General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



L b B 2

JPL PUBLICATION 79-93

Spectral Characteristics

of Convolutionally
Coded Digital Signals

Dariush Divsalar
Marvin K. Simon

(NASA-CR-162295) SPECTRAL CHARACTERISTICS
OF CONVOLUTIONALLY CODED DIGITAL SIGNALS

(Jet Propulsion Lab.) 85 p HC AOS/MF AN1
CSCL 17B

August 1, 1979

National Aeronautics and
Space Administration

Jet Propulsion Laboratdry
California Institute of Technology
Pasadena, California

G3/32

N79-32412

- 2

Unclas
35794




JPL PUBLICATION 79-93

Spectral Characteristics
of Convolutionally
Coded Digital Signals

Dariush Divsalar
Marvin K. Simon

August 1, 1979

National Aeronautics and -
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California



I
II.i
1,
IV.

VI.
VIL.
vm.

TABLE OF CONTENTS

Introduction =« ¢« + ¢ ¢« ¢ ¢« ¢ ¢ o 0 . € 6 % e s s 8 e e e s o b v e s s e e
Convolutional Encoder Model « + + ¢« ¢ o 0o v v v v v v v v oo ‘e e
Spectrum of a Cyclostationary Pulse Stream =« « .« « .« ...

: :~Epcoder Output Spectrum for Independent Binary Symbol Input

A, The Case of a Purely Random Data Input (a = 0, p* = 1/2)
B. The Case of an Unbalanced NRZ Input (3 # 0, p* # 1/2) .
Encoder Output Spectrum for First Order Markov Input . . .

Ericoder Qutput Spectrum in the Presence of Alternate

Symbol Inversion .......... c et e e b e e e e P
Experimental Results . . ... .. et e e C ot e e e e e e
Observations and Conclusions . ............ ¢ et aas e

References . . v« vt v i 6 o v 0 ot 0 0 o to o s 8 o e et o ss o

Aﬁpendix A: The Computation of Power Spectral Density for
Synchronous Data Pulse Streams . ¢« .o o oo v ot o0t 0 s 000

Appendix B: Costas Loop Tracking Performance for a
Convolutionally Encoded Suppressed Carrier Input Modulation

iii

oooooo

.13
18

33

44
56
56
61

62

77



Figures

1.

6a.

6b.

6c.

Ta.

b,

Tc.

8a.

8b.

8c.

9a.
9b.
9c.
9d.

LIST OF FIGURES

A General Constraint Length K, Rate b/n Convolutional

Code |, i vt e e e e e e e e e e e e e e e e e e e e e e e

An Illustration of the Code Constraints of Equation (27)

Spectrum for Best Rate 1/3; Constraint Length 3
Convolutional Code; Dotted Curve is Spectrum of NRZ

Spectrum for Best Rate 1/4; Constraint Length 3
Convolutional Code; Dotted Curve is Spectrum of NRZ

Spectrum for Best Rate 1/3, Constraint Length 3

Convolutional Code .« & v v v v v v bt e e e e e e e e e e e e e e e e e e

Spectrum for Best Rate 1/2, Constraint Length 3

Convolutional Code; p* =0.1. .. ... .... e e e e e e e

Spectrum for Best Rate 1/2, Constraint Length 3

Convolutional Code; p* = 0.3 . . . . .. ittt e et e

Spectrum for Best Rate 1/2, Constraint Length 3

Convolutional Code; p* = 0.5 ., . .. .. .. ... v enn.. e

Spectrum for Best Rate 1/2, Constraint Length 7

Convolutional Code; p*=0.1 . ............ e e e e e e

Spectrum for Best Rate 1/2, Constraint Length 7

Convolutional Code; p* = 0.2 ., ., .. . .. . v i i,

Spectrum for Best Rate 1/2, Constraint Length 7
Convolutional Code; pP* = 0.3 . ., . . . .. i ittt e e e

Spectrum for Best Rate 1/2, Constraint Length 7

Convolutional Code; Sampler Reversed; p* = 0.1

Spectrum for Best Rate 1/2, Constraint Length 7

Convolutional Code; Sampler Reversed; p* = 0.2

Spectrum for Best Rate 1/2, Constraint Length 7

Convolutional Code; Sampler Reversed; p* = 0.3

Power Spectrum of First Order Markov Source;
Power Spectrum of First Order Markov Source;

Power Spectrum of First Order Markov Source;

- Power Spectrum of First Order Markov Source;

iv

Pt =

pt

Pt =

Pt =

---------

--------------

--------------

---------

ooooooooo

12

16

17

19

22

23

24

26

a7

28

30

31

32
39
40
41
42



LIST OF FIGURES (contd)

Figures .
9e. Power Spectrum of First Order Markov Source; Py = 6.9 ........

10a, Spectrum for Best Rate 1/2, Constraint Length 3 Convolutional
Code; First Order Markov Source Input; p; = 0.1 ... .. e e e

10b. Spectrum for Best Rate 1/2, Constraint Length 3 Convolutional
Code; First Order Markov Source Input; p; = 0.3 .., ........

10c. Spectrum for Best Rate 1/2, Constraint Length 3 Convolutional
Code; First Order Markov Source Input; pt = 0.7 e e e e e e e

10d. Spectrum for Best Rate 1/2, Constraint Length 3 Convolutional
Code; First Order Markov Source Input; p; =0.9 ., .. ........

1la. An Optimum Convolutional Encoder with b =1, n =3, and K = 3
1lb. An Equivalent Encoder withb =2, n=6, and K=3 .. .........

12. Spectrum for Best Rate 1/4, Constraint Length 3 Convolutional
Code; (Alternate Symbol Inversion) . .. .. . .. v v v v v v

13a. Output Spectrum of the Code with Unbalanced NRZ
Input; p* = 0.2; S¢ = 2,398; Syq =0.006 ... ...
‘max max

13b. Output Spectrum of the Code with Unbalanced NRZ
Input (Alternate Symbol Inversion) p* = 0. 2; S = 0,985,

Sd -0002 ¢ 9+ e 8t + & 0 4 ¢ ¢ 5 e o @ 'tolccoalycnugttu

14. Expemmental Measurement of Input and Output Spectra for
Best Rate 1/4, Constraint Length 3 Convolutional Code

(Logarithmic Scale) + « v o ¢ o v o o v 0 t 0o o v v s oo o n s oeoeeoeoes

15. Experimental Measurement of Input and Qutput Spectra for
Best Rate 1/4, Constraint Length 3 Convolutional Code

(Linearscale)..-.--............-........-..o..-.

