
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



R, E C r&--- I V L­ D

SEP 10 119/79

SIS! 902.6

0	 111111110^11

"Made avail1bie und e r V ASA FPnnsc+ h,'p	 rtC. M n'1 (? U A R T,6 R4 y	 EP©l^
^-	 S F"PTC i►1 f^ ^ 1Z I "! 7 q

5	 ; .	 AR. C.ARt_ S O N N, C,	 n

lo g any use made WOW."	
7. 9 - 1 0L 2 6 2.

^, 
	

^ n^The Pennsylvania State University

The Graduate School

Department of Meteorology

Determination of Surface Characteristics and
Energy Budget Over an Urban-Rural Area Using

Satellite Data and a Boundary Dyer MocIll
1. ,., . I	 .	 *.7,!1-32694

),

(E79-10z	 4 ) 	 :)r I __ -

CHAP ACTERISTICS AND ENERGY BUDGET OVER AN
URBAN -RURAL AREA USING SATELLITE DATA AND A
BOUNDARY LAYER !MODEL n.S. Thesis
(^ennsv1Va0ia State Univ.	 96 p

A Thesis in

Meteorology

Unclas
01269

1
I'
i'

by

Joseph Kent Dodd

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

August 1979

i^

i



The Pennsylvania State University

The Graduate School

Department of Meteorology

Determination of Surface Characteristics and Energy

Budget Over an Urban-Rural Area Using Satellite

Data and a Boundary Layer Model

A Thesis in

Meteorology

by

Joseph Kent Dodd

Qginat photography may be purchased from:

EROS Data Center

Sioux Falls, SO

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Master of Science

August 1979



The signatories below indicate that they have read and

approved the thesis ._of Joseph Kent Dodd:

-	 w



iii

ABSTRACT

A flexible analysis system has been developed which combines

high resolution satellite-derived radiometric ground temperature

information with output from a numerical model of the boundary layer

to infer the spatial variation of thermal inertia (P), moisture

availability (M), and the surface energy budget.

TI-Le system has been applied to the urban areas of Los Angeles

and St. Louis for which observations of ground temperature near the

times of maximum and minimum were available from the polar orbiting

Heat Capacity Mapping Mission (HCMM) satellite which has a horizontal

resolution of .5 kilometers. From this data false-color-enhanced

(RAMTEK) images or computer-produced contoured fields of surface

temperature may be derived. Further analysis uses the temperature

data with output from the model to infer the spatial distributions of

thermal inertia, moisture availability, and surface heat and moisture

flux across both cities.

The mapping of these quantities over the St. Louis and Los Angeles

regions revealed the marked influence which reduced evaporation

exercises in forcing the positive daytime temperature anomaly over

cities. Both urban centers possessed maxima of heat flux and minima

of moisture flux whereas forested or grassy areas nearby displayed

quite the opposite trend. The nighttime temperature anomaly was found

to be relatively weak as the distributions of P were unexpectedly

ill-defined.

-PRECEDING PAGE BLANK NOT FILMED



iv
J

d

i

i

I:

TABLE OF CONTENTS

Page

ABSTRACT. .	 . . . . . . . . . . . . . . . . . . . . 	 iii

g	 LIST OF TABLES . 	 . . . . . . . . . . . . . . . . . . . . . . 	 v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . 	 vi

ACKNOWLEDGEMENTS . . .	 . . . . .	 . . . . . . . . . . . . 	 viii

1.0 INTRODUCTION	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 1
1.1 Past Research in Urban Microclimates.	 .	 .	 .	 .	 .	 .. 1
1.2 Statement of the Problem. 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 7
1.3 Purpose of the Thesis	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 8

2.0 METHOD OF ANALYSIS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 10
2.1 The Model 10
2.2 Data Reduction and Analysis 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 27

f 2.3 Coordination of Model Output and Satellite Data 33

r
3.0 RESULTS .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 41

3.1 Background .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 41
3.2 Los Angeles	 May 30 and 31,	 1978.	 .	 .	 .	 .	 .	 .	 .	 .	 . 50

