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ANNOTATION

The problem considered is that of obtaining an estimate of a

vector involving the parameters for the state of a physical system

when the weight matrix in the method of least squares is a function

of this vector. An iterative procedure is proposed for calculating

the desired estimate. We obtain conditions for the existence and

uniqueness of the limit of this procedure, and a domain is found

which contains the limit estimate. We also propose a second method

for calculating the desired estimate which reduces to the solution

of a system of algebraic equations. We consider the question of

applying Newton's method of tangents to solving the given system

of equations and obtain conditions for the convergence of the modi-

fied Newton's method. Certain properties of the estimate obtained

are presented together with examples.
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1. Statement' of the p'r'obTem

We shall consider the problem of determining the state parameters

of some physical system from the results of measurements (for example,

the problem of determining the trajectory parameters for a space /3*

vehicle from the trajectory measurements). Letj^-'be the If™, -dimen-

sional vector of the parameters for the state of the system which

are to be determined, ^« , its actual value , c/fe), the H\ -dimensional

vector of the functions being measured, >J the vector of the measure-

ments (i.e., the measured value of the vector d(<|B) ). We shall assume

that the function d'(<), is given.

The given problem of determining the vector\<Ji.,will be solved for

the case when the precision of the measurements is a function of,̂ -.

Such a function can stem from the following causes.

1. The precision of the measurements can depend on the magni-

tude of the measured function. For example, if distance is measured

in terms of the travel time of a signal, then the precision of the

measurements can deteriorate with an increase in distance, due to the

weakness of the reflected signal, due to an imprecise value for the

propagation velocity of the signal, etc. Taking into account the

functiond(q), the precision of the measurements in the case under

consideration is a function of \qi .

2. The components of the vector \fl can also be included in the

functional relationship of the accuracy of measurements to the /J\_

sources of errors. For example, if moments of time are measured in

which some object traverses the field of view of an optical sensor,

then the measurement error is proportional to the time interval during

which the object crosses the entire field of view of the sensor, but

this interval depends on the velocity of the object, the distance to

it, etc.

3. When interfering parameters are present (i.e., parameters

of the model used which are not included in the number of parameters

being determined, and are. assumed equal to a priori values) the

^Numbers in margin indicate foreign pagination".
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measurement error vector in the linear approximation.' is calculated

by the formula [1]

where ?„ is the instrument errors of the measurement, d is the vec-

tor of the errors in the knowledge of the interfering parameters, and

B-dd/dot . In the general case, the matrix '8 > and, therefore, the

errors in the measurement depend on ,», . In the problem of statistical

regression for the controlled variables which contain the errors,

there is an analogous dependence of the measurement errors on the

vector of the parameters to be measured [2],

In the given case the covariant matrix \"D' of the measurement

errors is also a function of the vector ty . Henceforth, we shall

assume that the function D(<j) is known.

/.
The basic method for determining the vector ty is the method of

least squares (MLS). According to this method, the estimate § of

the vector^, is found from the condition for the quadratic form*

where ',p is the weight matrix of the MLS. If the function !«»($} (or is

linearized in some neighborhood of the vector ft« ), then the weight

matrix which ensures the minimum dispersion for the error in deter- '
**•>

mining any parameter linear with respect to'(j(is the matrix /5

according to the Gauss-Markov theorem. In the given nonlinear pro-

blem we shall assume that the weight matric (1.2) is also in some

sense the best matrix. However, since '^« is unknown, the weight

matrix will be computed by the formula

where'qf is some value of the vector 'q. In the general case'q can be

distinguished from the value of the vector a used to compute the func-

* In (1.1) and hereafter the symbol "T" denotes the transpose of a
vector and a matrix.



tions being measured. Then the MLS quadratic form (1.1) and the

system of normal MLS equations can be written in the form

(1.3)

:.: (1-4)

where ifl(q) = dd/̂ »]. According to-the assumption that the weight matrix

(1.2) is optimum, the estimate

(1.5)
is the best MLS estimate. Since\q,«iis unknown, it is necessary to

find the best approximation to the estimate (1.5). As criteria for

the closeness of an estimate \ty to '^ or^a], we shall assume the

quantitiesj!4~$««/ and ̂"̂ H!; . When selecting a vector norm it must be

kept in mind that the components of !ty have different dimensions.

Henceforth, we shall assume that the vector \<J| is reduced to dimen-

sionless form as follows (likewise for'«£():

where î p' is the input vector of the parameters to be determined whose

components are written in the given units of the dimensions, j5i is a/6

constant diagonal matrix with positive elements which can be selected

quite arbitrarily. The elements of '$1 can be, e.g., those required

for precision in determining the components of the vector \C^r> . The

matrix/$• must be identical for all the vectors ty; and j^f . Any of the

norms used can be applied to the dimensionless vector <j, thus obtained.

