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ANNOTATION

The problém considered is that of obtaining an estimate of a
vector involving the parameters for the state of a physical system
when the weight matrix in the method of least squares is a function
of this vector. An iterative procedure is proposed for calculating
the desired estimate. We obtain conditions for the existence and
uniquéness of the 1limit of this procedure, and a domain is fournd
which contains the l1imit estimate. We also propose a second method
for calculating the desired estimate which reduces to the solution
of a system of algebraic equations. We consider the qQuestion of
applying Newton's method of tangents to solving the given system
of equations and obtain conditions for the convergence of the modi-
fied Newton's method., Certaln properties of the estimate obtained
are presented together with examples.
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1. Statement of the problem

We shall consider the problem of determining the state parameters
of some physical system from the results of measurements (for example,
the problem of determining the trajectory parameters for a space /3%
vehicle from the trajectory measurements). Leti&ibe the!F\-dimen-
sional vector of the parameters for the state of the system which
are to be determined, 4u. its actual value, a@) the ‘m!-dimensional
vector of the functlons being measured, a the vector of the measure-
ments (i.e., the measured value of the vector d QJ ). We shall assume

that the function d(q], is given.

The given problem of determining the vector\q.w111 be solved for
the case when the precision of the measurements is a function of, q
Such a function can stem from the following causes,

1. The precision of the measurements can depend on the magni-
tude of the measured function. For example, if distance is measured
in terms of the travel time of a signal, then the precision of the
measurements can deteriorate with an increase in distance, due to the
weakness of the reflected signal, due to an imprecise»value for the
propagation velocity of the signal, etc. Taking into account the
functionJGD; the precision of the measurements in the case under

consideration is a function ofiq .

2. The components of the vector\ﬁ can also be included in the
functlonal relationship of the accuracy of measurements to the /4
sources of errors. For example, if moments of time are measured in
which some object traverses the field of view of an optical sensor,
then the measurement error is proportional to the time interval during
which the object crosses the entire field of view of the sensof, but
this interval depends on the velocity of the object, the distance to

it, etec,

3. When interfering parameters are present (i.e., parameters
of the model used which are not included in the number of parameters

being determined, and are. assumed equal to a priori values) the

~ 77 7 ¥Numbers in margin indicate foreign pagination. =
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measurement error vector in the linear approximation’is calculated
by the formula [1]

E=5,+Ba
where ﬁ, is the instrument errors of the measurement, o 1is the vec-
tor of fhe errors in the knowledge of the interfering parameters, and
B=3d/d¢ . 1In the general case, the matrix‘B;, and, therefore, the
errors in the measurement depend on¥§J. In the problem of statistical
regression for the controlled variables which contain the errors,
there is an analogous dependence of the measurement errors on the

vector of the parameters to be measured [2].

In the given case the covariant matrix @3'of the measurement
errors is also a function of the vector 9 . Henceforth, we shall
assume that the functionﬁﬂd}is known,

The basic method for determining the vectorf&§is the method of
least squares (MLS). According to this method, the estimate iQ{ of
the vectormq,is found from the condition for the quadratic form#¥

[d-dg'P[d-dw)]! (1.1)

where'p is the weight matrix of the MLS., If the function d(g) (or is
Iinearized in some neighborhood of the‘vector;q;), then the weight
matrix which ensures the minimum dispersion for the error in deter-

mining any parameter linear with respect tonﬁis the matrix /5

P-DYq,): (1.2)

according to the Gauss-Markov theorem. In the given nonlinear pro-
blem we shall assume that the weight matric (1.2) is also in some
sense the best matrix. '~ However, since'Qk is unknown, the weight
matrix will be computed by the formula

P(3)-DG)
where‘ﬁiis some value of the vector'¢. In the general casejg can be
distinguished from the value of the vector q;used to compute the func-

¥ In (1.1) and hereafter the symbol "T" denotes the transpose of a
vector and a matrix.



tions being measured. Then the MLS quadratic form (1.1) and the

system of normal MLS equations can be written in the form

0(0,3) = [-dig)]"P(E)[T-dtg)] . .3
w(,q)-«z-[%ﬂ] A(q)Pq)gq_g_ 0l (1.1)

where qu)=ad@h4. According to:-the assamption that the weight matrix
(1.2) is optimum, the estimate

| q = azg m('n "P(QU u)

(1.5)
is the best MLS estlmate. Since\@qis unknown, it is necessary to
find the best approx1matlon to the estlmate (1.5). As criteria for
the closeness of an estimate: q to Q or QQ, we shall assume the
quantltlesjﬁ Quﬁ and IQ q,l When selecting a vector norm it must be
kept in mind that the components ofiqfhave different dimensions.
Henceforth, we shall assume that the vector g is reduced to dimen-
sionless form as follows (1ikewise for g§i): '

9 f&?»

where qp is the input vector of the parameters to be determined whose
components are written in the given units of the dlmen51ons,i§, is a/b
constant diagonal matrix with positive elements which can be selected
qQuite arbitrarily. The elements of fﬂ can be, e.g., those required
for precision in determining the components of the vectorlQ; . The
matrix S must be identical for all the vectors q and[q Any of the
norms used can be applied to the dimensionless vector!g}thus obtained.

