Flight Design System
Level C Requirements

Solid Rocket Booster and External Tank Impact Prediction Processors

Mission Planning and Analysis Division
August 1979

NASA
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas
SHUTTLE PROGRAM

FLIGHT DESIGN SYSTEM LEVEL C REQUIREMENTS

SOLID ROCKET BOOSTER AND EXTERNAL TANK
IMPACT PREDICTION PROCESSORS

By R. H. Seale, McDonnell Douglas Technical Services Co.

JSC Task Monitor: J. W. Nolley, Flight Analysis Branch

Approved:
Morris V. Jenkins, Chief
Flight Analysis Branch

Approved:
Ronald L. Berry, Chief
Mission Planning and Analysis Division

Mission Planning and Analysis Division
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas
August 1979
CONTENTS

SECTION PAGE
1.0 SUMMARY .. 1
2.0 INTRODUCTION ... 2
2.1 PURPOSE ... 2
2.2 APPROACH .. 2
3.0 SRB IMPACT PREDICTION PROCESSOR 3
3.1 SRB Impact Data Base..................................... 5
3.2 Impact Point Dispersions - Task 1....................... 8
3.3 Footprint Dimensions - Task 2.......................... 10
3.4 Nozzle Extension Impact Time and Location - Task 3..... 12
3.5 SRB Descent Trajectory - Task 4........................ 14
3.6 SRB Downrange Direction - Task 5 15
3.7 SRB Impact Point Relative Distance - Task 6............. 18
3.8 Nozzle Impact Point Location - Task 7................... 20
3.9 Output Displays - Task 8................................. 22
3.10 Stored Plot Data - Task 9............................... 26
4.0 SRB IMPACT PLOT PROCESSOR 28
4.1 SRB Altitude Time History Plot - Task 1................ 34
4.2 SRB, Nozzle Extension Footprint Plot - Task 2 36
4.3 SRB Composite Footprint Plot - Task 3 38
4.4 SRB Impact Corridor Plot - Task 4 40
5.0 ET RTLS IMPACT PREDICTION PROCESSOR 42
5.1 ET RTLS Impact Data Base................................. 44
5.2 Instantaneous Impact Point Computation - Task 1 46
5.3 Extreme Instantaneous Impact Point Cases - Task 2 48
5.4 ET RTLS Descent Trajectory - Task 3 50
<table>
<thead>
<tr>
<th>SECTION</th>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>ET RTLS Downrange Direction - Task 4</td>
<td>52</td>
</tr>
<tr>
<td>5.6</td>
<td>Impact Point Relative Distance - Task 5</td>
<td>54</td>
</tr>
<tr>
<td>5.7</td>
<td>Impact Point Dispersions - Task 6</td>
<td>56</td>
</tr>
<tr>
<td>5.8</td>
<td>Footprint Dimensions - Task 7</td>
<td>58</td>
</tr>
<tr>
<td>5.9</td>
<td>Impact Corridor Dimensions - Task 8</td>
<td>60</td>
</tr>
<tr>
<td>5.10</td>
<td>Output Displays - Task 9</td>
<td>62</td>
</tr>
<tr>
<td>5.11</td>
<td>Stored Plot Data - Task 10</td>
<td>65</td>
</tr>
<tr>
<td>6.0</td>
<td>ET RTLS PLOT PROCESSOR</td>
<td>67</td>
</tr>
<tr>
<td>6.1</td>
<td>ET RTLS Footprint Plot - Task 1</td>
<td>71</td>
</tr>
<tr>
<td>6.2</td>
<td>ET RTLS Impact Corridor - Task 2</td>
<td>73</td>
</tr>
<tr>
<td>7.0</td>
<td>ET NOMINAL/AOA/ATO IMPACT PREDICTION PROCESSOR</td>
<td>75</td>
</tr>
<tr>
<td>7.1</td>
<td>ET Nominal/AOA/ATO Impact Data Base</td>
<td>77</td>
</tr>
<tr>
<td>7.2</td>
<td>Rupture and Breakup Altitudes - Task 1</td>
<td>79</td>
</tr>
<tr>
<td>7.3</td>
<td>Rotational Lifting Effect Dispersion Constants - Task 2</td>
<td>81</td>
</tr>
<tr>
<td>7.4</td>
<td>Trajectory Dispersions - Task 3</td>
<td>83</td>
</tr>
<tr>
<td>7.5</td>
<td>Debris Impact Dispersions - Task 4</td>
<td>85</td>
</tr>
<tr>
<td>7.6</td>
<td>Crossrange Impact Point Dispersions - Task 5</td>
<td>87</td>
</tr>
<tr>
<td>7.7</td>
<td>Trajectory Dispersion Constants - Task 6</td>
<td>89</td>
</tr>
<tr>
<td>7.8</td>
<td>Debris Dispersion Constants - Task 7</td>
<td>91</td>
</tr>
<tr>
<td>7.9</td>
<td>Intact ET Footprint Width - Task 8</td>
<td>93</td>
</tr>
<tr>
<td>7.10</td>
<td>Intact ET Footprint Length - Task 9</td>
<td>95</td>
</tr>
<tr>
<td>7.11</td>
<td>Total Debris Dispersions - Task 10</td>
<td>99</td>
</tr>
<tr>
<td>7.12</td>
<td>Total Footprint Dimensions - Task 11</td>
<td>101</td>
</tr>
<tr>
<td>7.13</td>
<td>Intact ET Impact Distribution - Task 12</td>
<td>103</td>
</tr>
<tr>
<td>7.14</td>
<td>Debris Impact Distribution - Task 13</td>
<td>107</td>
</tr>
<tr>
<td>SECTION</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>7.15</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>ET Descent Trajectory - Task 14</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>7.16</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Output Displays - Task 15</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>7.17</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Stored Plot Data - Task 16</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>ET NOMINAL/AOA/ATO PLOT PROCESSOR</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Specify and Plot Map Boundaries - Task 1</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Specify and Plot Inset Boundaries and Data - Task 2</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Plot Map and Title - Task 3</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Plot Groundtrack, Footprint, Impact Point, and Inclination - Task 4</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>REFERENCES</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>A-1</td>
<td></td>
</tr>
<tr>
<td>THREE DEGREE OF FREEDOM TRAJECTORY SIMULATION</td>
<td>A-1</td>
<td></td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>B-1</td>
<td></td>
</tr>
<tr>
<td>SUBROUTINE FOOT</td>
<td>B-1</td>
<td></td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>C-1</td>
<td></td>
</tr>
<tr>
<td>SUBROUTINE AZIMUTH</td>
<td>C-1</td>
<td></td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>D-1</td>
<td></td>
</tr>
<tr>
<td>SUBROUTINE RNGERR</td>
<td>D-1</td>
<td></td>
</tr>
<tr>
<td>APPENDIX E</td>
<td>E-1</td>
<td></td>
</tr>
<tr>
<td>SUBROUTINE LATLON</td>
<td>E-1</td>
<td></td>
</tr>
<tr>
<td>APPENDIX F</td>
<td>F-1</td>
<td></td>
</tr>
<tr>
<td>SUBROUTINE BOUNDRY</td>
<td>F-1</td>
<td></td>
</tr>
<tr>
<td>TABLE</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>3.1-I</td>
<td>SRB DATA BASE PARAMETERS</td>
<td>6</td>
</tr>
<tr>
<td>3.1-II</td>
<td>NOZZLE EXTENSION DATA BASE PARAMETERS</td>
<td>7</td>
</tr>
<tr>
<td>3.9-I</td>
<td>EXAMPLE SRB SEPARATION CONDITIONS TABLE</td>
<td>23</td>
</tr>
<tr>
<td>3.9-II</td>
<td>EXAMPLE SRB SEQUENCE OF EVENTS TABLE</td>
<td>24</td>
</tr>
<tr>
<td>3.9-III</td>
<td>EXAMPLE SRB IMPACT SUMMARY TABLE</td>
<td>25</td>
</tr>
<tr>
<td>3.10-I</td>
<td>SRB STORED PLOT DATA</td>
<td>27</td>
</tr>
<tr>
<td>5.1-I</td>
<td>ET RTLS DATA BASE PARAMETERS</td>
<td>45</td>
</tr>
<tr>
<td>5.10-I</td>
<td>EXAMPLE ET RTLS SEPARATION CONDITIONS TABLE</td>
<td>63</td>
</tr>
<tr>
<td>5.10-II</td>
<td>EXAMPLE ET RTLS IMPACT SUMMARY TABLE</td>
<td>64</td>
</tr>
<tr>
<td>5.11-I</td>
<td>ET RTLS STORED PLOT DATA</td>
<td>66</td>
</tr>
<tr>
<td>7.1-I</td>
<td>ET NOMINAL/AOA/ATO DATA BASE PARAMETERS</td>
<td>78</td>
</tr>
<tr>
<td>7.16-I</td>
<td>EXAMPLE ET IMPACT SUMMARY TABLE</td>
<td>112</td>
</tr>
<tr>
<td>7.17-I</td>
<td>ET STORED PLOT DATA</td>
<td>114</td>
</tr>
<tr>
<td>A-I</td>
<td>INPUT DATA REQUIRED FOR 3-DOF TRAJECTORY SIMULATION</td>
<td>A-5</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.0-1</td>
<td>SRB IMPACT PREDICTION PROCESSOR EXECUTIVE FLOWCHART</td>
<td>4</td>
</tr>
<tr>
<td>3.2-1</td>
<td>SRB IMPACT POINT DISPERSIONS FLOWCHART (TASK 1)</td>
<td>9</td>
</tr>
<tr>
<td>3.3-1</td>
<td>SRB FOOTPRINT DIMENSION FLOWCHART (TASK 2)</td>
<td>11</td>
</tr>
<tr>
<td>3.4-1</td>
<td>NOZZLE IMPACT TIME AND LOCATION FLOWCHART (TASK 3)</td>
<td>13</td>
</tr>
<tr>
<td>3.5-1</td>
<td>SRB DESCENT TRAJECTORY FLOWCHART (TASK 4)</td>
<td>15</td>
</tr>
<tr>
<td>3.6-1</td>
<td>SRB DOWNRANGE DIRECTION FLOWCHART (TASK 5)</td>
<td>17</td>
</tr>
<tr>
<td>3.7-1</td>
<td>SRB IMPACT POINT RELATIVE DISTANCE FLOWCHART (TASK 6)</td>
<td>19</td>
</tr>
<tr>
<td>3.8-1</td>
<td>NOZZLE IMPACT POINT LOCATION FLOWCHART (TASK 7)</td>
<td>21</td>
</tr>
<tr>
<td>4.0-1</td>
<td>EXAMPLE SRB ALTITUDE TIME HISTORY PLOT</td>
<td>29</td>
</tr>
<tr>
<td>4.0-2</td>
<td>EXAMPLE SRB, NOZZLE FOOTPRINT PLOT</td>
<td>30</td>
</tr>
<tr>
<td>4.0-3</td>
<td>EXAMPLE SRB COMPOSITE FOOTPRINT PLOT</td>
<td>31</td>
</tr>
<tr>
<td>4.0-4</td>
<td>EXAMPLE SRB IMPACT CORRIDOR PLOT</td>
<td>32</td>
</tr>
<tr>
<td>4.0-5</td>
<td>SRB IMPACT PLOT PROCESSOR EXECUTIVE FLOWCHART</td>
<td>33</td>
</tr>
<tr>
<td>4.1-1</td>
<td>SRB ALTITUDE TIME HISTORY FLOWCHART (TASK 1)</td>
<td>35</td>
</tr>
<tr>
<td>4.2-1</td>
<td>SRB, NOZZLE FOOTPRINT PLOT FLOWCHART (TASK 2)</td>
<td>37</td>
</tr>
<tr>
<td>4.3-1</td>
<td>SRB COMPOSITE FOOTPRINT PLOT FLOWCHART (TASK 3)</td>
<td>39</td>
</tr>
<tr>
<td>4.4-1</td>
<td>SRB IMPACT CORRIDOR PLOT FLOWCHART (TASK 4)</td>
<td>41</td>
</tr>
<tr>
<td>5.0-1</td>
<td>ET RTLS IMPACT PREDICTION PROCESSOR EXECUTIVE FLOWCHART</td>
<td>43</td>
</tr>
<tr>
<td>5.2-1</td>
<td>INSTANTANEOUS IMPACT POINT FLOWCHART (TASK 1)</td>
<td>47</td>
</tr>
<tr>
<td>5.3-1</td>
<td>EXTREME INSTANTANEOUS IMPACT POINT CASES FLOWCHART (TASK 2)</td>
<td>49</td>
</tr>
<tr>
<td>5.4-1</td>
<td>ET RTLS DESCENT TRAJECTORY FLOWCHART (TASK 3)</td>
<td>51</td>
</tr>
<tr>
<td>5.5-1</td>
<td>ET RTLS DOWNRANGE DIRECTION FLOWCHART (TASK 4)</td>
<td>53</td>
</tr>
<tr>
<td>5.6-1</td>
<td>ET IMPACT POINT RELATIVE DISTANCE FLOWCHART (TASK 5)</td>
<td>55</td>
</tr>
<tr>
<td>5.7-1</td>
<td>ET IMPACT POINT DISPERSIONS FLOWCHART (TASK 6)</td>
<td>57</td>
</tr>
<tr>
<td>5.8-1</td>
<td>ET RTLS FOOTPRINT DIMENSIONS FLOWCHART (TASK 7)</td>
<td>59</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.9-1</td>
<td>ET IMPACT CORRIDOR DIMENSIONS FLOWCHART (TASK 8)</td>
<td>61</td>
</tr>
<tr>
<td>6.0-1</td>
<td>ET RTLS PLOT PROCESSOR EXECUTIVE FLOWCHART</td>
<td>68</td>
</tr>
<tr>
<td>6.0-2</td>
<td>EXAMPLE ET RTLS IMPACT FOOTPRINT PLOT</td>
<td>69</td>
</tr>
<tr>
<td>6.0-3</td>
<td>EXAMPLE ET RTLS IMPACT CORRIDOR PLOT</td>
<td>70</td>
</tr>
<tr>
<td>6.1-1</td>
<td>ET RTLS IMPACT FOOTPRINT PLOT FLOWCHART (TASK 1)</td>
<td>72</td>
</tr>
<tr>
<td>6.2-1</td>
<td>ET RTLS IMPACT CORRIDOR PLOT FLOWCHART (TASK 2)</td>
<td>74</td>
</tr>
<tr>
<td>7.0-1</td>
<td>ET NOMINAL/AOA/ATO IMPACT PREDICTION PROCESSOR EXECUTIVE</td>
<td>76</td>
</tr>
<tr>
<td>7.2-1</td>
<td>RUPTURE AND BREAKUP ALTITUDE FLOWCHART (TASK 1)</td>
<td>80</td>
</tr>
<tr>
<td>7.3-1</td>
<td>RLE DISPERSION CONSTANTS FLOWCHART (TASK 2)</td>
<td>82</td>
</tr>
<tr>
<td>7.4-1</td>
<td>TRAJECTORY DISPERSION FLOWCHART (TASK 3)</td>
<td>84</td>
</tr>
<tr>
<td>7.5-1</td>
<td>DEBRIS IMPACT DISPERSION FLOWCHART (TASK 4)</td>
<td>86</td>
</tr>
<tr>
<td>7.6-1</td>
<td>CROSSRANGE IMPACT POINT DISPERSIONS FLOWCHART (TASK 5)</td>
<td>88</td>
</tr>
<tr>
<td>7.7-1</td>
<td>TRAJECTORY DISPERSION CONSTANTS FLOWCHART (TASK 6)</td>
<td>90</td>
</tr>
<tr>
<td>7.8-1</td>
<td>DEBRIS DISPERSION CONSTANTS FLOWCHART (TASK 7)</td>
<td>92</td>
</tr>
<tr>
<td>7.9-1</td>
<td>INTACT ET FOOTPRINT WIDTH FLOWCHART (TASK 8)</td>
<td>94</td>
</tr>
<tr>
<td>7.10-1</td>
<td>INTACT ET FOOTPRINT LENGTH FLOWCHART (TASK 9)</td>
<td>96</td>
</tr>
<tr>
<td>7.10-2</td>
<td>FLOWCHART OF SUBROUTINE SIGMA</td>
<td>97</td>
</tr>
<tr>
<td>7.10-3</td>
<td>FLOWCHART OF SUBROUTINE CMLTV</td>
<td>98</td>
</tr>
<tr>
<td>7.11-1</td>
<td>TOTAL DEBRIS DISPERSIONS FLOWCHART (TASK 10)</td>
<td>100</td>
</tr>
<tr>
<td>7.12-1</td>
<td>TOTAL FOOTPRINT DIMENSIONS FLOWCHART (TASK 11)</td>
<td>102</td>
</tr>
<tr>
<td>7.13-1</td>
<td>ET IMPACT DISTRIBUTION FLOWCHART (TASK 12)</td>
<td>104</td>
</tr>
<tr>
<td>7.13-2</td>
<td>FLOWCHART OF SUBROUTINE DISTR</td>
<td>105</td>
</tr>
<tr>
<td>7.13-3</td>
<td>FLOWCHART OF SUBROUTINE ANORM</td>
<td>106</td>
</tr>
<tr>
<td>7.14-1</td>
<td>DEBRIS IMPACT DISTRIBUTION FLOWCHART (TASK 13)</td>
<td>108</td>
</tr>
<tr>
<td>7.15-1</td>
<td>ET DESCENT TRAJECTORY FLOWCHART (TASK 14)</td>
<td>110</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>8.0-1</td>
<td>EXAMPLE ET IMPACT FOOTPRINT PLOT</td>
<td>116</td>
</tr>
<tr>
<td>8.0-2</td>
<td>ET NOMINAL/AOA/ATO IMPACT PLOT PROCESSOR EXECUTIVE FLOWCHART</td>
<td>117</td>
</tr>
<tr>
<td>8.1-1</td>
<td>MAP BOUNDARIES FLOWCHART (TASK 1)</td>
<td>119</td>
</tr>
<tr>
<td>8.2-1</td>
<td>INSET BOUNDARIES FLOWCHART (TASK 2)</td>
<td>121</td>
</tr>
<tr>
<td>8.3-1</td>
<td>MAP PLOTTING FLOWCHART (TASK 3)</td>
<td>123</td>
</tr>
<tr>
<td>8.4-1</td>
<td>FOOTPRINT PLOT FLOWCHART (TASK 4)</td>
<td>125</td>
</tr>
<tr>
<td>A-1</td>
<td>FLOWCHART OF 3-DOF TRAJECTORY PROGRAM</td>
<td>A-3</td>
</tr>
<tr>
<td>A-2</td>
<td>PHASE INITIALIZATION FLOWCHART (TASK 2)</td>
<td>A-7</td>
</tr>
<tr>
<td>A-3</td>
<td>INTEGRATION FLOWCHART (TASK 5)</td>
<td>A-11</td>
</tr>
<tr>
<td>A-4</td>
<td>VEHICLE FORCES FLOWCHART (TASK 6)</td>
<td>A-13</td>
</tr>
<tr>
<td>B-1</td>
<td>FLOWCHART FOR SUBROUTINE FOOT</td>
<td>B-3</td>
</tr>
<tr>
<td>C-1</td>
<td>FLOWCHART FOR SUBROUTINE AZIMUTH</td>
<td>C-3</td>
</tr>
<tr>
<td>D-1</td>
<td>FLOWCHART FOR SUBROUTINE RNGERR</td>
<td>D-3</td>
</tr>
<tr>
<td>E-1</td>
<td>FLOWCHART FOR SUBROUTINE LATLON</td>
<td>E-3</td>
</tr>
<tr>
<td>F-1</td>
<td>FLOWCHART FOR SUBROUTINE BOUNDRY</td>
<td>F-3</td>
</tr>
</tbody>
</table>
NOMENCLATURE

