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Many problems in geophysics involve different areas of investigation

which are interrelated. One such problem is investigation of phenomena at

tidal frequency in the solid earth and ocean. On the one hand, ocean

generated tidal signals are present in many geophysical measurements, such

as those of satellite elevation, gravity, tilt, and strain. On the

other hand, the ocean tide is affected by the elastic properties of the

solid earth, and so accurate modeling of the ocean tide depends on knowledge

of the solid earth.

In order to make full use of geophysical data, geophysicists and geod-

esists need realistic models of the open ocean tide. But knowledge of the

ocean tide has h_en difficult to obtain because ocean basins are close to

resonance at tidal frequencies. This makes accurate modeling of the ocean

tide difficult. It is the purpose of this paper to present models of the

M2, S2, and K1 tides that were developed to provide a first order correction

to the problem of resonance. To facilitate the use of these models by

geophysicists, maps of the geocentric tide, the induced free space potential,

the induced vertical component of the solid earth tide, and the induced

vertical component of the gravitation field are presented. These fields

were calculated with Gre,:n's functions provided by W. E. Farrell (private

communication).

2.	 THE PROBLEM

Laplace's Tidal Equations (LTE) may be written in negative mercator

coordinates as

I-
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ut - (U tanhT)v = -9(r-r/g)0/a

v t + (2st tanhT)u = -g(r-r/g)T/a

(rt-6t) + ((u D) 0 + (VD) T )/a sech 2T = 0

where (T,Q) are the mercator latitude and longitude, (u,v) are the corres-

ponding velocities, r is the geocentric ocean tide, r is the total tide

generating potential, 6 is the geocentric solid earth tide, D is the local

depth of the ocean, a is the radius of the earth, and n is the earth's

angular rate of rotation. T = -u.n tan(,r/4-0/2) where a is latitude.

Introducing the observed tide Co = c-6 and writing

ro(^,T,t) = Re{r 0 (0,T)e
-iot l	

etc.

allows LTE to be written as

-iou - (2P tanhT)v = -g(r0+6-r/g)^/a

-iov + (20 tanhT)u = -g(r0+6-r/g)T/a

-ior o + ((uD)^ + (0) T )/a sech 2T = 0.

Solving for u and v, and placing these results back into the continuity

equation yields

x (ro ) + E2 sech2T r o =X(r /g"6)

where

X = QHv2 + [(QH)^ - (i/s)(QH tanhT) T ] a^

+ [(QH) T + (i/s)(QH tanhT)^]aT
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e2 = 4n2 a2/gD0 	 Q	 1/(s 2 - tanh2T)

D = DoH(y1,T)
	

S = o/2sa.

For a rigid earth, r = U (the astronomical potential), and d = 0.

In the presence of solid earth deformation and self-gravitation by the

water column, r/g -d may be expressed after Hendershott (1972) as

(1+kn hn)Ung JJ S/	 (O',T')G(V,T/0',T1)sech2T'W do',

where G(^,T/^',T') is a Green's function constructed by Farrell (1972),

(k n ,h n ) are appropriate Love numbers (Munk and McDonald, 1960), and U n is

the n-th spherical harmonic of U.

Thus the final equation becomes

.R,(so ) _ -e-Ir o - ff ro (^',T')G(O, T/^',T')sech2T'dT'do'1 +

oceans

e2 sech2T Co = X [Z( 1+k n -h n) U n/ gl .
n

lie call this the elevation equation. Regardless of boundary conditions and

regardless of the (numerical) procedure used to invert the operator—J,

the presence of the global integral in the above equation makes solution

difficult.

All this paper's models specify the observed tide at the computational

boundaries, as in Hendershott (1972). The models are frictionless but

energy dissipation is obtained by allowing energy to flow through the

computational boundaries, thus modeling energy flow into shallow marginal

seas and shelves.

3

Ir



oa

,Y

;s

i âk
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Hendershott (1972) proposed the iterative sequence

X(to (1) ) + c 2sech2 50 (1) = X[2:(1+kn-hn)Un/g1
n

.t° Cto (i) ) + s 2sech2 ;0(i)

and found it to be divergent for M,

Gordeev, et al. (1977) showed that

presence of interior dissipation.

= X[T(1 +kn-hn)Un/g +ff c o (I-1 )Gsecli2T'dT'd^'
n	 oceans

in the absence of interior dissipation,

this procedure will converge in the

n

	Parke (1978) used iterates t
o
	 generated as above to provide a basis

set for a least squares solution to the dissipationless equations. The

iterative procedure was restarted periodically to avoid redundancy in the

4 0 ( ' ) . These least square solutions, however, proved unrealistically resonant

for the semi-diurnal constituents M2 and S2. None of the solutions conserved

mass, even that for K1 (which compared favorably with island data). This is

an important liability for geophysical calculations, as was shown by Farrell

(1972a).

