived remote sensing scenes, resulting accuracies are

comparable or superior to more expensive alternative procedures. Mathematical

details of the procedure are provided in the body of the report and in the

Appendix.

Results of a numerical simulation of the technique using statistics obtained

from an observed LANDSAT scene are included. The simulation demonstrates

the effectiveness of the technique in computing accurate inventory estimates.
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DECISION RULES FOR UNBIASED INVENTORY ESTIMATES

1. INTRODUCTION

A satellite based remote sensing scene is usually composed of a large number of multidimen-

sional samples each of which consists of radiation intensities obtained from a specific ground area.

For the purposes of interpretation and information extraction, it is frequently useful to assume

that the portion of the E'arth's surface under observation in a scene Includes a small number of

identifiable classes of ground cover. To interpret the scene a decision rule is required which

allocates the samples among the classes. For many applications, it is important to know how

each class of ground cover is distributed throughout a scene. When this type of information is

conveyed by means of a color coded display it is called a thematic map. When thematic mapping

is needed it is essential for a decision rule to correctly classify as many samples as possible. It

is known that under a reasonable set of assumptions a Ilayes or maximum likelihood classifier 	 ^r

minimizes the global error rate. Hence, this continues to be the most commonly used classifica-

tion procedure for applications which require thematic mapping.

Some applications call for only an estimate of the proportion of a scene accounted for by

each class of ground cover. This is referred to as inventory estimation. The information needed

for inventory estimation is different in character from what is needed for thematic mapping. For

instance, when only the proportions of a scene allocated to each class are estimated, a certain

amount of cancellation of errors of commission and omission is possible. In the case of thematic

mapping no such cancellation call 	 Hence, it should not surprise that the minimal error

rate criterion might not be tine most appropriate basis for choosing a decision rule for inventory

estimation.
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This paper presents a procedure for Inventory estimation which is both efficient and accurate.

In place of the conventional and expensive Bayes decision rule, a one dimensional feature extractic

and classification technique is employed. It is shown that this computationally inexpensive declsio

rule can be used to develop unbiased inventory estimates and that for the large sample sizes typical

of satellite derived remote sensing scenes, resulting accuracies are comparable to those of any alter-

native procedure. Section 2 and the Appendix provide the mathematical details of this approach to

inventory estimation. Section 3 shows the results of a numerical simulation of the technique using

class statistics obtained from an observed LANDSAT scene. Section 4 provides a summary of the

results,
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I.

2, INVENTORY ESTIMATION

Inventory estimates can be obtained from a remote sensing scene by applying a decision rule to

each sample and then determining by a simple counting procedure the proportions of the total

sample set allocated to each class. The quality of the resulting estimates will depend on the choice

of a decision rule. In order to choose intelligently it is useful to analyze the simple relationship

which exists between the statistical properties of a decision rule and the expected values of errors in

inventory estimates.

Assume that a total of N samples are to be allocated among K classes. Assume further that a

decision rule has been chosen and associate with this decision rule a confusion matrix C defined as

C(i, j) - conditional probability that a sample from
class j is assigned to class i.

In addition, define the following symbols:

Ni -> number of samples from class i included in
the total sample set.

Ni - number of samples estimated to be in class
by applying the decision ride and counting
the number of samples allocated to class h.

nid - actual number of samples from class j that
are assigned by the decision rule to class i

Our first relationship is

N1	
i ?t ni,j	

(1)

The symbol ni 
j represents a binomial random variable with mean and variance given by

I-(ni,j) = Ni C (i, j)	 (2a)

3
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E ([ E (ni , ]) — ni J ] I) = N1 C (i,J) [ 1 — C (l,J) ] 	 (zb)

Hence

E(N) • if N. C (i,J)	 (3)

Define

NI

PI
N

NI

N

Equation 3 yields

E(PI) = 1^ 1) C ( i ,J)	 ((4)

At this point it is useful to introduce matrix notation. Define K dimensional column vectors P and

P as

PI	 Pi

P	 Pz	 p^ . P2

PK	 Pg

The symbol Prepresents a vector of correct proportions of the scene accounted for by each of the

K classes. The symbol P represents the proportions estimated by applying the decision rule and

counting the number of samples allocated to each of the K classes. The information included in

equation 4 can be expressed in matrix form as

C P = E (P)	 (5)

^F.