SYMBOLS

A AREA OF ET DEBRIS PIECE.
AOA ABORT ONCE AROUND
ATO ABORT TO ORBIT
C CAUSSIAN DISTRIBUTION SCALING CONSTANT
CR CROSS RANGE
DOF DEGREE OF FREEDOM
DR DOWN RANGE
ET EXTERNAL TANK
ETR EASTERN TEST RANGE
FDS FLIGHT DESIGN SYSTEM
GET GROUND ELAPSED TIME
H ALTITUDE OF EXTERNAL TANK
HD GEODETIC ALTITUDE
i ORBITAL INCLINATION
IIP INSTANTANEOUS IMPACT POINT
L LENGTH OF EXTERNAL TANK IMPACT CORRIDOR
LCR LEFT CROSS RANGE
LSRB LEFT SOLID ROCKET BOOSTER
MDB MASTER DATA BASE
MPAD MISSION PLANNING AND ANALYSIS DIVISION
RCR RIGHT CROSS RANGE
RF RANGE FLOWN BY EXTERNAL TANK
RLE ROTATIONAL LIFTING EFFECT OF EXTERNAL TANK
RSRB RIGHT SOLID ROCKET BOOSTER
RSS ROOT SUM SQUARE
RTLS RETURN TO LAUNCH SITE
SRB SOLID ROCKET BOOSTER
SVDS SPARE VEHICLE DYNAMIC SIMULATION
\(\Delta t_n \) TIME OF NOZZLE IMPACT RELATIVE TO SOLID ROCKET BOOSTER
T TIME
U UNCERTAINTY
UR UPRANGE
\(\Delta U R_n \) UPRANGE DISTANCE OF NOZZLE IMPACT POINT RELATIVE TO SOLID ROCKET BOOSTER IMPACT POINT
V VELOCITY
W WIDTH OF EXTERNAL TANK IMPACT CORRIDOR
WT WEIGHT
WTR WESTERN TEST RANGE
\(\gamma \) FLIGHT PATH ANGLE
\(\lambda \) LONGITUDE
\(\mu \) GAUSSIAN DISTRIBUTION MEAN
\(\sigma \) GAUSSIAN DISTRIBUTION STANDARD DEVIATION
\(\phi \) LATITUDE
\(\psi \) AZIMUTH ANGLE

SUBSCRIPTS

A AZIMUTH
AERO AERODYNAMIC
ATM ATMOSPHERIC
BU BREAKUP
C GEOCENTRIC
D GEOQETIC
DEB EXTERNAL TANK DEBRIS
DR DOWNRANGE
DRG DRAG
e EARTH RELATIVE
ET EXTERNAL TANK
H LIQUID HYDROGEN TANK RUPTURE
i COUNTER INDEX
I INERTIAL
IP IMPACT POINT
L LEFT SOLID ROCKET BOOSTER
LC LEFT CROSSRANGE
LIFT LIFT
LN LEFT SOLID ROCKET BOOSTER NOZZLE
L/D LEFT WITH RESPECT TO DOWNRANGE
L/R LEFT WITH RESPECT TO RIGHT
L/U LEFT WITH RESPECT TO UPRANGE
N NOZZLE
o REFERENCE POINT OR IMPACT POINT
O LIQUID OXYGEN TANK RUPTURE
R RIGHT SOLID ROCKET BOOSTER
RC RIGHT CROSSRANGE
RI GEOCENTRIC RADIUS VECTOR
RLE ROTATIONAL LIFTING EFFECT
RN RIGHT SOLID ROCKET BOOSTER NOZZLE
R/D RIGHT WITH RESPECT TO DOWNRANGE
R/U RIGHT WITH RESPECT TO UPRANGE
T TRAJECTORY OR TOTAL
TRJ TRAJECTORY
UR UPRANGE
W WIND OR WEIGHT
1.0 SUMMARY

This document describes the Level C requirements for the development of the solid rocket booster (SRB) and external tank (ET) impact prediction processors of the Flight Design System (FDS). The Level B requirements for these processors were specified in Reference 1. Sections 3 and 4 of this document specify the requirements for the two processors to compute and plot the SRB impact footprint data. Sections 5 and 6 present the requirements for the two processors which generate the ET impact footprint data for RTLS profiles. Sections 7 and 8 present the requirements for the two processors which generate the ET data for nominal, AOA, and ATO profiles. The appendixes contain the requirements for several general subprograms used by more than one of the SRB and ET processors described in the body of the report.
2.0 INTRODUCTION

2.1 PURPOSE

The Mission Planning and Analysis Division (MPAD) of Johnson Space Center (JSC) is responsible for performing the flight design for operational flights of the Space Transportation System (STS). In order to accomplish the flight design process for the high flight rates of the STS, a computerized Flight Design System (FDS) is being developed. The Level B requirements for this system are documented in Reference 1. FDS processors will be used to predict the impact areas of the solid rocket boosters (SRB) and external tank (ET). The purpose of this document is to specify the Level C requirements for the SRB and ET impact prediction FDS processors.

2.2 APPROACH

The prediction of the SRB and ET impact areas requires six separate processors. The SRB Impact Prediction Processor computes the impact areas and related trajectory data for each SRB element. Output from this processor is stored on a secure file accessible by the SRB Impact Plot Processor which generates the required plots. Similarly the ET RTLS Impact Prediction Processor and the ET RTLS Impact Plot Processor generates the ET impact footprints for return-to-launch-site (RTLS) profiles. The ET Nominal/AOA/ATO Impact Prediction Processor and the ET Nominal/AOA/ATO Impact Plot Processor generates the ET impact footprints for non-RTLS profiles.

The SRB and ET impact processors compute the size and shape of the impact footprints by tabular lookup in a stored footprint dispersion data base. The location of each footprint is determined by simulating a reference trajectory and computing the reference impact point location.

To insure consistency among all FDS users, much input required by these processors will be obtained from the FDS Master Data Base (MDB). Parameters such as launch date, time, and site, atmospheric and wind properties, and SRB and ET weights should be available in the MDB. User input at the time of execution will be minimized by using flags to select MDB inputs, and preconstructed data elements containing aerodynamic coefficients and other trajectory related parameters.
3.0 SRB IMPACT PREDICTION PROCESSOR

The purpose of the SRB Impact Prediction Processor is to compute the impact areas and the related SRB trajectory data for the two SRB's and their nozzle extensions. An overview of the processor executive is shown in Figure 3.0-1.

The locations of the SRB impact footprints are determined by simulating the nominal descent trajectories of each SRB and computing the latitude and longitude of the impact points as indicated in task 4. The location of the impact points of the nozzle extensions relative to the SRB's are correlated and stored in the processor data base. Based on the particular trajectory initial conditions, the nozzle extension impact points are computed by tabular lookup in task 3.

The downrange and crossrange dispersions of the SRB and nozzle extension impact points due to separation condition and wind uncertainties are stored in the processor data base. Tabular lookup is used in task 1 to compute the mission dependent impact dispersions which combine to form the footprints in task 2.

Output from the processor consists of a sequence of events during the SRB descent, a table of nominal impact point locations for each element, and a table listing the footprint size of each element. The data required to plot the footprints and altitude time histories of each SRB are stored on secure files which can be accessed by the SRB Impact Plot Processor. The requirements for this processor are described in Section 4.0.

The following subsections describe the detailed requirements for each task presented in the executive overview.
INPUT:
SRL SEPARATION CONDITIONS - H0, A0, X0, Y0, Z0, SET
SRL SEPARATION CONDITION UNCERTAINTIES, R1,
NOMINAL OR RTLS SIMULATION FLAG

DETERMINE SRL IMPACT POINT
DISPERSIONS FROM STORED
DATA BASE
TASK 1

DETERMINE NOZZLE IMPACT
POINT DISPERSIONS FROM
STORED DATA BASE
TASK 1

DETERMINE NOZZLE IMPACT
TIME AND LOCATION RELA-
TIVE TO SRL FROM STORED
DATA BASE
TASK 2

SIMULATE RIGHT SRL
TRAJECTORY TO
DETERMINE IMPACT
POINT
TASK 4

SIMULATE LEFT SRL
TRAJECTORY TO
DETERMINE IMPACT
POINT
TASK 6

RSS DISPERSIONS TO
DETERMINE SRL FOOTPRINT
SIZE
TASK 2

RSS DISPERSIONS TO
DETERMINE NOZZLE
FOOTPRINT SIZE
TASK 2

DETERMINE DOMINANCE
OF EACH NOZZLE IMPACT
POINT
TASK 7

DETERMINE DOMINANCE, CROSSRAINF
DISTANCE OF LEFT SRL XRT RIGHT
SRL
TASK 6

DISPLAY
RESULTS
TASK 8

STORt DATA IN NOMINAL
DATA FILE ACCESSIBLE
BY SRL PLOT
PROCESSOR
TASK 9

STORt DATA IN RTLS DATA
FILE ACCESSIBLE BY SRL
PLOT PROCESSOR
TASK 9

STOP

ANOTHER CASE?
NO

Yes
3.1 SRB IMPACT DATA BASE

The stored data base of this processor consists of data required to determine the footprint size of the SRB and nozzle extension, location of the nozzle impact point relative to the SRB, and the time of nozzle impact relative to the SRB. Table 3.1-I presents the data required to determine the SRB impact footprint size. The uprange, downrange, and crossrange dispersions caused by separation condition uncertainties are expressed as sensitivities or partial derivatives and are constant for all trajectories. The dispersions due to winds are correlated as a function of launch azimuth, while those due to trimmed lift are constant.

The data base for the nozzle extension is presented in Table 3.1-II. The footprint dispersion parameters are the same as the SRB. The nozzle impact location and time relative to the SRB are correlated as a function of SRB separation altitude, velocity, and flight path angle.
<table>
<thead>
<tr>
<th>GROUP</th>
<th>DEPENDENT VARIABLE</th>
<th>INDEPENDENT VARIABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRB Separation</td>
<td>(\frac{\partial M}{\partial H}), (\frac{\partial M}{\partial R}), (\frac{\partial a}{\partial \theta}), (\frac{\partial a}{\partial \phi}), (\frac{\partial a}{\partial \psi}), (\frac{\partial a}{\partial \psi_e})</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>(\frac{\partial M}{\partial H}), (\frac{\partial M}{\partial R}), (\frac{\partial a}{\partial \theta}), (\frac{\partial a}{\partial \phi}), (\frac{\partial a}{\partial \psi}), (\frac{\partial a}{\partial \psi_e})</td>
<td>(Constant)</td>
</tr>
<tr>
<td>Lift Dispersions</td>
<td>(a) = constant</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>(UR) = constant</td>
<td>(Constant)</td>
</tr>
<tr>
<td></td>
<td>(CR) = constant</td>
<td></td>
</tr>
<tr>
<td>Wind Dispersions</td>
<td>(DR (\psi_i))</td>
<td>Launch azimuth</td>
</tr>
<tr>
<td></td>
<td>(UR (\psi_i))</td>
<td>(\psi_i, i=1, 6)</td>
</tr>
<tr>
<td></td>
<td>(LCR (\psi_i))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(RCR (\psi_i))</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3.1-II - NOZZLE EXTENSION DATA BASE PARAMETERS

LOCATION AND TIME OF IMPACT RELATIVE TO SRB:

<table>
<thead>
<tr>
<th>DEPENDENT VARIABLES</th>
<th>INDEPENDENT VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\partial \theta}{\partial HD}$</td>
<td>$\frac{\partial \theta}{\partial Ve}$</td>
</tr>
</tbody>
</table>

SIZE OF FOOTPRINT:

<table>
<thead>
<tr>
<th>GROUP</th>
<th>DEPENDENT VARIABLE</th>
<th>INDEPENDENT VARIABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRB Separation Condition Dispersion</td>
<td>a, θ, ψ, θ, ψ, θ, ψ</td>
<td>NONE (CONSTANT)</td>
</tr>
<tr>
<td>Wind Dispersions</td>
<td>$DR (\psi_i)$</td>
<td>LAUNCH AZIMUTH $\psi_i, i=1,6$</td>
</tr>
<tr>
<td></td>
<td>$UR (\psi_i)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$LCR (\psi_i)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$RCR (\psi_i)$</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: HD, Ve, Ye, DR, CR, and ψ_e are values of the SRB separation state vector.
3.2 IMPACT POINT DISPERSIONS - TASK 1

The impact point dispersions of the SRB's and the nozzle extensions are computed by tabular lookup and linear interpolation of the data base.