The difficulty with being near resonance is that small errors in how

one's model represents the real ocean cause small errors in the frequencies

at which the model basin resonates. Far from resonance, these errors should

have a correspondingly small effect on the model tide. Near-resonance,

however, these small errors cause significant errors in the amplitudes of

near resonant modes, and consequently cause significant variations in the

model tide. Even relatively small changes in basin parameters, such as the

mean depth of the ocean, cause significant changes in the represented tide

near resonance.
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In a one mode system, i.e., one where a single near-resonant mode

dominates the solution, the amplitude of the mode can be adjusted by varying

a single parameter such as the mean depth. A good example of this is the

model of the Gulf of California by Stock (1976), where empirically choosing

this single parameter improves the model dramatically.' Unfortunately, the

global tide appears to be a multi-mode system, and so adjustment of the tidal

elevation field via a parameter search would require at least two and most

likely more parameters. As the cost of such a search depends quite strongly

on the number of parameters used, this approach could prove quite expensive.

An alternate method for adjusting the amplitude of near resonant modes

is given in the next section.

3.	 A DYNAMIC INTERPOLATION OF ISLAND DATA

The test functions ^ o (i) used by Parke (1978) to solve LTE in the

presence of tidal loading may be regarded as linearly independent combina-

tions of the eigenmodes of the discretized tidal operator a . We have

generated a representation of the actual ocean tide by using these test

functions to interpolate between island data in the least squares sense.

If we believe that the modifications of our finite difference operator

which are necessary to make its near tidal resonant frequencies the same as

those of the real ocean would have but small effect on the spatial shape of

the corresponding eigenmodes, then this least squares fit closely approximates

the solution of that modified finite difference model.

n
The least squares fit c o = I A i so (i) is obtained by solving

i=1

!	 1



n
(a/a Aj ) (	 1[4I - E A io

	

CID 	 0, j = 1 ,n

I=islands	 i=l

for the weights A i . Here 
{I 

is the tide at island I.

The test functions so li) each separately reproduce the specified
n

boundary tides. Requiring I A j =1 forces ,o to also reproduce them. The

test functions C
O

( ' ) do not individually conserve mass, i.e.,

TO
 
	 { 

J J	
^o ( ^ ) (^, T ) sech2 rd-rdo)/{area of oceans}# 0.

oceans

Requiring FAj Z0 (0) = 0 forces r o to conserve mass.

For the M2 fit, n=24 iterates were used, for S2, n=16 and for Kl, n=8.
n	 n

The fits presented below were obtained requiring E A j =1 (although EAj

came out within a few p ercent of unity when this constraint was not imposed).
n

(i)=0 was likewise required although it also tended to be small (less
E Aj —;C 

than .1 cm for all three constituents when unconstrained), We do not entirely

understand why ; o thus conserves mass so well while the least squares solutions

to the finite difference elevation equation, with the same boundary conditions,
n

do not (Y- Aj i;o ( ' ) was several orders of magnitude larger for the least

square solutions even when the mean depth was intentionally altereb simply

to avoid resonance).

Least squares fits using different sets of 1`12 test functions generated

over a range of 5% in the mean depth yield essentially the same elevation

fields. This occurs even though the different sets of test functions differ

markedly. We regard this latter point as qualitative confirmation of our

belef, expressed above, that changes in the spatial shapes of the eigenmodes

of the tidal operator are not a major source of error in our calculations.

6
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Island tide gauges tend to be in the worst possible places, i.e.,

inside lagoons. This problem can cause a bias in the generated elevation
t

field. To get an idea of this bias, seven islands in the Pacific were

empirically corrected for near station phase lag by means of tsunami travel

time charts, as was suggested by Mr. B. D. Zetler. The corrections for M2

are as follows: Canton Island 0 , Apra V.;.rbor (Guam) 5 , Johnston Island

7 , Kwajalein 5 , Midway Island 4 , Tahiti 5 , Honolulu 5	 These phases
K

are to be subtracted from the published M2 phases for these stations.

Corrections for S2 and Kl are of similar small magnitude.

Larsen (1977) has shown how to remove the effect of extended island

arcs (i.e., the Hawaiian Chain) from ir:land tide observations. His method

should be applied systematically in future refinements of the present study.

It should be noted that there is a growing set of coastal and deep sea

pressure gauge measurements, which would provide an ideal data set for

these calculations. At the present time, these measurements are being

collected for publication under the auspices of the International Association

for the Physical Sciences of the Ocean (IAPSO) by Cartwright and Zetler

(Zetler, personal communication).