Let fy» be an a priori given value of the vector I (^ which belongs

to a sufficiently small neighborhood of the vector \<H*\. We shall

assume that the value !P(fl0) of the weight matrix makes it possible to

^orgmmip^q,) such that vli-jk^ho-fyfr . Since the vector^ is

closer to <J* than^o., we may expect that the weight matrix p($i). will

permit further improvement in the estimate of the vector-';^



Continuing to reason analogously, we arrive at the recursion proce^

dure*

In Sections 2 and 3 we shall formulate the conditions under which the

procedure (1.6) converges to a unique estimate, sufficiently close to

the value (1.5). Note that all the quantities which enter into the

conditions of the theorems to be proved below are, generally speak-

ing, random. Therefore, the conditions of the theorems must be consi-

dered either for some concrete sample, or as realizable with a certain

probability.

2.. The conditions for convergence of the, procedure /7

Le t ' t j t ! be a fixed vector. We shall consider two neighborhoods

of the vector i<j ,« , :

(2.1)

where'0 <•w ^ °° •/ and

when ' j" .HUm'^*'*l is the norm used

when K! ~ l^fy * ( is the norm used ( 2 . 2 )

2 ,when jjo]| *• ̂ lo.j is the norm used

(here ^.\ is the \\ the component of _the vector 1 { ^)« Let us also

consider t h e matrices' " ^ n * i - i a i l ^ . ^ m / , 0 < i (i=i>n) " , ( 2 - 3 )
'^j:' denotes the "identity matrix. The folloying'ieinma is needed to prove

the theorem given below.

Lemma 1. For any4t,q»^Q(<Ja) and any matrix 0i , defined by ( 2 . 3 ) ,

the vector , „ ^ Q' .
' f t ^q .^e^Oj -q . )
. - - n ^' ( 2 . 4 )

belongs to the neighborhood"Q'(<jaj|.

Proof: Let us consider the norm J$fi= !*]?,£ '^ii- DePote by q^j , $ji
l^ti the I th components of the vectors ^0 > 5i > <(?*1 • Prom ( 2 . 4 ) ,

(2 .3) for all i=/7m

* An: ̂ analogous procedure is considered in [2].



q

Hence W-. ,

Next, consider the norm Prom

From the definition of the matrix GI, If 1*^8*2 !• ^et us introduce

the notation ^ « « - « , l^" » 'wV- .-Since

j > it f°llows that j|x,|<CJj and \ (^ 1 4 a) \ "•''' From this and
(2 .5 ) we obtain _ ____ . . - - ._

have:

Finally, consider the norm j|(j=Ztyi j . From (2.4) and (2.3) we
{•! •

Q.E.D.

Denote by ft, ft' the neighborhoods (2.1) whenfq<rQc; or <
i.e. ,

Also let

where', ̂ is defined by (1.5). Along with the vectors

shall also use the composite vectors

(. <- » D y

(2.7)

(2.8f
we



[Vi
.5J '
" - " " (2.9)

where the estimates f̂ K|, i^rt^i are determined by (1.6). Then the func-

tions introduced above can be written in the form;ip(2), !f(z), ,|G(2/ >

land !H(z).l

Theorem 1. Suppose that the following conditions are satisfied:

1) I
2) all the terms of the' sequence;{<|«} constructed according

to (1.6) belong to Q,.

Moreover, assume that for any /Z£Q'xQv the following conditions are

satisfied:

3) the derivatives[QJ2), andH(z)exist ;

4) the matrix 1G"'(2) exists;

5 ) i

Then the following statements are valid:

a) for any term |B. of the sequence «, the quantity

is uniquely determined in Q by (1.6) (i.e . ,lminif(£l,4,«)jis unique in
A , '-*.-' --- ' -

the estimate \tyT is also unique in tt;

b) the limit ̂ $€C5 of the sequence {$„} exists , <l» is a

solution of the equation /f(<J,̂ )eO~ , and this solution is unique in
c) the estimate ($ satisfies the inequality

- - - - - - (2.10)

where A. is defined by (2.8).

