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ABSTRACT

In order to provide a theoretical tool well suited for use in
characterizing the stability margins (e. g., gain and phase margins) of

multiloop feedback systems, multiloop input-output stability results
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generalizing the circle stability criterion are considered, Generalized
conic seccors with ''Centers' and '"radii' determined by linear

dynamical operators are employed to enable an engineer to specify the
stability margins which he desires as a frequency-dependent convex set of

modeling errors--including nonlinearities, gain variations and phase

CSCL 098

variations--which the system must be able to tolerate in each feedback loop
without instability, The resulting stability criterion gives sufficient condit -
ions for closed-loop stability in the presence of such frequency-dependent

modeling errorc, even when the modeling errors occur sirmultaneously in

so, for example, stability is assured as loop gains and phases

all loops;
vary throughout a '"'set of non-zero measure'' whose boundaries are

frequency-dependent. The stability conditions yield an easily interpreted

scalar measure of the amount by which a multiloop system exceeds, or

talls short of, its stability margin specifications,

Research support in part by NASA/Ames grant NGL-..2-009-124, by
NASA/Langley grant NSG-1312, by Joint Services Electronics Program
contract F44620 -76C-0061 monitored by AFOSR, by NSF grant Eng78-
05628, aad by Honeywell Systems and Research Center, Minneapolis,
MN with support from the Office of Naval Research under contract
N0CO014-75-C-0144.

" M.G. Safonov is with the Department of Electrical Engineerine, University
of Southe-n California, Los Angeles, CA 90007, Lo -

M. Athans is with the Laloratory for Inforaation and Decision Systems,

Massachusets Institute 2f Technology, Cambridge, MA 02139,

e



"

I. INTRODUCTION

A key step in the synthesis of robustly stable feedback systems is
the characterization of a set of feedback laws that are stabilizing for every
element of the set of possible plant dynamies. This type of information is
precisely what'is provided for single-loop feedback systems by such
input~output stability criteria as the Nyquist, Popov, and circle theerems,
Indeed, the practical merit of clussical feedback design procedures in-
volving Nyquist loci, Bode plots, and Nichols charts ie in a large measure
directly attributable to the fact that these design procedures provide the
designer with sasily interpretable characterizations of such sets of ro-
bustly stable feedback laws, For single-loop feedback systems, these
stability theorems enable engineers to meaningfully c'ha.ra.cterize the
tolerable amount of gain and phase variation in the loop at each frequency,
and even'the tolerable amount of unmodéled nonlinearity, These tolerances

of modeling error are in broad terms what we call stability margin,

classical gain and phase margin being two familiar measures of stability
margin for single feedback loops. Although multﬂoop generalizations of
the Nyquist stability criterion have been developed (e.g,, [1] -[3]), it
has been difficult to méaningfully relate tha conditions of these multiloop
criteria to tolerance of open-loop modeling arror except in special cases
such as diagonally dominant systems, norrﬁa.l systems, and systems in
which feedback loop gains vary only over certain ''sets of zero measure!
[4]. The results of the present paper are intended to address the need
for an improved method for characterizing the stability margins of multi-

loop feedback systems.

In broad and imprecise terms what seems to be necessary to meaning-

fully 'characteri.ze multiloop stability margins is a stability criterion that

guarantpes sta.b111ty for every multiloop feedba.ck operator within a gwen

~

"frequency-dependen’c ball" in an approprlate Suace of 1nput-output rela.tlons.
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this ball being centered at the system's nominal "open-loop gain'' operator,
It is' important that the size of this ball be permitted to be frequency-
dependent so that one can account for frequency-dependent variations

in the precision of mathematical models such as result from such ubiquitous
effects as singular perturbations; hysteresis, imprecisely known time-
delays, or any sort of unmodeled dynamics, Also, since in general

one may expect modeling imprecision in certain feedback loops to be large
relative to other loops, it should be possible to specify that this ball be
somewhat egg-shaped, having different diameters in the variouy '"directions’
corresponding to the ''gains! of individual feedback loops, So, perhaps

the necessary ball of stable multiloop feedback operators could be better
degcribed as a "frequency-dependent egg. " All of this is of course too
vague and imprecise to be of immediate use <-what is needed is a stability
criterion dealing with a precise mathematical description of this frequency-~
dependeﬁt ball (or, '"egg!) and of the space of operators in which is is
embedded,

