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rRODUCTION

A key step in the synthesis of robustly stable feedback systems is

F

the characterization of a set of feedback laws that are stabilizing for every

element of the set of possible plant dy,*a.mics. This type of information is

precisely what is provided for single-loop feedback systems by such

input-output stability criteria as the Nyquist, Popov, and circle theorems.

Indeed, the practical merit of classical feedback design procedures in-

volving Nyquist loci, Bode plots, and Nichols charts is in a large measure

directly attributable to the fact that these design procedures provide the

designer with *asily interpretable characterizations of such sets of ro-

bustly stable feedback laws. For single-loop feedback systems, these

stability theorems enable engineers to meaningfully characterize the

tolerable amount of gain and phase variation in the loop at each frequency,

and even'the tolerable amount of unmodeled nonlinearity, These tolerances

of modeling error are in broad terms what we call stability margin,

classical gain and phase margin being two familiar measures of stability

margin for single feedback loops. Although multiloop generalizations of

the Nyquist stability criterion have been developed (e, g. , [ 1] -[3]), it

has been difficult to meaningfully relate fi:e, conditions of these multiloop

criteria to tolerance of open-loop modeling error except in special cases

such as diagonally dominant systems, normal systems, and systems in

which feedback loop gains vary only over certain "sets of zero measure"

[ 4] . The results of the present paper are intended to address the need

for an improved method for characterizing the stability margins of multi-

loop feedback systems.

In broad and imprecise terms what seems to be necessary to meaning-

fully characterize multiloop stability margins is a stability criterion that

guaranties stability for every multiloop feedback operator within a given

"frequency-dependent ball" in anappropriate s pace of input-output relations,
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this ball being centered at the system's nominal "open-loop gain" operator.

It is important that the size of this ball be permitted to be frequency-

dependent so that one can account for frequency-dependent variations

in the precision of mathematical models such as result from such ubiquitous

effects as singular perturbations, hysteresis, imprecisely known time-

delays, or any sort of unmodeled dynamics, Also, since in general

one may expect modeling imprecision in certain feedback loops to be large

relative to other loops, it should be possible to specify that this ball be

somewhat egg-shaped, having different diameters in the various "directions"

corresponding to the "gains" of individual feedback loops. So, perhaps

the necessary ball of stable multiloop feedback operators could be better

described as a "frequency-dependent egg. " All of this is of course too

vague and imprecise to be of immediate use--what is needed is a stability

criterion dealing with a precise mathematical description of this frequency-

dependent ball (or, "egg") and of the space of operators in which is is

embedded,

Stability results in this general spirit are provided by the Z :smes-

Sandberg input-output stability theory [ 5] -[ 61. Sandberg's frequency-

domain scat ility criterion[ 6 ] for systems with multiple nonlinearities can

be interpreted as guaranteeing stability for a collection of nonlinear feed-

back operators inside a spherical (i. e. , not "egg-shaped") non-frequency-

dependent ball centered at the identity operator times a scalar; the now

well-known circle stability criterion emerged in [ 71 as a special case of

this result. Zames' conic sector stability theorem[ 5, Theorem 2] is an

abstract generalization of Sandberg's criterion that makes the connection

with balls of stable multiloop feedback operators even more transparent;

the conditions of Zames' theorem involve conic sectors which it happens

are simply spherical balls, centered at the identity operator times a

scalar in an extended normed space of input-output relations.

-3-



In the past fifteen years frequency domain stability criteria based

on the Zames-Sandberg theory have been improved and refined in many

significant ways. Reference [8] provides a good overview of much of

this work, Reference [9] develops similar results in a Lyapunov setting,

References (10)	 [ 12] and the additional references cited therein describe

many stability results developed specifically for interconnected (i, e. ,

multiloop) nonlinear siystems. However, the previous literature in this

area has focused primarily on nonlinear stability; though Zames [5] makes

some key suggestive remarks about the broader implications conic sector

results regarding imprecisely modeled systems. The stability margin

implications of the results have not been stressed and no results based

on the Zames-Sandberg theory have been published which address the

need for a frequency-dependent characterization of multiloop stability

margins.