Figure 3.2-1 presents a flowchart for this task.
INPUT: \(\phi_e, U_i \) (\(\pm HD, \pm DR, \pm CR, \pm V_e, \pm V_o \))

DETERMINE DISPERSIONS DUE TO WINDS BY LINEAR INTERPOLATION OF DATA BASE

\[\begin{align*}
DR_W &= f(\phi_e) \\
UR_W &= f(\phi_e) \\
RCR_W &= f(\phi_e) \\
LCR_W &= f(\phi_e)
\end{align*} \]

DETERMINE DISPERSIONS DUE TO SEPARATION CONDITION UNCERTAINTIES, \(U_i \), FROM DATA BASE SENSITIVITIES, \(\delta U_i \)

\[\begin{align*}
DR_i &= U_{DR_i} U_i \quad i = 1, 6 \\
CR_i &= U_{CR_i} U_i \\
UR_i &= U_{UR_i} U_i
\end{align*} \]

DETERMINE DISPERSIONS DUE TO LIFT FROM DATA BASE.

\[\begin{align*}
DR_{LIFT} &= \text{CONST} \\
UR_{LIFT} &= \text{CONST} \\
CR_{LIFT} &= \text{CONST}
\end{align*} \]

OUTPUT: \(DR_W, UR_W, RCR_W, LCR_W \)
\(DR_i, CR_i, UR_i, DR_{LIFT}, UR_{LIFT}, CR_{LIFT} \)

END

FIGURE 3.2-1 SRB IMPACT POINT DISPERSIONS FLOWCHART (TASK 1)
3.3 FOOTPRINT DIMENSIONS - TASK 2

The sizes of the footprints for the SRB and nozzle extensions are obtained by root-sum-squaring the impact point dispersions computed in task 1. Figure 3.3-1 presents a flowchart for this task.
INPUT: DR\textsubscript{W}, UR\textsubscript{W}, RCR\textsubscript{W}, LCR\textsubscript{W}, DR\textsubscript{i}, CR\textsubscript{i}, UR\textsubscript{i}, DR\textsubscript{LIFT}, UR\textsubscript{LIFT}, CR\textsubscript{LIFT}

RSS DISPERSIONS TO DETERMINE FOOTPRINT SIZE

\[DR = \left(\sum_{i=1}^{6} DR\textsubscript{i}^2 + DR\textsubscript{LIFT}^2 + DR\textsubscript{W}^2 \right)^{\frac{1}{2}} \]

\[UR = \left(\sum_{i=1}^{6} UR\textsubscript{i}^2 + UR\textsubscript{LIFT}^2 + UR\textsubscript{W}^2 \right)^{\frac{1}{2}} \]

\[LCR = \left(\sum_{i=1}^{6} CR\textsubscript{i}^2 + CR\textsubscript{LIFT}^2 + LCR\textsubscript{W}^2 \right)^{\frac{1}{2}} \]

\[RCR = \left(\sum_{i=1}^{6} CR\textsubscript{i}^2 + CR\textsubscript{LIFT}^2 + RCR\textsubscript{W}^2 \right)^{\frac{1}{2}} \]

OUTPUT: DR, UR, LCR, RCR OF SRB OR NOZZLE

FIGURE 3.3-1 SRB FOOTPRINT DIMENSION FLOWCHART (TASK 2)
3.4 NOZZLE EXTENSION IMPACT TIME AND LOCATION - TASK 3

The time and location of the nozzle impact relative to the SRB is determined by linear interpolation of the nozzle data base. The independent variables are the altitude, velocity, and flight path angle at SRB separation. Figure 3.4-1 presents a flowchart of this task.
INPUT: HD, Ve, Ye

DETERMINE NOZZLE IMPACT POINT RELATIVE TO SRB IMPACT POINT FROM DATA BASE.

\[\Delta U_{RN} = f(HD, Ve, Ye) \]

DETERMINE NOZZLE IMPACT TIME RELATIVE TO SRB IMPACT TIME FROM DATA BASE

\[\Delta t_{N} = f(HD, Ve, Ye) \]

OUTPUT: \[\Delta U_{RN}, \Delta t_{N} \]

END

FIGURE 3.4-1 NOZZLE IMPACT TIME AND LOCATION FLOWCHART (TASK 3)
3.5 SRB DESCENT TRAJECTORY - TASK 4

The trajectory of both the left and right SRB's are simulated from SRB separation to impact. The requirements for a general 3-DOF trajectory simulation are presented in Appendix A. In order to minimize user workload at the time of execution, an input system incorporating a series of base case data elements containing data that will not change at each execution is desired. At the time of execution the data peculiar to the particular trajectory will be input. These data are the SRB separation position, velocity, ground elapsed time, and the time of nozzle jettison. Figure 3.5-1 is a flowchart of this task illustrating the input and output parameters.
INPUT:
SRB SEPARATION CONDITIONS-HD, \(\lambda, \phi, V_e, \gamma_e, \psi_e \), GET
NOZZLE JETTISON TIME

COMPUTE TRAJECTORY PARAMETERS FROM SEPARATION TO IMPACT (APPENDIX A)

OUTPUT:
HD VS TIME
\(\lambda \) VS TIME
\(\phi \) VS TIME
RANGE FROM PAD VS TIME
NOZZLE JETTISON TIME
TIME OF IMPACT
\(\lambda, \phi \) OF IMPACT

END

FIGURE 3.5-1 SRB DESCENT TRAJECTORY FLOWCHART (TASK 4)
3.6 SRB DOWNRANGE DIRECTION - TASK 5

The downrange direction relative to North is computed for each SRB. These angles are required to orient the impact footprints on a map and to compute relative distances between element impact points. Figure 3.6-1 presents a flowchart for this computation.
INPUT: $\lambda_R, \phi_R, \lambda_L, \phi_L, \lambda, \phi$

START

COMPUTE DOWNRANGE DIRECTION, A_R, FOR RIGHT SRB.
CALL AZIMUTH *
INPUT: $(\lambda, \phi, \lambda_R, \phi_R)$
OUTPUT: (A_R)

COMPUTE DOWNRANGE DIRECTION, A_L, FOR LEFT SRB.
CALL AZIMUTH *
INPUT: $(\lambda, \phi, \lambda_L, \phi_L)$
OUTPUT: (A_L)

OUTPUT: A_R, A_L

END

*APPENDIX C

Figure 3.6-1 SRB DOWNRANGE DIRECTION FLOWCHART (TASK 5)
3.7 IMPACT POINT RELATIVE DISTANCE - TASK 6

The relative downrange and crossrange of the left SRB with respect to the right SRB is computed as illustrated in Figure 3.7-1.
INPUT: $\lambda_R^*, \phi_R^*, \lambda_L, \phi_L, A_R$

COMPUTE DOWNRANGE, CROSSRANGE DISTANCE OF LEFT SRB IP WRT RIGHT SRB IP.

CALL RNGERR *

INPUT: ($\lambda_R^*, \phi_R^*, \lambda_L, \phi_L, A_R$)

OUTPUT: ($D_{RL/R}, C_{RL/R}$)

OUTPUT: $D_{RL/R}, C_{RL/R}$

END

*APPENDIX D

FIGURE 3.7-1 SRB IMPACT POINT RELATIVE DISTANCE FLOWCHART (TASK 6)
3.8 NOZZLE IMPACT POINT LOCATION - TASK 7

The latitude and longitude of each nozzle is computed from the SRB impact latitude and longitude and the relative position of the nozzle with respect to the SRB as shown in Figure 3.8-1.
INPUT: $\lambda_R, \phi_R, A_R, \lambda_L, \phi_L, A_L, \Delta U_R$

COMPUTE (λ, ϕ) OF RIGHT NOZZLE IP.
CALL LATLON
INPUT: ($\lambda_R, \phi_R, -\Delta U_R, 0, A_R$)
OUTPUT: (λ_{RN}, ϕ_{RN})

COMPUTE (λ, ϕ) OF LEFT NOZZLE IP.
CALL LATLON
INPUT: ($\lambda_L, \phi_L, -\Delta U_L, 0, A_L$)
OUTPUT: (λ_{LN}, ϕ_{LN})

OUTPUT: $\lambda_{RN}, \phi_{RN}, \lambda_{LN}, \phi_{LN}$

END

*APPENDIX E

FIGURE 3.8-1 NOZZLE IMPACT POINT LOCATION FLOWCHART (TASK 7)
3.9 OUTPUT DISPLAYS - TASK 8

Tabular output from the SRB Impact Prediction Processor will consist of terminal screen displays and hardcopy print of document quality. Tables 3.9-I through 3.9-III are examples of the data and format to be output. Tables 3.9-I is a list of the SRB separation conditions. Table 3.9-II is a list of the sequence of events during the SRB descent trajectory. Table 3.9-III is a list of the element impact point parameters and the footprint dimensions of each element.
TABLE 3.9-I EXAMPLE SRB SEPARATION CONDITIONS TABLE

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GET</td>
<td>124.64</td>
<td>sec.</td>
</tr>
<tr>
<td>HD</td>
<td>165063.85</td>
<td>ft.</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>-80.271208</td>
<td>deg.</td>
</tr>
<tr>
<td>(\phi_0)</td>
<td>28.814192</td>
<td>deg.</td>
</tr>
<tr>
<td>(V_e)</td>
<td>4026.8563</td>
<td>fps.</td>
</tr>
<tr>
<td>(\gamma_e)</td>
<td>38.818961</td>
<td>deg.</td>
</tr>
<tr>
<td>(\psi_e)</td>
<td>55.335925</td>
<td>deg.</td>
</tr>
<tr>
<td>RI</td>
<td>21074612.</td>
<td>ft.</td>
</tr>
<tr>
<td>(\phi_c)</td>
<td>28.653253</td>
<td>deg.</td>
</tr>
<tr>
<td>(V_T)</td>
<td>4999.4456</td>
<td>fps.</td>
</tr>
<tr>
<td>(\gamma_T)</td>
<td>30.325536</td>
<td>deg.</td>
</tr>
<tr>
<td>(\psi_T)</td>
<td>65.574246</td>
<td>deg.</td>
</tr>
<tr>
<td>Event Description</td>
<td>Time (SEC)</td>
<td>Altitude (FT.)</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>SRB SEPARATION (LIFTOFF + 124.64 sec)</td>
<td>0.0</td>
<td>155064</td>
</tr>
<tr>
<td>NOZZLE JETTISON</td>
<td>82.4</td>
<td>269558</td>
</tr>
<tr>
<td>NOSE CAP JETTISON</td>
<td>238.1</td>
<td>17000</td>
</tr>
<tr>
<td>FRUSTUM JETTISON</td>
<td>261.1</td>
<td>7000</td>
</tr>
<tr>
<td>SRB IMPACT</td>
<td>309.9</td>
<td>0</td>
</tr>
<tr>
<td>NOZZLE EXTENSION IMPACT</td>
<td>363.0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 3.9-111 Example SRB Impact Summary Table

Impact Point:

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>Geodetic Latitude (deg.)</th>
<th>Longitude (deg.)</th>
<th>Range From Pad (n.mi.)</th>
<th>DR (n.mi)</th>
<th>CR (n.mi)</th>
<th>Ground Elapsed Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right SRB</td>
<td>29.790</td>
<td>-78.615</td>
<td>126.2</td>
<td>---</td>
<td>---</td>
<td>434.5</td>
</tr>
<tr>
<td>Left SRB</td>
<td>29.783</td>
<td>-78.610</td>
<td>126.2</td>
<td>0.0**</td>
<td>0.5**</td>
<td>434.7</td>
</tr>
<tr>
<td>Right Nozzle</td>
<td>29.741</td>
<td>-78.703</td>
<td>120.8</td>
<td>-5.4*</td>
<td>0.0*</td>
<td>487.6</td>
</tr>
<tr>
<td>Left Nozzle</td>
<td>29.734</td>
<td>-78.698</td>
<td>120.8</td>
<td>-5.4*</td>
<td>0.0*</td>
<td>487.6</td>
</tr>
</tbody>
</table>

Footprint Dimensions:

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>Uprange (n.mi.)</th>
<th>Downrange (n.mi.)</th>
<th>Left Crossrange (n.mi.)</th>
<th>Right Crossrange (n.mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRB</td>
<td>4.04</td>
<td>4.37</td>
<td>1.72</td>
<td>1.68</td>
</tr>
<tr>
<td>NOZZLE</td>
<td>2.62</td>
<td>5.32</td>
<td>1.17</td>
<td>0.95</td>
</tr>
</tbody>
</table>

DR, CR are Downrange and Crossrange relative to respective SRB.

**DR, CR are Downrange and Crossrange relative to the right SRB.*
3.10 STORED PLOT DATA - TASK 9

All data required by the SRB Impact Plot Processor is stored in secure catalogued files. Based on an input flag, the required data will be stored in a nominal data file or an RTLS data file. Table 3.10-I lists the parameters which are stored in the files and used by the plot processor.
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR, UR, LCR, RCR</td>
<td>FOOTPRINT SIZE FOR EACH SRB AND NOZZLE.</td>
</tr>
<tr>
<td>λ, φD</td>
<td>IMPACT POINTS FOR EACH SRB AND NOZZLE.</td>
</tr>
<tr>
<td>AR, AL</td>
<td>DOWNRANGE DIRECTION OF EACH SRB.</td>
</tr>
<tr>
<td>H₀ vs. TIME</td>
<td>TRAJECTORY PARAMETERS FOR EACH SRB.</td>
</tr>
<tr>
<td>λ vs. TIME</td>
<td>RELATIVE DISTANCES OF IMPACT POINTS.</td>
</tr>
<tr>
<td>φD vs TIME</td>
<td></td>
</tr>
<tr>
<td>RANGE vs. TIME</td>
<td></td>
</tr>
<tr>
<td>ΔUR, NOZZLE</td>
<td></td>
</tr>
<tr>
<td>DRL/R, CRL/R</td>
<td></td>
</tr>
</tbody>
</table>
4.0 SRB IMPACT PLOT PROCESSOR

The purpose of the SRB Impact Plot Processor is to plot the SRB impact data generated by the SRB Impact Prediction Processor. Footprints of both SRB's and nozzle extensions and the altitude time histories of the SRB's are plotted. The data required by the processor is stored on either a nominal or RTLS data file. The plot processor accesses the data and constructs the desired plots. Figures 4.0-1 through 4.0-4 present examples of the plots to be generated. An overview of the processor executive is presented in Figure 4.0-5. The following subsections describe the detailed requirements for each task presented in the executive flowchart.
FIGURE 4.0-1
EXAMPLE SRB ALTITUDE TIME HISTORY PLOT
Figure 4.0-2 Example SRB, Nozzle Footprint Plot

- - - RIGHT SRB
- - - RIGHT NOZZLE EXTENSION
- - - LEFT SRB
- - - - LEFT NOZZLE EXTENSION

REFERENCE POINT IS NOMINAL IMPACT POINT OF RIGHT SRB
FIGURE 4.0-3 EXAMPLE SRB COMPOSITE FOOTPRINT PLOT

NORTH LATITUDE, DEG

WEST LONGITUDE, DEG

SRB IMPACT CONSTRAINT

SRB STAGING

KSC LAUNCH SITE

R = 126.2 n.mi.

