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ABSTRACT

Recent observations of cooling flare loops indicate that the differ-

ential emission measure, Q, of flare coronal and transition region plasma,

T > 10 5 K, has a much steeper dependence on temperature than in non-flare

regions. This result is not compatible with models in which conduction

F
dominates the cooling; hence, we investigate wadels in which radiation

dominates. We find thnt the radiative models predict Q a T2+1 , where R

measures the dependence of the radiative loss coefficient on temperature,

AM - T-D . We conclude that the radiative models are also incapable of

explaining the observations and suggest that large mass motions (velocities

of the order of the sound speed) may be required.
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I. INTRODUCTION

The high temperature coronal plasma produced by a flare is believed

to cool primarily by radiation and conduction to the chromosphere. Since

conductive losses increase rapidly with temperature, eeveral authors con-

cluded that conduction dominates radiation, at least during the initial

phase when T >- 10 7 K, e.g., Culhane at al. (1970), Moore and Datlowe (1975).

However, radiative losses are a strong function of density, and recent EUV

and soft x-ray observations have tended to yield increasingly higher density

estimates:n > 1011 CM-3 at T x 107 K, (see Moore at alp 1979). Hence, it

appears likely that radiative cooling may dominate in some flares even

during the initial cooling phase.

Strong evidence against the dominance of conduction has been obtained

from observations of relative line intensities of coronal and transition

region lines, i.e. 10 5 K < T < 10 7 K. Given a model for the cooling, the

temperature and density profiles and, hence, the emission measure pro-

file (differential emission measure) can be determined. This may then be

used to predict relative line intensities which can be compared with the

observations. Conductive dominated models have been investigated in detail

by Antiochos and Sturrock (1976, 1978). For a plane-parallel isobaric

atmosphere the differential emission measure,

Q(T) = A 
n2 IT 8SI-1	

(1)

is related directly to the conductive heat flux,

y^	
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rc = -K 2s	 (2)

V

where: A is the area of the emitting region; n is the electron density;

OT
as is the temperature gradient in the vertical direction; and the con-

ductivity K is given by ,4pitzer (1962):

K = 10-s TS/z	 (3)

Combining (1) - (3) yields:

10 -6ApZ

Q(T) = 4k2
	

T3/2IFcl 1	 (4)

where the equation of state,

p = 2knT	 (5)

has been used.

Antiochos and Sturrock find that for static conductive cooling, F x
c

const whereas for evaporative conduction F  - T. Defining 6 as the steep-

ness of the differential emission measure, Q(T) a T6 , equation (4) implies
1(

that 6 = 1.5 for static conduction and 6 = .5 for evaporative. Note that

these results apply only to a single coronal loop (of constant cross-section),

but that the observed emission measure may be due to the contributions of

several loops. However, if all the loops are conductively cooling then

the observed value of 6 must be < 1.5 since no individual loop can have

6 > 1.5.

,
ti:
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The conductive models are consistent with EUV observations of quiet

and active regions which indicate that 6 < 1.5, e.g., Jordan (1976), Withbroe

(1977). However., the models disagree with recent flare observations which

imply a very steep dependence of emission measure on temperature. Dere

et al. (1977), Dere and Cook (1979), and Widing (1979) find that in three

flares 6 > 3.0 for plasma at 10 5 ' 5 < T S 10 7 . Underwood et al. (1978) carried

out a detailed comparison of observed line intensities for the 1973 August 9

flare with predictions by the conductive models. By comparing intensities

directly they avoided any difficulties with deriving the differential

emission measure from the data (Craig and Brown 1976, Underwood and McKenzie

1977). They also found that only models with a large 6, > 3.0, could be

compatible with the data, and that the conductive models were definitely

in disagreement. It is difficult to reconcile a large 6 with conductive

cooling since equation (4) implies that for 6 > 1.5 the heat flux actually

increases as it passes through the transition region.