Proof ; /10.

a) assume that for some (LeQ there exist '^* ^ cQ. It

follows from (1.4) and (1.6) that f(4l«t$.J-"Wfei/'fi- 0. • There exists

a vector -"''^'<>~ » where the matrix 0! is defined by (2.3)



Lemma 1, so that

By condition 4) of the theorem, the matrix G is nonsingular every

where in ft'; hence <|«1H =

The uniqueness of the estimate •(£),; is proved similarly.

b) by virtue of (1.4), (1.6) and taking into account the

notation (2.9) >-f(z«)-J(zM)~ ° • Hence it is possible to write the
equality _

- •- -; -•• ----- ------ . (2.11)
where 1Z--Z«.i-»-9J(z!t-E?.i) , 'the matrix 0^ is "defined" by (2.3) and

!-€Q»xQ', . according to Lemma 1. Let us introduce the notation

!̂ «,t!S?4«"'̂ l̂ 1 » -where j^ and \fyt are terms of the sequence ;{̂ B}. Then
by (2.11) and conditions 4 and 5) of the theorem we obtain

Prom this and the triangle inequality we obtain for any K, U = 0, 1,

/• A *** X1— A 'o ^ t . e » ,;N-; Al-°i?«- °~A|'° "T^ 1-60 '
(2.12)

According to condition 2) of the theorem, iA J 0^2co and from (2.12)

A , , 2CO&?
A"f^ * t-<50 '

• ' 711
Thus the conditions of the Cauchy criterion for the convergence of

the sequence {§*} , formed in accordance jwith (1.6), are satisfied
' •- - - r- , \ \ ' ~-^ _ _ ____ ___ _

[3]: for any e > 0 there exists'k0 ^j fci * * ' / & & < . } the bracket s~"denotT

here the integral part of a number) such that for any K > K , ' t>01

the inequality , 8 « ? " " ^ * - is satisfied. Consequently, Etm'Qx =

exists and Q*€Q , since ^<;£Q (K = 0,1,...). Since

all K,



Assume that there exist !q«,C>« ̂ O such thatfo$*<£ . and if(z'J = f ( Z * ) * ,

where ;2 .1=!^f j (i = 1,2). By analogy with (2.11) we wFite :
*

- (2a3)

where \_£«2|+0a(2?-2i)^; and ! ZeQ'x£>'. Prom (2.13) and condition

5) of the theorem^ - _

This contradiction proves that the solution of the equation

is unique in fi.

c) in accordance with (1.4), (1.5) , 17(̂ 14,$ w/*0 and by analogy

with (2.11) and (2.13) we may write

,) - f U j ̂W(q.- «̂ _H(2Xq,-lu - f ( 2 >
where

and according to Lemma 1, Z e fl"* x fi^. From (2.14) and conditions

4) and 5) of the theorem

Xqr 4̂ --aJI<4(M-l̂  t-?J)V- ,
(2.15)

Hence, taking into account (2.8), the first of the inequalities (2.10)

follows. The second inequality follows from the first: /12

Q.E.D.
713

Corollary 1. If the conditions of Theorem 1 are satisfied, then

for any ̂ ^fiQj the equality ',f(qa ̂ J-Q
 is a necessary and sufficient

condition for the validity of the equation

Necessity follows from (1.4) and- sufficiency from the uniqueness

of the solution of the equation fo)1*® which is proved in a manner

analogous to the proof of assertion a) of Theorem 1.



Coronary-2. The rate of convergence of the sequence 0$«};,

constructed in accordance with the procedure (1.6) is estimated by

the inequalities

!̂!, (2.16)

For the proof of (2.16) we write by analogy with (2.14)

, _'':GW(i-<W+ ;H(2')(i:l-̂ ) - o ,
where '1>E,4- 9a(zfĉ -24) . Hence, and also from condition 5) of Theorem

1, the inequalities (2.16) follow. The inequality (2.17) is an

immediate consequence of (2.12) when £ -» °°^ .

Note 1. If the derivatives (2.7')' are continuous in £2% then

according to a theorem about implicit functions and condition 4) of

Theorem 1, the relation ̂ ((̂ ^̂ Ô niquely defines for anyg,^€Q':a

continuously different! able function

« (2.18)
It follows from condition 5) of Theorem 1 that the mapping (2.18) is

compact for all ,q,,̂ £ Q and Theorem 1 can be proved with the help of

the fixed point principle [3],

Note 2. In the general case the limit <<J* of the procedure (1.6)

is not the minimum of the sequence '{f̂ -̂ Jl}. In fact, at some stage

of the procedure, it may turn out that',̂ tt"V'' Then according to (1.5)

and (1.6), and due to the uniqueness of the vectors '̂ Kn and

the equalities ; e t , = and fi«n-<JM
mO are valid, whereas in the general

case, R<lff-4w!='-'-fT1ll$K.~0»j \ is n°t zero.
' * ft-* 0O

Note 3. In real problems there is interest in the case A « to.

le contrary case, <

good in the sense that

In the contrary case, any estimate |<3 from fi, even including ,^ = (J0 is

Note that in real problems involving the determination of orbits,

the conditions l)-4) of Theorem 1 are usually satisfied -and condition



5) is basic. Satisfiability of this condition is illustrated by an

example considered in Section 7.