Crossrange (n.miles)
START

PLOT NOMINAL TIME HISTORY?
 NO

PLOT:
 LSRB ALTITUDE TIME HISTORY
 RSRB ALTITUDE TIME HISTORY
 TASK 1

PLOT NOMINAL FOOTPRINT?
 NO

CALCULATE LEFT AND RIGHT SRB ELEMENT FOOTPRINT OVERLAY
 TASK 2

PLOT COMPOSITE SRB FOOTPRINT AND OVERLAY ON MAP
 TASK 3

PLOT RTLS FOOTPRINT?
 NO

CALCULATE LEFT AND RIGHT SRB ELEMENT FOOTPRINT OVERLAY
 TASK 2

PLOT COMPOSITE SRB FOOTPRINT AND OVERLAY ON MAP
 TASK 3

PLOT CORRIDOR?
 NO

PLOT CORRIDOR ON MAP
 TASK 4

END

FIGURE 4.0-5 SRB IMPACT PLOT PROCESSOR EXECUTIVE FLOWCHART
4.1 SRB ALTITUDE TIME HISTORY PLOT - TASK 1

Figure 4.1-1 presents a flowchart for plotting the SRB altitude time histories. The format of the plot is presented in Figure 4.0-1. SRB separation, nozzle-jettison, nose cap jettison, main chute deployment, and impact are labeled on the plot.
INPUT:
(T, HD) ARRAY FOR LEFT SRB
(T, HD) ARRAY FOR RIGHT SRB

PLOT LEFT SRB ALTITUDE
TIME HISTORY

PLOT RIGHT SRB ALTITUDE
TIME HISTORY

WRITE
ANNOTATIONS

END

FIGURE 4.1-1 SRB ALTITUDE TIME HISTORY FLOWCHART (TASK 1)
4.2 SRB, NOZZLE EXTENSION FOOTPRINT PLOT - TASK 2

The footprints of the left and right SRB's and nozzle extensions are plotted on the same downrange, crossrange grid as illustrated in Figure 4.0-2. A flowchart of this task is presented in Figure 4.2-1.
Determine downrange, crossrange coordinates $(D,C)_R$ of RSBR

CALL FOOT

INPUT: $(D, 0, 90, DR, UR, LCR, RCR)$

OUTPUT: $(D,C)_R$ ARRAY

Determine downrange, crossrange coordinates $(D,C)_L$ of LSRBR.

CALL FOOT

INPUT: $(DRLIR, CRL/R, (90-AR+AL), DR, UR, LCR, RCR)$

OUTPUT: $(D,C)_L$ ARRAY

Determine downrange, crossrange coordinates $(D,C)_RN$ of right nozzle.

CALL FOOT

INPUT: $(-URN, 0, 90, ORN, URN, LCRN, RCRN)$

OUTPUT: $(D,C)_RN$ ARRAY

Determine downrange, crossrange coordinates $(D,C)_LN$ of left nozzle.

CALL FOOT

INPUT: $(URN, 0, 90, DRN, URN, LCRN, RCRN)$

OUTPUT: $(D,C)_LN$ ARRAY

END

*APPENDIX B

FIGURE 4.2-1 SRB NOZZLE FOOTPRINT PLOT FLOWCHART (TASK 2)
4.3 SRB COMPOSITE FOOTPRINT PLOT - TASK 3

The composite footprint of all SRB elements is plotted on a map as illustrated in Figure 4.0-3. The plot will contain the footprint, the right SRB groundtrack, landmasses, and appropriate annotations. A flowchart of this task is presented in Figure 4.3-1.
Determine downrange, crossrange (D, C) of composite footprint.

CALL FOOT *
Input: (RLR, iCRL/R, (AR+AL), OR, (AURn+URN),
(LCR+CRL/R), (RCR+CRL/R))
Output: (D, C) array

Convert (D, C) array to (λ, φ) array

CALL LATLON **
INPUT: (λ, φ, D, C, λ)
OUTPUT: (λ₁, φ₁) array

ESTABLISH BOUNDARIES FOR MAP AND Insets

Call BOUNDARY ***
Input: Test Range (ETR or WTR), Map, SRB
Output: Coordinates of upper left and lower right hand corner of
map; plotted map boundary.

Call BOUNDARY ***
Input: Test Range (ETR or WTR), Impact Coordinate Inset, SRB
Output: Coordinates of upper left and lower right hand corner of
impact inset; plotted impact inset boundary

Call BOUNDARY ***
Input: Test Range (ETR or WTR), Footprint Inset, SRB
Output: Coordinates of upper left and lower right hand corner of
footprint inset; plotted inset boundary

PLOT MAP, TITLE, InSET INFORMATION

Input Title; print title at bottom of page
Within the confines of the impact coordinate inset,
print: Nominal Right SRB Impact: Lat, Longitude, Range I
Nominal Left SRB Impact: Lat, Longitude, Range I
Within the confines of the footprint inset,
plot: Downrange, Crossrange axes, with tic marks and scale
Nominal SRB Impact points
Downrange vs. Crossrange plots of RSBR, LSRB, Right and
Left Nozzles, as obtained from task 2.
Plot Map within Specified Boundaries, with Latitude and Longitude
lines every degree, tic marks every 10 min. No plotting is to be
done within inset confines

PLOT DATA ON MAP

Plot: Nominal SRB Staging point, RSBR, LSRB Nominal Impact Point;
Right SRB groundtrack from staging to impact, SRB composite footprint,
(λ₁, φ₁)

FIGURE 4.3-1 SRB COMPOSITE FOOTPRINT PLOT FLOWCHART (TASK 3)
4.4 SRB IMPACT CORRIDOR PLOT - TASK 4

The SRB impact corridor is a rectangle containing the nominal and RTLS SRB footprints. Figure 4.4-1 presents the equations which define the latitude, longitude coordinates of the four corners of the rectangle. Figure 4.0-4 presents the desired plot format with the corridor, groundtracks, landmasses, and annotations.
START

INPUT: \(\lambda_L, \phi_L, DR, LCR, \lambda_R, \phi_R, AL, AR, RCR \) - nominal
\(\lambda_L, \phi_L, AURN, URN, LCR, \lambda_R, \phi_R, AR, RCR \) - RTLS
\((\lambda, \phi) \) groundtrack for nominal SRB
\((\lambda, \phi) \) groundtrack for RTLS SRB

COMPUTE COORDINATES OF 1ST CORNER OF CORRIDOR
CALL LATLON *

INPUT: \((\lambda_L, \phi_L, DR, -LCR, AL) \) - nominal
OUTPUT: \((\lambda, \phi) \) for 1st corner

COMPUTE COORDINATES OF 2ND CORNER OF CORRIDOR
CALL LATLON *

INPUT: \((\lambda_R, \phi_R, DR, RCR, AR) \) - nominal
OUTPUT: \((\lambda, \phi) \) for 2nd corner

COMPUTE COORDINATES OF 3RD CORNER OF CORRIDOR
CALL LATLON *

INPUT: \((\lambda_L, \phi_L, -AURN, URN), -LCR, AL \) - RTLS
OUTPUT: \((\lambda, \phi) \) for 3rd corner

COMPUTE COORDINATES FOR 4TH CORNER OF CORRIDOR
CALL LATLON *

INPUT: \((\lambda_R, \phi_R, -AURN, URN, RCR, AR) \) - RTLS
OUTPUT: \((\lambda, \phi) \) for 4th corner

ESTABLISH BOUNDARIES
CALL BOUNDRY-**

Input: Test Range (ETR or WTR), Map, SRB
Output: Coordinates of upper left and lower right hand corner of map; plotted map boundary

PLOT MAP, TITLE
Input Title; print title at bottom of page
Plot Map within specified boundaries, with latitude and longitude lines every degree, tic marks every 10 min.

PLOT DATA
Use coordinates of corridor corners to plot corridor on map.
Plot ground tracks from nominal SRB staging to impact for nominal and RTLS

END

*APPENDIX E
**APPENDIX F

FIGURE 4.4-1 SRB IMPACT CORRIDOR PLOT FLOWCHART (TASK 4)
5.0 ET RTLS IMPACT PREDICTION PROCESSOR

The purpose of the ET RTLS Impact Prediction Processor is to compute the impact area of the ET for RTLS abort profiles. Output of the processor consists of the size and shape of the ET impact footprint and the location of the four footprints which form the extremes of the impact corridor for all RTLS trajectories. Figure 5.0-1 is an overview of the processor executive.

The processor is constructed such that several sets of ET separation conditions, representing the scope of RTLS trajectories, are input. The instantaneous impact point (IIP) of each case is computed and the four cases which result in the largest downrange, uprange, left, and right crossrange are identified (task 1 & 2). The descent trajectories of these four cases are simulated to determine the actual impact point locations as shown in task 3.

The downrange, crossrange impact point dispersions due to separation condition, environmental, and aerodynamic uncertainties are stored in the processor data base. Tabular lookup is used in task 6 to determine the mission dependent dispersions which are combined to form the footprint in task 7. The impact corridor is computed using the footprint size and the four extreme impact point locations.

Output from the processor consists of tables of separation conditons and impact points of the four extreme trajectories, and the size and shape of the impact footprint and corridor. The data required to plot the footprint and the impact corridor and groundtracks are stored on secure files. The plots are generated by the ET RTLS Plot Processor described in Section 6.0.

The following subsections describe the requirements for each task presented in the executive flowchart.
INPUT:
ET SEPARATION CONDITIONS FOR N CASES - \(\theta, \phi, V_D, V_0, Y_0, V_0, \) GET
ET SEPARATION CONDITION UNCERTAINTIES

 COMPUTE IIP FOR EACH N CASE

 TASK 1

 DETERMINE EXTREME IIP CASES,
 DMAX,DMIN,LCRMAX,RCRMAX

 TASK 2

 DETERMINE ET IMPACT POINT
 DISPERSIONS FROM STORED
 DATA BASE

 TASK 6

 RSS DISPERSIONS TO
 DETERMINE ET FOOT-
 PRINT SIZE

 TASK 7

 DETERMINE DOWNRANGE
 DIRECTION, A, FOR
 EACH CASE

 TASK 4

 DETERMINE RELATIVE DR,
 CR DISTANCE BETWEEN
 IMPACT POINTS

 TASK 5

 COMPUTE CORRIDOR
 DIMENSIONS

 TASK 8

 DISPLAY RESULTS

 TASK 9

 STORE RESULTS

 TASK 10

 END
5.1 ET RTLS IMPACT DATA BASE

The stored data base of this processor consists of data from which the
impact point dispersions are computed. Table 5.1-I presents the parameters
comprising the data base. The uprange, downrange, and crossrange dispersions
caused by separation condition uncertainties are expressed as sensitivities
and are constant for all trajectories. The dispersions due to winds are
correlated as a function of launch azimuth. The dispersions caused by
atmospheric density and aerodynamic uncertainties are constant.
<table>
<thead>
<tr>
<th>GROUP</th>
<th>DEPENDENT VARIABLE</th>
<th>INDEPENDENT VARIABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation</td>
<td>aDR, aCR, aDR, aDR, aDR</td>
<td>NONE (CONSTANT)</td>
</tr>
<tr>
<td>Condition Dispersions</td>
<td>aUR, aUR, aUR, aUR, aUR</td>
<td>None (CONSTANT)</td>
</tr>
<tr>
<td>Atmospheric Dispersions</td>
<td>DR = CONSTANT</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>UR = CONSTANT</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>CR = CONSTANT</td>
<td>NULL</td>
</tr>
<tr>
<td>Aerodynamic Dispersions</td>
<td>DR = CONSTANT</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>UR = CONSTANT</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>CR = CONSTANT</td>
<td>NULL</td>
</tr>
<tr>
<td>Wind Dispersions</td>
<td>DR (ψ_i)</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>UR (ψ_i)</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>LCR (ψ_i)</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>RCR (ψ_i)</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>δ_1</td>
<td>NULL</td>
</tr>
</tbody>
</table>
5.2 INSTANTANEOUS IMPACT POINT COMPUTATION - TASK 1

Figure 5.2-1 presents a flowchart for this task. The instantaneous impact points (IIP) for each set of input ET separation conditions are computed using logic similar to SVDS subroutine IMPACT (Reference 2). The output from this task is the latitude, longitude coordinates of the IIP for each case.
FIGURE 5.2-1 INSTANTANEOUS IMPACT POINT FLOWCHART (TASK 1)
5.3 EXTREME INSTANTANEOUS IMPACT POINT CASES - TASK 2

A flowchart for this task is presented in Figure 5.3-1. The relative distance between the IIP for each case is computed. The four cases which result in the largest uprange, downrange, left and right crossrange are identified and output.
INPUT: SEPARATION POSITION OF EACH CASE, \((\lambda_i, \phi_i)\)

IIP OF EACH CASE \((\lambda_{IIP_i}, \phi_{IIP_i})\)

COMPUTE DOWNRANGE DIRECTION \(A_i\) of each case.
CALL AZIMUTH *
INPUT: \((\lambda_i, \phi_i, \lambda_{IIP_i}, \phi_{IIP_i})\) OUTPUT: \(A_i\)

COMPUTE REFERENCE DIRECTION AND IMPACT POINT

\[
\bar{A} = \frac{\sum A_i}{N} \quad \bar{\phi} = \frac{\sum \phi_{IIP_i}}{N}
\]

\[
\bar{\lambda} = \frac{\sum \lambda_{IIP_i}}{N}
\]

COMPUTE DOWNRANGE, CROSSRANGE DISTANCE FROM REFERENCE POINT TO EACH IIP
CALL RNGERR **
INPUT: \(\lambda, \phi, \lambda_{IIP_i}, \phi_{IIP_i}, \bar{A}\)
OUTPUT: \(DR_i, CR_i\)

DETERMINE WHICH CASES RESULT IN MAXIMUM AND MINIMUM DOWNRANGE AND CROSSRANGE

OUTPUT: IDENTIFICATION OF DRMAX, DRMIN, LCRMAX, RCRMAX CASES

END

*APPENDIX C
**APPENDIX D

FIGURE 5.3-1 EXTREME INSTANTANEOUS IMPACT POINT CASES FLOWCHART (TASK 2)
5.4 ET RTLS DESCENT TRAJECTORY - TASK 3

The trajectories of each of the four extreme IIP cases are simulated from ET separation to impact. The requirements for a general 3-DOF trajectory simulation are presented in Appendix A. General data such as ET weight, atmospheric model flag, and wind data will be obtained from the Master Data Base. Aerodynamic coefficients will be input from a preconstructed data file. At the time of execution the only input data required are the ET separation conditions. Figure 5.4-1 presents a flowchart for this task illustrating the input and output parameters.
Input: SEPARATION CONDITIONS - HD, λ, φ₀, Ve, Ye, ψ₀, GET

Compute trajectory parameters from separation to impact (APPENDIX A)

OUTPUT:
λIp, φIp of impact
time of impact
λ vs. time
φ vs. time
Range from pad vs. time

FIGURE 5.4-1 ET RTLS DESCENT TRAJECTORY FLOWCHART (TASK 3)
5.5 ET RTLS DOWNRANGE DIRECTION - TASK 4

The downrange direction of each of the four extreme IIP cases are computed
in order to compute the relative distances between impact points, and
to orient the footprints on a map. Figure 5.5-1 presents a flowchart
for this computation.
INPUT: λ_i, ϕ_i, λ_{IPi}, ϕ_{IPi}

CALL AZIMUTH *
INPUT: λ_i, ϕ_i, λ_{IPi}, ϕ_{IPi}
OUTPUT: A_i

OUTPUT: A_i

END

*APPENDIX C

FIGURE 5.5-1 ET RTLS DOWNRANGE DIRECTION FLOWCHART (TASK 4)
5.6 IMPACT POINT RELATIVE DISTANCE - TASK 5

The relative downrange, crossrange distances between the impact points of the four extreme IIP cases are required to compute the size of the impact corridor. Figure 5.6-1 presents a flowchart for this task.
INPUT: \((\lambda, \phi)_A\) FOR RCMAX
\((\lambda, \phi)_A\) FOR DRMAX
\((\lambda, \phi)_A\) FOR URMAX
\((\lambda, \phi)_A\) FOR LCRMAX

COMPUTE DR, CR FROM R CMAX TO DRMAX
CALL RNGERR *
INPUT \((\lambda_{RC}, \phi_{RC}, \lambda_{DR}, \phi_{DR}, A_{RC})\)
OUTPUT \((DR_{R/U}, CR_{R/U})\)