Dere and Cook (1979) have attempted to explain their observations

as due to the effect of a collection of loops. However, as pointed out

previously, no sum of loops can have a differential emission measure

steeper than, say 6 = 1.5, unless at least one loop has this value or

greater. Dere and Cook assume an infinite steepness, i.e., they assume

that each loop is perfertly isothermal and, hence, the differential emission

measure of each loop -s a delta function; but, such a procedure is physically

meaningless. Clearly, the temperature profile in each loop must be a

continuous function from its maximum value in the corona to its value in

the chromosphere, - 10 4 K, and must be determined by the physical processes

in the plasma, e.g., conduction and radiation. The point of the observations

in that they impose a restriction on the possible form of the temperature
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profile and, hence, on the physics of the loop. Dere and Cook have failed

to understand this point and have ignored the whole issue by simply assuming

an impossible temperature profile.

Underwood et. al. proposed that a possible explanation for the steep

profile is that it is due to radiative dominated cooling. The radiative

losses are known to be a strong function of temperature and, hence, may

be expected to result in the preferential depletion of low temperature

plasma over that at higher temperatures. In addition, these authors observe

large downward velocities at temperatures where the radiative losses peak,

T - 10 5 K. Downward velocities are also difficult to reconcile with con-

ductive dominated cooling, but they are compatible with the idea that thermal

instability creates large pressure gradients which subsequently generate

mass motions, (Antiochos 1979).

From the discussion above it appears likely that conductive models,

are invalid, at least, for some flarss. Therefore, in the next section

we develop models for the cooling of coronal flare plasma in which radiation

dominates and, in particular, we investigate the emission measure profiles

that such models Predict.

i
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II. MODELS

2.1 Approximations

Assuming a plane-parallel. geometry (a loop of constant cross-section),

and neglecting gravity, the heat equation can be expressed as:

Ft (3/2P + 2/2P v2 ) + as (:/2Pv3 + e/2pv + Pc) = -n 2A(T)	 (6)

where: A(T) is the radiative loss coefficient, e.g., Cox and Tucker 1969;

p is the mass density; and it is assumed that all flare heating has ended

so that there is no energy source term present. (The steady-state coronal

heating rate is negligible compared to the energy loss rate of flare plasma.)

Simultaneous with (6) the equations of continuity and momentum must be

solved. However, the resulting system of equations is sufficiently complex

that analytic general solutions are not possible. In addition, numerical

simulation  is impractical because an extremely fine spatial grid is required

to resolve the large temperature gradients expected at lower temperature.

Hence, we investigate only certain limiting, cases to the complete set of

equations.

There are three physical time scales that are relevant to the model;

the radiative cooling time

3/2p
Tr (T) E

n2A(T)

the conductive cooling time,

3/2_ j_
Tc (T) = Fc/H(T)

(7)

(8)
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(9)

f sound propagation time

Ta (T) c H(T)
C(T)

where R(T) is the temperature scale height,

H(T)	
1 0T 

-1

ITasl

and C(T) is the speed of sound. We assume throughout that radiation dominates

the cooling,

Tr (T) < < 1
T  (T)

for T in the range of interest, and hence, the heat flux in equation (6)

can be neglected. Two limiting cases can now be defined for the evolution

of the flare plasma:

the static	 T r (T) < < 1	 (12a)
T  (T)

and the isobaric	
T,. (T) > > 1	 (12b)
T s (T)

In the static case (12a), the radiative cooling is so rapid that even though

large pressure gradients are creates; due to the different cooling rates of

plasma at different temperatures, there is insufficient time for large

velocities to be generated. Therefore, if the plasma is initially static

it will remain so during the cooling phase. In. the isobaric case (12b),

the speed of sound is so large that mass motions cancel the build up of

i

(10)

(11)
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pressure gradients so that the plasma is approximately isobaric au(j all

velocities remain small compared to the speed of sound.

Conditions (11) and (12a) or (12b) apply to flares with a high coronal

density as in the 1973 August 9 event. Assuming that !t(T) a 10" 22 ' 6 for

T - 10 7 K yields:

T	 T7/2

r = 10 16 	(13)

T 
	 (nH) 2

and

T	 T3 /2

r = 10 11 ' 3	 (14)
T s	(nH)

Hence, for T = 10 7 K and It = 10 9 ' 6 cm, radiation dominates of n > 1010.9

cm-3 . The isobaric case is valid if 1012.5 > n > 10 16 ' 9 , whereas the static

case }colds of n > 1012'5 cm3 . However, these numbers are highly variable

since equations (13) and (14) indicate that T r /T c and Tr/T a are sensitive

functions of T, n and H, which are not accurately measured. In addition,

the plasma parameters vary with time, therefore, each of the radiative

cases may be valid only over a limited range of the evolution.