Let‘d;be an a priori given value of the vector'ﬁfwhich belongs
to a sufficiently small nelghoorhood of the vector‘qm We shall
assume that the value P(q) of the weight matrix makes it p0831b1e to

°n 079"""80(@,%) such that - I% %"‘ﬂ%iqua’ . Since the vector ‘@“
closer to Gy thanqk, we may expect that the weight matrix ]ﬂQJ w111
permlt further improvement in the estimate of the vector: q
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Continuing to reason analogously, we arrive at the recursion proce-

dure¥

\Q,aq,, q,,,-a'zgmamp(q q.) (x ox,. .).. (1.6)

In Sections 2 and 3 we shall formulate the conditions under which the
procedure (1.6) converges to a unique estimate, sufficiently close to
the value (1.5). Note that all the quantities which enter into the
conditions of the theorems to be proved below are, generally speak-
ing, random. Therefore, the conditions of the theorems must be consi-
dered either for some concrete sample, or as realizable with a certain
probability.

2. The conditions for convergence of the procedure /1

Let‘i{] be a fixed vector. We shall consider two neighborhoods
of the Vectoriim:

Q(a)-{g: 13-g1<0} Q(cm {3:4g-quf ¢ Ju},

o R - (2.1)
Whepe O(U)(oo /and

/:1’ ‘,I when lquf‘.{?f’ 'Q“vi is the norm used

q&; J? when .191=/9'¢’,1 is the norm used (2.2)

. » when "‘?"‘ﬁ“i - 1is the norm used

(here q;. is the Af the component of thervector q ). Let us also

e e

consider the matrices|@=diag(d,5,) , 8,=diag(d,,9,,), 0<Iei (i-[2m , (2.3
d] denotes the 1dent1ty matrlx The foIlowing lemma 1is needed to prove

the theorem given below.
Lemma 1. For anyq“q,ecgﬁg)and any matrix 0, defined by (2.3),

q Ql *9 (Qz )

belongs to the neighborhoodﬁ)(qd,

the vector
(2.4)

Proof: Let us consider the normﬂq#-maXMﬁ Denote by Qd; 3a
\iﬂ the ¢ th components of the vectors q., % , 9 . From (2.4),
(2.3) for all i=I,m

¥ An..analogous procedure is considered in [2].



18- Gac 1= K189~ Qi) + (6, e </ B08. 0l + ik, 0, 1€ (18, + ) - 0.

- - - e - i,

Hence "Q ‘lel ma”‘k Q..qu v \ﬁ‘

— : /8

Next, consider the norm !EI?IIA: Q_'_Q_f . From (2.14)
\‘lq;q;|=|q—‘*.9 (q:' t)- %(QJQJ %(Q.*Q,)'Q;l“ |
S HEI-80,-00 49090+ Z10,-G, g,

TS Tt T T T ’ (2.5)
From the deflnltlon of the matrix 91,‘ III 9“" } Let us introduce
the notation l;‘9¢ 9! | -'&Q “9a , ‘cos[ I:}:xﬂ « Since
- ! }

.q,,q,eQ(qg‘, it follows that l“t!‘wf and ]x‘kw; . From this and
(2.5) we obtaln . ,
1g-qud< I nb+ S e - I

=L [ -2 ixlcosy + 5 I+l «2hatx, lwfrs
€4 ({2205 + 2 +2cos/] w(slnl +cos§)<fw

/.
.

Finally, consider the norm |ql=§\q-|; . From (2,4) and (2.3) we
have: - - = e

19040 =14,+6,(4,-4;)- Gol - -1(1-6,)(9,-90)+6,(q,-qa)l¢
l ‘I(I 91)(QL qn)'+n,9 9, Qa) RQFQa"”Qx'Qauﬁzw

Q.E.D.

Denote by £, ©° the neighborhoods (2.1) when|q,=Go’ or Qa=Qy/ ,

22—Vii(;,)_"—3'.9(%)”!0;FQ QQJ Q- Q(‘” (2.6)
Also let
6l pinin)2ad)
'G=Glg,3) 4%&  HeH(.g)= 2532 | 2.7
/9
A=1§.-9.0 (2.8)

where ’./Qn is defined by (1.5). Along with the vectors § , § we
shall also use the composite vectors
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;A » -Q, | A__ q-u o \f
F"M ' 2“'[ q] (k=0L,.0,

T (2.9)
where the estimatesf&,,iéﬁj are determined by (1. 6) Then the func-

tions introduced above can be written in the form, ,, &(z),|GIz),
iand . H(z) | )

Theorem 1. Suppose that the following conditions are satisfied:

1) quchoniQ

2) all the terms of the sequence {Q”' constructed according
to (1.6) belong to .
Moreover, assume that for anyfzeQ'xQ' the following conditions are
satisfied:

3) the derlvatlvestc,(z), andH(2)°x1st

4) the matrix G"(Z) exists;

5) NGHRIHEN4S,, 0<8, <L

Then the following statements are valid:

a) for any terme, of the sequence {Q} the quantity\ﬁuﬁ
is uniquely determined in Q by (1.6) (i. e.,»mtmp(q q,.,)[ls wiique in Q) 1

the estimate Qu is also unique in &;
b) the limit §,€() of the sequence {§.}exists, QE\is a

solution of the equation ‘f(q,q) =0~ , and this solution is unique in Q;
c) the estlmaté q, satlsfles the inequality

2 Baa b_
lq,t Qu' = ’ HQt_Quﬂé 1_60 ’
T ' (2.10)
where A. is defined by (2.8).
Proof: /10 -

a) assume that for some § e() there exist Q““'Q_‘Q;_G’Q. It
follows from (1.4) and (1.6) that §(44,,4.)-(§4,84=0 . There exists
a vector ‘Q 6,.».+8,(Qm- m) , where the matrix 0; is defined by (2.3)




Qe 7‘by Lemma 1, so that

(8,80 - 165 8) = Gl 832 ..,) -0.

