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Abstract

For some linear, strictly proper system given by
its transfer function, two dvnanic output feedback prob-
lems can be posed. The first one is that of using
dynanic-output feedback to assign the closed-loop char-
acteristic polynonial and the second that of assigning
We are concerned
with these problens and their inter-relationships. The
formulation is done in the frequency domain and the
investigation carried out from an algebraic point of
view, in terms of linear equations over rings of poly-
nomials. Using the notion of genericity, we express
several necessary and sufficient conditions.

1. Introduction

Two of the central results of linear system theory
are the following:
(A) Let A and B be natrices of dimension nxn and nx £
respectively. The pair (A,8) is controllable if and
only if for every symmetric set A of n complex numbers,
there is a matrix C such that A + BC has A for its set
of eigenvalues;
(B) Llet A and B .e patrices of dimension nXn and nx £
respectively with (A,B) being a contrallable pair. The
input-state transfer functicn P is given by P=(sI-A)‘1B.
If state feedback wu=Cx+v is used,. the closed-loop
transfer function G is given by G = P(I+CP)~'. Let
Al > Az 2 . Z.Xl > 0 be the controllability indices

of P. Let ¢, be given polynonials such that¢il¢i_xwiﬂ1
I 6(e;) = n.
i=1

Then, there exists a constant C such that the in-
Variant polynomials of G are the o if and only if

k 3
I e > [ k=1,2,... £, with equality
i=1 =1 at k = L.
Subsequeatly there has been considerable work to gen-
eralize (A) to the case where static output feedback

is allowad. For the rost recent results on this topic,
see Willens and Hesselink [14] and Brockett and Byrnes
[4). Some recent work invelving dynamic output feedback
can be found in [2,3,7,14,15].

Generalization of problea (B) to the output feed-
back case has been investigated by Roscnbrock and Hay-
ton [13}. They consider a transfer function given in
Rosenbrock's systen matrix form and present several
interesting results. Ve consider the same problem in
the following fora.
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Figure 1

The nx 2 (m>2) matrix P is the input-output matrix

of a strictly proper plant and C ( 2xm) that of some
proper dynamic compensator. Both P and C have elements
in R(s), the field of rational functions in the indeter-
minate s over the reals R. The closed-loop transfer
function is:

G =P(I+CP)"} ,

The condition m> 2 is not restrictive because the situ-
ation o < 1 can be treated in a similar manner and

dual results obtained. The transfer function P is
assuzed to be given. We are interested in the follow-
ing two problems.

(The Characteristic Polynomial Problem)

Let 3 be scue polynomial in R[s]. What are neces-
sary and sufficient conditions for the existence of a
proper coopensator C, so that if x is the character-
istic polynomial of the closed-loop system, then X
is a factor of $? A variant of this is the investi-
gaticn of the situation in which x is equal to ¢ .

(The Invariant Factor Problem)

Let 3 be an £ x L matrix with elements in R[s].
What are the necessary and sufficient conditions for
the existence of a proper compensator C, so that if ¥
is the closed-loop invariant factor matrix, ¥ is
equivalent to $? A variant of this is to let ¢ '(°i)
be in Szith form and to require that [¥ = (y.)]y;
divides 3, for 1 < i € £ , or more specificaily,

that vi ¥y

It is clear that, from a mathematical standpoint,
the invariant factors of a transfer function deter-
mine the deeper structure of a system. If P=C(sl A)"B
with (A,8,C) minimal, then A can be written in compan-
ion fom as:

¢,
C 0
= . , K=T'AT
o -
Cl_
where v;E det(sl-ci) are the invariant factors of P.
It is true that there does cxist a relationship

between the degreces of the invariant factors and the

L (NASA-CR~-1 62268) cont wllability or observability indices of a certain
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class of systems [9]. where B,A,D, N are polynomial matrices. We use the
following notation:
The invariant factors are closely related with the

transmission zeros of a plant as defined by Desoer and P= 'RPAI-II" some right representation of P
Schulman. Let P be an mx2 plant with Smith-McMillan i
forn given by M, : = Au‘,lu, some left representation of P
™~ o — = NRPDRP some right coprime representation of P
1
Tl_ = DU,NLP some left coprime representation of P.
€ The closed-loop transfer function G can then be ex-
M, = 3 a pressed in the following ways:
2 .
\ G= P(IL+cCP)"' .,
0 \ <3
. = BpplAichre * BicBre)  Ac -
——— o -1 .
" ) Npp(ArcPrp * BrcMre)  Arc ™
L. — : 3 1
‘\y(nkco rp* N "RP) Dic NRPQ Dice
The ¢. are the invariant factors of P and the transmis- = N Q"Dm (least order),

sion © zeros of P are associated with the zeros of the

s,

olynomials €;. Suppose that €. # 0. Then, [8], zeC v 3 -

li’s a zero of b of ol:'ger m iff 1‘32(°)- has a £elo of where ! RP’n are right coprime and l.(:'?2 left coprime.