F1 ^x
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Equation 5 implies that inventory estimates obtained from the application of a gi

rule are unbiased if and only If the associated confusion matrix is the Identity matrix.

Assume that the confusion matrix C is invertible and define a vector P_ of modific

estimates as

P = C' 1 P

It follows that P is an unbiased estimator of P. Let D represent the covariance matrix

E([P -PI O'_-
p1 T)=C-ID(C-1)T

n
From the definition of P and equations I and 2b, one can show that the ith diagor

of D is

D(i,i) _ _ t Ni C O'D (I — CG,i))
N2 1-1

Since

C(ij)(I — C(ij)) <1'1

it follows that an upper bound on a diagonal element of D is

D(i,i) < 4N

We have shown that a sufficient condition for the derivation of unbiased inventory estin

use of a decision rule whose confusion matrix is computable and invertible. The varianc

ing unbiased inventory estimates are bounded by terms which are proportional to 1/4N wl

total sample size. 'Bence for large sample sizes typical of satellite derived remote sensing

inventory estimates given by the right side of equation 6 should be very accurate.

F
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Based on the results of this section, we can specify the following criteria for choosing a decl- 	
a

sion rule for inventory estimation

A) computational efficiency

B) the computability of the associated confusion matrix

Q the invertibility of the associated confusion matrix.

With regard to criterion B it is worth mentioning that there is no available practical algorithm for

computing the confusion matrix of a multidimensional Bayes classifier, For this reason as well as

for reasons of computational efficiency, the conventional Bayes or maximum likelihood decision rule

is not an optimal choice for use in inventory estimation,

In order to satisfy criterion A, our search for an appropriate decision rule was limited to those

which employ dimensionality reduction. A simple example of dimensionality reduction is the selec-

tion of certain subcomponents of the sample vectors for use in classification. This is referred to as

feature selection with the components as features. On a more sophisticated level, one can introduce

a priori information or specific problem knowledge to determine relationships among sample vector

components. These relationships implicitly define a dimensionality reducing transformation. Tlls

procedure is called feature extraction. But since useful problem knowledge is not always available,

the feature extraction approach preferred for our application depends entirely on training sample

statistics. With this approach one attempts to find the dimensionality reducing transformation con-

ditioned on training sample statistics wWch optimizes a performance measure. The advantages of

this type of feature extraction when applied to remote sensing data are its ability to be implemented

in an autonomous or non-interactive fashion, and its interdisciplinary character.

In the case of a one dimensional Bayes decision rule it is possible to compute the associated

confusion matrix. Details of the computation are provided in the Appendix. Hence, in order to

6
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satisfy criterion D attention can be restricted to linear one dimensional feature extraction and Bayes

classification procedures. This approach to inventory estimation can be outlined as follows:

A) linearly map all samples onto one dimension.

II) obtain one dimensional it priori class statistics from training sample statistics by applying

the usual laws for the behavior of first and second order moments under linear trans-

formations.

0 employ it 	 assumption and allocate the one dimensional samples among classes

using the conventional Mayes or maximum likelihood decision rule.

D) construct a vector of inventory estimates by determining the proportion of the total

sample set allocated to each class

F.) use the algorithm described in the Appendix to compute the confusion matrix of file one

dimensional Bayes decision rule.

F) p%multiply the vector of inventory estimates by the inverse of the confusion matrix to

obtain unbiased estimates.

I

t ^}
• y4

If the procedure outlined fit 	 A through F ..ere to begin with a one dimensional linear

transformation chosen more or less at random the probable result would be failure at step F because

the confusion matrix in question is apt to be singular. Bence, to satisfy criterion C a computationally

efficient procedure is required for choosing the coefficients of a one dimensional linear transforma-

tion such that the resulting confusion matrix used in step F is invertible. Since the elements of a

confusion matrix are positive and the columns most sum to one, a logical candidate is the feature

extraction whose associated confusion matrix has maximum trace. Notice that this choice also has

the property that among all possible linear one dimensional feature extractions, it provides the mini-

mal error rate when a priori class probabilities are equal. In this sense, it is the optimal one dimen-

sional feature extraction. The coefficients o',' the optimal one dimensional feature extraction call