3.2.1	 May 31 Daytime Temperatures, TD .	 .	 .	 .	 .	 .	 . 50
3.2.2	 May 30 Nighttime Temperatures, TN .	 .	 .	 .	 .	 . 52
3.2.3	 May 30-31 Moisture Availability, M .	 .	 .	 .	 . 54
3.2.4	 May 30-31 Thermal Inertia, P . 	 .	 .	 .	 .	 .	 .	 . 56
3.2.5	 May 31 Surface Heat Flax, H 	 .	 .	 .	 .	 . 58
3.2.6	 May 31 Surface Evaporative Flux, 	 Eo .	 .	 .	 .	 . 60

3.3 St.	 Louis June 9 and 10, 	 1978	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 60
3.3.1	 June 10 Daytime Temperatures, T D .	 .	 .	 .	 .	 . 62
3.3.2	 June 9 Nighttime Temperatures, T 	 .	 .	 .	 .	 .N . 64 
3.3.3	 June 9-10 Moisture Availability, M . 66
3.3.4	 June 9-10 Thermal Inertia,., P .	 .	 .	 .	 .	 . 68
3.3.5	 June 10 Surface Heat Flux:; H .	 .	 .	 .	 .	 .	 .	 . 68
3.3.6	 June 10, Surface EvaporativeoFlux, Eo .	 .	 .	 . 71

3.4 Summary of Results. 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 71

4.0 CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH. . . . . 81



LIST OF TABLES

Table	 Page

	

1	 HCMM satellite orbital and radiometer
^i
	 characteristics . . . . . . . . . . . . . . . . . . 	 46

;^ s	
2	 Model input parameters for case studies. . . . . . 	 48

s



vi

LIST OF FIGURES

,r

Y

I

I - .

R

Figure Page

1 Basic structure of model .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 11

2 Flow chart of model solution sequence from time
tto	 t	 +	 At	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 18

0	 0

3 Basic structure of nocturnal component of model 22

4 Schematic of initial wind and temperature profiles
for the nocturnal component of model. 	 .	 .	 .	 .	 .	 .	 . 25

5 Schematic diagram of the satellite data processing
procedure	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 29

6 Example of daytime surface temperature mapping
across Los Angeles for May 31, 1978 	 .	 .	 .	 .	 .	 .	 .	 . 30

7 Example of RAMTEK graphics for daytime surface
temperatures across Los Angeles, M.ip 31, 1978 .	 .	 . 31

8 Flow diagram for inferring surface parameters . 	 . . 35

9 Schematic representation of TOPO subset area.	 .	 .	 . 36

10 Schematic illustration of incrementation process
and day-night temperature arrays, 38

11 A population density map of the Los Angeles area
with a letter key marking areas of interest
referenced in the text .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 43

12 A road map of St. Louis and vicinity with a letter
key marking areas of interest referenced in the
text .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 45

13 Los Angeles, May 31, 1978 daytime surface
temperature analysis. . 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 51

14 Los Angeles, May 30, 1978 nighttime surface
temperature analysis . 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 53

15 Los Angeles moisture availability analysis.	 .	 .	 . 55

16 Los Angeles thermal inertia analysis.	 .	 .	 .	 .	 .	 .	 . 57

17 Los Angeles surface sensible heat flux (. 10) at
2:00 P.M.	 (RN =	 630 W/m )	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 59

18 Los Angeles surface moisture flux (: 10) at
2:00 P.M.	 (RN =	 630 W/m	 )	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 61



vii

LIST OF FIGURES (Continued)

PageFigure

19

20

21

22

23

24

25

26

27

St. Louis, June 10, 1978 daytime surface
temperature analysis. . . . . „ . . . . . . . . .	 63

St. Louis, June 9, 1978 nighttime surface
temperature analysis . 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 65

St. Louis moisture availability analysis.	 .	 .	 .	 . 67

St. Louis thermal inertia analysis.	 .	 .	 .	 .	 .	 .	 . 69

St. Louis surface sensTe heat flux (:- 10) at
2:00 P.M.	 (RN =	 640 W/m )	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 70