order m at z. The significance of this order, roughly From [5,7] we have that ¥, the characteristic poly-

speaking, is that the system completely blocks the nonial of the closed-loop system, can be written as

transmission of some input of the form f gt exp(zt) X = & det @, a non-zero constant. If coprime repre-
k=0 sentations for both the plant and compensator are not

used, then

foro= 0,1, ... v +. For o = m, there is an input of o det(ALCARP + BLCBRP)

this form for which the output is non-zero and proport- X = »

ional to exp(zt). Therefore, if two systems_P and_| P det K+det L

have the same characteristic polynomial X = X (x= ¢

$!.' s a,- %) bus Sifiarent inverisnt Brrrans tand wherea# 0 is a constant, K a greatest common left

divisor of'Au:,BLc and L a greatest common right
‘zeros), the transmission-blocking properties of the two P~
divisor of BrpsAgp-

systems would be different.

This paper is divided into five sections. In sec- 1f .\IG is the Snmith-McMillan form of G,
tion 2, we formulate the problem in an algebraic manner
using the notion of matrix rraction representation.
This, in a very natural way, will suggest a method of 1
solution and in doing so, demonstrate the importance v
of the ecquation XD + YN = ¢ , where X,Y,D,N and ¢ are
all matrices with elements in R[s]. 1In section 3, we M = €
will study this equation as it pertains to our problem "G SN v )
and will construct what we shall call 'acceptable' sol- Y2 4 Wonaic,
utions. In sections 4 and 5, we discuss the character- . v |
istic polynomial problem and the invariant factor prob- A v
lem. From this it will be scen that the results are A L
unsatisfactory in two ways. On the one hand, they are . 4
only sufficient conditions, and on the other, they apply Ve
in 'almost all' cases. In section 6 we show that by - 0
introducing the notion of genericity, more complete re-
sults can be formulated., Remaining questions are under
continued investigation. Even though we do not spec-
ifically address ourselves to specific algorithms for " -
solution, the procedures used are constructive and can W ERkE ¥ = 0 : the invariant factor matrix
be programmed on a digital computer, 1

e ; of G, v; being the , invariant factors. As shown in
2. Formulation and Method of Solution [9], we have that © and ¥  are equivalent.

e —

1<ic<t

Assume that we have the fccdback system shown in One way to proceed is to utilize the form in

Fig. 1 with P being a strictly proper mX £ (m > £)° o
input-output transfer function and C some % xm proper :l;'i)cl:.ts::;'closcd loop transfer function has been

dynamic compensator. Both P and C have elements in B
R[s]. The closed-loop transfer function G is given by G = “"RP(ALCDRP + B Nep) ’ A

!
i g, SO = Nep(P1cPpp
where we assume that (I +CP)” " exists. Since P is a . -
rational matrix, it can be factored [Desoer- =N WS
RP LC
Vidyasagar] as follows:

-1p

¥ \ \N') Lc

3 .3 Suppose we are investigating the characteristic
P= BA "= DN polynonial problem. Let ¢ be some LxLmatrix with
det @ = 9, where ¢ is some given polynomial, If a

-2

.



e

polynomial solution X,Y to XDR

X'y existing and proper, then C = % e proper com
pensator making the closed-loop characteristic polynom-
ial x equal to x = ¢/q where q = det K, K a greatest
common left divisor of X and Y. If, in addition, X,Y
are left coprime, then x = ad. In a similar manner,
suppose we are looking at the invariant factor problem.
Let ¢ = (oi) be an 2 x & matrix in Smith form. If a
polynomial solution X,Y to XDRP + YNRP = @ exists with

p* ) NRP = @ exists with

X" 'Y existing and proper, X,® being le¢ft coprime and
NRP,O being right coprimz2, then C = X is a proper

compensator which nakes the closed-loop invariant fac-
tors *1 equal to °i'

It is clear from the above that equation XD+ YN= ¢
plays a very important role in our investigation. Ve
devote the next section to the study of this equation.

. Before doing this we also formulate a third problem,
the Denoninator Matrix problem.