16. Squaring Loss versus the Ratio of 3 dB Cutoff Frequency
to Data (Symbol) Rate; Detection Symbol Signal-to-Noise

RathT/N T S 1 < T

43

45

46

47

48
51

51

53

54

55

57

58

60



ABSTRACT

The power spectral density of the output symbol sequence of a convolu-
tional encoder is computed for two different input symbol stream source
models, namely, an NRZ signaling format and a first order Markov source,
In the former, the two signaling states of the binary wav'eforrr. are not neces-
sarily assumed to occur with equial‘ probability, The effects of alternate
symbol inversion on this spectrum are also considered., The mathematical
results are illustrated with many examples corresponding to optimal perform-
ance codes, It is demonstrated that only for the case of a purely random input
source (e.g., NRZ data with equiprobable symbols), and a particular class of
codes, is the output spectrum identical to the input spectrum except for a
frequency scaling (expansion) by the reciprocal of the code rate, In all other
cases, the output spectrum is sufficiently changed relative to the input spec-
trum that the commonly quoted statement ''a convolutionai encoder produces a

bandwidth expansion by a factor equal to the reciprocal of the code rate' must

be exercised with care,



1, Introduction

While much attention has been paid toward constructing convolutional
codes that achieve optimum error probability performance, very little attention,
if any, has been paid toward examining the spectral properties of the corre-
sponding encoder outputs, Perhaps the reason for this is that for most of the
optimum performance codes found thus far, the output encoder spectrum,
corresponding to a random NRZ input, is merely a frequens:y scaled version
of the input (sin x/x)z spectrum, Stated another way, a purely random input
gives a purely random output with a bandwidth expansion equal to the reciprocal
of the code rate, |

In this report, we first examine the conditions (élass of codes) for which
the above is not a true statement, Indeed, it is shown that some of the optimum
performance codes fall into this category. In these instances, the bandwidth
expansion produced by the encoder can be considerably less than the reciprocal
of the code rate, A discussion of the implications of this statement will be
given in Section VII titled "Observations and Conclusions, '

Following the above considerations, we determine the spectral character-
istics of the convolutional encoder output when the input is not a purely random
NRZ source., First, we generalize to the case where the input still has an NRZ
format; however, the two signaling states of the binary waveform are not
assumed to occur with equal probability, i,e,, a so-called unbalanced NRZ
source, Since an unbalanced NRZ source has a symbol transition density wiiich
is less than 1/2, we next generalize to a first-order Ma.rkov input which éllows
symbol transition densities anywhere between 0 and 1, Finally, the effects of

alternate symbol inversion on encoder output spectrum are considered,



We begin the report by noting that the symbol sequence at the output of a

convolutional encoder is a cyclosiationarz process (Ref, 1) with period equal to

the number of output interleaving taps. After defining the general model of a
convolutional encoder, we then give a general expression for the spectrum of a
cycldstationary process and show how it is applied to the convolutional encoder
output sequence. From this point on, the report focuses on all of the special

cases brought out in the above discussion,

II, _Convqlut_:ional Encoder Model

Consider a convolutional encoder with constraint length K and rate b/n,
as shown in Fig, 1. In the mth information interval, .b information symbols
ar‘nb+j; j=0,1,2,..., b-1 enter the encoder and n channel symbols an+p;

p=12,..., nexit the encoder, The structure of such a convolutional encoder

can also be defined by a generator (connection) matrix, namely

gl.l gl.z ® e o ¢ o+ gl’Kb

82,182,2° ¢+ £2,Kb

Q
I

8n,18n,2* ¢ ¢+ B, Kb

where g; j is either one or zero'depending, respectively, on whether the ith

L4
modulo summer is connected to the jth shift register stage. For mathematical
convenience, we shall assume that both the input symbols {amb-i-‘j} and the out-

put symbols {an+p} take on values plus and minus one. This allows module 2




—] | | -]

]

0 ’ o : }J = 7ol

Figure 1, A general constraint length K, rate b/n convolutional code

summation operations to be replaced by algebraic products. Thus, the encoder

of Fig. 1 has the input-output relation

Kb

an+p = I_II [a(m+1)b-i]

g

P i

(1)

Clearly the output sequence {an'i'p} is cyclostationary with period n,

v



III, Spectrum of a Cyclostationary Pulse Stream

By definition (Ref. 1), a sequence is cyclostationary with period n, if for

any p and A

E X nept = E X} (2)
and

E X np an+p+]\} = E {xpxpﬂ} ;. m=0, %], £2, ,,.,.. (3)

If, from the sequence {Xi‘, we form a synchronous data pulse stream

m(t) = Y X, p(t-iT) (4)

i =aoo

where p(t) is the elementary signal (pulse shape), then the continuous component
of the power spectral density of m(t) can be expressed in the form

(Appendix A)

S (f) = Sp(f) Sx(f) (5)
where Sp(f) is a pulse shape factor defined by
-4 |pi|? |
5,0 = 1 vP(f)l (6)

with P(f) the Fourier transform of p(t) and

n ©0
_1 Z -j2TALT '
SX(f) == y cov (Xp, XP""A) e (7)'
p:l A oo



In (7), cov (Xp' X +)\) is the covariance function of the sequence {Xi} defined

by

and the overbar denotes expectation,

Letting

A=n2+q-p; q=1,2.....pn (9)

then we can rewrite equation (7) as

n n ©0

Sy lf) = % Z Z Z cov (Xp. Xn2+q) o-J2T(nl+q-p)iT (10)

p:l q:]_ =aco

Eq. (10) will be more useful later, since it shows that Xp is the symbol

generated from the pth interleaving tap output and Xn£+q is the symbol

generated from the g h interleaving tap output,

From (2) and (3) we note that

cov (Xp‘ Xn£+q) = cov (Xp—nﬂ ) Xq) (11) |
Thus, using (11), we can rewrite (10) in the more compact form
n n Q0
1
Sy () = Z z €g cov (X, Xy, ) cos [Z‘rr(nﬂ +q-p) fT]
p=1 g=1 £=0
(12)



where € is the Neumann factor defined by

1; £2=0
2 ; otherwise

We shall define the ""memory' of the cyclostationary process as the smallest

integer £% such that cov (Xp X ) = 0 for f >p0%*.

nf +q

If {Xi} is not zero mean, then in addition to the continuous power spec-
trum of (5), it will also have a discrete spectral component Sd(f), which is

given (Appendix A) as

o§ ’ n . 2Tik
1 R G B T
S4(f) = > E P(ﬁ) X, e
(nT) k=<0 i=1
n 2Tmk
= J n k :
X Xm e 6 (f Gy (14)

which after some simplification can be reduced to

[ &

*(35)

) 1 =

o

= . f2mmk\| (. Xk f
+ Xm s1n( N ) ,é(f-nT) (15)



IV, Encoder Output Spectrum for Independent Binary Symbol Input

Consider the input to the encoder of Fig, 1 to be a sequence of independent

binary symbols {aj} that take on values =1 with probabilities
Pr {aj =<1} =1- Pr {aj = 1} = p* (16a)

and average symbol value

e

Efa}=1-2p*%3 (16b)

The transition probability which characterizes this sequence is then
py = 2p* (1 - p¥) (17)

Letting m = 0 in (1) with no loss in generality, then since for independent
random variables, the expectation of their product equals the product of their

expectations, we have
_ _a o
xp:(a)P=(1-zp=:=)P; p=1,2,....,n (18)

where

np

a
p

Kb | ~
Z Bh, i (19)
i=1 ;



i,e,, the algebraic sum of the number of +1's in the pth row of G, Furthermore,

it can be shown that

[ a te =28 () o ta
(a)P 9 Pe @ P 9% g<p<kal

 a_ta =28 _{(-1) a_ta
{ G) 9 P qp -3 1 P -(K-1)<£<0

cov (X , Xn£+q)
\ 0 ; otherwise
(20)
where
(K-D)b .
(2) E q, i+fb (21)
i=1

i,e., the cross correlation of the pth row* of G with the'qth row shifted by Ib
elements, Finally, substituting (18) and (20) into (12) and (15) gives the desired
results for the continuous and discrete components of the encoder output

spectrum, namely

n.

n K-1
a ta =23 (£) a o
w0 =3 3 20 3 o (@ ]
p:

[
e
i
Yy
=
1]
o

X cos [ZW (nf+q - p) fT]

sinnfT 2
Sc(f) =T ( TfT ) Sx(f) - (22)

*The cross correlation is performed only on the parts cf the pth and shifted
gth rows whose elements overlap,



and

= in Tk n @ -
1 -
Sd(f) == E _ 4 E (a) M cos ( 1r;nk)
n = 00 -IT- m=1l

(23)