3. Improvement o'f the' estimate' obtained

Prom (1.4) and ( 2 . 7 ) it is easily seen that the matrix H is a

linear function of the vector of the residualff-df^Jwhereas the matrix G

does not depend on this vector. If the estimate (1.5) is the best MLS

estimate, then the residual, computed from this estimate is minimum

in the mean. Therefore, it may turn out that the quantity (GJ'H|| ,

computed in -a sufficiently small neighborhood of the vectors ^ and

'Qu will be substantially smaller than the quantity V6a£ maxI)C"'Hfj,.
-_ -**- — - '

In this case a more accurate estimate of the normjjG''Hjj may permit a :

decrease in the neighborhood of the vectors ,'$,,,and/(£„ which contains

the limit \Qt of the procedure (1;6), i.e., the right side of the

inequality (2.10) is reduced. Moreover, note that & is. a nondecreas-

ing function of w !'in_j2.'l) (in fact, when w increases, the quantity
[""" " L~ d^ ~'l_J H
\nTflXlijrJ1 Ij can only increase). Since the estimates (2.10) are accept-

able only when 6 is sufficiently small (say, not more than 1/2), then

this imposes a restriction on w. Therefore, estimates of the closeness
1 f* i A ~ I ~~~~ *

of the quantity IH*-, to §* and ^B- independent of 6 make it possible

to widen the neighborhoods n and fi"*. Other estimates will be obtained

below.

Suppose that instead of condition 5) of Theorem 1, the following

condition is satisfied: for any ta,<

(3.D

where

and

Here !9i' and ^«. are vectors. If condition 5) of -.Theorem 1 is satis-

fied, a function 6(x,y), which satisfies (3.2), can be constructed as

follows:

10



Consider the function

-„,(«/- max
where

u. ) = i:* uf A<> v ; ' ( 3.6
(3.7)

A is determined by (2.8).

Note that when choosing the vect-ors $4 and $1 in (3-3)_it is

possible to make use of one of the following criteria:

- the precision of the estimate (3.1);

- the structural simplicity of the function 6(x,y) (for

example, the simplicity with which the maximum in (3.̂ 0 is calculated);

— •• - the computational simplicity of the function w(u) which will

be needed subsequently (for example, if such '^ and '$4 can be chosen

that 6(x,y) is a monotonically increasing function of both variables,

then according to (3.5) and (3.6) ,

Consider the sequence {U }, formed in accordance with the equal-

{3<8)
and the equation _ _

(3.9)
It is clear from (3-5) and (3.2) that any solution ,U4 of equation

(3.9) satisfies the inequality

'CUUa6F£d7 ' (3.10)

Lemma 2.. Assume that the function 6(-x,y) satisfies the inequal-

ities (3.2) for any <Jp<f€Q'« Then the following assertions are valid:

a)
- JL

the sequence Xuj»l » formed in accordance with ( 3 - 8 ) , has a

11



limit W* which is the greatest solution of equation (3.9);

b) for any u% the inequality

~' 716
(3.11)

is satisfied, as is the inequality \U'*6f* .

Proof ;

a) It is easy to see that o>(u) is a nondecreasing function.

Indeed, Tor any uf , u"'-such that u'<;>.u", it follows from (3.6) that

W(ul)CW(u") and according to (3.5), u(u' )*u(u").

Consider the sequence {U, }. From (3.5) and (3.2) we find that
1C _

<o(U )^6 . Hence from (3.8) 'Uj6lV . Therefore, since the function

is monotone ,. a) (U.i )£(D(U ), and from (3.8), 1)2̂  Ui. Reasoning

analogously, we find that'jû iU,, ( K • 0,I8...),It is clear from (3.8)

(3.5) and (3.2) that every U, £0.. Consequently, {U, } is a monotoni-

cally decreasing sequence which is bounded below, and has a limit ,M*

which satisfies the inequalities (3.10). Clearly, ̂ #__is a solution

of equation (3.9). Assume that there is a solution H* of this equa-

tion such that |f»>lU . Note that' Ug *tfx for all U* determined by (3.8),

since, if for any K^Ui-U*, then U, is a solution of equation (3.9)-;

and, according to (3.8),Uo«U« »tWw.,.»U«. , contrary to hypothesis..

