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ABSTRACT

Narrow-waveband (]003) photoelectric slit scan photometry of the
Neptune disk is reported Observations were concentrated within the
strong CH4 band at A7300A For compar1son, measurements were also made
~within a continuum waveband at AGBOOA Point spread function data were
obtained in both colors. Qualitative estimates of the *rue intgnsity
distribution over the Neptune disk were made. Within the AG6800A contingum
band, Neptune appears as an essentially uniform disk. Within the A7300A
CHy band, the planet exhibits strong 1imb-brightening. Our results appear to
require the presence of an optically thin layer of brightly scattering
aerosol particles high in the Neptune atmosphere.
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~are variable, and that aerosol particles are present.
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1.  INTRODUCTION

Trafton (1974) reported the first measurements of the H, quadrupole
lines in the spectrum of Neptume. Strengths of the $(0) and 5(1) Jines of
the (4-0) band were interpreted in terms of both an inhomogeneous atmosphere
overiying a reflecting layer, and a hompgeneous, semi-infinite scattering
atmosphere. Only the scattering model proved to be consistent with Neptune's
spectrum in this wavelength reg1on The H2 abundance along a scattering
mean free path was found to be n 320 km. amagat; the maximum permitted
abundance was 450 km. amagat. By comparison, the scattering mean free
path for Rayleigh scattering in a pure H, atmosphere is equivalent to 715
km. amagat. Although aerosol particle scattering may be responsible for
the observed reduction in the mean free path, Trafton noted that an al-
ternative explanation might be molecular scattering from gases additional
to hydrogen. From an analysis of photoelectric photometry pf Neptune,
Lockwood (1978) conciuded that the scattering properties.mf'the atmosphere

re

Infrared (1-4 pm) observations of Neptune have been interpreted
by Joyce et al. (1977) and by Pilcher (1977) to suggest that, over a one
year period, an extensive high altitude cloud formed or the planet and
then partially dissipated. About 10-months after its initial appearance,
the optical thickness of the c]oud averaged over the planet was on the

_order of unity. An 4, column-abundance of 5. + 2 km. amagat was derived;

it appeared to refer to an effect1ye reflecting layer high in the atmosphere
of Neptune.

Recent infrared (0.8 ~ 2.5 um) studies of Neptune by Fink and
Larson (1979} have indicated that its atmosphere has a variabie height
cloud Tayer overlain by @'50 km. amagat of H,. Fink and Larson point out
that the high cloud Jlayer cannot have a large optical thickness since both
the H, quadrupole lines and the visible CHy bands give qu1te large abundances.

tSpec1f1ca]1y, the CHy column abundance was found to be ~ 0.7 km. amagat.

For Uranus, the corresponding value was 1.6 km. amagat Fink and Larson
also found the Uranus atmosphere to be- cledar to great depths with its upper




regions depleted in CHq. It appears likely that visible radiatjon can
probe to great depths in the Neptune atmosphere.

Useful information concerning tﬁg'opacity of the Neptdne
atmosphere, in particular the presence of an optically thin upper <loud
layer, can be derived from measurements of the distribution of intensity
over the disk of the planet both within and between the strong CH4 bands.
In this paper, we report the first attempt to infer the wavelength-dependent
optical appearance of the Neptune disk.
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2. (OBSERVATIONS

During the 1979 Neptune apparition, narrow-band (TODR) s1it scan
photometry of the planet was carried out within two regions of the spectrum
. By the technique described by Price and Franz (1979). Scans were obtained
primarily within the 73003 CH band. But, for comparison, scans were also
made within the continuum reg1on at 68008 Waveband selection was achieved
by means of two Filters used in our early investigation of Uranus (Price
and Franz: 1976). On 1979 July 23, reliable observational data were obtained
with the area-scanner mounted on the 1.8 meter Perkins reflector at Lowell
Obseryatory. . '

. Neptune was difficult to observe because of its extreme southerly
declination {-21 degrees). Even at meridian transit, the planet never
reached an elevation angle greater than ~ 33 degrees. In order to minimize
. “the path length through the atmosphere, observations were restricted to
within + 2 hours of transit. Effects of differential refraction, both
within-and between each waveband, were avoided by orientihg the s1it length
in a.north-south direction. Both the stellar and Neptune images would then
suffer dispersion along the s1it when observations were made near the.
meridian. Special care was taken in the determination of the point spread
function. A star, of apparent visual magnitude &"7.0, Tocated within
45 arc. min. of Neptune, at an elevation angle essentially identical with
that of the planet, was se1ectéd to provide PSF information. Both Neptune
and the star were scanned in an east-west direction only. Both forward
and reverse scans were used. Samples were taken at spatial intervals of
0.032 arc. sec with a sl1it of 100 um (0.645 arc. sec) width. Both slit and
scan length were 2mm (12.9 arc. sec).

Each recorded scan of Neptune and of the star was obtained by
integrating 100 one-second scans. Shortening the jntegration time, although
| desirable to minimize image wander prdduced_by tejescope tracking errors
and by variations in atmospheric refraction, would have adVefse1y affected -
" the signa1~to?noise ratio. If image wander did occur, we hoped to match
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its effects for both Neptune and the star by equalizing their integration
times. To increase the effectiVe‘sjgna]-to-noise ratio, composites of the
integrated scans were subsequently computed by the method described by
Price and Franz (1979). . Scans made in opposite directions were mirrored
on their centroids prior to computer summation. B8oth the Neptune and
stellar composite scans were symmetrical within the Tevel set by the
residual photometric noise. Total scan numbers for both the Neptune and
stellar composites are shown in Table I. Final Neptune and stellar slit
scans were formed by averaging the respective composites about their centroids.