COMPUTE DR, CR FROM RCMAK TO URMAX
CALL RNGERR *
INPUT \((\lambda_{RC}, \phi_{RC}, \lambda_{UR}, \phi_{UR}, A_{RC})\)
OUTPUT \((DR_{R/U}, CR_{R/U})\)

COMPUTE DR, CR FROM LCRMAX TO DRMAX
CALL RNGERR *
INPUT \((\lambda_{LC}, \phi_{LC}, \lambda_{DR}, \phi_{DR}, A_{LC})\)
OUTPUT \((DR_{L/U}, CR_{L/U})\)

COMPUTE DR, CR FROM LCRMAX TO URMAX
CALL RNGERR *
INPUT \((\lambda_{LC}, \phi_{LC}, \lambda_{UR}, \phi_{UR}, A_{LC})\)
OUTPUT \((DR_{L/U}, CR_{L/U})\)

OUTPUT: \(DR_{R/D}, CR_{R/D}, DR_{R/U}, CR_{R/U}\)
\(DR_{L/D}, CR_{L/D}, DR_{L/U}, CR_{L/U}\)

END

*APPENDIX D

FIGURE 5.6-1 ET IMPACT POINT RELATIVE DISTANCE FLOWCHART (TASK 5)
5.7 IMPACT POINT DISPERSIONS - TASK 6

The impact point dispersions are computed by tabular lookup and linear interpolation of the data base. Figure 5.7-1 presents a flowchart for this task.
INPUT: ψ_e, U_1 (\pmHD, \pmDR, \pmCR, \pmVe, \pmVe, $\pm\psi_e$)

DETERMINE DISPERSIONS DUE TO WINDS BY LINEAR INTERPOLATION OF DATA BASE

$$\begin{align*}
\Delta R_{\text{WIND}} &= f(\psi_e) \\
\Delta U_{\text{WIND}} &= f(\psi_e) \\
\Delta R_{\text{WIND}} &= f(\psi_e)
\end{align*}$$

DETERMINE DISPERSIONS DUE TO SEPARATION CONDITION UNCERTAINTIES, U_i, FROM DATA BASE SENSITIVITIES

$$\begin{align*}
\Delta R_i &= \frac{\partial \Delta R_i}{\partial U_i} U_i, \quad i = 1, 6 \\
\Delta C_i &= \frac{\partial \Delta C_i}{\partial U_i} U_i \\
\Delta U_i &= \frac{\partial \Delta U_i}{\partial U_i} U_i
\end{align*}$$

DETERMINE DISPERSIONS DUE TO ATMOSPHERE AND AERO FROM DATA BASE

$$\begin{align*}
\Delta R_{\text{ATM}} &= \text{CONST} \\
\Delta U_{\text{ATM}} &= \text{CONST} \\
\Delta C_{\text{ATM}} &= \text{CONST} \\
\Delta R_{\text{AERO}} &= \text{CONST} \\
\Delta U_{\text{AERO}} &= \text{CONST}
\end{align*}$$

OUTPUT: ΔR_w, ΔU_w, ΔR_{WIND}, ΔU_{WIND}

ΔR_i, ΔC_i, ΔU_i

ΔR_{ATM}, ΔU_{ATM}, ΔC_{ATM}, ΔR_{AERO}, ΔU_{AERO}, ΔC_{AERO}

END

FIGURE 5.7-1 ET IMPACT POINT DISPERSIONS FLOWCHART (TASK 6)
5.8 FOOTPRINT DIMENSIONS - TASK 7

The dimensions of the ET impact footprint are computed by root-sum-squaring the impact dispersions from task 6. Figure 5.8-1 presents a flowchart for this task.
INPUT: DR_W, UR_W, RCR_W, LCR_W,
DR_i, CR_i, UR_i,
DR_AERO, UR_AERO, CR_AERO,
DR_ATM, UR_ATM, CR_ATM

RSS DISPERSIONS TO DETERMINE FOOTPRINT SIZE

\[
DR = \left(\sum_{i=1}^{6} \frac{1}{2} (DR_i + DR_W + DR_AERO + DR_ATM) \right)^{\frac{1}{2}}
\]

\[
UR = \left(\sum_{i=1}^{6} \frac{1}{2} (UR_i + UR_W + UR_AERO + UR_ATM) \right)^{\frac{1}{2}}
\]

\[
LCR = \left(\sum_{i=1}^{6} \frac{1}{2} (LCR_i + LCR_W + CR_AERO + CR_ATM) \right)^{\frac{1}{2}}
\]

\[
RCR = \left(\sum_{i=1}^{6} \frac{1}{2} (RCR_i + RCR_W + CR_AERO + CR_ATM) \right)^{\frac{1}{2}}
\]

OUTPUT: DR, UR, LCR, RCR

FIGURE 5.8-1 ET RTLS FOOTPRINT DIMENSIONS FLOWCHART (TASK 7)
5.9 IMPACT CORRIDOR DIMENSIONS - TASK 8

The ET impact corridor is the area which contains all the RTLS impact footprints for the particular mission. The size of the corridor is computed from the relative distance between the extreme impact points and the footprint size as shown in Figure 5.9-1.
INPUT: \(D_{R/D}, C_{R/D}, D_{R/U}, C_{R/U}, D_{L/D}, C_{L/D},
\)
\(D_{L/U}, C_{L/U}, D_{R}, U, L_{R}, L_{C} \), RCR

COMPUTE CORRIDOR LENGTH AND WIDTH

\[
L = U_{R} - D_{R/U} + D_{R/D} + DR
\]
\[
W = L_{CR} + C_{L/U} - C_{R/U} + RCR
\]

OUTPUT: \(L, W \)

FIGURE 5.9-1 ET IMPACT CORRIDOR DIMENSIONS FLOWCHART (TASK 8)
5.10 OUTPUT DISPLAYS - TASK 9

Tabular output from the ET RTLS Impact Prediction Processor consists of terminal screen displays and hardcopy print of document quality. Tables 5.10-I and 5.10-II are examples of the data and format to be output. Table 5.10-I is a list of ET separation conditions for the four extreme IIP cases. Table 5.10-II is an impact summary table listing the impact point locations and the size of the footprint and corridor.
TABLE 5.10-I EXAMPLE ET RTLS SEPARATION CONDITIONS TABLE

<table>
<thead>
<tr>
<th></th>
<th>MAX UPRANGE</th>
<th>MAX DOWNRANGE</th>
<th>MAX LEFT CROSSRANGE</th>
<th>MAX RIGHT CROSSRANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IMPACT POINT</td>
<td>IMPACT POINT</td>
<td>IMPACT POINT</td>
<td>IMPACT POINT</td>
</tr>
<tr>
<td>GET (sec)</td>
<td>796.040</td>
<td>800.322</td>
<td>799.965</td>
<td>782.935</td>
</tr>
<tr>
<td>Altitude (ft)</td>
<td>231518.8</td>
<td>228627.3</td>
<td>231332.8</td>
<td>230542.3</td>
</tr>
<tr>
<td>Longitude (deg)</td>
<td>-76.973</td>
<td>-77.136</td>
<td>-77.007</td>
<td>-76.009</td>
</tr>
<tr>
<td>Geodetic Latitude (deg)</td>
<td>30.678</td>
<td>30.358</td>
<td>30.836</td>
<td>30.756</td>
</tr>
<tr>
<td>Relative Velocity (fps)</td>
<td>6633.057</td>
<td>6445.577</td>
<td>6636.169</td>
<td>6526.115</td>
</tr>
<tr>
<td>Relative Flightpath Angle (deg)</td>
<td>-0.221</td>
<td>-1.407</td>
<td>0.425</td>
<td>0.956</td>
</tr>
<tr>
<td>Relative Azimuth (deg)</td>
<td>-118.5</td>
<td>-116.122</td>
<td>-120.901</td>
<td>-117.895</td>
</tr>
<tr>
<td>Radius Vector (ft)</td>
<td>21139109</td>
<td>21136560</td>
<td>21138754</td>
<td>21137760</td>
</tr>
<tr>
<td>Geocentric Latitude (deg)</td>
<td>30.511</td>
<td>30.192</td>
<td>30.669</td>
<td>30.536</td>
</tr>
<tr>
<td>Inertial Velocity (fps)</td>
<td>6633.057</td>
<td>5282.541</td>
<td>5540.553</td>
<td>5875.667</td>
</tr>
<tr>
<td>Inertial Flightpath Angle (deg)</td>
<td>-0.267</td>
<td>-1.717</td>
<td>0.509</td>
<td>1.003</td>
</tr>
<tr>
<td>Inertial Azimuth (deg)</td>
<td>-125.146</td>
<td>-122.500</td>
<td>-127.961</td>
<td>-124.895</td>
</tr>
<tr>
<td>CASE</td>
<td>GEODETIC LATITUDE (DEG)</td>
<td>LONGITUDE (DEG)</td>
<td>RANGE FROM PAD (N.MI.)</td>
<td>DCR* (N.MI.)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>MAX UPRANGE</td>
<td>29.807</td>
<td>-78.615</td>
<td>128.503</td>
<td>-</td>
</tr>
<tr>
<td>MAX DOWN RANGE</td>
<td>29.670</td>
<td>-78.773</td>
<td>114.650</td>
<td>32.053</td>
</tr>
<tr>
<td>MAX LEFT CROSS RANGE</td>
<td>29.75</td>
<td>-78.635</td>
<td>124.785</td>
<td>10.534</td>
</tr>
<tr>
<td>MAX RIGHT CROSS RANGE</td>
<td>29.859</td>
<td>-78.650</td>
<td>126.504</td>
<td>15.243</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOOTPRINT DIMENSION</th>
<th>UR (N.MI.)</th>
<th>DR (N.MI.)</th>
<th>LCR (N.MI.)</th>
<th>RCR (N.MI.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.36</td>
<td>14.36</td>
<td>3.70</td>
<td>2.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CORRIDOR DIMENSION</th>
<th>LENGTH</th>
<th>WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50.49</td>
<td>15.60</td>
</tr>
</tbody>
</table>

*DR, CR are downrange and crossrange distances from the maximum uprange impact point.
5.11 STORED PLOT DATA - TASK 10

All data required by the ET RTLS Plot Processor is stored in a secure catalogued file. Table 5.11-I lists the parameters which are stored in the file and used by the plot processor.
TABLE 5.11-1 ET RTLS STORED PLOT DATA

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR, UR, LCR, RCR</td>
<td>ET IMPACT FOOTPRINT SIZE</td>
</tr>
<tr>
<td>(λ<sub>LCR</sub>, φ<sub>LCR</sub>), (λ<sub>RCR</sub>, φ<sub>RCR</sub>)</td>
<td>IMPACT LOCATION OF EXTREME CROSSRANGE CASES</td>
</tr>
<tr>
<td>A<sub>LCR</sub>, A<sub>RCR</sub></td>
<td>DOWNRANGE DIRECTION OF EXTREME CROSSRANGE CASES</td>
</tr>
<tr>
<td>λ vs. TIME, φ vs. TIME, RANGE vs. TIME</td>
<td>TRAJECTORY PARAMETERS OF FOUR EXTREME CASES</td>
</tr>
<tr>
<td>DR<sub>R/D</sub>, CR<sub>R/D</sub>, DR<sub>R/U</sub>, CR<sub>R/U</sub>, DR<sub>L/D</sub>, CR<sub>L/D</sub>, DR<sub>L/U</sub>, CR<sub>L/U</sub></td>
<td>RELATIVE DISTANCES BETWEEN EXTREME IMPACT POINTS</td>
</tr>
</tbody>
</table>
6.0 ET RTLS PLOT PROCESSOR

The purpose of the ET RTLS Plot Processor is to construct the ET impact footprint and corridor plots for RTLS profiles. The data required by the processor is generated by the ET RTLS Impact Prediction Processor described in Section 5.0, and stored on a file. The plot processor accesses the data and constructs the desired plots as illustrated in the flowchart of Figure 6.0-1. Figures 6.0-2 and 6.0-3 are examples of the plots to be generated. The quality of the plots will be sufficient for inclusion in documents. The following subsections describe the requirements for the two tasks presented in the executive flowchart.
FIGURE 6.0-1 ET RTLS PLOT PROCESSOR EXECUTIVE FLOWCHART
STS-1 ET RTLS IMPACT FOOTPRINT

Figure 6.0-2 EXAMPLE ET RTLS IMPACT FOOTPRINT PLOT
Figure 6-3.10: ET SEPARATION IMPACT CONSTRAINT BOUNDARY - ET IMPACT CORRIDOR - STS-1 RTLS ET IMPACT CORRIDOR

- IMPACT CONSTRAINT BOUNDARY
- ET IMPACT CORRIDOR
- KSC LAUNCH SITE

WEST LONGITUDE, DEG
NORTH LATITUDE, DEG
6.1 ET RTLS FOOTPRINT PLOT - TASK 1

The impact footprint of the ET is plotted on a downrange, crossrange grid as illustrated in Figure 6.0-2. A flowchart of this task is presented in Figure 6.1-1.
Input: UR, DR, LCR, RCR

Compute downrange, crossrange coordinates of ET footprint.

CALL.FOOT *
INPUT: (0, 0, 90, DR, UR, LCR, RCR)
OUTPUT: (D, C) ARRAY

Plot footprint on DR, CR grid

START

END

*APPENDIX B

FIGURE 6.1-1 ET RTLS IMPACT FOOTPRINT PLOT FLOWCHART (TASK 1)
6.2 ET RTLS IMPACT CORRIDOR - TASK 2

The ET impact corridor is the area containing all the ET impact footprints for a particular mission. Figure 6.2-1 presents a flowchart for computing the latitude, longitude coordinates of the four corners of the corridor. Figure 6.0-3 presents the desired plot format with the corridor, groundtracks, landmasses, and annotations.
Input: ALCR, OLCR, XRCR, XRCR, UR, DR, LCR, RCR, DRR/D, DRR/U, DRL/D, DRL/U, ARC, ALC

Compute coordinates of 1st corner of corridor:
CALL LATLON
INPUT: (ARCR, $RCR, (DR+DRR/D), RCR, ARC)
OUTPUT: (λ₁, φ₁), coordinates of 1st corner

Compute coordinates of 2nd corner of corridor:
CALL LATLON *
INPUT: (ARCR, $RCR, (DRR/U-UR), RCR, ARC)
OUTPUT: (λ₂, φ₂), coordinates of 2nd corner

Compute coordinates of 3rd corner of corridor:
CALL LATLON *
INPUT: (ARCR, $RCR, (DRL/U-UR), LCR, ALC)
OUTPUT: (λ₃, φ₃), coordinates of 3rd corner

Compute coordinates of 4th corner of corridor:
CALL LATLON *
INPUT: (ARCR, $RCR, (DRL/U-UR), LCR, ALC)
OUTPUT: (λ₄, φ₄), coordinates of 4th corner

ESTABLISH BOUNDARIES FOR MAP
CALL BOUNDRY USING SRB MAP DEFAULTS

PLOT MAP, TITLE
Input Title; print title at bottom of page
Plot map within established boundary confines

PLOT CORRIDOR ON MAP

PLOT GROUNDTRACKS (λ, φ) OF LCRMAX AND RCRMAX

END

APPENDIX E

FIGURE 6.2-1 ET RTLS IMPACT CORRIDOR PLOT FLOWCHART (TASK 2)
7.0 ET NOMINAL/AOA/ATO IMPACT PREDICTION PROCESSOR

The purpose of the ET Nominal/AOA/ATO Impact Prediction Processor is to compute the ET impact footprints and related ET disposal trajectory data for nominal, Abort-to-Orbit (ATO), and Abort-Once-Around (AOA) profiles. An overview of the processor executive is presented in Figure 7.0-1.

The downrange, crossrange dimensions of the impact footprint are determined in tasks 1 through 11. The impact point dispersions due to the rotational lifting effect (RLE), trajectory uncertainties, and debris scatter after ET breakup, are obtained by tabular lookup in the processor data base (tasks 2 - 5). These dispersions are then statistically combined in tasks 6 through 11 to define the total footprint dimensions.

