General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
RELEASE ADIABAT MEASUREMENTS ON MINERALS: THE EFFECT OF VISCOSITY

by

Raymond Jeanloz and Thomas J. Ahrens

(1) Present Address:
Department Geological Sciences
Harvard University
Cambridge, MA 02138
Abstract

The current inversion of pressure-particle velocity data for release from a high-pressure shock state to a pressure-density path usually depends critically upon the assumption that the release process is isentropic. It has been shown by Kieffer and Delaney that for geological materials below stresses of \(\sim 150 \) GPa, the effective viscosity must be \(\lesssim 10^{-3} \, \text{kg m}^{-1} \, \text{s}^{-1} \) (10^4 poise) in order that the viscous (irreversible) work carried out on the material in the shock state remains small compared to the mechanical work recovered upon adiabatic rarefaction. The available data pertaining to the offset of the Rayleigh line from the Hugoniot for minerals, the magnitude of the shear stress in the high-pressure shock state for minerals and the direct measurements of the viscosities of several engineering materials shocked to pressures below 150 GPa yield effective viscosities of \(\sim 10^{-3} \, \text{kg m}^{-1} \, \text{s}^{-1} \) or less. We infer that this indicates that the conditions for isentropic release of minerals from shock states are achieved, at least approximately, and we conclude that the application of the Riemann integral to obtain pressure-density states along the release adiabats of minerals in shock experiments is valid.
Over the last decade an increasing number of measurements of dynamic unloading from high pressure shock (Hugoniot) states have been reported for rocks and minerals, including porous samples and soils [Ahrens, et al., 1969; Petersen, et al., 1970; Lysne, 1970; Grady, et al., 1974, 1976; Ahrens, 1975; Grady and Murri, 1976; Jeanloz and Ahrens, 1977, 1978; Jackson and Ahrens, 1979]. The release-path measurements have been motivated by the information provided which is complementary to that given by Hugoniot data in constraining the high-pressure equation of state as well as the nature of yielding and apparent phase transformations under shock conditions. Upon unloading, variables such as particle velocity or pressure in the sample are measured, either discretely or continuously in time [Ahrens, et al., 1969; Cowperthwaite and Williams, 1971; Grady, 1973; Seaman, 1974]. These are usually converted to release paths in the pressure-density plane by way of the Riemann integral formulation which, however, is strictly valid only for isentropic (or isothermal) flows [eg, Rice, et al., 1958; Fowles and Williams, 1970; Lyzenga and Ahrens, 1978].

Recently Kieffer and Delaney [1979] have demonstrated how the non-dimensionalized expressions of Thompson [1972] for the conservation equations of a compressible, viscous fluid may be utilized to obtain criteria to determine whether the release processes from high pressure shock states in materials of geophysical interest are indeed isentropic. The object of the present note is both to clarify the derivation of these isentropic flow criteria and to point out how existing data, quite surprisingly, demonstrate
that the effective viscosity of solids shocked to high pressures is sufficiently low that dynamic unloading appears to be isentropic.

Isentropic flow is assumed in the Riemann integral formulation because the change in pressure \((P)\) with density \((\rho)\) is assumed to be given by the square of the isentropic bulk sound speed, \(c^2 \equiv \left(\frac{\partial P}{\partial \rho}\right)_s\). Hence the appropriate criterion for isentropic flow upon decompression is that the change in pressure associated with a change in entropy is negligibly small in comparison with the isentropic change in pressure. Since the change in pressure in a volume element within the flow is given by

\[
\frac{\Delta P}{\Delta t} = c^2 \frac{\partial \rho}{\partial \rho} + \left(\frac{\partial P}{\partial s}\right)_\rho \frac{\Delta s}{\Delta t},
\]

with \(t\) being time, \(s\) being specific entropy and \(D\) denoting Lagrangian differentiation, the criterion for isentropic flow is:

\[
| c^2 \frac{\partial \rho}{\partial \rho} | >> \left| \left(\frac{\partial P}{\partial s}\right)_\rho \frac{\Delta s}{\Delta t} \right|.
\]

However, \(\frac{\partial \rho}{\partial \rho} = -\rho \nabla \cdot \mathbf{u}\) from conservation of mass while the right hand side of (2) can be expanded by way of the following thermodynamic identity:

\[
\left(\frac{\partial P}{\partial s}\right)_\rho = -\left(\frac{\partial P}{\partial T}\right)_\rho \left(\frac{\partial T}{\partial s}\right)_\rho c^2
\]