St. Louis surface moisture flux (: 10) at
2:00 P.M.	 (RN =	 640 W/m )	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 72

Enlargement of unsmoothed surface heat flux
analysis over downtown St. Louis at 2:00 P.M. 75

Daytime evolution of surface heat and moisture
flux and net radiation from model simulation for
St. Louis urban site (M = .175, P = .035)	 .	 .	 .	 . 78

Daytime evolution of surface heat and moisture
flux and net radiation from model simulation for
St. Louis rural site (M = .5, P = .035)	 .	 .	 .	 .	 . 80



^,.? .rt kveYJe^af^:,ea....4.1^^ _.iT^'ik{+ .^'_a.iT^T^wi..^:3t3'i^•al^-4Y+4 L 	 ..JP'1`-""^	 ^` _

viii

ACKNOWLEDGEMENTS

I wise to thank Dr. Toby Carlson for his guidance and encouragement

throughout the course of this research and Jim Cooper for his program-

ming support which aided in the data analysis.

This study was supported by the Environmental Protection Agency

(EPA) under Contract R-805 640020 and the National Aeronautical and

Space Administration (NASA) Contract NAS-5-24264. Thanks is also

extended to The Pennsylvania State University Office of Remote

Sensing of Earth Resources for the use of RAMTEK computer graphics.

Finally, computations for the thesis were performed on an IBM 370/168

at The Pennsylvania State University.



1 1rd

1.0 INTRODUCTION

1.1 Past Research in Urban Microclimates

Observation of urban temperature anomalies dates back to the work

of Howard (1833) who documented temperature elevations over London

of 2°F. Contemporary studies by Duckworth and Sandberg (1954),

Landsberg (1956), and Oke (1968) show urban-rural temperature

differences of up to 10'F with the greatest urban temperature eleva-

tions occurring on clear, calm winter nights. While the elevation

of ground and air temperature in urban environments has received

considerable attention, other more recent investigations have led to

an assessment of the effect of cities on precipitation. Changnon

' r

	

	(1969) was one of the first to present evidence of significant urban

enhancement of rainfall. Huff and Vogel (1978) analyzed summer

rainfall from the Metzopolitan Meteorological Experiment (METROMEX) 	 i

network of 225 recording rain gauges distributed in and surrounding

St. Louis and found 10-30% increases in precipitation in and downwind

of the city during the season of convective rainfall. From the same

r-	 project, Changnon (1978) found very significant (locally to 300%)

increases in thunderstorm duration and intensity, hail events, and

rainfall both in and downstream from St. Louis. Braham and Wilson

^	 (1977) also observed urban enhancement of the frequency and duration
r:

of tall convective cloud echoes over St. Louis during METROMEX.
P
^.

	

	 It has been suggested that the alteration of the surface energy bud-

get as a result of the heteorogeneous composition of the substrate,

unique to urbanized areas, is responsible for important effects of cities

upon the environment. Ching, Clark, and Godowitch (1978) showed that over

urban areas variability in the sensible heat flux depends upon the
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land use, %pacifically the thermal characteristics of the substrate

(diffusivity and conductivity).	 Yap and Oke (1974) used the eddy

correlation technique to measure urban sensible heat transfer over

m
Vancouver, B.C. and concluded that vertical flux convergence at night

in the surface layer is responsible for the heat island.	 They also

observed that the partitioning of the nocturnal energy budget exhibited

a unique urban character.	 Landsberg and Maisel (1972) have proposed

that the urban canopy maintains high values of thermal conductivity

and heat capacity.	 They also showed that the net radiation is smaller

by day and larger by night in cities.

Detection of urban anomalies is not restricted to in situ
a

measurements.	 In the last decade extensive use has been made of

aircraft and satellite measurements in identifying the way in which	 i

cities alter their environments. 	 Rao (1972) was the first to show how

satellites could be used to study the radiometric properties of urban
y

areas.	 Carlson and Augustine (1971) demonstrated how high resolution

satellite data could be used in the spatial representation of thermal

signatures in cities.	 Matson et al.	 (1978) were able to detect over

50 urban heat islands from thermal infrared images of the mid-western

and northeastern United States generated by the NOAA5 satellite.