The important points of (13) and (14) are that conditions (11) and

(12) are mutually consistant and that both of the radiative cases are

possible in view of the uncertainties in T, n and 11. Even though neither

of the radiative models is complete, much can be gained by examining these

simple models before attempting extensive numerical simulations; in par-

ticulac:, it will be possible to determine whether radiative cooling can

produce a steep emission measure profile.

2.2 Static Radiative Cooling

Along with assumptions (11) and (12a) initial conditions must be specified
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on the plasma profiles. For simplicity, and in Ardor to be consistent

with assumptions (12a), we assume that the plasma is initially static

and isobaric,

v(s,0) - 0 and 
2s 

(s,0) = 0	 (15)

Rather than specifying the initial temperature profile, it is equivalent

t	 to specify the initial emission measure profile. This is assumed to be

given by the static conductive model of Antiochos and Sturrock 1976:

(To /Tm)s /2

	

Qo(To) = (Zn2m V)	 (16)
11-(To

where V is the volume of the loop; n m and Tm are the density and temperature
i

at the .loop apex (the minimum and maximum value resp.); and the subscript

'"o" indicates that the variable is to be evaluated at the time t = 0.

M	 By using (16) as the initial profile, the physical situation that is being

investigated corresponds to that of a flare loop that is initially cooling
h
s	 by conductiva, but then radiation cooling begins to dominate and, hence,

the temperature profile changes. The evolution of the profile and of the
tf,

{	 differential emission measure is _calculated below.

Using (11), (12a) and (15) the plasma equations reduce to:

an
z

	2t (s,t)	 0	 (17a)

4

p	

2 
at P (s,t)	 -n 2A(T)	 (17b)

3

s	 .
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and the equation of state, (5).

Assuming a simple power law form for the radiative losses:

A(T) . LT--t	 (18)

where L and R are constants, equation (17) can be solved analytically to

yield T(s,t):

(1 + Q) C 1/R+1
'r(s,t) = To (s) 1 -	 (19)

C	 'rr(TO)

where Tr (To) is the radiative cooling time, equation (7), for plasma at

temperature T0:

Tr(T0) °
(60

P 
L (To(s))-£_ z
	

(20)
0

The differential emission measure, equation (1), can now be determined.

Expressed as a function of T and t it is giver; by:

Qo (To) Tk+1

Tole+1[1 + t/Tr(To)J

where To i.s also considered as a function to T and t, and is obtained

by solving equation (19) for To(T,t).

In Figure (1), rj is plotted as a function of T/Tm at the times t =

0 and t i and for the value of 2 = 1.5. This is a somewhat larger value

for R than is currently accepted (e.g., Roener et al. 1978), however, we

selected it so that the effect of radiative cooling could be clearly

visible in the figure. The time t i was chosen so that the maximum temper-

ature has decreased by 10% from its initial value, i.e., T(s m , t l ) =

Y
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.9 To (sm)	 ,9 Tm, where sm is the position of the loop apex.

As noted previously, the initial profileQo (To) has a value of 6	 1.5,

except near the singular point To . T  where 6 becomes infinite. This

singularity has no physical significance (it does not mean that the iuten;tity

of lines formed at this temperature are infinite); it simply reflects the

mathematical fact that at a tempa.rature maximum the temperature gradient

vanishes and, hence, the transformation from  to T implicit in the defi-

nition of Q, equation (1), is no longer valid. The emission measure Q

cannot b6 :sad to calculate line intensities near these temperatures, one

must use the temperature and density profiles directly. If this is done,

one notes no significant deviation from the Q  m T0" S relation, e.g.,

Underwood at al. (1978).';

It 'r r-.ident from the figure that radiative cooling can produce a

steep emission measure profile, at least, for the value of R = 1.5. The

curve for Q(T,t l ) indicates that 6(t,) - 2.5 except near the singular

point T = .9 Tm . This result can be obtained directly from equations

(19) and (21). For T(s,t l )/TO (s) << 1, i.e., after a significant amount

of cooling has occurred, equation (19) implies that T o (T,t ) is approximately

independent of T and, thus, equation (21) implies that Q(T,t,) a TR+1.