(The Denominator Matrix Problem)

Let P = NRPD;; be an m x £ strictly proper trans-

fer function described by the right coprime representa-

tion NRP’DRP’ Let ¢ be an £ x 2 matrix. What are nec-

essary and sufficient conditions for the existence of a
polynomial solution X,Y of X DRp + Y NRP = @ for which

X"'Y exists and is proper? A variant of this would be
to require also that NRP,O are right coprime and X,®
left coprime.

Remark. The issue of coprimeness has not been explicit-
ly decalt with by Rosenbrock and Hayton [13].

3. The Equation X D, + Y Nop = L)

RP

The importance of this equation in the problems at
hand has been shown in the last section. It is nothing
else but a set of linear equations over the field of
rational functions R(s),

D
X,Y RP| =2
(x,Y) [N”]

(i.e., Z F = §). As such all (rational) solutions can
be written as Z = I, + I, where Z, is a particular solu-
tion and Z, is such that Z,F = 0. We, though, are
interested only in polynomial solutions, and as can be
shown [9, 11]:

Proposition 3.1.
UDpp + Wpp = 1.

(3.1)

Let U,V be a polynomial solution to
Then all pelynomial solutions (X,Y)

of X DRp + Y Npo® ? can be expressed as:
X =49U - N\'l_p
Y = ¢V + ND

LP

where N is a polynomial matrix.

Rana o 9 2 o 2 '
Now from [12], we know that since LRP'DRP

coprime, a polynomial solution X,Y always exists for any
®. This is un algebraic condition. Emre, in a recent
paper [10], gives a nice system theoretic interpretation
of this, using module theory and the realization tech-
niques suggested by Fuhrmann.
nate description of all polynomial solutions,which has
a system theoretic flavor.

are right

As we have noted, we are interested in solutions of
X DRP + Y Npp = ¢, which are polynomial but which in

addition have the property that (a) det X # 0 and (b)
x~'Y is proper. ke call such solutions acceptable.

He also suggests an alter-

<

Satisfying the first requirement is easy, as we see
froa [9).

Proposition 3.2. Let ¢ be an £ x £ matrix with detd # 0. .
Then there exists a polynomial solution X,Y to equation
(3.1) for which det X # 0.

This next result describes how both requirements are
satisfied sirultaneously, which consequently plays a
crucial role in our investigation [9,13].

Theoren 3.3, Llet P = N“PD;; be a strictly proper m x 2

raticnal transfer function with[?k?] being column-proper
* RP

with column degrees (controllability indices)X > l’ >

ess 2 0. Let 9 be 2n L x 2 mon-singulax ratrix

with g = §(det 9) - €(det DRP) >0. Let X,Y be a

polyncaial solution of X Dgp + Y Nop = @ . Then X' ¥
exists and is proper iff there exists a unimodular matrix

L
M and irdices d; > 0, satisfying ld5=q such that
i=1

= -0

diag(s i) M[Y, ¢ diag (s °1)] is proper. (3.2)
Rerark. The above theorem is clarified if we look at
what Rappens in the single-input, single-output (siso)
situation. Let x,y be a solution to xdpo yu = ¢,
np,dP coprice, e(np) < O(dp) = Q. P

Necessity: If x 'y is proper, we must have

€(¢) =a+qand q = 6(x) >8(y) .
Therefore, we zust have s"9[y,6s™®] proper.

Sufficiency: If s9[y,¢ s™®] is proper, we have that
O(y) £ q and since 8(¢9) = q + a , we nust have 8(x) = q,
otherwise O(xd_ + 3 # 8(¢). This means that

x y exists and is P prover.

6(x) +a=

After looking at Theorem 3.1, it is quite natural
to atte-pt the construction of acceptable solutions by
making sure that requirement (3.2) is satisfied. We
know that all solutions to (3.1) are given by

X= JU - XNLP
Y= dV+ NDLP

where UDpp ¢ vxkp = I. The question is how to choose

N. Llet us look at the siso situation for a moment.
Then y = v + 1 , or written differently, ¢v = -nd
+ y. W2 know that whatever ¢v is there exists an n
such that 8(y) < 2(d). This is nothing else but divi-
sion of v by dp. This as shown in [15] and holds

in the -atrix case where the colur.a degrees of Y are
1f we

then let [D;pN,] be row-proper, the row degreces are

strictly less than the column degrees of DLP'

the cbservability indices of P and we can construct a
unique Y with the €(Y)< u, -1, ¥, the largest observa-

bility index. Therefore, diag (s'(u!-l}ﬁisproper. To
fulfill requirerent 3.2, care must be taken in choosing

a ¢ that nakes diag(s(¥171))2diag (s™®i) proper as well.

Theoren 3.1 provides a test for determining whether
a specific polynomial solution is actually an acceptable
one. It would be greatly desirable, though, if a partic-
ular solution could serve as a represcntative for all
solutions. In the following situation, this can be
done.

Let P be a strictly proper transfer function with
all observability indices equal to u. Let [D;;,N;p]
be row proper, Dp = I ¥ o .. 0D,

=B



Let U,V be such that UDp, + Wpp = I with [o”]

column proper with controllability indices
M2 2202 0. Using right division, there

exist unique -N and Y such that

We=-NDp+V oY) <u.
Let X = QU + NN .
s
Proposition 3.3. Llet P = NRPDRP DLP NLP be as
above., Let & bz a diagonal matrix with 6(9.)
Ai 4+Y,Y20. Then X Dpp + Y Npp = @ has a% lccept-

able solution iff X,Y is an acceptable solution.
Remark: The atove does include the siso case.

4. The Characteristic Polynomial Problem

We are now in a position to give a partial answer
to the Characteristic Polynomial Problem as stated in
section 1. I say 'partial' because it is only a suf-
ficient condition.

Theorem 4.1. Let P be an m x £ strictly proper trans-
fer function and NRPDRP a right coprime representation

D
Nhere[ﬂaﬁl is column-proper with column degrees
A > 5 ... 22y > 0 (controllability indices).
Let DLPNLP be a left coprime representation, with
[DLPblP] row-proper. Let ¢ be a polynomial of degree

t= a; + l(ul-l) (ml the largest observability

: i=1

index). ‘Then there exists a proper compensator C such
that the characteristic polynomial X of the closed-loop
system is given by

®

" Ay
where Ay is a polynomial with 0 g_e(qu)g_ l(ul -1).

. The proof is constructive [9], with the compensa-
tor becing given by C = X-'Y where X,Y is an acceptable
solution to some equation of the form X Dpp + YNRP= ¢.

The polynomlal Qyy is nothing else but det K,,., where
KXY is a greatest common left divisor of X " and Y.

Remark. It is clear that this Theorem can be used for
purposes of stabilization. If ¢ is chosen to be a
stable polynomial, then so will be ¥, the closed-loop
characteristic polynomial. We also note that the com-
pensator may or may not bc stable. We will investigate
this issuc later in this section.

Remark. From a closer examination of the procedure we
can sec that, in general, one does not have prior know-
ledge of vhat qyy is. The larger the degree of Ay

implies a smaller increase in the overall dynamics of
the system. One can therefore use this in the design
of compensators,

Remark. Using a different output feedback configura-
tion, Brasch and Pearson [3] show that the character-
istic polynomial of the closed-loop system can be
assigned by only increasing the system dynamics by u,-L
These results can be obtained using the approach out-
lined in this paper [9]. Even though more dynamics

are added in our approach, it may be that the computa-
tions are less cumbersome. This issue warrants further
investigation.

Remark. The approach taken in [15]) suggests that com-

pensation involves input as well as output dynamics,
and it also differs from the present approach in that
it requires stable, pole-zero cancellation and the
presence of ‘'hidden' modes.

On the one hand, it is quite worthwhile to investi-
gate conmpensation schemes that require as little added
dynamics 25 possible. An equally worthwhile task is to
investigate whether, by adding more dynamics than the
least reguired, one can achieve other design objectives
as well [2]. The following Lemma and Example deal with
this issue.

Lemna 4.1 Let ¢ be a polynomial with 6(¢)= 2n - 1 + k,
k> 1. Let X, y‘ be an acceptable solution of

gdp sy =3, " p/dP strictly proper, 0(‘,) = n]. All
acceptable solutions are of the form

x, = X - nnp 9
Y2 = Yy, +m
where €(2)< k - 1.

Example.
Let p = ;’%—T” and suppose that we want to con-

struct a proper and stable compensator which makes the
characteristic polynomial of the closed- loog system
equal to the stable polynonial ¢= s “+53435%+ s+ 1.
Yy

The cozpensator C = ?ST’:%—?— = r:- does satisfy the
requirements except that it is unstable. Now, all
acceptzble solutions are given by

X, = X, - mnp

Y= Nt ndp
where o is 2 constant. Let m = -2, Then,

x, = s?+s4+1

yz-35’02502 .
Clearly, C, = 3s'+ 25 + 2/¢+ s + 1 meets all the
requirenents.

Remark. This idea can certainly be extended to the
multiple-input, multiple-output situation.

S. The Invariant Factor Problem

Let P be an m x L strictly proper transfer func-
tion and 7 = (4,) an & X £ diagonal matrix in Smith

form. If P = \RPDRP is some right coprime representa-

tion for shich there exists an acceptable solution to
the equation X Dpp + Y Npp = ¢, where ¢ and § are equiv-

alent, with (a) X and ¢ left coprimc and (b) Npp,®

right c-;rx e, then C = X~'Y is a proper compensator
making the invariant factor matrix ¥ = (Y;) of G equal
to® . If conditions (a) and (b) are not mct, then [6)

we have ..';i. We also know [13] that if P with control-
1bility indices XA, 2 A, 2... A, > 0 and observability
indices 1> ¥, >... u >0 an& F=(0 ), also satis-
fies

k

):a:1 20\ +u -1  k=1,2,... with

i=1 . equality at k = £,

then there exists a matrix ¢ equivalent to § such that
lin [d;a,(<"" )y diag (s®) ] = 1I.

Theoreﬂ 5.1. Let P,3 , ¢ be as above, with the ¢; sat-
isfying

k k
Je0s) > T A; +w 1) k=1,2,...2with
i=1 i=1 cquality at k = £,

Then there exists a proper compensator € = X~ 'Y with

.4_



X Dpp # Y Npp = & and such that if ¥ is the closed-loop

invariant factor matrix, then *1|°i-

We will only have y. = ¢i if X and ¢ are left co-
prime and Npp and ¢ are *i

ght™ coprime.
Remark. In earlier work Rosenbrock [12] gave a neces-
sary and sufficient condition in the case of state feed-
back. That result can be obtained using the theory
developed in this approach [9]. In that situation, the
invariant factors are assigned exactly for all cases.
Here, as we see, the conditicns are merely sufficient
and apply to 'some' cases; this warrants further clari-
fication.

Renark. The fact that in the state fecdback the system
trasfer function can take the form P = (sI-A)~!B simp-
lifies the problem, and using the procedure suggested
here, Rosenbrock's earlier result can be proved.

The results we have discussed so far are unsatis-
factory in two respects. We have seen that degree con-
straints on % or 9 are not enough to ensure that the
closed-loop transfer function G will have the desired
characteristics. If X, 9 , and left coprime and Npp,¢
are right coprize, this will be true. However, they
are only sufficient conditions. It is therefore quite
natural to ask whether degree constraints arc solely
sufficient in 'almost all' cases and whether these are
necessary in 'alnost all' situations as well. We will
show in the next section that in some cases this is
indeed true.

6. Generic Results

Let q be some positive integer. We define the
Zariski topology on R9 this way. Let u be an ideal in
Rix,, ... xq]. All poénts X ox. , ...xq) X, in € such
that f(x)=0"for all f in u fom %he variety of u. If
closed sets in 09 are defined to be the varieties of @9
[16), then €9 becomes a topological space with the

Zariski topolegy. Let R2 have the subspace topology.

Definition. A set S<R9 is called 'generic' if it con-
tains a non-empty Zariski open set of R9. Roughly
speaking, a set is generic if it contains almost all of
R4, (its complenment is contained in a set of Lebesque
reasure zero). The way in which we use the notion of
genericity is to first take a set of R1 and then define
a property which is valid for ail points in ScR4, We
then attempt to show that S is generic. This means, in
effect, that the property is valid on almost all of R4.
We now give explicit definitions.

Definition. An nx2 strictly proper transfer function P
of ordcr n, given by P = NppDpd  has the generic charac-
teristic polynonial assignanility property if the monic
pelync.ials ;oK' for which there exists a proper
compensator C making the closed-loop characteristic
polyncaial equal to ¢ is a generic subset of e

Definition, An nx2 strictly proper transfer function
P of order n given by P = NppD;,, has the generic denon-
inator rnatrix assignability property if the L ximatrices

¢eR" for which there exists an acceptable solution
X,Y to X Dy + Y Npp = @ with Npp @ righgogoprime and

X,® left coprinme is a generic subset of R

In what follows, we find that looking at the chua-
tion X Dypt Y Npu = ®as an operator is greatly advan-
tageous, 1f

. - k-1 k-2

X = xk'lsk-l + xk_zd * see ® Xo

Y = Yk-ls * sees + Yo
t

DRP = D‘s + vow + Dy

" P,

&RP = &ts + ses + N°

then

ey Yieen ooe Xo¥ol SgpNppd® [Pyer1¥aeaz -+ %l

where — =

Dt Dtel Do 0 0 .cco ©

Nt PHSE No 0 9 sese B
p 0 B e D o
Sx(rp Npp) = t ° :
2% 0 Nt S No .

blcck rows .
Dt P D°
Nt o No

This [1] we immediately recognize as the generalized
Sylvester Resultant of Dgp and N of order k [it is a
k(m +2)x  2(t+k) matrix with rea§P entries.])