Numerical models of urban boundary layers have also been able to

successfully reproduce the gross effects of urban structure upon
R.^

!. temperature and surface fluxes and, more importantly, have firmly

identified the substrate characteristics which force the urban anomalies.

Estoque (1963) was one of the first to create a physical model with

analytic representations for air and surface temperature, moisture,

and wind simulated numerically and integrated on a computer. 	 Tag (1968)

.sl:x•.^	
1

J,p 	 y}AdiaFtYAmt	 u0&^iA+	 +l. xw. ^	 X +	 3'n.in3JF t'	-2"•	'i	 ^fi	 .1d6	 w.0 w,a. r.o.w:	 ....	 _	 —	 A
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further extended this work to study the effect of environmental factors

(pollution, roughness) on the urban heat island in particular.

Independent of these efforts, Myrup (1969) was the first to develop a

numerical energy budget model to study the urban heat island exclusively.

He assumed a neutral boundary layer, equating the eddy diffusivities

for momentum and heat, but assumed an unrealistically large surface

layer depth of 300 m over which the fluxes remain constant. Myrup

simulated the urban rural features by changing the thermal conductivity

and diffusivity, roughness length, and evaporation potential. The

dominant parameters which determined the magnitude of the urban heat

island effect were found to be evaporation, which was reduced in the

city during the day, while the thermal properties of the soil caused

the temperature to be elevated at night. Outcalt (1972) extended Myrup's

model, improving the solar radiation computation and other physical

representations. Comparison of model results with field data showed

very good agreement.

Nappo (1972), in another numerical study of the urban heat island

effect, performed extensive sensitivity tests to show that the dominant

parameters influencing temperature anomalies are surface roughness,

moisture, and soil characteristics. As with Myrup, the surface

temperature is calculated using the energy balance equation at the

ground surface. In a similar study, Sasamori (1970) used his boundary

layer model to show that the division of the energy balance into sensible

and latent heat is distinctly dependent on soil wetness. Through the

application of a model developed by Pandolfo, Atwater (1972) showed that

the urban heat island is a result of physical changes in surface

characteristics produced by urbanization, and not pollution of the
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atmosphere. He was able to produce urban-rural air temperature con-

trasts in excess of 5°F by simply changing the soil diffusivity and

heat capacity. The reduction of moisture availability was also

identified as a causative mechanism. Atwater (1975) reached similar

conclusions in extending this work to two and three dimensions employing

conservation equations for wind, temperature, moisture, and pollution

concentration. In this way the inclusion of advection produced a

thermal plume of positive temperature anomaly both over and downwind

of the urban area simulated.

Zdunkowski and Trask (1971) applied a radiative-conductive model

to examine the evolution of the nocturnal surface temperature as a

function of different soil types. The soils (rocky, quartz sand, sandy

clay, and humus) were all uniquely specified by their density, specific

heat, and diffusivity. The strongest nocturnal cooling was identified

with the sandy soil, due to its poor conductivity, while the rocky

soil remained relatively warm at night as enthalpy stored in the

substrate is readily conducted to the surface.

All of the above investigations have contributed significantly to the

understanding of horizontal and vertical variation of temperature and

heat flux over and across an urban area. In addition, the urban heat

island has been identified as responsible for major weather modifications

on the short mesoscale and the dominant parameters which determine

these alterations of cities upon climate have been isolated and

explained. Little attention, however, has been focused on the problem

of inf erring the values of the parameters themselves through the

coordination of model application and actual observation. In principle,

it is reasonable to suppose that temperature information (which usually
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is one of the predicted parameters) might be used in conjunction with a

numerical boundary layer model to solve for the substrate parameters

which determine the thermal response of the ground to the solar forcing.