The location of the ET footprint is obtained by simulating the ET descent trajectory and computing the latitude and longitude of the impact point as identified in task 14.

Output from the processor consists of tabular and stored data as shown in tasks 15-16. The tabular data lists the impact dispersions and footprint size and location. The stored data consists of the ET groundtrack and footprint dimensions which are stored on a secure file accessible to the ET Plot Processor. The ET Plot Processor uses this data to construct the ET footprint plot on a map.

The following subsections describe the detailed requirements for each task presented in the executive overview.
INPUT: MECO CONDITIONS - H, \lambda, \phi, \psi, e, \theta, \phi, GET
UNCERTAINTIES, \sigma
OUTPUT FILE NO. - F

DETERMINE ET RUPTURE AND
BREAKUP ALTITUDE FROM STORED
DATA BASE

DETERMINE RILE ORANGE
DISPERSION CONSTANTS FROM
STORED DATA BASE

DETERMINE TRAJECTORY \&
DR DISPERSIONS FROM STORED
DATA BASE TASK 2

DETERMINE DEBRIS \&
DR DISPERSIONS FROM STORED
DATA BASE

DETERMINE DEBRIS TRAJECTORY
DISPERSION CONSTANTS

DETERMINE DR DISPERSIONS
FROM STORED DATA BASE

COMPUTE DEBRIS DISPERSION

COMPUTE TRAJECTORY
DISPERSION CONSTANTS

COMPUTE DEBRIS DISPERSION

RSS DR DISPERSIONS TO
OBTAIN INTACT ET FOOTPRINT
WIDTH

COMPUTE RILE AND INTACT
ET 3\sigma \&, OR DISPERSIONS

ADD DR, OR DISPERSIONS TO
OBTAIN TOTAL FOOTPRINT
DIMENSIONS

COMPUTE TOTAL DEBRIS 3\sigma
ET, OR DISPERSIONS

ADD DR, OR DISPERSIONS TO
OBTAIN TOTAL FOOTPRINT
DIMENSIONS TASK 11

COMPUTE INTACT ET IMPACT
PROBABILITY DISTRIBUTION

COMPUTE TOTAL DEBRIS IMPACT
PROBABILITY DISTRIBUTION

DISPLAY RESULTS TASK 15

STORE DATA IN
OUTPUT FILE F TASK 16

YES ANOTHER CASE?

NO STOP

START

FIGURE 7-0.1
ET IMPACT PROBABILITY PREDICTION PROCESSOR EXECUTIVE
7.1 ET NOMINAL/AOA/ATO IMPACT DATA BASE

The stored data base of this processor consists of the data required to determine the ET footprint size by tabular lookup. Table 7.1-I presents the parameters comprising the data base. The altitudes of liquid hydrogen tank rupture, liquid oxygen tank rupture, and breakup are stored as a function of ET weight and orbital inclination. The uprange, downrange, and crossrange dispersions caused by MECO condition uncertainties are expressed as sensitivities and stored as a function of MECO altitude, ET weight, and launch site. The dispersions caused by the rotational lifting effect are expressed as constants of a composite curve consisting of three Gaussian distributions, and are stored as a function of MECO altitude, ET weight, breakup altitude, and launch site. The uprange, downrange, and crossrange dispersions of each piece of debris are stored as a function of breakup altitude.
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DEPENDENT VARIABLE</th>
<th>INDEPENDENT VARIABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTATIONAL LIFTING EFFECT</td>
<td>C₁, C₂, C₃</td>
<td>ETR OR WTR</td>
</tr>
<tr>
<td>CONSTANTS</td>
<td>μ₁, μ₂, μ₃</td>
<td>MECO ALTITUDE</td>
</tr>
<tr>
<td></td>
<td>σ₁, σ₂, σ₃</td>
<td>ET WEIGHT</td>
</tr>
<tr>
<td>ROTATIONAL LIFTING EFFECT</td>
<td>CRRLE</td>
<td>BREAKUP ALTITUDE</td>
</tr>
<tr>
<td>CROSSRANGE DISPERSION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO CONDITION UNCERTAINTY</td>
<td>aDR, aDR, aDR, aDR</td>
<td>ETR OR WTR</td>
</tr>
<tr>
<td></td>
<td>aHD, aVe, aYe, aW</td>
<td>MECO ALTITUDE</td>
</tr>
<tr>
<td>ET DRAG</td>
<td>ΔURDRG, ΔURDRG</td>
<td>ET WEIGHT</td>
</tr>
<tr>
<td>ATMOSPHERE</td>
<td>ΔDRATM, ΔURATM</td>
<td></td>
</tr>
<tr>
<td>TRAJECTORY CROSSRANGE</td>
<td>CRTRJ</td>
<td></td>
</tr>
<tr>
<td>DEBRIS DISPERSIONS</td>
<td>URDEB, DRDEB, CRDEB</td>
<td>BREAKUP ALTITUDE</td>
</tr>
<tr>
<td>LH₂ RUPTURE ALTITUDE</td>
<td>H_H</td>
<td></td>
</tr>
<tr>
<td>LO₂ RUPTURE ALTITUDE</td>
<td>H₀</td>
<td>ET WEIGHT</td>
</tr>
<tr>
<td>BREAKUP ALTITUDE</td>
<td>HBu</td>
<td>ORBIT INCLINATION</td>
</tr>
</tbody>
</table>
7.2 RUPTURE AND BREAKUP ALTITUDES - TASK 1

The liquid hydrogen tank rupture altitude, liquid oxygen tank rupture altitude, and the breakup altitude are determined by linear interpolation of the data base. Figure 7.2-1 presents a flowchart for this task.
START

INPUT: WT,i

DETERMINE LH₂ RUPTURE ALTITUDE
BY LINEAR INTERPOLATION OF
DATA BASE.

\[H_H = f(WT,i) \]

DETERMINE LO₂ RUPTURE ALTITUDE
BY LINEAR INTERPOLATION OF
DATA BASE.

\[H_0 = f(WT,i) \]

DETERMINE BREAKUP ALTITUDE
BY LINEAR INTERPOLATION OF
DATA BASE.

\[H_{BU} = f(WT,i) \]

OUTPUT: \(H_H, H_0, H_{BU} \)

END

FIGURE 7.2-1 RUPTURE AND BREAKUP ALTITUDE FLOWCHART (TASK 1)
7.3 ROTATIONAL LIFTING EFFECT DISPERSION CONSTANTS - TASK 2

The distribution of impact point dispersions due to the rotational lifting effect (RLE) are represented by the sum of three Gaussian curves. The coefficients defining these curves are correlated and stored in the data base. Linear interpolation is used to compute the coefficients as shown in the flowchart of Figure 7.3-1.
INPUT: ETR OR WTR, HD, WT, HBU

DETERMINE RLE DOWNRANGE DISPERSION
CONSTANTS, C_i, μ_i, σ_i, BY LINEAR
INTERPOLATION OF DATA BASE.

$C_i = f(ETR \ OR \ WTR, HD, WT, HBU)$
$\mu_i = f(ETR \ OR \ WTR, HD, WT, HBU)$
$\sigma_i = f(ETR \ OR \ WTR, HD, WT, HBU)$
i = 1, 3

OUTPUT: C_i, μ_i, σ_i i = 1, 3

FIGURE 7.3-1 RLE DISPERSION CONSTANTS FLOWCHART (TASK 2)
7.4 TRAJECTORY DISPERSIONS - TASK 3

The uprange, downrange impact point dispersions due to MECO condition uncertainties, drag uncertainties, and atmospheric uncertainties are obtained by linear interpolation of the data base. Figure 7.4-1 presents a flowchart for this task.
Figure 7.4-1 Trajectory Dispersion Flowchart (Task 3)

1. **INPUT:** ETR OR WTR, HD, WT, U_i
2. **Determine MECO condition sensitivities by linear interpolation of data base**
 \[\frac{\partial DR}{\partial U_i} = f(ETR \text{ OR } WTR, HD, WT) \]
3. **Compute UR, DR dispersions due to MECO condition uncertainties, U_i.**
 \[DR_i = \frac{\partial DR}{\partial U_i} \cdot U_i \quad i = 1, 4 \]
 \[UR_i = \frac{\partial UR}{\partial U_i} \cdot U_i \]
4. **Determine UR, DR dispersions due to drag and atmosphere uncertainties by linear interpolation of data base**
 \[DR_{RG} = f(ETR \text{ OR } WTR, HD, WT) \]
 \[UR_{RG} = f(ETR \text{ OR } WTR, HD, WT) \]
 \[DR_{ATM} = f(ETR \text{ OR } WTR, HD, WT) \]
 \[UR_{ATM} = f(ETR \text{ OR } WTR, HD, WT) \]
5. **OUTPUT:** \(DR_i, UR_i, DR_{RG}, UR_{RG}, DR_{ATM}, UR_{ATM} \)
6. **END**
7.5 DEBRIS IMPACT DISPERSIONS - TASK 4

The uprange, downrange impact point dispersions of each of the twenty-one pieces of debris are obtained by linear interpolation of the data base. Figure 7.5-1 presents a flowchart for this task.
Determine UR, DR dispersions for each piece of debris:

\[UR_j = f(H_{BU}) \]
\[DR_j = f(H_{BU}) \]
\[j = 1-21 \]

Output: \(UR_j, DR_j \) \(j = 1, 21 \)
7.6 CROSSRANGE IMPACT POINT DISPERSIONS - TASK 5

The crossrange impact point dispersions due to the rotational lifting effect, trajectory uncertainties, and debris scatter are obtained by linear interpolation of the data base. Figure 7.6-1 presents a flowchart for this task.
INPUT: ETR OR WTR, HD, WT, HBU

DETERMINE CR DISPERSIONS DUE TO RLE, TRAJECTORY, DEBRIS SCATTER BY LINEAR INTERPOLATION OF DATA BASE.

\[
\begin{align*}
C_{R\text{RLE}} &= f(ETR \text{ OR WTR, HD, WT, HBU}) \\
C_{R\text{T}} &= f(ETR \text{ OR WTR, HD, WT}) \\
C_{R\text{DEB}} &= f(HBU)
\end{align*}
\]

OUTPUT: \(C_{R\text{RLE}}, C_{R\text{T}}, C_{R\text{DEB}}\)

FIGURE 7.6-1. CROSSRANGE IMPACT PRINT DISPERSIONS FLOWCHART (TASK 5)
7.7 TRAJECTORY DISPERSION CONSTANTS - TASK 6

The uprange, downrange dispersions caused by each trajectory uncertainty are root-sum-squared to obtain the $+3\sigma$ and -3σ trajectory dispersions. The constants of the Gaussian distribution reflecting these 3σ dispersions are obtained as illustrated in the flowchart of Figure 7.7-1.
INPUT: $D_{R_i}, U_{R_i}, D_{DRG}, U_{DRG}, D_{ATM}, U_{ATM}$

COMPUTE 3σ RSS TRAJECTORY UR AND DR

$$U_{RT} = \left(\sum_{i=1}^{4} U_{R_i}^2 + U_{DRG}^2 + U_{ATM}^2 \right)^{1/2}$$

$$D_{RT} = \left(\sum_{i=1}^{4} D_{R_i}^2 + D_{DRG}^2 + D_{ATM}^2 \right)^{1/2}$$

COMPUTE GAUSSIAN DISTRIBUTION CONSTANTS.

$$C_T = 1.0$$

$$\mu_T = (D_{RT} - U_{RT})/2.0$$

$$\sigma_T = (D_{RT} + U_{RT})/6.0$$

OUTPUT: $U_{RT}, D_{RT}, C_T, \mu_T, \sigma_T$

END

Figure 7.7-1 Trajectory Dispersion Constants Flowchart (Task 6)
7.8 DEBRIS DISPERSION CONSTANTS - TASK 7

The impact points of each piece of debris are assumed to be normally distributed between the uprange and downrange 3σ impact points. The constants of the Gaussian distributions for each of the twenty-one debris pieces are computed as shown in the flowchart of Figure 7.8-1.
INPUT: \(UR_j, DR_j, A_j, j = 1,21 \)

COMPUTE GAUSSIAN DISTRIBUTION
CONSTANTS FOR EACH OF THE
21 DEBRIS PIECES.

\[
C_j = A_j \]

\[
\mu_j = (DR_j + UR_j)/2.0 \]

\[
\sigma_j = (DR_j - UR_j)/6.0 \]

\(j = 1,21 \)

OUTPUT: \(C_j, \mu_j, \sigma_j, j = 1-21 \)

END

FIGURE 7.8-1 DEBRIS DISPERSION CONSTANTS FLOWCHART (TASK 7)
7.9 INTACT ET FOOTPRINT WIDTH - TASK 8

The width of the intact ET footprint is computed by root-sum-squaring the 3σ crossrange dispersions caused by the trajectory uncertainties and rotational lifting effect. Figure 7.9-1 presents a flowchart of this task.
INPUT: \(C_{RLE}, C_{RT} \)

COMPUTE 3\(\sigma \) CROSS RANGE FOR

INTACT ET.

\[
C_{ET} = \left(C_{RLE}^2 + C_{RT}^2 \right)^{\frac{1}{2}}
\]

OUTPUT: \(C_{ET} \)

FIGURE 7.9-1 INTACT ET FOOTPRINT WIDTH FLOWCHART (TASK 8)
7.10 INTACT ET FOOTPRINT LENGTH - TASK 9

The impact distributions representing the trajectory and rotational lifting effect dispersions are combined to form the impact dispersion distribution for the intact ET. This distribution is integrated through a call to subroutine SIGMA and the 3σ uprange and downrange are computed. Similarly, the distribution for the rotational lifting effect is integrated to obtain the 3σ uprange and downrange distances. Figure 7.10-1 through Figure 7.10-3 are flowcharts for this task.
Figure 7.10-1 INTACT ET FOOTPRINT LENGTH FLOWCHART (TASK 9)
INPUT: \(N, C_i, \mu_i, \sigma_i, i=1-N \)

\(\text{CON} = .135 \)

\(X_1 = 0 \)

CALL CUMLTIV *

INPUT: \(X_1, N, C_i, \mu_i, \sigma_i, i=1-N \)

OUTPUT: \(Y_1 \)

\(X_2 = 10 \)

CALL CUMLTIV *

INPUT: \(X_2, N, C_i, \mu_i, \sigma_i, i=1-N \)

OUTPUT: \(Y_2 \)

\[|Y_2 - \text{CON}| < .0005 \]

YES

\(X = (\text{CON} - Y_1) \frac{X_2 - X_1}{Y_2 - Y_1} + X_1 \)

\(X_1 = X_2 \)

\(X_2 = X \)

\(Y_1 = Y_2 \)

YES

\(\text{CON} = 0.135 \)

NO

\(\text{YES} \)

\(\text{NO} \)

\(\text{DR} = X_2 \)

OUTPUT: \(\text{UR}, \text{DR} \)

END

*Figure 7.10-3

FIGURE 7.10-2 FLOWCHART OF SUBROUTINE SIGMA
INPUT: $X, N, (C_i, \mu_i, \sigma_i)$ $i=1-N$

START

$i=0$

$i=i+1$

$x_i = (X-\mu_i)/\sigma_i$

CALL RNorm*

INPUT: x_i

OUTPUT: y_i

$y_i = y_i \cdot C_i$

NO

$i=N$?

YES

$Y = \sum_{i=1}^{N} y_i$

OUTPUT: Y

END

*See Reference 3

Page 12-1.