By condition 4) of the theorem, the matrix G is nonsingular every-

where in Q”; hence ‘;Q:H=Qfm .
The uniqueness of the estimate'@m: is proved similarly.

b) by virtue of (1.4), (1.6) and taking into account the
notation (2.9), {’ ?(Z,.,) C. Hence it is possible to write the
equality

flzd- f(zx..) -ﬂ— )=G(z)(@m_fﬁ.)jH(—z)(_f.?d.ﬂ.)ﬂ,?

- (2 11)
where "'27:2".-&9,(2,7-?_,.;)_- , the matrix 9, is deflned' By (2. 3) 2nd
Ezégzuggﬁ . according to Lemma 1, Let us 1ntroduce the notatlon

—

1@¢=3@::Qel , where §, and 1Q¢' are terms of the sequence {§}. Then
by (2.11) and conditions U4 ané 5) of the theorem we obtain

AKO],KalG‘.(z)H(Z)(Q q-&d " 6 Auv. 1\6 A[ 0.

From this and the triangle inequality we obtain for any K,QF =0, 1,

' 10!4 xalg
i -3} A.o
A-R,l .n.i = A“’ZG Awa: l -0 {- 6&

(2.12)
According to condition 2) of the theorem,\A‘o\Qu, and from (2.12)

«
An! x € 2(.06

: /11
Thus the conditions of the Cauchy criterion for the convergence of

the sequence {q} formed in accordance with (1 6), are satisfied
[3]: for any € > O there ex1sts! ~[&151Lé1 5~5 the brackets denote‘

—_ —_

here the 1ntegra1 part of a number) such that for any K »> KO, [>Q‘

the inequality gqﬂz-g‘g C is satisfied. Consequently, &H‘Qx qa

xoaﬂ

exists and §¢€Q s gilil‘ce @EQ (K =0,I,...). Since = (q‘“,,q =p7or
all K, '}jgg?x =i(q‘,ﬂ,g):0 .



Assume that there exist qa,o.EQ such that} q,-sc,‘ and Lg(z,) f(z,)=0

where \Z" q*i (1 = 1,2). By analogy with (2.11) we write:
(_qu.!\ '
() f(Z) Gz (gi-64)- Hi2)lg2-q1)= 0,
S ST T (2.13)
where \Z 2‘+92(2‘ Z,/.‘ and ’ ZEZQIXQ"’ . From (2.13) and condition

5) of the theorem. |
Ag- Q,sll=|\G (Z)H'Z)wa wk< ol -qdii<fga- HE

This contradiction proves that the solutlon of the equation ?UL1)=Q
is unique in Q. . .

c) 1in accordance with (1.4), (1.5),'f(&”Qm)j0 and by analogy
with (2.11) and (2.13) we may write ) '

ﬂz.)i’ z‘m.w”* ( -94)=0, (2.18)

where ‘ [, - -

%] , _[4. o
Z# [q‘] z [qu] . 727‘12“"’92(2“‘&“)"

and according to Lemma 1, Z € " x 7. From (2.14) and conditions-
4y and 5) of the theorem

1qu-40= 16 @M, §tu-qu1< B1a,- St H1E-qul).

(2.15)
Hence, taking into account (2.8), the first of the inequalities (2.10)
follows. The second inequality follows from the first: /12
—————— —_ A —_—
“Qt’%u%t Qui*mu q'ﬁ‘ A= 1-8, "
A 0
Q'E.D. - -
/13

Corollary 1. If the condltions of Theorem 1 are satisfied, then
for any qhq, €f), the equalltyiﬂgzq” ()15 a necesgg;z_gg@ sufficient
condition for the valldlty of the equation ¥(Q:,4, )=m1mP(q Q‘)=

\,

Necessity follows from (1l.4) and sufficiency from the uniqueness

of the solution of the equation NQ,Q,J O which is proved in a manner
analogous to the proof of assertion a) of Theorem 1.



Corellary-2. The rate of convergence of the sequence{@,},

constructed in accordance with the procedure (1.6) is estimated by
the inequalities

A '@"-Qtl$Soﬁax-s-q:?!‘z‘a:né;-qi'" ’ | (2.16)
"!Qr%l‘%iﬁr%u : (2.17)

For the proof of (2.16) we write by analogy with (2.14)
g ' ) A
 GE)Ge90) + H(8ei-g4) =0,
where '2=2,+8,(2,,-2,) . Hence, and also from condition 5) of Theorem

1, the inequalities (2.16) follow. The inequality (2.17) is an
immediate consequence of (2,12) whaq{-iﬂg.

" Note 1. 1If the derivatives (2.7) are continuous in Q°, then
according to a theorem abQut implicit functions and condition 4) of
Theorem 1, the relation §(q,§}=0uniquely defines for any 2,eQ' a
continuously differentiable function

q’Q(q) o (2.18)£_
It follows from condition 5) of Theorem 1 that the mapping (2.18) is

compact for allfqiiégz‘and Theorem 1 can be proved with the help of
~ the fixed point principle [3].