In a unique study using a variation of this approach, Dabberdt

and Davis (1974) evaluated the effective surface geophysical features

with specific aim to determine the thermal and evaporative descriptors

of a variety of land use types through the application of Lettau's

climatonomy theory to in situ and remote observations. They used

harmonic analysis on the observations of solar radiation and temperature

to infer the secondary responses as a function of surface type. As an

extension of their work they saw the possibility of evaluating the

spatial variability of surface parameters such as thermal inertia across

an area with a wide range of land uses and cover. The methodology of

analysis would require high- resolution surface temperature data in

space and time with a rather laborious application of harmonic analysis

in the solution sequence. Although their results were encouraging no

further research has modified or extended this approach.

Carlson and Boland (1978) proposed a numerical-graphical method

for inferring the thermal inertia and moisture availability of the

surface by analysis of pairs of day-night observations in which these

parameters were varied systematically in a one-dimensional boundary

layer model and the simulated temperatures matched with satellite

P
i	 derived temperatures. The Carlson-Boland method removes some of the

_	 ambiguity in determining the substrate characteristics by inverting the

model. Their method requires in situ measurements of surface tempera-

ture to obtain a solution for the substrate parameters, thus necessitat-

ing the use of high-resolution satellite information to better define

-r

---•.x...,. 	 ^..-:yam.-..^__	 ._.-.^_ _,.-,.,_,.^	 ^-.T:.^..-	 ...•w=^^,	 ..
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the thermal fields. For example, the surface temperature may be

defined as the average in the top 1 mm of the soil or that of the air in

contact with the ground. The correct definition of surface temperature

is not obvious and measurements of this type are rarely available,

certainly not with the spatial density needed for analysis on urban

scales. Such surface temperatures, even if they were available, would

represent only a small area and have significant variability over short

distances in heterogeneous terrain. On the other hand, a satellite

measures the effective surface radiometric temperature with resolutions

of .25 to 1 Ian  (MIM and NOAA) and thus integrates the complex surface

response over an area rather than sampling at a specific point. Such

area-averaged temperatures will represent the spatially averaged thermal

response to the partitioning of the available solar energy. This

partitioning is determined by a set of substrate properties which apply

to scales over which the observations are averaged. For high-resolution

satellites, the resolution is highly appropriate to the urban mesoscale.

In situ measurements of temperature and heat flux can provide

information appropriate only to a limited scale such as a particular

parking lot, building, or field. Clearly, such limited site-specific

measurements do not offer much help in inferring the spatial variation

in the bulk characteristics of the surface parameters over an urban

N domain. Carlson and Boland proposed that satellite derived day-night

temperature pairs define (through application of the model) the

appropriate values of the surface parameters which govern this particu-

lar thermal response on an urban scale.

Ik"

it

_„ -	 .-	 ^, u i ^szacu.. x.,^unw
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1.2 Statement of the Problem

It is obvious that much attention has been focused on the meso-

scale alteration of climate through the rearrangement of the surface

energy budget caused by urbanization. The process of replacing

natural vegetation and soils with a heterogeneous urban landscape

results in significant changes in the substrate characteristics and

has had demonstrated effects on the microclimates of cities. Typically,

the complex mixture of roads, houses, buildings, and parking lots which

comprise the urban fabric is able to store the incident solar energy

during the day more efficiently than adjoining rural areas and conduct

this stored heat back to the ground-atmosphere interface more readily

at night. Also, evaporation within cities is severely restricted

in comparison with adjacent rural environments. Other parameters

such as surface roughness and albedo have spatial inhomogenities

that combine to produce the temperature elevation typical of cities

which has been labeled the urban heat island.

Numerical modeling of the urban boundary layer is dependent on a

t
	

knowledge of the surface heat flux and is complicated by a cluttered

surface fabric which can only be described empirically. Thus, surface

layer models are composed of a combination of empirical parameters

and approximate relationships between temperature, the fluxes of

sensible and latent heat, and solar plus terrestrial radiation. Values

of substrate parameters such as thermal diffusivity, sail wetness, etc.,

which are required to determine the surface temperature response in such

models, are customarily estimated from published tables in combination

with land use maps (e.g., Sellers, 1965) but close inspection of

urban surface temperatures (Augustine, 1978) indicates that such

Anui 3̂.vels-tt.r.Yr«.a	 ^^^.
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parameters may have significant and complex variability. Observational

studies (Oke, 1968 and Chandler, 1965) indicate large temperature and

heat flux variations across cities.