Hence (2) becomes

\[
| \nabla \cdot \mathbf{u} | >> \frac{1}{\rho} \left(\frac{\partial P}{\partial T}\right)_\rho \left(\frac{\partial T}{\partial s}\right)_\rho \rho \frac{\Delta s}{\Delta t}.
\]
where c^2 has been cancelled from both sides, u is the particle velocity vector field and T is temperature. We consider two sources of entropy production, namely those associated with mechanical dissipation and thermal dissipation [cf. Thompson, 1972, Eq. 2.1b]:

$$\rho \frac{D\sigma}{DT} = \frac{T}{T} - \frac{\nabla \cdot q}{T}$$ \hspace{1cm} (4)

Here, Γ is the viscous dissipation function (units of energy/time) and q is the heat-flux vector. In principle, both bulk and shear viscosities enter into Γ (along with terms for plastic work), however we will not differentiate between these but rather use an effective viscosity, η [see Gilman, 1979]. We note that Eq. (4) does not account for any reactions (including phase transformations) which might occur in the flow, such processes requiring an extra set of terms involving the affinities of the components [eg, DeGroot and Mazur, 1969]. Also, this equation does not apply to a discontinuous production of entropy, such as occurs across the shock front, except in a limiting sense [Courant and Friedricks, 1948, sec. 63]. Substituting (4) into (2a) and using the heat conduction equation (κ is the thermal diffusivity, which is assumed constant) yields

$$\left| \nabla \cdot u \right| \gg \frac{1}{\rho^2} \left(\frac{\partial \rho}{\partial T} \right)_P \left(\frac{\partial T}{\partial S} \right)_P \left[\frac{\Gamma}{T} + \rho C_P \frac{\kappa}{T} \nabla^2 T \right]$$ \hspace{1cm} (5)

For one-dimensional flow and non-negligible compression this reduces to

$$\left| \nabla \cdot u \right| \gg |u,_{x}| \Rightarrow \left| \frac{\partial u}{\partial T} \right)_P \frac{T}{C_P} \left[\frac{\Gamma}{T} + \rho C_P \frac{\kappa}{T},_{x,x} \right]$$ \hspace{1cm} (5a)

where subscript $,x$ indicates differentiation in the x direction, while V and C_P are the specific volume and specific heat at constant pressure, respectively.
Following Thompson [1972, p. 140] Eq. 5a can be normalized in terms of a characteristic length (ℓ), particle velocity (u_o), volume (V_o), and temperature (T_o). With $X = x/\ell_o$ and $\Gamma_o = u_o^2/\ell_o^2$ this becomes

$$\left| \frac{u_o}{V_o} \frac{u_o}{X} \right| \gg \left| \left(\frac{\partial V}{\partial T} \right)_P \frac{T}{C_P} \left(\frac{\nu_o}{\ell_o^2} \frac{\Gamma}{\Gamma_o} \right) + \frac{\kappa}{T} \rho C_P \frac{\Gamma_o}{T_o} \right|, \quad (6)$$

and rearranging terms yields

$$\left| \frac{u}{u_o} \right| \left| \frac{X}{x_o} \right| \gg \left| \left(\frac{\partial V}{\partial T} \right)_P \frac{T}{C_P} \left(\frac{u_o^2}{\ell_o^2} \frac{\Gamma}{\Gamma_o} \right) + \frac{\kappa}{T} \rho C_P \frac{\Gamma_o}{T_o} \right|, \quad (7)$$

Because the normalized variables $(u/u_o), X (\Gamma/\Gamma_o)$, and $(T/T_o), X_o \Gamma_o$ have values near unity [see Thompson, 1972; Kieffer and Delaney, 1979] Eq. 7 may be rewritten as

$$1 \gg \left| \frac{1}{Re_o} \frac{To}{To} \alpha \left(\frac{u_o^2}{C_P T_o} + \frac{1}{Pr} \right) \right|, \quad (8)$$

where $(u_o \ell_o / V_o \eta)$ is the Reynolds number Re_o, α is the coefficient of thermal expansion and $Pr = \frac{\eta}{\kappa \rho}$ is the Prandtl number. As Kieffer and Delaney [1979] pointed out, at temperatures of geophysical interest $a T_o = 0.1$ for shocked minerals and liquids and the inequality of (8) reduces to the two inequalities