Note 2. In the general case the limitEQ§ of the procedure (1.6)
is not the minimum of the sequencei]@,—ﬁﬁﬂ}. In fact, at some stage
of the procedure, it may turn out thggxﬁﬁ%g. Then according to (1.5)
and (1.6), and due to the uniqueness of the vectors ‘Q‘H and X@u{ s
the equalities; i;?aq“and ﬂ&m q,ﬁ-o are valid, whereas 1n the general
case, 'th'dd‘gﬂﬂnQu ?1’ is not zero.

" Note 3. In real problems there is interest in the case A << w.
In the contrary case, any estimateié from Q, even including.a';q° is

good in the sense that (§- -q ﬂ nq, g .

Note that in real problems involving the determination of orbits,
the conditions 1)-4) of Theorem 1 are usually satisfied and condition



5) is basic. Satisfiability of this condition is illustrated by an

example considered in Section 7.

3. Improvement of the estimate obtained

From (1.4) and (2.7) it is easily seen that the matrix H is a
linear function of the vector of the residualg-d(dﬁﬁezeas'the matrix G
does not depend on this vector. If the estiméte‘(i.S) is the best MLS
estimate, then the residual, computed from this estimate is minimum
in the mean. Therefore, it may turn out that the quantity (|G'H| ,
computed in-a sufficiently small neighborhood of the vectors Q and

q, will be substantially smaller than the quantity \8, ;;a;(na"Hﬁ /14
In this case a more accurate estimate of the normuu'Hﬂmay permlt a
decrease in the neighborhood of the vectors Q”and,az—ﬁhich contains-
the llmlt\qQVOf the procedure (1.6), i.e., the right side of the
inequality (2.10) is reduced. Moreover, note that 60 is a nondecreas-
ing function of w'in (2.1) (in fact, when w increases, the quantity
g?ng{}m can only increase). Since the estimates (2.10) are accept-
able only when 60 is sufficiently small (say, not more than 1/2), then
this imposes a rgstriction on w, Therefore, estimates of the closeness
of the quantityigdﬁ toié; andiigfindependent of §_ make it possible
to widen the neighborhoods Q and 2°. Other estimates will be obtained

below,

Suppose that instead of condition 5) of Theorem 1, the following
condition is satisfied: for any h,ge@'_

1G4, 3)H{8. M < 8(x,y4) (3.1)
where T
0<8(x,y)«d.<L , . (3.2)
and e
x=lg-q.d, y=1§-9.0, (3.3)

Here 94.and 11 are vectors, If condition 5) of Jheorem 1l is satis-
fied, a functlon §(x,y), which satisfies (3.2), can be constructed as
follows:

10



5(X /) = max 167(4,5)H |
i/ £ (4 q) (q q)ll (1)
Consider the function ) 5
= max 8(x,y),
w(u) rwn(a) ( y)

) Y (3.5)
where L
‘ W)=,y Xeuts, yeurasa,;q, < (3.6)
“@A."M‘f@”y’ 8:=19:-9uls (3.7)
A is determined by (2.8).. /15

Note that when choosing the vectors ﬁ;and?%;in (3.3) it is
possible to make use of one of the following criteria:

—— the precision of the estimate (3.1);

the structural simplicity of the function §(x,y) (for
example, the simplicity with which the maximum in (3.4) is calculated)

the compﬁtatibnal simplicity of the function w(u) which will
be needed subsequently (for example, if suchi@? and |2 can be chosen

that §(x,y) is a monotonically increasing function of both variables,

then according to (3.5) and (3.6), w(u) 5(u+a”u<avb,)) .

Consider the sequence'{UX}; formed in accordance with the equal-

itiles R Ue .

¢ 36’ ' { = |
e Tﬁ e = Towey O'”'”?” (3.8)

and the equation [ -
: u= w(UZA ;
q-wu) - ;
- (3a9)
It is clear from (3.5) and (3.2) that any solution U, of equation

(3.9) satisfies the inequality

n V-SOA—. ~ ’
! O‘ Ug‘f(-_a_. . (3'10)

" Lemma 2. Assume that the function G(X,y) satisfies the inequal-:
ities (3.2) for any q, @5(}’ Then the following assertions are valid:

a) the sequence{;a}, formed in accordance with (3.8), has a

11



limit UYs which is the greatest solution of equation (3.9);
b) for any u”, the inequality

“w() A /16

‘u‘l w(v) (3.11)

is satisfied, as is the inequality \U ‘Ua.

Proof:

a) It is easy to see that w(u) is a nondecreasing function.
Indeed, for any u', u"™-such that u'<.u", it follows from (3.6) that
W(u')CW(u") and according to (3.5), w(u')sw(u").

Cons1der the sequence {U }. From (3.5) and (3.2) we find that
w(U )<6 . Hence from (3.8) U,Suo . Therefore, since the function
w(u) is monotone, w(U1)<m(U ), and from (3.8), Uzg Uj;. Reasoning
analogously, we find that;h"‘u, (K OI““,)It is clear from (3.8)
(3.5) and (3.2) that every U, 20.. Consequently, {Uk} is a monotoni-
cally decreasing sequence which is bounded below, and has a limit;u!
which satisfies the inequalities (3.10). Clearlx,(qg_és a solution
of equation (3.,9). Assume that there is a solution1U;'of this equa-
tion such that Wy»Us . Note that UjsUcfor all Ux determined by (3.8),

since, if for any K,Us=Uy, then U_ is a solution of equation (3.9).

and, according to (3.8),u;5u,.uu£§...-u., , contrary to hypothesis.