On the other hand for T(s,t l )/T0(s) x 1, i.e., for material that has cooled

very little, then equations (19) and (21) imply that Q x Q  as expected.

Although at t = t i the hottest plasma has a temperature only 10% less than

its initial value, material at lower temperatures have cooled relatively

much more due to the strong temperature dependence of the radiative cooling

time, equation (20). For example, the plasma with temperature T(t,) =

10- 1 TI had an initial temperature of T o b .7 Tm . Thus, the condition

that T(s,t,)/T0(s) << 1 is valid for all temperatures except, again,

-	 J
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for a negligibly small interval near the maximum. We conclude, therefore,
t

that for static radiative cooling the steepness of the differential emission

measure is given by d - R + 1.

2.3 Isobaric Radiative Cooling

Under assumptions (11) and (12b) the plasma equations become:

an + Bs3 = 0	 (22a)

a= U	 (22b)

and	 2 at + 2 2s = -n
2A(T)	 (22c)

Using the approximation for the radiative losses (18), the set above may

be combined to yield a single equation:Lp

Sp dt
[(2 n + 7) 

\2s /2 - 
2(R + 2) Y as

2 ] + IN2

 Ly (ay)2

as +

 a2 y	 ay a2y a2a'say
(2 + 2)	 + — — - — — = U	 (23)

aS 2	at a52 al 	 a.S

where y is defined as,

y E TR+2	(24)

Equation (23) is too complex to solve generally for arbitrary initial
a

conditions; however, particular solutions may be obtained by separation

of variables. Letting,

1

i	 Y
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R+z
y(s,t) - T(0,0) 0(t) F(s),

and
	

P(t) = Po CO,

equation (23) reduces to:

5 T d0 / d 2 F,	 dF2` T 0 doo -1F	 1+ 0
3 ¢ dt `` dsz 	dS	 3 ^ 2 dt

r dt 2 	d2F	 dZF	 1 dF'
c2Z+7) — -2(t +2)F-- +(R+2)—+-- =0

(Is	 dsz	 ds2	 F ds

where

3/2 Po
T -

o	 n 2 (SIn 0) A(T(Sm,O))

is the initial radiative cooling time scale of the hottest plasma.

A two parameter family of solutions for (26) can be obtained by setting

the two time dependent factors to constants. Three equations result: two

coupled first order rq,iations which can be integrated completely to yield

the time dependence of the temperature and pressure (i.e., 0(t) and ^(t)),

and one second order equation which can be integrated once to yield the

differential emission measure (i.e., dAL
 as a function of F). The solutions

to (26) are:

	

0(t) _ (.1 + r)t)'w	(27a)

	

VO _ (1 + nt)-v^r	 (27b)

(24)

(25)

(26)

(27)
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d _ (1 + u ) -g N) dg (0)	 -1/R+z (g + u)g(v)	 (28)
ds	 ds

where p and v are the two arbitrary parameters, and g and n are given by:

3(l +v) 	A+3
g(v) _	 +

(2R-1)v + 2R + 4 R + 2

and

3(R + 2)

n - —	 (30)
((29-1)v + 2R + 4)U To

Equation (28) can be integrated (at least numerically) to yield the temper-

ature profile; however, we at.e more interested in expressing the emission

measure profile an a function of temperature since that is the observed

quantity. Letting T s be the spatial dependence of the temperature,

1/R+z

	

T  = ^ (s)
	

(31)

yields:

n 2 (0,0)	 24V Z+2	
T R+z+u g(v)

Q(T , t ) =	 0(t)	
T R+i( s	 1	 (32)

dTs (0)	 s 1 1+ u 1

ds

Equation (34) is the main result of the isobaric model. We wish to

determine whether a steep dependence of Q on T can be obtained for par-

ticular values of the parameters p and V. It is evident from (32) that the

steepest dependence is obtained if
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M « T8k+2 and g(V) < 0	 (33)

ISince in that case, Q - Tsk+t +(k+2)gI, But, it is shown below that (33)

implies physically unacceptable solutions.