Stability results in this general spirit are provided by the Zumes-
Sandberg input -oufput stability theory [ 5] «[ 6], Sandberg's frequency-
domain stal ility criterion[ 6]for systems with multiple nonlinearities can
be i.nterpreted as guaranteeing stability for a collection of nonlinear feed-
back ope.rato;'s inside a spherical {i.e., not'egg-shaped') non-frequency=
| dependent ball centered af the identity operator times a scalar; the now
well-known circle stability criterion emerged in [7] as é special case of
this result. Zames' conic sectdr sta.bility theorerﬁ[ 5, Theorem 2] is an
~ abstract generalization of Sandberg's criterion that makes thé connection
with balls of stable multiloop feedbé,_ck opefators even more transparent:
the cbnditions of Zame_sl thecn_:em_ involv.e conic sectors which it ha._ppex.l's.
are simply spherical balls, centered at the identity operator times a

scalar in an extended normed space of input-output relations.
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In the past fifteen years frequency domain stability criteria based
on the Zames-5Sandberg theory have been improved and refined in many
significant ways, Reference [8] provides a good overview of much of
this work, Reference [9] develops similar results in a Lyapunov setting,
References [19] - [12] and the additional references cited therein describe
many stability results developed specifically for interconnected (i, e.,
multiloop) nonlinear systems, However, the previous literature in this
area has focused primarily on nenlinear stability; though Zames [5] makes
some key suggestive remarks about the broader iyvnplications conic sector
rasults regarding imprecisely modeled systems. The stability margin
implications of the results have not bean stressed and no results based

on the Zames-Sandberg theory have been published which address the

need for a frequency-~-dependent characterization of multiloop stability
margins,

The main objective of the present paper is to present a multiloop
input-output stability criterion that is tailored to the task of multiloop
feedback stability margin analysis, Our mrain result ( Theorem 1) shows
that multiloop stability marging-~including tolerance of unrnodeled non.-

linearity and of dynamical modeling errors of frequency-dependent

magnitude -~can be diréctly related to open~loop system frequency-response
quantities, The results, expressed in terms of the 'singular values!' of

-

certain matrices, are observed to yield an easily interpretable scalar

measure of a systems "excess stability margin'--i,e., of the amouat by
which a multiloop feedback design exceeds its stability margin specificaticns,
A related result described in [21] makes use of Theor_emtl in generating
generalized conic sector bounds for characterizing the sensitivity of
multiloop systems to large dynamical modeling errofs of frequency~
dependent magnitudes; in effect the result of[21] provides a nonlinear

‘multiloop generalization of clasgsical M-circle ideas.
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The role of singular values in connection with stability was first
noted by Sandberg [¥], though Sandberg does not specifically use the term
singular value, Earlier versions of the results in present paper and their
connections with stability margin analysis were first reported in [12] - [14].
Stressing the use of singular values, Doyle [15] establishes important
geometric connections between multivariable Nyquist criteria and the
stability margin results of [13], [14], and the present paper; additionally,
Deyle [15] and Stein and Doyle [16] cite a number of illustrative examples
that present a compelling case for the use of results of this type in the
analysis of multivariable feedback stability margins, MacFarlane and N
Scott-Jones [25] discuss at length the relationships between the eigenvalues
and the "principal gains' (i. e., singular values) of a multiloop-system's |
transfer matrix, Nuzman and Sandell [ 23] establish some inequélities
relating these regults to the singular values of the return difference matrix -
for multiloop systems and discuss the connection with the guaranteed stability
margins of full-state feadback linear optimé.l regulators (see [24] ). The
paper by Sandell [17] discusses in broad and simple terms the role of
singulg,r values in coping with .modeling imprecision in a2 wide range of
engineering and numerical problefns._ Nﬁmerical aspects of singular value
computation are .surveyed in [18], wher_eiﬁ sophisticated and widely avail-

able computer routines for singular value computation are also referenced,

II. NOTATION

The following notation is used: AT and :»_:T denote respectively the
_ £ « -
transpose of the matrix A and the vector %; A" and x denote the complex
cdnjugate of the matrix AT and the vector xT respectively; the determinant
of a matrix A is denoted det(A); the Euclidian norm of a vector x is
A E . |
'1*:” ® = “_‘{ X x ;. R+denotes nonnegative real numbers; the functional

norm ”‘CHT and inner product < Xy, %, >_ are defined for functions x: -



n
R+Ra.s

e

ux“'r <X x> {1)
where for any xy and x,
S
<Xy, Xy >T g I ) (t) xz(t:) dt . {2)
0

The space LZe(R+’ R™) is defined as

Ly®,, ) & {x R = R"| [lx]|, < = ¥reR }, (3)