In (22) and (23), we have also assumed that p(t) is a unit rectangular pulse so

that the shape factor of (6) is given by

. 2
s:.n7rfT) (24)

Sp(f) =T ( TfT
Note that the results in (22) and (23) are functions of only: (1) the a priori
symbol probability p* [through & of (16)] and (2) the sums and cross correla-
tions of the rows of the generator matrix G [through (19) and (21)].:
Several interesting points can be deduced from (22), First, note from

1 nd (21) that for p = q and £ = 0, the exponenta +a = 2 £
(19) and (21) P=q . the exponenta +a_ - 26 (1) _ g

independent of the code, Thus, for these terms

(a)cxpmq-Zqu(ﬁ) -1 | (25)

for all a (including zero). It is also possible that the above exponent can be

zero for other combinations of p» q9» and £, To see the class of codes for

10



which this can be true, we first rewrite the exponent in a different form,

From (19) and (21)

(K-£)b

Kb
a, tag - Zqu(E) = Z : (8,5 T 8q,3) - 2 Z €p,i 8q, it
i=1 i=1

Kb Zb
= Z gpni +Z gqai
i:(K_-Z)b'f‘l i=1
(K-Db
* Z [gp,i Eqeitih ~ “Bp, i gq,iHZb]
i=1 ‘
Kb £b
= Z gpa 1 N 2: gcbi
i=(K-£)b+1 i=1
(K-2)b

+ Z [gp,‘i - gq,i+2b] ’
i=1

(26)

The latter equality in (26) makes use of the fact that the elements of G are all
either zero or one, i.‘é.z, if x and y can only take on values zero and one, then
xty~-2xy = (x-y)Z.

Each of the three summations in (26) is non=negative. Thus, in order for
(26) to equal zero, each of these summations must itself be zero, Moreover,
since the elements in each of the sums are non-negative, then the sum can be

zero only if each element in each sum is zero., Thus, in conclusion, the

11



exponent ap + aq - Zﬁpq(f) can be zero only for those values of p, q, and { for

which (see Fig. 2)

0; i=(K-g)b+1)(K"Q)b+20noole

o
[}

0; i-"»'l,Zp...oﬂb

aq
]

Bpyi = Bg,itb i=1,2,... ' (K -£) b

(27)
‘This defines a class of convolutional codes whose significance will shortly
become apparent, In the meantime it is sufficient to remark tﬁat if the code is
such that (27) can be satisfied for any values of p, q, and £ (other than p=q

and £ = 0), then (25) is satisfied for all a (again including zero),

qth ROW OF G:

pth ROW OF G:
i 1 o 1 0 o o o ® o o & o o 1 0 0oees e

ks 1h
Figure 2, An Illustration of the Code Cbnstraints of Equation (27)

12



Returning to (22), we further note that independent of the code, the

a +ta
exponent ozp + a/q is never equal to zero, Thus, the term (3) P 9 will be
equal to one only when a is equal to one and will vanish when 2 is equal to

zero (i,e., p* = 1/2). This last statement is crucial to the results which

now follow,

A, The Case of a Purely Random Data Input (a2 = 0, p* = 1/2)

Cons.ider the special case of a random NRZ encoder input for which
p* = 1/2 and correspondingly, from (16), & =0, If the code is such that (27) is
not satisfied for any combination of p, q, and £ (other than p = q and £ = 0), then
from the previous discussion, the only nonzero terms in (22) will be the n terms
corresponding to p = q and £ = 0 for which (25) applies. Thus, making use of

(25) in (22) gives the simple result

SX(f) =1 (28)

or

. 2
51n7rfT) (29)

Sc(f) =T (TTfT

Furthermore, the discrete spectrum Sd(f) “of (23) vanishes. Thus, we reach

the first important conclusion, namely, that for all codes which do not satisfy

(27), a random NRZ data input results in a random NRZ data output scaled

(expanded) in frequency by the reciprocal of the code rate, i.e., n/b, We

define this class of codes as '"uncorrelated convolutional codes, '™

*Note, all rate 1/2, noncatastrophic convolutional codes are uncorrelated
codes,

13



If, on the other hand, the code is such that (27) can be satisfied for at
least one combination of p, q,lﬁ (other than p = q and £ = 0), then Sx(f) of (22)
will be frequency dependent and the encoder output spectrum will not be merely
a frequency scaled version of the input. In fact, letting {p. g, 2} denote the
set of combinations of p, q, £ (other than p = q and £ = 0) for which (27) can be
Vsatlsﬁed, then (22) simplifies to
S (f) = % Z Z Z € cos [27 (ne + q- p) fTJ (30)

{ps s 2}
Note that the discrete spectrum Sd(f) of (23) still vanishes, since « #O

m=1,2,,..,n; (i.e., independent of the cod'e‘, the output symbol sequence
cannot have a discrete spectrum for a purely random input),
We may now state the second important conclusion, Defining the class of

codes which satisfy (27) (for at least one combination of ps 9, £ other than p = g

and £ = 0) as ''correlated convolutional codes, ' then we observe that for such

codes the encoder output spectrum will differ (in form) from the input spectrum,

At this point, it is instructive to give an example of a ''correlated con-
volutional code'" and caiculate its cutput spectrum for a random NRZ input,
Clearly, from Fig. 2, any code whose generator matrix is such that two or
more rows are identical satisfies (27) with Q = 0 and is thus a correlated con-
volutional code. In a recent paper by Larsen (Ref, 2), short éénstraint length
(up to and including K = 14) nonéééastrophic codes with mé.ximal free distance
for rateé 1/2, 1/3, and 1/4 were investigated and tabulated, Indeed, for rate
1/3 (n = 3), the tabulation includes only one correlated convolutional code

which occurs for K = 3 (b = 1) and has the generator matrix

1 0 1
G=1|1 1 1 o 0 (31)
1 1 1

14



This code was first found by Odenwalder (Ref. 3), Since rows two and three of
G are identical, we must evaluate (30) for the two combinations p =2, q = 3,

£=0, and p=3, q =3, £ =0, Doing so results in the simple result

Sxlf) = 1+% cos 2msT | (32)

Multiplying SX(f) of (32) by Sp(f) of (24) gives the encoder output spectrum
Sc(f) which is plotted in Fig, 3.

For rate 1/4 (n = 4), the tabulation in Ref, 2 reveals three correlated
convolutional codes corresponding to constraint lengths K = 3, 4, and 7. For
the K =3 code, for example, the free distance is ten (this is the maximum

achievable), and the generator matrix is given by

1 0 1
1 1 1
G = (33)
1 1 1
1 1 1
b -

which is identical to (31) except for the addition of another identical row. Thus,

following the same procedure as above, we find that

Sylf) = 1+ %[2 cos 27fT + cos 47fT] | (34)

which together with (24) gives the output encoder spectrum illustrated in

Fig, 4.