The M2 fit to observed tides for 3930 m mean depth plus scatter plots

comparing it with island data are given in Figures 1 and 2. The least

squares M2 elevation field shows structure similar to that of the solution

of Zahel (1977). The main deviation occurs in the South Atlantic where

Zahel shows an amphidrome not found in the least squares field. Otherwise,

' Zahell I s amplitudes in the Pacific are significantly larger and his phases

are entirely different there. The elevation field in the Atlantic and

Indian Oceans is likewise similar tc the corresponding cotidal charts of

Dietrich (1944).

7
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The S2 observed elevatioi field and corresponding scatter plots are

given in Figures 3 and 4. It should be noted that the S2 tide includes

significant radiational as well as gravitational forcing. Zetler (1971)

indicates that the amplitude ratio between the radiational and gravitational

tides off the coasts of the US is 16%. Since both the coastal and island

elevations reflect this dual forcing, the least squares solution is expected

to fit island data well even though the test functions were generated with

only gravitational forcing.

The least squares K1 observed elevation field is similar to that of

Dietrich (1944) throughout the world's oceans. The elevation field and

its associated scatter plot are given in Figures 5 and 6.

Table 1 summarizes some features of the models, including the rate of

working by the tide generating forces, the global average potential energy,

and the global Q, all estimated as in Hendershott (1972); kinetic energy

calculations involved unresolved numerical problems due to the proximity of

the inertial latitudes to mesh points and hence equipartition was assumed.

Platzman's (1975) results suggest that this involves an error of only a

few percent.

The calculated rate of lunar working for the M2 model, 2.22 x 1019

erg s -1 , is smaller than the usual estimates, which range from 3.04 x 1019

erg 
s-1 for the Hendershott (1972) model to 3.77 x 1019 erg s -1 for Zahel

(1977). This smaller value is in better agreement with the estimate of the 	 t

112 dissipation in shallow seas by Miller (1966) of 1.7 x 10 19 erg s-1.

Astronomically generated estimates currently seem to be in a state of flux.
s>i

Estimates recently have risen from the long accepted 2.7 x 10 19 erg s-1

(derived from the Spencer-Jones value for the deceleration of the lunar

longitude) and have subsequently fallen again. Muller (1976) reviews them

-s

g	 i
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and places the present value at 3.3 + .2 x 10 19 erg s -1 . Goad and Douglas

(1978) obtain a very similar value fror . analysis of satellite orbital param-

eters. It should be noted that this estimate represents the sum of all lunar

dissipations, and as such should be considered simply an u pper boundary for

the M2 tide. Estimates of the non-M2 ocean effect on the lunar dissipation

vary from 0.3-1.0 x 1019 erg s -1 , thus reducing the above figure to 2.1-3.2 x

10 19 erg s-1.

The nearness to resonance of the semi-diurnal constituents M2 and S2

makes it difficult to model these tides. The global Q values of 17.0 for

M2 and 30.1 for S2 are consistent with the nearness to resonance. The K1

constituent on the other hand has every appearance of being far from reson-

ance. The basic iterative procedure of Hendershott (1972) converges, and

there is little difference between this solution and the least squares fit

to island data. The only significant advantage of the fit to island data

is that it better conserves mass. The apparent distance from resonance

occurs despite the fact that Platzman (1975) finds several resonances near

the diurnal frequency. No satisfactory explanation has been found. The

calculated Q value for the island fit representation of 5.8 is consistent

with the paradoxical absence of resonance.

4.	 MAPS OF THE GEOCENTRIC OCEAN TIDE, THE OCEAN INDUCED POTENTIAL, THE

OCEAN INDUCED VERTICAL COMPONENT OF THE SOLID EARTH TIDE, AND THE

OCEAN INDUCED GRAVITY TIDE

These maps are presented for their geophysical interest. The geocentric

ocean tide C = C o + d is directly observable by satellite altimetry. The

total tide generating potential at the mean sea surface ?s

9



r = (1+k2 )U2 + 7.(l+k'n)gan con'

the second half of this expression is the ocean induced potential_ at the

mean sea surface. When analytically continued upward, k 2U 2 + E(1+k'ti)gan con

perturbs satellite orbits. It is not plotted since it may be obtained by

adding k2U2 to the previous plot. The vertical solid earth tide is

d = 112U2/9 + E h'n an con , the second half of this expression is the ocean

Induced vertical component of the solid earth tide. The ocean induced gravity

tide as measured by a gravimeter on the said earth's (moving) surface is

g/a E (n+2 h' n - (n+l)k'n) 
an con

Here h' n and k' n are loading Love numbers (Munk and McDonald, 1960),

W=	
an = (3/2n+1)(water density/earth density), c on is the n-th spherical

harmonic of the observed ocean tide co , and a is the radius of the earth.