7
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obtained by mans of a conventional multidimensional optimization procedure which is outlined in

the Appendix. This feature exir.iction Is recommends', for use in the inventory estimation process

described in steps A through f and is used in the numerical example of Section 3.

as
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3. A NUMERICAL SIMULATION

The feature extraction and classification scheme described in Section 2 and the Appendix

was incorporated Into a computer program on the 1-11 1 9825A programmable desk calculator. The

pr.igrani is in the IIP basic language ante occupies about 4000 bytes of the available memory. The

Input to the program consists of four dimensional noun vector and covariance matrices, and con-

vargence cuntrol parameters for the Newton—Raphson optimization procedure. The output of

the program consists of a four dimensional vector V which defines the one dimensional feature

extraction, the means and variances of the resulting one dimensional classes, and the confusion

matrix.

For this numerical simulation class statistics were obtained from a LANDSAT 2 scene obtained

over Finney C'oun!y, Kansas during May of 1975 [ 1] • The five classes consisted of two types of

winter wheat and thr-, . infuser crops. The class statistics were obtained from well known sites in

Finney County. T ',a four channels are those of the Muitispectral Scanner on board the LANDSAT 2.

Tl% Azes of the training sample sets range from about one hundred to about three hundred. The

class statistics are shown in Table I . Among the several factors which limit the accuracy of a Bayes

decision rule in classifying remote sensing data are

A) Significant deviations of class populations from normality

13) Errors introduced by sniall sample sizes

C) Training samples are not randonly selected from the populations in question and, thus, are

not representative.

l3ecatise this simulation ignores such factors, miscassification probabilities will be somewhat opti-

mistic compared to what might be obtained in an actual application. To measure the quality of oar

feature extraction and classification procedure it was decided to compare its performance to that of

it Bayes decision rule operating on all four channels of the Muitispectral Scanner data. This decision

rule is optimal in the sense that it minimizes global misclassification probability. The performance

^i
I
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Table 1
Statistics of LANUSAT-2 MSS Signatures Acquired May 1975 Over

Finney Count• . Kansas

(1) 184 Pixels of Non-Wheat

Covariance Matrix

Channel	 Mean Std. Dev, 1 2 3 4

24.5 8.0 23.0 63.4 SyMMTRlt,
3	 75.1 20.4 -51.4 -140.7 415.5
4	 37.4 12.0 -30.8 -84.2 242.1 143.4

(2) 333 Pixels of lion-Wheat

1	 34.7 3.6 12.7
2	 40..► 5.5 17.2 30.0
3	 47.0 5.2 8.8 9.9 27.3
4	 19.7 2.5 U.6 -1.2 10.4 6.0

(3) 324 Pixels of Non-Wheat

1	 33.3 1.6 2.6
38.5 2.7 2.6 7.2

3	 44.1 6.4 4.3 2.5 41.2
4	 18.7 3.3 1.9 0.3 19.9 11.1

(4) 1 U6 Pixels of Winte ! Wheat

1	 28.5 2.4 5.8
2	 27.5 4.0 7.4 16.2
3	 51.2 5.2 -6.0 -14.4 26.7
4	 24.0 3.0 11.3 -8.9 14.1 9.0

5) 127 Pixels of Winter Wheat

1	 21.5 2.'/ 7.3
2	 16.7 4.2 10.3 18.0

54.9 5.1 4.1 4.9 26.0
4	 29.1 2.8 -1.0 -2.8 11.4 8.1

10
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of file four dimen imial Hayes classifier was determined by means of a monte Carlo program written

for the I II" 1925A programmable desk calculator. The assumptions of the monte carlo simulation

were

A. The five class populations are normally , distllhllted

i'	 H. The class statistics are those of Table I
f'

C. A prit+ri class probabilities are equal

1). Monte Carlo sample sites are sufficiently lark that sampling error is insignificant.