On the other hand, for ﬁ; , as for all solutions of equation (3.9),

the inequalities (3.10) hold. Consequently, by hypothesis, Uc<“a<uc,

and there exist terms Yt and Umt of the sequence {Vu}, such that

gub‘<u.<u¢’. ‘Hence, and also from (3.8) and the monotonicity of the

function w(u), weffiﬁddthat: e
ue)A

Us > Upyy llfﬁdl()uc) 3 l?gl:zﬁ "

/17
The solution obtained contpadicts the fact that;u;,is a solution of
of equation (3.9). Hence Uz is the largest solution of that equation,
b) Suppose that Yy is the largest solution of equationi(3.9).
Assume that“someﬁp>ua satisfies the inequality (3.11). Construct a
sequence {UQ} in<accordance with the equalities

12



-

't w(Ux)A -
ul=y U= 150ty (K=0,1,...}. (3.12)

Hence, in view of (3.11), it is clear thatiU:)U: . Consequently,
udu7i$wm9 , and from (3, 12),'u;;u;_ . Continuing this line of rea-

soning, we obtain Wg,» Uz (%= 0,50..) | Here, since yu)dye for all
Ba_. e

iu“ , the inequality Uas

- \,

is satisfied. Conseduently,

{u.} 1s a monotonlcally increasing sequence which is bounded above, and
this sequence has a limit, Ug which is a solution of the equation (3. 9)/
and \u%»u?Qua . But, according to this condition Ug is the largest
solutioﬁ of equation (3.9). This contradiction proves assertion b)
of the lemma, and the lemma is proved.

" Theorem 2. Suppose that conditions 1)-4) of Theorem 1 are
satisfied, and for anyfq;qef2rso are the conditions (3.1) and (3.2).
Then assertions a) and b) of Theorem 1 hold and

'Qﬁ Q"‘Uu 9 5% Quﬂ UR+A9
4 : (3.13)
where Ug is the 1imit of the sequence‘{wa} formed according to (3.8),
and is the largest solution of equation (3;9).

Proof:

The validity of assertions a) and b) of Theorem 1 are obvious,
since from (3.1) and (3.2) condition 5) of Theorem 1 follows.

Consider the equality (2.14). The vectors |§’ and:af, components
of the vector Z in (2.14), satisfy the inequalities Nq-4,J<1qe-Gul
' 1§-q.0<19s-9,1 .. Hence, making use of the triangle inequality,
taking account of the notations (3.3), (3.7), (2.8) and

/18
TR (o
we obtain: o
XeU'+dy, ycu'+8+4,. (3.15)
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From (3.1), (3.5), (3.6), (3.1%) follows
NC@HRI B ww).

From (2.14) and (3.16), taking into account (2.8) and (3.14), we ob-
tain "u,‘ w(u/) (U'+A) .

similar to (2.15). Hence, it follows that U!' satisfies (3.11)."
According to Lemma 2, UW'€Usi, and hence, by virtue of (3.14), the
inequalities (3.13) follow. Q. E. D. '

The results of Theorem 2 make it possible to reduce substantiaily
the domain in which the estimatei@1> lies 1n case its magnitude is
close to unity and ﬁuh&f&ﬂ% . This isvgraphically illustrated in
the example considered in Section 7.

4, The second method for obtaining an estimate /19

In computational terms the procedure (1.6) is laborious, since
at each step an ordinary MLS problem must be solved (with a constant
weight matrix). Therefore, we shall make use of the fact that if the
conditions of Theorems 1 and 2 are satisfied, then the procedure (1.6)
is equivalent to finding a solution to the equation

'§(3,9)=0 (4.1)

(the equivalence follows from assertion b) of Theorem 1). From a
computing standpoint, the procedure involved in solving equation (4.1)
may turn out to be simpler than the procedure (1.6), since it allows

us to avoid inserting iterative processes,

Let us consider solving equation (4.1) by Newton's method of
tangents. According to this method, given an initial approximation
‘Q,, a solutionlﬂu} is found as the 1limit of the sequence formed in

accordance with the recursion procedure [3-5]

e Ty o
Gers =9« [ “%] f(q:,ql) A(KD,!,:.:)‘

dq (4.2)

14



From (2.7) we have ‘\\afa(g,gi;c;(é,q)m(q,-q) :
.99 -

and the procedure (4.2) assumes the form
: N - .' A ’
= GG (ce0,L), .

where

G" G(Qg ._Q-.) " Hu .AH_(Q“ !q_l)' i“ ! f(q;‘) q")f-

We shall show that the inverse matrix in (4.3) exists.

" Lemma 3. If the conditions of Theorem 1 are satisfied, then
for any ZeQ xR", [G(Z)+H(Z)]1™?! exists.

Proof:
/20
Let us show that the matrix G '(G+H)=I+G 'H is nonsingular;
then since the matrix G ! is nonsingular, we shall have proved the
nonsingularity of the matrix G+H. Suppose Z@- is any vector.
According to condition’5) of Theorem 1, we have
(I +GH)gl > lgh-HG"Hg I > Ngl(1-5,).
\ - : N _ (b, u)
Since-&oii, it follows from (U4.U4) that the equation (I+Gf1H)q=O
has only a zero solution. Consequently, the matrix I+G’XH, and
with 1t the matrix. G+H also, is nonsingular, Q. E. D.

We shall assume that the remalning conditions for the conver-
gence of Newton's method are satisfied*. Then the procedure (4.,3)

converges to the same 1imit'@; as the procedure (1.6).