The following two Lemata taken from [1] give the
rank of S, (D,N) for some transfer function ND™' in terms
of_:he dual dynamical indices (observability indices if
ND™! proper) of ND™! and relate coprimeness of N,D with
the rank of sone Sk,(D.N). These are generali:ations of
siso results,

Lez=a 6.1. Let ND™' mx 2 be proper with A, observabil-
ity indices of ND™!. Then i

Tank S, (D,N) = (2 +mk - J
i:ui
Lerna 6.2. Let ND™! mx £ be proper and q the least
integer for which rank S + (D,N) - rank S (D,N) < L.
Then, for n'> q, N,D areqrxght coprime iffk S _(D,N) =
n + 2(det D). .

A consequence of viewing the equation X DRP 0Y'NRP=
¢ as an operator is:

Proposition 6.5. Let P= NppDpp be an m x £ strictly
prorer transfer function witﬁ controllability indices

(k =M )

A= Azs «es =23 = X and observability indices ETL I Y
ese =un =y and Dpp,Npp ofythe form Dpp = Is?+ Dy_yS -1
*p000 *Dpand Nop = Ny . s 7+ ...+ Np. Let o
R™ be the set of Ax % malrices of the form
2 A+q A+q-1
? 8 Gk ox+q_l s *eee ¢ 0.

-1
Let Q= {N] X = I8+ x 53700 x, Yy s Lav )

A necessary and sufficient condition for the existence

of a solution to X D p * Y Ngp = @ in the class Q for

generic ¢ is q> p- P.

ProoZ:

(necessity).

Equation X D¥¥ + Y Npp = @ with the conditions im-
c

posed can be written as
[1 Yq Xq_l Yq-l PR xoyo]sqol' [1 oq.l_l...oo 1.
Sqol can be thought of as a function

s l:R(!-ﬂn)(q*l) » RMar1)2
q+

Fron Lemma 6.1 we have that sk [2 k(Z+m)x (A+k)2 matrix)

has rank
rank S = (f+mk - §  (k-wy)
i:ui< k
which,under the special circumstances, becomes:
r:mkskz (2+m) k ifl<kz<yp
= (L+4m)k-m(k-p) ifu<k .

By cbserving dimensions, we sce that:



a) S‘. s,, s“_l are not onto

b) su is both one-one and onto
c) S are onto.

u+l’ s\nZ
Assume now that q < p-1 and that X DRP L NRP = ¢ has

Show a contradiction.
L(2+m) q+2Lm p_—

a solution in Q for generic ¢ .
If we think of (X,Y) as an element in R

® as an element in R"u“‘)", we see that the ¢ that can
be reached from elements in Q are a set of dimenicis
less than 2(q+A)%, which implies that the set of ¢ which
can be reached does not contain a non-empty Zariski open
set. This is a contradiction; therefore, q > p-1.

(Sufficiency).

Suppose that q > -1 (or equivalently, g= u-1+k,
k > 0). We want to show that the set ¢eR% ,
[t = 2(A+u+k)2 -22] for which a solution in Q exists,
is a generic subset of Rt. We already know that S +k
is an (L+m) (u+k) x(A+p+k)2 matrix with »

rank Su’k = (L+m)u + 2k .

This means that the operator

. .p(2+n) (u+k) (L+m)p+ 2k
su‘k.k + R

is onto. We want to show that S, (Q) = Rt. For 0eR®
there exists some (X,Y) of the form
u+k-1
X = xu+k-l S * o xo
u+k-1
Y= Yuok-l S + oo Yo
such that

[.xu0k-l’yu9k-l xoyolsu’k. (l ox’u*k-l “ee °°].

For this we must have X sk-1
(X,Y) € Q. This comple!eé

We are now in a position to give two results con-
cerning the generic characteristic polynomial assign-
ability property.

Theorem 6.4. Let P=nd "' be a siso, strictly prop-
er transfer function ofPofder n [e(dp)zn], dp monic.

= I, which implies that
the proof.

A necessary and sufficient condition for generic char-
acteristic polynmomial assignability is q 2 n-1.

Proof.

Since ¢¢ qu is to be the characteristic polv-
nomial of the closzd system, the compensator accomp-
lishing this masc be of order q. From Proposition 6.3
we then have that a necessary condition is q 2p- 1.

For sufficiency, assumc that q > p-1.
and define

s=‘(¢

Let t=n+q

For which there existe
an acceptable solu-
tion x,y xdp + )'npz ¢

and x,y coprime.