One thousand samples were obtained from each class and classified into one of the five classes

accordant: to a four dimensional flayes decision rule as described in the Appendix. The element in th

ith row and the ith column of the confusion matrix was estimated as the proportion of samples cho-

sell from the ith %lass which were assigned to the ith class. The estimated confusion matrix is shown

1
in Kahle '. I he table also show, the expected values of inventory, estimates as obtained from the

four dimensional ilayes decision rule. In this case cspected values of inventory estimates can he .,b-

tained by averaging the rows of the confusion matrix.	 From Tabic 2	 it is also seen That the com-

billed umisLiassiflcation probability, for classes 4 and 5 which are associated with winter wheal is 0.1.

Table
C'onfusle n Mat-ix for Four Dimensional Mayes Classifier

'lass 1 2 3 4 5

1 0.81 0.01 0.01 0.01 0.02
2 0.02 0.58 0.12 0.03 0

j	 3 0.08 0.34 0.84 0.03 0
4 0.07 0.07 0.03 0.88 0.06
5 0.02 0 0 0.05 0.92

i^.xpected

VaIlle
^'alucs of

0.17 0.15 0._26 0._12 0.20
ury,

Ustllllate



The statistics sho--. q in Table I were used as input to the one dimensional feature extraction

and classification program. For this simulation a priori class probabilities were assumed to be

equal. Hence ti ►e correct value for each class inventory estimate is 0.2. 1 he resulting confusion

matrix along with expected values of inventury estimates are shown in Table 3. The confusion

► natrix was computed analytically according to the methods described in the Appendix. The

combined misclassification probability for classes 4 and 5 is 0.14. However, expected val-.:es of

inventory estimates for winter wheat classes 4 and 5 are seen to he considerably worse thin cor-

responding estimates for the uptitnal four dimensional Hayes classifier. 'rhe primary reason is

errors of commission introduced by misclassification of samples  i.otn class I into classes 4 and 5.

But section 2 describes how the confusion matrix can he used to correct inventory estimates to

yield unbiased tstimates. A ,^ in Section 2, let P be a five dimensional vector representing inven-

tory estimates for Jte five classes. Repeating Equation h, an unbiased inventory estimate P for

these classes can be obtained as

P = c- I ^>	 (11)

where C is the confusion mat: ix given in Table 3.

'rabic 3
Confusion Matrix for One Dimensional feature Extraction and Hayes Classifier

Class 1 ' 3 4 5

1 0.22 0 0 0 0.04
2 0.07 0.39 0.20 0.03 0
3 0.04 0.54 0.78 0.04 0
4 0.34 0.07 0.02 0.84 0.08
5 0.34 0 0 0.09 0.88

Expected
Value of

0.05 0.14 0.28 0.27 0.26
Inventory

L
tatimate — — ----

12



An explicit for ►►t for ( -1 is

4.85 -0.0I 0 0.02 -0.22
-1.02 4.00 -1.02 •0.10 0.06

(71	 = 0.54 -2.75 1.99 0.01 -0.03 (12)
-1.73 -0.27 0.04 1.20 -0.03

• 1.70 -0.03 U -1.13 1.23

From Table 3 we hav:

0.05
0.14

C(F) =	 0,28	 (13)
0.27
U.26

Also

FA P-)1 E(P)	 (14)

I:^luations 11, 12, 13 and 14 yield

0.2

0.2

E(P) =	 0.2	 (15)
0.2

0.2

FAluation 15 is a logical consequence of the unbiased property of P as an estimator. But the results

of this simulation serve as a useful numerical check on the vaiici ► ty of our development.

T
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4. SUMMARY

The results of this paper suggest that a decision rule used for Inventory estimation should

satisfy the following criteria

A) computational efficiency

B) the computability of the associated confusion matrix

C) the Invertibility of the associated confusion matrix.

When criteria B and C are satisfied, it is shown that unbiased inventory estimates can be constructed.

The variances of these estimates are bounded by terms which are proportional to 1/N where N is the

total sample size. Hence, for the large sample sizes typical of satellite based remote sensing scenes

very accurate inventory estimates should be achievable.

The computational procedure recommended in this paper and which satisfies the above criteria

is outlined in steps A through P as given in Section 2, with the one dimensional feature extraction

chosen so as to maximize the trace of the associated confusion matrix. The mathematical details of

the confusion matrix computation and the required optimization process are included in the Appen-

dix.