5. Simplification of the computing procedure

The procedure (4.3), along with previous procedures, also has
defects in comparison with the procedure (1.6), including the necess-

¥ Various conditions for the convergence of Newton's method are consi-
dered in [3-5]. For example, a sufficient condition for convergence
is the existence of a bounded second derivative of the function [4].
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ity of computing the matrix H at each iteration (it is easy to see
that when minimizing the function‘ﬁﬂ@,@d Wﬁth”rqépect to q by Newton's
method it is not necessary to compute this matrix). Therefore, let

us consider the conditions under which the procedure o1

190" s q.{"uq;-(};"ﬁ" (K=0,4,...),. O (5.1)

where

Go=Glax,) o fc= Honsgr)

(5.2)

converges to the same 1imitaqa\as the procedures (1.6) and (4.3).

Note that (5.1) is a modification not only of the procedure (4.3),

but also the procedure (1l.6) in the case when the minima in (1.6) are
found by Newton's method. Indeed, if in this case the procedure (1.6)
is changed as follbws: each minimum is not calculated individually
after fixing the weight matrix, but at each iteration of Newton's
method the value of the vectof q obtained in the preceeding interation

is substituted into the weight matrix, then we arrive at procedure (5.1).

In order for the procedure (5.1) to converge to g, , it is
sufficient for any terms of the sequence{q&}determined by (5.1) to
satisfy the inequality

..... (5.3)
We shall formulate a theorem in which the convergence of the procedure

(5.1) is proved under a condition of quite weak dependence of the
matrix G(q,ii) on.q.’ B

Theorem 3. Suppose that the conditions of Theorem 1 are satis-
fied together with the following conditions:

1) all terms of the sequence {d;fconstructed according to (5.1)
belong to the neighborhood £ determined in (2.6) and (2.1);

2)‘ for each term dﬁ of the sequence{qgsphere exists such a vec-
tor §L€Q that 4(g2,9))=0 » and for all §=92+8,(9:-2), where the
matrix @ is determined by (2.5), ghe-iﬁéquality

16



E-6LG (qq,.,)usof” 0<do<—5"
L R 1T (5.4)

is satisfied , /22

B,.1s determined by condition 5)

wherefb{-is determined by (5.2) and

of Theorem 1.

Then the procedure (5.1) converges to the same 1imit\@oas pro-
cedure (1.6).

Proof:

As follows from the conditions of the theorem, for any term of
the sequence{%;ythe quantltyi determined by (5.2) can be represented

in the form

\0 fqﬁvgﬂ)'bG qﬁ %) G(% Qu)v

= - - - ST (5.5)
where G'G(Q»%J o q,-q,'fﬁ‘(qu Q.‘) and _a\qu" .in accordance with
Lemma 1. B
From (5.1) and (5.5) we have

qm-q.;-G‘ «'G{gL-qL)= 9 +(1-G6)(g1 - 3:). (5.6)
The inequality o T T
Hu %3‘595%“%9 °: (5.7)

is proved entirely in the same way as the . inequality (2.16) (taking
into account the fact_that @(m”q )= 0) Consequently, we obtain

190 - 960 =192 - 94+ (1-GLG)(qr -85 + G0 -4ENI<
41qz - e.mm:‘ca(nq‘ G+ 12-g)¢, w.(ubo)}lq. q,a
from (5.4), (5.6) and (5.7). Let} p-5-’~d (],a_) then by (5.4), B<1.
Hence, for any terms of the sequence {q; }A, the inequality (5.3) is
valid, Q. E. D. o
e /23

It is easy to see that in linear problems (i, e., if the matrix
A in (1.4), and , therefore, according to (2.7), the matrix G also,

17



does not depend on g, the procedures (1.6) and (5.1) coincide.

We shall prove one more theorem about the convergence of the

procedure (5.1).

Theorem 4. Suppose that the conditions of Theorem 2 and the

following conditions also are satisfied:

1) all the terms of the sequence\{@&}:constructed according to
(5.1) belong to the neighborhood 2° defined in (2.6) and (2.1);
2) for each term*q’of the sequence‘q;?and for the vector

|9z~ 9‘"(G“+H“)-"3J (5.8)

where'GK/and qm’are determined by (5.2) and\H“ (Q& Q,x)/ ‘the inequality

U% q:“dxﬂ% o, 0<d, 41—% |
e e o (5.9)
is satisfied, where[qa is the limit of the procedure (1.6) or (4.3),
aB&@y@JAquJ) (the function 8§(x,y) is defined in Section 3), €>0

is an arbitrarily small quantity, the same for all K = O,Ia

Then the procedure (5.1) converges tojdd.

prot:
From (5.8)
B G
From (5.1) together with (5.10) we obtain
;si‘..éQ'.-GL*(GL+H‘K)(QL-Q'1)=QZ-GL'fHL(cL-éi)». (5.11)

Hence from (3.1) and (5.9)

'qmoz Qua nq: q, Gl’ ( Q,YQ,W_\
/4iga-g A+ AL HA (fe.- Qulg:- q,i‘}s 448, (w‘)] lgo.l

(5.12)

18
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Let g-sup[dwb“(um)]l ; by (5.9), [B4-E<d.. Hence, for any terns
of the sequence {q} the inequality (5.3) holds, Q. E. D.