Little work beyond that of Carlson and Boland has been done in

measuring or inferring the urban-rural variation of basic surface

.,	 parameters which govern the partitioning of the surface energy balance.

Such information is crucial before one can be able to model correctly

the influence of the surface fabric upon the microclimates of cities

r

and thereby allow one to forecast the dispersion of pollutants and

the effect that modifications of the surface fabric have upon the

weather. As the populations of industralized nations continue their

strong migration to urban centers, understanding how cities can alter

their environment becomes increasingly relevant.

1.3 Purpose of the Thesis

This research involves the application of a one-dimensional

boundary layer model developed by Carlson and Boland (1978) coupled

with high resolution measurements of surface temperature made by

satellite to infer the substrate parameters, thermal inertia and

moisture availability, and the surface energy budget over urban areas.

These surface parameters, to be defined later, have been shown by

Boland (1977) and others to be the dominant ones in determining the

thermodynamic response of the ground and atmosphere to the solar

forcing over urban areas. The integration of satellite information with

the numerical model is a unique feature of the analysis; the method

to be described will be used to map the thermal and moisture properties

over two major urban centers, St. Louis and Los Angeles. Further, the
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surface energy balance will also be derived from this method, allowing

for the first time an analysis of the substrate parameters and of the

surface energy budget over a large urban area. Although the aim is to

assess patterns over these urban areas, the method described has

general applicability to other types of surfaces.

^i
r^

A

j
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2.0 METHOD OF ANALYSIS

2.1 The Model

The first component necessary in the analysis procedure which will

be pursued is a one-dimensional numerical model of the boundary layer

developed by Carlson and Boland (1978) which allows one to calculate

surface temperature and the energy flux components at the surface. The

model represents the physics of the response of the ground to the solar

forcing by using Monin-Obukov theory with an implicit K-type para-

meterization for the eddy fluxes in the surface layer. The primary

forcing is the net radiation; but the partitioning of the energy balance

into the ground heat flux and the latent and sensible heat fluxes into

the atmosphere is determined by the substrate and atmospheric variables.

Solutions are obtained as successive equilibrium states of the energy

balance controlled by similarity theory in the surface layer and the

temperature diffusion equation in the soil. Typically, the model is

integrated to simulate a complete diurnal cycle over which the terrain

parameters and the temperature at the bottom of the substrate slab

(lm below the surface) are held constant. Advection and anthropogenic

heat sources have been neglected in the current investigation.

A schematic view of the model dimensions is presented in Figure 1.

The soil slab is one meter deep and divided into four layers. The

surface air layer depth is fixed at 50 meters with a l cm transition

layer at the earth's surface which contains both molecular and eddy

heat conduction. 1 Within this transitional sublayer the fluxes of

moisture and heat are assumed to be independent of the stability.

The exact depth of the transition layer is inconsequential insofar as
the surface temperature determination is concerned.



11

MIXED LAYER

r
f

SURFACE LAYER

50m

EARTHS SURFACE	 TRANSITIONAL LAYER\
,...................	 ............................. 	 ..

4 SOIL LAYERS	 im

Figure 1. Basic structure of model.

. ,—



CR

12

A well-mixed layer is represented in bulk form above the surface layer

' 	 and its depth, H, is governed by a formulation presented by Tennekes

e:
(1973) in which H grows throughout the day as a result of the surface

heat flux from below and entrainment of air with a higher potential

temperature from above. The atmosphere above the surface layer is

-b	 represented differently at night and part of the present work has

involved incorporating in the model a modification of the nocturnal

boundary layer component which will be given in detail later.