Atmospheric turbulence, together with diffuse instrumental scattering,
.*is responsible for the observed point spread function. Our earlier investi-
~gations of Uranus (Price and Franz: 1978, 1979) showed that the point
. spread function is well represented by the summation of two colocated .
but distinct Gaussian curves. Normalizing the point spread function, f(r),
to unit total energy. we can write its radial distribution {p the form

1 2, 2 2, 2
f(r) = A - +B -rS 1
n [AG]Z + 30223 = Lo for’] el r’/02 ) a

where A, B, oy and o, are constants. Optimum sets of PSF parameters for

- both wavebands were obtained from the composite stellar s]itcﬁcans by the
method described by Price and Franz (1979). Within the 6800A waveband,
we found A = I,OB = (.1336, gy = 0.9829 arc. sec, and o, = 2.0730 arc. sec.
Within the 7300A waveband, we found A =1, B = 0.1378, 9y = 0.9829 arc. sec,
and o, = 2.0413 arc. sec. As one would expect, the point spread function
became narrower with increasing wavelength. Our best-fitting analytical
scang are compgred with the observational data in Figures 1 and 2 for the
6800A and 7300A wavebands, respectively. Scaled with respect to each
central intensity, the respective root mean square deviations between
calculation and observation are 0.62 percent and 0.68 percent. Evidently,
the goodness-of-fit in each case is limited by the residual noise in the
photometric data. Stability of the point spread function during the
course of the observations was high. Consider both sets of PSF data



Table I
FORMATION OF COMPOSITE STELLAR AND NEPTUNE SLIT SCANS

Waveband Scan Integrated One-Second
(Angstroms) Object Scans Sweeps
~ Star 2 200
6800 :
Neptune 4 400
Star : 2 200
7300 —
Neptune 8 800




Il

together. The Gaussian 1/e-widths of the individual integrated stellar
s1it scans exhibited am rms deviatjon equivalent to 2.0 percent of the
mean. Residual uncertainty in the mean point spread function for each
waveband will have a negligible effect on the interpretation of the

planetary data.
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3.. ANALYSIS

Careful examination of the Weptune s1it scan data showed the level
of the residual photometric noise to be too high to permﬁt reliable restora-
tion of the actual radial intensity distribution over the disk. Instead,
we chose to qualitatively investigate the appearance of the planet by -
comparing the observed slit scans directly with predictions made for a
variety of model intensity distributions. Our approach was first to model
both the size and shape of the planet and to adopt a candidate radial dis-
tiribution of intensity over the disk, next to employ the known point spread
function in a two-dimensional convolution to derive the planetary image
.smeared by atmospheric seeing, then to compute the profile which would
result from s1it scanning the image in one~dimension (E-W), and finally
to normalize the s1it scan prediction to permit comparison with the observa-
tional data. Mathematical procedures Heve]oped by Price and.Franz (1978)

were used.

From stellar occultation data, Freeman and Lyngg (1970} found
Neptune to be oblate, with an equatorial radius of 25265 + 36 kms and an
ellipticity of 0.026 + 0.005. Their data refer to a level in the atmosphere
corresponding to a molecular number density in the range ]0]2 to ]0]3
Assuming the Neptune atmosphere to be isothermal, Freeman and Lynga derived
an equator1a1 radius of 24753 + 59 kms at a molecular number density of
10 3 where they expected a dense cloud layer to form. But, whether _
or not the Neptune atmosphere is indeed clear to such a depth is uncertain.
For our present analysis, we adopted an equatorial radius of 25,000 kms.
Effects of oblateness remain to be evaluated. Detajled consideration
of both the observational geometry and technique showed that accurate
theoretical slit scans of Neptune could be derived if the planetary
disk were assumed to be perfectly circular with a radius equivalent to
0.994 times the equatorial value. Since the Neptune radius, relevant
to our analysis, is not known within an accuracy of 0.5 percent, we
chose to ignore the correction for oblateness. Neptune was taken to

10



be perféct]y spherical with a radius of 25,000 kms. The American Ephemeris
and Nautical Alminac gives the geocentric distance of Neptune on 1979 July 23
as 29.515 AU. The corresponding angular radius of the planet was 1.168

arc. sec.

Six simp]e models were adopted for the actual distribution of
intensity over the Neptune disk. Circuiar symmetry was sdopted throughout.
_In five models, the intensity was assumed to be a Tinear function of

radial distance from the center of the disk. Each model was defined by the
ratio of the intensities at the center and 1imb of the planet {CTL). A
éomp]ete range of intensity distributions, from strong 1imb darkening

" through a flat disk to strong 1imb brighteping, was considered. A sixth

B kMo fpbe i - . e .

model represented the most extreme <ituatics nf Timb brightening with the
intensity assumed to be zero erwept within a ring of infinitesimal width
Tocated at the 1imb. Characteristics of the six models are summarized in
Table II.°

' Theoretical Neptune s1it scans are compared in Figure 3. AIl six
models have been normalized to the same integrated energy. .In general, the
computations were based on mathematical procedures developed by Price and
Franz (1978). But, for the ring of infinitesimal width, the radial intensity
distribution of the smeared image was calculated by the method described in
an Appendix. For both wavebands observed, the point spread functions are
very similar. We therefore adopted a mean PSF for the comparison of the
individual models. Specifica]iy, its parameters were A =1, B = 0.1357,
o = 0.9829 arc. sec and o, = 2.0572 arc. sec. In spite of the small
angular diameter of the Neptune disk, strong 1imb-darkening or 1imb-
brightening would be detectable if present. Note that the predicted scan
intensity is gssentiai1y independent of the disk model at ~0.8 arc. sec
from the profile center.