15



Code Generator Matrix

= 8 3
5 3 3
3 1§
2.00
1.80
1.60
1.40
.20
1.00 'H_
0.80
0.60 +
0.40 ' 5
*
» v
'S
0.20
w17 ]
0.00 Ad P { ‘
=4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.
T
Figure 3, Spectrum for Best Rate 1/3; Constraint Length 3

Convolutional Code; Dotted Curve is Spectrum of NRZ
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S (f)/T

3.00

Code Generator Matrix

P e el b
e e O
Il el el

2.50

2.00

1.50

1.00

A

.50

e $°®

i

1

4

0.004
-4.00

P .
-3.00 ~2.00

-1.00

0.00 1.00 2.00

£T

Figure 4, Spectrum for Best Rate 1/4; Constraint Length 3
Convolutional Code; Dotted Curve is Spectrum of NRZ
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Another very interesting result may be gleaned from the simple examples
just presented, Since codes whose generator matrix have at least two identical
rows are a subclass of correlated convolutional codes for which £ = 0, then for

these codes (30) furthe: simplifies to’

Slf)=1+3 ) cos [27 (q - p) £T] (35)

{Po ICI}

where the set {p,q} now represents all pairs of integers cérreSponding to ﬁairs
of identical rows in G, Since (34) only depends on the difference q-p, and small
valueé of g-p correspond to less oscillatory behavior of Sx(f), then it is clearly
desirable from a spectral concentration standpoint to have the identical rows

packed close together. For example, if the bottom row of G in (31) is moved to

the top, then p ~ q = 2 and the spectrum Sy (f) becomes
S (f) =1+ 2 cos 4nfT {36)
X 3

which is illustrated in Fig, 5,

The important point to realize from the above is that permuting the rows

of the generator matrix of a convolutional code can be used to change the encoder

output spectrum without any effect on the bit error probability performance of

the code, Further examples and extensions of this statement will be given

along with the results that follow,

B, ‘The Case of an Unbalanced NRZ Input‘.(i £0, pk#1/2)

Wé now investigate, by example, the effect of unbalance in the probability -

distribution of the input on the encoder output spectrum, Consider first the

18
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simple case of the

matrix is given by

For this code al =

-2 g); =0, 1,
qu() :

optimum rate 1/2, constraint length 3 code whose generator

0 1
] (37)

2, a, = 3 and the sets of exponents o« +a_and o_ +a
2 P q P 9

q
2; p»q = 1,2 is tabulated below:

tlp|alzt+q-p|% *% | % T % " 2P
ol1]1 0 4 0
oj1]z2 1 5 1
0of2]1 -1 5 1
0{21]2 0 6 0
1111 2 4 4
(38)
112 3 5 3
1|21 1 5 3
1|22 2 6 2
2 {11 4 4 2
2112 5 5 3
2 |21 3 5 3
2lz2121 4 I 6 4
‘ Usiﬁg the results of (38) in (22) gives the élosed form result
s f) =1 -4 (3% - 3%) + (3 +3% - 239) cos 2nfT
+ (52 - 56) cos 4mfT + 2 (53 - ‘55)' cos 67TfT
+ -(52 - 56) cos 87fT + (5.3 - 55) cas 107fT (39)

20



Since this code is an uncorrelated convolutional code, (30) should reduce to
SX(_f) = 1 for @ = 0 which indeed it does,

Figure 6 is an illustration of the continuous component of the encoder
output spectrum Sc(f) [obtained by multiplying Sx(f) of (39) by Sp(f) of (24)] for
various values of p* = (1 - 2)/2, We observe that the spectrum becomes more
and more concentrated as p* decreases, The continuous component of the input
spectrum, on the other hand, remains unaltered in shape as p* is varied, In
particular, for a unit power unbalanced NRZ input, the power spectral density

is given by (Ref, 4)

sin 7{T, 2
(40)

U 2 als ats
S(f) = (1 = 2p*)~ §(f) + 4p* (1 - p%) Tb (-_wa
' b

where 'I'b is the input bit time.,

The discrete component of the output spectrum Sd(f) is easily found from

(23) to be
2 o 2 .
54(0) = (33 - 52) E | (;%{-) 5 (f - EILT) (41)
k=1,3,5...

As a second example, consider the optimum rate 1/2, constraint length

7 code whose generator matrix is given by (Ref, 3, 5)

1 1 110 0 I . -
G = ; ; (42)
1 01 1 0 11 SR
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Since for this code a; = ,42 = 5, then be;:aﬁse of this balance in the number of
ones in both rows of the matrix, we immediately see from (23) that the encoder
output will only contain a discrete spectrum at £ =0, i,e,, Sd(f) = (5)5 6 (£)*,
The continuous component of the output spectrum can once again be obtained

from (22) where Sy (f) is now given by

4 -6

;10 + (52 56 ;10) cos 27fT +’(5. +a - 2510) cos 47fT

Sx(f)=1-a +a -a

+2 (5.4 - 510) cos 67fT + 2 ('5.6 - 510) [cos 87fT + cos 147rfT]

4, -6

4 _8 ..1()) cos 107fT +(5, +a - 2510) cos 127fT

+(§ +a -2a

+2 (38 - 319 [cos 167£T + cos 207£T +% cos 227fT

+ cos 24%fT +% cos ZéﬂfT] + (56 + 58 - 2'510) cos 18nfT

(43)

Figure 7 is an illustration of the 4corresp01’1ding continuous spectrum SC (f) for
several values of p* = (1 = a)/2, As before, we observe that the output encoder
spectrum narrows as p* is decreased, |
An intere.st;ing‘thing now happens if, for example, we reverse the direct‘ior;
of the sampler (commﬁtator) at the output of the encoder, This is équivalel_lt to
intex"c.h‘angﬂihg the two rows in the G matrix of (42), Since the two rows still

contain the identical number of ones, i.e., @ =a, = 5, then the discrete

*For any code with @) = a3 = 4. ap & @, Eq. (23) will simplify to
S4(0) = (3)2 5 (6). '
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spectral component of the encoder output is unchanged, However, the continuous
component of the encoder output spectrum is not characterized by (43) but

rather by

Sylf)=1 - 310 4 (32 +3% - 2319) cos 2mfT

4

+ (5 + 56 - 2510) [cors 4%fT + cos 10mfT + cos 127m{T]

+(2° +3% - 23'°) [cos 6niT +cos 22mT]

! .

)

+2 ( 6 - 5.10) [cos 8mfT +-" cos 18ﬂfT]

2

+(3% +38 - 2319) cos 14meT

+2 (58 -»510) [cos 167fT + cos 20nfT

+ cos 24TET +-?f- cos 26wa]‘

(44)

The corresponding continuous spectrum component Sc(f,)b is illustrated in Fig. 8
for the saimé values of p* as in Fig, 7, Comparing these two figures, it is
difficult to draw any decisive conbiusiqns regarding their relative spectral
width othevr than to note that the two speétra are'quite different,

We conclude this se__ction by noting that reversing the sanaioier for the
rate 1/2, constraint lex:';gth 3 code characterized by G of (37) would nof élter the
spectrum, The reason for this conclusion is that the two rows of C_} have even
symmetry about their midpoint (i, e,; the elemven»ts in coklumn 2), This is not
true for the generator matrix of (42) axf;d 4in is indeed this lack of even symmetry

which makes the encoder output spectrum dependent on the sampler direction,
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V. Encoder Output Spectrum for First Order Markov Input
For the first order Markov case, we first transform the information bit
' sequence {aj} into a transition sequence {tj}, where tj =aja; g i=1;,2,...