The main objective of the present paper is to present a multiloop

input-output stability criterion that is tailored to the task of multiloop

feedback stability margin analysis. Our rrain result ( Theorem 1) shows

that multiloop stability margins--including tolerance of unmodeled non-

linearity and of dynamical modeling errors of frequency-dependent

magnitude--can be directly related to open-loop system frequency-response

quantities. The results, expressed in terms of the "singular values" of

certain matrices, are observed to yield an easily interpretable scalar

measure of a systems "excess stability margin" --i. e. , of the amount by

which a multiloop feedback design exceeds its stability margin specifications.

A related result described in [21] makes use of Theorem 1 in. generating

generalized conic sector bounds for characterizing the sensitivity of

multiloop systems to large dynamical modeling errors of frequency-

dependent magnitudes; in effect the result of[21] provides a nonlinear

multiloop generalization of classical M-circle ideas.

-4-
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The role of singular values in connection with stability was first

noted by Sandberg [f] , though Sandberg does not specifically use the term

singular value. Earlier versions of the results in present paper and th:ir

connections with stability margin analysis were first reported in [12] - [14] .

Stressing the use of singular values, Doyle [15] establishes important

geometric connections between multivariable Nyquist criteria and the

stability margin results of [ 13], [ 141, and the present paper; additionally,

Doyle [ 151 and Stein and Doyle [ 16] cite a number of illustrative examples

that present a compelling case for the use of results of this type in the

analysis of multivariable feedback stability margins. MacFarlane and

Scott-Jones [25] discuss at length the relationships between the eigenvalues

and the "principal gains" (i. e. , singular values) of a multiloop- system' s

transfer matrix. Nuzman and Sandell [ 231 establish some inequalities

relating these results to the singular values of the return difference matrix

for multiloop systems and discuss the connection with the guaranteed stability

margins of full-state feedback linear optimal regulators (see [24] ). The

paper by Sandell [17] discusses in broad and simple terms the role of

singular values in coping with modeling imprecision in a wide range of

engineering e.nd numerical problems, Numerical aspects of singular value

computation are surveyed in [ 181, wherein sophisticated and widely avail-

able computer routines for singular value computation are also ,referenced.

II. NOTATION

The following notation is used: AT and x  denote respectively the

transpose of the matrix A and the vector x; A and x r denote the complex

conjugate of the matrix AT and the ve.ctor x  respectively; the determinant

of a matrix A is denoted det(A); the Euclidian norm of a vector x is

Ix 11 E	 '^ x x	 R+denotes nonnegative real numbers; the functional

norm x1l, and inner product < x i , x2 >T are defined for functions x:

.5



R + ^ Rn as

where for any x l and x2

< x l , x2 >T Q J T xi (t) x2 (t) dt	 (2)

0

The space L2e (R+, R21 ) is defined as

LZe (R+) R n ) 4 { x: R+~ R  1 11 x "T < - V T e R
+
 } ,	 (3)

where the symbol V means "for all. IL We define L 2 = U L2e(R+, Rn).
n

Laplace transforms are denoted by capital letters, e.g., X(s) denotes the

Laplace transform of x(t).
.4

Given any matrix A, the square-roots of the eigenvalues of A A are

called the singular values of A. For any matrix A, we use the notation

amax(A) to denote the largest singular value of A and a min (A) to denote the

smallest singular value of A. Singular values are always nonnnegative real

numbers since A 
*A is always positive semidefinite.

A functional relation is a mapping of functions into sets of functions;

for example, a dynamical system mapping inputs in L2e into outputs

in L 2 defines a relation (e, g. , [51). An operator is a special type of

relation which maps each input function into exactly one output function,

i, e. , into a set with exactly one element. All functional relations consi-

dered in this paper are implicitly assumed to be mappings of L 2 into L2e•
A relation H is said to be nonanticipative if for all t o , the output (Hx)(t0)

-6-
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does not depend on x(t) for t> t o . We say that a relation H is LZe-stable1

if there exists a constant k < m such that for all x c L, e and all T c R+..