In Figures 4 and 5, observedONeptune sgit scan data are compared with
theoretical predictions for the 6800A and 7300A wevebands respectively.
To avoid cluttering the diagrams, theoretical predictions are plotted
only for the flat disk and for the ring of infinitesimal width. Predic-
tions were based on the individual point spread functions relevant to each
waveband. Both the observational data and theoretical predictions have

1



Table II
MODEL INTENSITY DISTRIBUTIONS FOR THE NEPTUNE DISK

Model CTL |
] 1:0
2 1:0.5
3 1:1
4 0.5:1
5 0:1
6 Ring

12



been normalized to the same integrated energy. By-inspgction, we conc?ude
that Neptune is well represented by & flat disk at gBOOA, while strong
1imb-brightening is clearly present within the 7300A CH4 band. The degree
of 1imb-brightening, however, cannot be determinad accurately because of
residual photometric noise. .

_ Where the profiles are insensitive to the disk model, the observed

and theoretical scans are very well matched. This consistency is most
significant. It implies that tracking errors were negligible during
acquisition of the Neptune data, that the radius of the planet was properly
chosen, and that the observed point spread function provided an accurate
description of atmospheric smearing of the disk.

13



4. DISCUSSION

Limb-brightening on Neptune must be the result of a vertical
inhomogeneity in its atmosphere. More specifically, the single scattaring
albedo must decrease inversely with optical depth. Within the 73004
CH4 band, two explanations of the 1imb-brightening phenomenon are feasible.
In the absence of aerosol particles, limb-brightening may be the result of
methane depletion iﬁ the upper regions of the atmosphere. But, if the
CH4/H2 mixing ratio is constant with optical depth, Timb-brightening may
be caused by an optically thin layer of aerosol particles high in the Neptune

atmosphere. Hybiid explanations are aiso possible.
e 0 : .
Within the 6800A continuum waveband, 1imb-darkening would be ex-

pected to occur if the atmosphere were homogeneous. In a clear H2 - CH4
atmosphere, vibrational Raman scattering from molecular hydrogen would
reduce the monochromatic single scattering a]bego significantly below
unity. +hsorption from a weak CHy band at 6825A would also contribute

to & reduction in the single scattering albedo. Within this methane band,
Giver (1978) found pressure effects to be insignificant. So no vertical
inhomogeneity would result. For Neptune to appear as an essentially
uniform disk, a Timb-brightening mechanism must be acting to counter the
natural tendehcy to limb-darkening. Such a mechanism could well be the
presence of an optically thin layer of brightly scattering aerosol particles
at high altitude. 1In fact, to reconcile our observational results with
those obtained by other techniques, such a scattering layer appears to be
essential. But whether or not the aerosol haze is laterally homogeneous

cannot yet be determined.

14
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APPENDIX
ATMOSPHERIC SMEARING OF A RING OF INFINITESIMAL WIDTH.

Consider the situation of extreme 1imb brightening on a perfectly
circular planetary disk. Suppose that ail the radiation reflected ﬁy‘
the planet is concentrated within a ring of infinitesimal width and with
a radius equal to that of the disk itself. Normalizing the total radiant
energy to unity, we ‘can define the radial intensity distribution, a(r), |
in terms of the delta fynction. Specifically, we can write

g(r) = Zna 6(r - a) o _ (A-1)
where a is the radius of tHe’p]anetany diﬁk Suppose further, that atmospheric
turbulence produces a smear descrtbed By a circularly symmetric point

spread function, f(r), of the form

- 1 2 2, 2
f(r) - [Ac]2.+ 8622]'{A exp [-r2/01 ]+8B exp.[-r /0, J} (A-2)

where A, B, o and o, are constants which may be determined from observational
data. Convolution of the point spread function, f(r), with the degererate
annulus, g{r), wi]T'prqduce a circularly symmetric image whose radial
intensity distribution, h{r), may be readily computed.

Making use of the Fourier transform convolution theorem, we can

write

’

o) = 6(p) - Flo} | (3-3)

vhere capitalization of the funct1on5.:nd1cates their zeroth order Hanke]
transforms, and the variable p aenotes spatial frequency. Expl1c1t1y,

we have

15
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Flp) = [AU]2 l 8022] . %AU]E . exp [wﬂzg]zpzj . o
+rBoz2 -’exp [—nzozzpzl ) | (A-4)

and .
6(p) = J, (2nap) | (A-5)

where the symbol J0 denotes the zeroth order Bessel function.

But, the radial intensity distribution of the image can be written

oo

h(r) = 2n'-/- p H(p) JO (2nrp) dp . : _ (A-6)
0 . R

Substituting equations (A-3), (A-4) and (A-5) into equation,(A-G), we
obtain

21f ' 2 2
hir) = Ao, « T. + Bo, + T (A-7)
P J ] 1 2 2 ’
[Ao;“ + Bo,]
where
Ty =/ p Jy (ap) Jg (Bp) « exp [—Bkzpz] dp (A-8)
J
where
o = 2ra
g = 2nr (A-g) .
Bk nck

16



Equation (A-8) is of a standard form tabulated by Gradshteyn and Ryzhik {1965).
Explicitly, we have

Ty = '2’;2%;2 + exp [-a%/0,7] - exp [+¥/0, 2] - 1, (2ar/0,?)  (A-10)

where the symbol I denotes the modified Bessel function of the first kind
of zeroth order. Formulae for the computation of I0 are given by
Abramowitz and Stegun (1972).

