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ABSTRACT

Earlier authors (Cyranski and Lubkin, 1974) have shown that the sun
is likely to act as a lens for gravitational radiation, with foci in the
outer solar system. They have suggested that missions to these foci have
the potential of directly measuring the density structure of the sun. Other
applications include gravitaticnal wave astronomy and new tests of general
relativity. .

The present work re-examines this idea, concentrating on the engineering
aspects of focal missions - primarily spacecraft design and performance.
Other topics studied include solar optics, gravitational wave detectors, navi-
gation, and the design of missions for different purposes. Specifically, it
will be shown that Shuttle launched chemical rockets have a substantial capa-
bility for reaéaing some foci; and that all can be reached with large pay-
loads using nuclear isotope - electric propulsion. Thus, when gravitational
wave detectors of sufficient sensitivity become available, a variety of new

and attractive scientific missions will beckon.
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NOTATIONAL SYMBOLS

sXx = sin X
CX = COS X
8x - variation in x

Yy =y, = dy/ax

X
A .

X estimate of x

X indicates a 3-vector
xT transpose of X

E(x)} expectation of x

0(x) terms of order x

Einstein summation notation is used throughout in which Greek lower case
indices have range 1, 2, 3; and Latin Tower case indices have range 0,

1, 2, 3.
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dgs 83

CL

LATIN AND GREEK SYMBOLS
Explanation

co,
rib cross sectional area
area swept out on an orbit
area of radiqtor

frontal area of corner cube

subscript-axial

transfer orbit semi-major axis
constant in Van Der Waals equation
edge of corner cube

position error weight
density cubic interpolation coefficients
3.z (3 dimensional array)

Yy

constant in Van Der Waals equation
semi-minor axis

control usage weight

specific heat

control gain matrix
coefficients in power series
compression failure 1imit

speed of light

X3

Equation of

1st Appearance

111-9
I11-93
ITI-158
V-1
V-19

I1I-19
I1I-110
V-18
Vi-21

A-2
1v-62

ITI-110
1T1-159
VI-21

V-2
Vi-20

11-67
111-94

V-5



Symboi

DBL

ds

F(r, A)

F(X, t)

Explanation

subscript~departure

distance

corner cube effective diameter
diamond buckling Timit

line element

spacecraft specific energy
Young's modules

eccentric. anomaly

heat energy

glectric field of laser

oth base vector in system X =S, G, N, T

amplitude of laser electric fieid

Euler buckling limit

subscript-earth
transfer orbit eccentricity

electronic charge

figure of merit
beam return power fraction

navigation plant matrix

path equation function

[

Equation of
1st Appearance

111-83
!

—_—

V-20
I11-98
iI-1

ITI-1
I1I-95
III-159
V-1
y-22

i11-4
v-22

ITi-96

I11-16
V-39

I11-114
V-37
Vi-7

11-22

1v-70
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Symbol

Explanation

[fl, fZJT celestial mechanics constraints

x (5 element vector)

gain in focal region

superscript - non-rotating earth
coordinates

corner cube gain

control distribution matrix
function of R0

acceleration of gravity
[91, 92]T departure and turn point
constraints

FM deviation of laser acoustic medulation
metric tensor

hamiltonian

observation matrix

cubic deflection coefficient
propellant level in tank
integration step size

metric perturbation

spacecraft specific orbital angular

momentum

xi11

Equation of
1st Appearance

I11-132
1V-27

11-105

ITI-4

v-21
VI-7

11-65

111-77

IT1-136

v-22

I1-2

I11-144
VI-10

I1-74
ITI-58
Iv-71
V-5

I11-22



SIG

SN

SP

bR

Symbol

Explanation

aﬁp1itude of metric perturbation

Planck's constant

transfer orbit inclination
areal moment of inertia

detector cutput current

nominal detector current for o« = #/2
current due to laser noise

detector dark current

current due to gravitational wave
current due to shot noise

specific impulse

current due to thermal noise

performance index for ion trajectory
navigation performance index

augmented performance index
Bessel function of the first kind

diamond buckling constant

constant in time eguation

xiv

Equation of

1st Appearance

V-8
C-1
V-39

111-14
IT1-95
V-39

V-40
V-55
V-39
V-44

V-43

V-52

IV-19
VI-21
1v-32

y-23

111-97
I11-760



Symbo1

K (cont.)

K], K2, K3

=0

2(0)

Ex§1ahation

constant of axial motion
amptitude of noise component
Kalman filter gains

time step constant

constants of integration

Runge-Kutta functions (i = 1 - 4)

(n-1)/2

constants in payload function (i =1 - 6)

rib Tength (axial or pyramidal)
second stage payload
detector baseline

GC - F
2(0)/rS
2(rg)/rg

transfer orbit semi-Tatus rectum
Tength of cylindrical section of LH tank
rib length (Tateral)

laser mirror spacing
unit vector along axis

primary focal Tength of the sun

XV

Equation of

Ist Appearance

v-11
V-30
VI-i3
D-1

II-9-11
v-71
B-2
ITI-140

I11-81 ’
I11-129
v-11
vI-27

I1-92

| 11-88

III-16
111-69
[11-80
V-25

1v-18

11-92



Symbol

2{r

Explanation

focal length of sun for perihelion

distance r

m/ms

mean anomaly
3,z {matrix
A )

mass of detector

rib mass

average spacecraft mass
final stage mass

m(ta)

departure mass

propellan; mass

mass of power supply
total mass-energy of sgn;
tank mass

mass of cylindrical séction of .LH tank
mass-energy of sun within radius r

extra mass for propulsion

Xvi

Equation of
1st Appearance
11-86 -

1I-32
II1-159
Iv-51
V-2

I1I-99
IV-6

111-54
v-17
111-54
I11-54
V-1
I1-31
ITI-65
I11-73°
I1-26.

Iv-5



Symbo1

Explanation
superscript of nodal coordinate system
number of moles
initial acceleration in g's

p/o
compressive load in rib
power available for propulsion

covariance of the estimator error
additional power for propulsion
power reserved for spacecraft systems

total power at departure

power input to detector

power diverted to propulsion

laser output power

beam return powers

pressure

hydrostatic pressure due to acceleration

sun internal pressure

(1 - 822)1/2

*vii

Equation of
1st Appearance

I11-5

111-109

11-32
I11-88
Iv-2
VI-14

V-5
Iv-2

Iv-13
V-38

V-6
V-37
V-37
IT1-64
I1{-60
1f-28

I1r-12



Explanation
shot noise function

normalized component of VH
ion engine mass flow rate
1/r

process noise autocorrelation integral

r/rs
universal gas constant

photodiode operating resistance

r /r
of

S
rotation about Ath axis through angle ¢
Schwartzchild coordinate

propellant tank inner radius

radius at structural node

tube radius of rib

sensor noise autocorrelation integral
spacecraft heliocentric position

heljocentric radial unit vector at

departure

mean distance of earth from sun

earth heliocentric position at departure

Xvidd

Equation of
1st Appearance

v-47

ITI-38
IV-3
IV-76
VI-9

11-32
ITI-109
V-51

11-38

111-4

1I-1
I11-57
111-80
ITI-93
Vi-T1

111-1

1¥-20

I11-6



Equation of

Symbo1l Expianation 1st Appearance

o perihelion distance of ray I1-13
Shuttle orbit radius T1I-50

re radius of sun I1-31

rr turnpoint distance I1I-1

S superscript for fundamental codrdinate

system ) I11-4

control sweep matrix VI-22

T superscript for transfer coordinate system III-15
absolute temperature 111-109, V-1
jon engine thrust Iv-3

TRL thrust of RL-10 engine ITI-56

T(RO) time Ffunction Vi-4

t Schwartzchild time coordinate 11-1

tB engine burn time I11-56

tp perihelion time II1-158

tT time at turnpoint I11-2

U parabolic anomaly I111-166

Ad . ,

U unit vector along axis 111-9

Xix



Explanation

transfer orbit normal unit vector

Shuttle orbit normal unit vector

control vector

control acceleration
ion engine acceleration

tank volume
corner cube volume

photodiode reverse bias

specific volume

position measurement noise
spacecraft velocity
pre-turnpoint velocity

effective exhaust velocity

‘adjusted effective exhaust velocity

departure velocity

earth velocity at departure

departure earth relative -hyperbolic

excess velocity

normal component of GD

. XX

Equation of
1st Appearance

I11-12

III-35

I11-131

111-57
V-18
V-5]

111-111
VI-10

I11-1

I11-19

I11-54

111127

111-19

111-7

111-37

ITI-20



Symbol

Hy(R), U,y (R),
My (R)

W(e)

W

>

Equation of

Explanation Tst Appearance
Shiittle orbit speed 111-50
radial component of GD 111-20
post-turnpoint speed ITI-1
axial, normal components of v 111-21

a

velocity increment from electric propulsion 1IV-6

departure impulse 1TI-50
turnpoint impulse III;32
o/o 11-32

uniferm, quadratic, cubic solar density

models : 11-78, 80
laser noise function V-57
tank wall thickness I11-64
rib wall thickness I111-93
acceleration process noise Vi-7

1/2
(1-x°) , B-1
.combined state of x and w 1V-69
redefined 6-dimensional state vector CIv-72
redefined 10-dimensional state vector 1v-76
covariance of the state yI-30
covariance of the state estimate y1-27

xxi



ax

Ay

Symbol.

Exﬁ]énét%on'

;
fo, ¢F

tan (E/2) or tanh (E/2)
5-element state vector

navigation state vector

generalized .coordinates

"distortion of baseline due to gravita-

tional radiation

normalized distance off axis (y/rs)

tensile or yield stress

[, v’
4 or 6 vector of initial guesses

distance off axis
tmproved guess of y
nominal value of y
calculated error in y

axial station in Shuttle bay
subscript, cylindrical axial component
4 or 6 vector of terminal vaTues

position measurement

cylindrical axial unit base vector

Xxii

Equation of

1st Appearance

II1-131
II1-162
1v¥-26
VI-7

I1-94
IT1-64

111-131
IV-28
A-8

IV-53
IV-50
Iv-5]

1T1-81
1v-23
1v-49
Vi-10

Iv-23



Symboi

ZD, AZ

Explanation
desired value and error in z

3yh/66

re/rT

optical phase difference between baselines

source right ascension
source ecliptic right ascension

Vr/Ve

electrical - supply mass to power ratio

Christoffel symbol

mS/rS

Vh/ve

(1 - 72

angle of ray point from axis

deflection

increment in 8 and v

error in L from quarter wave

laser noise fraction in signal band

source declination

source ecliptic declination

uniform, quadratic, cubic deflections’

external deflection

XXi1id

Equation of
1st Appearance

IvV-51]

I1-99

TI1-26

V~35
vi-i

VI-1

111-26
Iv-1

11-3

11-33
I1I-26
V-40

I1-93

11-23
ITI-155
V-31
V-55
VI-1

Vi-1
11-77, 79, 81

11-50



Symbol

Explanation

alternative measure of deflection
obliquity of ecliptic

ullage fraction

emissivity of radiator

spatial strain

laser strain

frequency separation of noise from signal

IO/IC‘

AvD/ve
ion engines electrical efficiency

detector quantum efficiency

Schwartzchild coordinate

noj=
'
-

transfer orbit true anomaly

h/r
focus ecliptic latitude

true anomaly at departure

‘Kennedy Spaceflight Center latitude

true anomaly at turnpoint

Tine element function

XXV

Equation of
1st Appearance

I1-16
111-4
I1I-59
V-1
V-6
V-26
V-30
V-44

I1I-51
V-4
V-39

I-1
11-52

11116
1I1-57

111-9

111-17
IT1-35
I11-17

I1-1



Symbo1

o>

p(r)

Explanation

angular representation of r
[A], 12] Lagrange multipliers
Lagrange multiplier or adjoint vector

wavelength of gravitational radiation
A{1) or A(rs)

3 components of A

laser wavelength

gravitational constant of the sun

beam return power asymmetry

earth gravitational constant

propellant density

subscript, cylindrical radial coordinate

average density of sun

average second stage propellant density

cylindrical radijal base vector
mass-energy density of sun

angular representation of r
v”/ve

TOXXV

Equation of

Tst Appearance

11-20
111-141
1V-32
V-16

I1-50

Iv-38

v-21

111-1
V-37

I1I-50

11I-33

111-41
[11-60
Iv-23

I1-31
111-106

1v-23

11-27

I1-15
I111-26



Symbo1

o fcont.i

o>

Explanation
Stefan-Boltzmann constant

sensor and process noise standard

deviations

VT/Ve

power decay time constant

constants in time delay relations

sensor and process noise correlation times
relativistic time delay in solar field
time difference between rays

Tine element function

2(r,)

Schwartzchild coordinate

by = b

Equation of
Ist Appearance

V-1

VI-12

111-33
V-2

VI-2, 5

VI-12

VI-2

Vi-4

IT-1

I1-13

I1-1
III-10
III-69

subscript, cylindrical azimuthal coordinate IV-23

cylindrical azimuthal base vector

angle associated with gq and'Vh

o~ %

XXV

IY-23
ITI-38

ITI-39



@35

Explanation
critical longitude

focus ecliptic longitude

orbital velocity unit vector at departure

departure heliocentric Tongitude

optical phase shift due to gravitational

wave

VO/VQ

trajectory parameter
36 -degrees (pentagonal angle)

n+yx

Shuttle orbit nodal Tongitude relative

G

to E]

[ugs wy] Lagrange multipliers
rescaled A -

frequency of gravitational wave
3 components of w

acoustic modulation frequency of laser

XXVii

Equation of

1st Appearance

ITI-49

II1-9

Iv-20

I11-5

V-34

ITI-51

I1-3
11I-80
ITI-136

111-35

TII-141
Iv-4Q
V-9

Iv-42

V.22



A NOTE ON UNITS

The primary units adopted in this thesis are SI. This means that
all distances will be in meters or their standard SI multiples. To get .

a feeling for these, some exampies may help:

1 Mm = 621.37 miles ~ distance from Stanford to Phoenix, Ariz.
1 Gm = 1.43682 solar radii = 2.6014 x mean Tunar distance
1 Tm = 6.68459 astronomical units

Planetary mean heliocentric distances(1):

‘Mercury 57.9 Gm Saturn 1.427 Tm
Venus 108.2 Gm Uranus 2.870 Tm
Earth 149.6 Gm Neptune 4,497 Tm
Mars 227.9 Gm Pluto 5.90 Tm
Jupiter 778:3 Gm

The main variation from the SI is the use of gravitational units,
in which G = ¢ = 1, for the deflection analysis. With these, communica-
tion with professional relativists is noticeably easier. Other units.

are occasionally used to make contact with the.Tliterature.

XXviii



CHAPTER 1~ -~
" INTRODUCTION AND-SUMMARY

1. History

Regarding the sun as a gravitational lens -is not new. fhat Tight rays
passing close to the sun are bent is well established experimenta]]y. The first
correct prediction of this bending was by Einstein in 1916 (Ref. 37). The
Einstein result is rederived here in greater detail in Section II-5. Earlier
papers by Einstein, using only special relativity, predicted only half the bend-
ing. . This same half-result can be found from Newtonian physics alone, and had
been reported by earlier workers. Probably the first was a paper by J; G. Soldner

in 1801. For a discussion of Soldner's work, see Ref. b1,

The Einstein result was that 1ight from a distant star, passing by the
edge of the sun would be bent inward by 1.75 arc seconds. It is easy to see that
all such rays would be focussed to a point 82.01 Tm {or 548.2 astronomical units,
or 13.9 times Pluto's distance) from the sun. To the author's knowledge, this focu
has no practical value. Einstein,-in Tater papers, considered the bending of one
star's light by another, and predicted an unusual haio effect. However, the chance
of finding such an alignment appears to be remote. Since then, others have looked

at star clusters, galaxies, and the whole universe as gravitational lenses.

An 1nteresting new idea was put forward in 1974 by Cyranski and Lubkin
(Ref.23), who pointed out that the sun should Ee transparent to gravitational
radiation. They then calculated the focal Tength of the center of the solar lens,
reporting values of 3.41 and 4,42 Tm for two previously puﬁlished solar density
models. This work is confirmed here for these and three other solar models, and

may be found in Appendix A. A difficuity with their paper is that their results

I-1



depend on a bending formula whose derivation is referred to only as "a lengthy
and tricky analysis in curvature coordinates.” The pﬁesent.Chapter 11 presumably.

parallels their analysis; while offering some extensions to their results.

Two other jmportant points were made-by Cyranski and Lubkin. First,
they showed that the sun's spherical aberration gives rise to a frequently
observed property of poor lenses - a caustic, which is a surface of theoreti-

;ca]]y infinite intensity. In II-9 we will find simpler methods of characterizing
-this surface, and wehwill comment on the significance of this to solar physics.
Their other major point was that an actual intensity map of the focal region
could be formally inverted to yield the radial variation of the.density of the
sun. The implication of this is staft]ing - the center .of the sun might be

examined directly, analogous to studies of atomic nuclei by high energy particles.

The preseﬁt thesis took shape early in 1976, when the author indepen-
dently put forth these same ideas. The only major difference with the earlier
authors is that they did not regard a focal exploration as practical, within the
foreseeable future. In confrast3tthe butk of the present work is concerned with
spacecrﬁft design and performance, and the design of missions for solar study and
gravitational wave astronomy. Finally we note, along with Cyranski and Lubkin,
that the sun is probably transparent to low energy neutrinos also. ~ However, the
author is unaware of any suggested strong cosmic ‘neutrino sources, or of detectors
of a mass compatible with a focal mission spacecraft. Should these notions change,
a neutrino focal mission could Took much like the gravitational wave missions

studied here.
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2. Missions to the Solar Foci

In Appendix A we shall compute the focal length 2(0) of the sun for
five published solar models, reaching answers in‘the range 3.36 < &(0) < 4.43 Tm.
This range 1ies between the mean distances of Uranus {2.87 Tm) and Neptune
(4.5 Tm). Every remote séurce of radiation possesses a focus somewhere on a
sphere of radius 2£(0) and centered on the sun. The line)from a given source,‘
through the center of the sun, and projected through the focus, is called here
the axis. We shall show that the focal region (i.e., the region of hich rela-
tive intensity) is a needle-like shape extending nearly 1 Tm-along the-axis,

but only a few Mm to any side.

There are two main reasons for visiting the foci. First, as we noted
above, a detailed intensity map of & focus could yield a density map of the sun,
with greatest sensitivity at the core. The possibilities of resolving solar
oblateness, and even tesseral features, exist, but will need further study.

The other main reason is gravitational wave astronomy. The interest here is in
imaging. As we will show in. VI-5, source details on the order of 10"3 arc seconds
may be resolvable in a focal survey. With gravitational radiation yet to be de-
tected at this writing, it is difficult to assess the value of such measurements,

but some possibilities are discussed in VI-5.

Laying the groundwork for such.missions is the primary intent of this
thesis. The first task is straight physics - eétéb1ishing the locations and
structure of the foci. In Chapter II the geometric optics of the sun are worked
out from general relativity. This analysis presumably parallels that of Cyranski
and Lubkin, but goes beyond their published results in several important -respects.
The theory is applied to five published solar models in Appendix A. The assump-
tion that the 'sun lies in, or at least not far from, this range of models is the

basis for the selection of several important trajectory and mission design param-

eters. 1-3



One important mission design constraint is that until a successful
focal mission has been flowh, the focal Tength £(0) will not be known. As we
will show, this implies that a first mission must reach the axis well before
the lowest 2(0) prediction, and then fly straight out until the focus is found.
The point at which this purely axial flight begins is called here the "turn
point", and on the basis of the results in Appendix A, a turn point distance

of 2 Tm is adopted, or about halfway between the distances of Saturn and Uranus.

The shape of the trajectory between the earth ("departure") and the
turn point depends stréngly on the propulsion methods employed. We will examine
the possibilities for chemical propulsion in Chapter 111, and ion propulsion in
Chapter IV. Various other possibilities and jmprovements exist, and will be

commented on. Several warrant future study.

To keep the thesis within reasonable bounds, it has been necessary
to constrain the choice of Tlaunch vehicles. Accordingly, we have adopted the
ground rule that a focal mission spacecraft shall be designed to fit in a
single dedicated Space Shuttle payload. The known mass, volume, acceleration,.
safety, and orbital constraints will all play important roles in the departure

vehicle design, to be synthesized in Chapter III.

To preview the departure vehicle design, a Tiquid hydrogen and oxyaen
propulsior system is chosen in III-7, compatible with the main Shuttle
propulsion. Existing but slightly modified engines are employed. The
propellant tanks of III-8 are novel. They consist of Mylar bags with web
supports, and shapes tailored to fit the Shuttle bay. The mass savings over
aluminum or titanium are remarkable. The structure of III-9 is also interesting.
It consists of a pentagonal truss of beryllium tubing. While this is expensive,
the mass saving over the next best material considered (magnesium) is impressive.

Also examined were aluminum, titanium, and steel.

I-4



The performance of this combination is nearly 14 Mg payload in a
parabolic escape orbit at the optimal inclination of 28.5 deq. This is not
far from the optimal departure conditions that we will find in IV-10 and 11~
for an ion propelled upper stage. However, for a chemically powered upper
stage, as discussed in Chapter III, substantial hyperbolic excess is called

for, and much lower payloads result,

For an all chemically powered spacecraft, the minimum complexity
is offered by a second stage using storable propellants, and fired at the
turn point. A rough design for this stage is offered in III-11. Once the
turn point distance and post turn point speed have been chosen (the latter
from the time of flight considerations of III-2), there is sufficient infor=
mation for a trajectory optimization. The free variables are the departure
and turn point impulse vectors and the earth's orbital position at departure,
Constraints consist of departure from earth orbit, final turn point conditions,
and celestial mechanics. The quantity optimized is second stage payload.
From the detailed results in II1I-12, we will find that payloads in excess of

1 Mg are possible for foci close to the ecliptic.

Transfer times to the turn point are computed in I1I1I-13, where it
is found that 4 years is typical for optimal trajectories. Finally, overall
mission times are considered ip I11-14. This debeﬁds strongly on 2(0), but 10
years is a Q]ausib]e estimate. Trading missipn time for payload is a topic

for future study.

Several po;siéi1ities exist for improving this performance, and
are discussed in IV-1. Reasoning that nuclear electric power is unavoidable
for outer planetary spacecraft, we are led to consider nuclear-electric pro-
pulsion as a replacement for the second stage. For conservatism, the bower

source is taken to be a scaled-up version of the Voyager spacecraft radioisotope
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_thermoe1ectric genera%or (RTG).“ With this type of source, power not used is
wasted; sb it pays to operate the engines.at full power continuously, varying
only the propellant flow rate. Taking as a performance index the turn point
mass less the mass of the RTG, we have a problem in continuous optimal

control.

wh11e optimal ion drive trajectory problems are not new, this one
is unusual in that the first stage impu]sé and the RTG mass are regarded as
controls, along with the continuoug drive acceleration vector. We have also
taken accognt of the s1oﬁ decay gf the RTG. With a half 1ife of 17 years,
this effect is important only for the Tonger transit times to the turn point.
However, the mathematical complexity is only slightly increased; and as a
computer solution is necessary in any case, the extra realism seemed worthwhile.-
The full three ﬁ%mensiona] problem is a two point boundary value problem of
tenth order with two integral path constraints, and 13 boundary conditions,

s$ix of which must be initially guessed.

An elaborate computer search, as described in IV-10 and 11, has
produced solutions for a wide range of transit times to the turn point, and
over the full range of source declinations. An interesting feature of the
solutions is that they are divided into separate classes, marked by the
number of orbits that are made around the sun, prior to bending outward into

a radial trajectory, tangent to the axis at the turn point.

Overall performance (payload at the turn point less the RTG mass)
is 5-10 Mg for the range of traﬁsfer times (up to 10 years) and source
declinations studied (all). Performance increases with transfer time,
rapidly at first, but very slow]y‘after about 9 years, and with an upper

bound of 13.8 Mg. Payload decreases with source ecliptic declinations; but
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gquite slowly, in sharp contrast to the all-chemical case. Performance

curves and several sample trajectories are pictured in Figures IV-2-14.

While the main research of this thesis is expounded in Chapters II-
IV, the author feels that the work would be incomplete without some dis-
cussion of actual focal missions, and of gravitational wave detectors
appropriate to those missions. Accordingly, two chapters have been added to
cover these topics. Partly for brevity and partly because the necessary daté
is sketchy, these topics are not covered as thoroughly as those in the earlier
chapters. However, in spite of analytic short-cuts and approximations, it is
often possible to establish the feasibility of various aspects of focal

missions, within existing technoiogy.

To begin, "Weber bar" detectors are reviewed in V-2. A combination
of low damping single crystal developments, and simple deep space cryogenic
techniques are shown to be promising candidatgs for focal missions. An
alternative to Weber bars is the long baseline optical detector, using three
or more spacecraft. In V-3-5 such a detector is synthesized from a combination
of existing techniques, and-optimized for the anticipated frequency of radia-
tion from the Crab Nebula pulsar, 60.427 Hz. Such techniques Took very
promising for mid-frequency periodic sources such as pulsars; but the antici-
pated radiation levels are so low that even this may not work. Construction
of such a system poses many challenging optical, electronic, and controls

design problems.

The final chapter covers a range of more or less disjoint topics;
but Teading up to a final section (VI-5) on mission design. First (VI-2),
there is a review of potential sources of radiation. These range from binary
stars, whose radiative properties are precisely calculable within any given

theory of gravity, to the more speculative pulsar, glicbular cluster, and
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galactic sources. Ecliptic coordinates for some of the more promising
sources are calculated in order to establish the feasibility of reaching

their foci by chemical- propulsion. (A11 are reachable by jon propulsion.)

The next section examines the quality of the solar lens. Diffraction,
which may turn out to be the worst lens problem, remains an open question
at this writing. Various possibilities are mentioned in VI-3. If any of
these are eventually proved correct, -substantial modification of the geometric
optics of Chapter II and Appendix A may be needed. Another lens problem is
solar asphericity, which is both a blessing and a curse. The difficulty is
that extending the analysis of Chapter II and Appendix A to an aspheric sun
is Tikely to be quite tedious. On the other hand, measurement of the
asymmetries of a focal pattern may reveal the actual asphericity of the sun--
a substantial motivation for focal missions. Other problems considered are
interference and image size (not really a lens problem). The former appears
to matter only at very high radiation frequencies, and the latter only for

extended or multiple Sources.

Without analysis, it is by no means evident that existing techniques
are adequate to navigate beyond the turn point with sufficient accuracy to
locate the focus. This is a question which a student in guidance and con-
trol finds especially difficult to overlook. In Vf—4, navigation based
purely on NASA Deep Space Network tracking is examined, After drastic simpli-
fication, an easily solvable problem in optimal estimation and control is
posed. The main conclusion js that navigation to adequate accuracy is just
possible, without expensive long-term operational measures. However, by
the add%tion of an on-board low level accelerometer, substantial improvement

is possible, Much further work is needed in this area.
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The final section, VI-5, serves to bring it all together. Three
classes of focal missions are defined and studied, and mission profiles are
developed for each. The three classes are the first mission for determining
the focal Tength 2(0), solar missions for determining the internal structure
of the sun, and astronomical missions for examining the spatial structure of
interesting sources. In all cases it is assumed that gravitational radiation
from the {ntended source has somehow been detected, prior to mission planning,
that the intended detector can sense this source even without focal enhance-

ment; and that precise optical or radio astrometric source data is available.

For each mission type, a rationale is developed, feasible detector-
propulsion combinations are found, and the search, acquisition, and focal
study phases are delineated. A variety of complex trajectery design and
optimization problems are identified for future study. In general, the goal
of each is to maximize the scientific yield, while not letting the overall
mission time become excessive. The mission design for each type will be an

extremely challenging taskl
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3. Directions for Future Research

If, at the completion of this long thesis, one thing stands out,
it 1§ how much there is Teft to do. -From the many speculations and open
questions in the text, a number have been culled for discussion here. Thé
questions are grouped under five headings -- physics, transfer orbit studies,
detectors, mission optimization, and navigation. We will take them up in

this order.

By almost any reckoning, the outstanding open physics question is
diffraction. The present treatment (and that of Cyranski and Lubkin)
corresponds to geometric optics. That this may be inadequate for low
frequency sources is commented on in VI-3; but no suggested line of attack is
offered. If focal research is to be pursued, understanding diffraction should

rate first priority.

A group of studies bearing on the first and solar research missions :
derive from the reference solar model, as discussed in VI-5. The present
work deals with five published models, but for most iliustrative calculations,
relies on the Ezer-Cameron modéﬁsg). As this 13 year-old model could probably
be improved on today, a study should be undertaken to derive a new spherically
symnetric model -- the reference solar model, as i? is called here. From
this model, and its more plausible competitors, the Tikelihood density p(2)
that the focus will be found at the distance % should be estimated. This is

essential to the planning of the first mission.

Another aid to planning is the full three dimensional solar model.

In this the solar density is described by some sort of expansion, whose co-



efficients we hope to determine from solar missions. To plan an optimal, focal
exploration, we need to weight the relative scientific importance of these

coefficients. This point is discussed further below and in VI-5.

As gravitational theories differ greatly in their prédigfions about
gravitational radiation, the first unequivocal detection is Tikely to weed out
several currently viable theories. An interesting possibility is that an
examination of focal structure may subject the survivors to a still more dis-
criminating test. In fact, the detection of any focal structure would rule
out a few theories in which gravitational waves, unlike 1ight, propagate in
a flat background metric. Except for these, the present Chapter II could be
redone within other theories, and the gain picture constructed for each, as
in Appendix A, using the reference solar model. Substantial differences in
the pictures may result. To avoid unnecessary work, it is probably best to

hold this study until after the first detection has culled the field.

A final physics effort of great value to focal studies will Qe an
improved source survey, giving new estimates on the local signal strengths,
frequency spectra, and polarizations of plausible sources. It is recognized
that an adecuate survey may not be possible in the near future. Of course,

efforts along this Tine are certain, with or without further focal studies.

Turning to engineering studies, several possibilities for improving
transfer orbit performance over the chemicai]y and electrically powered
vehicles examined here are suggested in the text. Perhaps first amongst
these is planetary gravity assists. This would greatly increase chemical
capabilities, and may be helpful for ion propelled véhiclies as well. The

problem here is that there are many ways to get single or multiple planstary
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assists, and examining any one is much harder than the corresponding probiem
treated here. Thus, total sky studies, as done here, ma& not be feasible,
and interesting miséions would have to be studied individually. A related
possibility is the addition of a third stage to the all-chemical vehicle. In

combination with a gravity assist, performance might be considerably extended.

Improvements over the electrical propulsion system of Chapter IV
are possible. First, the ion engine efficiency, taken as 50% here, should be
reviewed. Also, a better RTG than that flown on Voyager is now becoming
available, and for missions more than a decade off, a fission reactor power
supply may be feasible. However, none of these improvements require any
qualitative change in the theory of Chapter IV. Ion drives could be extended
in another way if some or all of the first stage impulse were achieved
electrically. Much new theory would be required. Finally, there are some
holes in the present theory. The trajectories computed here are certainly
local Optima;‘but the global properties remain somewhat conjectural. Also,
the d;vision of trajectories into overlapping classes suggests that conjugate
points may exist. A deeper look at these questions may lead to better

understanding.

A really intriguing possibility is to combine the ion drive with a
solar sail, as discussed in IV-1. Since a nuclear power source is needed in
any case, a sail by itse1% is not very attractive. However, outer planet
solar sail trajectories look reﬁarkably similar to the jon drive tfajectories
found here. Thus, a combination might yield substantial improvements in
performance. Considerable preliminary design work is needed in order to con-
struct a spacecraft model, suitable for optimization, as in Chapters III and

Iv.
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A final transfer problem needing study is non-optimal departures.
In I1I-6 it is shown that optimal departure for a chemical mission is possible
only over a 1imited band of source latitudes and longitudes. "Optimal" here
means that the departure impulse can be Tined up with the Shuttle orbital
velocity. Missions to foci lying outside this band have not been studied.
For ion drives, the greater control flexibility makes it plausible that all
departures ;11] be optimal, regardless of source location. However, this

point needs proof.

Returning to physics, the design of gravitational wave detectors
for use in space has a long way to go. Efforts in this direction, on both
compact and Tong wave detectors are 1ikely, regardiess of the future of
focal studies. Thus many of the outstanding propulsion, navigation, and
control problems identified in Chapters V and VI may receive attention as
well. 1In particular, the effect of ion propulsion process noise on the

detector will have to be addressed.

Some detector design studies are unique to focal missions. One of
these is to find the range of applicability of the more sensitive long wave
detectors in the confined neighborhoods of the foci. This is needed in the
decisions on what types of detectors are suitable for each of the missions
examined in VI-5. As for compact detectors, in V-2 it is shown that cryogenic
techniques are uniquely suited to focal missions. However, a study is needed
to see how far we can go below the 20K passive radiator examined there,

without excessive power, weight, and compliexity.

The attempts at mission synthesis in VI-5 have identified a ‘host of
unsolved problems. Perhaps the first of these is the selection of the turn
point radius rr for the first mission. This should be as far cut as possible

to maximize performance; but not so far as to risk-bypassing the focus. A
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plausible compromise might be where the probabiltity of the focus lying within

r.. is around 0.07; as determined from the 1ikelihood density p(2) discussed

T
above. A less conservative choice may be necessary if chemical propulsion

then yields too little paylioad. The selection of the post-turn point speed

vy for the first mission is another difficult optimization, for which an
approach is suggested in VI-5. That both rr and vy have strong effects on the
payload, at least for chemical propulsion, can be seen in Figure III-9G.

Similar studies for ion propulsion have not yet been carried out.

The selections of ry and V1 for solar and astronomical missions are
different kinds of problems, since 2{0) will then be known. Some discussion
is given in VI-5. In these cases the selection of re and vy become part of
the design of the acquisition sequence. This is the portion of the trajectory
following the first detection of focal effects, whose purpose is the precise
tocation of the focus. The optimization is yet to be properly formulated, and

may be as difficult as that attempted here.

The next set of studies is needed to design the focal tour; i.e.,
the final parts of the trajectories, following acquisition, on the first and
solar missions. This starts from the reference solar model discussed above.
First, the gain contour picture of Appendix A should be repeated for this
model. Diffraction effects should be well understood before attempting this,
as there may be important souéce frequency effects. The scalar gain field so
obtained will possess scalar field derivatives with respect to each coefficient
of the full solar model, including aspheric terms. This will aid the mission
design in that if the measurement of a particular coefficient is desired, the

tour should include regions where that derivative field is large.

More precisely, the process of extracting the actual solar model

coefficients from a sequence of focal intensity measurements is greatly
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facilitated by the gain field derivatives with respect to those coefficients.
In addition, from the given scientific value of each coefficient, as dis-
cussed above, a performance index involving the relative desired accuracies,
along with propellant usage and mission time, could be formulated. This
would provide a tool with which different types of focal tours could he
compared. Once again, the gain derivatives would play a central role.
Whether a full optimization, such as is attempted in Chapter IV, is possible
remains to be seen. Both the algebraic and the computational difficulties

look immense. Some further discussion of this is given in VI-5.

The last set of mission studies concern the design of astronomical
missions. These are missions in which a fleet of ion powered detectors
explore the focal image of a source. It is shown in VI-2 and VI-5 that good
candidates for these missions are Tikely to be irregular burst sources, with
fairly frequent bursts. This compiicates the acquisition process in that the
signal amplitudes must be compared between the members of the fleet to locate
the axis. Unless it becomes possible to make absolute internal sensitivity
calibrations of the instruments, it will be necessary to design fleet maneuvers
in such a way that cross-calibration of the detector ensemble is possible
during acquisition, after several detected bursts. The design of these fleet

cross-calibration maneuvers is still another chalienging problem.

On arriving at the %ocus the fleet comes to a near halt, and
attempts to map the focal image. Here, distortions of the focal intensity
picture, previously known from solar missions, are interpreted as multiple
or complex sources. Potential sources, such as the center of our galaxy,
might show interesting structure in this way. Once again we face-the question
of how to arrange the fleet. It is much more complicated here in that pre-

lTiminary indications of structure would lead to redeployment in order to
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improve the resolution. Thus we are faced with a feedback control problem,

whose initial conditions are themselves the product of an optimization.

A unique feéture of astronomical missions is that there are often
muitiple targets. The nucleus and "jet" of M87, and the bevy of quasars
"near" M82, are suggested targets in VI-2 and VI-5. After examining the
focal image of one source component, the fleet would jump to ancother. The
economics of this are discussed in VI-5. This time the new focus would be
approached laterally, which may modify the acquisition process. Further
complexities arise in that the new source component might not emit much
gravitational radiation. Thus a lengthy and possibly unfruitful search may
be needed. The design of the joint fleet search pattern is yet another

difficult task.

Finally, in connection with multiple sources, there is the question
of the order of visits. If the criterion is the minimization of total jump
time, then we are faced with a variation of the well-known "traveling
salesman" problem. The jump sequence problem becomes a bit more compiex if we
add a priority Tist; i.e., penalize the total time to reach some source foci
more than others. 1In eithgr case, for N source components, there are N!
distinct tours, and direct comparison of all these becomes very expensive for
N28. Methods for weeding out grossly uncompetitive tours would be very

desirable.

The Tast group of needed studies concerns navigation. In VI-4, a
highly simplified study shows that the NASA Deep Space Network (DSN), ﬁsing
differenced range techniques, is just capable of navigation following the turn
point. Two to three modest antennas, transmitters, and receivers would be

needed nearly full time over several years. It is also found that the DSN
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burden can be substantially relieved by incorporating an on-board accelerometer.

Various studies are needed to refine these conclusions.

First, we need a sﬁudy pf the economics of the various ways in which‘
the DSN could support focal missions. The parameters include ground and
spacecraft equipments, frequencies, system calibration techniques, and operating
modes such as differenced range, doppler, and QTfferentia1 long baseline
interferometry. The output would be tracking residual biases, variances, and

corretation times versus cost for the more competitive combinations.

The DSMN study provides most of the inputs needed to redo the optimal
éstimétion and control study in VI-4. This time the approximations of
continuous 1nf0fmation, independence of the cross axes, and independence of
the controls and process noise could be avoided, or at Teast better justified.
For this, a believable model of process noise is essential. The output here
would be the estimation, control, and navigation error covariances for each
set of input assumptions. In a variation of this study, an accelerometer
would be added with various 1eve1s‘of bias and measurement noise statistics.
When ail this is completed, we should know what it will cost to ﬁeet the

navigational requirements under each of several options.

Some alternative measurements also need study. One of these would
be an optical instrument capable of determining planetary positions relative
to the stars. While the necessary accuracy (of order 10'7 radia?) will be
difficult to achieve, there is an inherent advantage over an accelerometer --
gravitational perturbations are not ignored. The study should be aimed pri-
marily at finding the instrument accuracy required to relax the DSN require-

ments significantly, with no accelerometer.
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As a final alternative we mention the possibility of interplanetary
navigational beacons. A set of at least three of these, synchronously trans-
ponding an earth master station, would amount to a three dimensional Loran
system. While the cost of such a system would be high, its accuracy would
greatly surpass that of the DSN, even if augmented with a first rate
accelerometer. Of course, this is not really a topic for focal mission
studies -- many proposed interp]aﬁetary missions would benefit from a beacon

system.
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CHAPTER TII

SOLAR FOCI

1. Static Radial Fields

Many of the gross features of solar focussing can be found f}om a
solar model consisting of a static, radially symmetric ball of perfect

(94) 1nd mry(66)

fluid. Following the treatments of Weinberg we will
derive the deflection of null geodesics in such a field.
We begin with the line element. From MTW, Eql 23.7, the most

general static, radially symmetric line element can be written as:

2 2A

ds® = - e2®dt2 + e dr2

2

+ rzde + rzszed;ﬂ2 (1)

where & = &(r) and A = Ar). weinberg(94)obtains an equivalent form,
Eq. 8.1.6. 1In (1), the coordinate time t is that measured by a remote
observer (r =+ «) in flat spacetime. The coordinate r is a label for
the radius such that a great circle at constant r has proper circumfer-
ence 2nr, or a sphere has proper area 4wr2. The coordinates ¢ and 6
are the usual spherical coordinates (longitude and colatitude).
Together, these are Schwartzchild coordinates.

It is easy to see that a free tréjectory in such a field must be
contained in a plane passing through r = 0. Thus, without loss of

generality, we can take 8 = n/2, and reduce (1) to:

2 2 2h, 2 2

ds® = gijdxidxj = - e2%4t? + gl 4 p d¢2 (2)

where i and j range over t, r, and g.
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Any free falling particie foilows a geodesic.

trajectory must obey:

i odxd dx®

jkdp dy - Y

—— + T

.The affine connections or Christoffel symbols are:

i1 e
Tik =29 og,k * 9ak, ™ Isk.0)

while ¢ is some parameter describing the trajectory.

noting that the g_ij

Those not vanishing are:
=t -
th = ®](r)e2(@'ﬂ)
F:r = A" (r)

i F£¢ = - pe 2t
Fgﬁ =~Pgr =1/r

This means that the

(3)

(4)

From (4), after

depend only on r, we can easily work out all the F}k:

't v dt dr |

2 t20 g o (6)
El—2~r--t~ 3 ez(é'ﬂ)(gE)Z + A‘(Qﬁ)2 - re_ZA(gg)2==O (7)
Ay 0 dy di

&g, 2drdp_ g (8)
de v odp dy



0f these, first integrals of (6) and (8) are immediately available:

20 dt _ '
"‘5 - K] (9)
v %%-= K, (10)

Putting these into (7) yields another integral:

2
ZAfdr 2 -2% 2.-2 _
e (HdE) - K}e + KZY‘ = K3 (11}

So far, we have made no use of the fact that we are dealing with
null geodesics. In such cases the Tine element vanishes. Thus, putting

(9-11) into (2) we get:

N 12

We will also find it convenient to identify the point of closest
approach or perihelion. Here we define r = o and @(ro) = @0. Also,
we can arrange our coordinates so that ¢(r0) = 0, and increasing. Since

r is a minimum here, dr/dy = 0, and from (11) and {12):

0

K]ro = Kze (13)

Next, we use (10) to eliminate v from (11). MWith the help of (12)

and (13) this gives:
2 2 2(%,-9)
TdrY _ =281/ r 0
(F dﬁ) - @ l:(ro) . ) 1] ()

This is the differential equation of the path in Schwartzchild coordinates.
It can be integrated directly as soon as the metric functions & and A are

specified.
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2. Deflection

The halves of the trajectory on each side of perihelion will be
symmetric; so to compute the defilection we can restrict attention to
the region Fg 1 <o 0<¢ 5.2 + €3 where £ is a small angle repre-
senting half the deflection. If (14) is integrated directly, then
£ = f(w) - %n Thus, a numerical integration would require extreme
precision. Two methods have been found to circumvent thig.

The most obvious is to introduce a new variable o by:
co = r,/r (15)

This has the range 0 < o < /2, and increases monotonically with r. We

can then define
e=¢g-g¢ (16)
This gives ¢ the correct final value, and we will show that it is every—

where small for solar trajectories.

From (15) we have:

_ dr
tan o do = (17)
and putting (15-17) into (14):
oh,. 2 (do ¢ _ 2le?)
e““tan U(HE?EE) = e sec“o - 1 (18)
which can be rewritten as:
2{0,-9) 2
[é 0 -1+ 520} (] + gs) = o?h; (19)

11-4



Anticipating that ® and A are everywhere tiny for the sun, we see that
we can subtract szo from both sides and be ieft with a relation between
tiny quantities. -Unfortunate1y the result is of second degree in de/do,
and reguires either linearization, or iteration, or both for its soclution.
It is clear though, that e is everywhere tiny.