The solution sequence begins with the net radiation given by the

surface energy balance

RN = Go + Ho + E 	 (1)

where Go, Ho,

sensible heat

the atmospher

the surface.

fluxes at the

and E  represent the heat flux into the ground, the

flux into the atmosphere, and the latent heat flux into

a. All quantities are positive when directed away from

The net radiation is actually calculated from the radiative

surface

RN = S + F  - Fu	(2)

where S is the solar flux at the surface and F  and F u are the upward

and downward terrestrial fluxes respectively. Total down-dwelling

irradiance absorbed at the surface, S, is calculated from a one-layer

radiative transfer model described by Augustine (1977). S is a function

of solar geometry, atmospheric transmission coefficients, and ground
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albedo, Ao , determined as

,' p
	 S = S* (1 - Ao )/(1 - XAo)

	
(3)

r

where S* and X are general transmission relations containing the solar

constant and coefficients for dust, water vapor., air molecules, ozone,

and clouds. The upward and downward directed fluxes of longwave

terrestrial radiation are given as

Fu = EgaTg4	 (4)

1

s'

F  = 6A (w)QTA
4
	(5)

where o is the Boltzman constant and eg and 6A (w) are the emissivities

for the ground and atmosphere. Sellers (1965) gives values of 6 
between .9 and 1 while Monteith (1961) has presented a formula which

allows the calculation of e  as a function of the precipitable water, w.

The surface fluxes of sensible and latent heat are parameterized

in terms of eddy and molecular diffusivities as

Ho = - (C s + pcpIZH) a—Z	 (6)

L
Eo = _ (CE 

Cca + pLEKq) a	 (7)

p

where C s and Cw are the molecular diffusivities for heat and water

vapor, q. LE is the latent heat of vaporization and K  
and K q are

_a the eddy diffusivities for heat and water vapor, which are assumed to be

N

I
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equal. The ground temperature and mixing ratio are derived by

integrating eqs. 6 and 7 from Z=0 to the top of the surface layer, Z 

6 0 = To = 8  + H0I/Acp	(8)

qo - q  
f- E0 I/pcp 	(9)

where I is essentially the vertical integral of the inverse of the

diffusivities

JZA
dz	 _

I =	
(% + CS /PC 

p) - I1 + I2

o	 H

This integral is calculated in two sections: from z =0 to Z.,

the depth of the transitional layer over which molecular conduction

dominates the transfer process, while from Z  to Z a , Cs and C 

are assumed to be negligible compared with (PC pK H); thus turbulent

eddy conduction determines the exchange in evaluating the expression

I2 . Substition of 
ku*z/^h 

for K  is made where u* is given by

_	 z  (z)
uy = uAk/
	 M(Z) 

dz

Z
0

and uA is the wind speed at ZA, k is von Karman's constant (.4),

and Zo is the roughness length. The functional forms for ^ and ^M

have been given by Panofsky (1974) and the integrals I 2 and 11 have

recently been solved by Benoit (1977) for the unstable case.

(10)

(11)
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The evaporative flux at the surface is given as

PL 
Eo = I M (gos - qo )	 (12)

®3

where qos is the surface saturation mixing ratio, q  is the mixing

ratio at ZA, and M is the moisture availability parameter described

by Nappo (1974). Values of M range from 0 to 1 and represent a fraction

of the potential evaporation rate for a saturated surface. As such,

the factor M accounts for the reduction in the efficiency of evapor-

ation due to the subsaturation of the surface. One might suspect

that the moisture availability will display significant urban-rural

differences. In the model M is held constant over the diurnal cycle

and the evaporation is set to zero at night when q  > qos.

The ground heat flux is given by the standard conduction equation

Go = a (To - T_1) /Oz
	

(13)

where a is the thermal conductivity of the substrate and T-1 is the

temperature at the first soil level, a distance. Az (10 cm) below the

surface. The transfer of heat through the soil is governed by the

diffusion equation
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where K is the thermal diffusivity of the substrate and is equivalent

to ;VC 9 , C 9 being the ground heat capacity.

The diffusivity and conductivity may be combined to form a

parameter called the thermal inertia, P, where

.^	 P = a/ K
1/2	

G{'► u%+	 P (Col Crr2 K^ Se^(iZJ	 (15)

is a measure of the rate of heat transfer at the interface

between the ground and atmosphere. Sensitivity tests have shown

Y	 that while model solutions depend on the value of P independently of

r

	

	 the choices of a and K, the last two must not be chosen completely

independent of one another. It was noticed that values of a and K

cited in the literature appear to vary systematically for a wide

variety of real materials. Accordingly, 20 pairs of X and K based

on values reported in the Manual of Remote Sensing (1975) and by

Sellers (1965) have been assembled to produce a regression equation

whereby specification of P will determine uniquely a a,K pair.