17
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FIGURE CAPTIONS

0
Figure 1. Stellar S1it Scans (A6800A): Comparison of Calculation with
Observation. Composite observational data are illustrated by
the solid curve. The best-fitting analytical curve is illustrated
by the broken curve. The s1it width was 0.645 arc. sec. The
sample interval was 0.032 arc. sec. .

0 .
Figure 2. Stellar Slit Scans (A7300A): Comparison of Calculatjon with
Observation. Composite observational data are jllustrated
by the solid curve. The best-fitting analytical curve is
illustrated by the brokent curve. The s1it width was 0.645 arc.
sec. The sample interval was 0.032 arc. sec. - .

Figure 3. Model Neptune S1it Scans. Theoretical Scans were computed for
each of the six models listed in Table II. The Neptune disk was
taken to be circularly symmetric with an apparent angular radius
of 1.168 arc. sec. Atmospheric smearing was described by the-
mean point spread function discussed in the text. The slit
width was 0.645 arc. sec. All slit scans were normalized to
equal total energy, obtained by integrating over the disk
of the planet. Broadening and flattening of the stit scans
increases progressively with the degree of Timb- br1ghten1ng
on ‘the disk. _ , i

_Figure 4. Neptune S1it Scans (AGBOOA): Comparison of Theor& with Observa-
tion. Composite observational data are illustrated by the
individual dots. The sample interval was 0.032 arc. sec.
Theoretical scans, computed both for a uniform disk and for a
ring of infinitesimal width, are illustrated by the solid
curves. The Neptune disk was taken to be circularly symmetric
with an apparent angular radius of 1.168 arc. sec. Atmospheric
smearing was described by the relevant point spread function
discussed in the text. The slit width was 0.645 arc. sec.

A1l slit scans, both observational and theoretical, were nor-
malized to equa1 total energy, obtained by integrating over the
disk of the planet.

0
Figure 5. Neptune S1it Scans {A7300A): Comparison of Theory with Observa-
tion. Composite observational data are ililustrated by the
individual dots. The sample interval was 0.032 arc. sec.
Theoretical scans, computed both for a uniform disk and for a
ring of infinitesimal width, are illustrated by the solid
curves. The Neptune disk was taken to be circularly symmetric
with an apparent anguiar radius of 1.168 arc. sec. Atmospheric
smearing was described by the relevant point spread function
discussed in the text. The sTit width was 0.645 arc. sec. All
slit scans, both observational and theoretical, were normalized
to equal total energy, obtained by 1ntegrat1ng over the disk
of the plant, .
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Braginsky — 20

between two oppositely wound coils of the QRS inductor. To renormalize the

oscillator's mass m one might attach to it a conducting plate that resides

in the inductor's magnetic ficld., The velocity of the plate through the

magnetic field would indnce an clectric dipole moment on the plate which,

in turn, would couple by its velocity to the magnetic field giving an inter-

action energy proportional to 32 ?rz and thence a mass renormalization.
Unfortunately, these various ideas have not yet produced a viable design

for clean coupling of a mechanical oscillator's energy ﬁo to a QRS. On the

other hand, designs without clean coupling can still yield measurements of

ﬁo more accurate than the amplitude-and-phase gquantum Llimit (no + %)% Tw.

An example 15 a QRS that couples only to ﬁe, but that averages ﬁe over & number

of cycles before sending it into the first classical stage (amplifier) (nglJ'

The measurement scheme of Fig, 1 will do this if the period of the circuit'’s

(QRS) oscillations is much longer than the period of the mechanical oscillations,

Then the circuit's capacitance (Eq. (24)) and resonant frequency will be

sensitive to the time average of ﬁa and thence to ﬁo’ with only small admixtures

of pensitivity to the time-varying part of ﬁa and thence to the oscillator's

phase §#. This is equivalent to the statement in Eq. {B) that 6R =

f(ﬁo +(x(ﬁo)w1:) with @ << 1, which in turn permits accuracies much better than

AE = (no + —é—)% fug, Reference (11) sketches a detailed analysis of this type

of scheme, but for an electromagnetic oscillator with a mechanical QRS and

with ﬁI = K?:ea rather than K& 62 as in Fig, 1 and Eq. (24). ‘1hat

analysis reveals a2 limiting sensitivity
1 L
OE 2 (no + 512 (9/w)? fw, (25a)

where E = (no + %) Tw is the oscillator's energy, w is its frequency, 0 is

the frequency of the QRS, and @ << w. The corresponding limit on the
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Braginsky — 21

detection of a classical force F, cos (wt + ), which drives changes in the

oscillator's energy, is

Py
> 2 s 5
Fo ~E (m) (25b)

if q/ﬂ <n, + %. If u/n >mn %, then the limit (25a)} on AE gets replaced
by #w, the ultimate precision with which one can ever measure energy changes;

and correspondingly che force limit (25b) gets replaced by (21).

b o
In measurements of thz time average of X and thence H, it is not essential

that the interaction Hamiltonian ﬂI involve QE. Instead ﬁI can be proportional
2 2
to X, and then the internal workings of the QRS can produce the average of &

at the entrance to the first classical stage.