On the other hand, for y^ , as for all solutions of equation .(3. 9) ,

the inequalities (3.10) hold. Consequently, by hypothesis, Mtf<ttJ<U«,

and there exist terms ut and ̂ w of the sequence {w«J , ,such that

;,Ufu<ui< Ui . "Hence, and also from (3.8) and the monot.onicity of the

function u(u) , we.' find '

717
The solution obtained contradicts the fact that ;U«i is a solution of

of equation (3.9). Hence Ua. is the largest solution of that equation.

b) Suppose that 3^ is the largest solution of equation^ (3.9) .

Assume that some u'>l/$ satisfies the inequality (3.11). Construct a

sequence {U^ in accordance with the equalities

12



, (3.12)

Hence, in view of (3.11), it is clear that ji//£l/J . Consequently,

'tstfUf/^Wfty > and from (3.12), ,l4j>Z/4 . Continuing this line of rea
soning, we obtain u'f^ U* ( K « 0,1,...) . Here, since i#u)<8»<,' for all

, the inequality ',«£* ••. V* is satisfied. Consequently,
i

- --.i - :
is a monotonically increasing sequence which is bounded above, and

this sequence has a limitll^ which is a solution of the equation ( 3 . 9 ) ,

and \ U a & u ' > U < t . But, according to this condition -W« is the largest

solution of equation (3 .9 ) . This contradiction proves assertion b)

of the lemma, and the lemma is proved.

Theorem 2. Suppose that conditions l)-4) of Theorem 1 are

satisfied, and for any ̂ ^gQ" so are the conditions (3.1) and ( 3 . 2 ) .

Then assertions a) and b) of Theorem ,1 hold and

(3.13) '
where :W». is the limit of the sequence ;{&«} formed according to (3.8),

and is the largest solution of equation (3.9).

Proof :

The validity of assertions a) and b) of Theorem 1 are obvious,

since from (3.1) and (3.2) condition 5) of Theorem 1 follows.

Consider the equality (2.14). The vectors !ty' and ' , components

of the vector Z in (2.14), satisfy the inequalities ;%-$j47K*'*M •
<J'>J >. Hence, making use of the triangle inequality,

taking account of the notations (3.3) , (3 .7) , (2 .8) and
718

we obtain:

„ u 4 U •#• A+A* . f o -\ c ~\9 <l _ * • k j . J - D ;

13



Prom (3.D, (3.5), (3.6), (3.15') follows

Prom (2.14) and (3.16), taking into account (2.8) and (3.14), we ob-

tain

similar to (2.15). Hence, it follows that U1 satisfies (3.11).

According to Lemma 2,\U'_4£U*\ , and hence, by virtue of (3.14), the

inequalities (3.13) follow. Q. E. D.

The results of Theorem 2 make it possible to reduce substantially

the domain in which the estimate '9* lies in case its magnitude is

close to unity and W(ut)<&&9 « This is graphically illustrated in

the example considered in Section 7.

4. The' second method for obtaining an estimate /1 9

In computational terms the procedure (1.6) is laborious, since

at each step an ordinary MLS problem must be solved (with a constant

weight matrix). Therefore, we shall make use of the 'fact' that if the

conditions of Theorems 1 and 2- are satisfied, then the procedure (1.6)

is equivalent to finding a solution to the equation

;ffo*)-°~ (4.D
(the equivalence follows from assertion b) of Theorem 1). From a

computing standpoint, the procedure involved in solving equation (4.1)

may turn out to be simpler than the procedure (1.6), since it allows

us to avoid inserting iterative processes.

Let us consider solving equation (4.1) by Newton's method of

tangents. According to this method, given an initial approximation

CJ> , a solution (qj, is found as the limit of the sequence formed in

accordance with the recursion procedure [3-5]

(4.2)

14



From (2.7) we have

and the procedure (4.2) assumes the form

•**t"<U-(C"+HJ"lf* (K»0,lf..J,
- - - - V H • .3 J

where

Gv-G(̂ ,̂ t HR.H(qB̂ .), fc- fto.,9J.
we shall show that the inverse matrix in (4.3) exists.

Lemma 3. If the conditions of Theorem 1 are satisfied, then

for any Z;efl'x$r, [G(Z)+H(Z)']~1 exists.

Proof:

720

Let us show that the matrix G"1(G+H)=I+G~1H is nonsingular;

then since the matrix G~J is nonsingular, we shall have proved the

nonsingularity of the matrix G+H. Suppose 'ty is any vector.

According to condition;™-5) of Theorem 1, we have

Since <$O<1, it .follows from (4.4) that the equation (I+G~1H)q=0

has only a zero solution. Consequently, the matrix I+G~l-H, and

with it the .matrix. G+H also, is nonsingular, Q. E. D.

We shall assume that the remaining conditions for the conver-

gence of Newton's method are satisfied*. Then the procedure (4.3)

converges to the same limit *&<* as the procedure (1.6).

5. Simplification 'of the computing procedure

The procedure (4.3), along with previous procedures, also has

defects in comparison with the procedure (1.6), including the necess-

* Various conditions for the convergence of Newton's method are consi-
dered in [3-5]. For example, a sufficient condition for convergence
is the existence of a bounded second derivative of the function [4].

15



ity of computing the matrix H at each iteration (it is easy to see

that when minimizing the function <$>(Q,fyi) with respect to q by Newton's

method it is not necessary to compute this matrix). Therefore, let

us consider the conditions under which the procedure
721

where

_. - (5.2)
i ,

converges to the same limit ',̂ <n as the procedures (1.6) and (4.3).

Note that (5.1) is a modification not only of the procedure (4.3),

but also the procedure (1.6) in the case when the minima in (1.6) are

found by Newton's method. Indeed, if in this case the procedure (1.6)

is changed as follows: each minimum is not calculated individually

after fixing the weight matrix:, but at each iteration of Newton's

method the value of the vector q obtained in the preceeding interation

is substituted into the weight matrix, then we arrive at procedure (5.1).

In order for the procedure (5.1) to converge to ,C^ , it is

sufficient for any terms of the sequence{q'R],determined by (5.1) to

satisfy the inequality

(5.3)

We shall formulate a theorem in which the convergence of the procedure

.(5.1) is proved under a condition of quite weak dependence of the

matrix to! on..q..'

Theorem 3. Suppose that the conditions of Theorem 1 are satis-

fied together with the following conditions:

1) all terms of the sequence (j constructed according to (5.1)

belong to the neighborhood Q 'determined in (2 .6 ) . and ( 2 . 1 ) ; '

2) for each term ^ of the sequence {<^xT there exists such a vec-

tor q*€Qthat {(<j:,<3ij^0 , and for all qs^l*8»U«" (li), where the

^matrix 9 is" "determined" by (2 .5) , the • inequality

16



(5.4)

is satisfied

where'Gi ^s determined by (5.2) and

of Theorem 1.

/22
determined by condition 5)

Then the procedure (5.1) converges to the same limit \$t> as pro-

cedure (1.6).

Proof :

As follows from the conditions of the theorem, for any term of

the sequence^ (j'jij-'the quantity |fn determined by (5.2) can be represented

in the form

where \G-6(Wi)_o JM
Lemma 1.

From (5.1) and (5.5) we have

, ,
(5« 5)

and '\gcQVin accordance with

The inequality

is proved entirely in the same way as the .inequality (2.16) (taking

into account the factact that T^iHjy _ ) . Cojiseq^uently, we obtain

-̂ i-ĥ W(̂ Gi"1G)(̂ 9.f 4*-<»i)i< "
from (5.4), (5.6) and (5.7). Let i' then by (5.4),

Hence, for any terms of the sequence {(Ĵ j , the inequality (5.3) is

valid, Q. E. D.

723
It is easy to see that in linear problems (i. e., if the matrix

A in (1.4), and , therefore, according to (2.7), the matrix G also,

17



does not depend on q, the procedures (1.6) and (5.1) coincide.

We shall prove one more theorem about the convergence of the

procedure (5.1).

Theorem 4. Suppose that the conditions of Theorem 2 and the

following conditions also are satisfied:

1) all the terms of the sequence l{cj.'x} constructed according to

(5.1) belong to the neighborhood ti' defined in (2.6) and (2.1);

2) for each termle^lof the sequence',{̂ ,and for the vector

(5-8)
where; GK land \|J are determined by (5.2) and\̂ =H(<̂ }G'j]» the inequality

(5.9)
is satisfied, where I CJ« is the limit of the procedure (1.6) or (4.3).

(the function 6(x,y) is defined in Section 3), e>0

is an arbitrarily small quantity, the same for all K = 0,Iv.

Then the procedure (5.1) converges to

'Proof:

Prom (5.8)

From (5.1) together with (5.10) we obtain -

fa* q-< - orfc:+Hi XqiYJ=«-cix h; -«j.: (5
Hence from (3.1) and (5.9)

(5.12

18



Let <̂ -Sup[al«f̂ (l̂ ]j| ; by (5.9), /^J-£<1' . Hence, for any terms

of the sequence jq^.the inequality (5.3) holds, Q. E. D.

Note 1. If the center of the neighborhoods fi and ft' is the

vector ,<lo (i.e., in (2.1), \$B̂ 5<> ), then to satisfy the condition 1)

of Theorem 4, it Ss sufficient to satisfy the inequality

(5.13)
where | ̂ y and w are determined by (2.1) and (2 .2 ) . In particular,

when^ = 2 condition 1) is always satisfied, since according to

Theorem, :4*£^; •

To prove this assertion, set K = 0 in (5.11). Since <?o = <3o6O/

then for IG,--and iHo conditions 3) and 4) of Theorem 1 and (3.1) and

( 3 . 2 ) , and for fall (determined by ( 5 . 8 ) ) , condition 2) of Theorem 4

are satisfied. Hence, f or ja'L the inequality (5.12) is satisfied.

Taking into consideration the inequality ;rfx-5-&n(lf ok) < [ [(K • 0,I,7IT)i
we obtain

,-o,K2ll^-< """

from (5.12) and (5.13). Consequently,I^^Q'. By analogous reason-

ing for K = 1,2....it follows that all'̂ Q̂', Q. E. D.

Note 2. Theorem 4 is also valid of instead of conditions 1) and

2) of Theorem 1, only the existence of a solution/9«^^; (and even

•fJ,€Q' ) of equation (4.1) is required. However, it must be kept in

mind that, in this case, the inequalities (3.13) cannot be satisfied

and nothing can be said about the closeness of the solution |n~ and

and ̂ »,.

Note that the results of Theorems 3 and 4 are applicable to the

general case of the solution for a system of equations represented

in the form (4.1).

725

6. The' properties of the' estimate bb'tained.

Let us consider the properties of the estimate ;^ obtained as

_
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the limit of the procedure (1.6) or as the solution of equation (4.1),

Here we shall assume that in all the cases considered below the con-

ditions of Theorems 1 and 2 are satisfied.

1. The algorithm for estimation with whose help the estimate

\ty\ is computed, is single-valued and unbiased (i.e., the estimate ^*,

is unique and in the absence of measurement errors it coincides with

V [i])-

The singlevaluedness of the algorithm was proved in Theorem I,

and the absence of bias follows from the lack of bias of the estimate

;(L [ll: In the absence of measurement errors in (2.10), A = 0 and

consequently, !$*7$K-$M' .

2. If the functions being measured are linearly dependent on

q, and the measurement errors are not biased, then the estimate '$$

is unbiased when the weight matrix is fixed (i.e., if the matrix

iR=Pfq*)is fixed, then M(̂ )̂ K' ;. ).

•This property follows from the absence of bias in the MLS esti-

mate with a constant wejlght matrix in linear problems [1], Conse-

quently, any estimate '^ determined by (1.6) is unbiased and a limit

estimate is also not biased.

3. If the estimate %,i is consistent and effective [1], then

the estimate *?*' is also consistent and converges with respect to

probability to the effective estimate.

A •This property follows from (2.10), since if the estimate H.H is

consistent, then the quantity""AMin (2.10) converges with respect to

'.probabiTity\to zero.

It is easy to see that all the properties considered are also

valid for the estimates Q̂ .' determined by (1.6).

20
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The limit properties of the estimate given be_lbw are proved in

[2] for the case of a diagonal weight matrix and do not require that

condition 5) of Theorem 1 be satisfied (however, the existence of the

derivatives with respect to q of the measured functions up__tp and

including the third order and of the weight matrix elements is

required): ' .

1) the procedure (1.6) converges with respect to probability;

2) the estimate '0,*; obtained as the limit of the procedure (1.6)

has an asymptoticly normal distribution;

3) the estimate'^*, is consistent in the sense of convergence almost

certainly.

Moreover, in [2] it is shown that the estimate obtained by mini-

mization with respect to q of the function f(q,q) defined by (1.3) is

not consistent even in the case of a diagonal weight matrix. In the

first approximation this estimate coincides with the estimate obtained

by the method of maximum probability [1] with normally distributed

measurement errors. In fact, in view of (1.3) and the relation

this method reduces to finding the maximum of the function

If we neglect the fact that the determinant of the weight matrix

depends on q, then maximization in (6.1) reduces to minimizing the

function ¥(q,q).