Note that the ocean induced potential at the solid earth's moving

surface (i.e., not at mean sea level) is E(1+k'
n -h' n )gan con' It is

readily obtained by differencing the ocean induced potential at mean sea

level and g times the ocean induced vertical component of the solid earth

tide. It is therefore not plotted.

The maps are presented in Figures 7 through 18 in the order given in

the title of this section. For each physical quantity the maps are in the

order M2 then S2 then K1. Numerical tables of the mapped quantities are

presented in a microfiche appendix available in limited supply from the

office of Marine Geodesy,

10
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It should be noted that these calculations do not include the ocean

tides in coastal seas and shelves. Thus if one is interested in gravity or

solid earth tides in d region near the coast, a local correction must be

wide using observations or reconstructions of nearby offshore tides.

All calculations were performed with Green's functiorts calculated by

Farrell (1972).

Results of the K1 calculation are of particular interest because there

is a proposed core resonance of near-K1 frequency (Rochester, 1973). flaps

of the induced component of the gravitational field can therefore be used

to indicate regions in which there is a likelihood that the K1 ocean

contribution will be small; these then are optimum locations at which to

look for the core resonance in gravity measurements. Indications are, from

the calculations made here (Figure 18), that the best place for such measure-

ments would be in Northern Russia where there is a large region with very

small amplitudes evidently due to the great distance from the oceans.

Because of the great extent of this region, positional errors should have

little impact. The next most likely place would be in Australia where there

appears to be an amphidrome. Unfortunately, the gradient away from the

amphidrome is large, making correct placement of the amphidrome critical to

finding the low amplitude region. In addition there is apparently an

amphidrome in Antarctica, but as the core resonance signal dies off toward

the pole, this may not be an optimal region for its measurement.

11



4J

v=

b
U

ro

•r
i
•r

E
O.

N

VI

c
Q

C1t

C

•O
N

O

C
O

U
C

LF

A-t
N

a-+
4-
O
L
Ul
.O

7
C
01

C
UJ
N
Cl
L
d
aiS-
L

C

O r N
coL7 1' p

r Cl) Ln

b C N NO O_
r•

^— ^—41 Om N
v	

if X X X
N
O O r- .Ov

'V' Ln N

J
M r co

W
y

r N Wr-L
LL
J
O ^

CH cn 00 03
H Y .-^ r r

i U O O OW
K y

r
o 

r
Q X X Xr y

0 m N O
J L N O N

4^^ N N N
LY

J

LL
O V t0 W

C N r

r-i
F-
W
CD

b N 7+1 N
W ^

(a
V .Ob

W O O
C C C
ro ro fo

N N N^

O•
`

4J 4J 4O

.LJ F 4J

4- 4- 4-

N N r
E N ]C

ei

12

Y'

f •̂^t̀ °'^ ,. 
....::,.:, ^....^.^-	 fit°." A.,,.r^	 ,...^.,	 .. .^^t-;w!.: • .fFYG r.: IL•	 .. .,.
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Figure 1.	 Dynamic interpolation of the global 112 tide based on test

functions generated at 3930 m mean depth (amp. in cm, phases in

degrees relative to passage of the tide generating body over

Greenwich).

Figure 2.	 Scatter diagrams comparing modeled M2 tidal elevations with

island data.

Figure 3.	 The same as Figure 1, except for S2.

Figure 4.	 The same as Figure 2, except for S2.

Figure 5.	 The same as Figure 1, except for K1.

Figure 6.	 The same as Figure 2, except for K1.

Figure 7.	 The geocentric M2 tide based on the model of Figure 1 (units

as in Figure 1).

Figure 8.	 The same as Figure 7, except based on the S2 model of Figure 3.

Figure 9.	 The same as Figure 7, except based on the K1 model of Figure 5.

Figure 10.	 The free space potential (divided by g) induced by the M2 model

of Figure 1 (amp. in cm, phase in degrees as in Figure 1).

Figure 11.	 The same as Figure 10, except induced by the S2 model of Figure 3.

Figure 12.	 The same as Figure 10, except induced by the K1 model of Figure 5.

Figure 13.	 The vertical component of the solid earth tide induced by the

M2 model of Figure 1 (amp. in cm, phases in degrees as in Figure 1).
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Figure 14.	 The same as Figure 13, except induced by the S2 model of Figure 3.

Figure 15.	 The same as Figure 13, except induced by the K1 model of Figure 5.

Figure 16.

	

	 The vertical component of the gravitational field induced by the

M2 model of Figure 1 (amp. in 10 -6 cm s -2 , phases in degrees

as in Figure 1).

Figure 17.	 The same as Figure 16, except induced by the S2 model of Figure 3.

Figure 18.	 The same as Figure 16, except induced by the K1 model of Figure 5.
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