where the symbol ¥ means for all,!" We define L2 A U L, (R, R™,
e n 2e'p
laplace transforms are denoted by capital letters, e.g., X(s) denotes the
Laplace transform of xt),
Given any matrix A, the square-roots of the eigenvalues of ATA are

called the singular values of A, For any matrix A, we use the notation

cmax(A) to denote the largest singular value of A and crmin(A) to denote the
smallest singuiar value of A, Singular values are é,lwa.ys nonnnegative real
nimbers since A.*A is always positive semidefinite, |

A functional rela.tioﬁ is a mapping of functions into sets of functions;
for example, & dynamical system mapping inputs in L2e into outputs
in L, defines a relaiion (e.g., [5]).. An gperator is a special type of
relation which maps each input function into exactly one output function,
i, e,, into a.. set with exactly one element, All functional relations consi-
dered m this paper are implicitly-‘assumed té be mappings of LZe into L, .

A relation H is said to be nonanticipative if for all ts the output (H x)(to)

-6~
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does not depend on x(t} for i:> tye We say that a relation H is Lze-stablel

if there exists a constant k < = such that for all x¢ Lz.‘3 and all T ¢R+
. (4)

Generalizing some of the the conic sector conditions of Zames {5],
we employ the following definitions which are a special case of the
generalized sector conditions of (13],[19],[20]. Given an operator H, if

there exist operators C, R, and S such that

Psy-colll s NRxl2 - e(lx2+ Iy 2 ()

for all y = Hx, all x, all T, and some € > 0, then we say "H is strictly
inside the Lze conic sector with center C and radius (R, S)"; equivalently,

we write

H strictly inside LZe-Gone (C, R, -‘:3).2

~ ~ -~

{6)
Given a relation G, if

sty - col? > || rx |2 (7)

lFt:::r nonanticipative operators, L, -stability as defined here is equivalent
to the usual notion of L,-stability, e.g., [8].

2The "strictly inside'! conic sector condition of [5] can be demonstrated
to be a special case of (6); however, the term ¢ yﬂT is only implicit
in [5]. o



for all x = -Gy, ally, and all 7, then we say ''the inverse relation uf -G
is outside the I"Ze conic sector with center C and radius (R, S)“;3

equivalently, we write
(-G)! qutside L, - Gone (C, R, S). (8)

The notation col(xl, veny xN) denotes the column vector

X
A 1
collxpee-riy) & . : (9)

*N

The relation diag(%ly cory HN) is defined by

~

diag(EIl,. vey E—IN)-col(xl, ceny ﬁq) = col (Ijlxl, ‘v E{N"{N) . (10)

3Following [13],[19],[20], the notation (- Ci)I is used for the inverse of the
. relation -G ; i,e., (- G)I is the relation which maps each y¢ LZe into
the set of functions x¢ LZe such that y = -G x. The inverse relation («-C‘r)I

always exists even for operators G for which the inverse operator,

denoted (-G)'l, ‘does not exist,



111, PROBLEM FORMULATION

Our results concern the input-output stability of systermns consisting

of a dynamicai linear time-invariant (LTI) interconnection of N imprecisely

modeled components, including imprecisely modeled LTI components and

nonlinear time-varying (NTV) components as well as dynamical nonlinear

components comprised of interconnections of LTI and NTV subcomponents,

The system equations thus take the following form (see Fig, 1):

components

Yi = Ijixi ’ (i=l,¢ll,N) (11)

dynamical LTI interconnection

X(s) = -Gls) (¥ls) + Y(s)) + Ufs) (12)
where
:_Y_(S) = C.Ol (Y.J_(B)-'“"YN(S)) : (13)
é(s) = col (Xl(s),...,XN(S)) (14)
Uls) = col (U (s),..., Uyls)) : | ' (15)
Vis) = col (V,(s),..., Viy(s)) (16)
Gll(s) GlN(s) ]
G(s) = N (17)
_GNl(s) GNN(SJ |
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Fig, 1 The System
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The endogenous variablea Vi(t) and xi(t) are the system 'outputs!
and the exogenous variables u,(t) and v,(t) are the system "inputs', Each
of the ''"compoéhents! Ifi mey itself be a multi~input-multi-output a (MIMO)
system In general, though our results are most easily used and inperpreted
when the components are single-input-single-output (SISO).