BACK-ACTION-EVADING MEASUREMENTS OF il

The QNDF observable ﬁl = % cos wt - (P/mw) sin wt (real part of complex

amplitude; Eq. (5)), 1like the position ¥, has a continuous spectrum of
eigenvalues; and in principle it can be measured arbitrarily quickly and
accurately(13,15). Suppore that an initial "state-preparation' measurement at

~

t = O has put the pscillator into an eigenstate |£ ) of XI(O) with eigenv.lue

o!
£+ A classical force F(t) [total Hamiltonion H = ﬁo - % F(t)] will change

§1 as seen in the Heisenberg Picture

~

X (t) = ﬁl(o) - jt[F(c')/mw] sinwt'dt' ., (28)
0

In the Helsenberg Picture the oscillator's state remains fixed in time at

]go), but this is an eigenstate of ﬁl(t) with eigenvalue

t
E(t) = £, - I [F(t')/mn] sinwt'de' . (27a)
0

.
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Braginsky — 22

Subsequent perfect measurcments of ﬁl must yield this eigenvalue and will
reveal the full details of its evolution. It evolves in exactly the same
manner as X; would evolve for a classical oscillator (13,15).

One pays the price, in these meusurements, of not knowing enything about
the imaginary part of the complex amplitude ﬁa (Eq. (5¢)). However, if
one has & second oscillator toupled to the same force F(t), one can measure
the iImaginary .art ?2 of its complex amplitude, giving up all information

about the real part ?1. One's measurements must give the eigenvalue
t
n(e) = 7, + [ (F(t")/m] coswe'de’ , (27b)
0

which evolves in exactly the same manner as the X2 or Y2 of a classical
poscillator, From the output of either oscillator, or better from the two
outputs, one can deduce all details of the evolution of F(t), no matter how

weak F(t) may be (13,15). Thus, £ and ?2 are QNDF observables.

1

A perfect measurement of ﬁl (or ?2) requires (i) that the interaction

Hamiltonian ﬁI depend on X,, and (ii) that H. commute with ﬁl (BEq. (7)

1 I

and associated discussion). The simplest example is

~

Hy = K}?lﬁ = K%§ coswt - (K/mw)pq sinwt ., (28)

A coupling of this type can be achieved, for a mechanical oscillator,

by using a capacitive positicn transducer with sinusoidally modulated coupling

constant (ﬁI =K%q coswt), followed by an inductive momentum transducer

with modulated coupling constant (HI = -(K/mw) pq sinwt)., The two trans-

ducers together produce a voltage output

¢ = Bﬁl/aﬁ = KX coswt - (K/mw)p sinwt = Kﬁl , (29)
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which drives an electromagnetic circuit, the QRS, in which the charge q
flows (Eg). While capacitive position transducers and inductive velocity
transducers are easy to comstruct, inductive momentum transducers are not,

The momentum and velocity of the oscillator are related by
X = 3(H +H)/dp = p/m - (K/mw) q sinwt, (30a)

which means that the classical Lagrangian L = px - (H°40HI) for oscillator-

plus-transducers is

L=% me . ¥ mPKe - KXq CO8 Wt 4 (K/w)xq sinwt + % m(Ksin wt/m)eqe. (30b)

The first two terms represent the oscillator; the third is the capacitive
position transducer; the fourth is an inductive velocity transducer (wire,
physically attached to oscillator, moves through external magnetic field);

and the last 1s a negative capacitor in the QRS ecircuit, Thus, an inductive
momentum transducer is equivalent to an inductive velocity transducer (easy to
construct) plus a negative capacitor (hard) (15), Although negative capacitors
are not standard electronic components, they can be constructed in principle,
and in principle they can be noise free (l_).

For an electromagnetic oscillator with mechanical QRS, one can achieve
the desired ﬁI = Kf?la using a capacitive transducer for the oscillator's
"position” x (= charge in oscillator's capacitor} and an inductive transducer
for its "momentum" p (= £lux in osecillator's inductor)., The momentum trans-
ducer turns out to involve a standard mechanical current transducer {current =
i) plus a negative spring in the QRS (15). 1In principle negative springs can
be noise free (15).

The sinusoidal modulations required in the transducers must be regulated

by an externmal, classical clock, which has the same frequency w as one's
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pseillator, One cannot use the oscillator itself as one's eclock because in
extracting the required oscillatory information from the oscillator one wil
produce an unacceptably large back action on ﬁl' Howewver, before the experi-
ment begins one can check the frequency of one's clock against that of the
eoscillator, In principle they can be made to agree perfectly, and in principle
the ciock can be made fully classical so its ocutputs are real numbers, coswt
and winwt, rather than operators (19L1§). In practice, frequency drifts and
quantum features of the clock nced not cause serious experimental problems (15,20).

A perfect measurement of ﬁl’ which lasts a finite time ¥, requires in-
finitely strong coupling in the transducers (K - o) in order to give a signal
that overwhelms zero-point noise in the QRS, If one has only finite coupling,
then the zero-point noise accompanying the signal gives rise to a limit

(Eqs. (16) and (17) with x » X, and Nt + ) (Refs. (13-15))
S L, .3
8 2 (/omn)® (mo?) 72 (31)

Here B is the dimensionless coupling constant (Eqs. (16)). Thus, whereas
stroboscopic measurements with limited coupling can beat the amplitude-and-
phase limit by a factor of only (Buﬁ)'Tlr (Eq. (18b) with N = wt/n), continu-
ous back-action-evading measurements of xl can beat it by (ﬁw?)-%. Stroboscopic
measurements are worse because of their smaller duty cycle,