$$\left| \frac{\kappa}{u_o \ell_o} \right| << 10 \quad (9a)$$

$$\left| \frac{\eta}{\rho_o} \frac{u_o^2}{\ell_o C_P T_o} \right| << 10 \quad (9b)$$

which are identical to their Eq. 17a and 17b. For shock waves in rocks and minerals the density is on the order of 5 Mg m^{-3}, characteristic
particle velocities are on the order of 10^3 m s^{-1}, while C_p and κ are very nearly $10^3 \text{ J kg}^{-1} \text{ K}^{-1}$ and $10^{-6} \text{ m}^2 \text{ s}^{-1}$ respectively. The rise time of shock fronts provide a lower bound for λ, and hence conservative bounds for the inequalities, of about 10^{-5} m [Grady, 1977]. The thermal inequality given by equation 9(a) is easily satisfied since the left hand side is of magnitude $\sim 10^{-4}$. Hence heat flow contributes negligibly to entropy production and release from the Hugoniot state is clearly adiabatic, as is commonly assumed.

On the other hand, the left hand side of equation 9(b) requires an effective viscosity $\eta \approx 10^3 \text{ kg m}^{-1} \text{ s}^{-1}$ (10^4 poise) for flow behind a shock wave to be isentropic [Kieffer and Delaney, 1979; T_0 is of order 10^3 K]. What then is the viscosity in the material behind a shock front in a solid? Duvall [1962] suggested, in a rather simple argument, that the thickness of a stable transition zone from the unshocked to the shocked state (ΔX) is related to the difference at constant volume between the Rayleigh line and a static (equilibrium) curve lying near the Hugoniot, ΔP_V (see Figures 1 and 2). Thus ΔX is determined by the effective viscosity η times the ratio of the pressure jump, P, to the maximum pressure gradient along the front (given by the maximum value of $\rho_0 U_S \Delta P_V$, where U_S is the shock wave velocity):

$$\Delta X = \frac{\eta P}{\rho_0 U_S \Delta P_V} = \eta \left(\frac{U_0}{\Delta P_V} \right)_{\text{max}}$$

This means that as the viscosity increases the rise time of the shock increases, as is expected. For shock fronts in silicates $\Delta X = 10^{-4} \text{ m}$ while $\Delta P_V/P$ is of order 10^{-1} (or less) in the 10 to 100 GPa range. Appropriate
values of $\rho_0 U_S \sim 10^7$ kg m$^{-2}$ s$^{-1}$ and therefore $\eta = 10^3$ kg m$^{-1}$ s$^{-1}$ is a conservative estimate from Eq. 12.

We note that this approach is analogous to the simple dimensional argument that the effective viscosity is given by the ratio of the deviatoric stress (σ) to the strain rate ($\dot{\varepsilon}$). Approximating the strain rate by

$$\dot{\varepsilon} \sim \frac{1}{\tau} \frac{\Delta V}{V} = \frac{U_S}{\Delta X} \frac{\Delta V}{V}$$

(13)

where τ is the rise time of the shock and $\frac{\Delta V}{V}$ is the compression, we arrive at a value of $\dot{\varepsilon} \sim 10^8$ s$^{-1}$. In virtually all silicates and in many oxides the stress difference between the Hugoniot and the hydrostatic compression curve appears to be quite small at pressures in the 10-100 GPa range. For example in the case of quartz, this difference amounts to no more than 100 MPa at 10 GPa [Ahrens and Linde, 1968], while Ahrens, et al. [1968] found a stress difference as/about 3 GPa in polycrystalline corundum. Identifying these stress differences with σ, we arrive at effective viscosities $\eta \sim \sigma / \dot{\varepsilon} < 10^2$ kg m$^{-1}$ s$^{-1}$. This conclusion is corroborated by recent rise-time measurements in metals using velocity-interferometer techniques [Chhabildas and Asay, 1979]. We therefore conclude on the basis of arguments such as those presented by Duvall [1962], that the effective viscosities of silicates and oxides appear to be low enough under shock conditions to satisfy the criteria for isentropic flow during release. It is also worth noting that the nature of the shock front is likely to reflect the properties of the material at high pressure behind the front. For a steady shock, any perturbation behind the front is communicated forward toward the shock front, and overtakes the shock front, in the laboratory reference frame, at a speed $u+c$ where c is the local sound speed. Since $u+c > U_S$, the shock and particle velocity reflect the properties of the material encompassed by the shock [Duvall, 1978] and estimates of the viscosity from the rise time of the front should approximately correspond to the effective viscosity in the shocked state [cf. Chhabildas and Asay, 1979].
Probably the most conclusive evidence that the effective viscosity behind shock fronts in such solids as Al, Pb, Fe and NaCl is low, in the range 10^3 to 10^4 kg m$^{-1}$ s$^{-1}$, are the experiments of Sakharov et al. [1965] and more recently Mineev and Savinov [1967] at shock pressures ranging from \sim12 to 250 GPa. In these experiments the decay of perturbations to the shock front induced by impact of an explosively driven, sinusoidally corrugated piston into the sample material have demonstrated that virtually all of these materials have similar effective viscosities. Moreover, experiments carried out by independent techniques on mercury and water [Mineev and Zaidel, 1958; Al'tshuler et al., 1977] demonstrate that the substances have comparable viscosities, $\sim$$10^3$ kg m$^{-1}$ s$^{-1}$, in the 4 to 44 GPa range. Also, studies of jet formation during oblique impact of several metals by Godunov and colleagues [1971, 1974, 1975] indicate similarly low viscosities for several metals at strain rates achieved upon shock-loading. These results independently suggest that silicates may likewise have low, fluid-like viscosities under shock.