II Hx 11 T < k 11 x 11 T .	 (4)

Generalizing some of the LZe conic sector conditions of Zames [5],

we employ the following definitions which are a special case of the

generalized sector conditions of [13], [19], [20]. Given an operator H, if

there wrist operators C, R, and S such that

(I S (Y - Cx)II T 	<	 ^^ R xI IT -e	 (^^ x It T + II Y II T)	 (5)

for all y = Hx, all x, all T, and some e > 0, then we say I S is strictly

inside the LZe conic sector with center C ind radius (R, S) II ; equivalently,

we write

H strictly inside L2e-Cone(C, R, S). Z	 (6)

Given a relation G , if

S (Y - Cx)11 2 > 11 RxJ J T	 (7)

i,

For nonanticipative operators, LZe - stabilit as defined here is equivalent
to the usual notion of LZ - stability, e. g. , [8T

The "strictly inside" conic sector condition of [5 1 can be demonstrated
to be a special case of (6); however, the term eI]y11T is only implicit
in [5].
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for all x = -Gy, all y, and all T, then we say "the inverse relation of -G

is outside the LZe conic sector with center C and radius (R, YS)^^; 3MN 

equivalently, we write

(-G) 1 qutside LZe - Cone (C, R, S) .	 (8)

The no't'ation col(xl, ... , xN) denotes the column vector

xl

col(xl,... , xN)
	

(9)

XN

The relation dia g (H l , ... , HN ) is defined by

diag(H l,... , HN )-col(x l ,	 , xN )	 =	 col (H l x l , ... , HNxN ) .	 (10)

3 Followzng [13], [19], [20], the notation (-G) 1 is used for the inverse of the

relation -G ; i. e. , (-G) 1 is the relation which maps each ye L 2 into

the set of functions xe L Z e such that y = -G x. The inverse relation (-G)1

always exists even for operators G for which the inverse operator,

denoted (-G) -1 , 'does not exist.	 ~

i
i
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PROBLEM FORMULATION

Our results concern the input-output stability of systems consisting

of a dynamical linear time-invariant (LTI) interconnection of N imprecisely

modeled components, including imprecisely model-.d LTI components and

nonlinear time-varying (NTV) components as well as dynamical nonlinear

components comprised of interconnections of LTI and NTV subcomponents.

The system equations thus take the following form (see Fig. 1):

components

yi = H i xi	(i = 1,...,N)
	

(11)

where

dynamical LTI interconnection

X(s) = -G(s) (Y(s) + V(s)) + U(s)
	

(I2)

X(s) = col (y i (s ), ... , YN(s))
	

(13)

X(S) = col (X1(s),...,Y—"I(s))
	

(14)

11(5) = c01 (U ( s ), . , . , UN, (s))
	

(15)

V(s) = col (V1(s),...,VN(s))
	

(16)

G 11 (s)	 G1N(s)

G(S) _	 (17)

GN1(s)	 G,,(s)

=9-
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Fig. 1	 The System



The endogenous variables y i(t) and xi(t) are the system "outputs"

and the exogenous variables u l(t) and vl(t) are the system "inputs". Each

of the "components" H i may itself be a multi-input-multi-output a (MIMO)

system in general, though our results are most easily used and laperpreted

when the components are single-input-single-output (SISO).

We assume that for each of the imprecisely modeled components

H i we. have a crude approximate LTI model C. and that LTI operators R1

and S i can be found such that the modeling error in each H i is bounded by

a generalized conic sector condition such as (6); i. e. ,

H i strictly inside L2e - Cone(C i , R ip S i )	 (18)

for i = 1, ... , N, For notational convenience we define

C A diag (C I 	 , C N )	 (19)

R	 diag (R 1 ,..  r R N )	 (20)

S	 diag (S 1 , ... , S N )	 (21)

Comments:

The generalized conic sector error bound (18), though somewhat

abstract, is fairly easily related to meaningful quantities.