The sequence {tj} is a stationary sequence of independent random variables

with

Pr{tj -1} =1- Pr{tj=1} = p,

= 4%
E{tj}—l-?.pt-t

(45)

where Py is the transition density, For any fand n 2 1 we have

) |
2 n tpaitl (46a)
i=1

2en

n
3in = 3y H m (46D)
i=1

Recalling from (1) that for m = 0,

=11 fopg) P (47)

then, substituting (46a) with £ =b - 1 into (47) results after simplification in
Kb-1

a a_ . ;
X (2p-1) P! n (tp- i) pitl (48)

i=1
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where

“p, i "AZ Ep, (49)

Note that @1 =a, of (19). Since the elements of the sequences {aj} and {tj}
9 ‘
can only take on values *1, then the algebraic sum of (49) can be replaced by

a modulo 2 sum, Defining

Kb
hp. i =§ CINE | (50)
j=i : ~

then (48) can be equivalently written as

Kb-1

ho .
X5 = (2p-1) i l_l (tp-1) pitt ' (51)

where @ denotes modulo 2 summation, Note that (SC) defines a ''modified
generator matrix" H with (0, 1) elements which is uniquely related to the connec-
tion matrix G, In fact, each element in H is merely the module 2 sum o‘f the
corresponding element in G with those in the remainder of that row, Using

(46b) we can similarly write
Kb-1

h : |
Xng+q s (ab-l) L n (tb-l-t-j) @ n Yo+1)bei (52)

j=1 i=l
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To evaluate the encoder output spectrum factor Sx(f) of (12), we require

the covariance of Xp of (51) and Xn2+q of (52), To compute this covariance we

first define

p ¢ Py (53)

Then, from (51),

- -P
X =(1 ‘hp,l) (t) P

o (54)
and
‘ —Yn ol2)
X X =11 - T P: 4
p “nl+q [ .'(hp, 1 @ hq, 1)]“) (55)
where for 1 € £ <K-1
{b+1 Kb
oag'? = Z (Bq,1 @ by ;) + Z (Pq i+1 @ By sgna)
i=2 : i=fb+2
Kb
Y
pal
i=(K-2)b+l
(56)
The result in (56) can be simplified by noting that for x and y both (0, 1)
variables,
x @ y=x+ty-2xy (57)
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| Thus,

Y =p +p -2t (B; 1<L<SK-1 58
Ps qw) pp pq gp’ q( ) ’ ( )
where
(K-0)b £b
A ) ‘
= . . - h 2 - Z 1 .

£p,qt? zé: hy i B ien =2 B, 1 |2 HID 2' 1 By, i (59)

i= iz

The relation in (58) can alrs'o be shown to hold for £=0 and £ 2 K in which case

(60)

Thus, using (54), (55), (57) and (58) and recognizing analogous symmetry

properties for £ <0 as used in obtaining (20), the desired covariance is given by

- p, tp, =28 ()
o P q Psq
1 - +
[ hp’1 hq.1 2h h 1] (t)

+
SRS ICLARTIEY:

2

cov (X X =
0+
[ Fatea 1-h h . +2h . h - Pq TRy =28, pl-1)
[ " Upel T Tqel T 7py qol](t)

en, ) @7y pco

(61)
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Note the similarity in form between (20) and (61)., The priniéiaal difference

between the two is that (20) corresponds to a cyclostationary process with

memory equal to

(61) is infinite.

K-l whereas the memory of the process characterized by

Finally, substituting (61) into (12) and performing considerable simplifi-

cation gives the desired result, analogous to (22), namely,

Sylf) =

S, () =

n n K-1
‘ 2.
= (Y=hy b1 *+2h, B ) €
p=l q=1 =

Xcos [ZTT (nf +q - p) £T]

n n
_p,. tp_ +Kb
+3'_>: E h _h ,(HP 9
n psl g, 1
p:l q:],

cos [Z?T (nK +q = p) fT] - ?b cos [ZTT (n (K-1) +q - p) fT]

2b

X 5
1-2% cos2mnfT +¢

. 2 |
v (222E) 5 0o )
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The discrete spectrum S’d(f) at the encoder output is obtained by

substituting ip of (54) into (15), Thus,

I 2
1 2 sin 15 ‘ n P 2 Tk
- — —_ \ TFm m
Sd(f) = nz E Tk l E (l - hm, 1) t cos( - )

k=ec \ n m=1l

(63)

Note that a discrete spectrum can potentially exist at the encoder output despite
the fact that the tncoder input has only a continuous spectrum. In fact, for a
first order Markov source as the encoder input, its spectrum is given by

(Appendix A)

2

( |52 ) (sin wab)
S(f) = - T, | —— (64)
1+ - 2% cos 2miT, b\ wiTy

where Tb is again the input bit time (see Fig, 9), Note that if the code is

transparent, i.e., each row ofyg has an odd number of ones, then from (50)
h .=1; p=1]z’p-l¢’h ' (65)

which when substituted in (63) results in Sd(f) =0,
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As an example of the application of (62), consider the rate 1/2 constraint
length 3 convolutional code described by the generator matrix of (37), The

modified generator matrix H as defined by (50) is then -

01 1
1 0 1

The corresponding continuous component of the encoder output spectrum may be

4
0

obtained from the following closed form solution for. SX(f), namely

- 1-4 :
Sylf) = 1-5 T

3 2 3

- -€4) cos 4TET + T2 (1 -t-¢ +E3) cos 8TfT :

+-E3 (1 +% - ) + 1 (1 +¢
1 - 2t cos 4nfT +T:2

(67)

Fig., 10 is an illustration of Sc(f) [using (67)] for several values of transition
density P = (1 - t)/2. Note the unorthodox behavior of this spectrum in
accordance with the similar behavior of that corresponding to the encoder input

bit stream (Fig, 9).

VI, Encoder Output Spectrum in the Presence of Alternate Symbol Inversion
Alternate symbol inversion (Ref, 5) is a technique in which alternate
symbols of the encoder output are inverted to provide the sufficient ricl{ness of

symbol transitions necessary for adequate symbol synchronizer performance.

In this section, we examine the effects of such a nonlinear operation on the

power spectrum of the convolutional encoder output.
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If the number of interleaving tap outputs is an even number, we can
simply put inverters at alternate interleaving taps®*, in which case the general

equation (12) for S, (f) should be modified to read
9 X

n n o0
1 ' +q N
Syl(f) = = (-1)P™ 2 € cov (xp, xn“q) cos [27 (nf + q - p) £T)
p:l q:l £=0
(68)
Similarly, for computation of the discrete component of the encoder output
spectrum, S;(f) of (15) remains valid with,however, }_(p of (18) and (54),
respectively, modified as follows:
- o
X =(-1)P3 P (69)
p
and
X, =(-1P (1-n_ ) EP (70)
2 ( ps 1

If the number of interleaving tap outputs is an odd number, we cannot put
fixed inverters on alternating tap outputs., Instead, we can look at the alternate
symbol inverted output as having been obtained by adding (modulo 2) an external
alternating binary sequence of ones and zeros to the encoder (0, 1) output
sequence, An equivalent procedure, which is more convenient for éomputation
of the power spectrum is described as follows, Giyén a constraint length K,
rate b/n convolutional code with n odd and generator matrix coefficients

{gp,i}; p=L2,.0.,n,i=1,2,..,, Kb, we can, without any loss in

*Without any loss of generality, we assume that the first symbol inverter
appears on the first tap output.
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optimality or any change in transmission rate, construct an equivalent code with
constraint length K and rate 2b/2n whose 2n x 2Kb generator matrix has

coefficients {gi’; j} given by
?