727 •
7. An illustrative example

Suppose that q is a scalar (i.e., M = 1) and the functions to be

measured are linear with respect to q. In this case we may assume

that the quantity q itself is measured, i.e., the functions to be

measured are reduced to the form

(7.1)
by elementary transformations. It will be assumed that the measure-

ment errors are not biased and not correlated among themselves and

their mean square deviations (m. s.d.) are linearly dependent on ft

21



(cf . Section 1) :

(7.2)

The smallness of the factor',̂ .' in (7.2) is illustrated by the follow-

ing example: if distance is being measured, then as distance increases,

let us say, per 1 km the error in the measurements increases substan-

tially less than by 1 km. It is to be expected that in this example
_4 _6 •

e does not exceed a magnitude on the order of between 10 and 10 * ' •

From (1.4) and (7.1) we have:

where î ĵ dj-q,,, are the measurement errors.;" "From (2.7), .(7.3) and

(7.2) we obtain

__
Obviously, if for all \?eQ 0;»<0(t»i7n) , then conditions 3) and

of Theorem 1 are satisfied. The msd of the errors £. equal '6̂ t ; we

shall assume that

(7.5)

Then follows from ( 7 . 4 ) , ( 7 . 2 ) , (7 .5)

(7.6)
Assume ft and ft' as neighborhoods of the vector (J,,, (i.e., in (2.1),

'.̂••4i» ). Note that in (2.1), J =;ri (i.e., fl=fl'), since for M = .1

all three norms in (2.2) coincide . It is easy to see than when

IJ(j-̂ Bj=ĵ -̂ H| = <AJ , the right side of the inequality (7.6) assumes

22



the greatest value in ft. Set the quantity 6 equal to this maximum;

we obtain from (7.6) and (7.2)

where

(7.8)
Prom (7.7)

(7>9)

''It is evident from (7.7) that if w<-=- and e« 1, then condition 5) of

TheorTheorem 1 is satisfied (i.e., 6 <l). Here, according to (7.2) and

i.e., the msd of the errors in the measurements can vary less than by

a factor of 2.

Let|9o€Q'and e «n (the latter condition is satisfied for suffi-

ciently large 6 according to (7.2)). Let us show that in this case

conditions 1) and 2) of Theorem 1 are satisfied. /29

We shall assume that

- - (7.10)

The deviation occurring in (7.10) with respect to the error in deter

mining the parameter'^ by MLS is calculated by means of the formula

[1]

Prom (7.1), (7.2) and (7.8) we obtain
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and from (7. 10)- (7.12)

Therefore, when e «6-", we have A « w and;<J,u €bd, according to (7-9)

and (7.13) . Since qbeQ; , condition 1) of Theorem l is satisfied.

We shall show by induction with respect to K that condition 2)

of Theorem 1 is satisfied when'.CL^O.'and e «£„ . Since \ft =.0^ , it
I '_ O O-° >°'

follows that'Qe^Q'. Assume that for some K = 0,1, . . ., id g O! .
L - •— ' 9^ ^

Since the problem under consideration is linear, then, as remarked in

Section 5, the procedures (1.6) and (5.1) coincide and, according to

(5.1), (7.3) and (7.4)

«r-«u-i^^ (7
where ff^=6"'"~) • We shall assume that

(7.15)
From (7.1̂ ) follows:

/ 30

We obtain from (7.2), (7.8), (7.9) and (7.12)

(7-17)



Then from (7.15)-( 7.17) we find that

r- - T- - -, ' _ - J7_-18)

and when|£*37r^5r~l»«»-/ so that according to ( 7 . 9 ) , \B^.&Ql Q . E . D .
~ -••~jjnf ' JQa'fr vb/i ' - -- '

Let us now find the quantity \U» which occurs in the inequality

(3.13). Set

(7.19)

where X and Y are determined by (3.3) when iTtyi-fJu . According to

(7.6), (7.2) and (7.8), |](TH| 6d(X,y)j* Since the function (7.19) is

monotonically increasing, it follows from (3.5) and (3.6) that

w(u) = 6(u + A, u + A), and the equation (3-9) assumes the form

and 'U< is the greatest solution of this equation when w(u) < 6

Taking (7.2) into account we obtain

.- . (7.20).

with accuracy with respect to small e up to the second order..;, it is

clear from (3.13) and (7.20) that when e is sufficiently small, the

quantity A+, practically coincides with ,6,M' , and the estimate of /31
I <f i ^̂ -̂̂ ^̂._! t

closeness ^* and <h for the quantity '($' close to unity is better by|

almost a factor of two than the analogous estimate for K = o,l,...)

according to (3.13) and (7.13).

In conclusion, the author expresses appreciation to G. A. Mersov

for valuable comments and advice regarding the present paper.
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