In the realistic case of weak coupling, B < 1, one must average over
many cycles (wT > l/B) in order to substantially beat the amplitude and phase
limit, 1In this case one can make use of a ''trick" analogous to measuring the

energy by coupling to ﬁe and averaging: One can perferm a "single-transducer,

back-action-evading measurement” (13,14,15) by coupling to

X coswt cos Nt = & (X1+X1 cos 2wt + X, sin Swt) cos Ot (32)
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(1.ce., ﬁI o 28 X9 cos wt cos Nt) and then sending the signal through a filter
(the QRS) with bandpass at frequency {8 >> w and bandwidth Af = 1/2t, << w27,

The f£ilter will "average the X, signal away" until its amplitude has fallen

2
by ]/2(»1'* relative to that of the Xy signal, Since the initianl rms xa signal

strength is 1/nf2 that of the X., this corresponds to a[l = f(§1+§2/2\l-2 w'r*)

1’
in Eq, (6a}, which together with the uncertainty relation (5c) and the

argument of Eqs. (8) tells us that (20)
> E] -3 =
N{l (h/2mn) (QJ—Q un'*) . (35)

Tuis is the error in X, Aue to back action from measurement of X The addi-

2.
tional error due to zero-point ioise accompanying the xl gignal into the

amplifier is (Eqs., (16) and (17) with x + X, and Nt » 7) (Refs. (L4),(20))

1

5y 2 () (pui)? (5h)

Here 1/27 is the bandwidth of the experiment (% is the larger of the QRS
averaging time v,, 3ad the averaging time in subsequent electronics). Thu
ultimate quantum limit on the sensitivity is (33) if B > 2\/—21'*/; , and
(34) 1if B < 221, /7. Note that Eq. (34) is the same limit (to
within factors of order unity) zs in the case of exact coupling to §1 =
% coswt - (p/mw) sinwt. Thus, when B < 2\/'21*/'{- and WT > 1, one can
abandon the momentum transducer without any serious loss of accuracy!

This type of single-transducer, time-averaged, back-action-evading
lmeasurement of X, appears today to be the most viable technique for beating
the amplitude-and-phase limit (14) in gravitational-wave detection. In place

of (14) one will face the limiting measurable force

Fy 2 (/%) ) e [ ()2, (24ur,)F ] (35)
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THERMAL NOISE IN THE OSCILLATOR AND AMPLIFIER

The quantum limits derived above are not achicvable in the laboratory
today because thermal noise exceeds quantum mechanical noise.

Ignore for the moment thermal (Nyquist) noise in the oseillator. Then
if the resistors in the QRS are coolud sufficiently, the dominant non-quantum
noise will be that in the amplifier (first classical stage)., The amplifier,
which we assume to be linear, can be characterized by its power gain G and
its noise temperature Tn' The QRS feeds the amplifier a signal at frequency

£ = 0f2n, to which the amplifier adds a noise power per unit bandwidth

dPn 1N

df = exp(fig/kT J -1 °*

(38)

Here k is Boltzmann's constant., If the incoming signal has power Py then

the amplifisd signal and noise have power (23)

10 10
6P, +(G S EART ) - T + 3 )Af. (37)

Here Af is the bandwidth, and the 1f/2 is a zero-point energy that accompanies
the signal throughout its treck through the amplifier znd other electronics,
but does not get amplified (2_5). The quantum limits of previous sections of
this article are attributable to this Zero-point energy. In the presence

of a real linear amplifier, with non-negligible noise temperature Tn’ the

signal power P_ must fight not (rio/2) Af, but rather

#o 1o
(exp(-i’m/an) R 2) i

(cf. Eq. (37)). Consequently, it is reasonable to expect that the
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nmplifier noise will modify our quantum limits (Egs, (6c), (13)-(15),
(17)-(19), (21), (22), (25), (31), (33)-(35)) by replacing # with (12)

2kT

off _ 21 _h
Bor—pg B cxp (/KT ) -1 G
(38)
Elc'i‘n
m—=t 1T KT >> 12 and G >> L.

These modified quantum limits are sometimes called "amplifier limits",
Quantum mechanical analyses of linear amplifiers (24,25) reveal a minimum
possible noise temperature (noise temperature ¢f "ideal linear amplifier")

(1)

min ~

I
~|5
| — |
£
=
—
el ib]
[ IR}
Lo
(2]1a]
o
—
]
-

(39)

10/k £n 2 1f G >> 1,

which is achievable in principle by a maser amplifier, and which corresponds

to

(a’k'rm._,g/n)min = {2-1/6)1 . (40)

Note that for large gains an ideal linear amplifier will give worse energy
performance by a factor 2 (#i -+ 2n) than the quantum limits of previous sec-
tions,

The best linear amplifiers that have been built are parametric amplifiers
and maser amplifiers, which operate at microwave frequenciea and have (kTeff/Q)
as small as ~ 10 H, With such amplifiers one can only hope to get within a
factor 10 or 10 of our quantum limits (# - 10%). And to even achieve this
one must design a QRS which upconverts the oscillator's signal frequency

(kilohertz in the gravitational-wave case) to the microwave (gigahertz) region.
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Any physical oscillator (eug., the fundamental mode of a gravitational-
wave bar antenna) is weakly coupled to a thermal bath of dynamical systems
(e.g., sound waves in the bar). This coupling produces a frictional damping
of large-amplitude motions, and it also produces a thermal-buffeting random
walk of the oseillator's amplitude ("Nyquist noise"). The root-mean-square
random-walk change of the oscillator's amplitude during time 7 is

(41a)

P
2

~ (kT/mwe)% (w7/Q)2 .