( p=b+l,b+2,...., (K+1)b

g s 3
p-b,j §j=1,2, 4 v v s n

gx . =9 p=1,2,...., Kb

ll)’j- g ) .
PsJ-n; j=n+l1l,n+2, ., ..., 2n

\ 0; elsewhere

(71)

Fig, 11 is an illustration of this procedure for b =1, K = 3, Now, since the
number of output taps (2n) is even, we can once again use fixed alternating
symbol inverters on these taps and the general results of (68), (69), and (70)
apply with n replaced by 2n, b replaced by 2b, gp,i replaced by g’tl';, i and
using (50) hp,i replaced by hi:;,i'

Before presenting a specific example, we can once again make some
general statements fo-r the various input source models previously considered,
When the input is a purely random sequence, then as before the only terms
which contribute to the summations in (68) are those for which p = q and £ = 0,
Since for these terms (-1)p+q = 1, then (68) reduces to (12) which for this

special case gives the result in (28), Thus, for ;the class of uncorrelated

convolutional codes, alternate symbol inversion has no effect on the encoder

output spectrum. This is intuitively pleasing since one would expect that adding

an alternating sequence to a purely random sequence (the encoder output before

alternate symbol inversion) should produce again a random sequence,
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For correlated convolutional codes alternate symbol inversion will, in
general, have a spreading effect on the output spectrum. If, however, we again
consider the subclass whose géﬁerator matrix has at least two identical rows,
and if the identical rows are spaced such that p+q is always even, then alternate
symbol inversion will not affect the encoder output spectrum,

To demonstrate. the spectrum spreading effect of alternate symbol
inversion, consider the rate 1/4 code described by the generator matrix in
(33). When alternate symbol inversion is employed and the input is a random

NRZ sequence, (34) is modified to

Sy(f) = 143 [-2 cos 2T + cos 47ET] (72)

x

and the corresponding output spectrum is illustrated in Figure 12, This figure
should be compared to Figure 4 which characterizes the same encoder output
without alternate symbol inversion.

Another illustration of the effect appears in Figures 13a and 13b where
the optimum K =7 rate 1/2 code is employed with an uxibalanced NRZ input
having p* = 0,2, Figure 13a is essentially a duplication of Figure 7b with,
however, the discrete component of the output spectrum superimposed, Simi-
larly, Figure 13b has the discrete spectrum superimposed., Notice how alter-
nate symbol inversion not only spreads the spectrum but also creates many

new significant discrete spectral harmonics,
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VII. Experimental Results

To support the analytical results derived in this report, an optimum
constraint length 3, rate 1/4 convolutional encoder was implemented, and its
output spectrum was obéerved on a spectrum analyzer in response to a PN
sequencé at its input. Analytical results contained in this report [see (33) and
(34)] have shown that this code belongs to the class of correlated convolutional
codes and thus one would expéct an output spectrum which differed from a fre-
quency scaled version of the input spectrum [see Figure 4]. Indeed this result
is confirmed by the experimental results illustrated in Fig‘ure\ 14 (logarithmic
scale) and Figure 15 (linear scale). Unlike a rate 1/4 uncorrélated convolu-
tional code whose 3 dB bandwidth of the output spectrum is four t‘;imes the 3 dB
bandwidth of its input, the 3 dB bandwidth of the output spectrum of this best
constraint length 3, rate 1/4 code is less than one and one-half times the 3 dB

bandwidth of its input.

VII. Observations and Conclusions

We have observed that there exists a class of convolutional codes

(designated correlated convolutional codes) which have the property that a

purely random input results in an encoder output sequence .with correlated
symbols. When the power spectrum of the waveform produced by this cor-
related output sequence 1s corhputed, it is observed that its effective band-
width is narrower than that produced by an uncorrelated (purely random)
sequence. An equivalent statement is that the power spectrum of the output

waveform corresponding to the entire (doubly infinite) sequence is narrower

than that for the individual pulse, the latter being identical to the power -

spectrum of an equivalent pulse stream with uncorrelated symbols.
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: (PE Seqﬁence) 1/4 Uncorrelated Convolutional
Code

frequency frequency

c. Code Output Spectrum d. Comparison between Fig. 15b
and Fig. 15¢

Figure 15. Experimental Measurement of Input and Output Spectra for Best
Rate 1/4, Constraint length 3, Convolutional Code (Linear Scale)
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Based upon the above, one might hasten to conclude that to achieve a
giveﬁ error probability performance, it might be possible to go to a short
constraint length, high’rate code (less complexity) wifhout ha;rilng to pay the
bandwidth expansion penalty ordinarily associated with this choice. Unfor-
tunately, this is not the case, The reason is that the transmit filter and
channel bandwidths aré determined by’ the need to pass an individual pulse with
minimum distortion; this is necessary for adequate symbol sync performance
in the receiver prior to decoding. Indeed, the bandwidth of the power .spectrum
corresponding to ‘an'individual‘ output jsymbvol pulse expands directly as the
reciproca:'l» of the code rate. Thus, the correlation of the output symbols is.not
effective in reducing the channel bandwidth requirements. However, portions
of the receiver, vé.g. » the carrier tracking loop, whose performancé depends
on the bandWidfth occupancy of the entire modulation (as opposed to that of an
individual pulse) can be aided by employing correlated convolutional codes.

For example, if the transmission is suppressed carrier and the carrier i‘eéon-
struction loop is a Costas loop, then a reduction in the bandwidth of the modula-
tion enables oné to design narrower arm filters thereby impfoving the loop's
squaring loss (tracking th:eshold) performance. An example of this point is
illustrated by the results of Figufe 16 where a Costas loop with single pole RC
arm filfers has been assumed. The corresponding ahalysis which generated the
curves in this figure is contained in Appendix B,

Before leaving this subject, we remind the reader that if alternate

symbol inversion is employed to improve the encoder output symbol transition
density, then this acts in such a way as to once again expand bandwidth and the
above spectral advantage associated with correlated convolutional codes tends

to disappear,
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<, , dB

OPTIMUM CORRELATED RATE 1/4,
K =3 CONVOLUTIONAL CODE

UNCORRELATED RATE 1/4
CONVOLUTIONAL CODE

fT

Figure 16. Squaring Loss versus the Ratio of 3 dB Cutoff Frequency to Data
(Symbol) Rate; Detection Symbol Signal-to-Noise Ratio ST/NO = -4 dB
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APPENDIX A

THE COMPUTATION OF POWER SPECTRAL DENSITY

FOR SYNCHRONOUS DATA PULSE STREAMS

Introduction

Many techniques appear in the literature and some textbooks for the
computation of the power spectral density of a synchronous data pulse stream
where the underlying data sequence which generates the pulse stream has
known statistical properties, In all cases found by the author thus far, the
sequence is assumed to be either wide sense stationary (WSS) with known auto-
correlation function or more generally an N-ary Markov source with known
(fixed) stationary and transition probabilities, A special case of the latter is
a purely random source, i,e., one that emits an elementary signal (pulse) in
a given signaling interval independent of those emitted in previous signaling
intervals, Such a source can be modeled as a degenerate ;a’se of an N-ary
Markov source whose NXN transition matrix (the matrix of transition
probabilities) has identical rows, When N = 2, and the two elementary signals
are the same, we get the familiar results for antipodal binary signaling, |

Occasionally, one finds situations where the generatiﬁg data sequence is

not WSS but, however, is cyclostationary, i.e., its first two moments are

periodic, One such case occurs at the outpt:).t of a convolutional encoder where
the period (in code symbols) is equal to the reciprocai of t;he code rate, Thus,
in order to chafacterize, the spectral properties of the output of such an encoder,
one must develop an expression for the power spectral density of a synchronous‘
data stream whose generating sequence is cyclostationary. Such is the primary

purpose of this appendix, As a review and an introduction to the technique, we
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shall first present the derivation of the known result for the power spectral

density of a synchronous data stream generated by a binary WSS sequence.