0! ot_l)c R

We need to show that S contains a non-empty Zariski
open sct (i.e., it is generic). Since q>u -1,
Theorem 3.3 can be used to show that the solution X,y
which is formed by letting -n (iny = ¢v + nd_, x =
¢u - nin_ ) be the unique quoticnt of the divis_g_og
d /v, Bs an acceptable solution. Let g=Res(x,y)(i.e.,
tRc resultant of x and y). Since 0(x) = q, we must have
that x,y are coprime iff g # 0.

Let

\Ig = {(%, cor g e R g(@o. cer §py) =0 ).

It is clear that S 37;' We nced to show that V' £0.

Let f be in R[s], «ith 3(f) = q and fd_ monic.

Define ¢ = fdp *+ e
- ¢v= (fv-u)d? & s

Since for this particular ¢, the corresponding y is
equal to 1, we tust have X,y being coprime. Therefore,
S( 2 V) contairns 2 non-empty Zariski open set making
it genﬁric. This c:=pletes the proof.

In a similar =anner, we can also show [9]:
Theorea 6.5. Llet ? = N ':. = (ny,/d;,) be an nx1
strictly proper trinsfer function with dil' dji'
i #j coprime. A sufficient condition for
generic characteris:ic polynomial assignability is
qQ 2u,- 1 (pj the lzrgest observability index of P).
In the event that Il observability indices are equal
to y, then this ccnlition is necessary as well.

Remark. In provin; these results, we make use of the
generalized Sylvestsr resultants. The results are con-
fined to the case »:2n the denominator matrix (X Dpp +
Y Ngp = @) is just 2 polynomial. For the genera§
mx% case, a closer examination of the structure of
the resultant matrices is needed.

Remark. Results sinilar to thesc proved in a different
way can also be fcund in a recent paper of Willems and
Hesselink [14].

The generalizzZ Sylvester resultants can be used
more effectively o ireat the generic denominator matrix
assignability preilza.  As expected for the single-input,
single-output case, w2 have

Theoren 6.6. Let = n d “! be a siso strictly proper
transfer function =% orfef n. Let ¢ be a monic poly-
nouial with 8(4) = 2 + q (¢ € R"™4 )., A necessary and
sufficient conditiz= for generic denominator assigna-
bility is q 2 n-1.

The proof proceeds in a similar manner as that of
Theoren 6.4, The —:itiple-input, multiple-output situ-
ation is much morz :hallenging. For this, we interpret
Lemna 6.2 in the Z3llowing way: The matrices N,D are
right coprime iff z: least one fn+ 6(det D)X n + 6(detD)
minor of S (D,N) is not zero. Denote these minors by
ni(D,.\’). y sym=2:=, the argument can also be made for
1~7ft coprimeness. 2 can now state [9].

Proposition 6.7. P = NppDpp be an mx £ strictly

Dgp
proper transfer fun:tion with Ngp

-1
2_..._>_llz 0. Let DypNip be
such that O(DLP) = -_, the largest observability index.
Let R® denote the s2= of Lx 2 diagon:l matrices ® = (3;),

1et

column proper, and

column degrees l‘ > '-2

¢; monic with €(z,. = % + ¢, t = g 4+ t5). Let
be the appropriate
minors for &, Nun, &

o ¢ , X, respectively, (X,Y ob-
tained by right division OV = - N Djp + Y).

mi (ou SRP) » flj(‘v, --)
1

If t 2 b, I and at least one lli(o,NRp) £0
and at least one -. :,X) # 0 , then P has the denomina-
tor matrix assigrzZility property.

Remark. For this result as well we see that degree
constraints are no: ¢nough and that 'undesirable’
additional conditizns are present.

On the other hand, this is merely a sufficient
condition. For the special case of diagonal systems,
we have [9].

Proposition 6.8. let P be an mx £ strictly proper
transfer function of the form

-6_



— -1 r - 1
P ;:— 0 b ¢ “e
= ¥ =
0 " " 3 0 :
0 a -
k & alle

with "i'di coprime, cli monic (this means that the con-

trollability indices A, are equal to 8(9;)1< i< 2
and the observability }ndices u; are equal to
0(d;) 1 < i g2 with Mooy ® ooe =¥y = 0.)

Let RY denote the set of Lx 2 diagonal matrices

- @ = (95), ¢; monic with 0(;)= A; + t,,

t= (Xi +t;) . A sufficient condition for gen-
i=1

eric denominator matrix assiguability is t 2y - 1.
In the event that m = L and A, = X, ... = A= A and

My =M, = ... =y =A=u, then t;2 p-1 is a neces-
sary condition as well.

Remark. Under the assumptions of Proposition 6.7, we
have that a sufficient condition for generic denominator
matrix assignability is

I) tiz lll' 1
b) at least one li(é, NRP) f 0 and
at least one n;(?, X) # 0.

It is desirable to eliminate condtion (b). To
accomplish this it has to be shown that for some ¢
we have ni(o,, Npp) # 0 and nj(o.. xo. ) # O.

Proposition 6.8 suggests a way in which this may be

achieved. Instead of looking at some specific system

and some space of @, look at the space T x ¢, where

T is an appropriate space of systems (which includes

diagonal systems). Then attempt to show that for some

;. (a diagonal system)and some 0. - li(NRP ¢ °o )#0
’

t
2 ER

0
and nj(oo, xto°, ) # 0. This way we will, in effect,

have proved that 'almost all' systems in T have the
generic dcnominator matrix assignability property, if
ti >u, - 1.

=Ty

Theorem 6.9

Let N,D be 2x £ matrices and define W, Z,S as
follows:

" 2):2| A A-1
W= {(N,D)eR Y ln= Is" 4Dy ;8" 4 ... 4D, ,
T S |
=%,_,5 & son ¥ Nol
_ o (A+q)2 y- _1<Mq A+q-1
Z={¢cR ¢ diag, 0=1s7700) o 18T el ¢+ 0}

2
§= {(N.D.O)CRaM‘ RO*DL Eor which there exists an
acceptable solution X,Y
of XD+ YN = @, with

N,& right coprime,

X,® left coprime.

A nc;:essary condition for S to be a generic subsct of
R,u x R(Mq”' isq2>22-1.

Proof:

Suppose that S is generic (i.e., it contains a
non-e=pty Zariski open set) and let q < A - 1. Show a
contradiction.

2 .
Let M be the subset of R\F x RO*Deor Lnjch
(N,D) are right coprime and ND™! has observability in-
dices equal to u(=A). (If N,D are right coprize, the
controllability indices of ND™! are all equal to 1).
We have that M is generic because of the following:

2
The set F & Rzu x R(x"‘)" for which
rank Si(D,.\') = 2iL 1<2<)
and rank S»l = AL+ L

is generic.
have that:

1) N,D are right coprime (Lemma 6.2)
2) Since ND™! is proper, the observability indices of
ND-! are all equal to A (Lemma 6.1).

This izplies that (Fc M) M is generic.

This means that for every (N,D,?) € F we

Since we have assumed S to be generic, we -ust have
that S n M is non-empty. Let (N;,D,,9,) € S aM. This
means that for N;, D, and almost all ¢ €Z we have that
an acceptable solution X,Y of XD + YN = @ exists.
Since X,Y is acceptable, we must have (Corollary 2, p.
548, Rosenbrock-Hayton), 6(Y) < q. This means that
(X,Y) € Q of Proposition 6.3. But then q > A - 1, which
contradicts our assumption that q < A -1, Therefore,

q 22 - 1. This completes the proof of Theorem 6.9.

Proposition 6.10 With W,Z,S,M as in Theorem 6.9, a
sufficient condition for S to be generic is q = A - 1.

Proos:
Tet g =2-1. Fron above we already have that M is gen-
eric. For any (N,D,!, in M we have that § (D,N) is one-

one and onto, therefore invertible. This means that for
any vc Z there exists a unique (X,Y) such that XD+ YN =
©, a~d X,Y is an acccptable solution. It is clear that
N,® are right coprime for almost all (N,D,®). The
question then remains as to whether X,® are left co-
prize. (i.e., @ , X' right coprime).

From Proposition 6.8 we already know that there
exists some diagonal system N D™! and some diagenal
@< Z for which X and ¢ are coprime [call the point
(N,D,F)e WxZ,a]. This means (Lemma 6.1) that

rank si(ou. At = i-28 1<ic<c2x1
rank S’X(OG, X'n) = 2022~ %,

This izplies that the above also hold for generic a .
Using Lemma 6.2 we then have that X,& are left coprime
for generic a. This means that S is a generic subset
of M x p*A-1L

Remark, In Theorem 6.9 we see that q > A-1 is a ncces-
sary condition so that for almost all systems of order,
AL and equal observability indices A, there exists an
acceptable solution X,Y of XD + YN = ¢ with N,® right
coprize, X @ left coprime tor almost all @ in Z. In
Proposition £.'0 we have that q = A -1 is a sufficient
condition. We conjecture that q 2 A- 1 is actually a
sufficient condition, thus completing Theorem 6.9.

and

We wish to thank Professors Chris Byrnes and
Bernard Lévy for many helpful discussions,
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