Lemmas A4 and AS in the Appendix relate condition (18) to simple

Euclidean norm bounds for multi-input-multi-output (MILIAO) NTV and LTI

H i . For example, if H i is a stable SISO LTI element, then it follows from

Lemma A4 that the simple frequency domain condition

-11-
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I-1i (Jw) - c,(')) 2 _< I ri (.iw ) 1 2 - e
	

(22)

for some e > 0 and all w, (see Fig. 2b) implies that (18) is satisfied for any

stable SISO L",'I nonanticipative S and R satisfying

Ci (Jw) = c i (Jw )	 (23)

RiGjj)
S .(jw)	 riUu)) -	 (24)
i

If H i is a SISO memoryless NTV element defined by

yi(t ) = hi (xi (t ), t)	 (25)

and if for sor, ! e, r and some e > 0

hi ( a, t) -cia ^2

	
Z

< r i - e	 V a 0	 (26)a 

then from Lemma A5 it follows that (18) is satisfied for any constant

Ci (s), R i (s), Si (s) satisfying (23) - (24); this is the usual sector nonlinearity

condition (e. g. , [5-8])--see Fig. 2a. In more complicated situations where

a component 113 1 consists of an interconnection of several LTI elements

and/or memoryles-^ NTV elements, the result of [21] frequently may be

invoked to determine suitable C V R i , and S i.

-12-
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(a) Nonlinear component satisfying (26)

(b) Nyquist locus of LTI component satisfying (22)

Fig. 2 SISO Components
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IV. MAIN RESULT
I

Our main result is now stated.

Theorem 1 (Multiloop Circle Criterion)

Let q C, R, and S have respective proper rational transfer

function matrices G(s), C(s), R(s), and S(s); let R' 1 and S-1 exist; and

let C, R, R -1 , S, and S -1 be nonanticipative and L2e-stable; let Hi

(i = 1,...,N) satisfy the condition (18). Suppose the feedback system (11) -

(12) is nonanticipative and L2e -stable in the special case where

H i = C i °fi- i = 1 1 ... , N. Then, a sufficient condition for the system

(11) - I7 2) to be L2e -stable for every collection H i (i = 1, ... , N) satisfying

(18) is

amax(R(JU)) G(jw) (I + C(jw) G(jw)^ 1 S-1 (jw)) t 1 V w.	 (27)

Further, when G(s) is a square matrix and is invertible almost everywhere

on the jw-axis, then the above condition can be expressed as

6min(S(Jw) ( C O W) G 1 (jw )) R-1 O w)) > 1	 (28)

for all w at which G-1 (jw) exists.

Proof: From Lemma A3 and (27), it follows that

H -^ diag(H 1;	, HN) strictly inside L 2 - Cone(C, R, S) . 	 (29)

e

	

	 From Lemma A2, it follows that (27) and (28) are equivalent when G'1(jw)

exists almost everywhere and that
e

-14-
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(-G)I outside L2e - Cone (C, R, S) .

I <^A
y

(30)

L 2e- stability of (11)-(12) tallows from the conic sector stability theorem,

Theorem A4.	
q

Remarks

It is also possible to prove Theorem 1 by applying Par,seval's

theorem to verify that the condi.ti:ons of the well-known "small gain theorem'

(e. g. , [8]) are satisfied by the transformed system definee by Eqns. (A5)-

(A10) of the Appendix. We consider the present proof more appealing

because it stresses the direct connection between the conditions of

Theorem 1 and the simple conic sector conditions of Theorem A4,

just as Zames' proof in [22] of the well-known circle criterion stresses

the direct connection between circle theorem conditions and the simple,

but less general, conic sector conditions of [5, Theorem 2a].

V. DISCUSSION

There are essentially two main conditions which must be satisfied

to conclude stability from Theorem 1: (i) The system must be stable when

the uncertain components H i are replaced by the respective LTI approxi-

mations C i; and, (ii) the frequency-domain condition (27)(or (28))must be

satisfied. The former condition can be verified a variety of ways; for

example, one may check that the roots of the characteristic equation

det (I + C(s) G(s)) = 0
	

(31)

F
f -15-
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all have negative real parts; 4 alternatively, one may apply the multivariable

Nyquist criterion, checking that the polar plot of the locus of det (C(jw) G(jw))

encircles the point -I + j0 exactly once counterclockwise for each unstable

open-loop pole of C(s) G(s) (multiplicities counted) F3]. The latter condition

(27) (or (28)) requires that one plot the variable Amax( ) (or Amin(• )) verses

w and verify that the appropriate inequality holds for all w.

In the special case in which there is a single SISO nonlinearity

h(x, t) both of the conditions of Theorem 1 can be verified by inspection of

the polar plot of G(jw) *w. In this case the conditions of Theorem 1

become precisely the conditions of the well-known circle stability criterion

(cf. [7]-[8]). It is this which motivates us to refer to Theorem I as a

I 'multiloop circle stability criterion"--despite the fact that in general no

circles are employed in verifying its conditions.