Note 1. If the center of the neighborhoods 9 and Q” is the
vector Qo (i.e., in (2.1),\§£i§1), then to satisfy the condition 1)
of Theorem 49 it-ig sufficient to satisfy the inequality

¢ .
la.- ?"! _.,_f (5.13)
where Mg;and w are determined by (2.1) and (2.2). In particular,
whenjy = 2 condition 1) is always satisfied, since according to
Theorem, - q,eCD

To prove this assertion, set K = O in (5.11). Slnce‘qo Q, Cj;,
then fOP\GJ andIH° conditions 3) and 4) of Theorem 1 and (3.1) and
(3.2), and for,@o/(determlned by (5.8)), condition 2) of Theorem 4
are satisfied. Hence, for,qL the inequality (5.12) is satisfied.
Taking into consideration the inequality da+5 (i+dn<)(1 [(K a0 1°°"),

flq;—qoﬂ 19.-Qul+1G.- Gk < 2190m %R<Jw.,

we obtain

from (5.12) and (5.13). Consequentlng‘egl' By analogous reason-
ing for K = 1,2....it follows that alllg’e Q', Q. E. D. '

Note 2. Theorem 4 is also valid of instead of conditions 1) and
2) of Theorem 1, only the existence of a Solutlon/q.€C2 (and even
Qaég? ) of equation (4. 1) is required. However, it must be kept in
mind that, in this case, the inequalities (3.13) cannot be satisfied
and nothlng can be said about the closeness of the solutlonqu and q“

qu

Note that the results of Theorems 3 and U4 are applicable to the
general case of the solution for a system of equations represented
in the form (4.1).

~N
u

6. The properties of the estimate obtained.

Let us con81der the propertles of the estlmate q, obtalned as

_ o 19



the limit of the procedure (1.6) or as the solution of equation (4.1).
Here we shall assume that in all the cases considered below the con-
ditions of Theorems 1 and 2 are satisfied.

l. The algorithm for estimation with whose help the estimate
i®% 1s computed, is single-valued and unbiased (i.e., the estimate\qt‘
is unique and in the absence of measurement errors it coincides with

Qe [1D).

The singlevaluedness of the algorithm was proved in Theorem I,
and the absence of bias follows from the lack of bias of the estimate
E@; [1]: In the absence of measurement errors in (2.10), A = O and
consequently, @,;%xuég .

2. If the functions being measured are linearly dependent on
d, and the measurement errors are not biased, then the estimate j@u

is unbiased when the weight matrix is fixed (i.e., if the matrix

;p;;p(q,)is fixed, then ?M(E},}:qs_’ P )

‘This property follows from the abseﬁce of bias in the MLS esti-
mate with a constant weight matrix in linear problems [1]. Conse-
quently, any estimate:@u determined by (1.6) is unbiased and a limit

estimate is also not biased.

3. If the estimate '@w is consistent and effective [1], then
the estimate %' is also consistent and converges with respect to
probability to the effective estimate.

This property follows from (210), since if the estimate &J is
consistent, then the quantity”A?in (2.10) converges with respect to

‘probability:to zero.

It is easy to see that all the properties considered are also
valid for the estimates<Q;idetermined by (1.6).
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The limit properties of the estimate given béibw are proved—;;_
(2] for the case of a diagonal weight matrix and do not require that
condition 5) of Theorem 1 be satisfied (however, the existence of the
derivatives with respect to q of the measured funct@0n5_pp’pé and
including the third order and of the weight matrix elements is
required) : ‘

1) the procedure (1.6) converges with respect to probability;

2) . the estimatefd{gobtained as the 1limit of the procedure (1.6)
has an asymptoticly né;ﬁél distribution;

3) the estimatéﬂ?is consistent in the sense of convergence almost

certainly.

Moreover, in [2] it is shown that the gstimate obtained by mini-
mization with respect to g of the function ?(q,q) defined by (1.3) is
not consistent even in the case of a diagonal weight matrix. 1In the
first approximation this estimate coincides with the estimate obtained
by the method of méximum probability [1] with normally distributed
measurement errors. In fact, in view of (1.3) and the relation
ﬁ*ﬂiU%ﬂ, this method reduces to finding the maximum of the function

'L(3) - det[Plg)] exp[ - 9(4,4)] . (6.1)
If we neglect the fact that the determinant of the weight matrix

depends on q, then maximization in (6.1) reduces to minimizing the

function ¥(q,q).

/27

7. An illustrative example

Suppose that q is a scalar (i.e., M = 1) and the functions to_be
megsured are linear with respect to q. In this case we may assume
that the quantity q itself is measured, i.e., the functions to be

measured are reduced to the form
‘di=q (i=0n).
l q " . (701)
by elementary transfermations., It will be assumed that the measure-

ment errors are not biased and not correlated among themselves and

their mean square deviations (m.s.d.) are linearly dependent mqrq
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(cf. Section 1):

\6‘ 6,('0'5 (9 q) |6 EX X3 (‘i.'u n) (7.2)

The smallness of the factorxﬁﬁ‘ in (7.2) is illustrated by the follow-
ing example: if distance is being measured, then as distance increases,
let us say, per 1 km the error in the measurements increases substan-
tially less than by 1 km. It is to be expected that in this exampile

€ does not exceed a magnitude on the order of between ILO_Ll and 10-6.°

From (1.4) and (7.1) we have:
f.9)- 3= (7.3)

where »igizg;“q“-j are the measurement errors.;:_fE__ro'rﬁ‘(&?) , .(7.3) and
(7.2) we obtain

n i' "
( )=- :LTE? ' 49)'72:{:'.[ 9 q.)]—-s..
N . v (7.4)
Obviously, if for all \ieCD' 0;#0(i=f,A) , then conditions 3) and 1)
of Theorem 1 are satisfied. The msd of the errors Ei equal‘ﬁh?; we

shall assume that

;ng!E35£ (i-fn) . (7.5)