Here T is the temperature of the thermal bath (the bar's temperature), and Q
is the oscillator's quality factor (numbz: of radians of oscillation required
for frictional damping of large-amplitude oscillations by a faclor e in energy).

the corresponding root~mean-square energy change is
b (/o
D ~ (E 2 (Wt
(AE)I‘.'vq = (EKkT) (wi/Q)2. (41b)

These Nyquist noises must not exceed the smplifier limits (quantum limits with
b s 2kTeff/ﬂ) if one is to achieve the amplifier limits in real experiments,

Some nuibers will be given below.

FSOSPECTS FOR STROBOSCOPIC MEASUREMENTS

One possible scheme for stroboscopic measurements of a mechanical oscil-

lator {gravitational-wave antemna with mass m &2 10 kg and frequency w ~

3 % 10h sec'l] is shown schematically in Fig. 2. The mass of the oscillator

is physically attached to the central, movable plate of a capacitor [(capacitance
between outer plates) = C], which plays the role of transducer., The capacitor

-1

1
resides in the QRS — a high-frequency LC circuit [frequepcy 0 = (L0)"2 ~ 1010 sec 1,

which has small losses [amplitude damping time ¢ = E(RCQQ)-I << 0,1/w] and
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which is driven at its resonant frequency fi by an external generator, 1In
practice this circuit would be a microwave cavity; see Ref. (268). At the
measyrement times wt = 0, x, 2%, ,.. the generator is turned on for a time
7/2 and then turned off, -~~d in an additional time 7/2 the excitations in
the circuit die out. During the brief "on time" 7, the amplifier sees a
voltage signal VB = (VO/d)ntx cos Nt, where VO/d is the amplitude of the
oscillating electric field between the cupazitor plates, The experimenter
averages the amplitude of this signal (with alternating sign) over N
measurements to detevmine the position x of the osecillator.

It 1s straightforward to analyze the noise performance of this system
using standard circuit theory, Alternatively, one can invoke the general
formulas (15)-(19) for stroboscopic woasurement schemes, Assuming that the
resistor's physical temperature is less than the ~yplifier's effective
temperature T .. ~ 10 K, the amplifier noise dominates and in Eq, (18b) we
must replace Hh - ngeff/n' Assuming that the amplifier is properly
impedance-matched to the circuit, the measurement will achieve the limiting
precision (18b):

KT ./

o (5 )E O (v2)

Comparison of the voltage signal with Eq. (16a) reveals that Klgell =
(Vcﬁféd)(nT); scrutiny of Fig. 2 reveals that the QRS output impedance, as
seen by the amplifier, is Bop = 21/C; consequently the dimensionless coupling
constant of Eq, (18b) is B = (Vo/d)acQT/(hmma). Combining this with the

1
required pulse time ¢ = (BNwE)-E (Eq. (18a)), we find

(43)
hmm:5

2 2/3
o [(Vo/d) cmn] .
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To avold voltage breakdowr in the capacitor, its electric-field amplitude

should not exceed (Vo/d) ~ 10°

c-l

volts/cm. Assuming other reasonable parameters

I 1

C~1rpf, Q= 1010 sec 7, N =~ 1000, Tefleo K, ma 10 kg, w=3 x 10" sec

we find

BN = 20, a1 x 1077 cm. (1)

Thus this system can achieve a sensitivity that is a factor (20)&:: 2.1 below
the "amplitude-and-phase" amplifier limit; but this is still an order of magnitude
worse than the amplitude-and-phase quantum limit (ﬁ/’lmw)% ~ 1 X 10"18 cm,

Nyquist noise in the antenna (Eq. (4la) with wt = 7N) will be less

than the measurement precision Ax =™ 1 x 10—]'7

em if the antenna is
cncled to 4 K and has a quality factor Q =~ U x 109. This is comparable tu the

best mechanical Q that has been achieved (27) for a sapphire crystal at % K,

PRCZPECTS FOR SINGLE-TRANSDUCER BACK-ACTION-EVADING MEASUREMENTS

The configuration of Fig. 2 can also be used in a single~transducer, back-

action evading measurement of 21' In this case the circult's amplitude damping
time E(che)-l becomes the averaging time T, of the QRS filter (previously it was
the stroboscopic pulse length); and we require 7, >> 1/w (previously it was

<< l/w). Instead of being pulsed, the generator's modulating voltage has the
steady-state form Vm = Uo sin Ot sin wt, which produces an electric field

(Vo/d) cos it cos wt in the capacitors (V0 = UDQ/2w). That electric field,

interacting with the motions x = Xl cos wt + X, sinwt of the mechanical

2

oscillator, produces a signal voltage

v, = (Vo/d)(QT*/Q) I:X1 sin ot + (Qm'r*)'lxl sin Nt sin 2wt
(45)

-1
- (2uwty) X, 8in gt cos 2ut
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at the output of the QRS., Amplification of this signal produces infermation

about X, and X, with relative accuracies &, = (a2 w'r*)-l B o

1 2
Assuming that the resistor noise (s negligible compared to amplifier
noise (which it will be for the paramefers used below and for a resistor

physical temperature S Teff o ].OOK}, we can compute the noise performance of

this system <com Eqs. (33), (34), and (18) with H + 2KT cco The best
quality factor that hes been achieved (_Eg) for a superconducting microwave
resonator {our QRS circuit) with a narrow capacitive gap is Qe = 1, = 107,

corresponding to T, =~ 10”7 sec. Consequently back-action forces (Eq. (33))

limit the sensitivity to

2 x 1078 (48)