One can interpret the uncertainty bounds (Ri o S i) as specifications

for the gain margins and phase margins of the system (l )-(12). For

example, if the I. are LTI and SISO and if Hi (s) = C i (s) (i = 1, ... , N),

then it follows from (22) that under the conditions of Theorem 1 the system

will remain sta',Ae despite variations in the individual component gains of
A

magnitudes a:+ great as I r i ow) I = I Rz(jw)/Si (j(o)	 even when the variations

occur simultaneously in all components. So, for example, the system can

tolerate simultaneous gain variations or phase variations of at least

r. (jw)
GMi 4 iW 20 log I Ci jw) I	 db

`l If C(s) G(s) has any "decoupling zeroes" (i, e. , uncontrollable or
unobservable poles, then these will not be roots of (31) and one must
check separately that these poles have negative real parts--cf. [3].

(32)

-i6-
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(	 or

r (jw)
8M =2inf aresin 2C. w

i	 w	 i(J )

in each of the respective component feedback loops; i. e. , the system has

gain margins of at least GM  and phase margins of at least OMi at the inputs

to the respective components C i(s) (i = 1, ... , N). The quantity

km(jw)	 amin(S(jw) ( C (jw ) + G-1 (jw )) R 1 (jw))	 (34)

is the amount by which the uncertainty bounding matrices R i (jw) can be

simultaneously increased without violating the stability conditions of

Theorem 1--krll(jw) can be viewed as a lower bound on the amount by which

the system (11)-(12) exceeds the stability margin specifications (18) at

aach frequency w

In general, the stability conditions of Theorem 1--and the estimate

(34) of excess stability margin km--will be conservative. This coaserva-

tiveness can usually be reduced by substituting weighted uncertainty

bou nding matrices (oi l R i (s), ai S i (s)) for the original matrices

(R1 (s), S i (s)). Further, if it happens that Hi is linear time-invariant for

some i, then as a consequence of Lemma A4, the corresponding a,
1

E	 may be replaced by a frequency-dependent cr i (jw) (provided that for some

k< a and some e> 0, k> Ini (jU)) 2 >e for all w). Iterative numerical methods

r	 would be required to enable one to efficie ntly compute the "optimal"

weightings (i. e. , the weightings leading to the least conservative stability

r
conclusions) . We hasten to add that the idea of using constant weightings

4

to reduce conservativeness in multiloop nonlinear input-output stability

results is not new: %K-inatrix tests provide a simple but conservative
f

method to implicitly ensure the existence of constant

-17-
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weightings (see (TO], (11]); other results have been stated in which constant

weightings appear explicitly (e. g. , Moylan and Hill [ 12, Thm s. 5 and 6])

The results of [12] involving explicit weightings may be viewed as a

special case in which the matrices (C(jw), R(jw), S(jw)), the interconnection

matrix G(jw), and the weightings a,(jw) are not permitted to be frequency-

dependant. We emphasize that the advantages offered by frequency-

dependent G(jw), R(jw), S(jw) and cy i (jw) are crucial in stability margin

analysir , where it usually is necessary to be able to characterize tolerance

of dynamical modeling errors of frequency-dependent magnitude. Allowing

the matrix G(jLu) to be frequency dependent eliminates the need for

incorporating the dynamics of G in additional dynamical H i p s, thereby

reducing the dimension N of (G, C, R, S); this in general leads to less

conservative stability conclusions from Theorem 1 and also broadens its

scope of applicability (since G need not be L 2e- stable under the conditions

of Theorem 1 whereas each H i mus t).

We note that Theorem I is fairly broad in its scope of applicability.

The transfer matrix G(s) may be non-square and need not be open-loop

stable (though the H I. must be). The H i	 I
operators may be multi-input-

multi-output and need not have equal numbers of inputs and outputs. Unlike

some previous interconnected system results, no condition is imposed

requiring either c 2 - r. 2 > 0 'di or c 2- r 2 < 0 Vi. The operators
i	 I	 i	 i

( C il R it S i) defining the conic sector condition (18) may be dynamical.
1.	 -	

I

Further, with the aid of Lemmas A4 and A5 and the aid of results such as

in [zl], it is practical to verify the conic sector condition (18), even for

multi-input-multi-output dynamical nonlinearities.
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VI. CONCLUSION'S	 It

With a view towards developing a stability criterion well suited

to the problem of multiloop feedback stability margin analysis, nonlinear

input-output stability techniques generalizing the circle criterion have been

re-examined. The stability margin implications of existing results have

been stressed and an improved result has been generated allowing one to

take account of the frequency-dependence of the magnitude of system

modeling errors which commonly occurs in situations involving imprecisely

modeled dynamics--e. g., singular perturbations, hysteresis, etc.

Theorem 1 together with the related Lemmas Al and A2 provide verifiable

sufficient conditions for the stability of multiloop feedback systems using

only crude conic sector bounds on system parameters, subsystem

frequency responses, and nonlinearities. Potential applications include

the testing of system integrity in the presence of actuator and/or sensor

failures (cf. [2]) and the characterization of frequency-dependent gain and

phase margins for multiloop feedback designs subject to multiple singular

perturbations and dynamical nonlinearities leading to simultaneous

frequency-dependent variations in gains and phases in the feedback loops.

The main result, Theorem 1, also plays a key role in a result

described in [21] for generating conic sector bounds to characterize the

sensitivity of multil,:,cp systems to large dynamical modeling errors of

frequency-dependent magnitudes in a manner similar to the way classical

M'-circle and Nichols diagram techniques enable one to quantitatively

gauge the effect of open-loop gain variations in single-loop, unity-feedback

systems. The result of [21] also can be useful in determinins the conic

sector bounds (C, R, S) required by Theorem 1.
ic
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VII, APPENDIX

In this appendix several results are stated which are needed in

connection with Theorem 1. Theorem Al and Lemmas A2 and A3 are used

in the proof of Theorem 1. Lemmas A4 and A5 are useful in verifying the

conic sector conditions (18) for memoryless nonlinear H i and for linear

time-invariant dynamical H i.

We note that while results similar to Lemmas A2, A4, and A i have

been presented in various forms elsewhere (e. g., [6]-[8], [13], [19], [20]),

the very general case considered here (admitting, for example, dynamical

and multi-input-multi-output C, R, S) is new, as is the explicit appearance

of the term e ilyil2 in the "strict" conicity condition (5)-(6), The differ-

ences are sufficient to mandate the inclusion here of proofs for these

Lemmas.

Theorem Al (Conic Sector Stability Theorem)

Consider the feedback system

y = H x	 (A1)

X = - G (y + v) + u	 (.A 2)

where x, y ) u, v e L 2 and G, H: L2e ^ L2e; (u, v) is the ( 'input'' and (x, y)

is the 'output". If L 2e -stable linear operators C, R, and S can Le found

such that

H strictly inside L2e -Cone (C, R, S)	 (A3)
i

and
I(-G) outside LZ e -Cone (C, R, S)	 (A4)

ti



k
M
y
!1

r	 '

then the feedback system (A1)-(A2) is L2e-stable.

Proof: This result is a special case of the "sector stability theorem"

([13, p. 65], [19, Thm. 6.1]).

T' emark

Theorem A4 also can be proved by applying the small gain theorem

(e. g. , [81) to the "transformed" system

where

y= S (H - C) R-1 x+ v	 (A5)

x = -RG(I+CG) -1 S-l y+ U	 (A6)

y = S (y - C(X-U) + v)	 (A7)

x = R x	 (A8)

U = R u	 (A9)

v = S (v + C u)	 (A10)

provided S -1 , G(I + C G) -1 , and R-1 exist and are L.,_-stable and non-

anticipative. It can be shown that under the conditions of Theorem A4, the

two operators S (H - C) R-1 and R G (1 + C G )- 1 S - 1 each have L2e - gain

less than one. Thus, Theorem A4 may be viem-ed as a characterization

of the improvements on the small gain theorem obtainable by use of the

nonlinear dynamical transformations (A5)-(A10); such transformations

have been described as "loop-shifting" and "multiplier" transformations

(e • g., [8])•

Lemma A2 (LT1 Outside Conicity)
t

Let G, C, R, S be linear time-invariant operators with respective



proper rational transfer functions G(s), C(s), R(s), S(s). Suppose that

S -1 (s) exists and has a proper rational transfer function matrix with no

poles in Re(s) > D. Suppose that R, G(I + C G) -I and S-1 are L2e stable

And non-anticipative. Then, 	 ry N
4

i-G) 1 outside L2e-Cone (C, R, S)	 (All)

if and only if the following condition holds for all real w

Qmax\R(jw) G(jw) (I + C(jw) G(j w )) -1 S-l (jw)) < 1	 (Al2)

almost everywhere.

When G-1 (s) and R-1 (s) exist almost everywhere on the jw-axis, then

condition (Al2) is equivalent to

amin (S(jw)(C(jw) + G-1(jw))R-1(jw)) > 1 	 (A13)

almost everywhere,

Proof•

It is trivial to see that (Al2) and (A13) are equivalent when G-1(jw)

and R-1 (jw) exist, since for any invertible matrix 

amin (A-1) = I/o max(A) .

Suppose that (AI2) holds. Let (x,y) by any input-output pair

satisfying x = -Gy; let

y = S (y - C x)	 (A 14)

-22-
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and let

y(t) , if 0 < t < T

YT 0	 otherwise
(A15)

Let Y T (jw) denote the Fourier transform of y T . Note that from (Al2) it

follows that for all YT(jw)

II Y T ( jw)II2 - II R (jw) G(jw) (I + C ( jw) G (jw))" 1 S`1(jW)

YT(jw)II2 > 0
	

(A16)

Now,

II R x {I T= {I R G(I + C G) -1 S - 	 iI T

IIRG(I+CG)'iS-1yTIIT

by the nonanticipativeness of N

R, G ( I + C G)-

< m II R G (I + C G)-1 S-1 Y T ) (t) II 2 dt
0

2n	 fi R ( jw ) G (jw ) (I + C (Jw ) G (jw ))
-1 S-1

O W ) Y T (jw) II z dw

/ by Parseval's Theorem and the hypotheses that

R, G(I + C G) -1 , and S -1 are L2e-stable.

-23-
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`^	 k

2n f II Y,r (jW) II 2 dw
_W

= II Y T II T 	II Y IIT

II S (Y - Cx)II?	 (A17)

which proves (All) is implied by (Al2).

Conversely, suppose that (All) holds. Let Y O and w0 be arbitrary.

Consider the L2e -stable feedback system

x = -G y	 (A18)

y = Cx+ S -1 y 	 (A19)

jW0t
Let y(t) — Y 0 a	 Then (letting 'r - m in (7)), it follows from (All) that

! R (jw) G(jw) (1 + C(jw) G( jan )) -1 S -1 ( jW ) Y O IIE

IL Y O II	 (A20)

and hence (Al2) holds.
p

j

Lemma A3 (Composite Operator Conicity)

Let
i
I

s	 H	 diag (H 11 . •, H N )	 (AZ 1)

C	 diag (C 1 ,..., C N )	 (A22)
F

K	
-24-
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(A23)

(A24)

(r^iif-ye¢.ud:^!-c—s. m-:cx-•-qua........
	 s	 it

R = diag (Ri,."'RN)

S = diag (S i' ... , S N)

If for all i 

H i strictly inside L2e -Cone (C i' R io S i) ,	 (A25)

then

H strictly inside L20 - Cone(C, R, S)	 (A26)

Proof: This is a special case of the results in [13, p. 70] and [19,

Lemma 6.2 (vi)]. Q

Lemma A4 (LTI Conicity)

Let H, C, R, S be nonanticipative L 2e-stable linear- time- invariant

operators with respective rational transfer function matrices H(s), C(s),

R(s), S(s). Suppose that R -I (s) exists and has no poles in Re(s) > 0.

Then

H strictly inside LZe -Cone (C, R, S)	 (A27)

if and only if

2	 2
II S ( jw) ( H ( jw) - C(jw)))X(jw)'I	 II R (jw) X( jw) II

E	 E

2
e ^I X(jw ) II	 (A28)

E

for all X(jw), all ), and some s > 0.