~
[ee]

Then follows from (7.4), (7.2), (7.5) /28

\lG"HI 4225'6“‘(36.;414 -4.) ﬁ—ﬁ \.
\“ N \%2(‘38 mrgnx —gf +ig—_g.!@ax§:]) &

(7.6)
Assume  and Q7 as nelghborhoods of the vector'q,(l e., in (2.1),

q,'Qu . Note that in (2.1), J ——1 (i.e., 9=0Q°), since for M = 1
all three norms in (2.2) coincide. It is easy to see than when

BQ“vullQ 9“1 W, , the right side of the inequality (7.6) assumes
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the greatest value in Q. Set the quantity Soequal to this maximum;
we obtain from (7.6) and (7.2)

-

: 60 oo il )
1@ |<2(3¢p ZZ“L’S 6,, 16l *L"&,’S o) |

APE I T

T T (7.7)
where
6 1
s, .2
| Wh" “’u (7.8)
From (7.7) o
/(Jc 59-668 ‘
2467 (7.9)
Tt is evident from (7.7) that if w<e and €<« 1, then condition 5) of

_ 3
Theorem 1 is satisfied (i.e., 60<1). Here, according to (7.2) and

(7.8)

'maxﬁ/mmﬁ ——g—’ <2 N

i.,e., the msd of the errors in the measurements can vary less than by
a factor of 2.

Let/9.€Qand € « @ (the latter condition is satisfied for suffi-

ciently large 60 according to (7.2)). Let us show that in this case
conditions 1) and 2) of Theorem 1 are satisfied. /29

We shall assume that

IQ q.l 4 3JD(4“

The deviation occurring in (7.10) with respect to the error in deter-

(7.10)

mining the parameter.qu by MLS is calculated by means of the formula

(1]

D(q,,)-\G (q.)l (7.11)

From (7.4), (7.2) and (7.8) we obtain

23



- ' ?Al { Bl _ ¢ 12
towl-g&bEle)> bral(@) . T
and from (7.10)-(7.12)

Therefore, when € << § , we have A «<uw andq,uGQ accordlng to (7.9)

Y e

and (7.13). ulnce\q“qbeQ , condition 1) of Lheoréml is satisfied. |

We shall show by induction with respect to K 'that condition 2)
of Theorem 1 is satisfied when‘q,G.Q and € <<6 . Since q q° , it
follows that q,eQ Assume ‘that for some K = o 1, ..,tq,egg
Since the problem under consideration is linear, then, as remarked in
Section 5, the procedures (1.6) and (5.1) coincide and, according to
(5.1), (7.3) and (7.4) |

8- q. Q °1~ 7| n‘h) ygmGQ) (7.14)

where 0" ’=6°;+5,g(qﬂ-q."j . We shall assume that

B30 ;a5

From (7.14) follows:

...) M q)] }i ( ) G2 (4. (7.16)

We obtain from (7.2), (7.8), (7.9) and (7.12)

™~
o

/?:31"‘(6 P i - (E22 i é)’.lo«ibf;
'{G‘Q’)l é:im zé:(a) (L_‘A“z | .
B \(5‘&5?:—53),0(@’ (72? L)

- — A (7.17)
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Then from (7.15)-(7.17) we find that

;IQ-u ~§sl <3(1+8,)¢5 .

L, - (7.18)
and whenLﬁé\I‘*&#ég),/ so that according to (7.9), EQ‘S',‘EQJ Q.E.D.

—_

Let us now find the quantity\d; which occurs in the inequality
(3.13). Set

Wx'y) 23£s;x .

—— R R

(7.19)

where X and Y are determined by (3.3) when \q‘ q. q., .. According to

(7.6), (7.2) and (7.8),“7@&'—“—55()(‘,5/)). Since the function (7.19) is
monotonically increasing, it follows from (3.5) and (3.6) that

w(u) = 8(u + A, u + A), and the equation (3.9) assumes the form

3£s+A+u
4" 2As -6es-3u-34

and fﬁ; is the greatest solution of this equation when w(u) < 60
Taking (7.2) into account we obtain

_\,um (3&5+A)£12£A<358’
T (7.20)
with accuracy with respect to small € up to the second ordern.,. It is
clear from (3.13) and (7.20) that when ¢ is sufficiently small, the
quantity q, practically coincides with Q“ , and the estimate of /31

[?loseness q; and q. for the quantity 6 close to unity is better by

almost a factor of two than the analogous estimate for K = o,1, .)
according to (3.13) and (7.13).

In conclusion, the author expresses appreciation to G. A. Mersov
for valuable comments and advice regarding the present paper.

25



’ /32
REFERENCES

---Yacberg, P. Ye., Opredeleniye dvizheniya po rezul'tatam
izmeriniy (Determination of Motion from the Results of
Measurements). Moscow, "Nauka", 1976.

Kantorovich, L. V., Akilov, G. P., Funktsional'nyy analiz
(Functional Analysis). Moscow, "Nauka", 1977.

Bakhvalov, N. S., Chislennyye metody (Numerical Methods),
v. 1, Moscow, "Nauka", 1973.

Berezin, I. S., Didkov, N. P., Metody vychisleniy
(Computational Methods), v. 1. Moscow, "Nauka'", 1966.

26