Using (22), the velocity can be related to the temperature gradient;

viz,

dT	 3
v s = _ _ 0 ' N Ts-k-t (Tsk+2 + 11)	 (34)

ds	 5T 
Oil

In crder that the velocity be directed opposite to the temperature

gradient; i.e., material moves downward as observed, we require,

dT
v	 s < 0	 (35)

ds

Now, assuming that lul < Ts^'+2 implies we must have U>0 so that (35) is

consistent with (34). However, we also require that the temperature and

pressure, 0(t) and $(t), decrease in time, i.e., the plasma is cooling.

From (27), (30) and that u is positive, this requirement implies that either

V > 0 and (2k-1)v + 2k+4 > 0
	

(36a)

or

4	 v < -1 and (2k-1)V + 22+4 < 0
	

(36b)

:

But, if either case (36a) or 36b) is valid, g(v) must be positive, equation
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(29). Therefore, a physically acceptable solution with jpj < T ak+^ is

not possible unless g > 0, which is contrary to what is required, (33),

for a steep profile.

From the discussion above it is evident that the only solutions of

interest are those with 11il > T aR+z . In that case, Q a TaR +I over almost

all the range of Ts . To illustrate this point the dependence of Q on Ta,

i.e., TsR+t (TaR+2 + u) -g , is plotted in Figure 2 as a function of I  for

the particular parameters: R = 1.5, p = -2 with v - -2, and u = 1 with

V = 1 near the singular point I. = -U. We note that just as in the static

radiative model, 6 = 2.5 except near the temperature maximum at T  = 1.
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III. DISCUSSION

The main result of the previous section is that for radiatively

dominated cooling of corona and transition-region flare plasma the differ-

eutial emission measure Q ^ T
k+1 and, hence, 6 = R + 1. It appears unlikely

that this dependence can account tior the observations which imply 6 2 3.

Calculations of the radiative loss coefficient A(T) originally did indicate

a large value for k in the range J.0 6 S T < 107 K, e.g., Cox and Tucker's

(1969) results indicate Az 1.8. However, these authors did not include

the contribution from Pe ions to the radiative losses. More recent calcu-

lations (e. t;., Tucker and Koren 1971, Raymond et al. 1976) have tended to

yield increasingly smaller values for k due to the strong Pe lines formed

in the 10 6 - 10 7 K temperature interval. One of the most recent results

gives 6 = .5, Rosner at al. (1978) and, thus 6 z 1.5 which is no larger

than that predicted by conductive cooling models.

Therefore, we conclude that the proposal of Underwood et a].. (1978)

is incorrect; radiative cooling cannot produce the steep emission measure

profile observed in some flares. On the other hand, the conductive models

are also inadequate. 'there are several possible explanations for the

discrepancy. One is that the calculations of predicted line intensities

and of A(T) are inappropriate for flare plasma; however, this does not

seem likely. The calculations assume that the plasma is optically thin,

is in ionization equilibrium and has standard abundances. Although one

or more of these assumptions may be violated during the primary heating

phase, they should hold for the long-lived decay phase.

Another possibility is that flare heating is responsible for the steep

a

,
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profile. However, in that case strong heating would have to continue

well into the observed decay phase and have a very specific dependence

on density and temperature in order to reproduce the observations.

We believe that the most likely explanation (assuming the observations

are not simply due to instrumental error), is that the models developed

so far are inappropriate. Various assumptions nave been made; the main

one being that all plasma velocities are subsonic. This assumption is

common to both radiative models considered here, and to the conductive

dominated models, (Antiochos and Sturrock 1976, 1978). Supersonic velocities

have been observed in cooling flare plasma, but only at low temperatures

(^ 10 5 ' 6 K), below those for which the emission measure profile exhibits

a steep dependence (see Underwood et. al. 1978). However, velocities are

difficult to observe in higher temperature plasma so that large velocities

may be consistant with the data. We intend to investigate flare decay

models with supersonic velocities in a subsequent paper, (Antiochos and

Sturrock 1979).

:a
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FIGURE CAPTIONS

1. Graph of log Q versus log (T(s,t)/Tm) for the value of R = 1.5. The

solid curve refers to the time t = 0, i.e. the initial emission measure

profile, and the broken curve to the later time, t = tl.

2. Graph of the spatial dependence of log Q, i.E. log [T8R+t(T8Z+z + 0-931

versus log T  for two isobaric radi^tive models with k - 1.5. The solid

curve refers to the case with u = 1 and v = 1, and the broken to the

case with 1! = -2 and v = -2.
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