Power Spectral Density of a Synchronous Data Stream Generated by a Binary,

Zero Mean, WSS Sequence

Consider the binary (*l) zero mean, WSS sequence a for which it is

known that

aa =R (m-=-n)
n“m

(A-1)

and the overbar denotes statistical expectation, From this sequence, we form

the synchronous datz pulse stream

]

m(t) = Z a p (t - nT) (A-2)

n=-=c0

where p (t) is the elementary signal (pulse shape) and is not necessarily
restricted to be time-limited to only a single signaling interval, i.e., the
pulse train m (t) can contain overlapping pulses. Irrespective of the properties
of the generating sequence {an}, the data stream m (t) is itself cyclostationary
since the expected value of the product m (t) m (t +7) is, in addition to being a
function of 7, a periodic function of t. Thus, to compute the power spectral

density Sm(f) of m (t), we must first average

R (;7) £ m(t) m(t +7) (A-3)
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over t [the averaging is performed over the period of R (t ; ‘r)] and then take

the Fourier transform of the result, Thus,

s_(0) & F{<R (t; 1)} (A-4)

where <> denotes time average and & denotes Fourier transform, Substituting

(A-2) into (A-3) and making use of (A-1) and the definition of Fourier transform,

we get
s () =f<z Z R{(m=~n)p(t-nT)p(t+7- mT) ) 2Ty,
T n m
(A-5)
Since
p (8) =fP(f) REELFY. (A-6)

-00

where P (f) is the Fourier transform of p (t), then substituting (A-6) in (A-5)

gives
Smif) = f f D D R (m-n) B(y) Pr (z)e7 2T
Yy z2 n m o :

X eJZﬂzmT <e321f(y-Z)t> fe-JZﬂ(f+z)TdT dy dz
T

(A-7)

*Unless otherwise noted, all summations and integrals range from =-o £0 o,
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where the asterisk denotes complex conjugate, .Recalling that

fe'jzmw dr = 6(x) (A-8)
K

then (A-7) simplifies to

Sinlf) = f D0 D R (men) B(y) P (o) e RTYRT om2MEmT 2Ty 4Ly 4

y n m

h f D D Rim=n) Ply) P (wf) o 2THMRIT -j2TlyHInT
y n m

% <ej2'rr(y+f)t > dy

{A-9)
Since R (t ; 7) is periodic in t with period T, then
L
. 2 . sin['rr(y-l-f) T]
Ra(y+)t\ 4 1 f 2ulyH)t 5
<e > o= e dt = Ty 0T (A-10)
=1
2
Substituting (A-10) in (A-9) and letting £ = m - n, gives
i el -j2mLT o) D sinm(y +£) T
S = ) R (e Ply) P (-f) SRT LI
X§ : e-JZ'rr(y+f)nT dy (A-11)

n
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Finally, from Poisson's sum formula, we have that

Z e-JZ'Iran =% Z 6 (x -

n

which when substituted in (A-11) yields

- -jemfdT| 1
Sm(f) = Z R (2) e T
2

Since

sin 1k _
mk

k

{ 1; k=0
0 ; otherwise

k

e

T

> o

k

k
S

) P (-6)

2
and lP (f)l is an even function of f, we get the desired result

Sm(f) = Sp(f) Sa(f)

where

o1 2
5,0 €= [P )

is the power spectral density of the individual pulse p (t) and

o b
5,(0) €

0

Z‘ R (0) e-jZ‘anT |

f=-eo
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sin mk

Tk

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)



is the spectral density of the sequence, i,e,, the discrete Fourier transform of
its correlation function, Note that if the data sequence is purely random, i.e.,
1l; m=n

aa = (A-18)
0; otherwisa

then equivalently from (A-1)

1, =0
R (0 = (A-19)
0; otherwise
and from (A-17),
S, (f) =1 (A-20)
Hence,
S(f) = Sp(f) ' (A-21)

which is a commonly used result,

Power Spectral Density of a Synchronous Data Stream Generated by a Binary,

Zero Mean, Cyclostationary Sequence

Suppose now that we have a binary sequence {an} which has the properties

a =0
n

aa =R (n;m=n)

(A-22)
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Furthermore,
Rn;m-n)=R{n+kN;m~n); k=0, %1, £2, ... (A—ZB)

where N denotes the period of the correlation function R (n ; m - n), Then,

following the steps leading up to (A-9), we see that the analogous result is now
S,(£) = f > D Rinsm-n) Bly) P (-f) e MBI T -j2TlyH)nT
y n m

% <ej2'rr(y+f)t> dy

(A-24)

Thus far, we have not made use of the cyclostationary property givén in
(A-23). If now we use this property to evaluate the sum on n in (A-24), and

as before let £ = m - n, then it can be easily shown that

Z R (n;8) e"jz'"'(Y‘*‘f)nT = -jen(y+)nT
‘n

Rn;f)e

i Z -J2m(y H)KNT
- )

M=

o]
11
[

(A-25)
or making use of (A-12),
Z R (n ;) e-JZ'IT(Y'f-f)n'I’ - Z R (n ,B) e-‘_]Z'n‘(y-f-f)nT :
n n=1 -
1N k.
“NT Z 6 (V t- NT) | {A-26)
k '
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Substituting (A-26) in (A-24) and performing the integration on y gives

.

N
1 =j2m nl -j2nflT

k £ n=1

K ) px ¢ j2mkt/NT\
X P(-f +575) P* (-f) (e >

(A-27)

Since R (t ; 7) is now periodic in t with period NT, then

NT
2 1 k=0
<ej2nkt/NT> A 1 j2rkt/NT sin Tk _ KRS
> 9 == e ag = 8RIX
NT Tk 0: Kk#0
-NT K
2
(A-28)
Finally, substituting (A-28) into (A-27) gives the desired result
Sm(f) = Sp(f) Sa(f) (A-29)
where Sp(f) is still given by (A-16) and Sa(f) is defined by
o0 N
" s
S-(f) = z X z R (n;g) | e I2THT (A-30)
a N
f==v0 n=1
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Comparing (A-30) with (A-17) we notice, not surprisingly, that the only
difference between the two is that the periodicity of the correlation function
caused by the cyclostationary behavior of the sequence {an} must be

"averaged out'' before taking the discrete Fourier transform,

Power Spectral Density of a Synchronous Data Stream Generated by a Binary,

Nonzero Mean, Cyclostationary Sequence

When the generating sequence {a.n} is not zero mean, then the spectrum
of the corresponding synchronous data stream will have a discrete component
in addition to the customary continuous component, An example of a situation
where this might occur is at the output of a convolutional encoder whose input
is random but not equiprobable binary data., The procedure for handling this

case is as follows:
Define the zero mean cyclostationary sequence {An} by

A =a -3  (A-31)

AnAm=RA(n;m-n)

(A-32)
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Then, using the results of the previous section, the continuous component of

the power spectrum Sc(f) for a synchronous data stream generated by {an} is

given by

Sc (f) = Sp(f) S-A-(f) (A-33)

where again Sp(f) is defined in (A-16) and

. N
_ - 2 : 1 z : . -j2nflT
SA(f) = N RA (n;2){ e (A-34)
£==c0 n=1

The discrete spectral compbnent Sd(f) is found from

Sd(f) = F {<Z Z a_n-_a—_p(t - nT) p (t+7- mT)>} (A-35)
m

n

Making use of the Fourier transform relation of (A-6) gives the alternate form

_ — =j21ynT — -j271fmT " jem(y +)t
S4(£) = f Z Z : a_e a_e P(y) P* (f) <e > dy
y n m

(A-36)
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Since by assumption 5; and a

m 2Fe both periodic with period N, then analogous
to (A-26)

(A-37)