Finally, we note that the sound speed measurements of Grady et al. [1975] indicate velocities in quartz shocked to 22 to 35 GPa which are well below the longitudinal velocity but consistent with velocities expected for a fluidlike mixture of quartz and stishovite. Similar results were obtained for feldspar shocked to pressures of 46 GPa, and Grady et al. [1975] infer from these anomalously low sound speeds that these minerals contain very hot and probably liquid zones [see also Grady, 1977]. This again suggests that the effective viscosity of silicates under shock conditions may be quite low. We note, however, that alternative interpretations can be found to explain the reduced sound speeds. For example, these may be ascribed to
a modulus defect associated with dispersion and due to an unknown absorption mechanism [eg. Nowick and Berry, 1972; Thompson, 1972]; this would actually imply increased viscosities. Phase transformations are not involved in reducing the sound speeds, however, since both corundum and periclase exhibit such reduced velocities under shock while undergoing no phase changes [Bless and Ahrens, 1976; Grady, 1977].

We conclude, on the basis of several lines of evidence, that the effective viscosity in shocked oxides and silicates is probably very low compared to unshocked materials, perhaps as low as 10^2 kg m$^{-1}$ s$^{-1}$ or less. Such low values may represent a purely transient effect or may be the result of massive dynamic yielding, among other processes [eg. Gilman, 1979].

Godunov, et al. [1974] present a simple, phenomenological model which yields the observed low viscosities at the high strain rates achieved in shock. Although direct measurements of the viscosity of silicates and oxides in the shocked state have yet to be carried out we conclude that the viscous inequality Eq. 9(a) is satisfied and that the rarefaction process described by release adiabats from the shock state is nearly isentropic [see also Chhabildas and Asay, 1979]. The major assumptions in our analysis arise from our neglecting the effects of dissipation due to reactions and our not distinguishing between shear and other forms of mechanical dissipation, however our result justifies the use of the Riemann integral formulation which converts pressure-particle velocity states to pressure-density states along the release adiabat [Rice, et al. 1958; Ahrens, et al. 1969; Grady, 1977; Lyzenga and Ahrens, 1978]. Thus the additional data inferred from such release adiabat measurements provide valid, and in most cases, useful constraints on the equations of state of minerals.
Acknowledgments: We appreciate having received a preprint of the Kieffer and Delany paper, and are particularly indebted to P. E. Grady as well as D. L. Anderson, S. W. Kieffer and a reviewer for their helpful comments. This work was supported by NASA under NGL 05-002-105. Contribution #3226, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125.
References:

Figure Captions:

Figure 1: Relation of Hugoniot state (P,V) and thermodynamic path (Rayleigh line) to Rankine-Hugoniot curve. The pressure difference $\left(\Delta P_{V_{\text{max}}}\right)$ is considered a measure of the effective viscosity at the shock front.

Figure 2: Shock wave profile with finite-width, ΔX, resulting from intrinsic material viscosity, η, at the shock front.
\[V = V \]
\[u = u_0 \]

\[V = V_0 \]
\[u = 0 \]
\[P = 0 \]

\[\Delta X \]

DISTANCE

STRESS OR PRESSURE