We assume that for each of the imprecisely modeled components
I'.I.i we have & crude approximate LTI model ?,1 and that LTI operators Ei
and S, can be found such that the modeling error in each ¥, is bounded by

a generalized conic sector condition such as (6); i.e.,
I::Ii Btrictl'y’ inside Lze' Cone{gi, -vRi.’ §i) (18)

fori=1,...,N. For notational convenience we define

c & diag(Cy..., Sy - (19)
R = dlag(R),..., Ry (20)
§ g dlag(,.sl""'-SN) (21)

Comments:

The géneralized conic sector error bound'(lS), though somewhat
abstract, is fairly easily related to meaningful quantities. |
Lemmas A4 and A5 in the Appendix relate condit.idn (18) to simple
Fuclidean norm bounds for r_riulti-input-multi.-'- output {MiMO) NTV and LTi
H.. Fof .exa.mple, if H, is a stable SIS0 LTI element, then it follows from

~

Lemma A4 that-the simple frequency domain condition

-11-



|1, 0w) - ;()]® < |ryt)]® - e (22)

for some ¢ > 0 and all w, (see Fig, 2b) implies that (18) is satisfied for any

stable SISO L"1 nonanticipative S and R satisfying

Cyljw) = cylju) (23)
Ri(jUJ) .
Si(jm) ri(J‘”) . (24)

It H, is a SISO memoryless NTV element defined by

Yi(t) = hi(xi(t)s t) (25)

and if for sor. : ¢, ¢ and some ¢ > 0

2

= < r. "¢ ¥ o0 , (26)

then from Lemma A5 it follows that (18) is satisfied for a.nf constant

Ci(s), R.{s), S_i(s) satisfying (23) - (24); this is the usual sector nonlinearity
condition {e.g.,, [5-8])--see Fig, 2a, In more complicated situations where
a component I‘Ei consists of an interconnection of several LTI elements
and/or memoryless NTV elements, the result of [21] frequently may be

invoked to determine suitable Ci’ Ri’ and S i

le-



(a) Nonlinear component satisfying (26}

(b) Nyquist locus of LTI component satisfying (22) '

Fig, 2 SISO Components
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v, MAIN RESULT

)

Our main result is now stated,
i.

»

Theorem ! (Multiloop Circle Criterion)

Let 9, (2, B, and S have respective proper rational transfer
function matrices G(s), C(s), R(s), and S(s); let }}'1 and §'1 exist; and
let C, R, 5'1, .§, and S_:l be nonanticipative and L, -stable; let H,
(i=1,...,N) satisfy the condition (18). Suppose the feedback system (11) -

(12) is nonanticipative and L., _-stable in the special case where

2e
H. = Sli #i=1,,,,,N, Then, a sufficient conditiont for the system

-

{(11) - (12) to be Lze-stable for every collection Hi (i=1,..,.,N) satisfying
(18) is

cmax(R(;i:a:) G(jw) (I + C(jw) G(jw))"lq'l(jm)) < 1 ¥ (27)

Further, when G(s) is a square matrix and is invertible almost everywhere

on the jw-axis, then the above condition can be expressed as
. SCRIPETY -1,
Omin(S00) (Clj0) + G o)) B () 2 1 (28)

for all w at which G~ (ju) exists.

Proof: TFrom Lemma A3 and (27), it follows that

H & diag(H ,...,Hy) strictly inside L, -Goue(G, R, S).  (29)

Ze

From Lemma A2, it follows that (27) and (28) are equivalent when G'l(jw)

exists almost everywhere and that

-14-



(-G)' outside L, -Cone(C, R, S) . (30)

Lze—sta.biliby of {11}-(12) follows from the conic sector stability theorem,

Theorem a4,
|

Remarks

It is also possible to prove Theorem 1 by applying Parsevalls
theorem to verify that the conditions of the well-known ""'small gain theorem'
{(e.g., [8]) are satisfied by the transformed system defined by Eqns, (A5)-
(A10) of the Appendix, We coasider the present proof more appealing
because it stresses the direct connection between the conditions of -
‘Theorem 1 and the simple conlc sector conditions of Theorem Ad,
just as Zames' proof in [2Z] of the well-known circle criterion stresses
the direct connecfion between circle theorem conditions and the simple,

but less general, conic sector conditions of [5, Theorem 2al.