The computational algo.ithms needed for this approach to inventory estimation were program—

mad for a small desk top computing machine and a simulated inventory estimation was performed

using class statistics obtaine3 from an observed LANDSAT scene. The simulation demonstrated the

unbiased nature of resulting inventory estimates.

14
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APPENDIX

OPTIMAL ONE DIMENSIONAL FEATURE EXTRACTION

Asi>ume K normal random variables n (rl f , E l), i = 1, 2.... K each of dimension N. Samples

are chosen from these populations according to a probability law defined by a priorl class proba-

bilities Pt , I = 1, 2.... K. The problem is to classify each sample by assigning it to the class from

which it was chosen. I11 tills case the Bayes classifier can be obtained by defining K functions, each

with an Ndimensional argument

S i (X) = (X - rll)7 2a- 1 (X - lld + un IL's 1- 22n P f , f = 1, 2.... K	 (1)

Assign a sample X to the class indexed by i if and only if

Si (X) < Si (X) for all j not equal to 1.	 (2)

The decision rule defined by equation 2 call 	 shown to minimize risk udder a zero-one loss matrix

(21. It also maximizes likelihood. hence, by the Neynlan-Pearson Lemma (31, it minimizes the

global probability of misclassification.

If the number of samples to be classified is large and if the integers N and K are relatively large,

tile above defined decision rule call 	 expensive to implement. An alternative is to map the N di-

mensional samples to a one dimensional space and perform the Bayes classification in one dimen-

sion. Let V be the N dimensional vector which defines the transformation. Each N dimensional

sample X to be classified is mapped onto a scalar X by

X = VTX
	

(3)

The classification problem call 	 redefined in the following fashion. Assume K one dimensional

normal random variables rl (p;, o;), i = 1, 2.... K. The required meals and variances are defined as

17
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(4a)

(4b)
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µ i = VT 771, i = 1, 2.... K

U1 2 = VT £ I V, i = 1, 2, ... K

The scalar X defined by equation 3 can be considered as having been chosen from one of the above

defined populations according to a probability law defined by a priori class probabilities P 1 ,1 = 1,

2.... K, Define the K functions

2
fi (X) = (Xalz 

i) + 2n ai2 - Un. Pt , t = 1, 2.... K	 (5)

The scalar X, and hence the vector X, is assigned to the class indexed by 1 if and only if

ft (X) < fi (X) for all j not equal to i. 	 (6)

For every vector V, equations 3 through 6 provide a well defined decision rule with which one

can associate a global misclassification probability P. Our object is to obtain a V which minimizes 	
^u

P. Represent the relationship between V and P as

P = F(V)	 (7)

We require an explicit and executable algorithm for the function symbolized in equation 7. Given

that, conventional multidimensional optimization techniques can be used to complete our task.

For any vector V, associate a so-called confusion matrix D v defined as follows:

Dv [.i, j J - conditional probability that a sample chosen from	 (8)
class i is assigned to class j under the decision rule
defined by equations 3 through 6

It follows that

P = 1 —
i 1 

Pi Dv [i, it	 (9)
=

r:u
18
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	 For equation 9 to be of use a computable expression for the elements of Du must be provided.

For simplicity of exposition we assume that if 10 j, of 0 up it is not difficult to modify the results

to account for duplications.

For each j, define the set Tj as follows

Tj = {all X such that fj (x) < fi (X), j = I, 2.... KI	 (10)

Then

Dv iirjj = fTj rl (p i, ol ) dX	 (11)

It remains to provide an explicit description of the sets Tj , j = 1, 2, ... K.

For each j < K and j < K define the sets /i i j as

P1 ,j = all X such that fj (X) < fi (X) }	 (12)	 y,

Then

Tj = fil flu	 (13)

From equation 5 and 6 it follows that the boundary points of (3 3 j are the solution of the quadratic

equation

Axe + BX + C = 0	 (14)

with

A = I — -i2	 05a)
Q 

B = 2/" — 2"J	 (15b)
ai l	 Uj2

C
 = Q,2 — Q±2 + Qn (a1

2
 —2jn

\P 	
(15c)

j	 i	 \ i 	 i

e'
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Define the boundary points of Rld as

B+-4AC -B B -4AC
T f ,td = Whin	

2A	 2A	 J	
(I Ga)

Tz,tJ = laax B+V'B
-2 -qAC -B- B -4AC	

(IGb)
2A	 2A

Hence,

i 

ITI 'i J, Tz,t,l l if a) < of
Rl,i =	 (17)

f	 T11j l U)Tz,t ,^) Ifof>at

It will be convenient to represent the set of boundary points of an arbitrary set S by the symbolism

b (s), From equation 17

b (91j)	 f t ,1,l U T2,141
	

(18)

From rquations 13 and 17 it follows that the set Ti can be represented as the disjoint union of a

finite set of Intervals and that

b(T) c Vb(Q1A )
	

(19)

When the elements of b ('PI ) are linearly ordered according to size, left sided and right sided bound-

ary points must alternate. Hence, to reconstruct the set 'Ij it is sufficient to know which elements

of Ub (fl j ) are elements of b (9j) and the riassification of the smallest element in b (T I ) as either a

left sided or a right sided boundary point. For each element z E Ub (0 1j ), z is placed in b(TI ) if and

only if for each f < K

Tt.f,j <z<T213 ,ifa1 <91

(20)

z<Tlidorz>Tzfd,ifal>a,

Order the elements of b (TI ) by increasing size to create the indexed set {sl m) . There exists an

2 < z and an i < K such that

1

F

a^
E-

20
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si,I =TR,Id	 (21)

Classify si,l as either a left sided or right sided boundary point according to the following rule

R = I andai <all ,left sided
A=2andai>al

(22)

R = 1 and o f < al 1 right sided
R = 2 and al>ai

In order to conveniently compute the integral on the right side of e q uation I I, transform the Indexed

set {si,m ) into the Indexed set {rion ) by the mapping

rim = (Side -RI)/al	 (23)

Let Q be the index of the largest element in { ri,m I and let d(x) represent dtc distribution function

of the standard horny i random variable. Then Dv [i,[] can be computed as follows when si,t is a

right sided bOUndary ,iolot

Q - 2
Dv [i,j [ = I - d(rj,Q ) +d(rl,t ) + R id (rj,R+I) - d (ri,R)	 (24)

and when si.t is a left sided boundary point

Q-1
Dv [i,j 1 = RE1 d(r1,R+1) - d(ri,R )	 (25)

Equations 8 through 25 give explicit expression to the functional relationship symbolized by

equation 7. 71711e vector V which minimizes P can be estimated by a conventional multidimensional

Newt on-Raphson h +ration procedure [41 . This procedure requires all first and second order deriv-

atives of P with respect to the elements of V. These derivatAes can be obtained analytically by

implicit differentiation and the application of the chain rule on equations 9, 15, 16, 23, 24, and 25.

A sufficiently accurate first guess is also required. An adequate first guess can be obtained as follows.

T11e Fisher criterion [51 for class separability between classes indexed by i and j is given by
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fl,) = (µl -P) ) 2 /(o 1 2.f. of 2 )	 (20)

The feature oxtraction procedure which maximizes fj ) is defined by the vector Vl 
i 

which is

Vld = (^/^ 2a + yx 2,' ) )-t (n j - 7))	 (27)

Tire first guess Vo is obtained as the average Vi.i over all pairs (i, j), i < K, j < i. Hence

	

V = 2 (K-2)I - 1^	
V	 ('_8)

KI	 1°2 1=t	 i,l

For some applications, the correct classification of samples of certain types may be more fm-

portant than correct classification of samples of other types, hence, it is worthwhile to introduce

a simple generalization to the feature extraction procedure defined by equations 3 through 28. Let

G be a K dimensional vector consisting of zeroes and ones. Instead of choosing if to minimize the

global probability of misclassification as defined by equation 9, choose a V which minimizes

K
PG =

i 1 
GM PiDV(i,il)

'

The symbol Pr represents the probability of misclassification of samples chosen from A classes

indexed Ly an integer i such that GO) = I . The generalization is obtained by substituting equation

29 for equation 9. The rest of the development given by equations 10 through 28 is left undisturbed.

(29)
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