The other method avoids the second degree problem by a curious finesse.
Suppose we form the derivative in (14) by replacing do by dg in (17).

This requires a new variable A:

tan A dg = %¥-= d(In r) (20}
It is evident from (20) that 1ike o, A has the range 0 < X < w/2. Putting

(20) into (14) yields:

eZAtanzk = (Jl-

g 1 ‘ (21)

)2 e2(<1>0-q>) i

This plays the role of (15) in the previous method in that it aliows A
to be calculated directly from r,once ¢and A are’given. We also need

to differentiate (21), After a little algebra we get:
F(r,x) = r tan a %% = [1-r¢'(r)] [1-(1-e'2A)c2A]-PK(r)SZA (22)
This time to compute the deflection we introduce the new variable ¢:
§ =¢ - A (23)

This is similar to ¢ in {16) and, in -fact, 8(=) = g(=} = half the final
deflection, We shall actually call & the deflection, but note that the

total bending angle as seen by a remote observer is 2s{=), Putting (23)

into (20) and (22) gives:
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(24)

—
+
Si5
1]
=

so that

2

Foo=1-F=rA'sh+re + (1—r®')(]—e"2A)c2A (25)

This is it. The expression on the right is seen to be tiny for the sun, so
F =1, and 8 is tiny. The system (21) and (25) can be integrated directly,

without approximations or excessive digital precision.

3. The Perfect Fluid Assumption

To make further progress we need to relate the functions &(r) and A(r)
to existing solar models. To this end we will make the further assumption
that the sun is a perfect fluid. That is, for our purposes, the contribu-
tions of shear stress (viscosity) and energy transport to the stress-energy
tensor can be neglected. For a justification of this, based on solar modei:
see Appendix A.

A full relativistic treatment of a static, radially symmetric star,
composed of a perfect fluid is given by MTw(Gﬁ)in Sections 23.4 and 23.5.

It is enough to state the main results:

L 2—’"£L) (MTW 23.18) (26)

where

m(r) = 4w /r xzp(x)dx (MTW 23.19 et. seq.) (27)
0

Here p(r) is the mass-energy density, and m(r) is the total mass-energy
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within radius r, which is the Schwartzchild coordinate radius used above.
To be consistent with MTN(662 gravitational units are adépted, in which
G=c =1; so that m is a length, and p is (1ength)-2.

The other needed result is:

o' (r) = (% + amrp)eh (MTW 23.21) (28)
r

In this p is the pressure in units (1ength)"2. It may seem unnecessarily
fussy to carry the pressure term here; but it %s 1ittle trouble, and we
are spared justifying its neglect. For each given solar model in Appendix
A, (28) is integrated numerically to give &, as reqdired in {21).

To make use of these we first differentiate (26), and combine with

(27). This gives:

plem2h omi(r) E(%l = dwrp(r) - M%l - (29)
r r S

Then putting (28) and (29) into (25) leads to:

F %%-= 1-F= 4wr2e2A(p-+p)szk + (%?—+ amrPp)cia (30)

The system (21), (26), (28), and (30) is now readily integrated for any

given solar model.

4, Non-dimensional Equations

One further convenience in numerical work is to eliminate dimensions
in such a way as to make the more important variables =1. To do this we

will introduce the solar "radius" r. as that value where o(r) =p{r) = 0
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for r > res and not otherwise. Then from (27) the mass of the sun (total
mass-eneréy) is mg = m(rs), and m{r) = mg for r 2. We will also

introduce an “average" density:

. 3m
p=—2 (31)

3
4wrs

3

_.The quotes are because this is a purely formal definition - %—wrs is not

~a covariant volume. The values in MTN(Gs)are:

6.9598 x 10%m

Y‘S=
) 30, .
m, = 1.989 x 10%%kg = 1476.64
5= 1.4085 gn/cm = 1.04567 x 107242

Slightly different values are adopted in Appendix A to conform to specific
solar models.

Using these definitions we get these normalized variables:

R:r_.; M:-I:n——; w='[“3", P=‘9__ (32)
l"s ms ‘5 E
We also define
Y =m/r_ = 2.12167 x 1070 (33)

With these the system (26), (28), (21), and (30) becomes:

e (34)

YeZA(E§~+ 3RP) (35)

o' (R)
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o0, 2, . (R, 2(2,-9)

e““tan“A = (ﬁgi e -1 (36}
F2 =1 - F = ayv[R%eanp)sha + (B + 3r%p)cha] (37)

where
Ro = rO/rS ) (36)

To sum up, (34-37} is a system for computing the deflection of a nuil
geodesic by the sun requiring only the evaluation of integrals. It assumes
only Einstein general relativity, and that the sun is a static, spherically

symmetric ball of perfect fiuid. There are no approximations.

5. The Exterior Deflection

The portion of the deflection & occurring outside the sun (R > 1) is
independent of the solar model, apart from small differences in Y. Also
(34-37) take.ﬁarticu1arly simple forms, and we will carry out the integration
analytically to O(Yz). This development is not really essential to the first
order theory that follows; but it is interesting, and it may point the way

to future extensions of the theory to higher order. By definition:

W=p=0; M=1 (39)

Thus from (34):
- 2y
e =1-3 (40)

This allows us to integrate (35):

11-9



1

fR A0 dx o R
- 2 - x(x=2Y)

oo X

&(R)

It

3 (1 - & = - A(R) (41)

in which, for simp]icit&, we have made the conventional choice ¢(x) = 0.

With this, (36) simplifies to

sec?h = (&) e O+ 2 (42)
. RO R .

and finally, (37) becomes
FE=1-F=3ch (43)

At this point we need to assume that %5 is O(r). In Section 7, this
will be deﬁonstrated for simple po]ynomiaiidensity models of the sun, and in
Appendix A it will be confirmed by direct numerical integration of (34) and
(35) for the models téeated there. Only a model departiné greatly from these
"conventional" models, such as a collapsed core, or a central black hole,

would violate our assumption. Appliying this to (42):

2
2 2YR .
2. _{R 0 2
sec A = (———Ro) (1 + 2@0 + H@ + 0(y°) (44)
from which
Ro 3 2
cA=—R—(T—¢0--R—Yc7\)+O(Y) (45)
0\

With this we can eliminate R from (43):
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ds _ 3y 3y 2.\ 2 3
'dT-RU"'RCl)Cl‘*‘O(Y)
= (rae + B3 A +orrd) (46)
R0 0 Ro

There is no difficulty with any of these expressions as R0 >0, as cA < Ro'

“As one application of this we will consider the starlight bending
problem, first solved by Einstein in ]916(37), using an equivalence -principle

argument. In this case R0 > 1. First consider the O(Y) term:

3y A 3 2
§(R) = &+ A c’ods = ﬁl-(z + ¢c%2)sAa | (47)
e} 0

For R = =, this gives Einstein's well known result for the total bending,

which at grazing incidence (R0 = 1) is:

26(x) = 4y = 8.48668 x 1070 rad = 1.7505 Sec

The effect of finite R is surprisingly small. Let

60) = (1 +4c®sa=1-2ch -1 ... (48)
2 8 8
_ Now at’ the position of the earth
e  1.495985 x 101
R= = - 5 = 214.946
5 6.9598 x 10
and the correction factor is essentially
3ch= ‘§E'= 1.76 x 10710

8R
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In fact, for R = 3R , 6(R) is already within 172% of 8(=). The message
here -is that unless we are very chse'to the sun (R < 10 say), then
§(R) = §(=) -for practical purposes. )

To carry this result toh0(yz), we.can from (41) put ®, = - Y/R,. Then
(46) leads to h

L ‘ 2 [u/2 -
8(R) 2 8(=) = &L (1 - L) + ]—2%-_/ c®adx
. 0 70 - R VN
0
- %ﬁ-[1 + ﬁi—(3$%1 - 1)] (49)
6

This time the correction factor at grazingincidence is 4.127 x 10, which
amounts t0 7.22 X 10"6 $ec. - This correction is bigger -than that for finite._

R, for reasonably Targe R, but still negligibie for practical "purposes.

Turning :now to rays with R, < 1, the external deflection is found by

integrating (46):

' T2 L. /2 :

6. (=) =31 (1 +0) / chadr + _—12Y2f Oxdr + 0v%)  (50)

e R 4] 2
0 A1 . R0 .A]_ .

where from (45):

ey = A1) = Ry(1 - 0 - vR2) + 0y?) (51)

In the work that follows, we shall be primarily interested in nearly
central rays; i.e. those for whiéﬁ Ro ; 0.15. In this casé, the integrals

in (50) are quite small, and are best'téeated by an expansion. Setting

6 = A (52)

r
2
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the c3h integral becomes:

' 8 6=6 e
w2 1 1 .3 1 3
f A =_[ s3ade =f 59 4(se) = f x_dx
A 0 cd

1 6=0 0 1_x2
CR]
= _/r x3(1 + %-xz + §-x4 + )dx
0
_1 4 1 6 3 8 o
STCN F TNt g Ay (53)
Similarly
/2 '
I 1.9
4/; coadx = 7 CA t3gc Ay ¥ (54}

1

It is now evident that for central rays, the external deflection is of
O(YRg), and is only a minor contribution to the whole. Since RZ <Y, we are

justified in dropping terms of O(YRE). Thus, combining (50-4) we get

8a(=) = \R (1 + Rg 3 R4) + 0(YR9) (55)

1
3
It is interesting that even to this precision, the structural details of
the sun (@0) do not appear. This is because the exit angle from the sun,

Ay depends only weakly on 3, (see (51)).

Again we need to consider the error due to finite R. From (50} and
(53}, the fractional error from this source is essentialily R4, Thus, from
(55), the error in 8, is of O(y’) if R_< 0.15 and R > 15. The latter

correspends to r > 107 Gm, or just about the orbit of Venus.
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G. Analysis to First Order

While the system (34-7) can be integrated directly for any given R,
and model of the sun, the process is very tedious; and the results may be
hard to interpret physically. What we would prefer is an analytic form
§ = GQRO), whose terms would be physically understandable, and whose
parameters could be obtained directly from the solar model. This goal will
- be shown to be attainable if we restrict our analysis to 0(y), and consider

only nearly central rays (RO.E 0.15 say).

To do this we must assume that A, P, and & are all of 0(Y) everywhere.
This is certainly valid for the solar models used in Appendix A; however,
less "conventional" models, particularly those involving a collapsed core oi
central black hole, have been entertained. Such models are hereafter

excluded, at the risk that someday the evidence might invalidate our main

conclusions.

Once the O(Yz) terms are deleted, (34-7) reduce to:

¢\ = co =R /R (56)
' 2
%g—= 3Y(R2W520 + g-c o) (57)

Also, from (27), (31), and (32):

R %
M(R) = 3 J/” X“W(x)dx (58)
0

In what follows we shall be attempting to isolate the effects of the param-

eter Ro' Because of this, the intermediate variable o is no longer useful.
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Eliminating it, and integrating, the system (56-7) becomes:

w 1 1
5(R,) = 3YR0./F; [(RZ - R2)2 MR, p2(p2 _ g2y 2 ﬂ;ﬁ—)}dfz (59)
0

where we have assumed that we are observing the deflected ray at a suffi-
cently great distance that the result is indistinguishable from the result

at infinity to 0(y). (See last section.)

The Tast term in (59) may be integrated by parts:

2{2R4WRNR—

] —
~3/p2 2721 0n? 2
5 M(R)d[R (R - RO) (2R +RJ)

ot
£?“~\
8
)
™Y
1
=
—
1
ouvrd
z}-"\
11
8

o 3R =R0 .

1|2 © 2 2‘12‘ 2. W(R |

T2 §'",/P (R™ = ROYT(2R™ + R)) -%_l dr

Ro R0 .

(60)

in which (58) has been used in the last step. With this {59) becomes:

3 1
_ 2 6Y 2 2,7

S(RO) =2 - R (R® - R_)® RW(R)dr (61)

Q 0 R0

The upper 1imit has been reduced because W(R) = 0 for R > 1. That the two
terms of (57) could be combined by an integration by parts was first noticed
by Professor C. M. Will, without benefit of the suggestive arrangement

{56-8). This has greatly compressed the analytic drudgery that follows.

To make further progress it has been found convenient to expand W(R):

W(R) = W(0) + RW'(0) + % R%W"(0) + -.. Zo Jir J)(O)RJ (62)
j=
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This implies that W(R) is analytic on the range 0 < R < 1. As we have
excluded black holes, the only physically plausible violation of this would
be a stratified.sun, involving jump discontinuities in W{(R). This does not
seem very 1ikely; but even then we cou1a closely approximate W(R) by an
analytic function of sufficient complexity that the integral (61) would be

only trivially affected.

One reascon for this expansion is that for a gas or plasma sphere in
hydrostatic equilibrium W'(0) = 0. To see this we note that the pressure

gradient is proportional to the local gravitational acceleration, so that

jo

db - g MR (63)

R2

v

Thus for very small R we get
5 2
P=P(0) - KlR . (64)

Thus P'(0) = 0, and for any plausible equation of state W'(0) = 0, provided
T'(0) = 0, where T is the temperature. The latter must hold as T'(0) # 0
implies a temperature cusp, which can't be stable in a static gas or plasma.

For a more elaborate discussion of this, see for instance Reference 78.

Now applying (62) to_{61):

_2r _6Y 1 ..(3)
§(R ) RTR, Jgo 77 W7 (0)64(R ) (65)
where
2
8;(Ry) = -{ —g RIT24R - (66)
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A convenient way to treat these integrals as a class is to expand the

radical:
1
2\Z . ”;
0 o
(1 - ?) {: _R— {67)
where
- i(2i-2)t  _ 1-1-3:5-7-.- (2i-3) (68)
175211 (41)2 2:4.6... (21)

This is valid over the closed range R > R,. Thus (66) becomes:

1. o S R
6. (R ) =/ RIVZ4R - Y c.RZ‘f pi*te-2i4p
170 R i=1 ' °JR

0 0

. o Cs . .
=q3 0 -RD) - L e TR (69)

io1 313-21 Yo

provided that in the last term, j # 2i - 3. This problem can only occur

for odd j. We don't care about Gl(Ro) since W (0) = N, and for j = 3 we get
i = 3; so neglecting this integral in G3(RO) leads to an error in G(RO) of
O(YRngRO). For j > 3, these Togarithmic terms are even smaller.

Although the logarithmic terms are neglectable, we can see that for
odd j, some derivative of.Gj(Ro) will have the form K/Ry. Thus &;(Ro)
is analytic at Ry = 0 only for even j. This is why we have not attempted

to expand Gj(Ro) as a power series in Rg.

Next we can apply the result (B10) from Appendix B to eliminate the

Rg+3 terms for all even j. We are not concerned with j=1, and the neglect of
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the equivalent j = 3 terms leads to an error of only O(YRg). The higher

odd j terms are even smaller. Thus, keeping only terms of O(YRg) we get:

1

. 1

2
o 8(1-3

+ Rﬁ + O(YRglnRo) (70)

which is good for all j # 1.

We are now ready to sum out (65). To do this we observe from (62) and

(58) that
1 ® .
2 _ 1 (3igy = 1
'4 R“W(R)dR J_};O sT5Esy W (0) = 5 (71)
1
- 1 (3)
_}{: H(R)dR = ;g% oy 4 (0) (72)
1 ) .
W(R)-W(0 _ ] (3)
.jg. . dR = ;é% Ty (0) (73)

Putting (70-3) into (65) results in:

N 3 5
5(R0) = §,R, - YhRZ + O(YR01nR0) (78)
where
. 1

§, = 3y W(R)dR (75)

0

.
h = %— W(0) +_)(‘ W(O 'ZN(R) dr (76)

0 R
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This is it. The deflection is essentially a simple cubic function of

. Ro’ whose coefficients are obtainable from any given solar model by
straightforward integrations. The fractional error is of 0(R§1nRO), which
for R_= 0.1 is only 2.3 x107%, and even for R_ = 0.2 is only 2.6 x 107,
Although the integral in (76) may look improper, it does not give any
trouble, since at R = 0 the integrand is just %—w"(O). A method for obtain-

ing this is discussed in Appendix A.

7. Polynomial Models

In conjunction with the first order theory just developed, it is
instructive to consider some very simple mass models of the sun. These are
easy to calculate and understand, and exhibit many features of the (presumably)
more realistic models of Appendix A. Having worked out the first order
theory in terms of the density expansion (62) suggests looking at polynomial

density models, i.e., those obtainable by truncating (62) after a few terms.

Two conditions will be imposed on these models. First, we must adjust
the N(J)(O) so that M(1) = 1, in order that our model has the right mass.
Also, from the argument in the last section, we will again assume a vanishing

central density gradient; that is, W' (0) = 0.

The simplest model obeying these constraints is the uniform density

[

mode1, for which WO(R) 1. The deflection is easy for this model. From

either (61) or (74-6):

= 2Y (1 - 35 = _ 3.3 5
GO[RO) R, (1 ~s 01) 3YR, - 7 YRS+ O(YRO) (77)
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1t is not possible to construct a distinct linear model with
w'(d) = 0, SO we will go on to a quadratic model, NZ(R). Here we are free
to specify one nore parametér; $o, to add a touch of realism, we will

require w2(1) = (. It is then readily shown from (58) that
5 2
Wy(R) = 3 (1 - RY) (78)
Again using either {61) or (74-6) we get:

5,(R,) = %ﬁ-(] - s%,) = BYR - 2 YRS + 0(YR) (79)

A cubic model 1is about as far as we need to go, since we can get a
fair resemblance to the published models by adding an R3 term and requiring

both Wy(1) = wé(1) = 0. Applying this to (58) we get this time:
y ~ 2 3
o(R) = 5(1 - 3" + 2R%) (80)

and again using (61) or (74-6):

1+s0
2y 13 2 33 o 15 .6 ( 1)
63(Ro) "R [] - (- 7 Rt Ry)soy + T6 Ro!M T-soy ]

G
3
= %?-YRO %f Ry + 0(YR51nR ) (81)

The density models and their associated mass functions are plotted in
Figure I1I-1, and the corresponding deflections are shown in Figure II-2. For
R0 > 1, the common result is § = Se ZY from (49). The values of GS/Y and
h are collected in Table II-T1 below.
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Figure II-1. Polynomial Density and Mass Models
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It is also interesting to find the interior values of A and ¢ for

these models. From (34) we have:
A= % M(R) + 0(y?) (82)

Since A'(R) < 0 when R > 1, and A{0) = 0, we must have a maximum in the
interior. This is readily calculated from (58) and {82) for each model.

The values of Amax/Y and R(A___) are included in Table I1I-1.

MmaX

Now let's look at &. To first order, and neglecting the pressure,

we have from (34, 5):

' (R) = L MR) >0 (83)

Since we have chosen the usual reference value ®(«) = 0, ®(R) < 0, and the
most negative value is at R = 0. To find this value, we can. integrate (83)

starting from the point
o(1) =3 (1 - 21) = - ¥ + 0(y) (84)

which we know from (41). Thus:

1
0, = 0(0) = o(1) - Yf MB) ar (85)
- 0 R

This is readily worked out for each polynomial model; and the results are
included in Table 1I-1. It is clear that, at least for these polynomial

models, our assumption that A and & are of 0{y) is well borne out.

I1-23



Table II-1. Properties of Polynomial Density Models
" “mag ) %o lo=3yh
Mode1 WEO) WO A [RESL D S/l b AL BRI Y| sy
Uniform 1 0 }2.044] 0.9306 3+ 3/4 1 1 3/2 | 3/4
Quadratici 5/2 5 12.331] 0.7299 5 | 15/4] 25/24 | /5/6 15/81 9/4
Cubic 5 30 |2.682| 0.5954 | 15/2) 45/4] 1.154310.7764 {9/4 | 9/2

How good are these models? Comparing Figure II-1 to Figure A1 shows

that the cubic model has roughly the right shape, but the central density
is far too low, and M(R) climbs too slowly. A higher order model could
surely give better adgreement; but it is contrary to our intent of getting

the main focal features from a simple model.

A better way is to merely assume that the sun is smaller than its
apparent optical size. This is prompted by observing that the models of

Appendix A all show M{0.5) ~0.,95.

Al1l we need to do is choose a model

radius r. This increases the central density by a factor of

s = rs/Z, say.

8, which is roughly what is needed for the cubic model. A1l the formulas
of this section can then be used as is by merely referencing v, RO, and R

instead of r_. This is why &/v instead of 8 is used in most of the

t
to re s

tables and graphs.
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8. Solar Focusing

Consider an initially parallel bundle of rays; incident on the sun,
from some remote interstellar source. One ray will pass undeflected through
the center of the sun. We will call its path the optic axis, or just the
axis. From the symmetry we have assumed, all the other rays will be

deflected, and will cross the axis somewhere.

Suppose some given ray passes at some perihelion s and later crosses
the axis at radius ¢ = 2(r0). We will call 2 the “"focal length” corresponding

to o Consider the figure

at right. Let the focus e
have Schwartzchild coordinates Fo ¢E;j*~~\
) ] Axis T~
(2, ¢(2)). Since ¢ is Sun 2 -~
measured forward from ro» We
can see that from (23)
g(2) =7 - (A_+8) = % -8, (86)

where §_ is the total deflection from the source to perihelion. We can

also write this as:.

Me) = #(2) - 8(2) = T - 25+ 0(r°) (87)
since'se is constant to 0(73), provided £ > 107 Gm (see Section 5). We will
show that this always holds. '

To find £ we have from (15) and (45):

r R

co(2) = 2 &2 = [1+ 2, + 0(v")Jer(2) (88)
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provided L > 22, which is within the above assumptions (L > 154). With (87)

thisi.is: .
R0 . 2
T = 26, [1 + ¢, +0(y7)] " (89)
Ro ’ 2
L = 2—6:; {1 - <I>o + 0(y")1] (90)

To get an idea of what this looks 1ike, we can obtain §_ from the
simple models of the last section. Dropping the @0 term, and appiyiqg (90)
to the curves of Figure 1I-2 results in Figure II-3. For very small Ro’ it

js convenient to use (74):

1 YhRg ' ‘
L= ——1+— (91)
260 60

From (91) and Figure II-3 we can see that

- LRy 2 L(0) = (25;)"1 (92)

There is clearly no difficulty with L > 154 for any of our polynomial models.
This is also true for the models of Appendix A, but might not hold for
“unconventional” models. Observe that every point on the axis, with

R > L(0), is the focus for some incoming cylindrical shell of radiation.
Moreover, we can see a strong pile up of rays just beyond L(0). We will
call this point the "central focus”", and 105k carefully at this region in
the next two sections. The optical analogy is a lens with a dreadful

spherical aberration.
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From {92) we can see that L{0) is a strong function of the solar modei.
Here we might get an initial estimate by assuming the cubic model with

r;-= r,/2. Then from Table T1-1:
rs 'Y (6.9598 x 10%)(2)

- = = 5.467 Tm
45 8Y8y  (8)(2-12167 x 10°8)(15)

L = rSL(O) =

Between Neptune and Pluto.

This is a good point to comment on the physical significance of our
solar parameters 6& and h. Consider (91). The prime focus L{0) depends on
Gé, and nothing else. 'That is, if a Space mission actually fg;;tes some
solar focus, we will immediately have a precise determination of the density
integral (75). As for h, it is evident that if h = 0, all rays would pass
through L(0). Thus h is a measure of the spherical aberration of the sun.
Note that h # 0 for any of our po]}nomia] models. Indeed, from (76), h = 0
would require that W(0) is not the maximum of W{R). As such a sun would be
gravitationally unstable, we can anticipate considerable spherical aberration

in the actual sun.

9. The Caustic
Consider a ray passing at some perihelion Ro’ and which later reaches a
radius R somewhere near L(0). Let
A be the angle off the axis which
this point subtends at the center of RO
A

the sun. From the figure
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R .
b= g- (F+e) == 28, +0(r) (93)
the last from (23) and (45), after noting from (92) that 1/R = 0(y). The

"distance" Y off the axis is given by:
- 2y _ 2
Y = RA + 0(Y") = R, - 2R§_+ RO(Y") (94)

As an example, the cubic density model is used to compute &_ [(74) is
adequate near L(0)] for different values of R,. Each R, gives a straight
line ray, and the family of these rays is shown plotted in Figure II-4, in
the vicinity of L(0). That some of the rays appear nearly vertical is

due to the horizontal scale compression, Y.

The most interesting feature of Figure I1-4 is that the family of rays
appear to possess an envelope, after passing the axis. Optically, such a
feaéure is called a "caustic", and we will adopt that terminology. In
general, for a family of curves F(x, y, A) = 0; an envelope obeys
BAF(x, ¥, A) = 0. These define the envelope parametrically. Applying the
idea to (94) yields:

2R, (R)) = 1 (95)

We will examine the caustic in the region of several hundred Gm beyond

L(0), where we can use {74). In this case:
2R(8' - 3YhRS) = 1 (96)
0 0

and combining this with (94) we can show that:

3

Y=~ 4YhRR0

(97)
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We can either use these to compute the caustic parametrically from RO, or

eliminate R0 between them and get:

1 3

27 2 o 3_T R 3
2 ynry? = (28R - 1) “[L‘(’OT 1] (98)

Note that from {97), Y'(0) = 0, i.e. the caustic has zero slope at the
central focus. A plot of the caustics for the three polynomial models is
shown in Figure II-§ for IRO] < 0.14. Beyond this point, the O(RE]nRO)
terms neglected in (74) may become important. To put thesé on one plot,
it is helpful to begin.each abscissa at L{0). To this end we use (92) to

reorganize (96, 7):

-1
R - L) = (5 - 1) (99)
260 aRO

=_4 -

Y = - 3 BORO[R L(0)] (100)
where

oz 31 (101)

60

While only the positive caustic has been plotted in Fiqure 11-5,
corresponding to RO < 0, both sides might have been shown. In fact, it
is well to note that the caustic is really a surface of revolution,
sjmmetrica] about the axis. To get some idea of scale, if ré = rS/Z, then
the total R range shown is 500 Gm; while the total Y scale is only 3 Mm. The

vertical exaggeration is 1/Y ~ 2.5 x 105.

A very important question in the next section is, given a point (R, Y),
what rays pass through it? To answer this we can combine the ray equation

(94) with (74) to get a cubic equation in R,
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RS+ b (ks

' Y
o Yh 84 )R

58 ~ %6/Ro ~ TR = O (102)

One conclusion can be drewn immediately. Since a cubic equation always has
at least one real solution, and as all positive and negative RO are physi-
cally meaningful, we conclude that all points near L{0) have at least one

ray passing through them.

There is more to this. (102) is of the form

3 _
R0 + aRO +bh =290 _ (103)
so its discriminant is
3 2 3 3 2
- (& by _ (1 71 gt Y
8,2 () + (3 =Gy G- &) * W (104)

We can see from (98) that on all points of the caustic, A3 = 0. Moreover,
for points beyond the caustic, Y2 is less than the caustic value; so A3 <0
there, and conversely. Thus the caustic separates regions of one and three
real roots, and beyond the caustic there are always three distinct rays

passing through each point.

10.  Gain

We are now ready to examine the degree of concentration near the focus.
Suppose the incoming radiation has remote intensity I. On reaching RO it
will be concentrated by a factor 1 + 0(Y), which we will ignore. Thus the
total power in an incoming annulus of radius R0 and thickness dR0 is

ZWROIdRO. When the radiation passes the sun and reaches radius R, it will
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have concentrated into an area 2wYdY, apart from a factor of cA = 17 - 0(Y).

Based on this rationale we define the gain at an arbitrary point as:

RodRo

6 =X~ (108)

The summation is required beyond the caustic.

From (94) the gain can be written:

-1

-1 -1 5. (R.) . _
G =Z(ﬁY—) (a‘-iRY—) =Z[1 - 2R ROO} [T - 2RS(R )] ] (1_06)

Very large gain can occur if any bracketed term in (106) vanishes. The
first term vanishes on the axis at any point beyond L(0), and is just the
axial focus found in (90). The second tevm vanishes on the caustic, as is
plain from (95). We can look at (106) as a sort of gravitational Guide

Michelin to the solar foci.

It should be emphasized that the definition {105) is purely geometric.
No recognition is made of the possible wave nature of the radiation, and
intensities are combined as though from incoherent sources. This suggests
that the infinities in (106) aren't physical - it might not be trustworthy
closer than a few reduced wavelengths to thé axial focus or the caustic.
The other places to watch out for are those points beyond the caustic where
the dominant contributing rays have nearly equal gains, so that interference
could play a role. These considerations will be ignored in the remainder

of the section.
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In general, the calculation of G is rather difficult, especially
beyond the caustic, where all three rays must be identified at each point.
The process is greatly simplified near L(0) where the approximation (74)

can be used. With this, (92), and (101), we can rewrite (106) as
R
2, -1
6 =2 [1 - gy (1 - oRS)] (107)

Given R and Y, R, is the set of real solutions of (102), after which (107)
is straightforward to evaluate. Thi; process has been carried out for the
cubic density model along a set of s&rips of constant Y, and G vs. R was
plotted. A set of constant gain contours were found from this, and are

shown in Figure II-6. Once again for scale, if r; = rs/z, then a change in

YR of .001 corresponds to 82.1 Gm; while Y = .003 corresponds to 1.044 Mnm,

for a vertical exaggeration of again about 2 x 105.
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CHAPTER ITI

TWO IMPULSE TRANSFER

1. Rationale

The physical problem of where we are going can now be regarded as
settled; and we can turn to the engineering problem of how to get there.
Lacking some new evidence bearing on the solar density., a substantial
uncertainty in the focal radius will remain, at Teast until the first flight.
Thus, the first mission must be prepared for a lengthy search phase in which
the flight is directly along the axis.

There are two possibilities--flying outward and inward. The latter per-
mits some, propellant savings; but, as we will show, requires so much additional
time as to sorely try our patience. We will only seriously consider outward
trajectories, and explore their propulsion requirements.

The simplest, and least expensive, spacecraft would use only chemical
rockets for their main propulsion. A mission based solely on this concept
would start with a large impulse from shuttle orbit, putting the spacecraft on
a tong transfer orbit. This event will be called "departure". On reaching
the optic axis at a predetermined "turn point", a second impulse would be
fired to give the spacecraft a predetermined, purely axial, velocity. This
scenario will be referred to as a "two impulse transfer”. Our objective, in
this chapter, is to optimize the two impulses so as to find the maximum pay-
Toad for a given optic axis direction. Total mission time will also be a

factor.
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An actual mission, relying solely on chemical propulsion, is not
_hecessarily 11mited to two 1mpglses. Many studies have shown that extra
impuises often yield significant improvements in payload for planetary trans-
fers. Of even greater value are the possibilities for "gravity assists".
These are prec%se1y controlled encounters with planets to give useful changes
of velocity. Perhaps the cutstanding example of this was Mariner/Venus/
Mercury, with five planetary interactions, three of which were controlled
"assists". Unfortunately, time and space do not permit explorations of these
possibilities here; future research will almost surely show the present con-
clusions to be conservative.
The optimization of two impulse transfers is an old problem, in connectioﬁ
. with orbit changes and interplanetary trajectories. However, the present
requirement of terminating on a purely axial trajectory (zero angular momentum)
appears to be unique, and the literature has not been of much help. Accord-
ingly, we will treat this as a classical problem in orbit theory, followed by
a payload optimization, using standard methods.
These ground rules have been adopted for the study:
A.  The original spacecraft is a single dedicated Shuttle payload
" in Tow earth orbit. The-maximum Shuttle capability is assumed,
to give the maximum final payload.
8.  Presently available, Shuttle compatible propellants are assumed
for both -burns. The turn point propellants must be storable as
well.
C. Equipment unnecessary to the final mission phase may be jettisoned

during the transfer orbit, and empty tankage may be jettisoned
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even during the burns. These possibilities are discussed in
Section 7.

D. The earth's orbit is assumed circular at the earth-sun mean
distance, and planetary perturbations are ignored. For the
present purpose of establishing performance, these approximations
are not severe; and they greatly simplify the ana1ys%s. Moreover,
the average performance bias due to this neglect should be
negligible.

E. The optimization is over all possible impulse magnitudes and direc-
tions at both burns, all positions of the earth in its orbit at'
departure, and all arrival times at the turn point, consistent with
the constraints of celestial mechanics.

F. The universe will be assumed newtonian, and to consist purely of
the sun, the spacecraft, and the geometric notjons of the earth's
orbit and the optic axis. The.gravitational effect of the earth is
included in the departure analysis of Section 6.

G. The distance ry of the turn point and the axial speed vy just after
the turn are regarded as constants for the optimization. A range
of values will be considered in the numerical search; and the
factors bearing on their choic?, particularly mission time and

focal point uncertainty, will get considerable attention.

2. Free Axial Flight

Perhaps the best way to get an initial feeling for the numbers is to

examine the search phasé of the mfssion. This is where we coast out the optic
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axis, beyond the turn point. Closed form time vs. radius expressions exist
. here, and the re]afions between the parameters can be plotted fairly clearly.
A convenient parameter for describing these trajectories is the space-

craft total specific energy. This constant of the motion is given by:

_12_w»w_1.2 u
E'z"'r‘z"T‘rT (1)

where r is the distance from the sun, v is the speed, r and vr are the values

(1),

just after second burn, and

W= Gng = 1.327124 X 1029 m3/sec?

A series of energy contours are plotted in Figure III-1.

In purely axial motion, v = r, so (1) integrates to:

1 r -1/2 .
V2 rr

No single expression seems possible for this integral; but for the varioius E

possibilities we get:

(/3 (u+ B0 -l =26) Y2571 5 B xer  (E<0)

t-tp =g 3/ | > (£=0)

| 1/5% (u+ Ex) - u(28) P nl/Exu Ex) + Ex + 5 ul) ey (E0)
(3)

These expressions are plotted in Figure III-2, for various E values.

ITI-4



G-I11

=50 kmzl S

2

Figure III-T.

Energy Equation Contours




9-111

2, 2

=-40/km’Is- =30 -20

] | |

-10

2.5 3

Figure III-2.

3.5 4 4.5

r,Tm

Axial Flight Time

5 5.5



From Figure III-1, we can see that if the axis is to be explored out to
5.5 or 6 Tm, we will need £ > - 25 kn’/sec’, which implies vy > 9 km/sec for
rp ~ 2 Tm. Lack of patience may set tighter limits. From Figure III-2, if
we allow, say, 15 years to traverse the range 2 < r < 5.5 Tm, then we require
E>-9 kmzlsecz, for which V1 ~ 11 km/sec at rr = 2 Tm. Further time reduc-

tions can be very expensive.

3. Definitions and Coordinate Systems

Four different coordinate systems play roles in our analysis. Each
system is characterized by a set of right.handed orthonormal base vectors
EN; where X = 6, S, N, or T identifies the system; and o = 1, 2, or 3
identifies which vector.

The fundamental system is ES

, and is based on the ecliptic. E? is
defined to be the direction to the vernal equinox, and Eg will be taken as
the north ecliptic pole. A more precise definition would be required for
mission analysis, but we won't need it here.

The next system, EG, is a standard non-rotating earth system. Following

G

the usual astrodynamic convention we take E] = E?, and Eg as the north polar

axis. Letting(1) ¢ = 23.5deg be the obliquity of the ecliptic, these are

related by:

S _ gl G
E> = RuB(e)EB (4)

Here we have adopted the nomenclature RA(B) to be the matrix representing a

rotation through the angle 8 about the axis EA'
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The next system is EN, which we will -call the. nodal system. It is
ecliptic like ES; but it is based on the location of the earth at departure,
rather than the vernal equinox. If the earth is at a longitude ¢e relative

to E? at departure, then:

N - o3 14 1S
Fa = Ruplfe)Bg (5)

From this, we can characterize the earth's position as:

= _ N
re = TEq (6)

where(]) o = 149.5979 Gm. Similarly, the earth's velocity is(1):

_ N
Ve = veE2 (7)
Vo = fu/re = 29.78468 km/sec. (8)

Finally, we must bring the optic axis into the picture. We suppose

that the outward axis is at a latitude ea and a lTongitude ¢a’ relative to

S

E”. (These are fixed numbers for any given stellar source.) Then a unit

vector U? along this axis has components

0% = R3(- 6)R%(6,)E7 = [Acg,. Asp_, s0_1° (9)
= R¥(- ¢)R%(0,)E) = [Acs, Asg, so 1" (10)

where
Azco, 829, -9, (11)
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Here we have adopted the practice of adding a superscript to identify which
coordinate system we are taking components in. Also, column vectors have
been written as row vectors to save space: but this should cause 1ittle con-
fusion.

The mission phase between departure and the turn point will be referred
to as the “transfer orbit". Since it must pass through the points r_ and

e

rTﬁa, we can conclude that the transfer orbit plane contains both E? and ﬁa_

N

Thus the transfer orbit normal U" is along E] x U2, Computing this from

(10), and normalizing gives:
" = ¢ [0, - se_, AsgI" (12)

Q=1 - Azczﬁ (13)

This shows that the transfer orbit is inclined to the ecliptic by an angle

I given by:
3 U= Alss (14)

Unlike the usual astrodynamic convention, we will take I < O when U® is south
of the ecliptic.
This brings us finally to ET, the transfer system. It is based on taking

E? = E? and Eg =", It obeys:

T:
c

1 N .
E RqB(I)EB (15)

It will prove useful in analyzing departure and the transfer orbit.
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4, The Transfer Orbit

Following departure the heliocentric orbit will be some kind of conic

section. Thus:

=5 |

=1+ ec8 (16)

where r is the distance from the sun, 6 is the plane polar angle measured
from perihelion, e is the eccentricity, and 2 is the semi-latus rectum.
There is one geometric constraint on & and e. ({16) must be satisfied at
departure (re, BD), and at the turn point (rT, BT); while 8; - 6p must
satisfy:

c(6;+ - 6

T D)

= 7. Eﬁ’ = Acg (17)

We may also write this as:
s(eT - eD) =1 Q (18)

The ambiguity in (18) can be resolved by examining the quadrant of .

Next, we consider the energy equation:

E = %-vz - %—=-% VS - v = %-v 2 1) (19)

e

Here E is the total specific energy of-the transfer orbit, and vp and v, are
the heliocentric speeds at departure and arrival at the turn point respec-
tively, while a is the semi-major axis. We will find it useful to resolve

Vb and Vé into radial and normal components, defined by:
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_— T T _ T .

vy =V E ot VhEZ [Vr’ Vs 0] (20)
_— . na, 2 .2 2

V, = Va U Vg SV, t V) (21}

These allow concise expressions for the orbital angular momentum:

F=Fx7=h£§ (22)

h = AT Yl (23)

- The last is a well known result in orbit theory.

Another relation amongst these variab]és comes from differentiating (16):

J%-dr = esfds (24)
r
Now, since at departure Vo = % and vh = ré, we can write this as:
2 v v
2 _ r°sede _ h . _ L

Before proceeding to organize all this, we can reduce the symbol clutter

somewhat by non-dimensionalizing. We define:

-
-
-

“h !

e } r
a=—3; B=—3 Y= 0= (26)
Then, from (8) and (23):
p=ryl v o=ayvy (27)
e ° 1 e '

For size, we note that i¥f ry = 2 Tm, then o = .074799.
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Using all these, and (21), the energy equation (19) becomes:

r 2
B2 +v2 o2 =62+ a2Y2 - 20 = - ;?'= € 51 (28)

The conic section relation {16) turns into:

2
ecéy = YZ - 1; ecty = ay” - 1 (29)
and the slope relation (25) becomes:

esby = YB3 esér = Yo o {30)

These relations are not all independent, as (28) is derivable from (29) and
(30). However, an independent relation involving only B, Y, and o is avail-

able by combining (17), (29), and (30):

Ae2<:¢ = A[(Y2 - 1)2 + vzsz]cgs = (Y2 - 1)(onr2 - 1) + sto (31)

We will base our optimization on (28) and (31). Most of the other relations

will be useful in sorting out the geometry.

5. The Turn Point Impulse

As part of the payload optimization, we will need an expression for the
velocity increment AVT that we must apply at the turn point in order to enter
the search phase of the mission. Since we are regarding the final axial

speed Vr as given, Avs depends only on the arrival velocity Vé.
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From the figure:

)2

(Av )2+ 8 (32)

T

As before, we will normalize this to vy. From (26) and (27):

2
Av
W= (171) = (1 - 0)2 + aZYZ (33)
e
T = VT/ve (34)

This is the form we will need.

6. Departure
As in the last section, we need an expression for the velocity increment
AQD‘ This is a much harder problem, since AvD must take us from low earth
orbit to the transfer orbit injection condition Vb. Let's begin by describ-
ing the Shuttle orbit. The most efficient Shuttle injection is due east out
of Kennedy Spaceflight Center (latitude By = 28.5%), when it can put its
maximum payload of 65,000 1b = 29,484 kg into a circular orbit of 100 nautical
(84) (1)

mile altitude Assuming an earth mean radius of 6.37103 Mm, the orbit

radius is:
ry = 6.37103 + (100)(1.85325 x 10_3) = 6.55636 Mm

and the orbit speed is(]):
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v, = VT, = /3.98603 x 10°/6556.36 = 7.797204 km/sec.

~

Of primary concern to us is the Shuttle orbit normal, U°. If the nodal

Tongitude relative to E? is @, then:

~0 53 1 G _ G
U¥ = R7( -Q)R'( -eK)E3 = [seng, ~5Q CQ, ceK]

1]

[sBKsﬂ, secBy - cesdyc, cecy + seseKcQ]S (35)

Here, £ and by are fixed; but we are free to choose any @ by an appropriate

choice of the time of day of launch. Geometrically, the achievable directions

Go form a cone of half angle eK.about Eg.

Consider now the desired departure velocity Vb. From (20), (26}, and (15)
v = v [B, Y 0]T = v _[B, vcI YsI]N (36)
D e 3 5 e -] >

Actually, on escaping f%om the earth, the spacecraft already possesses a
velocity Vé. Thus the objective of the impulse AVD is to produce a hyperbolic

excess velocity relative to the earth of:

Vy = Vp - V= v I8, YeI -1, vs1V (37)

At this point it is convenient to introduce a new parametrization of the

ecliptic components of Vﬁ. We define g and ¢0 such that:

q2 = 82 + (vcI - 1)2; g = qsﬁo; Ycl -1 = qcﬁo (38)

with these we have:
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Vﬁ = ve[qs¢o, qc¢0, TsI]N = ve[qéﬁl, qc¢1, YsI]S (39)

where

(40)
We will normalize this also:

2 2 2.2

of = L V1% = of + v%s%1 = g% 4 4P
v
e

- 2ycl + 1 (41)

If the spacecraft did not have to climb out of the earth's gravity well,
we could minimize AvD by arranging VE to be paraliel to VH, in which case,
dvp = vy - Vo More realistically, AVD is minimized if we can make EVb

parallel to Vb, and still achieve the required "H. If this is possible, VH

will lie in the original Shuttle orbit plane. We conclude that the optimum

condition, EVb paraliel to Vg, is achievable if we can make GO orthogonal
to VH.

To explore this, we form the function

~

-1 = _to
F = v VH U (42)
e
From (35} and (39), after some rearrangement:
F ='qs¢1seKsQ + (YsesI - qeecd;)sBcft + (ycesI + gsecdy)ed, (43)

This Tooks formidable; but we can make progress if we write the orthogonality

condition F = 0 as:

BsQ + CcQ + D = 0 (44)
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Letting

ch = B 3 sh = ¢
BZ + CZ B2 + 62
we fTind:
s(Q + f) =B "
[ 2 2
VB + C

Thus, (44) possesses real solutions provided

Replacing the original expressions -from (43), and after some'a1gebra:

0S8y > |ycesI + qsec¢]| = G(ﬁ])

(5)

(46}

(47)

(48)

The geometric interpretation of all this is that the set of all direc-

tions orthogonal to VH is a plane. l0ptima1ity is achievable if this plane

intersects the cone of possible U? directions; which in turn requires that

(48) be satisfied.

Since 6y > e, and from (41),. p-> g,-we can-see that for sufficiently

small |L|, (48) is satisfied for all ¢1 (or ﬁe). This situation is illus-

trated at r{ght for I > 0.
psORb — — e —

However, for a somewhat
larger I, (48) is violated )

for a region around ¢} = (0. Ycesl —_—

The situation for I <0 dis - O
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the same except that now the hump around ¢1 = 7 is larger, and the violation
region shifts accordingly. Finally, if |I| is big enough, G(¢1) Ties
entirely above pseK, and (48) cannot be satisfied for any ﬁ].

To sort this all out we -define

_ psOy - Yees | 1]
C¢2 = qse (49)

when c¢2 2 1, {48} 1is satisfied for all ¢]. wﬁen c¢2 < -1, (48) fails for all
¢1. Finally, when ~ 1 s.cﬁz ; 1, we choose the solution ﬁz such that
0 <@, <m. Then (48) fails for @] < g, if 1> 0, and for |7 - 841 < 8,
if I < 0. When we later find optimum values for 8, Y, and ¢ for a given ea’
we will use these re1atio£s to find the range of ¢a for which. {48) can be
satisfied.

The value of AVD can now be found. Assuming optimality in the above

sense, we can write an energy equation relative to the earth:

=

=1 2 _"e_1.2
Ee =5 (v0 + AVD) . 5 Vi (50)
Using {41) we can put this in the form
2
(n+x)? = o? + 2 (51)
where
Yo
X = = 0.261786 (52)
e
and
T AV (53)
nsE-—— 53
Ve
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(51), together with (41), is the form we will employ in optimization;
however, some fee]%ng for the numbers can be had by plotting (50). This'is
shown in Figure 1II-3. It -may be seen that a few km/sec of iy cost little
more AvD than the parabolic escape value, 3.23 km/sec; while for vy > 15
km/sec, we pay for it on essentially a one-for-one-basis.

Implicit in all this is the "patched conic" assumption. That is, the
spacecraft is affected by either the earth or the sun, but never both at
once. The technique for doing this involves the convenient fiction of the
hyperbolic excess velocity, Vﬁ. Numerous past studies have shown that this
yields excellent results for interplanetary missions, and fair accuracy is
possible even for circumlunar missions; certainly good enough for this
remote solar system feasibility study. For a further discussion of this

point, see for instance Reference (9), Chapter 6.

7. A Rough Cut at Spacecraft Design

With the celestial mechanics estab]ished,'we can turn to the spacecraft.
What we will need is a mathematical model for which we can predict the masses
of all the important spacecraft components, and particularly the payload, as
functions of the optimization parameters AVD and AVT. Design is a bootstrap
process, so we will begin with very crude estimates, and construct a plausible
propulsion system.

Our main tool is the rocket equation (see, for instance Reference (36)
page 513 et. seq.) which can be stated as:

Av/vC
= mje (54)
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where m, is the initial mass of a given stage, m_ is the mass of propellant

) p
expelied, and m, is the mass after losing mp. The effective exhaust
velocity Ve = Isp is a function of the propellants, engine, and nozzle.
We can invert (94):

~Av/v

m (1 -e ) (55)

p- Mo

Let's Took first at departure. In a first crude estimate of AvD, we
note that we need to reach re >> I, and have some extra speed when we arrive;
but we don't want to overdo it. Parabolic speed /E've Tooks about right.
Then if we can line up the Shuttle orbit, and for Tow ea, we will need a

hyperbolic excess

Vi~ V2 - 1)ve = 12.3 km/sec. (56)

For required impulses of this magnitude it is very important to choose
propellants with the highest possible Ve As long storage is not required
for this burn, hydrogen (LH) and oxygen (LOX) are obvious candidatesl since
they are already dsed in the Shuttle. To improve on these, we are first led
to fluorine (LF}, replacing LOX. However, LF must still be regarded as
hazardous, and is not Tikely to be approved as cargo on the man-rated
Shuttle, in the foreseeable future. Propellants with higher thecretical
performance; e.g. 03, free radicals, jons; cannot be regarded today as either
proven or safe. For these reasons we will choose LH and LOX; but we must
show that the Tow density of LH does not conflict with the Shuttle volume

constraints.
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This choice of pr0pe11anfs,immediately suggests that we 100k at the

proven RL-]OJengine. The version of this with the most fl1ight experience

is the RL-10A-3-3. Variations of this have been proposed‘?!) for the Shuttle

Tug and Interim Upper Stage. These are shown in the table below. Because

of volume restrictions in the Shuttle, it was necessary to raise the LOX:LH

mixture ratio, and also fold the nozzle.

Eliminating these restrictions

leads to the last column; although we will have to show that we have room

for this.

TRL = 15,000 1

b= 66,723 N

A1l of these variations have a nominal thrust of

Also, all have provisions for varying the mixture ratio in response to tank

level signals in order to winimize unburnt propellant. However, the level

indicators are not part of the engine.

Table III-1.

RL-10 Engine and Derivatives

RL-10A-3-3 11B v "NEW"
Mass - kg 131.5 200.5 192.3 176.5
Igp - sec 444 456.6 470 474 .5
Ve - km/sec 4.3542 4.4777 4.6091 4.6533
LOX:LH ratio 5.0 6.0 6.0 5.2
Chamber Pressure - psi} 400 400 915 915
Expansion Ratio 57 205(1) 401(1) 407
Diameter - m 1.00 1.80 1.80 1.80
Length - m 1.78 1.40 (2.79)(]) 1.40 (2.79)(1) 2.79
Inlet Pressures | LOX | 59.8 19.7 > 10 > 10
{psi) & LH 38.4 16.4 > 10 > 10
Tank Pressure Source | Hg Tank Auto(2) Auto(2) Auto(?)
Chilldown ] LOX 204.6 hi(3) TH (3) 64.0
Losses - kg %LH 40.6 TH1(3) THI(3) 40.6

NOTES: Articulated nozzle fully extended.

(1)
(2)
(3)

leaking through idle pumps.

Als

o locates ullage.
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The source for the f1rst three columns is References (21) and (19}.°
The 1ast co]umn is a var1at1on of the third column, in which the large
3ozz]e is f1xed and ﬁhe THI feature is de]eted, in order to save mass; and
the mixture ratio is qpfimized. It Was arrived at a discuséion(ZZ)-with
Mé J. P. B. Cuffe, author df Reference (21). Since a foc&1 mission is
un11ke1y to fly before 1984 engine improvements to raise the chamber
pressure, and thus reduce the nozg]g mass may be expected. Accord1ng1y,
these numbers may be regarded és conservafive.

Now let's estimafe the overall pe}forménce. Assuming the "new" engine,
and a Shuttle payload of 29484 kg, and allowing for structure and insulation
left behind and chilldown loss, we will have My ~ 29,000 kg. Then applying
{54) and (55), the burnout mass is m] = 4376 kg, and the propelliant mass is

= 24624 kg. If we {rather arbitrarily) assume that structure, tankage,
and engine amount to 5% of mp, we end up with 3145 kg at the turn point.

For the second burn wéucan anticipate a later result that we will need
AVT ~ 3.2 km/sec. Considering the long transfer time (about 4 years, as we
will see) cryogenic propellants are probably out of the question. Taking
ISp = 300 sec. as today's practical 1imit for storable Tiquids, we get

= 2.9420 km/sec. This time, the burnout mass is 1060 kg and the propel-
Tant is 2085 kg. If we need 8% this time for the dry propulsion system
weight, we end up with a payload of 893 kg to _explore the focus. Of course,
th{s_is only if the axis 1lies in the ecliptic. As leal increases, we can
éxpect our 893 kg to dwindle rapidly.

Now let's examine some side -issues. The burn time at departure, tB’

can be obtained from’
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= i = _E___C
-TRL mpvc tB
(56)
_ (24624)(4653.3) _ -
(22)

The RL-10 has been fired continuously for longer than this, so there
appears to be no endurance problem. However, this does expose a new diffi-
culty in that during this time the spacecraft would gain considerable
altitude, thus violating our assumption of an impulsive Avp.
This problem has received considerable attention in the literature.
Perhaps best for our purpose is a set of curves of mO/m1 VS, ISp at different

(36).

values of vy and initial accelerations n_ = TRL/mog, in Ehricke These

0
were done for tangentially directed thrust, and assumed an initially circular
orbit at 500 km altitude. By selecting ISp = 474.5 sec, and cross plotting
vs. ng, we are Ted to Figure III-4. On the right of the figure, vy is
obtained from m /my by means of (56). -

By selecting the curve with AVD(m) = 8.53 km/sec, and Tooking at the
"one engine" Tine, corresponding to a thrust TRL’ we can see that to achieve
the desired Vs My is reduced from the impulsive value of 4636 kg to 4000 kg.
This large a Toss suggests that we try two, or even three, engines to raise
No In these cases we ﬁ'nd-m1 = 4387 kg and 4531 kg, respectively. From
Table III-1 we see immediately that two engines 1is optimum, even allowing for
our lower departure altitude.

There are two reasons for regarding this result as conservative. First,

(56,57}

tangential thrust is not optimum, as first shown by Lawden , although

the potential improvement is not large in our case, with two engines.
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Second, we have the option of appiying an initial burn of Av ~ 1 - 2 km/sec,
leaving us in an éccentric orbit, and completing departure by firing again

as we approach perigee. This has the advantage of applying our thrust at a
lower average altitude. There is a disadvantage in this of increased propel-
lant boiloff; but this in turn could be minimized by adding the THI feature
to the engine (see Table III-1), and operating in this mode whenever the

tank pressures got too high. Overall,-we can suppose that all these measures
might lead to an m, = 4470 kg. If we put this value back into (54), we find
that we can regard the system as impulsive with an effective Ve = 4,565 km/sec
corresponding to ISp = 465.5 sec. For our trial value bvy = 8.8 km/sec, this
gives my = 4219 kg. We will henceforth adopt these values, as we refine

the design.

Now let's Took at acceleration. At burnout we get:

2T
- _RL _ (2)(66,723) _ 2 _
a m, = 719 31.63 m/sec 3.225 ¢

This is only slightly higher than the maximum Shuttle acceleration, and it

occurs with the departure tanks nearly empty; so it should give us little

trouble.

The next question is tank size. From the low tank pressures in Table

I11-1, we can assume NBP densities‘’®):

bLox = 1142 ka/m’ 5 p, = 70.98 kg/m>

With a propellant mass of

mp =m, - m = 29,000 - 4219 = 24,781 kg
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divided at 5.2:1 we get

mox = 20,784 kg; my = 3997 kg

Allowing, say, 5% for ullage volume, the tank volumes are:

3 3

v y = 19.11 m™; VLH = 59.13 m

LO

A spherical LOX tank would have a radius Mgy = 1-699 m.  However a spherical
LH tank would have "Ly 2.417 m, which won't quite fit in the Shuttle bay.
The maximum radius(84) is 7.5 ft = 2.286 m; so if we allow the last 15.6 cm
for insulation and structure, we get a 2.13 m radius sphere with an inserted
cylindrical section 7.308 m long.

The turn point propuision system will be much smailer, so for rough siz-
ing we can make fairly crude approximations. If we now suppose the dry
departure propulsion system at 5.5% of mp, to allow for the extra engine, we
have m, = 2856 kg at the turn point. Again taking AvT = 3.2 km/sec and

Iop = 300 sec there we get m, = 962 kg, and m_ = 1894 kg. Supposing both

sp p
propellants have p ~ 1500 kg/m3 and mixture ratio 1:1, then after alliowing 5%
ullage, we get two tanks of volume 0.663 m3 each. Assuming them spherical,
their radii are 0.541 m.

We now have enough to_do a rough layout of the spacecraft. Since the
LOX tank is by far the heaviest item, structural considérations suggest that
it be placed immediately ahead of the engines. Everything else then follows
naturally, and we are Ted to Figure III-b, in which the Shuttle bay
(84)

outline has been added. Everything appears to fit easily. A few degrees

of gimbal freedom for the engines is readily accommodated, and the final
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payload (about 810 kg in this estimate) should easily fit in the remaining
space, even allowing for bulky items such as antennas. _ 2
Finally, we need to review our ideas about stagigg. It has been
tacitly assumed that, except for a possible split burn.to minimize gravity
loss, departure should be achieved by a single stage. 'Consider, instead;
splitting it into two or more Av impulses; and dropping unneeded engines,
tankage, and structure when possible. As we shall show in the next sectign
the tanks come to only about 70 kg; so it is uniikely that much could be
saved by subdividing them. As for structure, Section III-9 shows fhat it
can: be bui]t_for 1ess than 60 kg; so there is 1jttle to be saved there either-.
However, from Table III-1, the enéines are another matter. Dropping one.
engine does nottlook practical, as may be seen from‘Figdre IiI—S; but
jettisoning both, and relying on a single smaller engine, looks feasib[e?
We must compare the potential saving of about 300 kg for part of the bﬁrﬁ,
with the added masses of the extra engine, piumbing, structure, and dis-
connection hardware. A careful design analysis would probably show an
advantage to staging, in spite of extrg gravity losses, and greater propel-.
lant residuals and cooldown losses. In the author's opinion, the simplicitj
of the design of Figure III-5 and the extra Shuttle bay crowding of a
staged design far outweigh this performance advantage, and we will not
further consider a staged departure. Of course, it is possible that a clever
Tayout and mechanical design could inyalidate this argument; so, in this

respect, our design is stightly conservative.
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8. Propellant Tanks

Let's start with the LOX tank. It is easy to show that a spherical

tank of radius r, and filled to a height h, contains a propellant volume

v=Tr%%3 - o) (57)

where

6 = h/r (58)

This is readily checked at the points 6 = 0, 1, 2. Supposing the tank to

be initially filled to an ullage fraction £, the initial level eo is given by:

T 2.2 _ 4mr .
3 r 60(3 - 80) = 3(T+e) (59)

Adopting a conservative £ = .05, we get By = 1.73615.
We can now look at the hydrostatic pressure due to an acceleration a.

This is:
Py, = pha = proa (60)
During Shuttle launch, the worst a = 39(84). The LOX head is then(42):

P, = (1142)(1.658)(1.73615)(3)(9.80665) = 96712 N/m2 = 14.027 psi

Things are more complicated during departure. First, V diminishes

linearly to zero with time so:

02(3 - 8) = 7= (1 - ) (61)
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At the same time:

27
a = - RL = . (62)
\m] + mp(1 - g)

so, putting these into (60) we get:

) ZQTRLFG )
Py = 1 7 (63)
m * ﬁ-(T + e)mpe (3 - 8)

A plot of this vs. time is shown in Figure III-6. It may be seen that the

variation is small ti11 near the end, and that the worst value is

- T 2 .
Phmax ~ 15370 N/m~ = 2.23 psi

The effect of the head pressure dgpends on how it is passed to the
Shuttle structure during Taunch, and to the RL-10 engines during departure.
To reduce tank weight we will assume that some kind of web is used to pass
the load to the probe's structure; and that this in turn is anchored to the
Shuttle during launch. When this is done, very little of the head pressure
appears as stress in the tank walls, and we can design the tank almost solely
on the basis of the engine inlet pressure requirement. From Table III-T we
find that we need at least 10 psi, so we can reasonably pick an operating
- point of 12 psi. Then adding 50% for safety we can design for a yield point
of 18 psi. Even during launch this should provide plenty of margin,
especially as we will probably subcool the propeliants to minimize boiloff.

The tensiie stress in a spherical tank of wall thickness w, and contain-

ing a pressure p is:
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Y = 2B (64)
Now, the mass of the tank is
M. = 4nr2 W {(65)
T Ot
and if Y is the yield stress of the wall material then

3(1 + e)prmLOX
2Yo) oy

my = %’WT PP = (66)

Thus the tank mass is proportional to the propellant mass, for spherical

tanks. A1l this assumes that the thickness w is above some minimum set by

fabrication requirements. Otherwise, Mo is given by (65) with w = Woin:

Now lets Took at some materials. An aluminum alloy recommended for

this service is 2219 - T87, for which'®®) ¥ = 67,000 psi at - 320°F. This

material has been used for pressure tank service down to LH temperature,

{

and with glue-spot welded joints 86) failed only at ultimate tensile

strength. From (64), the required thickness is:

_rp _ (1.658)(18) _ -4 .
W= 5y 367,000 2.23 x 10 "m = 0.00877 in.

Actually, fabrication of this tank at thicknesses below about 0.015 in. would

(61) o = 0.103 1b/in> = 2851 kg/m°,

I

be quite difficult. Thus, with a density T

the tank mass from (65) would be:

my = 4(1.658)%(2851)(.015)(.0254)

37.5 kg
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The stronger materials such as titanium and steel are obviously uncom-

petitive here; but plastic films look very good. Perhaps the best at present

is Mylar, with Kapton a close second. Several reports(20’35’46) list

Y > 40,000 psi for some types of Mylar, so in this case w = .0147 in. More-
over, there are no problems in dealing with thin films. Thus, assuming(]3)

Py = 1395 kg/m3, we find from (66):

" 05)(1395)(18) _

1. -4
(40.000)(1142) - 8-66 x 10 (67)

LOX

T _ (3
m (2)

which yields mp = 18.0 kg.” We will use this ratio in our optimization.

Next we will consider the LH tank. Here, the spherical and cylindrical
radius is r = 2.13 m, and the cylindrical Tength is & = 1.303 m. This time
if the tank is filled to a height h, the LH volume is more complicated. If

8 <1, (57} is obeyed. When 1 <6 < 1 + ¢ we have

v = %-r3(38 - 1) (68)

where

= &/r(= 0.611737 with present values) (69)

Finally, when 1 + 4 £ 8 < 2 + 4:

V=Tr336+ (6 - )23+ 4 - 0)] (70)

Using (70), the Tevel 0, for an ullage fraction e obeys:

36+ (6, - #)°(3 + 4 - ) = 2 (71)
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which for € = .05 yields 80 = 2.2896 and thus h0 = 4,8768 m. The worst

hydrostatic head during Taunch is then (60):

Py = (70.98)(4.8768)(3)(9.80665) = 10184 N/m2 = 1.477 psi

If we again assume a web support, as in the LOX tank, and some girth support
.in the cylindrical section from the structure, we can see that this head can
be ignored; and of course it will be even smaller during departure. Thus we
can again conservatively design the tank to yield at 18 psi.
If for the spherical part of the tank we again look at 2219-T87 aluminum

(55)

alloy, we find that Y = 73,000 psi at -423°F.  Thus we would again be

forced to minimum thickness, and the mass of the spherical portion would be:

Mrg = 4ﬂ(2.13)2(2851)(.015)(0.2054)

However, if we again Took at Mylar with(35’46) Y = 40,000 psi:

_ (2.13)(18)_ _ -4 .
w V(40,000 4.79 x 10 'm = 0.0189 1in.

_4)

mr = 4w(2.13)2(1395) (4.74 x 10°%) = 38.1 kg

We will adopt this value.
In the cylindrical section, the stress is double that in the end caps, so

the design wall thickness 1is

W = f$1 (72)
For Mylar this comes to w = 9.598 x 10'4 in. = .0377 in.. For aluminum we get
w= b.25 x 10"4 in. = ,0207 in., which is now above minimum thickness.
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However, the density disparity is so great that wp is still Tower for

Mylar.
s s paeo s (89) 5 . . 5020
Another possibility is titanium. Here Y > 2 x 10 psi at -<423°F
for at least two alloys, depending on the stress direction. If we again
adopt w = .015 in. as the practical minimum for fabrication and handling,
then (®1) with o = 0.161 Tb/in® = 4456 kg/in’, we see that titanium does
not compete, even with aluminum. Thus, we are again led to choose Mylar.

The mass of the cylindrical section with present numbers is then
m

e = Zﬂrﬂpr

2n(2.]3)(1.303)(9.59){10_4)(1345) = 23.3 kg (73)

More generally, we would 1ike to relate Mre to m - For this, we put

8 =2+ ¢ in (70) and get:

T3+ 4) = (1+ )V, (74)

Putting in (69}, and solving for &:

(1 + e)V
2,:——'2'—"[;&-%{“ (75)
m

Substituting this and (72) into (73) yields:

2ppy [(J elmy 4wr3]

m =
T Y o 3
. (2)08)(1395) [ (1.08) 4n(2.13)3}
10,000 | 70.98 ".H 3
= 0.018572 m,, - 50.8 kg. (76)
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A final word on the choice of Mylar for the tanks. The author sees no
serious disadvantage to its use, beyond the unfamiliarity in this applica-
tion. However, if problems turn up, and we are forced to aluminum, the
nominal cost from the above numbers, for both tanks, is 46 kg, for an ulti-
mate payload loss of about 15 kg.

Finally we will consider the webs supporting the tanks. These consist
primarily of a set of'straps of length %-ﬂr. They must have sufficient
combined cross section to sustain the tank weight at the worst launch
acceleration, which we will increase to 4g to allow for shock and vibration.

Thus the mass of either web is:

: 4gm 2.8ngp,_rm
m, = (g e, (1.4) = —=E (77)

where Yw is the yield strength of the web material, and we have added 40% to
allow for cross straps, tank weight, and plumbing.

(1) y = 4 x 10% psi

An interesting web material is Kevlar, for which
at room temperature, and Py = 1450 kg/m3. This value is for thin filaments,
so we should derate Yw to perhaps half this for weaving into a strap. As
Kevlar is 1ikely to be stronger at low temperature, this seems quite conserva-

tive. Thus, for the LOX tank web we get:

o _ 2.87(9.80665)(1450)(1.658)

™ 0x (2 x 10°)(6894.7)

= 1.50 x 107% (78)

" in which. we have ignored the slight variation of r with M ox- With the

present numbers this is 3.1 kg. For the LH tank, we only need to
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change the radius:

m
Wwoo_ -4y, 2,13y _ -4

which comes to 0.8 kg for the present numbers!

9. Structure

Three main structural systems need to be sized. The primary structure
will be a truss to carry_the departure load of the two RL-10 engines up to
the turn point stage. We will do a fairly detailed synthesis and analysis
of this truss. The second stage and payload structure will also be a truss,
but as the Tayout of these components is much less certain, we will make
only a crude estimate of the mass in Section 11. The third system is the
set of attachments and fittings by which the launch loads are transmitted
from the primary and second stage structures to the Shuttle bay structure.
We will assume that these connect to the main primary .and second stage
structural nodes and the RL-10 engines, and are designed to nearly unload
those structures during Taunch.

Referring to Figure III-S we can see that fhe primary structure begins
just above the RL-10 engines, and ends somewhere around the second stage
propulsion system, for a height of about 11 m. The diameter is slightly less
than the Shuttle bay, or about 4.5 m. The geometry of the truss is more or
less established by the requirement that the ribs 1ie outside the tanks, and

that the only internal tie point lies between the tanks.
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These eonsiderations after some experimentation lead to Figure 'I1I-7,
~which shows the main dimensions, and Figure III-8, a photograph of a stick
model., showing all the ribs. Most of the departure Toad is carried by the
mainly axial ribs, which come in 3 sets of 10. Letting L be a typical rib
length, we define L1, L2, and L3 to be the length of the LOX, intertank,
and LH axials respectively. The ribs connecting to the two joints on the
axis will be called pyramidals. There are 3 sets of 5 each, and their
lengths L4, Lg, and L6 refer to the LOX, and lower and upper LH pyramidals
respectively. Finally there are the lateral ribs making up the pentagonal
cross sections. There are 4 sets of 5 ribs at the axial stations Z3s Zps
Zgs and Zg- These will be called the Tower and upper LOX laterals, and
lower and upper LH Taterals respectively. The length of a lateral rib at
Zs will be called 2?' Also, the outer radius of the pentagon at z; (the
dimensions shown in Figure III-7) will be called Py

The choice of a'péntagona] cross section was by trial and error. An
attempt was made to use the simpler square cross section, but it was found
that the laterals 22 were too confining on the LOX tank, and that the axials
L3 were not fully outside the LH radius of 2.13 m. We will reexamine these
questions for the present structure.

The lengths of the laterals and pyramidals are easy to compute. For a

pentagon:
L = 2rssy (80)

where § = 36 deg. The pyramidals obey:

12 = 2 4 (Zi - Z.

2
j)

(81)
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Figure III-8. Stick Model of Primary Structure
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Putting in

the numbers from Figure 7:

Table II1-2., Truss Dimensions in Meters
INDEX 1 2 4 5
z 3.8 6.6 9.4 13.0
r 1.5 2.0 2.725 2.25
2 1.7634 2.3511 2.6450 2.6450
L4 = 2.3324 m; L5 = L6 = 2.7609 m

The axials are somewhat harder, since each pentagon is rotated by 36

degrees relative to the one above or below. Suppose the joint at station z;

has cartesian coordinates (ri, 0, Zi)' The joint at the other end of the

axial at. station Z5 will be at (rjcw, rjsw, zj). Thus the length of that

axial is given by

)2 2

+ rjszw + (zj - z.)2

—
i

(rjcw - v, ;

)2

2 2
.+ rS - 2r.r.c #* (z. - z,
rytry 2r1ch¢ (zJ z

; (82)

The results are in Table III-3.

Looking at whether the ribs are too confining, we can see immediately
from Figure III-7 that the pyramidals are all right. Looking-at the Taterals,
the mid point of each rib is at a distance D from the point 7. on the axis

given by:
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For L0s the distance to the centér of the LOX tank is 1.8515 m, leaving a
clearance of 19.3 cm. Doing the same for 24 and the lower LH end cap gives
D= 2.71531 m for a clearance of 2.3 cm. Close, but probably adequate. The
Taterals Ly are identical to these.

To figure the axials, we can express them parametrically as:

X =gt A(rjcw - ;)
y = Arjsw (84)
z = )

.+ .~ Z.
z; A(zJ z;

For L1, the distance D to the LOX tank center z. is

0% = %2+ y2 + (z - zc)2 (85)

By differentiation we find that the minimum D requires

fo = (7o - 29)(zy - 27) - vylrpcp - 1)) (86)

With this, the system is easily solved; and we get

A = 0.55684, D=1.7309 m

for a clearance of 7.3 cm..
For L3 we need the distance to the axis. Since ry = rj =Ty and the

minimum D obviously occurs at A = 1/2 we get:

D2=¥+y2=%€u+cm (87)
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From which
D = rye(y/2) = 2.1399 m

for a clearance of just 1.0 cm. Since the spar radius and tank insulation
must be allowed for, this is not quite encugh; but the necessary slight
readjustment of the tank dimensions cannot affect the mass much; 50 we will
accept this and proceed.

The geometry established, we need to compute the load P in each rib.
The worst load occurs just at burnout. Assuming, for simplicity, that the
entire mass is above the top of the truss at this time, the entire structure
is then under an axial compressive load of 2 TRt' This is slightly conserva-
tive for the upper ribs, since we have neglected the relief due to the mass
of tanks, plumbing, and structure. Again for simplicity, we will assume that
the loads are applied symmetrically at the joints at Z and Zg-

We will Took first at the axials. For L.I and L3 we need only divide the
load evenly amongst the 10 ribs, and allow for the angle off the axis.

This gives
P=rr37 - (88)

In the case of LZ’ the pyrémida]s make this part of the structure staticaliy
indeterminate. However, these pyramidals are unlikely to be in tension; so
it is conservative to compute P2 from (88). This point would have to be
reviewed in a detailed design. The results are given in Table III-3.

The only other important compression load is in the upper pyramidals L6.

If we arbitrarily assume that 1/3 of the second stage Toad is on the joint
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at Zes and the balance spread uniformly on the joints at Zgs then

2T, L

_ 2Tplg
P = 15126 - 2g) (89)
Table III-3. Main Compressive Loads
MEMBER ] L, L L
L m) | 3.0391 | 3.1018 | 3.8592 | 2.7609
p (N) | 14484 | 14783 | 14306 | 15351
P2 (m/NE)| .02525 | .02551 | .03227 | .02228

The calculation of the Toads in the laterals is much more slippery;
both because the structure is statically indeterminate, and because of the
uncertainties in the application of the end loads. Consider a typical
outside joint at z;. From {84), the direction numbers of an axial to zj are
[rjcw - Ty rjsw, z; - Zi]' At the same joint, the local radial direction
is [1, 0, 0]. Thus from (82) the angle ¢ between these directions is given

by:

Leg = rich - ry (90)

Applying this at Zy, we find that cg > 0; so £1 is in compression. By resoly-
ing all forces at this joint along the radia] we learn that
P](rzcw - r])

- p, S2_ -
Py = P15y Ly 957 N (91)

Moving to zZ, and Zgs the problem is indeterminate; but an examination of

the model (Figure ITI-8) suggests that light tension Toads are likely in 2,
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and 24; so these members should give us no trouble. As for L5 the same

reasoning as in (90) and (91) this time gives:

s
ZPocsh = 2Pych - PG-EE
r, [P P
=41 3. b 1=
- P25 * 0 [L3 (1 - co) + ZLS] 13352 N (92)

This is a tension load, so it's not a major concern. We conclude from all
this that the main design problems are the four ribs in Table III-3.

In designing these ribs we will suppose them to be thin walled tubes of
radius r and wall thickness w. Three failure modes must be considered -
Euler buckling, diamond buckling, and pure compression failure. 1In the
latter case we define failure as exceeding the yield stress. For the design
criterion we choose a 100% safety factor; i.e. failure should not occur by
any of these modes at less than twice the load of Table III-3.

Starting with compression failure, we have an area limit:

%? < A= 2mrw ‘ (93)

Here A is the cross sectional area of the tube, and Y is the yield stress of

the tube material. MWe can write this as:
o> o tCL) ' - (94)
= Y ‘

The Euler T1imit is usually writen:

72E] _ 2moErow

2P < = (95)
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where E is Young's modulus and I is the areal moment of inertia. We will

arrange this as:
rw 2_'—'3;— (EL) (95)

Finally, the diamond buckling 1imit can be stated as(44):

< — (97)

2P  KEw
A r

where for long tubes 0.1 < K < 0.6. The higher value js theoretical, and is
approachable only for low values of r/2, precise shapes, and material nearly

free of imperfections. From (93) this takes the form:

2 P
W ?,?I_KE‘ (DBL) (98)
“CLDBLT DBL2
It is instructive to sketch these: Pf L

Two DBL lines are drawn, iilustrating

"the possibilities that the DBL may lie

on either side of the point Q; where &
i Q
the EL and CL intersect. The inequali- 2
ties are such that the design point must
\CL
t1ie on, or to the right of, all three -

curves. We note that the EL and CL must 1ie as drawn, since from {94) the
slope of the CL is - r/w; while from (96) the slope of the EL is -r/{(3w).
_Thus, the CL 1is steeper at Q].

Suppose we have DBL1. Then sincé the CL is a contour of constant A,

tube mass is minimized by designing to be on the CL somewhere between DBL,
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and Q]. The tube mass is then:
m= plA = -~ {99)

Thin walls are always troublesome; so, to maximize w, we are led to choose

Q, as the design point. In this case, from (94) and (96) we get:

LY _PJE -
T xJE YT T 73 (100)
Now consider the converse, DBLZ. In this case, tube mass is clearly

minimized at QZ, the intersection of DBL and EL. - Then w is given by (98),
and from (96):

L (101)

from which the tube mass fis

- 1/3

(102)‘

To decide between DBL; and DBL, we can compare w as calculated from (98} and

(100). DBL] holds provided:

L

VP Y

<E 1% ‘ (103)

The left side is shown in Table III-3.
Looking at materials, specific alioys of aluminum, titanium, magnesium,

steel, and beryllium were considered. In each case E and p were fairly

-
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constant across the range of alloys, except for some with a considerable

heavy metal fraction. A selection was made from those alloys suitable for

extrusions, and possessing a high value of Y/p. Except for berylli

um, the

information is mainly from Reference (61). The beryllium data is from

Reference (12). The main properties E, Y, and p are listed in Tabl

e ITI-4,

after converting to SI units. The right side of (103) is alsoc computed, in

which, for simplicity, we have taken K = 1/m. This is a sort of bootstrap

value, and is subject to Tater revision.

Table III-4. Material Properties

Al 4A1-§%0—TV Mg Steel Be
7178-T6 (Aged) ZK60A-TS5 440¢ XT-40
E - N/m? 7.1704x10'0 | 1.1376x10"" | 4.4879x10"C | 1.9994x10"? | 3.0336x10"]
Y - N/m? 5.9156x108 | 1.151ax10° | 2.0688x108 |1.9650x10° | 3.5852x10°
o - kg/m° 2823 4512 1827 7750 1827
ey~3/2 /12 | ooagsa .002912 .015065 1002295 .044688

* . ; . .
Value is for tubing in compression.

Comparing the last rows of Tables III-3 and 4 we see from (103) that

for all ribs, Q1 is the deéign point for beryllium, and Q2 should be used

for all other materials. Knowing this, it is a simple matter to apply the

above formulas and determine r, w, and m for each rib and materiail.

results are in Table III-5.
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Table III-5. Rib Designs

Al Ti Mg Steel Be
L 1.2394 1.4563 1.0973 1.7175 | 0.4486

o 1.2999 1.5273 1.1508 1.8013 0.4673
(kg) L3 1.8304 2.1507 1.6205 2.5365 0.5627
6

L 1.097% 1.29 0.972 1.5214 0.432
L1 109.73 101.61 118.67 92.49 33.26
r L2 111.62 103.35 120.71 94.08 33.94

{mm} L3 128.41 118.91 138.88 108.24 42.23
L 103.43 96.24 112.4 87.6 30.21

L 0.44944 0.35682 0.5685 0.26915 0.38668
2 0.45406 0.36048 0.57434 0.27191 0.38669
(mm) L 0.44667 0.35462 0.565 0.26749 0.30077

L6 0.4627 0.36734 0.58527 0.27709 0.45112

It is obvious from Table III-5 that beryllium is best, both from the
Tower mass and from the smaller diameter. Moreover, choosing berylilium
spares us from having to justify our choice of K. Further, avoiding Q2
means that we don't have to worry about 1nterac£ion of the two buckling
modes, which might give buckling stresses belcw those we have used.

However, we are not without problems. The values of w are so small
(as 1ittle as 0.012 in.) that we may have fabrication and handling problems.
(Considering the high stiffness of bery111uﬁ, it is really no worse in this
respect than anything else in the table.) To cure this, and to add more

conservatism, we will increase all w values (and thus all m values) by 50%.
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Adding up the masses for all 35 ribs we have just designed, we get a total
of 25.4 kg. This is a saving of 39.9 kg over the next best material,
(61)

magnesium. There is also the problem of cost. Beryllium is currentiy
around $275/kg, not counting fabrication. $10,000 to save 40 kg looks well
spent.

We also need the mass of the remaining ribs. Considering the loads
we have guessed and calculated for these, a good choice would seem to be a
somewhat smaller tube of titanium. Suppose we take r = 25 mm and w = 0.5 mm.
This gives a tensile yield Toad of 90,430 N, which is very conservative. .
Also, from Table III-2, the average length of these ribs is 2.4163m. At, say
L =2.5m, the Euler buckling Toad is 8818 N, which also looks quite con-

servative. As there are 30 such ribs, their total mass is:
m= 30pLaVA = (30){(4512)(2.4163)}{2w)(.025){.0005) = 25.7 kg

Once again, a shift to beryllium seems warranted. Using the same dimensions,
we now get tensile yield at 28158 N, and Euler buckling at 23515 N, which
still looks good. The mass is now 10.4 kg, a considerable saving.

Some details remain. The 20 outer joints might be 0.5 kg each if
they were primarily magnesium costings, or maybe beryllium, for a total of
10 kg. The two axial joints are probably rings at, say, 1 kg each. There
is a short structure down to the RL-10 engines, which consists of maybe 10
struts of about 1 m each, for a mass of, say, 3 kg. There is structure
connecting to the second stage. This might consist of 5 ribs of about 2 m
each, for about 3 kg more. Finally, there is the disconnection mechanism
for breaking these joints after departure, which will be guessed at 5 kg.
Summing up all these contributions, we find a total primary structure mass

of 58.8 kg.
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We are now in a position to look at the attachment system to the
Shuttle bay, equipment that stays with the Shuttle. Perhaps the Tightest
feasible method is just a set of rope connections between the primary
structural joints and the bay structure. These could be tightened before
Taunch to put the whole structure in light tension. Since most of these
lashings would be hard to get at in orbit, remote line cutters would have
to be provided. Allowing say 1 kg per joint for rope, cutter, and cabling,
this comes to 20 kg for the primary structure. The second stage and final
payload are much more compact, but will probably need more rope. Say 8 kg
for this. Next, a separate structure and release will probably be needed
to support the RL-10 engines. 1In view of their large size, 20 kg seems
reasonable for this. Finally, we are Tikely to need a set of specialized
attachments for the Shuttle's remote manipulator arm to assist in deploy-
ment. Maybe another 15 kg. Putting this all together and a1{owing 20% for
bay attachments and miscellaneous, we find a total attachment mass of 75.6

kg.

10. First Stage Summary

In this section we wili assemble the previous results, examine the
remaining vehicle systems, and determine the mass we have left after discard-
ing the first stage, as a function of Avg. Qur first task is to establish
the departure mass M- This is the Shuttle éay]oad of 65,000 1b = 29483.5
kg minus those things left in orbit. These consist of the bay attachment
system just determined, the chilidown losses, and the insulating shrouds for

the LOX and LH tanks.
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From Table ITII-1, the chilldown losses amount to 209.2 kg. If wé make us
of the two burn maneuver of Section 7, we might need to waste another 100 kg
which at an initial Av of 2 km/sec Tooks Tike 154 kg at departure. At
AVD = 8.8 km/sec, this would cost us 53 kg after departure. This is enough
to decide to use the THI feature of the engine. (See Section III-7.) We
will thus assume no chilldown loss, but add 30 kg to the combined engine mas:
to cover the THI equipment.

As for the insulating shrouds, their primary use is to Tlimit heat leak
from launch to remova1wfrom the Shuttle bay. Once the shrouds are removed,
we will count on the initially subcooled propellants, an aluminum reflective
coating on the tanks, positioning the Shuttle to act as a sun shield before

departure, and the use of THI, as necessary, between departure burns. To

estimate the shroud mass, the tank areas are:

Aoy = anrl = 47(1.658)° = 34.545 ;m°

Ay = 2nr(2r + 2) = 2n(2.13)[2(2.13) + 1.303] = 74.451 me

If we assume a multiple radiation shield type insulation with, say, 30
layers of 1/4 mil Mylar, each coated with 5 um of aluminum, we find an areal

density of
30[(2.5 x 107%)(.0254)(1395) + (5 x 1078)(2851)1 = 0.6934 kg/m’

Allowing 30% for seams, attachments for handling, the slightly Targer radius

of the shroud, and the lack of a taut fit, we get a total shroud mass of
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http:27r(2.13)[2(2.13

98.3 kg. We might also note here that a 5 um aluminum coating on the-tanks

will add

(2851)(34.545 + 74.451)(5 x 10_6) = 1.5 kg

to the tank mass. Combining these numbers, our initial departure mass

becomes:

m, = 29483.5 - 75.6 - 0 - 98.3 = 29309.6 kg

On to the first stage. The propellant mass m,

function of Avpy from (55). There, m, is as above, and the effective

may be calculated as a

Ve T 4.565 km/sec, as shown in Section III-7. The propellant tank mass mr
can be found by consolidating the various components of Section III-8,

including the webs. From (67), (76), (78), and (79):

_ -4 o -3

— _4 _
Mpy = 38.7 + (.018572 + 1.93 x 107" )m,, - 50.8 = .018765m ,, - 12.7

Using the mixture ratio‘of 5.2 from Table III-1, and allowing for the aluminum

coat:

I

oo
m: = [(1.016 x 107%)(5.2) + (.018765)(1)] & - 12.7 + 1.5

.0038787 mp - 11.2
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By making rough estimates of some of the smaller components we can

tabulate the first ﬁtage systems:

Engines {including THI) 383.0 kg
Primary Structure 58.8

Tanks .0038787 my - 11.2
Engine Actuators, Controls, Cables 20.0

Plumbing and Tank Instrumentation 20.0

‘ Sub Total 470.6 + .0038787 m

p

Adding 5% for miscellany this comes to 494.1 + .0040726 mp.

So far we have made no allowance for propellant residuals. The
normal allowance of about 0.5% of mp would come to around 120 kg. This is
so severe as to call for‘strenuous measures to reduce it. The engines already
have mixture controls, and we have allowed for tank Tevel instrumentation.
If we augment these with tension gauges in the tank support webs, we should
be abTe to control toward nearly complete exhaustion of both propellants.
After allowing for the extra instrumentation, and the slightly reduced
performance for deviating from the optimal mixture ratio, we will assume a
penalty of 50 kg.

Combining all the above items and using (57), the initial second stage

mass comes to:
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it

m, - mp - 494.1 - .0040726 mp - 50

—AVD/V

29429.0 e € - 663.5 (kg) (104)

If AVD = 8.8 km/sec, this comes to m, = 3617.9 kg.

11.  The Second Stage

Nearly everything in this stage depends on the choice of propellants.
The requirement to store these for several years without refrigeration means
that we can rule out anything with a room temperature vapor pressure greater
than about 100 psi. Storable oxydizers, by this test, include N204, H202,
red and white fuming nitric acids, C2F3, and CRFS. Of these, the Tast two
have promising performance, but are relatively untested. We will regard
them as possible improvements, but not sufficiently advanced for conservative
design. N204 has considerable experience, good performance, and appears to
be storable indefinitely at modest pressure. HZOZ has considerable experience
and performaﬁgg_slightly less than N204; but it is unstable and its decom-
position is catalyzed by microscopic impurities. Probably too risky for‘this
mission. Finally, the nitric acids also have lots of experience and good
performance. However, while they are normally regarded as storable, holding
these corrosives in a Tight, sealed, untended tank for four years or more
could be difficult. A1l in all, N204 Tooks presently hard to beat.

As for fuels, the choice is not so plain. . Hydrocarbons, such as RP - 13
organics, such as aniline; hydrazine, and its derivatives monomethy]l

hydrazine (MMH), UDMH, and Aerozine-50 are all storable, and well tested.

With the possible exception of hydrazine, which is moderately unstable, all
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should work well with N204 for this mission. A short survey of modern
engines seems to show that MMH is the current choice (Viking Orbiter,
Shuttie Orbital Maneuvering System, etc.) and we will go with it too.

(13),(96)

A summary of propellant properties is useful.

Table III-6. Propellant Characteristics

MMH N204
. 3 0 a
Density - kg/m 874 (25°C) 1450 (20°C)
Molecular Weight 46.07 92.07
Melting Point - °C -52.5 -11.2
Normal Boiling Point - °C 89.2 21.2
Vapor Pressure at 25%¢C - psia 49.6 17.2

We will need the average propellant density p. If the N204:MMH mass

ratio is N, then:

m Nm
- _Db . - __P :
Ty = NET 0 ™N204 T R _ (105)
sp that
m ) m m - |
5= y—L2r—-=n ( MMH N204) - (N + 1)( 1 . N ) (106)
MMH © Ynzo4a  P\PmMH  Pn204/ Puml PN204

At least two engines are consistent with our requirements - the
Rocketdyne RS2101C and the Marquardt R40A. Both are uncooled, pressure fed,
and have much experience. Their properties are summarized in Table III-7.

The data sources are References 49, 52, 85.
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Table III-7.

Second Stage Engines

RS2101C R40GA R40A (LONG)

Mass - kg 8.2 " 6.6 18.1%
Isp" sec 292 281 292 P
V. - km/sec 2.8635 2.7557 2.8635

N = N0, :MMH ratio 1.512 1.595 1.595
Chamber pressure - psi 115.7

Expansion Ratio 60 22 60
Diameter - m 0.2723 0.2667 0.4404-
Length - m 0.5537 0.4572 1.016
Thrust - N 1334.5 3870.0 4021.4
Inlet Pressures - psi 210 238 238

% - kg/m’ 1148.6 1156.3 1156.3
*Requires niobium -~ titanium nozzle extension

Applying (56) to the two versions of the R40A, and using an initial mass
of 3617.9 kg, shows that the long engine yields 39.1 kg more payload, even
after aliowing for the increased engine mass. Comparing this in turn o the
RS2101C shows that we get the same performance with a much smaller engine and
Tower inlet pressure. However, the lower thrust means that the burning time
is much longer. Still, unlike departure, the gravity ]ésses are here
insignificant; so we will tentatively go with the RS2101C. Again assuming

Avy = 3.2 km/sec, we find my = 2434.5 kg. Thus, from (56), the burn time is:

. o 'pYc _ (2434.5)(2863.5)
BT T 1334.5

= 5223.8 sec = 87.1 min
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This is rather a Tong burn; however Rocketdyne sayé(as) that continubus
burns as long as 45 min have been run on this engine, with no sign of wear,
and no difficulty is foreseen for longer burns. If trouble is found in
\test, we have the option of shutting down, and restarting when the engine
cools. If even this fails, a second engine, or the Targer R40A, would cost
us 10-12 kg of payload.

Let's Took at the propellant tanks. To achieve an inlet pressure of
210 psi, we can add say 10 psi for valve and line losses, and 50% for safety
and get a y%e]d paint of 330 psi. Assuming that minimum thickness is
exceeded here (to be shown), our previous work tells us to look at My]ar(Sg),

titanium(]o), and steel(s]). At room temperature:

Tabte I1II-8. Tank Materials at Room Temperature

Ti-6A1-4V
Mylar Aged Steel 440C
Y - psi 13000 | 1.6 x 10° { 2.75 x 10°
o - kg/m 1400 4429 7750

Looking at Y/p, we can see that titanium wins narrowly over steel. More-
over, the steel chosen, while possessing a higher Y/p than other steels, is
not easy to weld, and may have problems with cracking after several pressure
cycles. The titanium, on the other hand, is a grade especially recommended
for room temperature pressure vessels. Recalling that the propeliant tanks
run around 0.5 m or larger, we find from (64) the wall thicknesses are

roughly
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we= 1o - 0.5)(330) - 5.16 x 10 m = 0.0203 in.
(2)(1.6 x 107) '

Minimum thickness is not a problem, so Mylar does not compete here.

If we again allow 5% ullage, then from {66) and (106) the total tank

mass is
o - 3{1 + e)pr (VMMH ) VN204) _ 3(1 + e)prmp
2Y ZYE
- (3)('[.05)(44259)(330) m = .012526 m ('[07)
(2)(1.6 x 10°)(1148.6) P P ,

For the present numbers this works out to My = 30.5 kg.
We also need to consider the pressurization system. The total tank
volume is

V- ee) R (g
P

and we must fi11 this with gas at a pressure pr = 220 psi. Assuming that we
i1l this from a gas reservoir of volume V] at an initial pressure Py» which
is allowed to blow down to a pressure Py > Pr at burnout, then the total gas

supply obeys:
nRT = pVo + po¥, (109)

Here n is the number of moles of gas, R is the universal gas constant, T is
the absolute temperature, and the ideal gas law is assumed adequate up to
p = Py

At the higher Pys 2 better approximation is needed, and we will adopt

the Van Der Waals equation of state:
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4
nRT = (p + i'l—)(v - bn) (110)
1 V2 1
1
Introducing the specific volume
v = Vy/n (111)
- we can solve for Py and get
RT
P12V "3 (112)
v
. . (13)
For some candidate gases the constants are
Tabie III-9. Van Der Waals Constants
He H2 CH4 Ne A C02 N2
a atm - 2%/mo1% | .03412[0.2444 |2.253 |0.2107 |1.345 [3.592 |1.39
b 2/mol .0237 | .02661 | .04278| .01709{ .03219| ,04267| .03913
mol.wt. M 4.003 | 2.016 |16.04 |[20.18 {39.944 (44.01 {28.02
1
; H

In Table III-9 we have adopted the units of Reference 13, which requires that
we measure ‘u’-I in Titers, n in gram-moles, Py in atm, where 1 atm = 101,325 N/n2
14.696 psi, and R = .0826 f%-atm/mo1-K.

To get the mass of gas tank plus gas we combine (66) and (108) and get

3prV-I

7 (113)

= Mn +

Mg

Once again assuming yield at 50% over pressure, we set p = 1.5 Py Then using

(109) and {111) we can establish a sort of figure of merit F:

ITI-60



= = 14
F pTVT RT - pzv (114)
in which
_ %oy
CL:W (115)

Choosing the same titanium ailoy, then in the above units this is

. - (9)(4429)(14.696)
(4)(1.6 x"10°)

=0.91532 gm/% - atm

We also need to choose bz. Relative to Py = 220 psi, a good conservative
choice would be about 300 psi = 20.414 atm.

Now if we pick a range of values of v, we can compute a corresponding
range of Py values from (112), for any given gas. Putting these results into
(114) shows that F has a shallow minimum at about Py = 180 atm for each of
the gases of Table III-9. The results for the best three gases is shown in

Table III-10. No others gave F < 2.0.

Tabte III-10. Gas System Optimization

He H, CHy
v - %/mol 0.1555  [0.1555 }0.115
py - atm | 186.32 | 182.15 | 172.76
F - gn/t - atm | 1.4145 | 1.2933 | 1.5257

The clear choice is HZ' This is reinforced by the lower permeability

of most materials to H2, compared to He. Converting to other units we get
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pp = 2677 psi. Also, combining (114) and (108), and adding 2 kg for the

regulator, gas Tines, and hardware, we get

(1 + e)pF
A .

(116)

Mg =2+ prVsF =2 +

5‘ p

(1.05)(220)(1.2933)

=2+ (188,67 (1. 5087 ™ ~ 2 + .017699 m, (kg)

With our present numberé, this is 45.1 kg.

This is high enough to Took for alternatives. One obvious approach is
to pressurize with gas obtained from burning the main propellants, thus
eliminating the gas tank. Supposing (optimistically) that we could achieve

compiete combination to stable end products, a likely result would be

SN?O4 + 4NH2NHCH3 > 9N, + 4€0, + 12H,0

2

Since the steam would condense at tank temperature, we are left with 13 kg-
motes of gas from 644.58 kg of propellants, which gives us an effective

M = 49.58 for the gas. Using (108), the mass of extra propellant needed for
this is:

Mp-V (1 + e)Mp
:Mn: TT: Tm.
RT RTD P

EP

(1.05)(49.58) (220)m,
(0.0826)(14.696)(300)(1148.6)

.027383 mp (117)

Comparing to (116) shows that this is uncompetitive,
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A totally different approach is to pressurize the tanks only 1ightly,
and add a set of phmps to meet the engine inlet pressure requirement. This
would greatly reduce both my and Mo at the cost of a set of pumps, and a
means to drive them, Let's first consider an electrical drive. From (56),

the mass flow rate is
(118)

The theoretical power needed to raise the pressure from nearly zero to p is:

P:pi’:ﬂn-z.ﬂ_
P c

(220) (1334.5)
(1.4504 x 107%)(1148.6)(2863.5)

= 615.4 U (119)

In view of pump and motor efficiencies, and the various mechanical and
pressure losses, it is unlikely that we could get away for less than 1 kW,
which certainly makes electrical drive look unattractive.

In‘p1ace of electrical drive we can consider a gas generator and turbo-
pump. Since our main propellants are hypergolic, it is natural to consider
them to power the gas generator. To see how much we need, let's look at the

main jet. The power develdped there is

2
m_v
= =.RC
PE TVC t . (120)

To drive the turbopump we need the power P from (119). Assuming an efficiency

n, the required extra propellant is

ITI-63



Pm .
S (121)

Probably no more than 10% efficiency should be assumed for the gas generator
and turbopump, but as we will be able to recover some thrust from the

exhaust, a value of 20% overall seems more reasonable. Thus:

(615.4) m_ ]
Mep = (0.2)(2863.5)(1334.5) ~ ©-05 x 10

4 ¥
22
m, (122)

With the present numbers, this comes to Mep = 2.0 kg. ﬁven after we allow
say 5 kg for the gas generator, turbopump, and exhaust nozzle, we can see
that we are way ahead. A variation on this, suggested by Harold Stratton

of Rocketdyne(SS)

, 1s to power the gas generator by catalytic decomposition
of MMH. The combustor may be a 1ittie simpler, but the Ve is much less; so
Mep would go up by perhaps 2 kg. We will stick with N204-MMH.

Since Mep i; exhausted as we go, rather than remaining as deadweight at
burnout, we must determine its effect somewhat differently. Consider the

force equation relative to the rocket's initial rest system:
mv=T=-mv (123)
The mass is here

m=m, + m + mgp = My * (1 + &) m, (124)

where we are regarding m, mp, and Mep as running variables, and

§ = 8.05 x 10"4, from above. Eliminating dt, this integrates to:

v+ < Inm =K (125)
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and evaluating this before and after burn:

an{my/mg) = (1 + 6) %!- (126)
C

For 6 = 0, we recognize the rocket equation (54). To make use of the previous

theory, we need only replace Ve by

= Ve _ 2.8635

Ve " T+ 38~ T.000805

= 2.8612 km/sec (127)

We are now in a position to recalcuiate the tank and pressurization .
system masses. For this we will assume that a tank operating pressure of
Py = 10 psi would be sufficient to charge the turbopumps. The mass of the
pressurization system is then immediately computed from (116)

*m

me =2 +8.05x 10 D

The tanks themselves require a new look. Designing them to yield at
15 psi means that both titanium and steel would be well below minimum wall.
thickness. Even Mylar comes out about .011 in.; but as this does not offer
any special problems, it iooks 1like the best choice. From (107), the total

tank mass is now:

;€1.oé)(14oo)(15)

_(3 )
My = {2)(13,000)(1148.6) Mp = -002215 my (128)

which is 5.4 kg with the present numbers.

The second stage structure has to do essentially the same jobs as the

first - support the departure loads, and pass the launch loads to the
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Shuttle structure. As the payload is poorly defined at this point, we can
_only roughly estimate its mass. Referring to Figure III-5, and allowing
for the diminished .departure loads above the second stage tanks, we can
guess that the second stage structure will run about 20% of the primary, or
11.8 kg.

We can now tabulate the second stage systems, using a few more guesses

for the smaller components:

Engine 8.2 kg

Secondary structure {including tank webs) 11.8

Tanks .002215 my
Pressurization System 2.0 +8.05 x 1074 my
Turbopumps, gas generator, nozzle, etc. 5.0

Engine actuators, controis, cables 4.0

Plumbing and tank instrumentation 4.0

Sub Total 35.0 + .00302 Mg

Again allowing 5% for miscellany we are up to 36.8 + .003171 mp. Once again
we have to allow for propellant residuails. The usual 0.5% would this time
cost us about 12 kg, which without turbopump controls, is Tikely to be Tow.
However, using the same approach as in the first stage, we can probably get
away with 8 kg.

We can now combine all these. Using (55) our payload is

L = m, - mp - 36.8 - .003171 mp - 8.0

-AVT/VC

I

m2(1.003171 e - .003171) - 4.8 (129)
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which. with the present numbers is 1129.8 kg. Finally, by combining this with
(104), we attain our goal of finding the payload as a function of AvT and

Avyy only:

~Ay /v ) -4y /vI
L= (2oa20 ¢ DD 663.5)(1.003171 & | © - .003171) - 44.8

]
-AvD/ch —AVT/VC

= 29522.3(e - 022546 ) (e - .003161) - 44.8 (130)

12. Optimization

With the construction of the payload function (130) the spacecraft .
parametric design may be regarded as complete. Our problem now is, given the
optic axis coordinates ea and ﬁa, how do we choose trajectory parameters,
consistent with the celestial mechanics constraints, which at the same time
yield the values of AVD and AVT that maximize L? This is a straightforward
problem in differential calcuTus, such as is treated by Bryson and Ho
(Reference 17, Chapter 1). Our technique will be a variation on their main
method.

To start with, we will organize the probiem variables into three groups

of two each:

RN

where all the Greek variables are defined in Section III-4. This division
into "state" variables x and y, and "control" variables u, is rather

arbitrary, and is done here merely for convenience.
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The celestial mechanics constraints (28) and (31) can be written as:

£z a8+ (1- oW - " 1+a-1=0 | (132)
f, = Aefch + (v2 - 1)1 - oy?) - By = 0 (133)
'where from (31):
e = (2 - 1)% +426° (138)
Thesé may be collectively written
f(x, u) = [f], £,] =0 (135)

Additional constraints come from the departure relations (41) and (51),

and the turn point relation (33):

gy = 5085 + " - 9P+ 1) ~yel + % = 0 (136)
- g, = Jf[oczvz +(0-0f-v1=0 (137)
where cI is from (14} and
y=Entx (138)
Collectively these are:
g(xs ¥, u) = [gqs gz]T =0 (139)

Note that if u is given, (135) may be easily solved for x, after which (139)

yields y immediately.
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The payload L must also be expressed in these terms.

_{33) and (53) we have:

L=1L(y) = k](e-ksn - kz)(e_kﬁv - k3) - kg

From (130), using

(140)
k] = 29522.3 kg, k2 = .022546, k3 = .003161, k4 = 44.8 kg
v
_ e _ 29.78468 _
ks - V = 4.565 - 6.5246
ch
Ye _ 29.78468
kg = v = “zge1z - 10-410
c
To maximize L subject to f = g = 0, we construct a Hamiltonian:
H(xs ys U A5 @) = L{y) + Af(x, u) + wg(x, y, u) (141)
in which A and w are Lagrange multipliers with the structure
A= [Al, Az] ; W = [w1, wz] (142)
Extremals of the constrained L satisfy these relations:
HX f Xfx twg =0 (143)
= + =
Hy Ly mgy 0 (144)
Hu = lfu +wg, = 0 (145)

After tabulating all the derivatives of f, g, and L; the system (135), (139),

and (143-145) is a set of ten equations in the ten unknowns X, y, u, A, and

w. We shall devise an iterative technique for solving this system,
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First, the derivatives. After some algebra:

_ ) - —‘] ) ]
g 0 -1 0
-] g
f = - 5 f =
X i X 2
BYZ Ae25¢ %Y ";
B _ L Ae"os¢d Aesp |
0 -A(1 - AZ)YQ_3C¢
g =
X o-T 0

[tm]
<

[}

1
o e,
< [
L 1

R cl}
g =
u L 0 mzY

Now, from (144), we can directly solve for w:

ke -ken/ -kov k., ~kov/ -ken
g k[ I ) S
W= - Lygy = k][tp e e k3 s, © e k2

Knowing this, we can obtain A from (143):

(1 - Mevdes (1 - A)vcs

8 (1 - Py :I
f o=
U | v%(2n8c - o) 2v[A(B? + 2v? - 2)cd - Bo - 2072 + 1 + a]

e2Q305¢ e2Q3S¢
0

A= - mgxf;] = w :

Q-

The combined results must now satisfy (]45).’
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This points the way to the solution technique. A trial value is
selected for h, after which x and then y are found from the constraints, as

1

noted above. This leads to w and gxf; from (152) and (153). Putting these

into {145) gives
H, = w(gxf;]fu +g,) (154)

in general, this Hu # 0, and we must decide how to find a better u.

One way to do this is the Newton-Raphson method, which requires the
determination of-é% (Hu) to find the change in u. This quantity can be
found analytically; but it is evident that the algebra would be extremely
tedious. Instead, a numerical technique has been éhosen in which Hu is
evaluated by the above technique using three different values of u:

[B, v]. [B + 8, v], and [B, v + 6]. The results are called Hh1, Hyo s and
Hu3 respectively. Then

] Mz ™ M
— wh=3 N (155} .
u3 ul
The improved value of u is then
-1
- d T T
Unew = Yotd ~ [du Hu] i (156)

This procedure is the basis of a set of computer programs, written in

APL. The main program is TWOIMP:
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¥ TWOIMP
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To calculate Hu for each u, TWOIMP calls a subprogram IMP:
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g TALNI TR Lo W o o
§ eI T A .
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Finally, to read in some of the parameters, and to calculate constants used

in IMP and TWOIMP, there is SETIMP:

¢ SF [IHP
LT Hue=ulten =] 80
o TUECTMTLR Y TTTURM PRIERT KAQGLUS TH Te®
L3l HlelNl-{allel, LUPETFR T 2T
el LR RN NP RN
b0 e Lend
Lad TSRS I
Pl TURLH AR T 1 BReSLT
i1 THLe I~V e 29 YRILAR
Fred i ULl OPLTC sl tURE BN K
L s A A B B R A B IR A S
NI E P L
FLaT @t o, e
FEaSt L. e 3
PAnd i 2ed, D20%4a
| LT HE PPN § B {1 { R PN
Elad Ehstly, 0
R N L SN PO | B
P81 Kaetg,ui
Y
Table III-11. APL Trqns]ation
APL | MEANING APL MEANING APL MEANING APL MEANTNG
A o | A=ce, 6SM | v -1 RD | 180/
AL c2 |2 UM | g, RHO | p
A2 | 2 c3 |1 - A HU H, RS | o?
A3 | of D | wu o | on SIG | o
VR R R | /180 HUT-3 | Hyp_g sp | s¢
A5 |1+« DU | error inu  KI-6 |k, SH | switch
Ab 20 - 2 E e L L TA ea
B | g Es | e Qg TAU |+
BS | g2 ETA | 1 NU v VE | v,
B1 seK/se FUM fu ~OM w W undershoot
B2 cot ¢ G Y PHI ¢ X line break
CI cl , GF Ycl - 1 PSI U] X1 =X
-1 2
cp cd GFM ~gxfk PO ¢0 X2 X
P2 | cf, 6S |y Q Q
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SETIMP and IMP are easily read, but TWOIMP needs some explanation. To
use it we must first run SETIMP, and make an initial guess of u (B, G).

Next, the value &§ = .01 was chosen .as a compromise between too large a step,
which would make the derivative approximation (155) poor, and too small,
leading to truncaéion error. This vaTug worked well, so no attempt was made
to optimize 6.

The program main lToop is [6-16]. After each circuit, the values of Hyo
the change in u, and u are displayed. When Hu is sufficiently small, opera-
tion js suspended by pushing ATTN. Then the switch SW is set to 1, and
execution is resumed at the dispiayed location. This causes a final calcula-
tion of Hu’ and the program jumps to [17]. Early use of the program showed
that Hu had a tendency‘to overshoot. Convergence was substantially speeded
by introducing a fudge factor W into (156). This was altered as needed
between runs, but was generally kept in the ranae 0.85< W < 0.95.

In the output section, the program first displays many of the variables
[17-21]. _Then the payload L is calculated, as well as q, ¢0, and c¢2. After
displaying these, cg, is examined. If |c¢2| > 1, the program quits.
Otherwise, the Timits on ¢a, between which the optimal Shuttle orbit can be
used, are computed and displayed, along with the center of the excluded
region. For I > 0, we find from (11), {40), and the discussion following (49)

that the Timits are

=g +g 9, (157)

The program assumes this case; but for I < 0 we need only shift ﬁaz by w.
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Most runs were made with ry = 2.0 Tm, based on reaching the axis well
before the focus, according to any plausible solar model of the type con-
sidered in Chapter II. Referring to Figures III-1 and 2, we can see that
the minimum final specific energy is E ~- 10 kmz/secg, which requires
Vo ~ 10 km/sec or more. Runs were made with Vp = 10, 12, and 14 km/sec to
get a good idea of the payload--time tradeoff. For each of these, a range
of values of B, up to 19 deg. was tried. The results are shown in Table III-12,
and the payload is plotted in Figure III-9. We can conclude from this that
payloads well in excess of 1000 kg are possible for Ieal < 5 deg. and
QT < 12 km/sec. Moreover, substantial payload is possible out to Ieal = 15 deg.
or so, where the penalty associated with a larger Vr is not so severe.

Everything in Figure III-9 assumes fhat a perfect 11ne-up is possible
from an optimal Shuttle orbit. The ecliptic longitude band over which this
is possible is also in Table III-12, and is plotted in Figure III-10, for
vy = 10 and 14 km/sec. For handy reference, the celestial equator and a few
plausible stellar sources (outward axes) have been added. The loss in Shuft]e
payload, and thus ultimately in L, for Shuttle orbit inclinations within a
few degrees of BK = 28.5 deg., is not great; so targets only a few degrees out-

side the band should be accessible with small Toss. Thus for, say, 9. = 8 deg.,

a
ﬁa = 150 deg., we might get L ~ 500 kg. This is certainly an area for future
study, ‘

To see the effect of relaxing our conservative choice of ry = 2.0 Tm,
some runs were made at ry = 2.5 Tm. Looking again at Figure III-1, we can
see that the same range of ET values is now centered at VT = 10-12 km/sec,

and these two values were examined. The results are shown in Table III-13,
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Table III-12.

Optimal Two Impulse Transfers

04 0 2 5 7 10 12 15 18
Avyy 8.4708 | 8.6783 | 9.4869 | 10.189 { 11.368 | 12.205 | 13.505 | 14.834
Avy 3.1535 | 3.1458 | 3.1276 | 3.1164 | 3.0999 | 3.0888 | 3.0724 | 3.0594
Vi 0 '0.75623 | 2.7529 | 4.0222 | 5.7499 | 6.7966 | 8.2218 | 9.4804
Vi 41.745 | 41.753 | 41.704 | 41.62 41.44 41.295 4f.053 40.807
vy 11.961 | 12.241 | 13.31 14.209 | 15.675 | 16.688 | 18.226 | 19.763
v, 9.5589 | 9.6224 1 9.7744 | 9.8586 9.959} 10.017 | 10.1 10.209
v, 3.1225 | 3.1231 | 3.1194 | 3.1132 | 3.0997 | 3.0888 | 3.0707 | 3.0523
e 0.96439 | 0.96578 | 0.9692 | 0.97116 | 0.97357 | 0.97494 10.97695 [Q.9795
2-Tm | 0.29387 } 0.29398 | 0.29329 | 0.292171 | 0.28959 | 0.28756 (0.28421 |0.28081
I 0 3.9932 | 8.5325 | 11.011 | 14.328 | 16.379 | 19.312 | 22.139
€y 0 2.112 7.6735 | 11.204 | 16.015] 18.933 | 22.921 | 26.437
61 152.2 152.04 1 151.7 151.56 | 151.45| 151.43 | 151.42 | 151.35
) 152.2 149.98 | 144.33 | 140.881{ 136.34( 133.68 | 130.12 | 127
ﬂo 0 3.6463 | 13.51 19.969§ 29.016 | 34.645 | 42.544 | 49.793
p 0.40157 ; 0.411 0.44686 | 0.47707 | 0.52627 | 0.56028 |0.61192 0.66353
sy 1.1966 | 0.66954 | 0.14395 |-0.10865 ~0.40735 |-0.56979 1-0.77421 -0.94395
B -- 105.66 | 76.115| 64.608 | 51.32 43.59 31.934 | 16.067!1
¢a2+ -- 201.6 239.56 | 257.08} 279.4 293.06 | 313.4 337.52
L-kg| 1254.8! 1190.71 960.96| 789.4 562.52 | 416.87 | 248.63 | 118.31

Speeds in km/sec; angles in degrees

T

= 2.0 Tm,

V1
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Table III-12. Continued
6, 0 2 5 7 10 12 15 18
Avp 8.8247 | 8.9842 | 9.668%9{ 10.3 11.397 ) 12.194} 13.452| 14.758
Avy 3.2049 | 3.1988 | 3.1804 | 3.1682; 3.1505} 3.1388| 3.1206| 3.1021
Vi 0 0.50848 | 2.1507 | 3.3055{ 4.9413| 5.9545| 7.3595| 8.6287
Vh 42.222 | 42.231 | 42.212 | 42.158 | 42.023 | 41.904 } 41.697 | 41.468
Vi 12.438 | 12.65 13.545 1 14,35 15.711 } 16.675| 18.164 | 19.676
v” 11.455 | 11.496 | 11.619 | 11.694 | 11.786| 11.835| 11.8%6 | 11.954
vy 3.158 3.1588 ¢ 3.1574 { 3.1534 | 3.1433} 3.1344 | 3.1189| 3.1018
e 1.0095 | 1.0106 | 1.0138 | 1.0157 | 1.0179} 1.091 1.0203 | 1.0274
% -Tm | 0.30062 | 0.30074 | 0.30048 | 0.29971 | 0.29779 ] 0.29611 | 0.29319 | 0.28998
I 0 3.5636 | 7.988 10.48 13.837 [ 15.918 | 18.897 | 21.771
GD 0 1.372 5.7937 | 8.8971 13.294 | 16.023{ 19.818 | 23.259
61 147.32 | 147.21 | 146.95 ) 146.83 1 147.74| 146.73| 146.77 | 146.83
g 147.32 | 145.89 | 141.43 | 138.41 | 134,29} 131.82| 128.4%3| 125.55
8, 0 2.355 10.146 | 15.814 | 24.154 | 29.527 | 37.288| 44.679
p 0.41758 {0.42471 | 0.45477 | 0.48179 | 0.52748 | 0.55985 | 0.60984 | 0.66061
cﬁz 1.1966 | 0.73543 | 0.2226 |-.0382 {-0.35722] 0.53612 |-0.76732 |-0.96376
ﬁaﬁ- -- 105.59 | 74.438 | 62.034 | 47.51 38.923 | 25.66 5.7049
0+ ~= 190.9 228.71 | 246.41 | 269.37 | 283.76 | 305.89 | 334.76
L-kg | 1120.2 | 1075.3 | 895.34 | 749.32 | 536.74 | 410.38 | 249.63} 122.32

Speeds in km/sec, angles in degrees

rr = 2.0 Tm,

vr = 12 km/sec
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Table III-12.

Concluded

o, 0 2 5 7 10 12 15 18
avy, 9.2426 | 9.3703 | 9.9552 | 10.522 | 11.539 | 12.295 | 13.505 | 14.779
Avp 3.2668 | 3.2619 | 3.2445 | 3.232 | 3.2199 | 3.2023 | 3.185 | 3.1681
v, 0 0.35592 | 1.6838 | 2.7115 | 4.2352 | 5.2046 | 6.5734 | 7.8375
v, 42.776 | 42.783 | 42.781 | 42.749 | 42.65 | 42.554 | 42.376 | 42.163
v, 12.991 | 13.158 | 13.912 | 14.629 | 15.884 | 16.796 | 18.226 | 19.7
v, 13.34 | 13.368 | 13.464 | 13.529 | 13.609 | 13.649 | 13.689 | 13.699
v 3.1996 | 3.2001 | 3.2 3.1976 | 3.1901 | 3.183 | 3.1697 | 3.1538
e 1.0627 | 1.0634 | 1.0662 | 1.068 | 1.07 1.0708 | 1.0713| 1.0708
% -Tm | 0.30855 | 0.30866 | 0.30864 | 0.30817 | 0.30674 | 0.30537 | 0.30282 | 0.29978
I 0 3.2319 | 7.5011 | 9.9865 | 13.371| 15.478| 18.499] 21.418
o 0 0.92487 | 4.3678 | 7.0274 | 10.97 | 13.483| 17.044| 20.357
o1 142.74 | 142.68 | 142.48 | 142.38 | 142.3 | 142.31| 142.38] 142.55
g - 142.74 | 141.8 | 138.36 | 135.79 | 132.12| 129.86| 126.74] 124.07
g, 0 1.5767 | 7.5936 | 12.416| 19.886| 24.873| 32.29 | 39.62]

o 0.43676 | 0.44177 | 0.4671 | 0.49115 | 0.53331 | 0.5639 | 0.61193| 0.66142 |;
cd, 1.1966 | 0.78841 | 0.29852 | .036155 |-0.29521 |-0.48649 |-0.74053 |-0.96301 |
B -- 105.41 | 73.322 | 60.277 | 44.831{ 35.624| 21.3 [-0.675
B0+ -- 181.34 | 218.58 | 236.13| 259.17| 273.84| 296.85| 328.06
L-kg{ 976.92| 944.67 | 805.53| 684.68 | 499.84| 385.89| 237.17 116.72

Speeds in km/sec, angles in degrees

rr = 2.0 Tm,

VT

= 14 km/sec
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Table III-13.

Optimal Two Impulse Transfers

Speeds in km/sec, angles in degrees

rT = 2.5 Tm,

111-81

Vp = 10 km/sec

6, 0 2 5 10 15
AV, 8.6897 8.8992 9.7174 11.619 13.775-
Avy 2.5404 2.5339 2.5186 2.4958 2.4735
v, 0 6.77231 2.8121 5.8716 8.3957
Vi 42.041 42.046 41.989 41.707 41.301
vy 12.257 12.537 13.608 15.982 18.541
v” 9.6466 9.6994 9.8258 9.9807 10.102
Vl. 2.5157 2.516 2.5126 2.4957 2.4714
e 0.99235 0.99351 0.99626 0.99964 1.0022
L - Tm 0.29805 0.29812 0.2973 0.29333 0.28765
I Q 4.0424 8.6311 14.469 19.469
8y 0 2.1115 7.6774 16.03 22.956
er 152.57 152.44 152.17 152.01 152.01
¢ 152.57 150.39 144.8 136.9 130.71
¢0 0 3.635 13.483 28.985 42.523
P 0.41151 0.42092 0.45687 0.53657 0.62251
cﬁz 1.1966 0.67195 0.14854 - 0.39963 -0.76244
by _ -— - 106.24 76.829 1 52.327 33.558
B+ -- 201.8 239.74 279.44 312.92
L - kg 1480.2 1402.9 1126.9 639.79 280.71




Table III-13. Concluded

8, 0 2 5 10 15 19
Avy 9.0512 9.2116 9.9032 11.649 13.72 15.479
Avy 2.5819 2.5767 2.5612 2.5363 2.5115 2.4914
v, 0 0.51898 2.196 5.045 7.515 - 9.2159
Vi 42.523 42.53 42.504 42.299 41.635 42.526
vy 12.739 12.951 13.846 16.017 18.477 20.499
v, 11.562 11.597 11.699 11.838 11.93 12.005
v 2.5446 2.5449 2.5434 2.5311 2.5106 2.4914
éL 1.0383 1.0392 1.0418 1.0449 1.0464 1.0475
L - Tm 0.30493 0.30502 0. 30465 0.30171 0.29683 0.29232
I 0 3.6049 8.0756 13.968 19.045 22.862
6 0 1.3719 5.7965 13.31 19.855 24,388
b1 147.74 147.66 147.45 147.3 147.37 147.46
g 147.74 146.34 141.93 134.85 129.08 125.25
¢0 0 2.3473 10.124 24.129 37.274 47.048
0 0.4277 0.43481 0.46487'? 0.53777 0.62035 0.68824
cg, 1.1966 0.73766 0.22705 —0.34957 - 0.75553 -1.0064
B -- 106.22 75.179 48.522 27.287 -
an+ .= 191.15 228.93 269.44 305.43 ~-
L~ kg 1323.2 1269 1052.7 624.03 283.66 24.388

Speeds in km/sec, angles in degrees

ry = 2.5 Tm,

vp = 12 km/sec
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and the L curves have been added to Figure II1I-9. The optimal Shuttle orbit
band looks pretty much the same as in Figure III-10; so it has not been
plotted. The large increase in L for |ea] < 15 deg tells us that the choice of
ry for the first mission could be very hard. On the other hand, once some
focus is found, we will 1ikely be able to carry substantially more L on

future missions.

13. Transfer Time

The time along the transfer orbit from departure to the turn point will
be called the transfer time. Its calculation from the orbit elements, for any
of the orbits just determined, is straightforward; but it is complicated by
the need for high precision and two sets of formulas. This is because the
orbits are all nearly parabolic: and both ellipses and hyperbolas occur. One
way out of this is to merely set e = 1, and calculate the time from the well
known formulas for parabolic orbits. This might be accurate enough for our
purpose; but an exact treatmenf for e ~1 in terms of power series is not too
difficult, and we will develop it here.

The time from perihelion on any Keplerian orbit is:

t -t =-2A (158)
Ty
where A is the area swept out by the orbit, as seen from the sun. let’'s
consider ellipses first:
28 = abl = 22(1 - €%)3/2(E - esE) (159)
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where a and b are the semi-axes of the ellipse, and M and E are the mean

and eccentric anomalies. Combining these we get

3/2

12 _
t-t =3 K(] ; ez) (E - esE) (160)
where for 2 in Tm and time in years:
p3 .
-2 e ) .1 .-3/2
K= = 27 ™ 7 e 5.50126 (161)

We will expand (160) by means of a well known connection between E and

6:
— E_J1-e 8
X = tan ﬁ'_\/l T tan (162)
Thus:
EF =2 tan_]x = 2x(1 - l-x2 + l-x4 - J-x6 + -e) {(163)
3 5 7
and
sE=2s EcEooncf Ec 22X __ oy o k8 o585 (164)
2 2 2 1+ XB

Using these to eliminate E from (160):

3/2

t-t) = 1<(1 _9‘82)

x[1T - e+ (e~ %)M2 - (e - ]g)x4 + (e - %)x6 - --+7 (165)

Finally we introduce what might be called a parabolic anomaly:
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=

U= (1 +e) V2an e , (166)
1 -e

3/2

[0+ (e-00% + (e-D(e-10% + (e-Tyte-1A7 + -]
(167}

Note that the problems when e ~ 1 have disappeared. In fact, if we put e =1,

(167) reduces to a well known formula for parabolic orbits.
We need to show that (167) also works for hyperbolas. In place of
{159): )

2A = abM = 22(e? - 1)732(eshE - E) (168)

whiie (162)-(164) become:

- tanh E = [ET 4an &
X = tanh 2 e T tan > (169)
£ =2 tanh lx = 2x(1 + £ xf + g xF + 2 x84 i) (170)
shE = 2 sh %~ch %- = 2xch2 %-= 23 5 = 2x(1 + K2+ o+ x6 +-+0)  (171)

1 -x

Now, combining (158), (161), (168), {170), and (171}

3/2 -
t-t) = K( 22 ) x[e -1+ (e - %sz + (e - %Jx4 + (e - %JX6 + -] (172)
. et -1 .

The parabolic anomaly (166) now becomes

U=— (173)

with which (172) reduces to (167).
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A pair of programs in APL have been written to evaluate (167). These

. are:

¥ TIME
£id STETIMIIF Tovr
L3231 ZI-TTMEF TaAl
L3 WLO0LAS COBLRERL T ] LSy RET-ED
w

¥ FeTTHrF Tr

PLT USEURIE CRRIRETA S O N0, S
POl Fe | 1UBYE--3

ELT R

R R P R EL- AN EF S LR REN S BRI TN
PR Te TR

VB VN

C71 0 SUIETBLIX) /9

Pa1 FeTwu

¥
The values of e, 2, 6ps and 6y are entered, and TIME is called. This
evaluates the portion [----] of (167) for 6 and then for 8p» and computes
the transfer time from the difference. The results, for the orbits
analyzed in the last section, are shown in Figure III-11. By combining this
with Figures III-1 and 2, we can get an excellent idea of the mission

duration.

4.  Two Impulse Summary

Our main conclusion from this chﬁpter's work is that starting from a.
dedicated Shuttle flight, a focal probe mission near the ecliptic is possible
with a payload in excess of 1000 kg. A new spacecraft would be needed; but
proven engines can be used and no new techniques are called for. Unfortunatel
payload dwindles rapidly as we move away from the ecliptic. About 17 deq.

appears to be the Targest excursion from the ecliptic, with any reasonable
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payload. Moreover, launch requirements impose severe ecliptic Tatitude
restrictions, outside of which further payload penalties are incurred. In
later chapters we shall coﬁsider ways to increase payload and extend sky
coverage.

For a plausible mission profile, consider the Crab Pulsar (M1). From
Figure I1I-10, we see that it is very favorably located. 1If we choose the
conservative ry = 2.0 Tm and vy = 12 km/sec, we get 1100 kg of payload.
Transfer time is 4.0 years. If the focus Ties in the range of models we
have considered (3.36 - 4.43 Tm), then we will encounter it somewhere between
8 and 12 years after launch, and we will have explored out to 5.5 Tm 16 years
after Taunch. If we decide to speed things up by raising Ve to 14 km/sec,
then the payload drops to 960 kg, but the four events above now occur at 3.6,
7, 10, and 13 years respectively. This could be a very difficult tradeoff.
On the other hand, if we have a good idea of the focal radius, we might
choose ry = 2.5 Tm and Vp = 12 km/sec, which yields a.payload of 1300 kg.

The four events then occur at 5.7, 8, 11.4, and 15 years respectively. Thus
pushing the turn point out considerably increases the payload, but has Tittle
effect on mission time.

Finally, a word on the-payload composition. We have igpored the impulse
requirements of trajectory.corrections, for reasons which will become evident
tater. As for normal spacecraft equipment - electrical power, guidance and
coﬁtroT, command and communication, etc.; it is unlikely that any significant
fraction.of-it can be jettisoned before the turn point. Thus, all this must
be contained in L, and the actual mass of instruments will be considerably

Tess than L.
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CHAPTER IV
ION PROPULSION

1. Introduction

The culmination of the two impulse calculations is that payloads of the
order of 1000 kg are feasible for foci near the ecliptic. As the physics
instrumentation can only be a fraction of this, and as many interesting
potential sources are at high latitudes, improvements should be considered.

One of these, the use of three or more impulses, was mentioned in
Section 1II-1. It does not seem likely that the improvement would be great,
at Teast for reasonable transfer times, so the analysis has not been attempted.
Still, this has not been proved; so a valuable resource may have been over-
Tooked.

Another possibility mentioned in Section ITI-1 is p1ane%ary gravity
assists, possibly combined with extra impuises. This is an enormously compli-
cated subject, partly because of the large number of multiple encounter options,
and partly because the optimum departure time and final payload will vary from
year to year, due to the motions of the encounter planets. It seems Tikely
thattsubstantia] payload increases would ensue, especially at higher latitudes.
Someone else's thesis, perhaps.

A different route is to consider radical departures in propulsion. In the
chemical area we might, for. instance, replace 02 by F2 in the first stage, or
N204 by C]F3 in the second. These were eliminated in the last chapter by the
conservative rule of usiné‘on]y tested propeliants and engines. We have
chosen not to explore these possibilities now, on the grounds that it would be
inappropriate in a theoretical thesis. If a better engine-propellant combina-
tion turns up, its performance can be readily found by repeating some of the

calculations in the Tast chapter.
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In this sense, ion propulsion is a qualitative departure; siﬁce its
performance Tim%ts can be found on]& by solving a problem in continuous
~optimal controi. In this chapter we will first develop the reasoning lead-
ing to the replacement -of the second stage-by an ion drive, then formally
state the combined first stage-electrical power-ion dfive optimization as a
variational problem. The resulting two point boundary value problem is
then solved numerically, -for a wide range of two and three dimensional
-trajectories. The results show very large improvements over two impulse
transfers, particularly at higher latitudes.

. A.different qualitative departure is offered by the solar sail. There

(81) in this old idea, Targely

has been a substantial reawakening of interest
because of new engineering developments. These include the fabrication of
aluminized Kapton and Kevlar films of the order of 3 um thiék, and methods

(60,47,27) Pure aluminum films, an order of

to deploy and, stabilize them.
magnitude thinner, have also been ﬁroduced(33), but much additional work
'w{ll be needed to establish their structural and.cpntrol requirements.

A spacecraft relying purely on solar sail propulsion would have diffi-
“culty with trajectory control at great solar distances. Moreovér, the pay-
Toad- will almost surely require nuclear electric power. Thus we are led to
explore a combination of a sail and an ion drive replacing the second stage.
That'éugh an élliance‘is compatible is not obvious; however we will show that
optimal pure ion drive trajecforiéé tend to Toiter near the sun for Tong
periods, especially for Tong .transfer times -and high source latitudes. This
is remarkably similar to optimal sail trajectories to the oute} planets and

out of ecliptic missions.(77=97)
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The author had intended to-include such a study in the present work;
but time has not permitted it. Considerable engineering work would be
needed to define the sail stage mass vs. area, with appropriate allowances

for structure, control equipment, and automatic‘dep1oyment after departure.
-Then an optimization would be needed, similar to the ion drive work below,
but adding sail size and continuous pointing to the other controls. Perhaps,
still another thesis.

The jon drive work begins by introducing a nuclear electric power system
based on existing technology. Next, a highly simplified analysis is given,
indicating that large performance gains are likely from an ion drive, thus
motivating a deeper look. As in Chapter III, we then Took at axial flight
beyond the turn point. This helps to establish a reasonable velocity range
at the turn point.

Sections 5-8 setup the main variational problem, leading to a two point
boundary value prop1em of tenth order, with integral side conditions. It is
a stationary solution to the optimal trajectory problem, in which the controls
are continuous thrust magnitude and direction, the first stage impulse, and
the'mass devoted to electrical power. The perforﬁance index is taken as the
turn point mass less the mass of the electrical power system.

A11 this is relatively easy. Solving the §ystem is not. The last three
sections discuss how the probiem has been organ%zed for the computer, and the
iterative methods employed. The set of computer programs is given, together
with the pertinent results. These consist of performance curves as a function
of time of flight and of the location of the radiation source. Much of this
takes the form of a narrétive because many modifications of the programs were

needed to get all the results, with partial results emerging at several stages
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of this development. The reader interested only in these results could

turn directly to the ends of Sections 10 and 17.

2. Electrical Power

During the final phase of the mission, the spacecraft will be so remote
that solar power sources would not be very effective. The only plausible
alternative seems to be nuclear power. For high power Tevels fission
" reactor systems certainly give the best power-mass ratios. Unfortunately,
none of these can presently be regarded as state of the art; so we will
ignore them. What remains are radioisotope thermoelectric generators (RTG).
The state of the art here is surely the systems carried by the Voyager
spacecraft, en route to Saturn and the outer planets, and we will build on
this technology.

Each spacecraft carries three units, each of which puts out 151 watts
(electrical) at launch, and has a mass of 40 kg. Each is self contained in
that it requires no additional equipment for thermal control or radiation.
The decay rate is such that the power has dropped to 133 watts at Saturn,.
about 1160_35&5 after launch. Al1 this data was provided by Dr.-Jeremy B.
Jones of JPL.(53)

For our mission we can reasonably assume that we wj]] need at least
as much power as Voyager, so several of these units would be required. In
this case, we can conserva%ive1§ assume that mass is proportional to power

output, and define the mass to launch powér ratio:
B = 40/151 = 0.26490 ka/W

Letting PD be the power at departure (not significant1y different from

launch}, the mass of this system is:
my = BPp (1)
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Assuming that the available electric power drops exponentially, at
least over the Tife of our mission, then at a time t after departure the

_power available for propulsion is:

P =P /T - P (2)
where PB is the power reserved for other spacecraft systems. Assuming that
the payload and communication systems will need full power oniy rarely
during the trip to the turn point, we will assume PB = 100 watts as a rough
estimate of the average spacecraft power requirement. As this entails only
about a 30 kg payload penalty, a better estimate is not justified at this
time.

The e-folding time can be found from the above data:

-1
p -1
_ D ) 1160 151 _
T = tl}n(PJrPB] = 365 9% [1n(]33)] = 25.021 years

and the half-life corresponding to this is:

Ty = TIn2 =.17.343 years

36 (75}

These figures do not correspond to the jsotope used (PE > Ty = 87.6 years) A
since the drop in thermal efficiency with temperature and the slow poisoning

of the thermoelectric elements by radiation play important roles.

3., Ion Propulsion Feasibility

The fact that we are carrying an RTG system with relatively little
to do from departure to well beyond the turn point suggests that we put it
to work in an electric propulsion system. We can hope that it would substan-

tially reduce or even eliminate AVT. Let's look at this,
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If we create a plasma at a mass rate g, and exhaust it at a speed Veo

then we get .a thrust

T=qvy (3)

If the engine operates at an electrical efficiency n, then the power needed

to achieve this thrust is: -

qv T2 .
Zn 2 (4)

2
P ==
As jon engine techﬁo]ogy is as yet in its infancy, the value we should use
for n is quite uncertain. Professor Howard Seifert suggests n = 0.5 as

(80), and we will use this throughout. Future develop-

presently realistic
ments may allow an upward revision.

Now suppose that of the total power needed for payload and spacecraft
operations, a quantity PE can be diverted most of the time for propulsion.
Also, suppose that this is augmented by an additional PA’ solely for propul-

sion. Then, over a time t, the total extra mass spent on electric propulsion

is from {1):
Am = qt + BP, (5)

where fhe decay of the power source has been témporariiy ignored.
Supposing that qt is not a Targe fraction of the average spacecraft
mass m, then the velocity increment due to electric propulsion is approxi-

mately

_Tt _ 1/2
Ay = m o m EZHQ(PE + PA)] (6)
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We can now inquire whether there is an optimum tradeoff between g and PA"
which maximizes Av for a given t and Am. It is easily shown that (6)

possesses an extremal under the constraint (5) provided
qt = B(PE + PA) (7)

That is, the propellant mass should just equal the mass of the power system

free for propulsion.

[T this condition is met, we find that there is an optimal exhaust speed:

2 _ 2
Ve = 3 (

+

PA +‘pE) = B (8)

For example, for 10 years and the above assumptioris:

i - [(2210:5100)(365.25)(06200) ] /% 35515 g cec.

Finally, we can combine all these expressions and get

v
- _C .

For iilustration, let m = 3000 kg and PE = 500 watts, and let an additional

400 kg be devoted to propulsion. Then in 10 years we get

_ 34515 _
Av = (2)(3000 [(0.2649)(500) + 400] = 3063 m/sec

and the average acceleration is 9.71 x 1076 m/secz.
Well, this argument is not very precise; but it does allow us.to con-
clude that we can replace the second stage with an electric propulsion

system and achieve a big increase in payload, although it may cost us some
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mission time. Moreover, the RTG need not be grossly larger than that of
Voyager. With this as motiva{ion, we will do a much more exacting optimiza-
tion with the intent of determining payload as a function of axis ltocation

and mission time.

4., Assisted Axial Flight

As in Chapﬁer I11, we preface our work by considering the one‘dimensiona
" problem beyond the turn point. 1In general this is a much more complicated
problem than its predecessor due to the decay of the power source and the los
of propellant mass. However,. as these are compensating effects, we will
neglect them in the interest of obtaining a first estimate of the effect on
mission time of adding electrical propulsion.

We start with the equation of motion:

.

r+_E_.=
r,2

(10)

s

Assuming the right side is a constant, we have an immediate first integral:

2 _ 2w, 2Tr ‘
R o (11)

where, from the turn point conditions:

. 2Tr
_ .2 2u T
K—VT_—Y?_——“—.m (]2)
Since time does not appear explicitly, we can express (11) as:
r -1/2
_ 2, 21X,
t_[(x+m+K) dx (13)

I

0f course, for T = 0, this reduces to {III-2).
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The integral {13) appears to be resistant to simple analytic treatment;
but it is not hard to evaluate numgriéa11y.“ The program IONTIME was written

to do this:

Voo FrE
1 TrtbeZa ] 32720
£ Ky+3,1&48g7aE"8xD-100n0naaoaen
I S A O L B F LA B N B N B U
1 RTel000ugd0000ud}]
T AP T I N ST L A S I
! VT Tutud
A NG UF TR T MARLET
| Five et
i e oW e o -0 el Ry
Poak oL TREOITH Y
o RF-qufpsuaipyniey
Pooa BT cpad e o P M R
Poove ke P+ iil=y 0w 7,
Poop i
‘ \j"- !
LI PO
S B SN E RV TC S ar AR IR O P ML ORI B IO T SO L
! NS I PR T IR
PRy aehaEihd
1

.
1
i

This is a simple trapezoidal integrator with a step size déx = 0.1 Tm,

arranged to print out every five steps. The results are shown in Figure IV-1

for vp = 10 km/sec and for various thrust levels in the range 0 < T/m

<3 X 10_5 m/secz.

2

The top curve (T = 0) corresponds to about K = Ey =
-15 kmz/sec in Figures I1I-1 and 2. Note that the case examined in the last
section has T/m = 9.77 x ]0'6 m/secz, and is very nearly the third curve down.
Comparison with Figures III-1 and 2 shows that we get nearly the same

performance as for Vo = 12 km/sec and T = 0. The lesson is that 1ower values

of Vo are feasible for electrically powered spacecraft.

5. Equations of Motion and Mass

Suppose the electrical propulsion system applies an acceleration U to the

spacecraft. . Then the motion depends purely on u and the sun. The equations
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of motion in first order form are then:

eV VeT-&7 - (14)
r

By writing (14) in this form we have been able to suppress the dwindling

spacecraft mass m, which would otherwise appear as a state variable.

Actually we are only interested in jts final value m, = m(ta), and its

initial value my = m(0). These can be related through the propuision rela-

tion (4). Since

u =T/m {15)
we get:
2 .
—— T ZnPm
U-y = — = - ZNEN (16}
m2 m2
where ﬁ = - q. This integrates to:

=

e
o
oF

t
a
;n]—=mi+f (17)

a D 0 n

(]
.
L~

Once the optimal My s PD’ and u(t) have been determined, we can get P from (2)

and evaluate (17) to find m, .

6. Statement of the Prob1em

Put loosely, we are out to maximize the useful payload in the focal
region, without Tetting the mission time éet too Iargé. The latter is
important, as the useful payload probably has no méximum in‘finite time,
although it is clearly bounded above by the Shuttle payload. To avoid this

problem, we will specify a terminal time ta. Also, the need for a turn
point has not changed - we still need to reach the axis at rr ~ 2Tm, with

purely axial velocity. However, as we have just seen, the velocity require-
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ment is not as great as with two impulse transfer. Putting these thoughts

together we can specify a terminal condition:

F(t) = vl Wt = v, (18)
where Tg i§ the direction of the axig; and s Vs and fa are all
given.

Tﬁe term "useful payload" needs clarification. We will define it as
the turn point mass minus the mass of the electrical power system, since
the engines themselves have very 1ittle mass. We will take this as our

performance index. From (1), this index is:

(19)

The initial conditions also need work. -At departure, the earth is at

a position o and has a velocity Vé, both of which depend only on the

departure ecliptic longitude ¢D‘ Thus, the initial conditions are:

F(0) = rrys V(0) =V, + v gy (20)

where VH is the hyperbolic excess velocity from the departure rocket. This

is related to the departure impulse through the energy relation (III-50):

_ 2 2
v = (v0 + AVD) - 2v0 (21)

2_3.5
H - YHVH

where Vo is the (given) Shuttle orbit speed. In turn, the departure mass

My depends only on AVD. Using the first stage design in the tast chapter,
the relation is (I1I-104)

_ c
- k'l(e = kz (22)
in which the constants have been determined as:
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=
1l

29429.0 kg, k2 = §63.5 kg

I

)

c 4,565 km/sec = 0.1440574 Tm/year.

Evidently, m, depends only on VH.
We can now state our problem. We wish to start from some condition (20)
and reach the state (18) along a path which is consistent with the state
equations (714), and the constraint (17). Of all such paths we wish to find
' one which maximizes the performance index (19), by proper choice of the con-

trol u(t) and of the initial values Vﬁ, bp> and Pp.

7. Eliminating Longitude

In this form, the standard variational approach leads to a two point
boundary value problem of 12th order, with integral path constraints.
However, since longitude appears explicitly only in the boundary conditions,
it is possible to e]iminake it, and thus reduce the problem to 10th order.
There is an optimal departure longitude ﬁD; but we can determine it after
the system is solved by integrating 5.

Two natural ways of doing this come to mind - cylindrical or spherical
coordinates, based on the north ecliptic pole. Of these, cylindricals aré
perhaps a little sjmp]er. Thus we choose coordinates p, 4, and z; and
resolve all vec}ors along the orthonormal base vectors S, 3, and z. The

first two vary with time, 50 we need:

-~ ~

S =g f=-dp; 2=0 (23)

Resolving r and v in these coordinates we have

T=opptz7; VEvoptvg+y2 24
oo+ P T Vgt (24)
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and combining these with the equations of motion (14):

p=Vv., pf= v¢, zZ =YV

o z
(25)
y = _y_-e y : = - y y = _H.g_
vp ub ;3 + ¢v¢, vﬁ‘ ugi ¢vp, v, T u, r3
Now we choose state variables:
x| = [ps Vs v,5 2z, V_] (26)
p’ ¢ z
In terms of these we can eliminate é and write (25) in the form
x = f(x, W) (27)
where
T o Vs C oYY uz
f = Vpg Up'r3+Fs UES‘ b ) VZ’ uz“r3] (28)
We can now see that we have achieved our aim. Since-
CrP = pf s g (29)

it is evident that the system (27) is complete, and solvable once u is given.

The boundary conditions are easy to write. At the turn point:

T -

X (ta) = [rTcea, vyeo,s 0, rysé,, stea] (30)
and at departure:

x1(0) = [ry: Voo Ve t VH&’ 0, vy, 1 (31)
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8. Stationary Paths

The standard procedure in this kind of optimization is to attach the
state equations to the performance index by Lagrange multipliers. Thus,
from (27), we define

& -ta .
J =4J + A(t)(f - x)dt (32)
0
where A(t) is a five element row vector thqt we are free to choose. After

integrating by parts this becomes:

% t ta .
3 =m, - 8Py - [;\x]oa +‘{; (Af + Ax)dt (33)
On physicaT grounds, we would expect that some choice 6f u(t), VH, and
PD would maximize J*, and thus J. Since no bounds have been given for any
of these controls, we would expect that at the optimum, J* will be
stationary with respect to arbitrary infinitesimal variations of all the
controls. TFinding such a combination does not guarantee a maximum; but if
it gives reasonable values of the parameters we can argue that at Teast the
-computed value of J is practical; and this is sufficient to establish a
minimum feasibility level. Thus we need to look for paths satisfying GJ* = 0
in spite of independent arbitrary control variations &u, SVQ, and SPD; and
the resulting state variations d6x.
First we will tabulate the variations of Some 1ntermédiate parameters.

From (21) and (22) we get:

TD ++ki§ Y Vi Sy
Vc V0 D

smpy = (3V'mD)'6VH = - (34)

H
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Also, from (17) and (2) we can compute:

("‘a)2 n /ta—(P+PB- ]
Sm, =\ ==} 6ém, + = u- ush, - 5 sujdt (35)
a my D n 0 ZPDPZ D P )

Since the terminal state (30) is fixed,
6x(ta) =0 (36)

On the other hand, at departure:
Tray =
sx (0) = [0, SV o3 avHﬁ, 0, GVHZ] (37)

We are now ready to vary J° in (33). With the aid of (34-7) we get:

S o mz(mD+k2) L fta L ihe
8 = k235(0) vy - 5 VySvy - RSP + (Afx A)8x

vaD(VO + AvD) 0
_omt_ _ wk(P Ry
+AF 80 - 5 USU F " UL usPp dt (38)
n 2nP P
where
Apzs = [hgs Ags 2] (39)

At this point, the standard procedure is to pick A in such a way as to

eliminate the awkward &x terms. Also, we will find it convenient to define”

m,
A= —Tji"" m‘ (40)

*Suggested by J. V. BreakwelT.
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Thus, the modified multipliers obey

Eu+wfx=o (41)

The requirement that 6J* = 0 in spite of arbitrary independent controil

variations now causes (38) to separate. Using (28), (39), and (40) we have:

u = meu = Pw235 (42)
mg .}{'ta _
b= Znpy . (P + Ppluyqg-wygpdt (43)
= o) n(my + k) _ (40)
w 0} = v
235 2 . H
vcmD(v0 + AyD) )

Putting the control (42) into the state equations (27) and (28) gives

2
T uX; X3 XoXs ux,
X' = ["r Pop =3 Tx M T Xe Pes Ty (45)

and expanding (41) with the help of (28) and (42) results in

“1

2 2
w 3x1 f§_ WaXoX 3 3um5x1x4
Wl 3\' "2 )" 2| -
r

- ? 2 2 5
r X X r
. W,X
_ 373
W2 X T8
) 1
wy = ;T (w3x2 - 2w2x3) ‘ (46)
2
- u)(.‘h4)_&%ﬁx4
4 r3 5 r2 TZ
W = -y
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Finally, we can eliminate the control from (17) to give

t
L-Lﬂ_fapa o dt (47)
ma mD 2n 0 235 7235

The system {45) and (46} is of 10th order and has 13 boundary conditions {(30),
(31), and (44), and two path constraints (43) and (47). These are just
sufficient to determine the 10 variables x and w, and the five constants v,
PD, and m - The auxiliary parameters AvD and my are determined from VH using

(21) and (22).

9. A Method of Solution

One way to solve the system (45-6) is the "sweep" method(33). This leads
to a 5 x b matrix Riccati system, with additional complications arising from
the free parameters Vﬁ and PD, and the integral path constraints. It does not
Took promising.

A conceptually simpler approach is to start at one end, guess the unknown
boundary conditions and control parameters, integrate to the other end, see
how far off the terminal conditions are, and try again. Six guesses are
needed in either case - integrating forward from departure requires that we
guess wy, VH, PD’ and W3 whi]e a backward inteﬁration from the turn point
needs PD and w. The former has been chosen, partly because it is mentally
easier to follow time's arrow, and partly because the choice of Vﬁ at departur:
is Tess of a blind guess than w components at arrival.

With the guess of VH we can determine Avy and my from (21) and (22), and
then 6235(0) from (44).- Also, x{0) is found immediately from (31). After

computing P(t) from (2) we have everything we need to integrate the system
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(45-6). On reaching t, we can compare the computed x(ta) with the desired
values (30). Also, we can compute m from (47), and then a computed value of
B from (43). We can compare this with the actual value B = 0.2649 kg/W. Thus,
there are six components of terminal error, corresponding to the six initial
guesses.

In order to improve our initial guesses we need to know how all the
terminal errors vary with respect to them. If we are close enough to apply
Tinear theory, then this information takes the form of a 6 x 6 matrix of
partial derivatives. Perhaps the simplest way to acquire these is to make a
nominal run using the initial guesses, and six more runs in each of which one
initial guess is varied slightly. By comparing each of these with the nominal,
and dividing by the variations we can obtain numerical estimates of tﬁe 36
derivatives.

To make this process more explicit, we define an initial guess vector
T _ —T
y = [w]: VH: st wq_] (48)
and a terminal value vector
2’ = [x'(t,), 8] (49)

Then a typical derivative is determined by

3ij1' = [z (yy + Gyj) - 21-(3@,)]/6_»'j (no sum on j) (50)

where i and j have the range 1, 2...6; and Yy is the nominal.
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Now suppose Z; is the desired terminal vector, comprised of x(ta) from
(30), and B = 0.2649; and that this can be reached from some specific

" initial choice Yo Then 1in some neighborhood of these we can write:

Az =z - 2 = M(y0 - y) = MAy (51)

where

M= [M'IJ] = [ayjz.i] (52)

Thus, if 6z is sufficiently small, an improved guess y' can be found from:

3

y =y +M'az . (53)

If the integration is sufficiently accurate, M is nonsingular, and the initial
Yo is close enough, an fiteration of this Newton-Raphson procedure should
converge fairly rapidly.

The main_problem with all this is that for transfer times ta of several
years, z becomes extremely sensitive to small changes in y. This means that
the region of convergence around the optimal y is very small, and first rate
guessing is required to start the process.

Four methods have been found to deal with the problem. We will call
these the "shotgun”, the "guided solution", the "2D*, and the "second order"
methods; and discuss them in this order. First, the shotgun merely means
that a series of more or less educated guesses of y are made in the hope that
one of the resulting z - zy vectors will be'sma]1 enough that the above
method will converge. In practice the shotgun has been used only when all

else fails.
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In the guided solution, suppose we have guessed some y, integrated, and
ended up with some z. If the results are at least physically rea?istic,
then we have found the optimal solution to a problem that we might have
posed. We can then vary this z toward the desired z, giving us an inter-
mediate goal, and enter the above procedure. After convergence, the process
is repeated using the final y as the next starting value, until, in the final
step, we jump to the desired z. The region of convergence is greatly extended
by this process. We can also guide ta in this way.

The 2D approach is appliicable only for foci lying in the ecliptic; but
in those cases it greatly reduces the system complexity and integration time.
By solving this special case first, we are then in a position to guide the
solution to higher Tatitudes. Let's lock at the reduced problem.

The desired terminal condition (30} is now:

x1(t) = [rys vys 0, 0, 0] (54)

We will quess that the solution requires that w4(0) = m5(0) = 0. Then from
(44) we find that Vy, = 0. Putting this into the initial condition (31), and

then examining the system (45-6), we can see that part of the solution must be:
w4(t) = ws(t} = x4(t) = x5(£) = p (55)
which is certainly consistent with (54). For such a planar solution ﬁe have
Xp=p =" {56)

and after dropping the now sterile fourth and fifth elements, the system (45-6)

reduces to:
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-T 1 _
X 1 1
) WoXnXy WoX '
922 o\ Ys%Xs U3X3 1 i
{2 (Xs . ) 7 X T Y1 %y (93K 20’2"3)] (58)
X ] X 1 1
1 1
and the integral conditions (47) and (43) now read:
ta
1.1, ] f 2. 2
— = —— Plw, + w;)dt (59)
m. My Zn 0 2 3
2 t
m a
_a 2 P4 (60)
R = ZHPD _4- (p ~1-,PB)(m2 .+ wS)dt ' |

The reduced system is of sixth order and has eight boundary conditions:
(54), (31), and (44), and two path constraints (59) and (60}. These are just
sufficient to determine the six variables x and w, and_the four constants Pb,
va, VHﬁ’ ang_ma. As before, the auxiliary parameters AvD and mp are
determined from (21) and (22). Thus the reduced problem is well posed, and

'any solution to it will be stationary with respect to arbitrary control varia-
tions, even in the z direction. This shows that our guesses on w4(0) and
wg(0) Tead to a class of planar solutions; but we have not shown that other
soTutions do not exist which are consistent with (54).

The final method for improving convergence is the “"second order" approach
The relation (51) is really a Taylor series truncated after first order, which
is Tikely to fail for too large a Ay. The truncation error can be reduced, an

the feasible Ay increased by extending (51) to second order:
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Fam e
e

R

&F #86r QUALITY

!

AL

ORI

_ 1
Zp; = Zg * (Byjzi)Ayj * 3 (Byjykzi)ijAyk _ (61)

This can be viewed as a system of quadratic equations in Ay:

in which M is from (52} and

B = [Bijk] = [ay.ay Zi] (63)
Jj 7k

This is a, three dimensional matrix, which is symmetric in its Tast two

indices.

.Gevaluate B, we can Tollow the same general method as with M in (56):

- -1
Bisk aykmij = (8yy ) DMy 5l t 8y ) - Myslyy)] (no sums)

(64)

-1 '
(éyjayk) [Zi.(‘yN+6yj+6yk) - Z‘i(yN+6yj) - Z'i(‘yN+5‘yk) + Z'i(yN)]

The set of terms z}.(yN + Syj + 6yk) is new, and requires additional runs
parallel to In- In two dimensions we ﬁeed 10 extra runs, for a total of IF;
while in three dimensions 21 extras are needed,lfor a total of 27.

When M and B have been evaluated, it remains to solve (62) for Ay. In
two or three dimensions this is a system of 4 or 6 quadratic equations in as
many unknowns. No better way to deal with these has been found than the
Newton-Raphson method. 1In this, if we possess some initial guess Ay, an

(hopefully) improved Ay is:

. iGaaL. PAGE, IS
oF FOOR QUAUITY
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o -1
Ay = Ay - [aAyF] F {65)

in which, from (62) and the symmetry of B:

9,,F. =M.,. +B

Ay i ij ijkAyk (66)

Experience wi%h this second order method has been spotty. It often
yields dramatic improvement over the first order method; i.e., z - zps but
at other times even the algebraic iteration (65) refuses to converge, which
implies that (62)‘has no real solution. The latter could odcur if either
the truncation (61) were still too drastic, or if the answer lay outside
the regjon of convergence of the complete Taylor series. In éuch cases,
progress has sometimes been made by looking for an extremal of F with this
technique (F'(Ay) = 03 F # 0). T

Whatever methods have been used, if a solution is reached, we can com-

plete the picture by finding g(t). To do this we note from {25) and (26)

that
= Vﬁ/p = x3/x1 (67}
from which
' t xy(n)
g(t) = #(0) +f TMOR dt : (68)
0 1

The value of $(0) is determined from this because of our prior knowledge of

§(t.) =g, .

a
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A word is needed on the integration methods. First, the integral path
constraints need fairly precise evaluation, and the simple trapezoidal rule
is not really adequate. A more elaborate method, based on parabo1{c fitting,
is given in Appendix C. It was used in all runs published here. The calcula-
tions of Ag and ¢{t) are done after convergence and are not so critical.
Because of this, the two dimensional Ag calculations were done by the
trapezoidal rule, and are thus a little Tess accurate.

Several schemes were tried out for integration of the differential equa-
tions; but none seemed to work as well as a fourth order Runge-Kutta. To put

our system into the nscessary form, we define an overall state vector:

X' =[x, w] - (69)

and restate our system as:

o e
1l

F(X, t) (70)

Then, if we Tet h be our integration interval, the Runge-Kutta scheme requires

this sequence of steps (see, for instance, Reference 36, page 346):

Ky = hF(X, t)

K, = hF(X + 1 K-, t + & h)
2 7K tEg
Ky = WF(X + % K,y © +2h)

2 "2 2 (71)

K4 = hF(X + K3, t + h)

X(t + h) = %{K] + 2K, + 2Ky + Ky)
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In our system, the only explicit time dependence in F(X, t) is the
power decay, and this is rather slow. For this reason, and because it was
‘'somewhat easier to program, the explicit time dependence in (71) was dropped;
but the power was reevaluated before each K] and K3 step. This actually
worked very well, as shown by the time step analysis in Appendix D; however,
in retrospect, it probably would have been a Tittle more efficient to hew
more strictly to (71).

Various possibilities exist.for time step controi. The simpiest is to
use a fixed time step h; but, when the action is siow, this is very wasteful
of machine time. In interplanetary trajectory work, without strong perturba-

tions, it is common to let h = Kr3/2.

Here, the ion drive acceleration is
often comparable to that of the sun, particularly at large }. Still, the
acceleration does fall off with r, so a better choice would be h = Kr. By
mistake, in most of the three dimensional trajectories, h = Kp was used.
This wasted some computer time at high latitudes; but did not diminisk the '
accuracy. It seems likely that a more efficient choice would take the form

h = K/|v]; but this was not tried.

10. Two Dimensional Program and Results

One final improvement has been made in the 2D system. Since X appears
in (57, 8) only as 1/x1, we have taken Xy = 1/xy.  When this change is

incorporated, the system (70) works out to:

<=7
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X = X5,

iz = PXg + XyXG - X

Xy = PXg = XiX Xy o)
Ky = XI5 - 2uKy) - Xpkghe]

Xs = XiXgXg - X,

X6 = XT(X2X6 - 2X3X5)

A1l division has been eliminated and the indexing is a little simpler. Note
that ¥ and z, are affected by this.

The foregoing structure has been incorporated into the program IONZ2D and
its subprograms FN, RKINT, FNM, PARINT, and VPARINT. The Tast two are
integral evaluation routines, and are covered in Appendix C. The others use
a common set of global (APL terminology) variables for their interaction. A
translation of these into the notation of the text is given in Table IV-1.

The programs themselves are listed below.
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Table IV-T,

ION2D Equivalents

Program Program
Name Text Notation Eqg. Name Text Notation Eg.
B B 63 M M 52
BET B = 0.2649 kg/watt 1 MA mgy 17
BR M + BAy 66 MD ,MBO My, My (nominal) 17
DDY Ay - A'y 65 M W = 0.1321603 T3/yr? 14,57
DMD my + Ky 22,44 N Index for T, HVY

DPHI ¢(ta) - $(0) 68 NC Number of iterations 65
DVD AvD 21,44 NCOL Number of trajectories

DY Ay 51 NP Range of N ~

DYM Ay matrix 65 NY Index of minimum FS

EV e t/T 2 p p 2
F F 62 PB PB = 100 watts 2
FS FiF; - Iteration 65 PD Py 1

performance

H o h 71 RE Fa = 0.1495979 Tm

HV h vector 71 RSS v, t Ay 21
IG w% + @% vector; 59,68 T t

also ¢ in ION2D[36]
IM Index matrix (see below) 73 TA t,
MY [2391012] TI -1/t = -0.039966/yr 2
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Tabte IV-1. Continued

Program Program
Name Text Notation Eq. Name Text Notation Eq.
IRE 1/r, = 6.684586/T, U 2u = 0.2643206 To/yr? 58
IX [12311231452631] TP Qutput control

1Z [66786910 1171012 VE Vo 7 0.9399132 Tm/yr

13 8 11 13 14]
t
n ‘}E a(mg + wg)dt 59 X X (Fixed t) 69
ta 2 2y -t/t
12 d/P (w2 + w3)e dt 60 XKM X (3 Dimensional array) 69
0
KI1 2v2 = 0.1210869 T2/yr? 21 XM X (Matrix - ali t) 69
K12 k] = 29429 kg 22 X0 X(0) 69
K13 1/v, = .6.941678 yr/T 22 X18,X3S X3, %5 72
K14 Vo = 0.2460558 Tm/yr 27 X23 X2X3 72
KI5 n/Vc = 3.470839 yr/Tm 44 Y y 48
KIié k2 = 663.5 kg 22,44 YE Sy 50,64
KKT 0.36K - Final step B1 YO y (nominal) 48
parameter

KMD Coefficient 44 VA z 49
KT K Bl ZD Zy 51
L . Terminal step switch 70 Z, (nominal z) 49




A series of notes may help in understanding ION2D and its subprograms.

Brackets [ ] refer to statement numbers.

1]
[2-4]
[5-7]
[9]

[10]
[12]
[13-27]
[13, 16]

Sets terminal step test. See [24].
Initial values.

Computes Avys Ty, coefficient in (44).
Constructs X(0).

Sets up X{t) matrix.

Sets terminal switch, t = O.
Integration of main equations (72).

Power calculations (2)}.

[14, 15, 17-19] Runge-Kutta structure (71). FN computes F in (70) from (72).

[20, 21]
[22]
[23-27]
[28, 29]
[30-34]
[36]
[37]
[38]
[39-52]
[39]
[40-45]
[47]

[48]

OQutput if T < TP.

Augment h vector.

Final time step.
Print last step, if not done in [21].

Compute m_, B, 2

3 o using (59, 60, 49) Computes vector EV.

Compute Ag from (68) using trapezoidal rule.
Qutput B, Ag, m.s J, NP.

Branch at operator's control.

First order correction loop.

Matrix of 4 perturbed y vectors.

Repeats [5-9] for 4 parallel trajectories.

RKINT repeats Runge-Kutta, m s B, 2 ca]cu]aéions for 4 parallel
trajectories.

Computes sensitivity matrix M from (50), (52).
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[49]
[50]
[51, 52]
[53-75]
£53]
[54-59]
(e1]
[62]
[63, 64]
[65-74]
[75]

Computes, displays Ay from (53).

Computes, displays new y, using operator controlled fraction of Ay.
Restart.

Second order correction Toop.

Matrix of 14 perturbed y vectors. See IM note below.

Repeats [5-9] for 14 parallel trajectories.

Same as [47] for 14 trajectories.

Computes M as in [48].

Computes 4 x 4 x 4 B matrix from (63), (64).

Solves system (62) for Ay.

Branch at operator's control - normally to [50].

It remains to describe the indexing used in the second order loop. In

computing B in (64), we need 4 trajectories to get the Zi(yN + 6yj) terms

(21so needed to compute M), and 10 more for the Zi(yN + éyj + 6yk) terms (the

j-k symmetry again). By arranging the latter

as the upper triangular elements of a J

5 6 7 8
matrix with 1nd1ces J and k, we get the ) g g 11
picture at right: Reading this back out, we n 12 13

can see that the distributjon matrix IM in

14

[53] must have the form:

10002111000000
010001002711000
00100010010210 (73)
0001000100101 2

M =
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The index vectors IMV, IX, and IZ also arise from this. IMV is used
in [54] and [58] to select those trajectories which have a different'Vﬁ
from the nominal. Since this appears only in ¥y and ¥as an examination of
(73) shows that IMV = [2 3 9 10 12]. IX is used in [57] to organize the 14
element vector my - This is made up from the nominal and the 5 y vectors
selected by IMY. Again, reference to (73) shows that its structure is
IX=[12311231452631]. Finally, IZ is used in [64] to index
the zi(yN + Gyj + Syk) terms. It is found by fiTlling in the triangular
matrix above to be a symmetrical matrix, and then reading it out serially.
Thus, 1IZ=[56 78 6 91011 7 10 12 13 8 11 13 14].

ION2D did not always Took 1ike this. Initially, with no idea of héw
to guess y, a greatly simplified version was developed, in which the power
decay was ignored, all integral evaiuations were done‘by the trapezoidal
rule, and the second order corrector was yet to be developed. A lengthy
shotgun finally led to a solution for ta = 2.5 years.' With this as an
anchor point, another solution was quickly found at ta = 2.4 years. Then,
using linear extrapolation, the solution was. guided in both directions in
ta. Later, this process was refined to a parabolic extrapolation. For this,
if y(x) is known at 3 equispaced points Y15 Yoo and Y3 then the parabolic

extrapolation s easily shown to be:
yq_ = .y'l + 3()/3 - .YZ) (74)

At taﬁu 5.5 years a surprising event occurred - convergence could no
Tonger be achieved, even by greatly shortening the extrapolation step.
Suspecting that a Tocal conjugate point had been encountered, a longer
extrapolation was tried, without success. Lacking an anchor point, the

shotgun was used at ta ~ 7 years, again without hitting anything.
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Could it be that there afe no optimal trajectories for t > 5.5 years?
Consider a trajectory formed by taking a known result for ta < 5.5 years,
.and inserting an uﬁpowered arc for one or more orbits. Since the power
decay‘has been ignored, this would give the same performance J, but for
ta > 5.5 years. Thus, valid trajectories exist for any ta; but, as
unpowered arcs are obviously wasteful, improvements must be ‘possible, and
the conclusion that optimal trajectories exist for every ta seems unavoidable.
This argument suggests that longer times imply more turns around the sun,
an effect which has been seen in interplanetary ion drive studies in the

past(64).

With this in mind, a new shotgun search was made at ta = 8 years,
_concentrating in those éreas where the integrated Ag was large. Partly
because .the second order machinery was then working, the search was successful.
An optimal trajectory was found which made about 2.5 turns - a big Jjump from
the results with ta < 5.5 years, where Ag was less than one turn.

Starting from this anchor point, and using the above extrapolation
methods, the results were soon guided up and down in ta' On the high side,
the effort was stopped at ta = 10 years because J was no longer increasing
rapidly enough to justify further patience, and because integration of these
trajectories was becoming very expensive. On the Tow side, another blockade
was found in that convergence could not be achieved for ta < 7.65 years.

What was going on here? A1l indications were that optimal trajectories
with Ag ~ 1.5 turns should exist for t;~6.5 years; but how would these
connect with the known results? The suggestion that we were looking at three
distinct, overlapping, classes of trajectories was first made by
Dr. Masahiro Kurosaki, and has since been amply verified.

With this insight, the preliminary investigation was deemed complete;-

but, before searching for the missing trajectories,-the program should be
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refined. . It was completely rewritten in the present form and debugged on
an IBM 5700 computer. The campus IBM 370-168 was then used to redo the
previous work for ta < 5.7 years (the blockade has shifted upward slightly
due to the power decay). The integration step size study in Appendix D was
also done at this time. Folowing this, the higher ta work was repeated,
giving resultis for ta > 7.8 years. The most obvious differences were an
increase in PD and a drop in J relative to the earlier runs - the expected
effect of including the power decay.

In searching for an anchor point somewhere in the gap, an improvemert
was found. in the shotgun épproach. Starting from some guessed y, the
integration was followed until r ~ Ty On ?inding this we set ta = t, and
computed z. This was repeated with a varied y in an attempt to make z - Zp-
The search space is effectively reduced by one dimension in this ﬁay. After
several hours of search with a 5100 computer, a reasonably close approach was
found, and the quest was shifted to the campus 370 machine. There, lock-in .
was achieved fairly soon at ta = 6.6 years. Using the above extrapolation
techniques, this new class was quickly traced over the range 5.6 s.ta < 8
years, before running into new blockades. As expected, there is some gverlap
on both sides.

A1l these resuits are summarized in Figures IV-2, 3. The division of
the trajectories into classes, as suggested by Kurosaki, is strikingly evi-
dent - most plainly in .Ag, but visible to some extent in all the other curves
In fact, we will find it convenient to label these classes as I, II, or III,
depending on whether they are centered about 0.5, 1.5 or 2.5 turns respective

Of course, further classes almost surely exist for t; > 10 years.
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There are many interesting features on these graphs. Of greatest
practical interest is the performance J. This quickly cTimbs to~8 Mg at
ta = 4.5 years, and then much more slowly to~10 Mg at ta = 9.5 years.
After allowing for the free power supply, this is an order of magntiude
better than the optimal chemical payload in the last chapter.

It is of interest to see how close we are to the theoretical -l1imits.
Within the present assumptions, the highest possible departure mass my comes

when Vﬁ = 0. From (21)

svp(0) = (V2 - 1)v_ = 0.70192 Tn/yr

o

and putting this into (22) yields mD(O) = 13.841 Mg. A glance at Figure IV-3
shows that My hovers about this Timit when ta > 5 years. Also slowly approagh—

ing this 11m1t is the mass at arrival, m At ta = 10 years, m, = 11.764 Mg,

ar
so it hasn't far to go. This also shows that the ion propeliant spent,
My - m;, will be in the range 2-3 Mg for Tikely missions, although it is much
higher for short times.

Returnig;_gb J, it is obvious that as t, >, J »m, ~ mD(O). Thus at
t, = 5 years, 60% of the ultimate performance has already been reached, a
figure which climbs to 84% at ta = 9 years. This shows that there is little
practical reason to explore the region ta > 10 years.

The mass of the power supply, m, - J, can also be read from these curves,
although it is somewhat easier to see from PD in Figure IV-2. Reasonable

trajectories have P, < 8.4 kW, so that m, - J = BPD < 2.22 Mg. Although this

D
power is 15-20 times higher than Voyager, it is probably feasible. It is
interesting that the estimate (7), My - m, = sPD, based on very crude

reasoning, is not far off.
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Lastly we might Took at the components of Vﬁ in Figure IV-2. The
general trend is for IVhl + 0, although as seen from my this is not -
monotonic. It might be wondered why we don't get my > mD(O) more rapidly,
since the ion drive is so much more efficient than the first stage. The

reason is that from (21):

vyrdvy = (v0 + AVD)dAvD (75)

so that as Vﬁ -+ 0, dV]dAvD + o, Thus for sufficiently small ;H, the first
stage is actually more efficient; and for finite ta’ we will always have
[vyl > 0. Another interesting point is that the late members of each class
all have Vip < 0, so that many trajectories begin by heading slightly
sunward.

To plot these trajectories we need the Tongitude, which has earlier
been eliminated from the state. However, after a run of ION2D, we can find
the ¢ vector by integrating (68), by the trapezoidal rule. This requires

the APL statement
PHI<0, (9001 ) xF\HVx{1+1G)- 14IGx/X[1 3]

More precisely, this generates g(t) - #(0) in degrees, at each t used in
0<t s_ta.

With this technique, the trajectories for ta =5, 7, and 9 years have
been plotted, and are shown in Figures: IV=4-6, illustrating one trajectory
in each class. Perhaps the most interesting feature is the similarity to
pumping a swing, starting from rest. By examining print outs of the state

(not shown), one sees from W and ws that the thrust is primarily tangential,
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and that it is much stronger near the perihelia.

_that there is a large energy differential between the initial and terminal

The reason for this is

conditions, and this is most efficiently made up when |v| is largest.

1. Three Dimensional Program and Results

In returning to the full 3D system {45, 6), it appears that the adop-

tion of 1/p as a state variable is not nearly as useful; and that change is

now dropped. The full system in the form (70) is‘now:

where:

PXjg = na Xy
o [ua3(1 - 3q2%2) + x ] XT2X XX
7LHG 924 1 %273

.
1 A3%g - X

8

X1 6

-1
Xy (X5Xg

- 2X.X,)
uq3[k]0(1 - 3¢°X ) 39° X1XgX4]

...)(9

=1/r= (X] + Xz)
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A1l this for@s the structure of the program ION3D, and its subprograms

F3, RK3, and FM3. Of these,‘F3 and FM3 are the state equations (76),

corresponding to FN and FNM 1in IONZ2D.
RKINT, but with minor modifications.

PARINT and VYPARINT are unchanged.

RK3 is similar to its 2D counterpart
The integral evaluation routines

The variable names have changed quite a

bit, so a new translation is given in Table IV-2. The programs are listed

below.
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Table IV-2. ION3D Equivaients

Program Program
Name Text Notation ’ Eq. Name Text Notation Eq.
CT cGa 30 J7 {12 46]

DPH ¢(ta) - $(0) 68 J8 [721863495]

DR /180 MIL 108

IG Eé35-5é35 vector 43,47 AR Number of trajectories

IM3 Index matrix. See below RVT Fps Vo = 2, 0.3155693 30
IVX [18329745106] ST Sea 30
1 _/{;ta B g5 Tt 43 SX,SXX | 663668

12 fo am'zss-“ame”t/'fdt 47 THA 8, in degrees -1 30
Ji [t 1 12] 76 VB [234 13141518 19 22)

32 [1 410 11 12] |76 VD Index vector. See below

J3 {2 8 14] 76 VI [2 3 4] Selects ?h from y

J4 [4 412] % YE sy = 11078 2x10°® 1077 1077 .1 10771 | 50,64
J5 (147 121 76 8 Index vector. See below.

Other labels have the same meanings as in ION2D, and are given in Table IV-1. Vectors and matrices are
usually larger, however. In alphameric order these are: B, BET, BR, BDY, DMD, DVD, DY, DYM, EV, F, FS, H,

! HV’ KI‘!-G, KKT, KMD, KT, KI"4, L’ M’ MA’ MD, MDO’ N’ NCJ NP, NY’ P, PB, PD’ RE) RSS, T, TA’ TI’ TP; VE, X,

M, X0, Y, YE, Y0, Z, 1D, ZK, Z0.




ION3D is structurally similar to ION2D, but & number of improvements
have been made. The notes given here mainly address these differences.

Again, [ ] indicates statement numbers.

[1, 2] Computes zj from (30} and (44).

[3-12] Equivalent to ION2D [1-12].

[13-27]  Equivalent to ION2D [13-277.

[28-33] Equivalent to 1I0N2D [30-37].

[34] Prints out terminal errors.

£35] Branch at operator's control.

[36-49] First order loop. Equivalent to ION2D [39-52].
[50-72] Second order loop. Equivalent to ION2D [53-75].

Indexing in ION3D is more complicated than before, but not fundamentally
different. First, the vectors J1-5 in Table IV-2 are for indexing the
calculations (76) in F3 and FM3. - If the reader i§ only slightly familiar with
APL, it will be instructive to work this out. The index vectors IV, J7,
and J8 are all used in constructing the X(0) matrices in the first and
second order loops. They are purely functions of the ordering of the X and Y

vectors, and the order in which these elements are assembled in [41-2] and

[55-6].

The scheme for computing B exactly Jj>
parallels that in ION2D. This time the 7 8 9 10 11 127
upper triangular matrix is as shown at 13 14 15 16 W
k 18 19 20 21
right. Reading this one out yields the ¥ 22 23 24
indexing matrix IM3: 25 26
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100000211111000000000000000 |
0710000010000211110000000000
3T - 001000001000010002111000000
0007100000100001000100211000
00001000007100001000100102710
| 000001000001000010007001012

(78)

Like IMY in ION2D, VB is used to select out those trajectories with non-
nominal Vh. The entry in Table IV-2-is easily read out from (78). VD corre-
sponds to IX in ION2D, and is here used to organize the 27 element vector my
from the nominal and the 9 trajectories selected by VB, This is readily

seen to be:
V0=[1234111234115672289331044111}

Finally, ZB, Tike its counterpart IZ in ION2D, is made up by filling cut the
upper triangular matrix above into a symmetric matrix, and reading it out

serially. This leads to the 36 element vector:

B=[789101112813 14151617 9 14 18 19 20 21 10 15
19 22 23 24 11 16 20 23 25 26 12 17 21 24 26 27]

Once ION3D had been debugged, the question was, how to use it? Although
the many improvements caused it to run nearly as fast as ION2D, an exploration
as broad as in two dimensions was out of the question. Eventually it was
decided that representative results might be obtained by taking a few values
of ta and calculating optimal trajectories over the whole range of 6, This
could be done by starting from the known results for Ba = 0, and guiding the
solution toward increasing eai The performance is obviously an even function

of ea; s0 there is no need to run ea < 0.
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The choice of ta = 5,:7, and 9 years seemed good because it gave a
good example of eagh class of trajectory. 'In each case, once the process
had been started at 8, = 0, it was found that-with only the first order
corrector, and quad}afig extrapoiation, convergence was quickly achieved
with 2 deg jumps in 64 Much of this work was run én the IBM 370, but it
“was -later found'that it would fit on the IBM 5100 if the second order
corrector was removed, and provisions were added to erase unused arrays.
After the time step calculation was revised, it was found that with K = 0.3,
all of the 5 and 7 year runs would fit. Typically, a single 7 year run-
correction-rerun sequence would take about an hour on the 5100.

The results were surprising in several ways. First, with ta = 5 years,
the complete sequence up to éa = 88 deg wa§ completed without a hitch. (No
cases with ea = 90 deg were attempted, because the eciiptic pole can't be
approached with cylindrical coordinates and 1/p appears in the state equa-
tions.) However, when ta = 7 years, a blockade was found after ea = 52 deé.
As with the 2D class limits, first and second order methods, tightening the
ea Jjump, and go?ﬁg well past 52 deg all failed to give any result. Temporar-
ily abandoning this, the 9 year series was begun, and completed through ea =
88 deg, a considerable surprise.

An indication of what was happening came from the A¢ results. For ta =
5 and 9 years, this did not vary much from end to end, so these are Class I
and III respectively for all ea. For 7 years however, A began to turn down
"sharp1y near the blockade, although staying within Class II. This suggested
a class limit, and that the remaining trajectories would be in Class I.

How to find them? A blind 3D shotgun was not at all attractive; but if

the class hypothesis was right, there would be no blockade between the desired
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7 years paths and the now existing 5 year results. Thus it was reasonable
to try guiding a solution in ta. The starting point selected was ta';
5 years, ea = 56 deg. MWith quadratic extrapolation and 0.1 year jumﬁs, the
ta = 7 year class I trajectory was found in about two days on the 5100.
Then working backward in 1 deg steps the expected class Timit was found at
ea = 44 deg, a considerable overlap with the class II results. Going forward
in 2 deg steps, ea = 88 deg was quickly reached, all of this regquiring
.another two days on the 5100.

A11 these Tongitudinal and class features are illustrated in Figure
IV-7, in which the bridge to the 7 year class I series is shown as a vertica}
line at 8, = 56 deg. Of course what is really interesting here is the
performance. Figure IV-8 shows J for all these cases. It had been expected
that J would fall off with increasing ea, but not this slowly. Indeed, these
results are startling compared to the total inability to reach high latitudes
by two impulse transfer (see Figure III-9). Other trajectory parameters of
some interest are y, AVD, My and m,- A11 these are given in detail in
Tables IV-3-5. Finally, to see what these trajectories Took 1ike, the cases
ea = 40 deg, 80 deg for each ta are plotted in Figures IV-9-14. These are
cylindrical projections onto the ecliptic, with t and z tabled on each plot
to assist in visualizing the path. The portions with z < Q are dashed as a

further aid.
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Table IV-3. 3D Performance ta = 5 Years

ea J my mp iPD “Vip VH¢ “Vihz Ad
deg kg kg kg "W Gm/yr Gm/yr Gm/yr rad
0 8414 10635 13397 8382 9.201 55.25 0 4.4956
2 8411 10632 13397 8387 9.198 55,227 1.29 4.4957
4 8399 10626 13398 8404 9.191 55.158 2.575 4,4961
6 8381 10614 13399 8431 9.178 55.045 3.847 4.4968
8 8355 10598 13399 8468 5.162 54.893 5,102 4.4976
10 8321 10577 13400 8516 59.141 54.707 6.334 4,4985
12 8281 10552 13401 8573 9.118 54,493 7.539 8.4994
14 8234 10523 13402 8639 9.091 54.257 8.711 4.5002
16 8181 10489 13403 8712 9.062 °54.007 9.848  4.5008
18 8122 10452 13404 8794 9.032 54.748 10.9%6 4.5011
20 8058 10411 13404 8882 9.0 53.488 12.003 4.5011
22 7988 10366 13405 8976 8.968 53.232 13.016 4,5007
24 7913 10317 13405 9076 8.935 52.986 13.984  4.4998
26 7833 10266 13405 9180 8.901 52.753 14,906 4.,4985
28 { 7751 10211 13404 9288 8.868 52,539 15.781 4.4965
30 7664 10153 13404 9399 8.835 52.344 16.661 4.49417
32 7573 10093 13402- 9513 8.801 52.175% 17.392 4,4911
34 7480 10030 13401 89628 8.767 52.031 18,129 4.4876
36 7384 9965 13399 9745 8.733 51.916 18.82 4.,4835
38 7286 8898 13397 9863 8.698 51.828 19.467 4.4789
40 7186 9830 13394 9981 8.662 51.771 20.07 4.4737
42 7084 9759 13392 10099 8.625 51.746 20.632 4.4681
44 6980 9687 13389 10216 8.587 51.751 21.152 4,462
46 6876 9613 13386 10333 8.546 51.788 21.632 4 ,4555
48 6771 9539 13382 10447 8.503 51.857 22.073 4.,4485
50 6666 9463 13378 10560 8.458 51.956 22.477 4.44712
52 6559 9386 13374 10671 8.41 52.087 22.845 4.,4334
54 6453 9309 13370 10780 8.358 52.249 23.177 4.4253
56 6347 9231 13365 10885 8.303 52.44 23.474 4.4169
58 6241 9152 13360 10988 8.244 52.661 23.739 4.4082
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Table IV-3, 3D Performance t = 5 Years Concluded
ea J my My PD -va VH¢ “Viz Ad
deg kg kg kg W Gm/yr Gm/yr Gm/yr rad
60 6136 9073 13355 11088 8.181 52.911 23.972 4,3992
62 6031 8994 13350 11185 8.114 53.189 24.174 4,3899
64 5927 8914 13345 11278 8.042 53.493 24.345 4.3804
66 5823 8835 13339 11368 7.965 53.824 24.488 4.3707
68 5721 8755, 13333 11455 7.883 54,18 24.602 4,3607
70 5619 8676 13327 11537 7.796 54,561 24.689 4.3507
72 5519 8596 13321 11616 7.703 54,964 24.75 4.3404
74 5420 8517 13314 11691 7.606 55.389 24,785 4.3299
76 5322 8438 13308 11763 7.503 55,836 24.796 4,3193
78 5225 8359 13301 11830 7.394 56,302 24,783  4.3086
80 5130 8281 13294 11894 7.281 56.787 24.746 4.,2978 .
82 5037 8203 13286 11954 7.162 57.29 24.688 4,2869
84 4945 8126 13279 12011 7.038 57.809 24.607 4,2759
86 4854 8049 13271 12063 6,909 58.343 24.506 4.2649
88 4765 7974 13264 12112 6.775 58.892 24,385 4.2539
Table IV-4. 3D Performance ta = 7 Years
NOTE:_ Class Break for ea 48 deg

ea J m mp PD -YHp VH¢ Yy, Ad
deg kg kg kg W Gm/yr Gm/yr Gm/yr rad

0 9525 11417 13643 7143 4,532 36.897 0 9.8962
2 9521 11415 13644 7149 4,525 36.863 0.53 9.8961

4 9510 11409 13645 7168 4,504 36,763 1.055 9.8957

6 9491 11398 13646 7199 4,47 °36.598 1.572 9.895

8 9465 11383 13648 7242 4.421 36.374 2.075 9.8938
10 9432 11364 13651 7296 4.357 36.096 2.56 9.8921°
12 9392 11342 13654 7361 4.276 35.772  3.021 9.8896
14 9345 11315 13657 7436 4,178 35.408 3.453 9.8861

IV-b5



Table IV~4, 3D Performance ta = 7 Years Continued
NOTE: Class Break for ea > 48 deg

ea J m, LY PD . :va VH¢ “Vyo Ad

deg kg kg kg W Gm/yr Gm/yr  Gm/yr rad

16 9292 11285 13661 7521 4,061 35.014 3.85 9.8813
18 9234 11251 13665 7614 3.922 34.6 4,203 9.875

20 8170 11214 13669 7714 3.76 34173 4.506 9.8668
22 9102 11174 13673 7821  3.571 33.743- 4.749 9,8563
24 9029 11131 13677 7934 3,352 33.319 4.922 9.843

26 8952 11085 13681 ~ 8052 3.099 32.909 5.015 9.8264
28 8872 11037 13685 8173 2.806 32.52 5.012 9.8058
30 8788 10986 13689 8298 2.47 32,16 4,898 9.7803
32 8702 10934 13692 8426 2.083 31.832 4.652 9.749

34 8614 10880 13696 8555 .1.638 -31.538 4,249 9.7105
36 8524 10825 13699 8685 1.126 31.227 3.651 8.6628
38 8433 10768 13702 8815 0.532 31,04 2.81 9.6032
40 8341 10710 13705 8945 -0.158 - 30.809 1.648 9.5272
42 8248 10652 13707 9074 -0.968 30.543 .052 9.4281
44 8156 10593 13710 9201 -1.911 30.115 -2.136 9.2952
46 ‘8064 10534 13712 9326 -2.962 29,466 -5.041°  9,1152
48 7973 10476 13714 9449 -3.974 28,203 -8.519 8.8803
50 7907 10393 13612 9386 5.948 39.26  5.058 5.8361
52 7844 10347 13600 9451 6.276 40,202 5.892 5.7604
54 7780 10301 13589 9517 6:556 41.009 6.6 5.6957
56 7717 10256 13579, 9584 6.801 41.717 7.215 5.639

58 7654 10210 13570 9652 7.0%19 42,361 7.758 5.5883
60 7590 10165 13561 9720 7.215 42.926 8.243 5.5425
62 7527 10120 13554 9788 7.394 43.454 8.678 5.5006
64 7464 10075 13546 9855 7.558 43,944 9.07 5.4627
66 7401 10030 13539 9924 7.709 44.4 9.425 5.4267
68 7338 9985 13533 9992 7.849 44.828 9.746 5.3932
70 7275 9946 13527 10059 7.98 45,233 10.037 5.3617
72 7213 9895 13521 10126 8.102 45.618 10.3 5.332
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Table IV-4. 3D Performance ta = 7 Years Concluded

NOTE: Class Break for ea > 48 deg

IvV-57

Ga J m, mp PD -va VH¢ ;VHZ Ad
deg kg kg kg Gm/yr Gm/yr Gm/yr rad
74 7151 9850 13515 10192 8,216 45,986 10,537 5,3039
76 7079 9806 13509 10257 8.324 46,34 10,75 .5.2772
78 7027 9762 13504 10322 8.425 46.681 10.94 5.2517
80 6966 9718 13499 10386 8.52 47,01 11.11 5.2273
82 6909 9674 13494 10448 8,61 47.331 11,26 5,2038
84 6846 9630 13489 10510 8.695 47,643 11.391 5.1811
86 6787 9587 13485 10570 8,776 47.948 11,505 5.1%8
88 6729 9545 13480 10629 8,852 48,251 11.602 5.1312
Table IV-5, 3D Performance ta = 9 Years
8, d my mp PD -VHQ VH¢ Vhz Ad
deg kg kg kg W Gm/yr Gnfyr Gm/yr rad
0 9952 11706 13727 6623 2.584 28.115 0 15.766
2 9948 11704 13727 6628 2,577 28,103 -.056 15.764
4 9938 11698 13727 6644 2,556 28,066 -0,101 15.759
6 9922 11689 13728 6671 2.521 28.008 -0.124 15.75
8 9898 11675 13728 6709 2,47 27,933 -0.113 15.737
10 8868 11658 13729 - 6756 2,409 27,846 ~.054 15.719
12 9833 11637 13730 6813 2,317 27,775 ,067 15,607
14 9791 11613 13731 6878 2.211 27,669 0,267 15.668
16 9744 11585 1373] 6952 2.084 27.595 0.566 15.632
18 9692 115565 13732 7033  1.933 27.545 0.981 15,589
20 9634 11521 13732 7120 1.76 27.527 1.529 15,537
22 9573 11484 13731 7213  1.57 27.551 2,215 15.477
24 9507 11444 13730 7311 1.376 27,632 3.031 15.41



Table IV-5, 3D Performance ta = 9 Years Concluded

%, goooom, ) Pp Vio Yie  VHz A¢
deg kg kg kg W Gm/yr Gm/yr  Gm/yr rad
26 9438 711401, 13728 7411 1.201 27.805 3.946 15,338
28 9366 11356 13724 -7513 1.098 28.173 4.893 15.265
30 9292 11308 13715 7610 1.185 29.042 5.715 15.2
32 9218 11257 13703 7700 1.477 30.442 6.131 15.153
34 -| 9145- 11209 13693 7791 1.677 31.5 6.28 15.121
36 9076 11164 13686 7883 1.769 32.183 6.352 15.095
38 9008 11121 13682 7974 1.801 32.646 6.395 15.072
40 8943 11079 .13679 8064 1.797 32.974 6.421 15.051
a2 8880 11039 13677 8152 1.769 33.213 6.437 15.032
44 8318 11000 13675 8237 1.725 33.39 6.444 15.015
46 | 8758 10962 13674 8321 1.67 33.521 6.446 14.998
48 8700 10926 13673 8402 1.607 33.62 6.443 14,983
50 8643 10890 13672 8481 1.537 33.692 6.435 14,969
52 8687 10854 13672 8558 1.462 33.745 6.425 14,955
54 8533 10820 13672 8634 1.384 33.781 6.411 14.942
56 8480 10786 13671 8707 1.303 33.806 6.395 14.93
58 8429 10753 13671 8779 1.219  33.82 6.376 14.919
60 8377 10721 13671 8849 1.134 33.825 6.355 14.908
62 8327 10689 13671 8917 1.047 33.824 6.333 14.898
64 8278 10658 13671 8984 0.96 33.816 6.309 14.888
66 8230 10627 13672 9049 0.872 33.804 6,283 14.879
68 8182 10596 13672 9113 0.783 33.788 6.257 14.87
70 8136 10566 13672 9175 0.693 33.767 6.23 14.862
72 8090 10537 13672 9237 0.603 33.744 6,204 14,854
74 8045 10508 13673 9296 0.513 33.718 6.177 14.847
76 8001 10479 h13673 9355 (0.422 33.689 6.15 14.839
78 7957 10451 13673 9413 0.331 33.659  6.124 14.833
80 7914 10423 13674 9469 0.239 33.627 6.099 14.826
82 7872 10395 13674 9525 0.147 33.583 6.075 14.819
84 7830 10368 13675 9579 .054 33.559 6.051 14,813
86 7789 10340 13675 9633 .039 33.523 6.029 14,807
88 7748 10314 13675 9686 -0.132 33.487 6.008 14.801
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i "CHAPTER V¥
GRAVITATIONAL *WAVE ‘DETECTORS
1. Introduction

With spacecraft performance now established, we can turn to a discussion
of the payload. Two basic types of gravitational wave detectors appear to .
have some promise for focal wissions - what we will call compact and long
wave detectors. The former have dimensions of a few meters at most, and are
intended to cover frequencies in the kilohertz range. We will review them in
the next section. The latter are intended for much lower frequencies, and
are a great deal Targer. To illustrate their pr051ems and potential, we will
concentrate on a design specifically intended to detect Crab Nebulé ﬁu]sar
radiation at 60.427 Hz; Sections 3-5 will cover this work.

The detection methods that we will discuss are all essentially strain
gauges. The idea is that‘the spatial strain normal to the di?ection of propa-
gation of a gravitational wave is, in principle, directly observable by a
properly orjented, freely falling strain éauge. Numerous fechniqhes fﬁr build-
ing detectors on this basic jdea have been proposedl For an excellent summary
see MTN,(GG)Chapter 37. Several of these have been built, and others are under
construction. .

The main prob1em§ with these detectors all arise from the minute values
of strain that we néed to measure. For many detecfors, the worst.prdb]em is
thermal excitatijon (kT noise) of the vibrational modes of the gauge's mechani-
cal foundation. Others are troubled by eIéctrica] noise in the transducer
and fol]owing amplifiers. When these are mastered, quantum effects can play
an important role. These arise when the étra{n vafiation is so weak that it
cannot cause transitions between neighboring energy levels in the mechanical

vibration modes. If this happens, the detector is transparent to the radia-

tion.
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Besides these fundamental problems, there are hosts of experimental dif-
ficulties. Perhaps the worst js vibration and acoustic isolation - the .latter
making high vacuum a necessity for all instruments known to the author. In
addition, there is electromagnetic shielding, strain relief in every structural
member under stress, and even the impacts of ambient nuclear particles. Finally,
the measurement of such small strains, even in the absence of noise, is extremely

challenging.

2, Compact Detectors

The first serjous experimental efforts were those of J. Weber and his
colleagues at the University of Maryland. He used massive solid aluminum
cylinders instrumentéd witﬁ axial strain gauges. Radiation propagating normal
to the axis excites vibrations of the bar's axial modes. The idea here is
that the thermal noise energy is of O(kT) in each mode of the bar, independent
of its mass M, where T is the bar's absolute temperature, and k is Boltzmann's
constant. However, the amplitude due to this noise is proportional to M']/Z,

S0 heavy'bars have Tower thermal noise.

In his majn work, Weber used bars 1.55 m long, 0.66 m in diameter, weighing
about 1500 kg, and with a fundamental axial resonance of 1661 Hz. The arrangemen
was most sensitive to radiation bursts with substantial energy content near this
frequency. For details, see the bibliography in Ref. 66, and Weber's article in
Ref. 11.

To Tower the noise further, Weber actuai1y employed two such antennas about
1000 km apart, and cross-correlated the outputs. In 1970—71,(92’93 j he
announced coincidences well in excess of chance, interpreting these as cosmic

gravitational radjation bursts. Skepticism ensued, partly because such strong

bursts were unexpected, but mainly because others following Weber's methods,
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and with equal or better sensitivity, were.unable to corrcborate his

cesults (3105 (29), (16), (54)

Later, an error was found in his computer .
program, which, when fixed, reduced but did not eliminate his coincidences.(ss)
At this writing, the discrepancy and the controversy persist.

The development of Weber bars has been continued by several groups, of
which we will mention three because some of their techniques may prove use-
ful for focal missjons. R. ‘Drever, and his group at the University of
Glasgow attempted to verify Weber's results. They used pairs of bars separated
by piezoelectric transducers, and Tooked for both bursts(zs) and continuous
radiation.(48) Except for one plausible looking burst, their findings were
essentially negative. More recentiy, this aroup has developed improved trans-
ducers based on laser interferometryl(sz) By-optical folding, the signal {and,
unfortunately, the thermal noise) is magnified, so that the relative effect
of electrical noise in the transducer and ampiifier is reduced. To deal with
thermal noise, they have attempted to increase the distance between their baré.
In this they are limited by the stability of the bar's suspension, and by the
expense of large vacuum chambers. We note here that high vacuum is free in
space, and that the suspension problem takes on an entirely different character
in free fall. -

A direct attack on thermal noise is to cool the bars, transducers, and
amplifiers to cryogenic ]eve1§.‘ Three groups, working in concert, are foilow-
ing this jdea, each building their own detectors. These are W. M. Fairbank,
and his group here at Stanford,(40’4]’69) W. 0. Hamilton heading a group at

(43)

Louisiana State University, and a group including G. Pizzella, I. Modena,

and S. V. Pallottino at the University of Rome.(71)
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A range of different techniques is being tried by the three groups.
The bar temperatures are planned to be in the range 0.003 - 0.05 K which

3 _ 100,

will give thermal noise reductions by factors of 3 x 10 ATl will
use superconducting magnetic suspensions. A variety of strain gauées and
associated amplifiers is being trijed. Stanford intends a superconducting
quantum interference device (SQUID) which includes a Josephson junction
aﬁplifier.(sg) The Romans are looking both at a low temperature ceramic
piezoelectric tranducer with a FET amplifier, and at their own version of a

SQUID magnetometer.(71)

The LSU group is experimenting with a novel super-
conducting double cavity microwave acce]erometer.(43) Amplifier noise is less
of.a problem here, because the output is the beat between the two cavities.

The development of this group of cryogenic techniques is particulariy
interesting for focal missions. The combination of great solar distance and
long transit time means that temperatures of order 20 K should be reachable by
direct radiation cooling, even in massive Weber bars. A further reduction to
perhaps '0.01 K by refrigeration may then be feasible. This claim is not hard
to substantiate. Consider a bar of mass M and specific heat C(T). For simpli-

city, suppose it is connected by a lossless heat pipe to a radiator of area A,

and emissivity € radiating to a. 0 K universe. It then loses energy at a rate:

E = ceAT4 (1)

where o = 5.6697 x 10'8 szK4 = Stefan-Boltzmann constant. A loss dE causes

a temperature drop dT given by:

dE = MC(T)dT (2)

V-4


http:perhaps'0.0l

~ Thus, the time to cool from T2 to T] is:

- M C(T)
by -ty = GeAj; el (3)

If we are given tabular values of C(T), then, for the purpose of esti-
mation, we can assume that C(T) varies linearly between each pair of adja-

cent temperatures T] and To- In this approximation the integral becomes:

Ty

2T /o1
CT) o _ 1 1.1 2 1 —-]—)CT 4) -
fT1 @, (T1 Tz) (]+ T]) o) +( Py A B

Supposing an aluminum bar, C(T) has been taken from Ref. (45), and is shown in
Table V-1. After converting to SI units, the integral has been evaluated
between each pair of adjacent temperatures and is gjven in the third column.
Finally, by taking illustrative values M = 1000 kg, A=1 m2, and € = 0.95, we
can compute the time for the temperature to fall between each pair of values.

The results are shown in the last column.

Qur example shows that a temperature of 23K would be reached in only
about a year. Below this temperature, our 0K universe assumption begins to
get shaky, and heat leaks from the warm parts of the spacecraft may become
important. Nevertheless, even allowing for heat pipe losses, a radiation
cooled heat sink at 15-20 K looks eminently feasible. We conclude that massive
Weber bars, using very low temperature instrumentation, are possible payloads

for electrically propelled focal m{ssions.
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Table V-T.

Radiation Cooling Time

T (1) g—fﬂ% dT At
K cal/g mz-sec/kg vears
23.16 .0039
7558 0.252
32.56 .0092
4111 0.137
40.16 0165 .
11106 0.37
73.16 .076
4783 0.16
123.16 .1367
1254 .042
" 173.16 .1676
448 .015
223.16 .1914
200 0.007
273.16 .2079
Totals - 29461 0.983

A different way of improving Weber bar sensitivities is to reduce the

damping. Each mode of the bar may be regarded as a damped second order resonato

driven by thermal noise and external radiation. The damping does not affect

either the average thermal energy kT in each mode or the energy deposited in

that mode by the external input.

the 1ikely rate of change of the thermal energy.

However, the lower the damping, the lower is

Thus bursts of external radia-

tion become (within Timits) statistically more distinctive as the damping is

Towered.
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The cryogenic groups derive some benefit from this, as the acoustic damp-

(15)

jng in aluminum drops somewhat with temperature. However, Braginskii and
his group at Moscow State University have pointed out that the damping at any
temperature is greatly reduced in very pure single crystals. They have been
successful in fabricating sapphire crystals of 25 kg or more, ana have already
achieved sensitivities comparable with the more massive bars discussed above,
although the damping in these crystals is still ahout two orders of magnitude
higher than theoretical predictions. For transducers, the Moscow group appears
to have worked mostly with capacitor types, and with the deformation of super-
conductive microwave cavity oscillators.

. The importance of single crystal detectors for focal missions is obvious.
With the greatly reduced bar masses, chemically powered spacecraft may be feasi-
bie. Using electrical propulsion, a fleet of detéctors could be carried by a

single spacecraft past the turn point, and then sesparated to compile a more

comprehensive map of the focal area.

3. A Long Baseline Interferometer

The general idea of Tong baseline detectors is that if the strain field of
a gravitational wave is uniform, a longer strain gauge will see greater displace-
ments, without necessarily incurring increased noise. One way to do this is to

analyze tracking data from inferp1anetary spacecraft taken by the NASA Deep
’ (2),(3)

Space Network. This appears to have been first proposed by A, J. Anderson s

(25)

and was given a relativistic analysis by Davies and by Estabrook and

-

Nah]quist.(sg) An excellent discussion of the engineering difficulties in such

(4)

measurements is given by J. D. Anderson' *, who, however, was primarily

interested in relativistic effects on spacecraft orbits. The main problems are
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‘master oscillator stability, spacecraft and earth antgnna dimensional stability,
and propagation uncertainties in the interplanetary plasma.

The spacecraft tracking work is interesting here mainly because much of
thé-ana]ysjs done there is generally appticable to all long baseline detectors.
We will display some of it in order to draw a few conclusions for focal missions.

(66),(38)

To begin, several authors show that a weak gravitational wave in other-

wise flat space propagating in the z direction, and polarized along x, can be

described by the line element:

ds? = (1 + h)dx® + (1 - h)dy? + dz? - c2dt? (5)

where h = h(t). is the metric disturbance.
Consider first a measurement of local strain in the x direction. For this

dy = dz = dt = 0, so:

ds =1 + h dx = [1 N % + O(hz)] dx (6)

The strain in the x direction is thus:

€X=__CB(——-=h/2 (7)
A similar analysis shows that
eyé-h/z, e, =, =0 (8)

Thus there is no strain in the direction of propagation, and ideal clocks are
unaffected by thé‘wave.

If the goal is to detect this h, it seems intuitively obvious that the
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baseline should be put along either x or y. Estabrook and wah]quist(38)

examined the more general case in which the spacecraft-tracking station line

-of sight lay in the x-z plane. For a sinusoidal wave:
h = hos(wt) (9)

they determined the resulting frequency shift Av/v, since doppler measurements
are superior to range for this purpose. However, for sinusoidal signals, the
range and doppler amplitudes are proportional. As recently shown by the

(83)

author , in an extension of their work, the guess that best performance
comes from putting the baseline orthogonal to the wave direction is correct,
provided L < 0.38964 ) It is also shown that significant improvements are
often possible at other angles, for larger L. Since we will not be concerned
with baselines longer than A/4, we will assume orthogonality from here oﬁ.
For this special case we can get the results we need directly from the
line element. Suppose a packet of electromagnetic radiation is emitted at
x =0 at time t = te as measured by a local -clock. Let it travel along the x
axis to x =L, arriving there at coordinate timé t= tL. Then suppose it is
reflected back, returning to x = 0 at t = t.. On this path dy = dz = 0, and

as the radiation travels a null geodesic, ds = 0 also. Thus, to first order

in h, we can write on this path:
. h
Lax =201 - Pat (10)

Over the first leg this integrates to:

t

) L h h
= j; (1 - -?)dt = tL - te + E%.[C(mtl_) - C(mte)] (11}
. e
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Similarly, on the return leg:

t i h :
%=f - Mt =t -t 452 [c(mtr) - c(th)] (12)
t
L

Adding these eliminates the unobservable tL:

2L h0 w @

.C—= Y‘ - te + a—-— S[—é" (t]" - te)]S[f (te + tr)] (]3)
Letting tm = 12-(1:e + tr) be the average time of the measurement, then to first
order 1nrh0 this is:

. By
L=t -ty + =2 s (@)s(at ) : (14)

Interpreting the difference tr - te as a measure of the round trip distance,

the variation in L due to h is:

h

ax =5 (t, - t,) - L= 0" s (25)s(ut, ) (15)

r ‘e 2w

Finally, substituting the wavelength of the gravitational radiation:

_ Znc
-A == o (16)
we get:
h A
_ 0 2wl
AX -— T{S(T)S(wtm) (]7)

Note that for L << A, tm = t, and Ax = hL/2, consistent with our earliier
result that the strain is h/2. This is.what we are attempting to measure with
Weber bars.

The most important result from this is that the amplitude of Ax is maxi-

mized at L = A/4. Actually, except for very small 2, mea;urement difficulties
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increase with L, so engineering considerations will generally lead to L < A/4.
On the other hand, we will later show that L = X/4 exactly has an interesting
advantage in reducing laser noise. For the Crab pulsar A = 4961 km, and the
opfimum baseline would be 1240 km. If we observe this baseline optically

7

with, say, green light of wavelength 5 x 10" 'm, and are capable of directly

measuring 1% of this, then the minimum directly observable h0 is

b (5 x 10700 L 6 5y 10715
° 14,961 x 10°)(1)(2)

Actually, since the optical signal from the Crab is also available, we can
empioy cross-correlation over a long time to improve detection. If, say, 10
days are devoted to this, then N = (8.64 x 105)(60.427) = 5,22 x 107 cycles are
available, and we get a detection gain ofvﬁr= 7226. This Towers the minimuﬁ
detectable h0 to 8.8 x 10'19. Not good enough, according tq most estimates of
pulsar emissions.

. Further improvements are_possib1e, for which we must first examine the
optical 1ink. Suppose we have a laser source with wavelength A= b x 10'7 M,
as above. Let its output be directed by a parabolic mirror of diameter D = 0.4 m.
Then, the half beamwidth is o, = 1.22 AL/D = 1.53 x 107° rad., and the radius

to first null at the other end is 9,1 = 1.89m. This is the reason for not using
a larger directive mirror - the collector will already be a significant fraction

7

of the pattern size; and directive pointing of the order of 2 x 1077 rad. is

already required.
The tight beam makes it possible to use the simplest kind of collector at
the far end - a corner cube. This avoids both pointing probiems and phase

stability problems in laser amplifiers. Since we must be careful of interference
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effects, we must use a single ‘large cube, unlike the arrays left on the moon
by the Apollo astronauts. To establish the mass and optical properties, the
following geometrical relations are easily proved. If the corner is cut from

a -cube of edge a, then

1]

Volume = V = a3/6 (18)

Frontal area = A = V3/4 a2 (19)

"Effectjve" diameter = D, =\/$ﬂ-=\f;%z~a = 1.05a (20)

The effective diameter is defined, as usual, as the diameter of a circle of
area A.

‘Since pointing is not a problem, the limiting size of the reflector is °
set by its mass. Suppose we allow, say, 50 kg of high transparency lead glass

(3000 kg/m°). This gives:

1/3

a = (6v)173 = [I__ggégﬂ)] = 0.464 m

from which A = 0,187 m2 and DC = 0.487 m. The pattern back at the source will

not be circular, but it will have a rough radius 1.22 ;\L/Dc = 1.55 m. This is
adequate for any co11ecting aperture we are Tike]y.to use. An actual corner
cube of the same mass would probably be a 1iﬁt]e deeper and have its frontal
corhers trimmed. Finding the trim shape that would give the strongest return
beam for a given mass of glass is an interesting problem in optimization theory,

but it's doubtful that much improvement could be found over the present figures.



We can now calculate the fraction F of the initial laser output that is

coltected at the detector. First, the gain of a tapered parabolic refiector

15:(73)

2
()

so the fraction intercepted by the corner cube is

2 ' 2

6d  _7A/ D\ _ (7X0.187)[ 0.4 _ 0340
2 1 ( L) 16 [(5 x 1077)(1.24 x 106)]

Assuming a final collecting aperture of 0.2 m2 (0.505 m diameter paraboloid, say),

the equivalent return fraction is:

2
= .0541

(7)(0.2} (0.487)
16 s x1077)(1.24 x 108

Combining these,-and allowing for a 3% 1ight loss on each of ten surfaces, we
3

get an overall F = 1.36 x 107
The next question is what to do with the returned beam. If we attempt to
detect the change Ax in L by comparing it with the phase of the current laser
output, then we place extremely tight demands on the phase stability of the
laser over the round trip travel time (.0083 sec in this case). A way around
this js to use an interferometric setup, such as in Fig. V-1. Here the laser
is split into two beams which are sent to separate corner reflectors along the
x and y directions, each at the distance L. When the beams are recombined,
there is no differential time delay, and laser phase stability is not so impor-

tant. We will now set out to examine the performance of such a system.
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4. Spatial Filtering

To begin our interferometer analysis, we must characterize the output
of the laser. Assuming a linearly polarized wave, the nominal electric
field will have the form Eos(mLt). However, practical lasers (even single
mode types) are contaminated by spontaneous emission noise, and frequency
instability due to acoustic vibration of the resonant cavity. Spontaneously
emitted photons lead to a field component at a frequency close to @ but
with random phase. The effect is an additive noise spectrum, centered at
@ » of very narrow width (see Ref. 98, Sec: 10.6).

As for acoustic nojse, imagine a weak axial vibration of the laser struc-
ture at frequency W By changing the mirror spacing, it will frequency modu-
late the laser. If the maximum freguency excursion is Aw, then the output

field will have the form:
E = Eos[m]_t ¥ gs(mmt)] (22)

where g = Am/mm. (See Ref. 73, P. 532.) Expanding this in Bessel functions

gives:

E/E, = J,(g)sle t) +-2E: Ji(g)[é(mL + do )t + (-])1S(mL - 1mm)t} (23)
iz

If this wave is incident on a detector, the output current will depend on Ez.

After averaging over the optical frequencies, this becomes:



(E/E0)2 = %- 2(g) + 24,(9) :E:: J;(g)e(2in t)
=1

<0

+ 21 E1J .(g)d. (g)[c(1 - .])m t+ ( 1) c(1 + jlo t] (i+j = even)} {2¢
i=

Ye conclude that the detector will see only even harmonics of the acoustic
Frequency W

The practical effect of this is curious. If we choose to eliminate the
signal frequency » from the laser output power by controlling the mirror spac-
ing, then it is necessary to introduce an even subharmonic of w of appropriate
amplitude and phase into one mirror. The design of a controller to do this
looks Tike a very interesting problem in optimal control; but it is doubtful
that such a technique by itself could deliver a sufficiently pure signal to
allow detection of pulsar radiation.

It doesn't take much acoustic-strain to produqe these problems. The com-
plicated spectrum of FM harmonics just seen occurs when g > 1. Thus to reduce
the problem to only a few weak harmonics of W it is desirable to make
g << 1. Taking @, = w/2 as the worst offending acoustic freguency, this means
we require Aw << @w/2. Now the laser frequency o depends inversely on the mirror

spacing . Thus

Am=-wL—-pv— (25)
nd the allowable strain is
8L o _ Py (60.427)(5 X 10 -7y -14
€=7<<*EU~=ZC =5 x 107
L (2)(3 x 10 )
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- If we imagine that the mirrors are masses in relative oscillation with ampli-

tude A% = €%, then the displacement is
x = e85 (3ut) (26)
and the total energy of the vibration is

k= k)% = g nler)? = §m(nefr)? (27)

maXx
If 1 kg of structure is allotted to each mirror, and 1 m separation is used,

then at the above strain limit:

b

T.E.= %—(2)[n(5 X ]0'14)(60.427)(1)] = 9 x 10723;

Thus acoustic energy of the order of normal thermal excitation (~ kT/mode) is
already very troublesome. We conclude that elaborate measures for acoustic
isolation and damping may be required.

Disturbances other than acoustic noise ({e.g., spontaneous emission,
spurious Taser modes) take the form of additions to the electric fié]d.
Consider a component of this noise at frequency ©, away from the main output.

The field is then:

£ = Egso ) +esloy + )t + g (28)
The detector current due to this field would depend on:

£2 2 1.2

=-% ESS +ye” eEoc(mmt + &) (29)

Thus the difference frequency ®;, Now appears directly in the output.

Reduction of this disturbance along with the acoustic noise by the above con-



troller Tooks just as feasible.

Further reduction of these disturbances is possible by a sort of . spatial
filtering. Suppose the current in the final detector contains a noise com-
ponent at a frequency very close to the expected signal frequency w. This.
will have the form Ks{w + €)t. If a portion of the laser output is monitored
directly, the corresponding current component will have the form
K's{w + e)(t + %LJ, where L is again the optical baseline. Adding these

sfgna]s, and assuming some sort of control loop capable of forcing K* = K,

the combined current from this noise component is:

I/K=s(o +e)t+ s[(w +e)(t + g%}
= 2sftw + )t + %)}c[};- (w+ )] (30)

Now suppose L differs from a quarter wave only slightly:

= A _ e
L=g+8=5-+8 (31)
Then to first-order in € and § we get:
- (e . 208 L.
L= K+ 205y +e) (¢ + (32)

Thus, the disturbance can be cancelled out down to a Tlevel dependent on ¢

and §. Consider the frequency first. Ultimately, the correlation detector
will reject everything outside a band Af = 1/T. For a measurement time

T = 10 days, we have Af = 1.157 x 10'6 Hz. Thus the largest angular frequency

deviation is



= o1 -
€nax = 2'rr(2 Af) = mAf (33)

and, for sufficiently small 8, the noise within Af is reduced to a fraction

which is at worst:

Tmax _ maf _ n(1.157%x 10°%) _ ., 148
n 7F = (2)(60.427) |

In order to achjeve so0 deep a cancellation, the optical baseline error.

§ must be rigidiy controllied. At the same error level:

_"emax® _ Afc _ (1.157 x 10°°)(3 x 105) _
8] =—=—="%= > = 0.012m
2% 8% (8)(60.427)

Thus, for best performance, the baseline should be a quarter wave to within
1-2 mm. A startling requirement.

Overall, we have seen that laser ins£;b111ty, particularly FM due to
acoustic vibiation, is a severe problem. While acoustic isolation, damping,-

mirror control, and spatial filtering all help to reduce the problem, it

remains to be seen whether any combination of these or other measures will be
sufficiently effective to permit detection of gravitational radiation from

puisars.

5. Detection Sensitivity

We turn now to detector problems. First let's look at the phase shift
due to the gravitational wave. Over the round trip x axis path, the optical
phase shift is, from (17):

A = drAx _ h0>L S(ZﬂL
A AL A

h A
)s(wt) = —g}-s(mt) (34)
L



in which we have assumed that L = A/4. The same reasoning applied to the y

axis leg gives a corresponding phase shift -A¢. However, different return
strengths for the two optical signals are to be expected. Supposing the
individual electric field strength amplitudes to be EX and Ey’ then the combined
field at the detector is:

F=E S(mLt + Ag) + Eys(w t - Ap +a) (35)

X L
where @ is the phase shift due to the sltightly different lengths of the two
baselines.

Since detectors respond to power, we square and average over the optical
frequencies:

yoo1.2 1.2

E® =5E "+ ?Ey + EXEy(ca + 2Adse.) (36)

Now the return power jn the x-beam is PLFX/4’ where PL is the laser output power,
FX is the return fraction coﬁputed above, and the 4 is to account for the beam
splitter and combiner (see Figure V-1). After allowing for asymmetries in the
latter, and in the optical components, we can write the returned powers as:

1

B = FPLF0 + )5 Py = P F(T - w) (37)

where an exact match wouid make u = 0. Now since power is proportional to E2,

the optically averaged power delivered to either detector is:

Py = 3P F0 + Vi (o + 2650]] (38)

For any optical detector we are Tikely to consider, the output current can

be taken as:

=1 +810Pp (39)

0
h C
p

where e is the electronic charge, hp is Planck's constant, and n is the guantum

efficiency of the detector. Combining (38) and (39}, we can write the detector
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current as:

I=1,+1[1+v(co+ 28¢s0)] (40)
- 2
where ' Yy = V1 -y (41)
and 1 = S PF (42)
4hpc

The latter is the nominal detector current, were we to set o = w/2. Suppose
we take the laser output power to be PL = 10 watts. Then assuming a silicon
photodiode with a quantum efficiency n = 0.3, and the previous numbers:

4

-19 -7 -3
I. = (1.6021 x 10 "7)(0.3)(5 x 10 ")(10)(1.36 x 1077} _ , 11 4 10~

A
(4)(6.6256 x 1073%)(2.9979 x.10%)

This is much larger than typical photodiode dark current values Io ~ 10'9 A.

We will now consider various noise sources in order to find good values
for o and y. Starting with detector shot noise, the rms noise current within
the frequency band Af for any kind of detector is (Ref. 98, p. 281):

—— gy = {2eaf {1+ I, (1 + yea)]E (43)

Thus the ratio of signal to rms noise is:

I
28 e fo1 s (44)
SN eAf(1 + e # yco)

where g = Io/Ic - (45)

For e = 0 and v = 1, this reduces to:

I 21
S16G _ c
el AV (1 - ca) (46)
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whose maximum occurs at ¢ = 7. We are led to the curious conciusion that to
maximize the signal to noise ratio, we have to throw away the signal! However,
the signal to noise ratio is not well behaved near this point. This 1is best seen
in Fig. V-2, which is a plot of the function

1
=3

Qo) = ysa(l + e + yca) (47)

for several values of € and u (i.e. Y).

3 by photodiode selection.

In practice, it should not be hard to achieve e < 10
However, matching return gains to better than p = 0.3 may be difficult without
some sort of amplitude modulator and control loop. Lacking these, it seems
prudent to choose o = 135 deg so that for u < 0.3, we have Q > 1.18. Addition
of the control can raise this only 20% at most; so it's probably not worth the
trouble.

We can now calculate the sensitivity. The rms signal phase variation is,

from {34):
Bdpps = figh

~ _ V2r

from which the ratio of rms signal to rms shot noise is, from (44):
Is16 rms _ hat Q 'IIC (49)
ISN RL ehf

The usual criterion for detectability is that this ratio is at least unity.

\/EE?" (50)
IC

and using the previous numbers, we could detect the Crab pulsar provided

s 5x 1077 ‘J (1.6021 x 10°'9)
0" (a.961 x 10°)(1.18) ¥(8.64 x 10°)(4.11 x 1075

(48)

Thus the minimum detectable h0 is:

S
==

ho =

b
2

= 1.81 x 10744
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~ We can now look -at thermal noise. - To couple the photodiode to an amplifier
efficiently, the ampTifier input resistance should be close to the diode's

operating resistance. The latter is, from (40), (45), and (47):

) 2
"R o= v =¥ {Ysa
I? - I0 + ,IC('I +yca) IC( q ) (51)

where V is the reverse bias applied to the djode, typically about 20 volts.

With the eariier numbers this gives us an amplifier input resistance of R = 1.3 x

4

10" ohms, an easy value to implement.

" The rms noise current generated in this resistor, in the frequency band af, is

NN P T -N/kTIcAf (52)
R Yso

TN )

where T is the absolute temperature of the resistor, and k = 1.3805 x 10783 gk
is Boltzmann's constant. Applying the same argument as for shot noise, the ratio

of rms signal to rms thermal noise is:

I hOAstza Vi

c (53)

SIG rms _
2kTAT

Iy N

Thus, if thermal noise were the only problem, the minimum detectable h0 would be:

Q. 2KTAT
ho = / (54)
‘ 0 (-I _ u2)52a VIC

and assuming that the resistor is cooled to, say. 50 K, this works out to:

—23)(

(1.18)(5 x 1077) (2)(1.3805 x 1072%)(50) .

= 1.15 x 107

h =
O (4.961 x 102)(1 - 0.39)(.5) V (8.64 x 10°)(20)(4.11 x 107 %)
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We conclude that thermal noise: is an order of magnitude lower than shot noise,
even though o has been optimized for the latter.

Finally, we must consider laser noise. Suppose a fraction § of the original
power PL is noise in sidebands of width Af around the main laser freguency.

Then the rms noise current due to this is

ILN = IC5(1 + Yca) (55)_

This time, the signal to rms noise ratioc is

Is16 _ _ 2va¢sa (56)
Iy 81 + Yea)

In this case, the sensitivity depends on the function

W(a) = ysal + Yca)_] (57)

Once again, if Y =1, we find that o = 7 is optimum, when W = =; i. e.,
we can get an infinjte signal to noise ratio by throwing away the signali! Of
course, in the neighborhood of a = 7, W(a) shows even worse behavior than Q{a),
which plays the same role in the shot noise analysis. This is best seen in
Fig. V-3, which plots W(a) for various values of Y. If we again choose o = 135
deg., consistent with the shot noise discussion, we find that for u < 0.3,
W>2.07.

Once again we form the rms signal to rms noise ratio:

ISI‘Gnrms _ \/é holw

= (58)
ILN ALS

Thus, in order to detect a given ho’ we require

Ve h AW

T, (59)

8
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and if we wish the laser noise problem to be no worse than the shot noise, we

must have

s V2 (1.81 x 107%%)(4.961 x 10°)(2.07)
7

= 5,27 x 1071
5x 10

This means that through acoustic isolation, mirror control, and spatial filtering,
no more than this fraction of PL in the critical sidebands may survive,

In the author's opinion, a practical system with § < 10"12

» say, is feasible;
but we have not proved this. In case of difficulty, however, we have the option
of adding the return beam matching control, as discussed above. This would
greatly reduce p, so that o could be increased. An increase of W(a) to 15 or 20
may then be possible.

In conclusion, we have presented a long baseline Taser interferometer,
capable of detec¢ting gravitational radiation at the Crab pulsar double frequency -
of 60.427 Hz, provided that the metric perturbation in the solar system
h0 > 1.81 x 10'24. This 1imit is set primarily by shot noise in the photodetector.

Several difficult control problems have been identified, but not addressed.

One of these is the baseline contrd], which must establish each baseline length

. to within a few millimeters of a quarter wave (1240 km). Another is the
differential phase control, which must hold the baseline difference to a fairly
precise optical phase a. In addition there are the acquisition and atiitude controls
tfor all three spacecraft, although the corner reflector controls do not Took
difficult. Laser and gain matching controls may also be needed to keep down laser
noise.

Maintaining the required three spacecraft configuration in low earth orbit
does not look very practical; so this must be considered to be a deep space
system. In this connection we may note that configuration maintenance problems

are Teast when the gravity force vector is the same for all three spacecraft. This

condition is met almost exactly for focal missions. Finally, we observe that
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while no mass estimate has been made for this system, the three spacecraft might
Just fit within the capability of the chemically powered injection vehicles

of Chapter III.
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CHAPTER VI~
LOOKING AHEAD

1. Introduction

This thesis has been mainly concerned with a description of the solar foci,
and how to reach them. This is, at best, a beginning; as many importént aspects
of focal missions are untouched, or only Tightly covered. It is the author's
hope that future physicists and engineers will be moved to continue this work.
Accordingly, this final chapter provides a brief sketch of some of the remaining
areas bearing on mission design.

Section 2 provides a discussion of presently plausible sources of gravita-
tional radjation. In Section 3, the way is opened for-a more comprehensive iens
analysis than that in Chapter II, although the more difficult problems remain
unsolved. Section 4 looks at the main navigational question - the feasibility
of following the axis precisely, beyond the turn point, despite our.inability
to sense it directly. Finally, in Section 5, the several diverse threads of this

thesis are combined to construct-a set of (rather speculative) focal mission

profiles. Many unsoived problems are identified for future study.

2: Radiation Sources

Many suggestions have been made of p1ausib1e‘cosmic sources of gravitational
radiation. Excellent summaries of these are given in Refs. 66 and 14. We will
briefly discuss some of these. Stellar locations for a few examples of each type
are listed in Tables VI-1-3. Some are also plotted in Figure III-10.

Source information is from a variety of catalogs and is generally in right
ascension o, and declination 6 relative to earth mean equator and equinox of 1900

or 1950. We have adjusted all these to A.D. 2000 for uniformity. This is essentially
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the system EG in Section III-3.
To determine focal mission performance we need the equivalent angles
a' and §' relative to the eclipticy i.e., the system ES in Section III-3.

Applying II1-4 the connection between these is:

ca'cs? 1 0 0 cacs cocs
sa'cs’ = 0 ce s€ sacd | = sesd + cesacs (n
s§' 0 -se ce s§ - cesd -~ sesacs

Since |6, §'|< w/2, the ambiguities are easily resolved.
One well studied source type is binary stars. The general theory of

(66)

these is sketched in MTW' ", and worked out in detail for stars in Keplerian

(70)

orbits by Peters and Mathews . Post-Newtonian corrections have been

(91)

calculated by Wagoner and Will . A1l these are based on general relativity;
but Will (95) has examined the same problem within several competing theories
of éravity. These theories differ widely on what binary systems should emit,
and on what our detectors should observe, which accounts for much of the interest
in binaries. ‘

The main difficulty with binaries as focal mission candidates 1is their
low radiaticn frequency (twice their orbital frequency, in general reiativity).
This Teads td such long wavelengths that diffraction (ignored in Chapter II)
may wash out solar focussing. (See also Section 3 below.} However, on the
chance that future studies do not confirm this effect, several of the most
promising binaries are noted in Table VI-1. These are taken from Refs. (66), (14),
and a recent compilation by Douglass (28), The values of the radiation
frequency, flux density, and strain amplitude are all by Douglass, who based

his calculations on the' theory of Peters and Mathew§70).
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Table VI-1,

Binary Sources .

Source Equatorial Position Ecliptic Position have Flux Strain
Period Density Amplitude

o-deg §~-deg o -deg §“~deg sec 10'15N/m2 x 10721

i Boo 225,947 47 .654 197.778 60.537 11569 68 5.1

Y Pup 119.559 -49.245 145,701 -67.055 62834 1.9 4.6

WZ Sge 301.892 17.695 309.016 36.914 2440 37 .8

YY Evi 33,075 ~10.261 27.094 -22.151 13900 4.4 1.5

SW Lac 343.425 37.914 2.872 40.791 13900 3.2 1.3

YW Cep 309.794 75.396 52.085 74.775 12023 23 3.0

u* Sco 252,965 -38.05 256,154 ~15.426 62480 38 21

AM C¥n 188.721 37.648 170.368 37.457 526 240 .5

SS Cyg 325.675 43.583 350.461 b2.655 11904 20 3.0

Note: Positions

referred to equinox of A.D. 2000. Obliquity = 23.4393 deg.

For our purposes, the table shows that the strongest sources from an energy

standpoint are, in order, AM CVn, 1 Boo, u” Sco, and WZ Sge; but for detectors

directly sensitive to strain, the best sources are u” Sco, i Boo, and V Pup,
in that order. On the other hand, the best candida@es from a rocket perform-
ance standpoint are u” Sco, YY Eri, WZ Sge, and AM CVn, Unfortunéte]y. none

of their foci are reachable by direct chemical ascent.

A second interesting source type js pulsars. Accepting their current
intgrpretation as spinning neutron stars, gravitational radiation at twice the
spin frequency is expected if they possess unegual equatorial moments of inertia.
Compelling evidence does not now exist that there could be sufficient deformation

to produce detectable radiation; nevertheless, experimenters are presently

exploring ways to detect them, based on their precisely known frequencies.
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For one such attempt, see Sections V-3-5.

Some of the more interesting pulsars are listed in Table VI-2. Of these
the Crab Nebula (M1) and Vela X are included because they have high spin rates,
and thus are Tikely to be the strongest emitters. CP 0959 + 08 is included
because it is relatively close (~ 60 pc). It would produce flux here compara-
ble to, say, M1 with 800 times less output. Finally, although fairly distant,
PSR 19]3 + 16 is doubly interesting because it is a pulsar in a binary system.
Neither its binary (wave period = 13,954 sec) nor its spin radiat%on is likely
to be very strong, as seen here; but astrophysical interest in this system is
currently very high, and detection of either one céuld advance both pulsar
and relativity theory. The interesting cpmp]ica%ion here, as pointed out by
Nagoner(go), is that the binary radiation may lead to observable orbit decay.
If decay is observed, and if mass transfer can be definitely excluded as the

cause, an indirect observation of gravitational radiation could be inferred.

For recent estimates of M1 and Vela X emissions, see Ref.100.

Table YI-2. Pulsars

Pulsar Equatorial Position Ecliptic Position Wave
. Frequency
a-deg §-deg a”~deg §”-deg Hz
Crab (M1) 83.626 22.018 84.091 ~1.291 60.427
Vela X 128.417 -45.788 153.487 -61.039 22.419
CP 0950 + 08 148.29 7.928 147.708 -4.619 7.903
PSR 1913 + 16 288.868 - 16.094 293.231 38.024 33.88]

As for reaching pulsar foci, both M1 and CP 0950 + 08 have very low &7,

‘ Moreover, as seen jn Fig. III-10, both are inside the optimal shuttle orbit

band. This puts them well within the capability of the chemically propelled



spacecraft of Chapter III. On this ground, these two pulsars must be regarded
as prime candidates for a focal mission.

Another potential source of gravitational radiation is black holes.
While fully convincing evidence for these does not exist at this writing, some
are thought to be located at the centers of galaxies or globular clusters,
where they might consume whole stars fairly frequently. This would presumably
cause bursts of gravitational radiation, with the energy centered in the kilo-
hertz region. For discussions of this see Ref. 66, and more recently Refs.
88 and 87. We mention them here because detection of specific sources is
easier at their foci, and because the angular resolution achievable there
might contribute strongly to our understanding of these objects. A few plaus-

ible places to Took for such sources are given in Table VI-3 below.

Table VI-3. Burst Sources

Source Equatorial Position - Ecliptic Position
a-~deg §-deg o’ -deg § " -deg

Galactic Center I 266.543 -28.954 266:961 -5.551
M87 - 187.706 12.943 181.827 14.921
M82 | 149.019 | 69.697 118.988 52.132
NGC 5195 202.499 47.259 | 175.091 50.999
NGC 1851 78.513 -40.026 70,585 -62.693
NGC 6624 260.925 -30.431 262.12 ~7.24

Qur galactic center is listed for several reasons. First, in Weber's
original claims to have detected gravitational radiation (see V-2), he cited

the galactic center as consistent with his weakly directional results. Since
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then there .has been much speculation about the presence of a black hole
there, partly supported by the known strong infrared and radio emissions.
Another reason for this interest is that our galactic center is surely the
closest place we could plausibly look for a black hole of the order of 107
solar masses or more.

This jdea was soon extended to more distant objects. For instance,

(88)

Thorne and Braginsky have suggested that any galaxy with an active nucleus
(quasars, Seyferts, strong radio emitters) might contain massive black holes.
The strongest evidence for this comes from the recent optical measurementﬁ of

(76) , (99)

the giant elliptical galaxy M87 by Sargent et al. and Young et a

They find that their central Tuminosity and velocity dispersion data are con-

9 solar masses.

sistent with a central tiny non-luminous mass of about 5 x 10
Such a hole would be larger than the solar system, and might consume stars
fairly often. In support of this it may be noted that M87 is a strong radio
and X-ray emitter, and it possesses a Tuminous unidirectional nuclear jet.

As a member of the nearby Virgo cluster of galaxies, it may be the best
prospect for a gravitational radiation source. However, radiation from
stellar motions about the hole may be dominant over that from the consumption
of stars by the hole, since(70) the former increases with hole mass, while(66)
the Tatter is inversely proportional to hole mass. Of course, as this kind
of measurement is extended to other galaxies, moré black hole candidates are
1ikely to appear. Some other possibilities include the "exploding" galaxy
M82, and NGC 3077, which are highly irreguiar companions of the nearby M8]
galaxy, and NGC 5195, an equally irregular companion of the “Whirlpool", M5T1.

For our last sources, we note that recent measurements of globular
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clusters have shown that a few emit strong bursts of X-rays. This has been
taken by Bahcall and others(ﬁ)’(7)’(8) as evidence for central black "holes.

The bursts are suggested to originate from clumps of matter entering an accre-
tion disk, and from compact stars orbiting through the disk. The best candi-
dates for such structures are given by these authors as NGC 1851 and NGC 6624.
The chance for detecting gravitational radiation from these appears to lie in
the direct consumption of stars (which must be very rare) or to large irregu-
larities in the rotating accretion disk.

Finally we need to look at rocket performance. Table VI-3 shows that only
the galactic center and NGC 6624 are accessible by chemical rockets, although
they are slightly outside the optimal shuttle orbit band. While M87 has §°=15 deg
and would thus appear to have some chance for an all chemical mission, it is .
well outside the shuttle band; so without a gravity assist it does not look
very feasible. However, at this Tow declination, electrical propulsion offers

payloads in excess of 9 Mg -~ an attractive possibility.

3. Lens Problems

There are several difficulties with the solar lens which are not considered
in Chapter II. Perhaps the worst of these is diffractioﬁ. Our analysis corres-
ponds to the geometric optics assumption for electromagnetic radiation. The
latter breaks down-when the wavelength of the radiation approaches the Tlens
system's effective aperture. .App1ying this anaiggy to the solar gravitational
lens, we could conclude from Figure A-1 that the effective aperture is~0.15
solar radii, or~108 m. This corresponds to a frequency of ~3 Hz. 1If this ié
correct, then radiation from binary systems is not significantly focussed by
the sun, and only burst sources and the most rapid pulsars would give anything

Tike the picture in Figure A-3.
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Another diffraction possibility is that the effective aperture would
correspond to the Schwartzchild radius of the sun (1477 m); but this seems
unlikely without a massive collapsed core. Yet another view is that the
effective aperture should be taken as the radius of space curvature near
the center of the sun. Taking a rough density radius of 0.1 solar radii,
Figure A-1 indicates W~60, or p~85,000 kg/m3. The radjus of curvature

is then (Ref. 66, Eq. 17.7):

8
P o=_ €= 3 x 10 - 3.56 x 10"

0
m
¢ ov/mpG  2[n(85,000)(6.673 x 107 1)}

corresponding to a frequency of ~0.01 Hz. Better, but still not very hope-
ful for binary systems. This whole area needs attention by physicists.

A different lens problem is interference. This can occur behind the
caustic where three rays intersect at each point. At sufficiently high
frequency, differences in coordinate time along the three rays can lead to
destructive interference. To get an estimate of this effect we can start
from the gravitational time delay for radio signals passing by the sun, as
obtained in Ref. 66, Eq. 40.14. For one-way travel, as applied to our problem,

this delay is approximately

AT(R.) = Ty &n %Lgl (2)
0

where 11 = 4Gms/c3 =1.97 x-107° sec. Applying this to a ray passing through
the sun, and assuming that the instantaneous effect is due solely to the mass

inside the radius R, (2) becomes:

R
(0) L{0)
T-I M(Ro)ln 'l’i;— + T][R Ro Q.n[ R }dM

‘ 1
T [En L(0) +f %-dR] (3)
RO

1

i}

AT(RO)

fl
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To this we must add the geometric delay due to the path being of approximate

Tength \/L(O)2 + RO2 instead of L(0). Thus the difference between rays with

perihelia R0 and R0 is

8T = T(R;) - T(R) ' (4).

R
> 2 0 M
where T(RO) = ’FZRO - T][ = dR (5)

and T, = rsz/[zg(o)c] = 2.1 x 10°* sec. This function has been computed for
for the Ezer-Cameron model, using M/R from Table A-2 and the parabolic integrator

of Appendix C. The results are shown in Table VYI-4,

Table Vi-4. Interference Function

Ro o] .05 Jo.140]0.154 | 0.2 o.295 0.399 }o.495 | 1.0
T(R)) - usec|{ 0]0.449 1.69 | 3.42 | 5.47] 11.84 | 22.85 | 37.16 | 181.9

For the region near L{0) we are generally dealing with rays for which
R0 < 0.2. Thus path differences will not exceed about 5 usec, and interference
effects should not be significant below about 20 kHz.

Still another problem witﬁ the Tens is that it is not perfectly spheri-
cally symmetric; i.e., the assumption W = W(R) in Chapter II is not exact.
One cause of this is solar rotation, which must cause some oblateness. Another
possibility is convection ce11§, which, if they exist, would cause tesseral as
well as zonal variations in density. ATso sunspots and "M" regions are certainly
irregular, although they may be superficial. Whatever their cause, aspheric
density variations will distort the axial symmetry of the focal region, as in
Figure A-3. This is both annoying, in that we cannot rely on axial symmetry, and
hopeful, in that a careful mapping of the shape of the focal region might yie}d

much information on solar structure.

VI-9



One other effect can smear the focal picture - image size, although this
is not strictly a 1ens problem. For a source of physical dimension vi, at a

distance D, the image size is

y = we(0)/D (6)

For instance, the binary i Boo has a projected separation of w~1 Gm. At a

distance D = 3.9 x 10]7

m, this gives y ~ 9 km. Thus, image size is only a
minor effect for binaries, and will be negligible for pulsars and other col-
lapsed objects. Of course when the mission objective is to study the source,
rather than the sun, image size is of great importance. This point Js furthér

discussed in Section 5.

4. Navigation

An engineering problem of considerable difficulty, not so far addressed,
is navigation. Hopefully, the author, a candidate specializing in Guidance
and Control, will be forgiven this transgression. The problem divides into
two parts -Aphg_abso1ute location of the axis, and the navigation of the space-
craft along the axis beyond the turn point. We will look at both of these and
suggest some approaches.

What makes focal mission navigation unique amongst deep space probes is
the lack of terminal guidance. Although all the possible sources discussed in
Section 2 are detectable optiéa]ly, they are necessarily eclipsed by the sun
near the axis. Thus, indirect methods of navigation will be needed. The
overall required accuracy of this process is set by the radial dimensions of
the focal,pattern. Taking the Ezer-Cameron solar model as a rough guide, and
assuming that we would desire to find the gain = 1000 contour in the forelobe

of Figure A-3, we find that the combined error must be held to X 300 km.
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Of this total, we might allot, say, 100 km to the absolute location of
the source. At a distance of 3.5 Tm this yields a source stellar position
accuracy of 3 x ]0'8 rad or about 0.006 arc sec. Astrometry at this level
is not elementary. However, for radio sources, very long baseline interfero-
metry may be helpful.

Another major source of uncertainty is the solar wmodel. The actual sun
might yield a substantially smaller gain = 1000 contour than the Ezer-Cameron
model. Also, solar asphericity could significantly warp the axial symmetry
we have assumed, thus flattening the focal pattern somewhat. Finally, general
relativity may not.be correct, thus invalidating the null geodesic analysis of
Chapter II. (This is distinct from the diffraction problem discussed in Sec-
tion 3.) We will allot 100 km to these combined problems, realizing that any
such number is hard to defend.

The remaining 100 km can be reserved as a navigational tolerance, the
feasibility of which we will now examine. To begin with, axial navigation
is not at all critical, so we are faced with only a two dimensional problem.
Moreover, small motions orthogonal to the axis are unaffected By the so1ér
field; so even these two dimensions are uncouplied, except, possibly. for
correlations in the noise, which, for simplicity, we will ignore. Thus,
we need to look at the case of controlling one-dimensional, field free motion,
with perturbing acceleration,. and relying on a noisy measurement of position.

Physically we will suppose that the control is by continuous Tow Jlevel
jon propulsion. The perturbing acceleration may arise frdm unknown bodies
in the solar system, uncertainties in the planetary masses, solar pressure,
radiation from the spacecraft's power source, evaporation or outgassing of

propellants and surfaces, and errors in the application of the controls. The
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last is probably the most serious for-a spacecraft beyond 2 Tm, and which has
already spent several years in space. As for the measurement, we will ‘tem-
porarily assume that the position is-continuously monitored by the NASA Deep
Space Network, using earth based antennas.

The arrangement just discussed can be described by X = u + w, where x is
the position érror, and u and w are the control and perturbing accelerations
respectively. In order to apply existing theory, we will recast this in state
variable form:

Xx=Fx+ Gu + W _ (7)

) P H Ee 6 R o

Again for simplicity we will take the perturbation w as a stationary random

where

process with zero mean and autocorrelation

Efw(t)w(t”)] = q6(t-t") (9) .

Also, the measurement
z=Hx+v; H=[1,0] (10)
is assumed to contain a noise v with similar properties:

Efv(t)v(t)] = ré(t-t7) (11)

In reality, both noises are time correlated, but a full treatment is much
harder analytically, and is hardly justified by the quality of the available
statistical data. However, we do have to relate q and r to published numbers;
so0 for this we will assume an exponential autocorrelation:

2
q=2v0p : r=2rg° (12)

where Ty and T, are the correlation times, and ¢

tions. For a fuller discussion of this see Ref. 17, Section 11.4.

w and o, are the standard devia-

VI-12



According to the certainty - equivalence principle (Ref. 17, Sections
14.3-5) the optimal controller for the above system starts with a state esti-
mator:

X = FX + Gu + K(z - HX) (13)

in which the feedback gains K are given by

K=LpH =1 [P]], P]é]T (14)
and in which

P+ pFl - Lk g (15)
In this

q = diag [0,q] (16)

and we have assumed w and v to be uncorrelated (another somewhat shaky assump- .

tion, as we will see). The matrix P is the covariance of the estimator error:

P = E[}Q - x)(X - x)T] (17)

Since there is no explicit time dependence in our problem, and as there
is plenty of time after the turn point for the system fo settle, we can take
K as constaﬁt and Took for a steady state solution (ﬁ = 0). The above a1gebraig -
system may be solved for P. Since the variances PH and P22 cannot be negative,

we get:

Piv Pr2 J2rNqE L ar

p = = (18)
P]2 P22 ar 2qGY

from which the gains are:

K

CRCH)

With the state estimate ¥ available we now turn to the controller:

u= -CX (20)
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With the idea that we wish to minimize E(x12) while not letting the propulsion

requirement get too big, we form the quadratic performance index:

J= %»E[ﬁa—x]z % buz)dt] - (21)
where the integral is over some long time. The optimal gains are then:

c-=pals=1 [512, 322]' (22)
and

S=Lclc-sF-Fls-a (23)
where

A = diag [a,0] (24)

Once again we look for a stationary solution (§ = 0). For-a positive

semi-definite S we get:

S11 Sto V2a~Ab Vab
S = =
1512 S99 vab  V2bWAb (25)

from which:

<67 @]

To evaluate the performance of the system, we need the covariance of

the estimated state ﬁ. This can be found from:

LR+ AT = rik” (27)
where
0 -1
L=GC-F= (28)
¢ G
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The solution of this system is:

X X 1({qg .3 )

' e 1 + 30 pio+p _p

o B I c1(gc2 7 C12P12 22) 12 (29)
2 R 1/q
12 722 P12 ?(?2 * Czplé)

From this we can form a more interesting quantity - the covariance of the actual

state:

=8 +p=di 1(a .3 1
X=X+ P =diag {%11 T (202 F7 lPi Pz%) > Pap * 2(%2 i Czp12)] (30)

Also of interest is the control variance:

_plnT 1 3q

We are now ready to introduce some numbers. A good way to get tr1a1‘design‘
numbers for the control loop is to invoke "Bryson's Rule" - choose weights a
and b according to the maximum tolerable state and control excursions. Since

we have allotted 100 km for navigation:

a = (10°)2 = 10710 52

As for control, the average acceleration for a 7 year ion drive trajectory is

2

around 2 X 10'5 m/sec”, so if we allow 5% of this for control we get:

b= (10872 = 10'2 sec/m?

From (26} this immediately gives us trial control gains:

10\ %
C-1 = (lQT?——)a = 10']3 sec'2
10

1

-10,7 *

C, = 4)(a0 1) = 4,472 x 10-6 sec'T
2 ]012
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It is important to look at the timing associated with these gains. We

can find this from the system's closed Toop eigenvalues:

I +L| =2 =g (32)

CI C2 + A

whose roots in this case are:

Cy(-1 + 1) = 2.236 x 107%(-1 + 1) sec”]

™| —

A:
Thus damping times run about 4.5 x }05 sec or 5.2 days.

One reason for treating the controls first is that they may be the most
important contributor to the perturbation w. There is no way, at this point,
to get an accurate estimate of oy; however 10% of* the maximum control looks

7 2

very conservative. Thus, o, = 107" m/sec”. We will return to this point. As

for the correlation timé, the above damping time js the obvious choice. Thus,
from {12):
q = (2)(4.5 x 10°)(10°7)% = 9 x 1072 n?/sec’

Next we will look at the measurement noise. The current and projected
performance of. the NASA Deep Space Network is reviewed by Melbourne and
Curkendall in Ref. 62. They find that the present system, used at X-band
in the differential range %ode between distant ground stations, is capable

8 to 2.5 x 1077 rad., depending

of measuring angles to an accuracy of 5 x 10~
on the tracking time allowed, and the effort they are willing to spend to

keep the system calibrated. This arrangement is especially attractive because
it does not require an uplink, énd because it does not have unusual difficulties
at low equatorial deciinations. Considering that we will need neariy continuous
measurements for a period of several years, we cannot expect a sustafned‘max1~

mum effort at calibration; so we will adopt the conservative bound. At the Ezer

Cameron focal range of 3.5 Tm this gives oy = 875 km.
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As for the correlation time, the same authors assume a spacecraft power
of 1T watt, radiated from an aperture of 3.7 m at 50% efficiency, and at.a dis-
tance of 3Tm. With the present 64m ground antennas at temperatures of 30 K
they find that adequate post-detection signal-to-noise ratio is achieved with
8 sec of integration time. The difficulty with this is that we cannot reasonably
expect to tie up the main tracking faci1itiés for several years. However,'these
authors also point out that much less expensive 10m antennas at temperatures of
100 K would only require 1000 sec of integration time for the same result. For

our purpose we will assume that facilities of this quality exist.

As for our spacecraft, the antenna seems about right, but we are at a .
slightly greater distance. On the other hand, we could easily raise the
radiated power. Thus we can regard the integration timg of 1000 sec as some-
what conservative, and adopt it as the correlation time. Putting these numbers
in (12):

r= (2)(1000)(8.75 x 10°)% = 1.531 x 10'° m’-sec

With these, and (18), we compute the estimator error covariance:

9 2 2

Plq = 3.372 x 10°n°; Py, = 3712 né/secs Py, = 8.174 x 1075 m?/sec

and from (14) the estimator gains:

1

Ky = 2.202 x 1070 sec”! ; Ky = 2.424 x 10712 sec™2

The estimator dynamics can be found in the same way as in the control loop.

Here the characteristic eguation is:
A+ K] -1
[AT + L + KH| = = 0 (33)
C} + Kz CZ + A
whose roots are:

A= 5 (Cp + k)1 £1) = 3.337 x 1075(-1 £ 1) sec”
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Thus, the estimator’'s settling time runs around 3 x 105 sec, or-3.5 days,

which is a Tittle faster than the control.

The other quantities of interest are the covariance of the estimate
from (29):

2

By = 3.408 x 107 o &y, = 37120 secs Ry = 9.307 x 107% n/sec?

the state covariance from (30):

9 2 2

- . = 0 - 2
Xy = 6.78 x 107 w3 X5 = 05 Xy = 0.01748 m"/sec

and the control variance from (31):

2) -13 m2 4

E(u®) = 1.949 x 10 /sec

The most important measures of performance are the standard deviations

of the position and control:

o, = \¥q7 = 82.38 km; o = NEW?) = 4.415 x 1077 m/sec?

Assuming that these numbers describe novmal distributions with zero mean, we
find that the position error exceeds our requirement of 100 km 22.46% of the

time, while the control exceeds the 10'6 m/sec Timit 2.35% of the time.

Two points stand out from this analysis. First, the percentages indicate
that the performance weight ratio a/b has been chosen too Tow. Accordingly,
it was decided to raise this’by a factor of 4 and try again. At the same time
it was noted that the comparison between I, and the process noise o, shows that
we have been overly conservative in the choice of the latter. In the second

trial o, Wwas reduced to Gu/10. Both changes reduced g since the tighter con-

trol dropped the control damping time. The results of the new calculations are

shown side by side with the older ones in Table VI-5.
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TABLE VI-5.

NAVIGATION DESIGM PARAMETERS

PARAMETER DESCRIPTION UNITS VALUE

a/b | Weight ratio sec? | 10722 1310722 |1.6x1072]

Cq Control position gain sec’? | 1071 2x107 1 i-'tuﬂ(}“H

o Control rate gain sec™! | 4.472x107% {6.325x107°6 |8,944x1076
Control damping time days 5.2 3.7 2.3

o, Process noise o m/sec2 1077 4.415x107% |4.4x1078

q Process noise autocorrelation m2/sec 9x10™° 1.233x107° |8.658x10719

oy Measurement noise o km 875 875 875

, Measurement noise autocorrelation | m*-sec | 1.531x10'° {1.531x10'° |1.531x10'°

P Estimator e 3.372x10°  {2.051x10° |1.878x10°

Pl error ne/sec | 3712 1374 1151

Pop covariance m’/sec? | 8.174x1073 |1.841x1073 |1.412x1073

K, Estimator rate gain sec™) | 2.202x1078 [1.38x107% |1.2%6x107®

Ky Estimator acceleration gain sec™? | 2.424x10712[8.973x107 13| 7. 519x10713
Estimator settling time days 3.5 3.0 2.6

% Covariance - m? 3.408x10° |7.486x10° |4.227x10°

Ry, of the né/sec | -3712 ~1374 ~1151

%5, estimate m?/sec? | 9.307x1073 |4.442x107° |5.198x1073

o, Position o km 82.34 52.91 47.96

9, Control o m/sec® | 4.415x1077 |{3.599x1077 |5.179x1077
Position error > 100 km % 22.46 11.75 3.71
Control > 107° m/sec® % 2.35 0.55 5.35
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In comparing performance, note the gfaftifying driop of oy from 82.34 km
to 52.91 km. Also, Oy and G, NOW appear more consistent. However, the per-
centages of time outside the Timits are still somewhat disparate. Thus, one
more trial was made with a/b raised another factor of 4. These results are shown
in the last column of Table VI-5. This time the contro} usage o is up signifi-
cantly without much further improvement in o, The "best” design choiFe probably
Ties somewhere between the last two columns. With the 100 km navigational toler-
ance exceeded only a few percent of the time, and settling times of ~3 days, it

does not seem plausible that a feature as large as the forelobe of the focal

pattern (Figure A-3) could be missed.

The Tong estimator settling times are actually somewhat advantageous in that
tracking data lapses of up to several hours should not seriously degrade perfor-
mance. This conclusion is reinforced by observing that typical cross axis speéds
are about \/?EE ~0.08 m/sec, so that the displacement during one day is typically
only ~7 km. We conclude that while facilities at two {or preferably three)
stations must devote nearily full time to this mission, combined two station

coverage during 70-80% of the time is probably adequate.

Several ways exist for further improving performance. Ground antenna size
could be increased, or receivers improved, or the number of stations increased,
or some combination of these. A1l are Tikely to be expensive. Similarly, the
spacecraft's antenna size or radiated power could be increased. This may be
feasibie on electrically propelled spacecraft but not on the much smaiter chemical
craft. A related possibility is that r be reduced impulsively, either by tem-
porary increases in radiated power to decrease Ty or by making quick fixes with

the main Deep Space Network facilities every day or so to reduce o The present

v
steady state analysis will not accommodate a variable r; but these measures would

obviously help.
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Another approach is to reduce q. This could be done by carrying an on-
board accelerometer. Perhaps the simplest way to incorporate this measurement
is to replace u in the estimator structure {13) by the measured acceleration.
This replaces the actual process noise w by the accelerometer error. Present
technology in rebailance accelerometers is o ~ 10"8 m/sec, as exemplified in
the French CACTUS instrument. Values of ¢ % 1077 m/sec? appear to be achievable

(82)

in drag free accelerometers In this case, drag free periods of 100 sec or

more with free motion of + 1 mm requires ¢,6< 2 x 10-7 m/secz, which appears

u
feasible from the above analysis. For either jnstrument, the correlation time

should be very much less than the t  ~ 3 days we have been using.

While these numbers would appear to reduce q dramatically, there is one
difficulty - gravitational perturbations, due to uncertain planetary masses or:
‘unknown solar system bodies, are not measured by accelerometers. Suppose our

9 2

tolerance for this is 107~ m/sec”. Then an unknown mass M must be at Teast a

distance R away, given by:

m/RZ = 10796 = 14.99 kg/m?

For instance, Saturn has a mass of about 5.69 x 1026

kg; so a 1% error (really
a 1% error in GMSAT) in jts determination requires us to avoid Saturn by at
least 616 Gm, which is no problem beyond the turn point. As for Neptune at

1.03 x 1028

kg, the corresponding distance for a 2% error is 370 Gm. Uranus
is sTightly smaller than this, and less troublesome. Most missions would not
come nearly this close to an outer planet; but if it were to occur, a year's

delay of the mission would very likely remove the problem.
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The other possibility is an unknown solar system body. To get a bound
on this we can suppose that our chance of encountering an unknown body of,
say, 500 km diameter is remote. Still if it were spherical, and had an earfh—
like density of 5000 kg/m>, it would have M = 3.27 x 10%0 kg. Tt would give

2 at a distance of 4.67 Gm. Since oniy one asteroic

a disturbance of 107 m/sec
(Ceres) is known to be larger or more massive than this, trouble from this
source seems highly unlikely. If, in spite of all this, we have such an en-
counter, it would affect only a small fraction of the trajectory. Moreover,
such a perturbation might reveal itself by its unique signatu;e in the trackinc

residuals.

In conclusion, it appears that navigation to 100 km accuracy is feasible
with nearly continuous Deep Space Network tracking, using modest 10 m antennas
and 100K receivers. Better performance is achievable if the non-gravitational

8 9 m/sec2

disturbances are measured with an accelerometer at the 107" to 10~
accuracy level. However, to reach this result, drastic simplifications have
been employed, and a much more elaborate analysis is called for. Alsc, the
possibilities for rep1écing or augmenting Deep Space Network tracking, such
as. celestial navigation using the planets, or interplanetary navigational bea-

cons, have not been considered, but could play an important role.

5. Mission Optimization

A good deal has been said about optimal frajectories up to the turn point,
but, save for navigation, T1ittle about the remaining trajectory phases. Here
we will look at how the post turn point trajectory depends on the mission ob-
jectives. This is an extremely complex area, and a great deal of work will be

needed to maximize the scientific yield of any given mission.
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To expose the main ideas we will examine three types of missions, each
with a single main objective, realizing that this is an over-simplification.

These types are the first mission, solar missions. and astronomical missions.

The first mission is unique because we don't know the focal Tength. Be-
cause of this, we will take the measurement of the focal distance £(0) as the
primary mission objective. The main benefit of this is that later missions
can, presumably, choose more distant turn points, thus yielding shorter mission
times, or larger payloads, or both. Also, from (II-101), £(0) is a direct measure
of 87 which in turn (II1-83), yields féw(R)dR. This would be of great value to

solar physics in sorting out models of the core density of the sun.

The profile of a first mission is not hard to work out. The main events
are:
A. Preliminaries. Sources are detected somehow, and an appropriate
spacecraft-detector combination is designed and built. Low

source ecliptic declination is an important selection criterion.

B.  Transfer Orbit. A turn point radius rr 2 Tm is selected, as dis-
cussed earlier. This gives the payload mass as a function of the
post-turn point speed in the chemical case, or as a function of this

speed and the transfer time for ion propulsion.

C. Search Phase. Since finding the focus is our principal objective,
any excess payload capacity should be devoted to propulsion, in
order to minimize the mission time (and thus cost). For any given

suspected ¢(0) = 2. we could work out the optimal orbital and pro-

5
pulsion parameters to yield the minimum overall time t(zs) from de-
parture to &.. However, if 2(0) # 2., we will actually arrive at
2(0) at a time t [2(0),2.]. 1In the case of the ion drive, we are

powered up to Lo after which we are presumably out of propellant,
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and must coast. Now suppose, based on existing knowledge of solar
structure, that we are given an a priori estimate p(2) of the Tike-
Tihood density of finding the focus at 2. Then, assuming cost is

Tinearly dependent on time, the optimal choice of 2 is that which

minimizes the performance index
J(zs) = JﬂrT to(z,gs)p(a)dz (34)

This problem should be straightforward for chemical power, but could

be as difficult as Chapter IV for ion propulsion.

Final Phase. An examination of the gain diagram, Figure A-3, shows

that we should begin to notice focal effects well before 2(0). Sup-
posing that by the time the gain reaches 100 we would be certain that
we had found the forelobe of the pattern, we would still have around
300 Gm to go. At an average speed of, say, 10 km/sec, it would take
about another year to vreach ¢£(0). This time could be put to good use
b;_a;king small cross-axis maneuvers in order to locate the axis more
accurately. Suppose we make a 1 Mn lateral shift over a 30 day perio
This requires a velocity increment of 0.386 m/sec. If done by an ion
thruster, the required acceleration is 3 x 10-7 m/secz, somewhat less
than we assumed for navigation in the last section. Maneuvers of thi
sort would continue, with diminishing ampTitude, until 2 (0) is passed
With this, the main objective will have been accompiished; but ad-

ditional maneuvers would be very desirable to get some focal details,
especially the caustic location. The design of this maneuver sequenc

to get an accurate determination of £(0), while maximizing the chance

of resolving other features, will be a challenging task.
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We will now look at a solar mission. Here we will assume that 2(0) is
known, and that the primary mission objective is a detailed map of solar
structure. If, unlike Chapter II, we now admit that the sun may be at least
weakly aspheric, even including tesseral variations, then an adequate descrip-
tion of the mass distribution would take the form of some kind of expansion.
Mass multipole or spherical harmonic expansions of the density function are
plausible candidateé. In either case, the coefficients are constrained to

yield the correct values of 2(0) and the solar mass.

Now suppose that a trial solar model is developed which is spherically
symmetric, and consistent with the constraints. From it a focal gain picture
similar to Figure A-3 can be computed. With further work, we can determine
the pa%tia] derivatives of the gain at each point, relative to the general ex-.
pansion coefficients. Then, in principle, by measuring the gain at a large
number of po%nts, we can invert the problem, and extract the corrections to
the expansion coefficients. The result should be an improved, fully aspheric
model of the sun. If the corrections are large, an iteration may be needed;
but this does not necessarily require new measurements. The revised trial

model could still be spherical..

In the case of long baseline detectors, the process is more complicated
in that the predicted intensities and partial derivatives must be averaged
over each baseline pair. The resulting loss of resolution would appear to

give a distinct advantage to compact detectors for solar missions.

The profiles of the solar and first missions are quite different. First,
the transfer orbit would be chosen to yield rr around 200 Gm short of 2(0).

Then, as a long search will not be needed, we could substantially reduce the
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post turh point speed. Together, these would increase the possible payload,
especially for chemically powered spacecraft. On this kind of trajectory, we
can expect to detect focal effects immediately fo]]b&ing the turn point with
a chemical spacecraft, and even earliér with ion propulsion. We would then

Tocate the axis with oscillatory maneuvers, similar to the first mission.

Following acquisition of the axis, the profile is not so clear. In any
given trajectory through the focal area, we could compute the accuracy with
which we could extract each of the solar model coefficients. Then, given a
set of weights related to the scientific importance of each coefficient, we
could devise a performance index for comparing trajectories. Different tra-
jectories could be examined, and variations about the better ones cog1d be .
explored; but whether a formal optimization, such as in Chapter IV, would be
fruitful 1is unclear. One obvious problem is the gain discontinuity at thé

causiic, if this feature isn't washed out by diffraction.

It is the author's specuiation that the most fruitful tour would be one
that attempts to map the region a few kilometers either side of the caustic.
A plausible way to do this would be to follow a spiral path on the caustic sur-
face, with frequent surface crossings of a few kilometers depth. The dither

could be expanded to allow for diffraction.

The Targer payload capacity of electrically powered spacecraft opens the
possibiiity of carrying several detectors, and sending them on separate tra-
jectories foilowing axis acquisition. One possibility is a set of planar tra;
jectories evenly spaced around, and following the caustic. Better from the
standpoint of cross-calibration of the detector sensitivities is a set of
evenly spaced spirals, as mentioned above. Stiil another way would be to re-
verse the pitch of some of the spirals, so that the crossing points would give

still better cross-calibrations. Other possibilities abound.
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Three main motivations exist for detailed density measurements of the sun.
First, an accurate determination of the symmetric reference model W{R) could
be immediately integrated to yield the pressure P(R), and then, througn equation
of state arguments, the temperature. A great improvement in our understanding
of solar structure is evident. Rather harder to measure is solar oblateness.
The most obvious effect of this is that the circular cross section of the
caustic would be replaced by an oval with symetry axes determined by the
solar equator. Measurements of the eccentricity of this oval at various dis-

tances beyond 2(0) could then measure the solar oblateness.

To get a rough estimate of the size of this effect, suppose the solar
J2- 10_5 (see Ref. 66 for a discussion of this). Presumably this would lead
to an eccentricity of the oval of thg same order {we have not shown this).
Thus, in the region where the caustic radius is a few hundred kilometers, dis-
tortions of several meters are to be expected. While measurements between
spacecraft to this accuracy should not be difficult, it remains to be seen

whether the caustic can be resolved this sharply.

A successful oblateness measurement could settle the long standing argu-
ment about the precession of the perihelion of Mercury, and thus decide between

the Einstein and Brans-Dicke relativity theories. (This may also be possible

directly from focal structure.)

Finally we have some hope of discerning tesseral variations. Sources for
these are possible convection zones, sun spots, and M regions.  The Tatter are
the source of certain terrestrial magnetic anomalies, varying with the synodic
period of solar rotation, but not obviously connected with surface features.

That tesseral varjations are Tikely -to be weak is only-part of the problem.
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They may also be expected to vary with the solar sidereal period, which, at
Teast at the surface, is known to be latitude dependent. Still, any detected

tesseral variations should be valuable to some aspect of solar structure.

For our last mission type, we will look at gravitaticnal wave astronomy.
Besides the obvious advantage of increasing the apparent source intensity, a
focal mission permits very sharp angular discrimination. This helps both in
eliminating nearby interfering sources, and in resolution of the source. As
an example of the former, if two possible sources are separated visually by
1 arc second, their foci are separated by 17.3 Mm, if 2(0) = 3.5752 Tm (Ezer-

Cameron).

As an example of the latter consider M87. If this galaxy really possesses

a central black hole of 5 x ]09 solar masses(76’99)

, then it has an evént',
horizon of about 30 Tm diameter, if it is a pure Schwartzchild hole. At a
distance of 13.6 Mpc and the same 2(0), the image of the event horizon is,
from (6), a circle of 251 m diameter. An accretion disk would be somewhat
larger. Even without diffraction, these features are probably unresolvable,
except, possibly, right at 2(0). Stars in long elliptical orbits about the
hole should radiate bursts of gravitational radiation near pgriapse. The ef-
fective diameter of the circle of the Targest bursts woufd be perhaps an order
of magnitude larger. At the other extreme, M87 has a "jet" extending about

19 arc seconds from the nucleus, including several very bright star-Tike ob-

jects. To examine the whole jet for gravitational activity would thus require

a Tateral excursion of about 330 Mm.

Another possibility is our galactic center. If gravitational radiation
is somehow detected from that direction, a massive black hole will be suspected
tmmediately. At, say, 107 solar masses (a wild guess}), it would have an event

horizon diameter of 59 Gm. At a disténce of 10 Kpc (Ref. 1) its focal image
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diameter is 1.85 m. Thus stellar encounters one or twe orders of magnitude

farther away may be resolvable, but capture events probably are not.

As for other possibilities, certain globular clusters, as discussed in
Section 2, could possibly be resolved. Also, more galaxies with bright
central tuminosity cusps, similar to M87, are likely to be found. Galaxies

with strong nuclear activity, such as Seyferts, may also be good candidates.

Quasars are a special case in that while they might radiate strong gravi-
tational waves, their star-l1ike appearance suggests that their focal images
would be too small to resoive. Thus a mission to a single quasar focus would
not appear to be fruitful. However, a mission involving a quasar and another
nearby source, interesting by itself, may be valuable. Such a case might be
the "exploding" galaxy M82, with its bevy of "nearby" quasars, more or less
on a Tine stretching about 9 arc minutes from the center of MB2. Whether they
are really nearby, as suggested by Arp (Ref. 5 ), or are remote, as others
believe, the true source(s) of possible gravitational radiation from that
direction probably couldn't be decided without a focal mission. A Tateral

excursion of 8.3 Gm would be needed for this exploration.

That no mention of pulsars has been made here needs some comment. A
neutron star of a few kilometers diameter might possibly possess an active
accretion disk of 100 km diameter (doubtful), 1f‘it has nebular matter to
feed on. At the relatively close distaﬁce of 500 pc, it would then have an
image size of 23 wm. Thus pulsars are unresolvable, and there would appear
to be 1ittle reason to stage an astronomical mission to a pulsar focus. On
the other hand, a steady point source is ideal for a solar mission, so pulsar

foci may be interesting after all.
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In planning an astronomical mission, two points stand out from the above
discussion - interest depends on the expectation of spatial structure, and
interesting sources so defined are all expected to be random burst sources.
The 1attér at least is subject to verification before actually planning a
mission. Both these points complicate the process of focal acquisition as
described for the first and solar missions. In fact. %t is difficult to
escape the conclusion that multiple detectors on more or less parallel
trajectories would be needed, even supposing the source has a known history
of fairly fregquent bursts. A]sé, burst sources tend to concentrate their
energy in the higher frequencies, which argdes in favor of compact detectors -
a necessity in any case, if fine source details are to be examined. Accepting
this argument, we will assume that a fleet of compact detectors successfully
acquires at least one component of the,source. HWe can also conclude, regret-
fully, that astronomical missions are probably beyond the capacity of chemi-

cally powered spacecraft.

Because of the statistical nature of burst sources, their resolution im-
poses a unique requirement - that the fleet parks near £(0). To hover in the
solar field at 2(0) requires a steady acceleration:

20
a=f-t. 1.3271 x 107" . 038 x 1072 m/sec?

M (3.5752 x 101%)?

which is well within the capacity we have previously assumed. We conclude

that for astronomical missions, ion thrusters would be needed more or less
continuously from departure to the end of the mission. Whether they would have
to be turned off during data periods, to avoid acoustic excitation of the de-

tectors, is unclear.
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Lateral transfers to nearby foci must be considered. Suppose we permit
up to 6 months for a transfer, including 3 months each of acceleration and

deceleration. Then at a = 2 x 107° m/sec2

we would be permitted lateral trans-
fers up to 2.5 Gm. At 2(0) = 3.5752 Tm, this will cover 144 arc seconds of

the sky. Several such jumps during a mission could probably be accommodated.

+

To assemble these ideas into a profile, we suppose that one source com-
ponent is selected on the basis that it is the probable source of the pre-
viously detected radiation. Since we will be approaching hover conditions
as we near 2{0), a turn point should be selected even closer than in solar
missions, perhaps 20 Gm short of 2(0). The fleet would be separated just
after the turn point, and the initial acquisition process would start. Joint
fleet maneuvers woqld occur after each detected burst in an attempt to equalize

the reception of the next burst. Helical trajectories could be used to cross-

calibrate the detectors, as in solar missions.

Once acquisition is complete, the fleet would dwell at £(0) long enough
to establish the source structure, if any., and then jump to the next potential
focus. The order in which the different foci are visited should be chosen to
minimize the total jump time. Since jump time is proportional to \/§', where
S is the Tateral distance between successive foci, the tour should be chosen
to minimize the performance index J = ? \/§;T For complex tours, this is an

interesting variation of the traveling salesman problem.

Acquisition of the new axis after a jump differs from initial acquisition
because of the small lateral dimensions of the focus. For this reason, jumping
to a region a little beyond £(0) may be indicated. If radiation is not de-
tected at the expected location, a search pattern may be indicated, in which
the fleet is spread out to cover more space. The form of such a search is
another interesting optimization problem. If no radiatiqn is found by com-
pletion of the search raster, the fleet could depart directly for the next

C -y
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focus. Alternatively, detection at any time would be followed by acquisition
more or less as above, and concentration of the fleet at 2(0) for study. The
planning of astronomical missions will obviously be very complex, but guided
by the simple rule of allowing adequate times for jumps, searches, acquisitions,

and dwells.
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APPENDIX A

PUBLISHED SOLAR MODELS

1. Introduction

In planning missions to the solar foci we will need prior estimates
of their radii. These can be computed from any given solar model; however
the models are not directly verifiable, and thus contain errors which are
difficuit to bound. The problem is recursive in that a measurement of the
solar density function is one of the mission objectives. Still, a .number
of published models exist, and some of them are examined here to see what
focal length and caustic properties they predict. No opinion is offered
as to the absolute or relative quality of these models, and the presence
cf some models here, and not others, sh0u1d not be regarded as implied

approval.

Of the five models selected, the one by Ezer and Cameron(39) was chosen
because it was used in the earlier focal calculations of Cyranski and
Lubkin(23). For the same reason we have included Naur's second model (Naur

11){(68), The model Naur I was not treated by Cyranski and Lubkin; but it is

inctuded here, largely because it is also in Reference 68. To round these
out, Martin Schwartzchild's™ well known book on stellar structure(78) provides
a rather detailed model. Finaily, Allen’'s widely used reference(1) contains

a model which is compiled and smoothed from several sources, and seemed
appropriate here. The details of the models are given in nondimensional

form in Tables A2-A6 and Figure A-1.

*Not the earlier Karl Schwartzchild for whom the line element is named.
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2. Density, Mass, and Pressure

Two things are done to the basic tabular data of the references prior
to Tables A2-A6. First, they are nondimensionalized according to the
‘ relations {II-32), where this is not already done. The different authors

employ different values of r_ and m s and as these are fundamental

S
parameters of the model, care is taken not to mix them up.- Table AT shows
these values, as well as the derived values of Y and p, the average density:

the Tatter in g/cm3, as these are the units of the references.

Table Al

Model 10730 m (kg) rg (tm) 10%v P (g/cm3)
Ezer-Cameron ) 1.989 671 2.20066 | 1.57173
Naur I (B) 1.989 695.5 2.12313 | 1.41141
Naur II (B) 1.989 695.808 | 2.1222 1.409539
Schwartzchild 1.985 695.0 2.11963 | 1.41162
Allen 3rd Ed. 1.989 695. 99 2.12088 | 1.40844
MTW VaTues 1.989 695. 98 2.12167 | 1.4085

Notes: (A) mg is not given, so the Allen-MTW value is used.

(B) Naur gives sufficient information to derive p, but
no other table entries. Thus the Allen-MTW value of
m. was assumed, and ro and Y were then derived.
In all these sources radius and mass were already in the form R and M.
Density was generally given in g/cm3 (Naur Tisted p/p(0)), so W was readily

computed using p. Pressure was usually in dynes/cm2 or 10910 of that, so to
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put it in the same nondimensional form as. the density, it was necessary to
divide by Ebz, which yields P. In Naur's models,. the pressure was not

given; but a perfect gas is an ideal gas, so the pressure is given by:
=Npr o B
R = v RT = Mw RT (A1)

where(42) R = 8,3143 Joule/K-mol = universal gas constant, and M, is the
molecular weight. Naur lists the values MW = 0.598 and 0.589 for the sun's
mean molecular weight in his two models. Since the pressure is tiny com-
pared to the density, a more e1ab0ratg model of Mw is hardly warranted.

At any rate, this gave sufficient information to compute P from Naur's

tables, using (A1).

The other problem with these tabular models is that they tended to be
sparse. Even Schwartzchild's model is too coarse in the critical central
region. To alleviate this, two forms of interpolation were used. First,
as physically realistic models, it was assumed that W (0) = P'(0) = 0. (See
discussion, Section II-6.) Then third order polynomials were forced through
the first three pcints of the models. For the dénsity, these have the

general form:

3 .
W(R) = 2_-a.R (A2)
i=0 T,
and applying ¥’ (0) = 0 this becomes:
— 2. 3
W(R) = W(0) + a2R + a3R (A3)
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This satisfies the central .point identically, so a, and ay can be found by
solving a second -order linear system. From the results, a set of values
of W can be found at intérpotated values -of R. A fully equivalent proce-

dure was followed for P.

Once a, and a5 have been found in (A3), M can be interpolated by

integrating (A3). From (II-58) this is:

, 3,3.05_1_ .6
M= W(OJR® + & a,R” - & a R (A4)

N )

In genefa], the values of M. at the second and third tabular positions do
not quite agree with the results from (A4). Since M is the derived guantity
here, and integration and roundoff errors must exist in the source data, it
was -deenied more_consistent to alter the tabular values of M at these two

points to agree with {A4).

A1l these calculations, from determining a, and ag for W and P, through
interpolating the values of W, P, and M from (A3) and (A4), and finally

reordering to make meonotonic, are done by the program CENDENS Tisted below.
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.5 TS TR NR TR N IR IR T TR O I 11 I
Lu fle=geliint &, 2P0 3 1-PTr1d
Fud Wil WET A PR RMaat L 10l Uk
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PP B d i Wpd 2l L

P33 Mud=RNT RN=RECHMEI 3 RN {0 axabl 0 #0, Sl 7 e ke
IR VARMUIT T4V 00, 50001300, B fa] 27w

P10 H=dbec i 1L

110 PREPEID RNy RS RET TR D R
Phed PEFIAVEAOLL BeREZINY

F144 Py, PHIFT
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A somewhat different approach was followed beyond the first three
tabular points. If interpolation is desired at a point R in the range

Ri <R S_R-+1, where the R; are the source tabular values, then parabolic

fits were made to the point sets Ri_1» Rys Riyqand Rey Rypqs Rips. These

were evaluated at R and averaged. The function BIQUAD was written to carry

-i’

this out for a given input table R, and associated Y(R;). Provisions are
inctuded to omit one parabola if either Ri—? or R1+2 is missing. Here 1is

BIQUAD.

Yoy [Taal VNN 7V, 50 Lk
L1 e VR o0, Lx VT
L2 YW line oM
Lad S0 E a0y
IR FANES BN

Ll W G

Lol Lot/
A A I o
Lald AN A3 SN SOy

LR Wea AENEXL T PERAE 7D
2 T CARNC T O N VAN AR

LT HeQ, Uxi i+ 2 e/ 0V 0000 Paling YL s 0L
LF21 sy

PAGBTT @by o)

To apply this to a set of interpolation points Rn, for all the variables U,
M, and P, and finally reorder the results to again make R monotonic, BIQUAD
is called by the program EXPAND, shown here:

¥OEXPANT
L pie gl

L5 Kol
1747 Fivte M e Hide 0 ()
I3 @oasRNTED

357 Pide1ied o DTOLUAD F.ia
L&l WileWpd, oy BLOUAT B
LYd Pide-PRo GTQUAG K. P
red Fek+i

el LV INY SR

Eragd ROl BN LT&a0, Rl
[ N B N A s PRRTC D W I
Cld Welkh, Widaty !
NS B LR N LN DR
¥

The results of all this are shown in Figure A-1 and in Tables AZ2-A6.
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(1) EZER-CAMERON
{2) NAUR |

(3) NAUR [1

(4) SCHWARTZCHILD
(5) ALLEN

Figure A-1. Density and Mass for Published Models
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3. Derived Quantities

Now that W, M, and P are available as fairly dense functions of R, we
«can tabulate some further necessary quantities. These include M/R, e-ZA,
which we get directly from (II-34), and then #(R) from integrating (II-35).

integrating the potential ®(R), we know from (II-41) that:

(1) = ~ M1T) =51n(1T - 2y) = - ¥ - e+ 0(Y3) {A5)

| —

Thus, the integration of (II-35) can be set up as:
1
(R) = 5(1) - yf 2D 4 3xp(x) Tdx (A6)
R X

The program for doing this is POTENTIAL, which uses a simple trapezoidal

rule for the integration.

) ¥ OoFOEdT T,

E Kok
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i

|

1
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Bl ey SN L Py Fae bt 10,
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The functions M/R‘and ®(R) are shown in the main Tables A2-A6. Note

:
.
1

particularly that the earlier assumption that A(R) and &(R) are of O{Y) is

verified for all models.

4, Cubic Coefficients

For the purpose of simplifying the calculation of gain near the central

focus we have developed a first order theory, keeping only terms of 0(Y),
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Table A2.

Ezer-Cameron Model

R " M 10%p - M/R -10%
1) 97.345 0 181.23 0 11.367
.005 97.221 1.2159 x 107° 180.87 .00243 11.359
.01 96.852 9.7049 x 1075 179.8t .0097 11.351
.015 96.244 3.263 x 10-4 178.12 .02175 11.338
.02 95.4 7.6938 x 10-4 175.86 .03846 11.319
.025 94.325 .0014926 173.08 .0597 11.295
.03 93,025 .0025579 169.84 .08526 11.267
.035 91.505 .0040222 166.2 0.11492 11.233
.04 89.768 .0059365 162.23 0.14841 11.194
.045 87.82 .0083445 157.96 0.18543 11.151
.05 85.665 .011282 153.48 0.22564 11.104
.055 83.309 .014777 148.82 0.26867 11.052
.0611 80.166 .02 143 0.32442 10.984
.065 78.01 .023499 139.25 0.36153 10.937
.07 75.077 .028732 134.44 0.47045 10.874
.07898 69.35 .04 126.01 0.50058 10.754
.09389 62.543 .06 113.27 0.63905 10.538
0.10432 57.198 .08 102.65 0.76687 10.376
0.11475 52.808 0.1 93.45 0.87146 10.204
0.1237 49,054 0.12 85.66 0.97009 10.052
0.13264 45.682 0.74 78.58 1.0555 9.897
0.14009 42.692 0.16 72.21 1.1421 9.765
0.14754 39.956 0.18 66.62 1.22 9.63
0.15499 37.475 0.2 61.45 1.2904 9.494
0.17 32.995 0.24098 52.13 1.4176 9.219
0.19076 27.549 0.3 41.06 1.5727 8.84
0.2 25.283 0.32799 36.64 1.6399 8.673
0.22355 20.105 0.4 26.97 1.7893 8.253
0.25782 14.188 0.5 17.13 1.9393 7.667
0.29508 9.48 0.6 10.12 2.0333 7.076
0.33979 5.758 0.7 5.32 2.0607 6.439
0.3994 2.933 0.8 2.28 2.003 5.713
0.49478 0.993 0.9 0.59 1.819 4.8
1.0 0 1.0 0 1.0 2.201
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TabTe A3.

Naur I Model

3

R W M 10°P M/R -10°%
0 66.6 0 139.01 0 10.285
.005 66.56 8.322 x 10-0 138.93 .001664 | 10.278
.01 66.44 6.6503 x 10-2 138.68 .00665 10.272
.015 66.242 2.2405 x 10-4 138.27 .014936 | 10.264
.02 65.969 5.2975 x 10-4 137.71 .026488 | 10.251
E .025 65.623 .0010314 137 .041256 | 10.235
r .03 65.206 .0017754 136.14 .05918 10.216
L .035 64.72 .0028066 135.13 .080189 | 10.194
o4 64.168 .0041678 133.99 0.1042 10.168
.05 62.87 .0080408 131.3 0.16082 10.106
.06 61.332 .07369 128.09 0.22816 10.031
.07 59.569 .021363 124.41 0.30519 9.945
.08 57.598 .031259 120.28 0.39074 9.847
.01 55.211 .044877 115.25 0.49315 9.726
0.11 50.504 .076539 105.38 0.69581 9.489
0.12 47.9 .096454 99.93 0.80378 9,351
0.128 45,754 0.114 95.45 0.89063 9.235
0.135 43.883 0.13057 91.57 0.96718 9.13
0.15 39,912 0.16853 83.32 1.1236 8.897
0.165 35.993 0.20985 75.18 1.2718 8.655
0.184 31.102 0.267 65.02 1.4517 8.34 -
0.2 27.155 0.31909 56.78 1.5955 8.071
| 0.215 23.688 0.36868 49.52 1.7148 7.817
i 0.23 20.446 0.419 42.72 1.8217 7.564
i 0.276 12.787 0.561 26.68 2.0326 6.817
0.334 6.6467 | 0.71 13.96 2.1257 5.972
0.397 3.1235 | 0.826 6.46 2.0806 5.196
0.482 1.1056 | 0.919 2.29 1.9066 4.366
0.529 0.6334 | 0.948 1.25 1.7921 4
0.57 0.3743 | 0.968 0.83 1.6982 3.722
0.606 0.2331 | 0.979 0.42 1.6155 3.507
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Table A3. Naur I Model {Continued)

R W M 10% M/R -10%
0.637 0.1539. | 0.986 _ 0.42 1.5479 3.339
0.664 0.1052 | 0.99 : 0.21 1.491 3.205
0.687 .0746 | 0.993 0.2 1.4454 3.099
0.707 .0546 | 0.995 . 0.21 1.4074 3.012
0.742 .0313 |.0.997 0 1.3437 2.871
0.783 .0149 | 0.999 0 1.2759 2.721
0.82 .0007 | 1.0 0 1.2195 2.598
1.0 0 1.0 0 1.0 2.123

Table A4. Naur Il Model

R W M 105p M/R -10%

0 60.8 0 131.78 0 10.176
.005 60.772 | 7.5979 x 1078 | 131.72 .00152 | 10.169
.01 60.689 6.0733 x 1075 131.55 .00607 10.165
.015 60.551 2.0469 x 10-4 131.27 .01365 10.157
.02 60.36 4.8428 x 10-4 130.87 .02421 | 10.145
.025 60.115 9.4355 x 10-4 130.36 .03774 10.131
.03 59.818 .0016256 129.74 .05419 10.113
.035 59.47 .0025724 129.01. .0735 10.093
.04 59.071 .0038244 128.16 .09561 10.069
.05 58.125 .0073978 126.15 0.14796 10.01.2
.06 56.985 .012634 123.69 0.21056 9.943
.07 55.657 .019784 120.81 0.28263 9.863
.08 54.149 .029059 117.49 0.36324 9.772
.091 52.288 .04191 113.36 0.46055 9.66

0.11 48.539 | .071473 105.81 0.64976 9.439

0.12 46.409 .090307 101.54 0.7525 | 9.31
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Table A4. Naur II Model (Continued)

R W M 10%p M/R -10%
0.128 44.627 | 0.107 97.97 | 0.83594 9.201
0.135 43.02 0.1231 94.39 | 0.91185 9.103
0.15 39.542 | 0.16039 86.6 1.0693 8.882
0.165 36.02 0.20149 78.63 | 1.2211 8.65
0.184 31.494 | 0,259 68.28 | 1.4076 8.347
0.2 27.738 | 0.31218 60.11 | 1.5609 8.084
0.215 24.373 | 0.36308 52.84 | 1.6888 7.835
0.23 21.158 | 0.415 45.95 | 1.8043 7.585
0.276 13.254 | 0.562 . 28.83 | 2.0362 6.842

; 0.334 6.8096 | 0.717 14.78 | 2.1467 5:993
. 0.397 3.1373 | 0.835 6.72 | 2.1033 5.209
I 0.482 1.064 | 0.927 2.38 | 1.9232 4.371
0.529 0.5861 | 0.956 1.3 1.8072 4.002
0.57 0.3393 | 0.973 0.65 | 1.707- 3.723
0.606 * 0.2067 | 0.982 0.43 | 1.6205 3.506
0.637 0.1332 | 0.988 0.22 | 1.551 3.338
0.664 0894 | 0.992 0.22 | 1.49% 3.204
| 0.687 062 | 0.99% "0.22 | 1.4469 3.098
L 0.707 —0848 | 0.996 0 1.4088 3.011
0.742 0251 | 0.998 0 1.345 2.869
0.783 0114 | 0.999 0 1.2759 2.72
0.82 0052 | 1.0 0 1.2195 2.597
1.0 0 1.0 0 1.0 2.122




Table A5. Schwartzchild Model

R W M 10% MR -105%
0 05.544 | 0 176.86 | 0 10.641
.002 95.503 | 7.6415 x 10~7 | 176.78 .000382 | 10.639
.005 95.297 | 1.1924 x 1075 | 176.36 .002385 | 10.636
.008 94.935 | 4.8728 x 10-5 | 175.63 .00609T | 10.632
0N 94.435 1.2626 x 10-% 174.64 .011478 | 10.627
.014 93.817 | 2.5924 x 10-% | 173.42 .018517 | 10.619
.017 93.099 | 4.6192 x 1074 | 172.0] 027172 | 10.61
.02 92.301 7.4803 x 10~4 170.47 .037401 | 10.599
.023 91.442 .0011308 168.83 .049765 | 10.586
.026 90.541 .0016229 167.14 .062419 | 10.572
.03 89.306 .0024701 164.88 .082335 | 10.55
© 085 87.775 . 003875 162.18 | 0.11071 10.519
P04 86.338 .0057131 159.82 | 0.14283 | 10.483
:.084 | 85.048 . 0074662 157.37 | 0.16969 | 10.45]
.049 83.325 .010153 153.96 | 0.2072 10.409
.054 81.48 .01339 150.16 | 0.24795 ! 70.362
.06 79105 .018 145.09 | 0.3 10.301
| .066 76.594 .023513 139.69 | 0.35625 | 10.235
Y073 . 73.537 .031122 133.15 | 0.42633 | 10.151
.08 70.34 .04 126.37 | 0.5 10.062
[ .09 65.572 .055375 116.89 | 0.61528 9.923
! 0.1 60.842 .073 107.56 | 0.73 9.773
"o 56.514 .092 98.68 | 0.83636 9.615
P 0.12 52.385 | 0.113 90.08 | 0.94167 9.452
0.13 48.347 | 0.13656 81.64 | 1.0505 9.283
0.14 44.484 | 0.162 73.56 | 1.1571 9.109
0.15 40.852 | 0.18888 65.99 | 1.2592 8.933
0.16 37.429 | 0.217 58,97 | 1.3562 8.754
0.17 34.207 | 0.24613 52.64 | 1.4478 8.574
0.18 31.204 | 0.276 46.84 | 1.5333 8.393
0.19 28.448 | 0.30631 41.49 | 1.6122 8.213




Table A5. Schwartzchild Model (Continued)

R W 10%p M/R -10%
0.2 25.894 0.337 36.61 1.685 8.034
0.22 21.291 0.399 28.23 1.8136 7.681
0.24 17.426 0.46 21.61 1.9167 7.337
0.26 14.132 0.519 16.43 1.9962 7.005
0.28 11.408 0.574 12.38 2.05 6.687
0.3 §.1454 0.626 9.3 2.0867 6.384
0.32 7.298 0.672 6.93 2.1 6.098
0.34 5.8238 0.716 5.16 2.1059 5.827
0.36 4.658 0.753 3.86 2.0917 5.573
0.38 3.7085 0.788 2.88 2.0737 5.334
0.4 2.939 0.818 2.13 2.045 5.11
0.42 2.3238 0.844 1.58 2.0095 4.9
0.44 1.8501 0.867 1.18 1.9705 4.704 -
0.46 1.4662 0.887 0.87 1.9283 4.52
0.48 1.1647 0.904 0.65 1.8833 4.348
0.5 0.923 0.919 0.48 1.838 4.187
g.52 0.7332 0.932 0.36 1.7923 4,036
0.54 0.5797 0.943 0.27 1.7463 3.894
0.56 0.4605 0.953 0.2 . 1.7018 3.761
0.58 (3.3649 0.961 0.15 1.6569 3.636
0.6 0.2879 0.967 g. 1 1.6117 3.519
0.62 0.2281 0.973 .08 1.5694 3.408
0.64 0.1804 0.979 .06 1.5297 3.304
0.66 0.1426 0.982 .04 1.487% 3.206
0.68 0.112 0.985 .03 1.4485 3.113
0.7 . . 0881 0.988 .02 1.4114 3.025
0.72 .0691 0.989 .02 1.3736 2.942
0.74 .054 0.992 01 1.3405 2.863
0.76 .042 0.994 .01 1.3079 2.788
0.78 .0326 0.995 .01 1.2756 2.717
0.8 .0252 0.996 0 1.245 2.649




Table A5. Schwartzchild Model {Continued)

R W M 106p M/R -10%
0.82 .0195 | 0.997 0 1.2159 2.585
0.84 .0151 | 0.998 0 1.1881 2.523
0.86 .0119 | 0.998 0 1.1605 2 465
0.88 .0091 | 0.999 0 1.1352 2.409
0.9 .0067 | 0.999 0 1.11 2.355
0.92 0047 | 1.0 0 1.087 2.304
0.94 .0029 | 1.0 0 1.0638 2.255
0.96 0015 | 1.0 0 1.0417 2.208
0.98 .0005 | 1.0 0 1.0204 2.163
1.0 0 1.0 0 1.0 2.12

Table A6. Allen Third Edition Model

R y M 10% M/R -10%

0 113.6 0 267.68 | 0 11.017
.002 113.56 9.086 x 10~/ 267.55 .00045 | 11.014
.005 113.34 1.418 x 1075 266.9 .00284 | 11.012
.01 112.59 1.1299 x 10-% | 264.66 L0113 11.003
.015 111.39 3.7885 x 10~ | 261.08 .02526 | 10.988
.02 109.78 8.9008 x 10~ | 256.3 0445 10.967
.025 107.8 .0017193 250.45 .06877 | 10.941
.03 105.5 .0029319 243 .67 .09773 | 10.909
.035 102.93 . 0045856 236.09 | 0.13102 | 10.872
.04 100.11 .0067292 227.84 | 0.16823 | 10.83
.05 93.935 ,012637 209.87 | 0.25274 | 10.731
.06 87.316 .020868 190.82 | 0.34779 | 10.616
.07 80.593 .031507 171.77 | 0.4501 10.487
.08 74.105 .044549 153.77 | 0.55687 | 10.345




Table A6. Allen Third Edition Model (Continued)

R W M- 10% M/R -10%

.09 68.192 .05995 137.89 0.66611 10.192
0.1 63.191 .077704 125.2 0.77704 10.031
0.13 50.69 0.14942 93.24 1.1494 9.503
0.16 40.14 0.22968 67.14 1.4355 8.936
0.2 29.11 0.35 41.46 1.75 8.185
0.25 17.577 0.49889 20.72 1.9956 7.297
0.3 9.4431 | 0.64 9.5 2.1333 6.497
0.35 4.8857 | 0.7575 3.77 | 2.1643 5.792
0.4 2.556 0.85 1.85 2.125 5.183
0.45 1.2314 | 0.9055 0.65 2.0122 4.664
0.5 0.71 0.94 0.37 1.88 4.227
0.6 0.2485 | 0.982 0.08 1.6367 3.539
0.7 0561 | 0.994 0.01 1.42 3.035
0.8 .0128 | 0.999 0 1.2488 2.654
0.9 0014 | 1.0 0 1.1711 2.358
1.0 0 1.0 0 1.0 2.121
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and further restricting it to small R0: This entailed the neglect of A(R)

and ®(R), both of which have now been sustained for the models examined.

We have also neglected the pressure, and Qe'must now justify this. From.
(I1-37) we can see that we-can do this provided that both P << W and R3P << M.
This is the main reason for including P and R3P in Tables AZ2-A6. Well, the
tables show that P << W everywhere, while R3P << M except possibly for

R << 1. 1In this case we know that M(R) ~ W(O)R3; 50 tﬁé pressure is every-
where neglectible in our models, and we conclude that the first order theory

is adequate for them for small R,.

First order theory shows that the deflection is given by (1I-74), in which
the parameters 65 and h are obtained from the model by means of (II-75,76).
Evaluation of these requires only W(R)} and ays obtained in CENDENS above.

The program used is THIRD:

¥ OTHIRD
f13 TEWTON MOUREL MNosl
P20 a ReR 2N
rri 2 REET
bl Hed LR -THER
bisd SR PORINT M
Fél EMTER a2°
21 Tl LA ORL Ll s
L8 0,752W01 1+H PARLINT 7
v

The integrations in THIRD are performed by a general parabolic integration
PARINT, for which the theory and program are given in Appendix C. Given 65
and h, we can derive values for L(0} and o, using (II-92) and (II-101). The
results of all this are shown in TabTe A7. Also included there are the
corresponding values for the polynomial density models, in which for realism

we have taken r; = rs/2.



Table A7. Cubic Parameters

, 2(0)

Mode] -1 W(o) -3y 60/Y h 4 (Tm) o
Uniform 8 0 12 6 13.67 1.5
Quadratic 20 - 10 20 30 8.20 4.5
Cubic 40 60 30 90 5.47 9

Ezer~Cameron 97.3451 4990.6| 42.642 862.98 3.5752 | 60.7134

Naur I 66.6 1634 38.223 422.41 .2851 | 33.1536

Y

Naur II 60.8 1121.5} 36.876 349.94 L4456 | 28.4689
Schwartzchild 95.544 | 10465 44,225 956.96 3.707 | 64.9153

Allen 3rd Ed. | 113.6 10692 | 48.55 1232.2 .3796 | 76.1401

w

Perhaps the most important result is 2(0). A1l these published models
" yield 3.37 <2(0) < 4.45 Tm, which, for scale, is in the Uranus-Neptune
region, though not necessarily near the ecliptic. This is not quite as
restrictive as it Tooks since the Tower limit is set by Allen's model, which
is an average over four other published models. Compelling evidence may be
found (or may even exist) permitting us to narrow the range of 2(0); but in
its absence it would seem prudent to begin a search for 2(0) as close.as
2 Tm. 7

An interesting contrast is provided by the polynomial models. By reduc
ing r; only sligﬁtly, the cubic model woufd fall in the published range of
W(0) and 2{0), and even the uniform density model would only need a further
reduction of about 2-2.5. However, the gross mismatch in 255 and thus h

and «, would persist. We conclude that while %{0) depends strongly only on

W(0), the shape of the caustic also-depends strongly on w"(0).
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5. The Focal Region

A good way to compare our models is to plot the caustics together, as
in Figure IT-5. This time however, it is better to plot them with true
dimensions, instead of normalizing to re and Y. To this end we can use
(11-32, 89, 92, 96, 99, and j01) to rewrite the parametric descrip-

tion of the caustic as:

r = 2(0)(1 - oRY)”" (A7)
y = - dvhrR> (h8)
r - 2(0) = ark’ (A9)
) r
and 2(0) = = - (A10)
260

The arithmetic has been carried out by the program CAUSTIC:

¥ onllsTio
COFTRNPRER - T Galirn’
O
LT RGEY
RS -]
PR C LR NTE Tl
Le RE=2%10G U~}
S
A-do i y=0
PRGN RT cFe bos b RERBXRGAT . 8o
YeERIBGSRIMNELN
Hedliin 3 10 pRO, CLUT250RY, 0, 00 LRY

e R e

i
T
1t

by o=
H

Lt e bld ol

Euiite S T

-t Lt
Fadit el
UL

3

using inputs from Tables Al and A?.- The results.are plotted in Figure A-2.
The cubic model has been added for comparison with r; = r /2. The curves
all look chh alike. Indeed, the Ezer-Cameron curﬁe Ties so close to the
Allen curve that it was not plotted separately. There are strong
differences in the Ro values however; so substantial variations in the

predicted gain will exist.
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To compute the gain contours, (II-107) can be used with only minor

changes:

R -
6= r T2 01 - gy (- kDT (A1)

S

In (A11) we can specify r and y, and then solve the ray equation (II-102} for

Ro’ which can bhe restated as:

430200 qp o X _-qg - (A12)

This gives us all we need to evaluate G. _

The full procedure is an improvement over that of Section II-10, in
that here we obtain the gain contours directly by selecting r and G, and
then adjusting y until the solution of the third order sysfem (A11, 12)
yields the desired G. In this, (A12) is solved analytically for R, (one
or three real solutions), and then G is evaluated from (A17). Newton's
method is then used to 1mpfove y until G is correct. The derivative is
obtaingd numerically, using closely spaced y values. The program for this

is GAINCON:
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¥ LBATNCON
£ {ZeENTER "), "HESIRED GAIN'
L2 Ghe) )
N33 a:Z,'R IN TH'
ful Ke(Kiel0+ReQ) -1
[ Kae2ul+K1
31 ATHE A3 AcK-ALPI®3) %0, 5
Ll ThA-Zx (IR R0, 5
ol RI+FGHxR
Lol Z,  GUESSED Y IM KM'
CLod  veil
C1dd 21 003 EASH(ReEYSRL )22 /82
L1271 ROe(({H+RDOZIAEIH(B-ROZTI#0, 5) #E
F133  -R3
1 42:RO-TRAYZOPYHEX "Z20oR+ATH
C157 43 Ge{RE*YIX+/IRO+Xe(K+aLPXRExZ) =K1
Fial YeYul+iuGenH-Ghy s+ /G, (X-K21¥Kx3
F171 (0. 01L<10G) /81
PLET E.G.Y
L1231 =44

This is still fairily tedious, and was actually carried out for only
one model. The Ezer-Cameron model was chosen because it appears to be the

most "average" of the lot. The results are shown in Figure A-3.
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APPENDIX B
A SERIES SUMMATION

From the definition (II-67). we have

oo 1
Lol =1-0-x%=1-w (81)

i=1

Starting from this we will establish a class of summation formulas involv-
ing the C;. Since all C; > 0, the series (B1) is uniformly convergent on
the interval 0 < x < 1, and we can integrate it term by term, on this

nt+l

jnterval. First though, we will divide through by x" ', where n > 2 and

odd. After removing all the negative exponents from the left side this is:

co . k . .
S Cix21en~1 = (1 - w)x-n—1_ 3 Cix21-n-1 (B2)
i=k+] i=1

where

k = %—(n 1) 21 (B3)

The right side of (B2) now leads to a sum of k+2 improper integrals;

but taken together they must converge; so we can write the integration as:

® C. N k .
by 21’1n = Hmf l:x'rH - (:1.><21—n"T - wx'n’]]dx (B4)
i=k+1 i=1

g0 -4

The Tast term is the most troublesome, but
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1 rx=1 2
7 dx W W
f jnﬁ = '[x_ - di)
]
= g1 - g2)3/? +'f [0 - wx ™+ (n-3)x"Jwdx  (85)
g

and recognizing the original integral on the right:

™1 - 1

“_/ WX = g1 - ¢?)¥% ¢ (n - 3) f e

n+1 n-1
g X g X

(B6)

We could now iterate this process, since the final integral is of the same
type as the first. The resulting series of functions of g will terminate
when the coefficient of the right integral vanishes, which must happen for

the given n values.

Now each succeeding term will be of the form K921-n(]__92)3/2’ with
i>1, so if we expand (1-92)3/2, we will get
/1 wdx =lg—n + i a.QZi'n (B7)
/q LHFLoon i 1

with some set of finite coefficients a;. This allows us to complete the

integration of (B4):

i=k+ =]
(B8)
After completing the sum on the left, this becomes:
o C. k C. . ) .
Z i_ . l+ Hm[z 1 g21-r: + Z c_}1'921-n (B9)
.i"_".l n-21 n g_)_o -i=‘-l n-2'i .i=-[ 3



Finally, we observe that the series on the left has no infinite
terms since n is odd. Further |n - 27| > 1, so (B9) is dominated term
by term by the all positive series“ig1 Ci = 1. Thus the left side of (B9)
must converge, and be represented by the expression on the right. This
can only happen i% the negative exponent terms, when i < k, cancel

identically. The terms with i > k all vanish as g - 0, and as there is no

i such that 29 = n, we aré left with

= &

P (810)
As a reminder, (B10) has been proved only for odd n > 1. Indeed, for
n=1, it is known to fail. In retrospect, it seems unlikely that (B10)

is new; but it is not listed in any tables known to the author.



APPENDIX C
INTEGRAL EVALUATION

Extensive use has been made here of numerical integration (quadrature}.
The simplest method is the trapezoidal rule; however, for well behaved func-
tions, improvements are possible. When the apscissae are evenly spaced,
Romberg's method(24) has proved to be excellent. Unfortunately, even spacing
has not been practical in much of the present work; and a different approach
has‘been taken.

Suppose a function y(x} has been determined at the points x.; 1 =1, 2,

i
-, nt+l. Then consider the interval

(IS N3 B n

The integral over h_I is:

f"iﬂ
I, =), y(x)dx (2)

! i
The method is to determine y(x) by passing a parabola
¥y = a, +ax +a G (3)
1 2 3

through the points Xis Xipqs Xsgo- Then Ii is found analytically._ For better
accuracy, this process is repeated for X510 X0 X413 and the two results are
averaged. Of course, only one of these can be used for the first and Tast

intervals.
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For the first case, the coefficients obey:

2

1 X; X; CH Y
2

Vo X Xa || T | Vi (4)
2

UoXep Xwpdlagd Wi

The determinant of this system works out to:
0= Oxar = X kg = X (ag = X4q) = hihyg(hy +hyg) (5)
so the solution is:

2 Xi41%542M5 41 BT AR TS L NS i
_1 ‘
Ay = gl Ot adhay (G oxgp) (hy vhe) =g exgphyt by | (6)

I hsiq -(hy + hayq) h; Y2

Putting this into (3) and evaluating:

- ¢ _.E. - - -I s ‘,-2_ 2
Iy = hilag + 5 an(xs + xgyq) + 32308 + X450 + Xq49)]

1 o (7)

= o ho{ys + y.,) + F. 7
2 i i+] 6hopq

where

- -1 ,

Fi = {0y * hypq) Thin O - v5) 040 - vi49)] (8)

The Tirst term is from the trapezoidal rule; so the second is a correc-
tion. It clearly vanishes when the three points are collinear. The same

procedure can be applied to Xi 7 Xgs X% The result is:

i+1"
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. - zﬁ?'
1
hys * Vi) * R Fia ()

I.i=

M| —

An--APL program incorporating these ideas is:

Vorel PARTNT NTT, UGG HLGT YO, a0 6

L13 Tree M OLAY 271N
I HEe CHHeTdH) kL - 71 L .
L3l FaotiHHa L4 Y =MLl v o2 LY oLy - HaG
Lt d e R AHLED ) CHI
L3 B P fbHeE ) -1
& T i/l Ll oo Gy TEPEY 2 0+ 3
¥

Here H and Y are the h and y vectors; TT is twice the trapezoidal sum; HS is
the vector h, + h..;; and A and B are the correction vectors in (8) and (9)
'respedtive1y. This program is exact,when-y is of the form (3), and in other
cases it has proved to be a great improvement over the uncorrected trapezoidal
rule.

In the ion drive programs there is a need to integrate a parallel set of

¥ vectors over the same sei Xse The modified program with this extra

capability is:

Vodel WRaRINE v HGHM L Yt b
L1l Tiere, 00 8 e 71 00 LY
LAl PGe SRR R HEDY 4L T 1 HE
£all vieROE olYy  T1 0oy

Ll oot T MY P D 08 L YT e M e O 0L, H e el s

et Pl A g (HE S ) 2 HI

Lol Fa-l= e g HiHs T SHL

"l 2o Fress ol st o 8 (HCOL THyr il s
W

The individual y vectors are the columns of the input Y matrix. Note that the

structure of Y (NP, NR) is assumed available, although this wasn't really

necessary.
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Another variation on PARINT is .a cumulative integrator:

§ Zeld CUMINT GTOHSHHGHLG Y Y0, 65 R
B TTeaNHL Ly 3+ 71EY
L33 HE& e LY HHL eI
[ Felr {HHx "1 LY -HLa Y0 (LY ) -7y o Hs
rl Oy ML ) < HE
[ Reb w CHH® ) =L :
"o I TT e TLRPRIEAELT, Q)43

This computes &ll the integrals from X, to each Xs3 i>1. It is used in
fiﬁding the Tongitude histories of some of the optimal trajectories.

Note, finally, thatin all three programs, only the intervals Hi are
needed. If these are hot immediately available, they can be obtained from

the X; by the APL statement

(T4X)- 14X
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APPENDIX D
INTEGRATION STEP SIZE-

Depending on tﬁe choice of computer, the i?n drive optimization programs
are either very time consuming or very expensive to run. In either case it
is important to use the largest possible time step consistent with good
accuracy. The methods used to insure this accuracy wi}] now be discussed.

The integration technique is a fourth order Runge-Kutta, in which the

time step is taken as
At = Kr (1)

where r is the heliocentric radius at the last step. Normally we would expect
the integration error to vary as K4; but here we have the added complications
of tﬁe'integra1 conditions and the time varying‘power.‘ The biparabolic ‘
quadrature technique of Appendix C might be expected to give errors varying
as K3, while the power sampling error should go as KZ. The latfer is small,
partly because the power decay is slow, and partly because it is sampled twice
in each At. Overall, we might expect the errors to vary as K" for some n.

For very small K we might expect round off errors to become important.
For a very crude estimate of these, consider a run of ION2D at K = 0.1 and
t = 5 years. This requires 84 steps, which takes about 22 minutes on an IBM
5100 for each base run. The number of arithmetic operations is thus around
106. Since APL generally carries about 16 floating decimals, a random walk

would lead to an error of about one part in 10]3

, and even a fully one sided
error would be no worse than one part in 10]0. Thus, for practical values of

K, round off can be ignored.
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Consider some output parameter y of the program. [f we iterate to
completion for each of several values of K, we would expect the results to

be approximated by

yr=a+ bK" (2)

for some values of &, b, and n. If 3 or more values of K have'been run, we

have an easy problem in parameter identification. If this has been done,

the maximum value of K is that which gives the largest tolerable error yr - a.
Suppose the data consists of the sets y; vs. KTi' Then a 1eést squares

performance index for goodness of fit is:

21 2 ~
j
At best fit we require

9 = 2lypy - vy = 0 (4)
:

for A = a, b, or n. Substituting in (2) these become:

4 K Ly a
1 3
n 2n n _
)1_:K1. ;Ki )zi;yiKi bl=0 (5)

n 2n n
1_ZK1.'InKT1. );Ki 1nK; Zi:y].KTJnKi -1

Suppose we regard these relations as 3 straight lines in a, b space. Then &
solution consists of a value of n for which the Tines are concurrent, for
which a necessary condition is that the determinant of the matrix in (5)
vanishes. Thus the problem reduces to the solution of a single transcendental

relation in n, after which a and b can be found by simple linear methods.
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Newton's method has-been .chosen to find ny in which the derivative is
obtained numerically. -This requires that the.determinant be evaluated twice,
for closely spaced values of n, in each iteration. Because APL encourages
matrix methods, the determinant is evaluated..by means of the permutation

tensor:
Al = EaBYA1aAZBA3Y

A1l this is carried out by the programs PFIT and FD:
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To see how well this all wé?ks, & seguence was run in IONZ2D with ta = 1.8

years, with these results (Table D1):

o AaiNAL PhAls o
OF POOR QUALITY.
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Table D1. A 2D Time Step Sequence

K - Years/Tm 0.3 0.2 0,15 0.1
wy - G/yr® - wt 2.3436 2.3357 | 2.3337 | 2.3329
Vg - Gm/yr 37.927 37.702 37.656 37.64

Vg - GO/yr 354.69 354.75 354.14 354.1
Py - watts 3193.9 3203.5 3205.9 3206.8
Avy - Gm/yr 252,27 251.94 251.86 251.83
my ~ kg 4444.5 4456.1 4458.9 4460
m, - kg 1081.7 1085.3 1086.3 1086.6
J - kg 235.63 236.73 237.01 237.11
A$ - rad 1.9915 1.9791 1.9741 1.9701

On putting these numbers into PFIT we find:

Table D2. PFIT Qutput

a b n Largest Residual
W) 2.3325 0.46244 3.0962 0.000170
Vi 37.634 22.917 3.6196 0.0019
Vg 354.08 28.151 3.1799 0.0075
Py 3207.3 -602.17 3.1616 0.096
AVD 251.81 | 22.079 3.2238 0.0068
My 4460.5 ; -759.39 3.204 0.14
m, 1086.8 ~-208.04 3.0761 0.11
J 237.17 -68.569 3.1543 0.013
A - 1.9658 | 0.18206 1.6254 0.000037
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There are several messages here. First, from the residuals, the model
(2) is an excelient fit to the data. Second, except for Af, n >-3, indicat-
ing that in spite of the quadrature and power sampling errors, the theoretical
performance of the Runge-Kutta is nearly reached. This is also a very good
test of the ION2D structure. Finally, we can see that if an accuracy of,

say, 1% is desired, we should choose K ~ 0.3.

A second test was later run in ION3D for the case ta = 7 years, Ba 80 deg

using the correct (1), with these results:

Table D3. A 3D Time Step Seguence

K - Years/Tm 0.3 0.2 0.15 t 0.1 :
vy - em/yr® - wt | 0.20025 0.20026 0.20026, 0.20026 |
Vi = Gm/yr -8.5134 -8.5109 -8.5104 -8.5102 ?
Vg~ Gy 47.013 47.014 47.014 47.014 ;
Yy, .~ Gm/yr -11.106 -11.105 -11.105 -11.105
Py - watts 10386 10385 10385 10385
wg - Mo/yr® - wt | 30.251 30.255 30.257 30.257
Avy = Gm/yr 105.36 105. 36 105.36 105.36
my - kg 13499 13499 13499 13499
m, - kg 9717.6 9717.7 9717.7 9717.7
J - kg 6966.5 6966.5 | - 6966.6 6966.5
A$ - rad 5.2265 5.2265 é 5.2268 5.2266

It is evident that for practical purposes, K = 0.3 is still adequate.

Actuaily, the extra printout precision in va permits a test of the theory,
and a PFIT run on this yielded a = ~8.5101 Gm/yr, b = -0.24424 Gm/yr,
n = 3.5832, and a largest residual of 5.67 km/yr - a perfect fit.
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