FIGURE 7.10-3 FLOWCHART OF SUBROUTINE CUMLTVP
7.11 TOTAL DEBRIS DISPERSIONS - TASK 10

The impact distributions for each of the twenty-one debris pieces are summed to obtain the total debris impact distribution. This is integrated to obtain the +3σ debris impact dispersions. A flowchart of this task is presented in Figure 7.11-1.
INPUT: $C_j, \mu_j, \sigma_j, j=1-21$

COMPUTE 3σ UR, DR FOR TOTAL DEBRIS DISTRIBUTION

CALL SIGMA *
INPUT: $N, C_j, \mu_j, \sigma_j, j=1-N, N=21$
OUTPUT: UR$_{DEB}$, DR$_{DEB}$

OUTPUT: UR$_{DEB}$, DR$_{DEB}$

END

*Figure 7.10-2

FIGURE 7.11-1 TOTAL DEBRIS DISPERSIONS FLOWCHART (TASK 10)
7.12 TOTAL FOOTPRINT DIMENSIONS - TASK 11

The dimensions of the total ET footprint are computed by adding the debris
dispersions to the intact ET dispersions. Figure 7.12-1 presents a
flowchart for this task.
INPUT: \(\text{URET, DRET, CRET, URDEB, DRDEB, CRDEB} \)

COMPUTE TOTAL FOOTPRINT DIMENSIONS

\[
\begin{align*}
\text{DRT} &= \text{DRET} + \text{DRDEB} \\
\text{URT} &= \text{URET} + \text{URDEB} \\
\text{CRT} &= \text{CRET} + \text{CRDEB}
\end{align*}
\]

OUTPUT: \(\text{DRT, URT, CRT} \)

FIGURE 7.12-1 TOTAL FOOTPRINT DIMENSIONS FLOWCHART (TASK 11)
7.13 INTACT ET IMPACT DISTRIBUTION - TASK 12

The impact probability distribution of the intact ET is computed from the uprange footprint limit to the downrange limit. A flowchart for this task is presented in Figures 7.13-1 through 7.13-3.
INPUT: C_i, μ_i, σ_i, $i=1-3$ URT, DRT

COMPUTE INTACT ET IMPACT PROBABILITY DISTRIBUTION

CALL DISTR *
INPUT: N, C_i, μ_i, σ_i, URT, DRT $i=1$, N, $N=3$
OUTPUT: $(X_k, Y_k)_{ET}$ array

OUTPUT: $(X_k, Y_k)_{ET}$ ARRAY

END

*Figure 7.13-2

FIGURE 7.13-1 ET IMPACT DISTRIBUTION FLOWCHART (TASK 12)
INPUT: \(N, C_i, \mu_i, \sigma_i, X_{\text{MIN}}, X_{\text{MAX}} \) \(i=1,N \)

\[k=1 \]

\[X=X_{\text{MIN}} \]

\[\ldots i=0 \]

\[i=i+1 \]

CALL ANORM *

INPUT: \(C_i, \mu_i, \sigma_i, X \)

OUTPUT: \(Y_i \)

\[i=N \]?

\[\text{NO} \]

\[N \]

\[Y_k=\sum_{i=1}^{N} Y_i \]

\[X_k=X \]

\[k=k+1 \]

\[X=X+10 \]

\[\text{NO} \]

\[X > X_{\text{MAX}} \]?

\[\text{YES} \]

\[\text{OUTPUT: } X_k, Y_k \]

\[\text{END} \]

*Figure 7.13-3

Figure 7.13-2 Flowchart of subroutine DISTR
INPUT: \(C, \mu, \sigma, X, Y \)

COMPUTE \(Y \) AT \(X \) FOR GAUSSIAN DISTRIBUTION

\[
Y = \frac{C}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{X-\mu}{\sigma} \right)^2}
\]

OUTPUT: \(Y \)

FIGURE 7.13-3 FLOWCHART OF SUBROUTINE ANORM
7.14 DEBRIS IMPACT DISTRIBUTION - TASK 13

The impact probability distribution for all the debris pieces is computed from the 3σ uprange limit to the 3σ downrange limit of the debris scatter. A flowchart of this task is presented in Figure 7.14-1.
INPUT: C_j, μ_j, σ_j, $j=1, \ldots, 21$

URDEB, DRDEB

COMPUTE DEBRIS IMPACT PROBABILITY DISTRIBUTION

CALL DISTR *

INPUT: N, C_j, μ_j, σ_j, URDEB, DRDEB $j=1, N, N=21$

OUTPUT: $(X_k, Y_k)_\text{DEB ARRAY}$

OUTPUT: $(X_k, Y_k)_\text{DEB ARRAY}$

END

Figure 7.13-2

FIGURE 7.14-1 DEBRIS IMPACT DISTRIBUTION FLOWCHART (TASK 13)
7.15 ET DESCENT TRAJECTORY - TASK 14

The ET descent trajectory is simulated from MECO to an input termination value of either longitude or geodetic latitude. Output from this task is latitude, longitude, and range versus time, and impact time and location. The requirements for a general 3-DOF trajectory program are presented in Appendix A. Figure 7.15-1 presents a flowchart for this task illustrating the input and output parameters.
FIGURE 7.15-1 ET DESCENT TRAJECTORY FLOWCHART (TASK 14)
Tabular output from the ET Impact Prediction Processor will consist of terminal screen displays and hardcopy print of document quality. Table 7.16-I presents the data and format to be output.
TABLE 7.16-I EXAMPLE ET IMPACT SUMMARY TABLE

TABLE 3-XI.- MISSION-OFT-1 AOA EXTERNAL TANK DISPERSION

SSME Cutoff Conditions:
- Flight Path Angle: 0.488 degree
- Velocity: 25688 fps
- Inclination: 38 degrees
- Altitude: 60 n.mi.
- Lat: 35.0 degrees N
- Long: 62.9 degrees W
- Range: 983 n.mi.
- ET Wt: 89 261 lbs

Breakup Altitude = 193,000 ft.
LH2 Rupture Altitude = 343,000 ft.
LO2 Rupture Altitude u= 260000 ft.
Impact Point:
- Lat: 31.6 degrees S
- Long: 95.9 degrees E
- Surface Range from Pad: 10 632 n.mi.

<table>
<thead>
<tr>
<th>Error Source</th>
<th>3σ Error</th>
<th>Downrange n.mi.</th>
<th>Urange n.mi.</th>
<th>Crossrange n.mi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation Altitude</td>
<td>+1926 ft</td>
<td>110</td>
<td>110</td>
<td>2</td>
</tr>
<tr>
<td>Separation Velocity</td>
<td>+11.06 fps</td>
<td>663</td>
<td>589</td>
<td>14</td>
</tr>
<tr>
<td>Separation Flight Path Angle</td>
<td>+0.022 degree</td>
<td>70</td>
<td>78</td>
<td>1</td>
</tr>
<tr>
<td>Rotational Lifting Effect</td>
<td>10-50 deg/sec tumble rate</td>
<td>317</td>
<td>308</td>
<td>3</td>
</tr>
<tr>
<td>Drag</td>
<td>+Tolerances</td>
<td>92</td>
<td>144</td>
<td>2</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>3σ Dense</td>
<td>175</td>
<td>278</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3σ Thin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>+10 000 lb</td>
<td>68</td>
<td>79</td>
<td>1</td>
</tr>
<tr>
<td>Trajectory Dispersion</td>
<td>3σ RSS</td>
<td>750</td>
<td>751</td>
<td>15</td>
</tr>
<tr>
<td>Debris Scatter</td>
<td>113</td>
<td>124</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Total Dispersion</td>
<td></td>
<td>863</td>
<td>875</td>
<td>30</td>
</tr>
</tbody>
</table>
7.17 STORED PLOT DATA - TASK 16

All data required by the ET Nominal/AOA/ATO Plot Processor is stored in a secure catalogued file selected by the user. Table 7.17-I lists the parameters which are stored in the files and used by the plot processor.
TABLE 7.17-1 ET STORED PLOT DATA

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ, ϕ, Range, vs. time</td>
<td>Time history of ET trajectory.</td>
</tr>
<tr>
<td>λ, ϕ, Range, Time</td>
<td>Coordinates and time of ET impact.</td>
</tr>
<tr>
<td>D_{RT}, U_{RT}, C_{RT}</td>
<td>Total footprint dimensions (Task 11)</td>
</tr>
<tr>
<td>$(X_R, Y_R)_{ET}$ array</td>
<td>Intact ET impact probability distributions (Task 12)</td>
</tr>
<tr>
<td>$(X_R, Y_R)_{DEB}$ array</td>
<td>Debris impact probability distribution (Task 13)</td>
</tr>
</tbody>
</table>
8.0 ET NOMINAL/AOA/ATO PLOT PROCESSOR

The ET Nominal/AOA/ATO Plot Processor is designed to use data generated by the ET Nominal/AOA/ATO Impact Processor to produce ET impact footprints for nominal, AOA, and ATO missions. The processor will have the capability to plot single or multiple footprints on high resolution maps. Single trajectory maps will also have an inset describing the nominal impact point and an optional inset displaying the ET footprint probability distribution. Sample output required for a single trajectory map appears in Figure 8.0-1.

The processor consists of four major logical units which 1) specify and plot map boundaries; 2) specify and plot inset boundaries and inset data; 3) Plot map and print title and; 4) plot the groundtrack, footprint, impact point and inclination. Additional logic controls branching for multiple groundtracks, a user option to change map format, the production of hard copy and the production of new maps as shown in Figure 8.0-2. Functional descriptions of the major units appear in the following subparagraphs.
Figure 8.0-1: Example et Impact Footprint Plot

NOMINAL IMPACT POINT:
Latitude = 33.0°N
Longitude = 95.0°E

FOOTPRINT PROBABILITY DISTRIBUTION
Uprange = 598 n.m.
Downrange = 643 n.m.
Crossrange = 50 n.m.

STS-1 NOMINAL ET IMPACT FOOTPRINT
START

SPECIFY AND PLOT MAP BOUNDARIES TASK 1

SPECIFY AND PLOT INSET BOUNDARIES AND DATA TASK 2

PLOT MAP AND PRINT TITLE TASK 3

PLOT GROUNDTRACK, FOOTPRINT, IMPACT POINT AND INCLINATION TASK 4

MORE GROUNDTRACKS?

DISPLAY MAP

IS THIS FORMAT OK?

DO YOU WANT HARD COPY?

PRODUCE HARDCOPY

MORE PLOTS?

END

FIGURE 8.0-2 ET NOMINAL/AAU/ATO IMPACT PLOT PROCESSOR EXECUTIVE FLOWCHART
8.1 SPECIFY AND PLOT MAP BOUNDARIES - TASK 1

The capability is required to produce a rectangular map containing any region of the world, the boundaries being specified by the latitude and longitude of the upper left and lower right corners of the map. Further, it is desired that separate default parameters be supplied to specify boundaries for Eastern Test Range (ETR) and Western Test Range (WTR) launches. Subroutine BOUNDARY (Appendix F) will establish and plot these limits, accepting user defined boundaries or referencing a lookup table for default values. Figure 8.1-1 presents a flowchart for this task.
CALL BOUNDARY *
Input: ET, Test Range, Map
Output: λ_{max}, ϕ_{max}, λ_{min}, ϕ_{min}
AND PLOTTED BOUNDARIES

*APPENDIX F

FIGURE 8.1-1 MAP BOUNDARIES FLOWCHART (TASK 1)
8.2 SPECIFY AND PLOT INSET BOUNDARIES AND DATA - TASK 2

Maps containing multiple trajectories will have no insets. Single trajectory maps will contain an inset specifying the latitude and longitude of the impact point. The user may also specify an inset containing the ET footprint probability distribution. Printed in this inset will be the values of the footprint uprange, downrange, crossrange and a graph of the probability distribution, with scale. Using subroutine BOUNDRY, the user shall have the capability to specify the inset location by specifying the latitude and longitude of the upper left and lower right hand corners of the inset. Default values will be supplied for ETR or WTR launches by referencing a lookup table. Should the inset size or location be changed by user specified values of the corners, inset information within the inset shall retain the same relative dimensions. Figure 8.2-1 presents a flowchart for this task.
CALL BOUNDRY
Input: ET, Test Range, Impact Inset
Output: \(\lambda_{\text{ia}}, \phi_{\text{ia}}, \lambda_{\text{ib}}, \phi_{\text{ib}} \)

(LAT AND LON OF UPPER LEFT AND LOWER RIGHT CORNERS) AND PLOTTED BOUNDARIES

GET IMPACT LAT, LON

BASED ON INSET BOUNDS
\((\lambda_{\text{ia}}, \phi_{\text{ia}}, \lambda_{\text{ib}}, \phi_{\text{ib}}) \) DETERMINE LOCATION AND PRINT NOMINAL IMPACT POINT LAT, LON WITHIN INSET

PLOT PROB. DISTRIBUTION

NO

SPECIFY DISTRIBUTION INSET BOUNDS

CALL BOUNDRY
Input: ET, Test Range, Distribution Inset
Output: \(\lambda_{\text{dia}}, \phi_{\text{dia}}, \lambda_{\text{dib}}, \phi_{\text{dib}} \) AND PLOTTED BOUNDARIES

GET PARAMETERS DEFINING PROB. DISTRIBUTION, UPRANGE, DOWNRANGE AND CROSSRANGE

BASED ON \(\lambda_{\text{dia}}, \phi_{\text{dia}}, \lambda_{\text{dib}}, \phi_{\text{dib}} \), DETERMINE LOCATION, PLOT DISTRIBUTION WITH SCALE, PRINT UPRANGE, DOWNRANGE AND CROSSRANGE IN INSET

END

APPENDIX F

FIGURE 8.2-1 INSET BOUNDARIES FLOWCHART (TASK 2)
8.3 PLOT MAP AND TITLE - TASK 3

A map of the region of the world lying within the limits specified by
BOUNDARY is to be plotted on the console CRT as shown in Figure 8.3-1.
Nothing is to be printed within the boundaries of an inset. The map itself
shall be of high resolution and contain: (see Figure 8.0-1).

- Landmasses with labels
- Limit lines of 200 n.mi. around landmasses
- Water body labels
- Latitude and longitude grid lines every 5° and labels every 10°.
FIGURE 8.3-1 MAP PLOTTING FLOWCHART (TASK 3)
8.4 PLOT GROUNDTRACK, FOOTPRINT, IMPACT POINT AND INCLINATION - TASK 4

A line representing the ET groundtrack is to be plotted on the map, extending to the map boundaries. Within the region of the footprint, the width of this line is to be representative of the crossrange of the footprint. Subroutine AZIMUTH (Appendix C) approximates the azimuth at a point on the groundtrack, utilizing the latitude and longitude of the current and previous groundtrack data points. Subroutine RNGERR (Appendix D) uses the azimuth to calculate crossranges, which are converted to points on the map using subroutine LATLON (Appendix E). Within the footprint region the plot line should connect the crossrange points from data point to data point in a zig-zag fashion, so as to give the appearance of a broadened line.

Within a range of 50 miles of the impact point, no footprint or groundtrack is to be plotted, so that the impact point can be clearly denoted with a cross and concentric circle. The footprint will then continue as a broad line until the downrange limit, where the inclination of the groundtrack shall be printed. The groundtrack should then extend to the map boundary. Figure 8.4-1 presents a flowchart of this task.
9.0 REFERENCES

APPENDIX A

THREE DEGREE OF FREEDOM TRAJECTORY SIMULATION
APPENDIX A

THREE DEGREE OF FREEDOM TRAJECTORY SIMULATION

A.1 DESCRIPTION

This processor will perform a three degree of freedom, translation only, trajectory analysis from separation to impact for a Solid Rocket Booster (SRB) or an External Tank (ET). Its purpose is to calculate trajectory data required by the various plot processors to plot groundtracks and impact points. An overview of the executive is illustrated in Figure A-1. The executive is divided into six tasks, each of which is explained in Figures A-2 through A-4 and Section A.2 through A.7. All references to SVDS subroutines and models refer to the Space Vehicle Dynamic Simulation, milestone 3.13. A brief description of the processor flow follows. Data defining the type of trajectory to be simulated is input in task 1. The data applicable to the first phase is used to initialize flags and variables in task 2 prior to beginning the integration cycle. Tests for case and phase termination are performed in task 3. If the present phase is terminated, control is transferred to task 2. If the last phase is terminated, the trajectory simulation ends. User specified data is output in task 4. Task 5 computes vehicle accelerations, integrates them to obtain velocity and position, then converts all of these to the required output units. All forces acting on the vehicle are computed and summed in task 6. Control then returns to task 3. The following subsections describe the detailed requirements for each task.
FIGURE A-1
FLOWCHART OF 3-DOF TRAJECTORY PROGRAM
A.2 INPUT - TASK 1

The input data required for the execution of the trajectory program is listed in Table A-I. Much of the input required will be available in the FDS Master Data Base. Use will also be made of preconstructed data elements containing aerodynamic coefficients, thrust tables, and similar data which does not change for a particular vehicle. Initialization of the position and velocity will be by inputting either inertial (OPTION 1) or earth relative (OPTION 2) parameters.
TABLE A-I - INPUT DATA REQUIRED FOR 3-DOF TRAJECTORY SIMULATION

Velocity Initialization Option 1
- **VI**: Magnitude of vehicle inertial velocity vector.
- **GAM**: Inertial flightpath angle.
- **PSI**: Inertial azimuth.

Velocity Initialization Option 2
- **VE**: Magnitude of vehicle earth relative velocity vector.
- **GAME**: Earth relative flightpath angle.
- **PSIE**: Earth relative azimuth.

Position Initialization Option 1
- **FLAMB**: Longitude of subvehicle point, measured positive east of Greenwich.
- **PHIC**: Geocentric latitude of subvehicle point, positive north of equator.
- **RI**: Magnitude of the vehicle inertial radius vector.

Position Initialization Option 2
- **FLAMB**: Longitude of subvehicle point, measured positive east of Greenwich.
- **PHID**: Geodetic latitude of subvehicle point, positive north of equator.
- **HD**: Geodetic altitude of the vehicle.

- **SET**: Ground elapsed time from launch to start of trajectory simulation.
- **DELT**: Integration step size.
- **ISTAN**: Atmospheric model selection flag.

Phase & Case Termination Input
- Input necessary to terminate a phase within a specified tolerance of a specified value of vehicle altitude, earth relative flightpath angle, dynamic pressure, latitude, longitude or phase time.

Aerodynamic Coefficient Tables
- Drag coefficient as a function of any combination of Mach number, altitude, or phase time.

- **WT**: Vehicle weight.

Engine Thrust Tables
- Thrust magnitude and direction in the Trajectory Axis Coordinate System as a function of phase time.

Launch Pad Coordinates
- Geodetic latitude and longitude of launch site.

Wind Properties Table
- Table of wind speed and direction versus altitude.
A.3 PHASE INITIALIZATION - TASK 2

The flowchart for phase initialization is shown in Figure A-2. Initialization of vehicle position and velocity involves calculating ECI components of position and velocity for use in the integrator as well as the values associated with the unused input option.
Initialize variables according to user input. Similar to SVDS subroutine PHSINT.

Initialize program timers TPHASE, TIMEC, and Coordinate Systems ECI to EFE. Similar to SVDS subroutine ECIALN.

Initialize vehicle aerodynamic attitude angles ALPHA=BETA=PHISO=0. Similar to SVDS ORIENT.

Initialize model flags and variables. Similar to SVDS subroutine MODEL1.

Initialize vehicle position according to user input. Similar to SVDS subroutines POSIT and ALTDL1, except that only 2 input options are required: 1) FLAMB, PHIC, RI; 2) FLAMB, PHID, HD.

Initialize vehicle velocity according to user input. Similar to SVDS subroutine VELOC, except that only 2 input options are required: 1) VE, GAMME, PSIE; 2) VI, GAMI, PSII.

Initialize variables and flags used by the integrator similar to SVDS subroutine INTEGR.

END

FIGURE A-2 PHASE INITIALIZATION FLOWCHART (TASK 2)
A.4 CASE AND PHASE TERMINATION - TASK 3

The program must have the ability to phase (interrupt the program, reinitialize certain variables, then continue the program). This capability is modeled as a reduced version of SVDS subroutines PHSEX and TERMIN. Phasing should be user selected on specified values of: 1) vehicle geodetic altitude, 2) vehicle earth relative flightpath angle, 3) vehicle dynamic pressure, 4) vehicle geodetic latitude, 5) vehicle longitude, or 6) elapsed time since beginning the present phase.
A.5 OUTPUT PROCESSING - TASK 4

Output processing for this program consists of computing the values of specified variables and storing them in common locations accessible by the rest of the ET/SRB Disposal FDS processors. Output is required on case termination, phase termination, and user specified output frequency. Output will consist of ground elapsed time since launch, vehicle range from launch pad, vehicle longitude, vehicle geodetic latitude, and vehicle geodetic altitude.
A.6 INTEGRATION AND DATA MANIPULATION - TASK 5

The flowchart for integration and data manipulation is shown in Figure A-3. The last step of this flowchart involves computing earth relative and inertial values for velocity magnitude, azimuth, and flightpath angle from ECI velocity components. Longitude, geocentric and geodetic latitudes, inertial radius vector and geodetic altitude are computed from ECI position components.
Fourth order Runge Kutta single vehicle integration scheme. Similar to SVDS subroutine INTEG3.

Shift the updated state vector into arrays used by the rest of the program. Similar to SVDS subroutine TRNRS5.

Update case and phase times, compute earth rotation angle between ECI&EFE and difference between GET&GMT. Similar to SVDS subroutine TIMERS.

Compute state related information used elsewhere in the program. Similar to SVDS subroutine WHERAT.

START

END

FIGURE A-3 INTEGRATION FLOWCHART (TASK 5)
Figure A-4 shows the flowchart for computing forces acting on the vehicle. The atmosphere models will compute atmospheric pressure, temperature, density, and speed of sound from vehicle geodetic altitude. Three models will be required: 1) 1962 standard layered atmosphere (SVDS Model ATMOS), 2) 1963 Patrick AFB spline fit atmosphere (SVDS model ATMSPL), 3) 1971 Vandenberg AFB reference atmosphere (SVDS VRA 71). The wind model will compute wind velocity and azimuth from vehicle geodetic altitude by interpolation of wind data contained in the FDS Master Data Base. Some trajectories will not use the winds model. Aerodynamic attitude angles will be generated from vehicle earth relative velocity and wind velocity. Atmospheric drag is the only aerodynamic force to be computed. Mach number and dynamic pressure are computed from the output of the atmosphere and wind models and the vehicle earth relative velocity. Drag coefficients are interpolated from a user supplied table using any combination of vehicle Mach number, geodetic altitude, and elapsed time since the beginning the present phase as independent variables. Drag is calculated from dynamic pressure, drag coefficient and vehicle reference area, then rotated through the aerodynamic attitude angles to account for wind effects. Gravitational Forces on the vehicle due to the Earth are computed using the second (J2), third (J3), and fourth (J4) zonal harmonics, the second sectorial (S22, C22) harmonic, the vehicle radius vector and longitude. The engine model will interpolate three components of thrust in the trajectory axis coordinate system with respect to elapsed time since beginning the present phase. Some trajectories will not use this model.
START

Calculate atmospheric and wind quantities. Similar to SVDS subroutines AROCAL, ATMOSI, BDSP63, VRA71, BDG2R, SPLNL, MYRIAH, ATMSPL.

Calculate aerodynamic attitude angles. Similar to SVDS subroutine AATTID.

Calculate aerodynamic forces. Similar to SVDS subroutines ARO3S6, GINTERP INTERP.

Calculate gravitational forces. Similar to SVDS subroutine GRAVITY.

Interpolate engine thrust data

Sum all vehicle forces for the integrator. Similar to SVDS SUMF.

Compute inertial azimuth & flight path angle. Similar to SVDS TRJCAL

Compute range flown. Similar to SVDS subroutine RANGF

END

FIGURE A-4 VEHICLE FORCES FLOWCHART (TASK 6)
APPENDIX B

SUBROUTINE FOOT
APPENDIX B

SUBROUTINE FOOT

B.1 DESCRIPTION

Subroutine FOOT computes a set of points defining an impact footprint, using planar trigonometric relations. The footprint is modeled as a non-symmetric ellipse consisting of four ellipse segments, each spanning an angle of 90 degrees. This is done by changing the major axis (either the RSS downrange dispersion or the RSS uprange dispersion) and the minor axis (either the RSS right or left crossrange dispersions) of the ellipse according to the quadrant under consideration.

B.2 CALLING ARGUMENTS

Seven inputs are required to execute the subroutine as shown in the flowchart in Figure B-1. The variables X_0 and Y_0 denote the downrange and right crossrange distance respectively (in nautical miles) between the vehicles nominal impact point and the reference point. The variable A denotes the azimuth of the downrange direction for the current vehicle. The variables DR, UR, LCR, RCR are the downrange, uprange, left crossrange, and right crossrange RSS dispersions, respectively. The output is a two dimensional array containing the points defining the ellipse relative to the reference point.
Input \((X_0, Y_0, A, DR, UR, LCR, RCR)\)

\[
\theta = -10 \\
i = 0
\]

\[
a = DR \\
b = LCR
\]

\[
\theta = \theta + 10 \\
i = i + 1
\]

\[
r = \left[\frac{a^2 b^2}{a^2 \sin^2 \theta + b^2 \cos^2 \theta} \right]^{\frac{1}{4}}
\]

\[
x = r \cos \theta, y = -r \sin \theta
\]

\[
X_i = x \cos \left(\frac{\pi}{2} - A \right) + y \sin \left(\frac{\pi}{2} - A \right) + X_0
\]

\[
Y_i = -y \cos \left(\frac{\pi}{2} - A \right) + x \sin \left(\frac{\pi}{2} - A \right) + Y_0
\]

\[
\theta \leq \theta < 90 \\
\theta \geq 90 \\
90 \leq \theta < 180 \\
180 \leq \theta < 270 \\
270 \leq \theta < 360
\]

OUTPUT: \((X_i, Y_i)\) array

Figure B-1 Flowchart for Subroutine FOOT
APPENDIX C

SUBROUTINE AZIMUTH
APPENDIX C

SUBROUTINE AZIMUTH

C.1 DESCRIPTION

Subroutine AZIMUTH computes the azimuth of the groundtrack from one point (pt.0) to another (pt.p) using spherical trigonometric relations. The flowchart is shown in Figure C-1.

C.2 Calling Arguments

AZIMUTH is called with five arguments:

(λ_0, ϕ_0)-the longitude and latitude of point 0
(λ_p, ϕ_p)-the longitude and latitude of point P

A - the output azimuth angle
Call Sequence ($\lambda_0, \phi_0, \lambda_p, \phi_p, A$)

Compute Azimuth Angle of groundtrack from pt. 0 to pt. P

\[A = \tan^{-1} \left[\frac{\tan \left((\lambda_p - \lambda_0) \cos \phi_0 \right)}{\sin (\phi_p - \phi_0)} \right] \]

START

FIGURE C-1 FLOWCHART FOR SUBROUTINE AZIMUTH
APPENDIX D

SUBROUTINE RNGERR
Subroutine RNGERR computes the downrange and right crossrange distance in nautical miles from one point (pt.0) to another point (pt.p) using spherical trigonometric relations. The flowchart is shown in Figure D-1.

RNGERR is called with seven arguments:
- \((\lambda_0, \phi_0)\) - the longitude and latitude of the reference point
- \((\lambda_p, \phi_p)\) - the longitude and latitude of the point of interest
- \(A\) - the azimuth of the reference downrange direction
- \((DR, CR)\) - the output downrange and crossrange distances
Calling Sequence \((\lambda_0, \phi_0, \lambda_p, \phi_p, A, DR, CR)\)

\[
DR = 60 \left[\cos \phi_0 (\lambda_p - \lambda_0) \sin A + (\phi_p - \phi_0) \cos A \right]
\]

\[
CR = 60 \left[\cos, \phi_0 (\lambda_p - \lambda_0) \cos A - (\phi_p - \phi_0) \sin A \right]
\]

FIGURE D-1 FLOWCHART FOR SUBROUTINE RNGERR
APPENDIX E

SUBROUTINE LATLON
APPENDIX E

SUBROUTINE LATLON

E.1 DESCRIPTION

Subroutine LATLON computes the latitude and longitude of a point, (pt. p), using spherical trigonometric relations given its position relative to a reference point (pt.0). The flowchart is shown in Figure E-1.

E.2 CALLING ARGUMENTS

Seven calling arguments are required for subroutine LATLON:

(λ₀, φ₀) - the longitude and latitude of the reference point
(DR, CR) - the downrange and crossrange distances to the point of interest
A - the azimuth of the reference downrange direction
(λₚ, φₚ) - the output longitude and latitude of the point of interest
Calling Sequence $(\lambda_0, \phi_0, \Delta R, CR, A, \lambda_p, \phi_p)$

Compute Latitude, Longitude of point P given Latitude, Longitude of point O and distance from O to P

\[
\lambda_p = \lambda_o + \frac{CR \cos A}{60 \cos \phi_o} + \frac{\Delta R \sin A}{60 \cos \phi_o}
\]

\[
\phi_p = \phi_o - \frac{CR \sin A}{60} + \frac{\Delta R \cos A}{60}
\]

FIGURE E-1 FLOWCHART FOR SUBROUTINE LATLON

E-3
APPENDIX F

SUBROUTINE BOUNDRY
APPENDIX F

SUBROUTINE BOUNDARY

F.1 DESCRIPTION

The purpose of this subroutine is to establish and plot boundaries for the ET and SRB plot processors. The upper left and lower right hand corner coordinates for maps and map insets are stored in lookup tables for reference by the subroutine, although the user may override these by specifying new values. Figure F-1 presents a flowchart for this subroutine.

F.2 CALLING ARGUMENTS

Subroutine inputs identify the boundaries to be established; input A indicates ET or SRB boundaries, while B indicates an Eastern Test Range (ETR) or Western Test Range (WTR) launch. Input C indicates which boundaries are to be returned, either map boundaries or those of a particular inset. These values are returned to the calling program and a rectangle with these coordinates as the upper left and lower right corner is plotted on the CRT.
START

INPUT: A, B, C

User Specified Boundaries?

NO

A = ET or SRB?

ET

Get ET Lookup Table

SRB

Get SRB Lookup Table

YES

Input LAT LON of Upper Left (λ_{CA}, ϕ_{CA}) And Lower Right (λ_{CB}, ϕ_{CB}) Corners

B = ETR or WTR?

ETR

Reference ETR Part of Table

WTR

Reference WTR Part of Table

Get LAT LON values From Table Specified By C: (λ_{CA}, ϕ_{CA})/(λ_{CB}, ϕ_{CB})

Plot Rectangle on CRT with Specified (λ_{CA}, ϕ_{CA})/(λ_{CB}, ϕ_{CB})

OUTPUT: λ_{CA}, ϕ_{CA}, λ_{CB}, ϕ_{CB}

END

FIGURE F-1 FLOWCHART FOR SUBROUTINE BOUNDARY
DISTRIBUTION FOR JSC IN 79-FM-29

<table>
<thead>
<tr>
<th>Code</th>
<th>Location</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM/R</td>
<td>Technical Library (2)</td>
<td>J. McPherson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. Davis</td>
</tr>
<tr>
<td>FM2/E</td>
<td>Lineberry</td>
<td>E. Lineberry</td>
</tr>
<tr>
<td>FM4/M</td>
<td>Jenkins</td>
<td>C. W. Fraley</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. E. McAdams</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. W. Nolley</td>
</tr>
<tr>
<td>FM5/E</td>
<td>McHenry</td>
<td>R. Davis (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. Merrism</td>
</tr>
<tr>
<td>FM8/E</td>
<td>Schiesser</td>
<td>R. Davis (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. Merrism</td>
</tr>
<tr>
<td>FM14</td>
<td>Report Control (25)</td>
<td>A. Wiseman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Woodland</td>
</tr>
<tr>
<td>FM15/J</td>
<td>Funk</td>
<td>J. Funk</td>
</tr>
<tr>
<td>FM17/R</td>
<td>Nobles</td>
<td>R. Nobles</td>
</tr>
<tr>
<td>MDTSCO/T</td>
<td>Wenglinski</td>
<td>R. H. Seale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. L. Swaim</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. Sykes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W. T. Musial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. Meckley</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Harrison</td>
</tr>
</tbody>
</table>