V. DISCUSSION

There are essentially two main conditions which must be satisfied
to conclude stability from Tﬁeorem 1: (i) The system must be stable when
the _u_ncertain components I.:.Ii are. replacéd by thé respective LTI approxi-
mations gi;' and, (ii) the frequency~domain condition (27} or (28))must be
satisfied, The former condition can be verified a variety of ways; for

example, one may check that the roots of the characteristic equation

det (I + C(s) Gls)) = 0 | (31)

-15-



all have negative real pa.rts;4 alternatively, one may apply the multivariable
Nyquist crite"r’ion, checking that the polar plot of the locus of det (C(jw) G(jw))
encircles the point ~1 + jO exactly once counterclockwise for each unstable
open-loop pole of C(s) G(s) (multiplicities counted) "3]). The latter condition

(27) {or (28)) requires that one plot the variable g

max(' ) {or Umin(' )} verses

w and verify that the appropriate inequality holds for all w,

In the special case in which there is a single SISO nonlinearity
h{x, t) both of the conditions of Theorem 1 can be verified by inspection of
the polar plot of G(jw) ¥w. In this case the conditions of Theorem 1
become precisely the conditions of the well-known circle stability criterion
(cf. [7)-[8]). It is this which motivates us to refer to Theorem 1 as 2
Hmultiloop cirele stability criterion''--despite the fact that in general no
circles are employed in verifying its conditions.

. One can irterpret the uncertainty bounds (Ri’ Si) as specifications
for the gain marzins and phase margins of the system (11)-(12). TFor
example, if the “'i{.i are LTI and SISO and if H'i_(s) = Ci(s) i=1,...,N),
then it follows fram (22) that under the conditions of Theorem 1 the system
will remain sta'sle despite variations in the individual component gains of

. A _ _
magnitudes a4 great as | ri(jw)| = | Ri(jw)/si(jw)], even when the variations

oceur ~unultaneously in all components, So, for example, the system can

tolerate sirnultaneous gain variations or phase variations of at least

AL r, (jw)
Gy, = 13:5 ao_lpgl <) |, db (32)

1

¢ C{s) G(s) has any ""decoupling zeroes’ (i.e., uncontrollable or
unobservable poles, then these will not be roots of (31) and one must
check separately that these poles have negative real parts--cf, [3],

~-16-



or

A o (i) s
®Mi -lef arcsin | RN | (33)
1
in each of the respective component feedback loops; i, e,, the system has

ain margins of at least Gyy. and phase margins of at least @y4, at the inputs
g g =t ea3t MM, p g £t 28358 UM,

to the respective components Ci(s) (i=1,...,N). The quantity
k_Gu) & o . (Stiw) (Clw) + G ey R (w) (34)
m min

is the amount by which the uncertainty bounding matrices Ri(jm) can be
simultaneously increased without violating the stability conditions of
Theorem lu-km(jw) can be viewed as 2 lower bound on the amount by which
the sys_tem_(ll)-.(lZ) exceeds the stabil_ity margin specifications _(18) at
dach frequency ¥,

In general, the stability conditions of Theorem l--and the estimate
{(34) of excess stabi.lity_ margin km--will be conservative. " This conserva-
tiveness can usually be reduced by substituting weighted uncertainty
bounding matrices (di R_i(_'s'), o Si(s)) for the original matrices
(Ri(s), Si(s)). Further, if it happens that E'—Ii is linear time-invariant for
some i, then as a consequence of Lemma A4, the corresponding @, '
may be replaced by a frequency-dependent ai(jw) (provided that for some
k<= and some e> 0, k> lai(jw)|z>e for ally). Iterative numerical methods
would be required to ena”ble one to efficie ntly compute the ''optimal'!
wzeighting‘s (i..'e. , the weightings leading to the least conservative stability
conclusions). We hasten to add that the idea of using constant weightings
to reduee.c.*pnser.'v'ativen'ess in multilbop tonlinear iﬁput;outptit stability
resulfs is not new: M-vaatrix tests provide_ a simple but conservative
method to implici-ﬁly ensure t‘né existence of constant

217
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weightings (see [10], [11]); other results have been stated in which constant
weightings appear explicitly (e. g., Moylan andHill {12, Thms. 5 and 6}).

The results of [12] involving explicit weightings may be viewed as a
special case in which the matrices (C(jw}, R{jw), S(jw)), the interconnection
matrix G(jw), and.the weightings o:i(ju:) are not permitted to be frequency~
dependent, We emphasize that the advantages offered by frequency-
dependent C(jw), R{jw), S(jw) and cti(ju:) are crucial in stability margin
analysis where it usually is necessary to be able to characterize tolerance
of dynamical modeling errors of frequency-dependent magnitude, Allowing
the matrix G(jw) to be frequency dependent elimninates the need for
incorporating the dynamics of (3 in additional dynamical I;Ii's, thereby
reducing the dimension N of (g, ,C’_,* 1}, §); this in general 1e‘ads to less
conservative stability conclisions from Theorem 1 and also broadens its
scope of applicability (since G need not be Lze-sta,ble under the conditions
of Theorem 1 whereas each H, mus t).

We note that Theorem 1 is fairly broad in its scope of applicability. -
The traﬁsfer matrix G(s) may be non-square and need not be open-loop
stable (though the I:Ii must be}. The _Hi operators may be multi-input-
multi- output and need not have equal numbers of inputs and outputs, Unlike
some previousr interconnected system results, no cendition is imposed
requiring either ciz- _ri2 >0 ¥i or ci.z.« ri'?' <0 ¥i, The operators
(C;Ji, 3&1, §i) defining thel conic sector condition (18) may be dynamical,
Furﬁﬁer, with the aid of Lemmas A4 and A5 and the aid of results. such as
in [21], it is practical to verify the conic sector condition (18), even for

multi- input-multi- output dynamical nonlinearities.

~18-



VI, CONCLUSIONS

With a view towards developing a stability criterion well suited
to the problem of multiloop feedback stability margin analysis, nonlinear
input-output stability techniques generalizing the circle criterion have been
re-examined, The stability margin implications of existing results have
been stressed and an improved result has been generated allowing one to
take account of the frequency-dependence of the magnitude of system
modeling errors which commonly oceurs in situations involving imprecisely
modeled dynamics~--e, g., singular perturbations, hysteresis, etc,
Theorem 1 t0ge£her with the related Lemmas Al and A2 provide verifiable
sufficient conditions for the stability of multiloop feedback systems using
only crude conic sector bounds on system parameters, subsystem
frequency responses, and. nonlinearities, Potential applications include
the testing of system integrity in the presence of actuator and/c;r sensor
failures (cf. [2]) and the characterization of frequency-dependent gain and
phase margins for multiloop feedback designs subject to multiple singular
perlturba.tions and dynamical nonlinearities leading to simultanszous
frequency-dependent variations in gains and phases in the feedback loops,

The main result, Theorem 1, also plays a key role in a result
described in [21] for generating conic sector bounds to characterize the
sensitivity of multilocp systems to large dynamical modeling errors of
frequency-dependent magnitudes in a manner similar to the way classical
M-circle and Nichols diagram techniques enable one to quantitatively -
gauge the effect of open-loop gain variations in single-loop, unity—'feedback
systems. The result of [21] also can be useful in determinin.s;r the conic

sector bounds (C, R, S} required by Theorem 1.

~
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VI, APPENDIX

In this appendix several results are stated which are needed in
connection with Theorem 1. Theorem Al and Lemmas A2 and A3 are used
in the proof of Theorem 1. Lemmas A4 and A5 are useful in verifying the
conic sector conditions (18) for memoryless nonlinear H, and for linear
time=-invariant dynamical EI 1

We notu that while results similar to Lemmas A2, A4, and A} have
been presented in various forms elsewhere (e, g., {6]-[8], [13], [19],[20]),
the very general case considered here (admitting, for example, dynamical
and multi-input-multi-output g, Ii., S) is new, as is the explicit appearance
of the term ¢ Hyni in the "strict" conicity condition (5)-(6), The differ-
ences are sufficient to mandate the inclusion here of proofs for these

Lemmas,

Theorem A.Z_l {Conic Sector Stability Theorem)

Consider the feedback system

v = Hx | (A1)

~

]
I

-Gy + v}t u ' : (A2}

where X,v,u,ve LZe and E},- H: .T_»29 - I"Ze; (u, v) is the "input" and (x, y)

is the "output", If L, ~stable linear operators C, R, and 8 can Le found

2e
such that
H strictly inside Lze-Cone (C, R, 5) ' (A.3)
and
(_g)l outside Lze- Cone (9, ER., ...S) , .' (Aad)

_20-



then the feedback system (Al)~{A2) is LZe-sta.ble.

Proof: This result is a special case of the "'sector stability theorem!

([13, p. 65), [19, Thm, 6,1])

Demark

Theorem A4 also can be proved by applying the small gain theorem

(e.g., [8]) to the "transformed'' system

v =s5H-R g+¥ (A5)

x= -RGE+ca sty oy (A6)
where

y = Sy - Clx-u) +v) (a7)

¥ = Rx (A8)

w = Ru (49)

;'-'-S(v-f-Cu), (A10)

provided S"l, G(I+ C G)-l, and R"l exist and are Lze-stable and non-

anticipative, It can be shown that under the conditiens of Theorem A4, the |

two operators S (H - C) R_'1 1

and R G (1+C G )71 57! cach have L,_-gain
less than one. Thus, Theorem A4 n'.xa.y.be viewed as 2 cha.ra,cterizat.ion.
of the iraprovements on the sfnall gain the.orem obtainable by ﬁse of the
nonlinear dynamical transformations (AB)-(A10); suc_h tn_:ar;sforma.tipns
have besn described as Yloop-shifting' and "multiplie-r“. transformatibns

Ae. g, [8]).

Lemnma A2 (LTI Outside Conicity)
Let G, C, R, S be linear time-invariant operators with fespective

=21~



proper rational transfer functions G(s), C(s), R(s), S{s). Suppose that

S"I('s) exists and has a proper rational transfer function matrix with no

poles in Re(s) > 0, Suppose thatR, (3(1 + C G)'l and §'1 are L, stable
and non-anticipative, Then,
{-G)* outside L, -Cone (C, R, ) (A11)
if and only if the following condition holds for all real w
o (Rejw) GGe) (1 + cle) Gt 57 w) < 1 (Al2)
raxhe) GG jw) GG jw)) <

almost everywhere,
When G’l(s} and R.'l(a) exist almost everywhere on the jw-axis, then

condition (A12) is equivalent to

O min(S GO (Clw) + G )R Mu)) 2 1 (a13)

almast everywhere,

Proof:

It is trivial to see that (A12) and (A13) are equivalent when G"l(jw)

and R™ l(jw) exist, since for any invertible matrix A

-1
ﬁrn:i.n(A

) = (A) .

1/G'Frrm.;-;-.

Suppose that (A12) holds. Let (x,y) by any inpuat-output pair

satisfying x = ~-Gy; let

—~

; = S {y- Cx) (A14)

~22-



and let

. glt) , if 0< t < 7
Yo = R (A15)
0 , otherwise

Lol

Let Y _(jw) denote the Fourier transform of yr+ Note that from (Al12) it

follows that for all YT(juJ')

¥ G l® - IRGw) Glo) (T + Gliw) Glu)y™" 87 (jw)
Y ;
Y ol z 0 . (a16)
Now,
. , el el ™ 2
IR=12 = jrRGI+c O s y il
- -1 o-1 2
= fra(1+c Q) s v, U
( by the nonanticipativeness of
“Roc(r+cgh st 4
s iraprco sty )@ e
0
IS IR : " covml ol D (2
= 3= | R{w) Glu) I+ CGw) Gliw) ™" 87 () ¥ () ||° du

-

( by Parseval's Theorem and the hypotheses that )

R G(I + G G) , and S a.re Lze-_sta.ble.
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*

<= [ 1y G0l

]

1702 = iy l2

sty - call? (A17)

which proves (All) is implied by (Al2),

Conversely, suppose that (All) holds, Let Y, and W be arbitrary,
Consider the Lze-stable feedback system

x = -Gy (A18)
y = Cx+ s} Yy . (A19)
jw.t

g © 0 . Then (letting T - = in (7)), it follows from (All)} that

Let y(t) - Y

! R(jw) Gfjw) (1 + Cu) alimn~t 87w v, I

s Iyl (420)
and hence (AlZ) holds.

Lemma A3 (Composite Operator Conicity)

Let

T
BT

diag (5.0, Hy) (a21)

= diag (91,...,91\,) (A22)

0
)
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<
il

diag (R,..., Ryy) (A23)

1w
H]

diag (§1)on-,§N) ] (A24)
If for alli=1,.,.,.,N

H, strictly inside L, -Cone (C,, R, S) , (A25)

2e i’ ~

then

H strictly inside L, -Cone (C, R, S) . (A26)

Proof: This is a special case of the results in [13, p, 70] and [19,

Lemma 6,2 {vi)]. _ H

Lemma A4 (LTI Conicity)

LetH, G, R, S be nonanticipative L, -stable linear~time-invariant
operators with respective rational transfer function matrices H(s), C{s),
R(s), S{s). Suppose that R'l(s) exists and has no poles in Re(s) > 0.

Then

H strictly inside LZE-Cone (C, R, S) . (A27)

if and only if
2 2
1| S(jw) (E(jw) - c(jw))X(jw)‘:!E < | R(jo) X(jw) llE
”
- el %) ] (A28)
E

for all X(jw), all w, and some ¢ > 0.
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Proof:

trancfer function matrix R'l(s). Suppose that (A28) holds and let

Let R,'l denote the stable nonanticipative LTI operator having

. (Rx)(E) , if t< 7

0 , if ¢> 7

(A29)

and let x:(jw) denote the Fourier transform of ':-:T{t). Then, for ally = PI‘-Ix

we have

".' ‘w.‘, y,

Yooow

S - i
a3 1 A,
j$§§%»w

s

I3ty - cm 2 = || s@x- co)\2

= flsw- o xll;

(by linearity)

Is(2- o R R« |2

{since R} exists)

1T 2
= |sig-oRrR x|
. T

(by nonanticipativeness)

1A

o ) 2
[ lsm-ar xpmll o
- - E

0

1

{the integral exists since S, H, G, and R™ " are stable)

= L [l sGui(EGe) - chw)R™ )

. ~XT(juJ) H;’ dw

(by Parseval's Theorem)

~26-

Yy 1 o
Mg ¥ it _:rzl"ﬂr-h*f-fr

[FOPETOTER N e e e e L

Filo el NIt e



where

and

fa

in

A

1 7y 2 1, | = 2
Zal U0 - e IR o) Rty | * do

-0

(By AT9)

rll" (t)sz m\l(R'l" £ |2 at
6 X, e t-sjo R x,l)( e

(by Parseval's Theorem)

T ~ T . 2
JolxoiZa-e [ IR =] a
0 E 0 E

o 1= e w7t s, 0
IR = f - R Rx ||

(by nonanticipativeness of R-1

HRx 12 - el x|

IRx? - er(lxf 2+ Jmx]?

. I (A30)
E
= : (A31)
1+ celz

Yarey -
sup — 7 < @ - | (A32)
T < =1, > | -

{since H is stable).
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Conversely suppose (A27) holds. Let X, and w, be arbitrary,

Then, letting, x(t) - XO cos (_wot_ + ¢} and T = «, it follows that

i

[} SGwy) (Hjuy) - Clwg) X, |

2 2 2
= “ R(jmg.) XO “E - £ ( “ XO “E + n H(ju“o) XO “E )

. 2 2
< I R{jw,) X - X . : A
-~ H (3 0) OHE E H 0 “E (A33)

Lernma A5 (Nonlinear Time-Varying Conicity)

Let h(x(t}, t} be any function of x(t) and t and let H be given by
Hx) = b, 0 . | (a34)

Let C, R, and S be constant mﬁtrices and let G, R, S be the operators

defined by

Cx)(t) = Cxlt) Fx (a35)
(I}x)(t) = R x{t) -¥x (A36)
BN = Syl ¥y . o (437)

Suppose s exists, then

H strictly inside i

. -Cone (C, R, S5) ' (A38)
|‘;,‘- - ‘."i (-}é;"n& gf"{ ~ o~ . .

Ze

o T
if and only £ *

) bt kL
. i-‘:ﬁ"&..'t-%wzt'ﬁﬁiﬁg Ll :
' : ‘ ~28-



2 2 2
| Sthix(t), t) - Cx(t)) || < || Rx(t)]] - el =) ||
E E E

Proof: Lety(t) = hix(t}, t).

Supr- se {A39) holds, Then,

where

Thus, taking

we have that

Fyte) | s o lf =t |

_ max &} c
« = min O) + Uman( )
g} = =
1+ ozz
sty -cx|?
r

—

un

0

In

Ia

0

~29-

[ Wstxe), o - cxt nE?- at

JTHRﬂuuz-snmnuzﬂ
0 E £

I Rell? - e el + Iy )

¥ x(t) .

fnamqﬁ-ewhmu§+uﬂﬂ§dt-

(A39)

(A40)

(A4l)

(A42)

. (A43)



i3

Conversely, when (A38) holds, then taking x(t) to be the constant

function x(t) E'",-;-:O we have that for some € > 0

usmm¢w-0xguz

= 1 - lstEx-co |

LRl 2 - sl + v )

1A

IA

QLS R E kY

LS R EUY I (e
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