Substituting (A-37) in (A-~36) and integrating on y yields after simplification

N
=L (f. K 2: T ~J2mmk/N
S4f) = N7 é(f'NT) & ©

N
L L) e [0 k) -j2 /N, j2m(k+2)t/NT
*RT Z P(NT)P‘ (‘ NT)Zane ' <e >
¢

n=1

(A-38)
Performing the time average over the period NT gives as before
joT(k‘}'B)t/NT sin m(k + 0) 1 H = -k
<e > = - = (A-39)
m(k + 1) . .
0; otherwise
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Finally, substituting (A-39) into (A-38), and recalling that 'P(f)i 2 is an even

function of f, gives the desired result

2 N
NT , m

1
S. (f) = ———
d (NT)? ; 1

/N

2: — _j2mnk/NY} , k.
X a e o [f NT

n=1

(A-40)

Note that when ‘an} is a WSS sequences (i.e., N = 1), (A-40) reduces to the

familiar result

2
b e -

) (A-41)

¢

Hix

F)°
S4(0) = Tr%- zk:

Examples and Applications

As a simple example of a WSS sequence consider a binary, zero mean

Markov source characterized by
Pr ‘an+l % an“ = Pt

Pr {an+1 } an} = 1P

(A-42)
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The correlation function for such a source is easily shown to be

)
R (@) = (1-2p)" (A-43)
Substituting (A-43) into (A-17) gives
o ‘
S.(6) =1+2 Z (2 - 2p, ) cos 2nfeT (A-44)

£=1

From [6; p. 84, Eq. (454)]. we have that

2 I a cos 6 - a2 + an+2 cos (nf) - an-*.1 cos[(n + 1)9]
E a cosk 6= A
kel 1 -2acos(nf) +a
(A-45)
which for a<1l and n+« becomes
= ' 2
2 : ok cos k = —2C0s0-2a 5 (A-46)
=1 l -2acosf+a '
Furthermore,
SR 1.2a° |
1 +2 E a coské= =2 5 (A-47)
k=1 l <-2acosf+a
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Applying (A-47) to (A-44) with a =1 -Zpt and 6 = 27f{T, immediately gives the
desired result

- (- ?‘pt)z

Sa(f) = >
1+ (1 - Zpt} -2 (1 - Zpt) cos 2mfT

) 4Pt (1 - pt) ,
2 (1 -2 pt) Q - cos 27fT) +4p':2

(A-48)
Furthermore, 'if the data stream generated by this sequence uses rectangular

pulses, i.e,

1; 0<t<T
p(t) = (A-49)

0; otherwise

then, using (A-16) and (A-48)

in 27fT 4p (1 - py) (4-50)

S(f) = T & 5 5
(rfT)" 2 (1 - Zpt) (1 - cos 27£T) - 4pt

This result has previously been obtained by the author using the more complex

approach found in (Ref, 4; Chap. 1) and also by others (Ref. 7).
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As a second exaimple, consider the sequence formed by interleaving N
independent first order Markov sources with respective transition
probabilities Py 5 n= 1,2, .... Then, the resulting sequence is

cyclostationary with correlation function

lef
N ;
l-zpt) ; Z=0,iN,=f=2N,..o-
N Sl .
Rn;l)= (A-51)
0; all other integer £

The power spectral density Sa(f) of (A-30) is computed as (letting £ = kN,

k=02 il: 12’ 'k- . o)

N
N7 k| -j2mfkNT
Sa(f) *N Z Z ( Zptn) e

n=1

00

1+2 2 1 Zpt cos 27fkNT

N
-4 z:
TN

n=1
(A-52)
Noticing the similarity between (A-44) and (A-52) (for fixed n), we can
immediately write down the result
N 4p, (L-p,
S-(f) = = E ' a a (A-53)
av’ TN s -

(1 - zpt_) (1 - cos 2mNT) + 4p, 2
n
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APPENDIX B

COSTAS LOOP TRACKING PERFORMANCE FOR A CONVOLUTIONALLY
ENCODED SUPPRESSED CARRIER INPUT MODULATION

In this appendix, we derive the tracking performance of a Costas loop
demodulator of a suppressed carrier input where the modulation is a random
pulse stream with convolutionally encoded symbols. In particular, a closed
form expression will be obtained for mean-square tracking jitter (or equiva-
lently loop squaring loss) corresponding to the case where the loop arm filters
are of the single pole RC type, and the data modulation is generated by the opti-
mum rate 1/4, constraint length 3 correlated convolutional code [ see (33)].

Without going into great detail, it is well k;‘xown [8] ’ghat for a random
puise train [such as that charécterized by (A-2)] plus additive white Gaussian
noise input to a Costas loop, its (linear region) mean-square phase tracking

jitter 62¢2 is characterized by the expression
1

2 | (B-1)

a e eeev——
2¢ PA

where* p = S/NOBL is the equivalent linear loop signal-to-noise ratio and .?L
is the so-called ''squaring loss'' which is a degrading factor caused by the
multiplication of in-phase and quadrature signal plus noise terms in the loop's
third multiplier. More specifically, the squaring loss factor depends on the

input modulation power spectrum Sm“’ and the arm filter transfer function

G(j2wf) through the relationship

>'cHerue, S denotes the average signal power, Ng denotes the single-sided noise
spectral density, and B; denotes the single-sided loop bandwidth.
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@ = Pm (B-2)
L~ K, BT
Kp Pm * 2R,
where
o]
p_ & s_(0|ayern| ? as (B-3)
m m J
~@
K

L is a constant dependent only on the filter type and is defined by

fmIG(jan) | 4 g¢

G(j2ri)

up>

K, & - (B-4)
df

-

KD is a constant dependent on both the baseband data power spectrum and the

filter type, i.e.

S_(9)| G(jams)| = af

D = (B-5)
s_(f)| Gjzm)| © at

- @

and Bi denotes the two-sided noise bandwidth of the arm filter G(j2rf), i.e.,

[o0]

w
u

2 af

G(j2nf) (B-6)

-0
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Furthermore, R éST/NO denotes the data (symbol) signal-to-noise ratio.

d
For single pole RC arm filters characterized by

I fizns) IZ = (B-7)

KL = 1/2 and the 3 dB cutoff frequency fc is related to the two-sided noise band-
width B, by B, =7f . Thus, (B-2) simplifies to

D 2

Sy, = = TE T (B-8)

Kp Dy * 4R

In order to simplify (B-8) any further, we must specify the spectrum of
the data modulation or equivalently the statistics of the data symbol sequence.
For the optimum rate 1/4, constraint length 3 convolutional code, we have from

(22) and (34) that*

. 2
Sm(f) = T(—ilﬁ%l) {1 +‘-;— [2 cos 2mfT + cos 4TrfT]‘} (B‘-9)

Substituting {B-7) and (B-9) into (B-3) and (B-5) yields after much

simplification
2
: ( -ZWfCT) <1 -ZWfCT> | (B-10)

D =1-57+1\l-e + - e -
m ZTrfCT 4"ch

| < —417ch>2

l1-e
¥ 167E. T
c

“Note that Sm(f) is used here rather than Sc(f) as in (22) since the modulation
power spectrum in this case contains only a continuous component,
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) ~2nf T
3 (3 + 2nf T)e c
- C

KD Dm =1- 41rfc'I' (B-ll)
-2nf T\[, ( -2nf T ]
1-e S e=(34+4nf T )e
+ nF T 4 4 c
c . -

For an uncorrelated rate 1/4, constraint length 3 convolutional code, the
tracking performance results would be equivalent to those of an uncoded data
sequence (except for a frequency scale factor). Thus, (B~1) and (B-9) still

apply with, however, (B-9) through (B-11) replaced by the simpler expressions

) 2
S_(f =T <—S—1:f—7£lf1> (B-12)
1 ~2mf T
Dm=l-m 1-e ¢ (B-13)
C
~2nf T
3 . (3 + ancT>e c
Kp Dy =1+ Znt T : (B-14)
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