-25-
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	 Proof:	 Let R-1 denote the stable nonanticipative LTI operator having

tranefer function matrix R-1 (s), Suppose that (A28) holds and let

(Rx)(t) ,	 if t < T
xT (t) _	 "	 (A29)

0	 if t. > T

"
and let  Ow) denote the Fourier transform of x T (t), Then, for all y = Hx

T

we have

II I3(y - Cx)Ih = II s(Hx - C.-) II?

= II 5 (li - C) x l ► 2"	 T

(by linearity)

II S(H - C) RRx IIT g.

(since R-1 exists)

= II S(H - C) R-1 x  11 2
S 	

T

(by nonanticipativeisess)

`	 < f II (S (H - C) R 1 xT )(t ) IIE dt
0

(the integral exists since S, H, C, and R 1 are stable)	 I
}a;

2n ^^ II S (Jw)(H (J w ) - C (.iw R- 1(Jw)

X T (7 w ) IIE dw

(by Parseval's Theorem)

t
s	 -26-
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2n f m II XT(Jw) 
11  - 

E II R- l ow ) XT (J w ) 11 2 du)

_m

(By A,-°))

f II XT (t)II dt - 5 J
	 il(R- 1X, t) 

IIE dtE	 0 

(by Parseval's Theorem)

T	 T 2

< f II XT (t) IIE dt - e f II (R
_ 1 

XT )(t) IIE dto	 o 

=	 II XT 11 T
2 -EII R-1 XT IIT

IIR X II T - E II R-1Rx

r	 (by nonanticipativeness of R-
1

IIRx!I T - E II X IIT

< II RXII T - E ^(II X II T + IIHxIIT) .

where

E

1+a2
and

II HX I!T
_	 p	 n

	X,T	 IIX;IT	
<

v

(since H is stable).

-27-
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Conversely suppose (AV) holds. Let X0 and w0 be arbitrary.

Then, letting,x(t), - 	 X0 cos (w0t + 0) and T - w , it follows that

Ii S(jujo) (H(iW 0 ) - C (3 u)o)) Xa II

11 R (jw a) Xo 
11  - 

E (II Xo II E + II H Uw o) Xo 
11  >

II R(jw o ) X0 11 2 - E II Xa IlE

Lemma A5 (Nonlinear Time-Varying Conicit•

Let h(x(t), t) be any function of x(t) and t and let H be given by

(H x) (t) = h(x(t), t)
M

,

(A33)

0

(A34)

Let C, R, and S be constant matrices and let C, R, S be the operators
ry ry r

defined by

(C x) (t) = C x(t)	 so° x

(R x) (t) = R x(t) -b` x

(S Y) (t)	 S Y(t)	 -If y

(A35)

(A36)

(A37)

Suppose S -1 exists, then

H strict ly inside LZe -Cone (C, R, S)
	

(A38)

if and only if

,



+

2	 2	 2
II S (h (x(t), t) - Cx(t)) II	 _< II Rx(t)II - e II x(t) II	 v x(t) .	 (A39)

E	 E	 E

0

Proof: Let y(t) = h(x(t), t).

's
Supr. se (A39) holds. Then,

II y (t ) II < a II x(t) II	 (A40)

where
'r

max (R)a =	 a
min 

(S) 
+ "max(c)	 (A41)

Thus, taking

e l =	
E 

2	 (A42)
1+a

we have that

IIS(y-Cx)II2

i

IT II S (h (x(t), t) - Cx (t) II 2 dt
0	 E

F  T< f 	 II R x(t) II 2 - ell x(t) II 2 dt
0	 E	 E

IT II Rx(t) II 2 - E' (II x(t) II E + II y(t) it 2 dt
0	 E	 E

= Vl RxIlT - E (II x II ? + II Y 1 1 Z)(A43)
i

F

-29-
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Conversely, when (A38) holds, then taking x(t) to be the constant

function x(t) = xo we have that for some e > 0

II S(h(x0 , t) - C x o) 112
E

T. IIs(Hx- Cx) III

C T C II RxIIT - E ( IIh IIT + I1 y IIT

?(IIRxIIT-EII.II2)

= II Rx0 II 2 _ e Ii xo 11 2 •	 (A44)
E	 E

rl

F
S
r

s,

k'
F

w	.
-30-
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