1
(kTeff/ 9)2 1

M, = T
L mw NP wr, )2

a factor 7 below the amplitude-and-phase amplifier limit and approximately

twice the emplitude-and-phase quantum limit, (Here we use T,

10 sec”l, m=10 kg, and w = 3 X 101} sec™! as before.) In order that

Q.
£ = 107K,

10

f
Nyquist noise in the mechanical oscillator (Eq. (41a)) not exceed this
gensitivity, the averaging time must not exceed T ~ 0.0l sec. (Here we ute
the same oscillator temperature and Q as before, T = 4%K and Q = b X 109.)
To achieve the limit (46) we also require a coupling constant B = 2J2/wF ~
0.005 (Eq. (34)). To compute B, first derive Klgm[ = (Vofd}(n-r%/.?nfe)
from *Eqs. (45) and (16a) with x - X, then evaluate the impedance seen

1
by the amplifier in Fig. 2 at the X, signal frequency @ = (Lc) 2, Bop = 2v./C;

then evaluate Eq, (18b):
B =(V 0/d)2 cnfc_x/(lsznwe) . (&7)

The required B of 0.005 can be achieved with a reasonable electric field in
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the capacitive gap: Vo/d =1 X% 105 volts/cm.

This example and that of the last section confirm that it Is easier to
achieve a given level of sensitivity by continuous, single-sensor back-action
evasion than by stroboscopic techniques, However, along the route toward
realization of such experiments there remain a series of difficult experi-
mental problems — not least of which is the frequency stability of the clock

that regulates the voltage generator,

ON THE LIMITING FREQUENCY STABILITY OF A GENERATOR

Although current technology can achieve the frequency stability required
by the above examples, it is of longer-term interest to know ultimate quantum
mechanical limits on the stabilities of clocks,

At present the world's most stable clocks are the "superconducting cavity
stabilized oscillator" (5CS0) (28) and the hydrogen maser {29). Both involve self-
excited electromagnetic oscillations inside a cavity. In the SCS50 the clock
frequency Q 1s regulated by the cavity's normal mode; and a change Af of a

typical dimension £ of the cavity will procduce a frequency change
L0/ =~ a4/ 2. (48)

In the maser, if the electromagnetic quality factor Qe of the cavity {teflon
bubble) exceeds 2 R *+ (mean time hydrogen atoms spend in cavity) = Q,, then
expression (48) will be true. Otherwise, Aa/a =~ (af/f) < (Q/Q,), and the limit
deriwved below is correspondingly modified.

Reference (30) derives a quantum limit on the frequency stability of any
electromagnetic oscillator satisfyirg (48). The source of the limit is

guantum fluctuations in the deformation of the cavity walls by electromaguetic
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stresses., Since the stresses in the electromagnetic field are equal to its
energy density ﬁe/ 33 {with ﬁa the Hamiltonian of the electromagnetic oscil-
lator), the force on the walls is ﬁe/ﬂ; and this deforms the walls by &{ =
ﬁeftk where k is the '"mechanical apring comstant" of the walls. The electro-
magnetic field is in a thermalized coherent state with n, quanta, which
posgesgses quantum fluctuations AHe = noéhﬂ; consequently, 4f = no%ﬁQ/kl,

vhich leads to frequency fluctuations {Eq, (48))

/o 2 no"g-‘m/kze . (49)

This "electromagnetic back-action" limit must be contrasted with the Llimiting
precision for measurements of @ during an averaging time T: 4D EZAw/?, where
Al 2 n‘;"‘% is the quanfum uncertainty in the phase of the oscillator's coherent
state:

w/a 2 0% (97) ! (50)

("Towmes-Schawlow limit"). These two limits lead to an optimal number of

quanta n_, and an ultimate quantum limit

1
2
a2 i) (1)
ki~
For a cavity with wall thickness comparable to cavity dimensions f, or for
a "cavity' made by coating the outside of a dielectric crystal with super
conducting material (ﬂ), the spring constant k 18 related to the Young's
modulus EM of the cavity walls by k & EM . V/£2, where V is the cavity volume,
Then
~k
afa 2 (h/EMV'r)E. (51")
1

In practice Eg < 1013 dynes/cm, V 21 cms, so M/a 2 10 20, (7/1 sec)”2,

This limit is achievable in principle, but current technology is far from it,
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Summary. Some future gravitational-wave antennas will be ~ 100
kilogram cylinders, whose end-to-end vibrations must be measured

19 centimeters) that they behave quantum

so accurately (107
mechanically. Moreover, the vibration amplitude must be measured
over and over again without perturbing it ("quantum nondemolition
measurement"), This contrasts with quantum chemistry, quantum
optics, or atomic, nuclear, and elementary particle physics where
one ugually makes measurements on an ensemble of identical

objects, and one cares not whether apy single object is perturbed or
destroyed by the measurement. This article describes th2 new
electronic techniques required for quentum nondemolition
measurements, and the theory underlying them, Quantum non-

demolition measurements may f£ind application elsewhere in science

and technelogy.
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FIGURE CAPTIONS
Fig. 1. A scheme for coupling a mechanical oscillator's (position)2 = ¥

to an clectromagnetic QRS.

Fig. 2. A scheme for stroboscoplc or continuous back-action-evading
measurements of a mechanical oscillator, This scheme was devised
independently in 1978 by V., B, Braginsky and by R, W. P. Drever, but

has not previously been published,



lﬂ}d

1

----------------------------
.....................................

d+x3 L

e A J U U




¢ '8

FLLL LT EL L

C/2
1+x /d

O

<
3

2L




	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A02_.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B07_.pdf
	0001B08.pdf
	0001B08_.pdf
	0001B09.pdf
	0001B09_.pdf
	0001B10.pdf
	0001B10_.pdf
	0001B11.pdf
	0001B11_.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf

