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Abstnct 

For sOCle linear, strictly pr~peT system given by 
its tra.."lsfer functio:l, t · ... o d:.-na.",ic:. output. feedback. pro~ 
1ellls C:l:l be posed. Tne first one is that. of using 
dynamic-output fe e;!b.:!ck t.o assign the c.losed-Ioop char­
a~teris,;ic polyno~ial ~C t.~e second that. of assigning 
the clo sed-loop in\'ari~t f:lctors. We are concerned 
with t~ese proble~5 and their inter-relationships. The 
formul at ion is done in the frequency do~in and the 
investigation carried o~t fron an algebraic point of 
"' iew, in terns of linear equations over rings of poly­
no~als . Using the notion of genericity, we express 
several ;tecessary a."\d s~=iicient conditions. 

1. IntroJuction 

Two of the central results o£ linear system theory 
are the following: 
(A) Let A and B be natrices of dinension n x n and n x " 
respectively. The pair (A,il) is, controllable if and 
only if for every s~~etric set A of n complex numbers, 
there is a matrix C such that A + ru: has A for it.s set 
of eige:walues ; 
(8) Let A and B .• e catrices of dioension n x n and n x R. 
,respectively with ( . .\.,8) being a. cont.rallablc pair. The 
input-state transfer functiO:l P i s given by P=(sI-A)_l B. 
If state fe edback u = Cx+v is used~ . the. closed-loop 
transfer function G is given by G = PCI + CP) _1. Let 
\ ~ \ ~ ~ ).2 ~· O be t.~e controllability indices 

0t P. Let ¢i be given polyna:tlials· such that¢iI9i_1with 

re(¢.) =n. 
i=1 1 

Then, there exists a constant C such that the in­
"'ari:lnt polynomia ls of G are the ¢i if and only if 

k ( 
i e(~.) > r~ · 

i =l ~ - ~ = l 1 
k = 1,2 ••.•. R.. with equality 

at k = 1. 

Subs('ql:C:ltly there has bee~ considerable work to gen­
eral ize CA) to the case \o'h~re static output feedback 
is all o· ... '!d. For t he cost :-ccent results on this topic, 
see "; j 11 ~ns and !lessel i nk (l-l) and IIrockett and Byrnes 
(4]. S()-:;c recent ,, ()r k i:wol '; in& d)-n:u:Jic output fecdback 
clln be fount! in [2,3,7,l~,15]. 

G~:l~ralizatio:1 of i'rob lc::1 (8) to the output fe.ed ­
back C:l SC has bee;] invostipted by Rosenbrock and Hay­
tOil (13). l1Ic)' consider a tTansfer function given in 
Ro!'enhr.:l C'~ ' s syste~ rJatrix f()!':l and present several 
interes t ing results . t:e consider the sallie problem in 
the fol 1o~ing fnr~ . 

+ Thi s r esearch hns been partially supported by ERDA 
un,l eT I:rant J: RiI,\- [ (';9-111) -': :.I S7 and by rl,\SA under grant 
NASA- SGL-22-009- 1 2~. 

• lhc fi:'s t nuthor is neW' ""ith the Electrical and Com­
puter J:ll r. inecrinr. ()i:p:lrt~ C:l t at the University of 
~ta!'!':lchu se t ts, '\. ..... 'l ers t, ~t:l5sachusctts 01002. 
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Figure 1 

The :l x 1 Co~ 2.) c;atrix P is the input-output matrix 
of a strictly p!"oper plant and C ( 1. x m) that of some 
proper dynamic co~pensator. Both P and C have elements 
in R(s), the field of rational functions in the indeter­
minate s over the reals R. The closed-loop transfer 
function is: 

The co::diticn tI> 2. is not restrictive because the situ­
ation ~ ~ 1 can~e treated in a similar manner and 
dual ~esults obtained. The transfer function P is 
asstced 'to be given. We are interested in the follow­
ing t', .. o proble!:lS. 

(The Cha=acteri stic Polynomial Problem) 

Let ¢ be so~e polynomial in R[s). hbat are neces­
sary ~"ld sufficient conditions for the existence of a 
proper co~ensator C, so that if X is the character­
istic polynomial of the closed-loop system, then X 
is a factor of ¢? A variant of this is the investi­
gati~ of the situation in which X is equal to ¢ . 

(The l;J· .. ariant Factor Probl em) 

Le't ¢ bc.m 1 x R. matri x with ele::lents in R[s). 
tfuat a:-e the necessary and sufficient conditions for 
the e~stence of a proper compensator C, so that if ~ 
is t he closed-loop invariant factor matrix, ~ is 
equivalent to ¢? A variant of this is to let ¢ = (¢Ii) 
be i~ S=ith fo~ and to require that (~ = (~i)]~i 
divi;:e s : . iOT 1 ~ i ~ 1 , or more specifica 11', 
that 1 . • i = Ti· 

It is clear that, from a mathematical standpoint, 
the i::,,·aria.'lt factors of a transfer function deter­
mine ~~e ~eeper stl~cture of a system. If P=C(sI A)-1 8 
with (A,R,C) J:\ini r.1al, then A can be written in cO::lpan­
ion fOr:J as: 

o 
x· 

"he re ".= det(sI-Ci ) are the invariant factors of I'. 
It is ~ true th:tt theTt' does exist a relationship 
betw('en the de;:rees of the invarinnt factors and the 
cont '.I11abilitr or observability indices of a certain 
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class of s)'ste., (9). 

The invariant factors are closely related with the 
transaission zeros of a plant .s defined by Desoer and 
Schulaan. Let P be an _ x 1 plant vith Smith-McMillan 
fOrD ,iven by Hp : 

• 

£ 
1 

~ 
£ 

2 -.; 
o 

Q 

, 
, 

o 

The ~ . are the invariant factors of P and the transmis­
sion 1 zeros of P are associated with the zeros of the 
polynomia ls£i' Suppos.! that £ . ;'0. Then, [8]. zeC 
is a zero of P of order rn iff l£i(')' has a zero of 
order m at z. The significance of this order, roughly 
speaking, is that the s)'stem completely blocks the 
transmission of some input of the form ~ gktkexp(zt) 

)(=0 

foro = 0,1, ..... J.. For a = m, there is an input of 
this form for which the output is non-zero and proport­
ional to exp(zt). Therefore, if two systems P and P 
have th! same_characteristic pol)~owial X = X (x= $1'" 
ii' x = ~ 1 ••• 91 ) but different invariant factors (and 

'zeros), the transmission-blocking properties of the two 
systems would be different. 

This paper is divIded into five sections. In sec­
tion 2, we formulate the problem in an algebraic manner 
using the notion of matrix iractio~ representation. 
This, in a very natural way, will suggest a method of 
solution and in doing so, demonstrate the importance 
of the equation XD + YN = ~ , where X,Y,D,N and ¢ arc 
~ll matrices with elements in R[s). In section 3, we 
will study this equation as it pertains to our problem 
and will construct what \ie shall call 'acceptab le' sol­
utions . In sections 4 and 5, we discuss the character­
istic polrnorr.ial problem and the invariant factor prob­
lem. From this it will be seen t hat the results are 
unsatisfactory in two ways. On the one hand, they arc 
only sufficient conditions, and on the other, they apply 
in 'all~o$t all' cases. In sectioa 6 \;0 show that by 
introducin~ the notion of p,eneri ci t)', more complete re ­
sult s can be formulated. ~cm:linin& ques tions are under 
cont inued investigation. Even though " '0 do lIot spec­
ifically address ourselve s to sp~cific a l l!Orithrns for 
solution, the procedures used arc constructive and Clln 
be pror.r:II11r.t d on a dig ita l computer . 

2. Formulation and ~Ie thod of Solution 

Assume that we have the feedha::k system shown in 
Fig. 1 with P being a strict ly proper rnX i(m ~R. ) ' 
input-output transfer fu lctioH an:! ( some t x" proper 
dynnmic compensator. Both I' and ( h:lVe clements in 
R[s]. The closed-loop tral\~fer function G is given by 

C "' P( 1 + (I') - 1 

,..here we assume that (I. (1')-1 exists. Since P is a 
rational matrix, it can be factored (Oesoer­
Vidynsagar) as follows: 

p. 8:\-1. D- 1N 

where B,A,D, N are polynomi.l aatrices. We use the 
followi~g ~otation: 

p • -1 
BRP~P SOlDe right representation of P 

• -1 
ALpBLP sOCle left representation of P 

• -I 
NRpORP SOlle right coprime representation of P 

D- 1S 
LP'LP 

some left coprime representation of 

The closed-loop transfer function C can then be ex­
pressed in the following Mays: 

G. P(l + CP)-1 
-1 

BRP(ALC~ + BLCBRP) ALC • 
-1 

NRP(ALCORP • BLCNRP) ALC " 

= NRP(DLCDRP+ ~LCNRP)-1 0LC= NRPn- 1oLC • 

'" '" '" = NRP n- 1oLC (least order), 

P. 

,~ '" 
,..here ~RP,n are ri ~~ t coprime and ~LC'~ left coprime. 

From (5,7) we have that X, the characteristic poly­
nomial of the closed-loop system. can be ~Titten as 
X c a cet n, a non- zero constant. If coprime repre­
sentations for both the plant and compensator are not 
used, then 

a det(AL(ARP + BLCBRP) 
X = 

det K' det L 

,..here :1 F 0 is a constant, K a greatest common left 
divisor of ' ALC,B LC and L a greatest common right 

divisor of BRP,ARP ' 

If ~IG is the Sci th-t-Ic.'li 11 an form of C, 

we call '! 

£ 
1 

T 
1 

£ 
2 

~ 

[
'" 0 l oR. " ... ~1 

, 

o 

, 

"'i lIIonic. 

"'i1llli_l' 

1 < i < t 

the invariant factor natrix 

of C, 'iii being the", invariant factors. As shown in 
(9] t ",. ~ ha\"c that n :lnd \jI arc equivalent. 

One way to proct-cd is to uti li ze the forrn in 
which the closed-loop transfer function has been 
expressed: 

G .. ~RP(Al.CDRP + DLCSRP)-l ALC 

e SRP(IILC Dr, p + SLCSRI')-I DLC 
", 'It - 1"-= SRP \I 0LC 

Suppose we ilre investigating the characteristic 
pol)~o:~i nl problem. l.et ~ be some l xtlllatrix with 
det¢ : .. ,..here I) is so:ne given po1),nOlllial. If. 
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polyno~inl solution X,V to XDRP + V NRP • 0 exists with 

X-IV existins and proper, then C ~ X-Iy is a proper coa 
pensator making the closed-loop characteristic polynom­
ial X equal to X • ¢/q ~here q = det K, K a greatest 
common left divisor of X and Y. If, in addition, X,Y 
are left coprioe, then X· a? In a similar canner, 
suppose we are looking at the invariant factor prOble •• 
Let t ~ (t . ) be an 1 x 1 matrix in Smith foro. If a 
polynor.tial1solut. ion X,Y to IORP + YNRP • 0 exists with 

X- Iy existing and proper, X,~ being !~ft coprime and 
NRP'O being right coprim~, then C ,. X Y is a proper 

c~pensator which oakes the closed-loop invariant fac ­
tors ~i equal to ¢i· 

It is clear fro::! the above that equation XD + YS,. • 
plays a very i~portant role in our investigation. ~e 
devote the next section to the study of this equation. 
Before doing this we also formulate a third proble., 
the Denonlnator ~~trix pro~lcm. 

(The Denominator ~Utrix Probleo) 
_ I . 

Let P = NRpORP be an m x 1 strictly proper trans-

fer function described by the right coprime representa­
t i on NRP,DRp • Let 0 be an 1 x 1 C1atrix. Itohat lre nec-

essary and sufficient conditions for the existence of a 
polynomial solutio~ X,Y of X DRP + V NRP = 0 for ~hich 

X-I'j exists anJ is proper? A variant of this would be 
to require also that ~RP'O are right coprime and X,. 
left coprime. 

R~mark. The issue of coprimene~s has not been cxplicit­
ly--dcalt ~ith by Rosen r o k and /layton [13J. 

3. The Equation X DR? + Y NRP ~ 0 

The importancc of this equation in the problems at 
hand h3s been sho·.,n in thc 13st section. It is nothing 
else but a set of linear equations over the field of 
rational functions R(~), 

[X, Y) [~::J ¢ (l.l) 

(i.e •• Z F = t). As such all (rational) solutions cnn 
be ~Titten as Z ,. :1 + Za ~here Z, is a particular solu­
tion and Zo is such that ZoF ,. O. We. though, arc 
interest cd only in pul)l1o::l ial solutions, and as can be 
sholffi [9. 11) : 

Propos ition 
UURP + \"~RP 

of X DRP + 

3.1. Let U,V be :l polyno:nial solution to 
= I. Then nIl pol)llo~ial solutions (X,V) 

Y r-;R?= ¢ can be expressed as: 

X ~U "':;1.1' 

Y ¢V + NDLp 

whcre ~ is a pol,l1o::lial ~atrix. 

Now from [1 2). "'c knO\; that since NR1,.IlRr arc right 

coprimc. a polyno~; ial solution X,Y always exists fOI; any 
~. This is un al p,cbraic conJition. Emrc, in a recent 
paper (10), gives a nice systc~ theoretic interpretation 
of this. usin!! T.:uuul(' theory and thc rcalization tech­
niques Su!!gcsted b)' Fuh n:l3n II , IIc aho sugr.ests an alter· 
nate dcscription of all polynomial solutiolls,,,,'hich has 
• systcm thcoretic flavor. 

As ""e have noted, we nrc intcrested in solutions of 
X ORr + Y NRI' = Q, which are polynomial but ... hich in 

addition havo the property that (a) det X lOan.! (II) 
X-Iy is propel'. tic call such solutions acceptable • 

Satisfying the first requirement is easy, as we see 
fro::l [9). 

Pro~osition 3.2. Let • be an 1 x t matrix with dett I o. 
The~ t~ere exists a polyno.ial solution X, Y to equation 
(l.l) for which c!et X I O. 

This next result describes how both requireoents are 
satisfied si=ultaneously, which consequently plays a 
crucial role in our investigation [9,13). 

Theo~e, 3.l. Let P • NRPOR~ be a strictly proper a x 1 

ratic~al transfe= function WithrORP] being column-proper 
• ~ RP 

wiL' colu:n degrees (controllability inJices)A I ~ A2 ~ 
••• > O. Let 0 be :111 1 x 1 non-sinaula:' t".3trix 
with- q • 6(det ~) - 6(det DRP) ~ O. Let X,Y be a 

pol)~c~al solution of X 0RP + Y NRP • O. Then X-I V 

exists and is p=oper iff there exists a unl~odular aatrix 
1 

Nand ir.dices d. ~ 0, satisfying r di '" q such that 
1 i .. l 

-d· -0 ' 
dia,(s 1) M[Y,tdiag(s 1») is proper. (1.2) 

Rer.3~k. The above theore. is clarified if ~e look at 
~hat ElP?CnS in the single-input. single-output (siso) 
situation. Let x,y be a solution to xdp + yu • t, 
n ,d coprit:e, c(,,-) < S(d) '" 0 • p 

p p ~ p 
Necessity : If x- 1y is rroper, we must have 

8(x) + o. e(¢)· 0 + q and q • e(x) ~ 6(y) 
There:ort:, ... e =.ust have s-q[y,t s-oJ propel'. 

Sufficiency: If s-q[y,. s-oJ is proper, we have that 
8Cy) ~ q and sin~e 6(0) '" q + 0 • we ~st have 6(x) • q, 
othe~.i5e e(x~o + yn ; i e(~). This means that 
x-Iy exists anO is p ph'ocr. 

~iter look ing at Theorem 3.1, it is quite natural 
to atte=p t the constnlction of acceptable solutions by 
I!aking sure tha: require.ent (3.2) is satisfied. We 
know ~~at all solutions to (l.l) are given by 

X· OU - ~:;LP 

Y· OV + SOLP 

"here U[lRP + \':-:RP ~ I. The question is how to choose 

N. Let us look at the siso situation for a mo~ent. 
Then y ,. ~v + nd.. • or written differcntly, ¢v = -nd 
+ y. ~e know thaf ~hatever ~v is there exists an n p 
such t r.at BCy) < c(dp). This is nothing else but divi­
sion of ;.; by dp • This as shol .... ' in [15) and holds 

in t he:: _trbt c:!se ~here the colu".n de&=ees of Yare 
stric!l: less than thc coluilU\ degrees of 0Lr. If we 

then l et [1\pr\?l he row-proper, thc rOI, degrces are 

the ebscrvabi li t)" indices of l' and we can construct a 
unique Y ,"ith the e(y)~ ~I -1. ~l the largest oh!'erva-

b ' l . .. or. f d ' (-(~l-lLi T 1 it)" l~_ex. ,nere ore, lag s 'JY sproper. 0 

fulfill requir~~ent 3.2, care must be takcn in choosing 

a 0 th~ t nakcs diag(s(~I-I»~djag (s-ai) propcr as well. 

Th('orc::I 3.1 provides a test for dctermining "hethcr 
a specific pol)l1 ::Iial solution is actually nn acceptable 
onc. It ,"ould be greatl)' desirable, thol1t;h. if a partiC­
ular solution could serve 8S a represcntative for all 
~olutions. In the following situation, this can be 
done, 

Let P be a strictly proper transfer function with 
all observabilitr indices equal to ~. Let [OLP.NLr1 
be row prope'r, DLP • I s~ + ••• + D •• 

. -3-
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Let U,V be such that UDRP • vt~RP • I with [~::] 

coluan proper with controllability indices 
A1! Az ! ••• ! A1! O. Usin, ri,ht division, thertl 

ex1st u:lique -f( and Y such that 

tV • - N DLP • Y eci) < " 

_1 _1 
Proposition 3.3. Let P • NRPDRp • DLP HLP be as 

above. Let (I bl! a di:lgollal m:ltrix with e(Oi)· 
Ai • Y , Y ~ O. Tnen X DRP • Y HRP • ¢ has an accept-

able solution iff i.Y is an acceptable solution. 

Remark: The atove does include the siso case. 

4. The Characteristic Polynomial ProblcQ 

~e are now in a position to give a partial answer 
to the Characteristic Polynoaial Problem as stated in 
section 1. I say 'partial' because it is only a suf­
ficient condition. 

Theorem 4.1. Let P be an m x 1 strictly proper trans­
fer function and NRPDR~ a right coprime representation 

wheref~RPl is column-proper with col~n degrees 

Al ! ~2Rpi ••• ~ A1 ~ 0 (controllabil ity indices). 

Let DLpN LP be a left coprime representation, with 

[DLP~p] row-proper. Let ~ be a polynomial of degree 

t· t a i + 1(lIl-l) (lI 1 the largest observability 
. i=l 
index). ·Then there exists a proper compensator C such 
that the characteristic polynomial X of the closed-loop 
system is given by 

X., -.L 
qxv 

where qXY is a polynomial with 0 ~ e(qXY)~ t(lI
1 

- 1). 

TIle proof is constructive [9], with the conpensa­
tor b~ ing given by C = X_Iy where X.Y is an acceptable 
solution to some equation of the fonn X 0RP + YNRP = ¢. 

The polynomial qXY is nothing else but det JCXY ' where 
KxY is a greatest common left divisor of X and Y. 

Remark. It is clear that this Theorem can be used for 
purposes of stabilization. If $ is chosen to be a 
stable polynomial. then so will be X. the closcd-Ioop 
charac teristic polynom ial. h'e also note that the co:n­
pensator may or may not be stable. Il'e will investigate 
this issue latcr in this section. 

Remark . From a closer examination of the procedure we 
can sec that. in ceneral. one docs not have prior knO\~­
ledge of yhat qXY is. The larger the degree of qXY 

implies a smaller increase in the over:l ll dynamics of 
the sys ter,l . Onc can thereforc use th is in the design 
of compensators. 

Remark. Usine a different ou tput fet'dback configura­
tion. Brasch and Pearson [3] show that the character­
istic polynomial of the closed-loop sys t~m can be 
assigned by only increasinS! the system dynamics by VI- L 
These results can be obtained using the approach out­
lined in thi s paper [9]. Even though more dynamics 
are added in our approach. it may be that the computa­
tions arc less cumbersome. This issue Wal"rnnts further 
investigation. 

Remark. The approach taken in [15] suggests that com-

pensation irl\'olves input llS well as output dyn:lJlics. 
and it ~lso differs frca the present approach in that 
it requires st~le, pole-zero cancellation and the 
presence 0: 'hidden' aedes. 

On the one hand. it is quite worthwhile to invest i­
,ate coo?ensation schemes that require as little added 
dyna2ici ~3 p~ssible. An equally worth~hile task is to 
investi&ate ~hether. by adding .ore dynaaics than the 
least re~~i~cd . one can achieve other desirn objectives 
as well [2]. The followinl Lc.aa and Example deal with 
this issue. 

LeIIIl3 4.1 Let 0 be a polynOlaial with 8Ct). 2n - 1 • It, 
It ~ I. Let XI' Yl be an acceptable solution of 

xdp + >""p • ~ • [np/dp strictly proper, 8(d,> • nJ. All 

acceptable solutions are of the for. 

Y2 · Y 1 + IIlp 

~h.re e (~)~ k - I. 

E~ 
1 Let p. sr:l!' and suppose that we ~ant to con-

struct a pro?er and stable coapensator which D~kes the 
characteristic polyno~ial of the closed-loor systea 
eqUilI to the stable polynoT.lia l ~ = s".s'+3s + s. 1. 

ssZ + 25 Yl 
The cOi:;:e:1sator CI • $2+ S _ 1 • Xl does satisfy the 

require=e:1ts except hat it is Ullstable. Now, all 
acceptable solutions are liven by 

x 2 EO Xl - r.np 

Y2 ~I + mdp 
where ~ is a constant. Let m • -2. Then, 

x
2 

SI + S • 1 

y EO 3s1 • 2s + 2 
2 

Clear I},. C2 = 3sz + 2s + 2/~. s • 1 lICets all the 
require~!I t s. 

Remark. This idea can certainly be extended to the 
multiple- input . mu ltiple-output situation. 

5. The Invariant Factor Problem 

Let P be an m x 1 strictly proper transfer func­
tion ?~d ~ = (9 . ) an 1 x 1 diagonal Matrix in Smith 
form. I i P = ~~pDR~ is some ri~ht copri.e representa-

tion for ~hich there exists an acceptable solution to 
the equation X 0RP + Y ~RP c t. where. and ~ are equiv-

alent, ~i:h (a) X and ¢ left coprimc and (b) NRP '. 
right c ~~ ri~e . then C = X-1y is a proper compensator 
maki.ng ::',c: invariant factor matrix 'i' c ("'i) of C equal 
to ¢. If cond itions (a) and (b) are not met. then (6) 
we have .. . ~ ;, . • ""e also know [13] that if r with control ­
Ibility i~di~es Al ~ ).2 ~ ••• ).1 ~ 0 :lRd observability 
indices \.II> ~ > ... II > 0 and l" .. (~i), also satis-
fies - 2- m-

k k 
L 9 (¢. » L Q. . . +~ -1) 

i " l 1 - i=l 1 I 
k c 1.2 •••• ~ith 

equality at k c t. 
theri t~crc exis ts a matrix 0 equivalent to" such that 

lim [di a ~ (s-~l-I)¢ diag (s-ai) ]. I. 
~ ""CI) 

Theorc::l 5.1. Let r.~ • ~ b<.' as above. with the ~i sat­
isf)'ing 

~ k 
L &(?i) ~. L Q. i + ~I - 1) k .. 1,2 .... 1 with 

i =l i =l equality at k • 1. 
Then th.:!r exists 3 proper compensator C • X- 1V with 

·4 -
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X DRP + Y NRP • Q and such that if , is the closed-loop 

invariant factor oatrix, then ~il~i' 

We will onl)' have \)I. • ¢. if X and ~ are left co-
. d'" l.hl . pUDle and NRP an .., are r1& t coprune. 

Re~3rk. In e.rlier work R~senbrock [12] gave a neces­
sary arod sufficient co~dition in the case of state feed­
blck. That result can be obta ined using the theory 
devel ?ped in :his appc~ach [9J. In that situation, the 
in\·aria:lt fact ors are assigned eX3ctly for all C3ses. 
Here, as we see, the co~~itions are r.erely sufficient 
and app ly to 's o~e ' cases; this ~arrants further clari­
ficatio:l. 

Re~l=k . The fact that in the state feedback the systea 
trasler function can take the form P • (sI-A)-lB simp­
lifies the proble~ , and using the procedure suggested 
here, Rosenbl·ock I s earlier result can be proved. 

The results ~e ha\·e discussed so far are unsatis­
factory in tlOO respects. h"e have seen that degree con­
straints on ~ or ¢ are not enough to ensure th3t the 
clo~ed-loop tr3:tsfer function G will have the desired. 
chara terist ics . If X, ~ • and left coprime and NRP'¢ 
are ri gh t copri=e, this ~ill be true. However, they 
are only sufficient conditions. It is therefore quite 
natural to ask "hether degree constr3ints are solely 
sufficient in ' a l ~ost all' cases and whether these are 
necessary in 'a b ost all' situations as well. I"e will 
show in the :text section that in some cases this is 
inJeeJ true. 
6. Ceneric Results 

Let q be so=" rositive integer. hie define the 
Z:lriski topolo!;y on Rq this ~ay. Let ~ be an ideal in 
R( Xl' •• , x] . All points x =(x , ••• Xq) Xl in ~ such 
.that f( :,) =Oqfor all f in u !~m lhe variety of u. If 
closed sets in ~q arc cefrn~d to be the varieties of «q 
[16], t~e'n a:q becomes a topological space with the 
Zari ski topology . Let Rq have the subspace topology. 

Denn i t ion. A set S c Rq is called 'generic I if it con ­
tains a non-c"-pty Zariski open set of Rq. Roughly 
spcakin& , a set is g~neric if it contains al~ost all of 
Rq, (its co:r.plc:Jent is cont:lincd in a set of Lebesque 
r,cusure zero). The way in which ~e use the notion of 
gcn~ric;ty is to first take a set of Rq and then define 
a propcr ty ~hich is va lid for a l l points in S c Rq. We 
then attcr.1pt to show that S is generic. This Cleans, in 
effect , th:lt tht: propcr:y is valid on almost all of Rq. 
~c n~ 6ive cAplicit definitions. 

Defi:l ition. An n xl. stric tly ero?er transfer function P 
or or.! :- n, &i \"cn by P = t; !l ,ni-: ~ has the B.eneric charac­
teri sti ool~T.c-ja l assigna :J iJity property 1.£ the monic 
polYll ,·.: .. ls ; ,:1: , ,'1 f l' \;hich there exists a proper 
co~pen s3:or C ~nk inc t he closcd-loop characteristic 
polyno::li al equal to ¢ is a generic subset of Rn+q • 

Dt'fini ion. ,·1 ::l X I. strict ly flroper transfer function 
P of o1'Jcr II !!iven by P = ~RI'UL~P has the r.eneric denor:\-
103to1' ~:atri~ ;l~~ i!;.!1abiljty r:-o~(' rty if the ixl.matrices 
¢ c I\t fo:, " hich there exists ?on acceptable solution 
X, Y to X O/{I' + Y ~RP = ¢ wi th ~;Rr, ¢ right £oprime and 
X,O left copr i ne is a generic subset of R~+ • 

In what follows, ~e find that looking at the equa­
tioa X :>~p+ y ~Rl' = ¢I as :m operator is greatly advan­
tage OliS. If 

}: 1 k-" X = X s ·- + Xk_2~ · - + • • • 
k-I k-1 

y. Yk_1s + 

DRP .. Dts t + 

SRI' .. S t + . t S 

then 

+ X 
o 

+ y 
o 

+ Do 

+ No 

[~-l Yk- l ... 
where 

Dt Dt ~ l 

Nt 

Sit Pit? NRP} 
0 Dt • 

2 ~ 0 Nt 
bl::clt rows 

, 

Do 0 

No 0 

Do 

No 

. 
Dt 

Nt 

0 

0 

o 

o 

N 
o 

This [1] we immediately recognize as the generalized 
Sylvester Resultant of DRP and NRP of order It [it is a 
k(c +l)x I.(t+k) matrix with real entries.] 

The following two lemat3 taken froll [1] gi'le the 
ran~ of Sk(D,N} for some transfer function NO- 1 in terms 
o! :::e dual dynamical indices (observability ir:dices if 
~O-l proper) of ~~-l and relate coprir.1eness of X,D with 
the r ank of some ~,(D,N). These are generali:ations of 
siso results . 

Le::=a 6 . 1. Let ND- 1 m x 1 be proper wi th Ai observabil­
ity i~dices of NO- 1 • Then 

rank Sk (0 ,N)"' (1 + m}k - L (k -~i ) 
i :~i < k 

LeC'..a 6.2 . Let ~D-l mX I. be proper and q the least 
inte;er for which rank S +1 (D, N) - rank Sk(D.~) ~ 1. 
The~, for n' > q, N,D areqrlght coprime iff S (D,N) "' 
I.n + 3(detD). n 

A consequence of viewing the equ3tion X DRP + Y NRP" 
¢ as an operator is: 

PrO?~sition 6.3. Let P= NRPD~~ be an 0 x 1 strictly 
proFe~ transf er function with controllability incices 
A1= ;.. = ••• =),1. = A and observability indices ~ .. lJ .. , 

2 d D N f h f A 1 2 "-1 
•••• ~~ D ~ an RP' RP 0 A~Ie orm DRP " Is + DA_ls 
+ •.• + Do and ~RP = NA_1 s + ••• + No. let 
Rt be the set of I. x I. matrices of the form 

~ 1 SA+q + ~ sA+q-l + ••• + • 
A+q-l 0 

let Q = {(X,Y) I X = Isq + xq_lsq-l+ XO' Y"Yqsq •••• +Y
o

} 

A necessary' and sufficient condition for the existence 
of a ~oll1t~on to X DRP + Y NRP = ¢ in the class Q for 
gene=!c ¢ 1S q~ ~ - I. 

Proo: : 

(ne::essity). 
Equation X ~RP + Y NRP = ¢ ~ith the conditiolls im­

pos~ can be IooTl t ten as 

[I Yq Xq_l Yq- l ••• XoYO]Sq+l" [I ~q+A-l"'¢o ]. 

Sq+l can be thought of as a function 

S :R(I.+m} (q+l)---+ R().{q+l)i 
q+l 

Fro~ len~a 6.1 ~e have that Sk [a k(1+m}x ().+k}l matrix] 
has rank 

rank S" = 

which,under the special circumstances, becomes: 

nnk Sk (I.+Q)k if 1 < k ~ ~ 

.. ( I.+m}k-m(k-~) if ~ < k 

By (.os(' rving dimensions, we see th3t: 



• ) 51' 52' ••• S~_l are not onto 

b) 5" is both one-one and onto 

c) 5,,+1' S~+2 are onto. 

AssUlDe now that q < ~-1 and that X 0RP + Y NRP •• has 

• solution in Q for leneric • • Show a contradiction. 

IE we think of (X,Y) as an clement in R1(1+.)q+ta and 

o as an element in Rl().+q) I, we see that the tl that can 
be reached from elements in Q are a set of d inaeni';;i1s 
less than l(q+A)t, wh ich ioplies that the set of 0 which 
can be reached does not cOlltain a non-cr:lptr Zariski open 
set. This is a contradiction; therefore, q ~ ~- 1. 

(Sufficien~y) . 

Suppose that q ~ ~-1 (or equivalently, q= ,,-1+1.:, 
It ~ 0). We want to show that the set 01: Rt , 
[t .. 1()'+~+k)l _12] for which a solution in Q exists, 
is • leneric subset of Rt. tie already know that S,,+k 
is an (l+m)(~+k) x()'+~+k)1 matrix with 

rank S,,+k Z (1 .. )~ + 1k 

This means that th~ operator 

S L:R(I+Q)(~+k) + R(l+m)~+ lk 
~+ .. 

is onto. We want to show that S~+k(Q) .. Rt. For O£Rt 

thore exists some (X,Y) of the fOrD 

X X S,,+k-l + 
• ,,+k-1 

Y .. Y S~+k-l + 
~+k-l 

such that 

For this we must hav~ X +k-l = I, which imp ies that 
(X,Y) I: Q. Thi~ comple¥es the proof. 

We are now in a position to give two results con­
cerning the generic chal'acteristic polynomial assign­
abil ity propert)'. 

lheorem 6.4. Let P = n d -1 be a siso, strictly prop­
er trans fer funct ion ofPo~Jcr n [6(dp) =n], dp monic. 

A nece ssary and sufficicnt condition for gcneric char­
acteri s tic pol),!,omia l assignability is q ~ n-1. 

Proof. 

Since $ £: Rn+q is to be the characteristic poly­
nomi a l of the clos~d systcm, t he compensator accomp­
lishinc this PI.::;, be of order q . Frol'l Proposition 6.3 
we thcn have that a necessary condition is q ~~ - 1. 

For sufficienc)" assume t hat q ~ V-I. I.et t = n+q 
and definn 

5 " 1 <+" I 
FO. l' "'hich there eXist !:1 

• l)c Rt an acceptable solu-
t- ti 011 x,y xd +}'Tl = 4· 

p P 
illlU x,y coprime. 

tie lIeC'd to sho·.~ that S cUllt(lins a non - C'mpty Zariski 
open set (i.e., it is ceneric). Since q~ V -I, __ 
Theor m 3.3 call be us ed to sho\~ that the solutioll 1.,y 
"hich is formed by letting -n (in y = ¢v + nd

D
, x = 

¢u - nn) be the unique quotient of the divinon 
d n", ~s an (lccl'l'table soluti on. Let C = Res(x . Y)(Le, . 
tRC' resu lt an t of x (lnu y). Since O(x) " q. we nlust have 
that x,)' are coprir:le iff & I O. 

Let 
v " g 

It ill clear th:lt S :> V. We need to show th:lt V, I O. 
- g 

Let f be in R[s), .;it~ a(f) • q ancI fdp _Ie • 
DeEine 0 • fdp + np ' 

.. QV • (fv-u)~ + 1. 

Since Eor this Pl~~:cul.r 0, the correspondin& y is 
equal to I, we c;s: :t.i'/e -X;y being copri_. Therefore, 
S( 2. \) cont3ir.~! non-eJ:lpty Zariskl open set D3ltinl 
it &en~ric. Thi s ;: ~?letes the proof. 

In a siollar ~~~er, we can also show [91: 

. -1 I The~~e:1 6.S . let ?· .SRtl..P.I' •• (nil dill ~ an M)( 1 
stnctly proper ~:-l..-:Her functlon With d· l , d)'i ' 
i I j coprir:le. ;. n::'ident c.ondition for 1 

generic char3cte~: s:ic polynoDial assignability is 
q ~ ~ - I (Ii i :!:~ ::!.!'~est observability index of P). 
In the' event th :!.: .. :: Jbscrvability indices are equal 
to V, then this c:~. ':' i tion is neccssary as well. 

Relllark. In pro':i :: z; :::esc results, we Jt:lke use of the 
lenerali zed Syh't: s : ~ :- resultants. The results are con­
fined to the case \' ;. e:l the denollIinator I13trix (X 0RP + 
Y ~RP .. ¢ ) is jus: ~ polynomial. For the general 
.)(1 case, a close:- eXl~ination of the structure of 
the resultant c.lt=-i:e s is needed. 

Remark. Resul t s s: ~ i lar to these proved in a different 
way can also be i~~-: : in a recent p(lper of Willems and 
Hesselink [141. 

The generali :~ = Sylvester resultants can be used 
lI01"e effectively ::;, :reat the generic denominator matrix 
assignability p!,0~: :~. As expected for the single-input, 
single-output case, · ... e have 

Theore~ 6.6, Let ~ = ~ d -I be a siso strictly proper 
transfer tunctio~, :: or8e¥ n . Let. be a monic poly­
norJial .. ith 6(¢) = :! + q (41 F.: Rn+q ). A necessary and 
sufficient condit: :-: :01' generic denominator assigna­
bility is q ~ n-l. 

nle proof ?r~:~~=s in a similar manner as that of 
Theore::! 6.4. T~e =; ' tiple-input, multiple-output situ­
ation is much r::or" : :: l llenging. For this, we interpret 
I.emma 6.2 in the :'::l: :o· ... ing way: The matrices :\ ,0 art! 
right co?rime iff .. : lesst one .tn· 6(det D) x 111 + 6 (det D) 
minor o f S (D,K) is not zero. Denote those minors by 
m. (0 . ~). By S}-:::::'!:::·· , the argument can also be made for 
l~ft co~~imeness . • ~ can now state [91. 

Proposition G.7. i.e::? '" NRPDR~ be an II X t strictly 

proper transfer r-:.::ion with r~Rr] COlUWl proper, dnd 
~ RP 1 

colur..n degrees }.I ~ " 2 ~ ••• ~ ),1 ~ O. Let Di,pNLP be 

such t hat 6(OL?) = '-:' the largest observability index. 

Let Rt denote t he ~~: of 1 x 1 diagonal matrices 0 = (¢ . ), 
1 1 

$i moni c with q :: . '" \ + ti' t = ): (Ai+ t i ). Let 

( '" ") (. "') b th 1 = 1 . t mi v,· RP , nj " .'. e _ e appr~p:13 e 

minors for $, ~t: ; " ~~.~ ¢ , X, re::pcctively, (X,Y ob­
taincd b)' right c:.:;: s :'on OV = - N Dl.p + Y). 

If ti ~ \..1- : ;l ~d at least one mi(¢,NRP) f. 0 

and at le(ls t one :: ~ : : .X) I 0 , then P has tho denomina­
tor r:l3 t rlx assic~.:ility property. 

Remar k. For this ~ ~s~lt as well we see that degree 
Constraints are r. :;, : '::1;)u;:h and that 'undcsirabl e ' 
addit iona l condit i:~ s arc prcsent. 

0" the other hl:-.-:l . this i s merely a sufficient 
cond i tion . For t ~e !?ccial case of dia£on31 systems, 
we ha\'c [91. 

rr~osition 6.8. !.ct P be an m)( 1 strictly proper 
trans fcr (uncti on ,,:' ::!~ form 
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n, n d, 
0;- 0 1 0 

p. • 
o 

0 
0 0 

"1 "1 

0 
ill 0 

NRP 

vi th ni .di coprir.~. di IIIOnic (this DCans that the con­

troll abi lity indice A. are equal to e(9 ' )I~ i S 1 
and the obsen':lbility indices IJ. are equal

1 
to 

t(di ) 1 ~ i ~ I. ~ith ~1+1 ••• ! . ~. = 0.) 

Let Rt denote the set of I. x I. diagona l utriccs 
• t (9i) ' 9i monic with e(¢i)" Ai + tp 

t c f (A . + til A sufficient condition for gen-
i-I 1 

eric denominator catrix assi~ability is ti 2 ~i - 1. 

In the event tha: a = 1 and Al • AI •••• A1- A and 

lI, • ~z = •••• ~1 .A " ~ , then ti ~ ~ -1 is a n~ces­
sary condition as ~ell. 

Remark. Under the assUPptions of Proposition 6.7, ve 
havo that a sufficient condition for generic: denoainator 
aatrix assignability is 

a) ti ~ ~1- 1 

b) at least one mi(~' NRP) ~ 0 and 

at least one ni(O, Xl 'I o. 

It is desi rable to eliminate condt ion (b). To 
accomplish this it has to be shown that for SOlllC 0 cRt - . 
lie h/we r.l i (00 , NRP) 'I. 0 and nj (0., lo. ) 'I O. 

Proposition 6.8 suggests a W3Y in which this D:ly be 
achie\'cd. Instead of 10C'k ing at some specific system 
and so~e space of ~, look at the space T x 0, ~here 
T is an appropria:e space of s)'sterJs (~hich includes 
diagona l systems). Then :lttempt to show th:lt for some 
, (a d iaRona 1 srs ter.l) and some <) , •• (NRP 0 ) I- 0 

• 0 1 , t. 0 

and nJ. (o , Xt A ) 'I O. This w:ly we will, in effect, 
o 0"'0 

h:lve prov ed that 'almost all' systems in T have the 
eeneri c den~~inator matrix :lssignability property, if 
ti ~ IJ 1 - 1. 

Theorer.l 6.9 

Let N,D be R,x I. matrices and define W, Z,S as 
folIo'.::; : 

, ZU
2 1 _ ), A- I W = H~ ,D)cR O- ls + D

A
_1s + ••• + Do' 

N " ),-1 N } - " A_l s + ... + 0 

_ { _ (A+q) t l ' _ hq hq- l } Z - ~ .. j{ ¢ d1'tr" 0- Is +OA+q_lS + ••• + ~o 

S " {(N,\),~)tR2H2 XR(),+q)I. For which there exists all ) 
acceptable solution X,Y 
of XD+ YN = ~, with 
N,~ ril:ht coprime, 
X,$ left coprime. 

A necessary condition for S to be a generic subset of 
R2AI.

2 
x R(A+q)1. is q ~ A - 1. 

Proof: 
Suppose that S is generic (i.e., it contains a 

non-e~ty Zariski open set) and let q < A-I. Show a 
contradiction. 

Let M be the subset of R2AI.l x R(A+q)tfor .hich 
(N,D) are right copri.o and ND- 1 has observability in­
dices equal to ~(cA). (If N,D are right copr~., the 
controll3bility indices of NO-' arc all equal to A). 
We ha\'e that M is generic because of the foll01o;ing: 

The set F £ R2AI.I x R(A+q)l for which 
rank Si(D,N) . 2i1 1 ~ 1 ~ A 

and ra.,\; SA+l. 2.\ 1 + 1. 

is ,c~eric. This ae3ns that for evert (N,D,O) c F lie 
have 6at: 

1) S,D are right copri.c (Le.ua 6.2) 
2) Si nce ~D-l is proper, the Observabi1ity indices of 

S~-1 are all equal to A (Le..a 6.1). 

This i::plies that (F c"l) ,.1 is generic. 

Since ~e have ass~~ed S to be generic. we cus t have 
that 5 n!-I is non-empty. Let (N 1 ,D

I
,O,) c S n~l. This 

acans th3t for N1 , 01 and al.ast al • cZ we have that 
an acceptable solution X,Y of XD + YN •• exists. 
Since X,Y is act.cptable, we IlUSt have (CorollaI')' 2, p. 
541, Rosenbrock·llayton). a(y) ~ q. This .oans th:tt 
(X,)l c; Q of Proposition 6.3. But then q ~ A - I, .hich 
contradicts our assumption that q < A - I. Therefore, 
q ~ A-I. This cocpletes the proof of TheoreQ 6.9. 

Pr~osition 6.10 With W,Z,S,H as in Theore~ 6.9, a 
su i~ient condition for S to be generic is q • A - 1. 

Prooi: 
~ .). -1. Froo above .e already have that ,.1 is gen­
eric. For any (S,D, ':·: in N we have that S~(D,S) is one­
ono a.~~ onto, therefore invertible. This !:leans that for 
any !' t Z there exists a unique (X, Y) such that Xi) +)~ • 

O. L~d X,Y is an acceptable solution. It is clear that 
N,O are right copri ~e for almost all (N,D,O). The 
quest ion then re~in5 as to whether X,O are left co­
pri~e. (i.e., 0 , X' right coprl~e). 

F.o~ Proposit ion 6.8 we already know that :here 
exis:s so~ dia~on a ) system N 0- 1 and some diaic~al 
¢~ Z for ~hich X and 0 are coprime [call the point 
(N ,0 ,F) £: \\ x Z ,a]. This means (Le1lll!l3 6.1) that 

rank Si(Oa' X'a) ~ i'21 1 < i < 2A- 1 
and 

r~,k SI),(~a' X'a} ~ 2),'21.- 1 . 

This i=plies t hat the above also hold for generic a . 
Using le~~a 6.2 we then have that X,~ are left coprime 
for i~ r.::, ric a. This means that S is a generic subset 
of R' ;U.z x R(),+A-l)9 . • 

Remark. In Tht'orem 6.9 \~ e see that q ~ A-I is a neces­
sary condition so thlt for almost all systems of order, 
At and equal observability indices A, there exists an 
acce?:~~le solution X,Y of XD + YN = ~ with N,O right 
copr i =~, X 0 left copri~ • tor almost all 0 in Z. In 
Propo:;it ion ~ . ~ o ",'e b we that q = A - 1 is a sufficien!' 
concitiC'o . We co~jecture that q ~ ), - 1 is actua lly a 
sufficient condit!on, thus completing "heorem 6.9. 

I\e wish to thank Professors Chris Byrnes and 
Bernard levy for many helpful discussions. 
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