Thus, it was found that

a = -.00013 + .0502P + 1.21P 2	(16)

where

K	 2/P2	 (17)

Equation 16 explains 91% of the variance of a about P and provides an

empirical result which, for most types of materials, realistically

_ ^ .	 __. w ..^ss`.^it:^uwadiw»t+,.tw4 ^-and^diF.:K1i.:-t^iLUGH^w 	 _	 "`•...iIIe6.'... 	 •.	 _	 .
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represents the physical relationship of a and K to P. The regression

equation 16 corresponds to a diverse range of soil types (pumice

to quartzite). The essential value of equation 16 is that it permits

specification of a single bulk property, P, in terms of ^ or K which

are explicitly represented in the model.

Equations 8, 12, and 13 may be combined with the energy balance

equation 11 to form an expression for the sensible heat flux at

the surface

Ho = [RN - f CuA) M ( gos - qA)-A]/(1 + DI)
	

(18)

in which

A = l(rZA + To - T-1)/Az
	

(18a)

D = a/Azpcp	 (18b)

where r is the dry adiabatic lapse rate and f(uA) is (pLE/I).

This series of equations is cycled through for convergence. One

iteration per time step of four minutes has been found sufficient

to insure accurate solutions. The flow chart in Figure 2 schematically

traces the order of calculation, the sequence ending with the

determination of the temperature profile in the soil at the next time

step from which the model integration time is incremented and the

cycle repeated. The temperature profile in the surface layer and

substrate, as well as the surface radiative and turbulent energy

fluxes, are all part of the solution set.
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The nighttime mode of calculation follows a different methodology

as the physics driving the surface layer are quite dissimilar from

the daytime. During the day the net radiation is the forcing mechanism

and the heat flux component is a function of the moisture availability

and thermal inertia. At this time the surface layer will be unstable

and the heat flux will determine the stability; toward sunset the

upward heat flux vanishes and the ,radiational cooling causes the

ground temperature to decrease with time and subsequently the heat

flux becomes passively dependent on the lapse rate near the ground.

To account for this, a modified form of a scheme proposed by Blackadar

(1976) has been incorporated into the model where the maintenance of

turbulence at night is calculated as a function of the bulk Richardson

number, B, in the surface layer. The value of B will determine the

form of the profile equations and is given by

Z	 Z
B = a A2 Ha - e 1	 Z) + T:r InW	 o e

A

where g is the acceleration due to gravity, a is an average temperature

in the surface layer, 8A is the potential temperature at ZA, and el
a

is a "shelter" height temperature provided by a prognostic equation

relating radiational convergence and turbulent flux convergence

2tl = A(8	 - el) + B	 °Z 	 (20)
' SO Pc 1p

;f

in which A and ,B have been empirically determined as 3.3 x 10-4s-1

and 0 2 respectively Monin-Obukov scalin- is used to obtain T 	 u

and the surface heat flux, H,, . Thus,

IV
j

(19)
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T* _ (8A - 6 1)/(ln Z 1/ZA - Vh)	 (21)
:x

u* = kWA/(ln Z 1 / Zo - Vim)	 (22)

y

Ho = - kpcpu*T*	(23)	
1

where Z  is the roughness length, ^h and 
^m 

are the nou-dimensional

profiles for temperature and wind, the functional forms of which are

dependent on stability, and WA is the magnitude of the wind vector

at a height ZA (50 meters). The vertical profiles for temperature

and wind are provided through the integration of the U, V momentum

equations and the thermodynamic equation,

au.l 
= f(v. — v ) + 

mi+1 
(u	 — u) — ml (u — u. )	 (24)at	 a	 gi	

Az2	
i+1	 i	

Az2	
i	 i.-1

aV,	 K	 K
1 -f(U - U ) + 

mi+l (V	 - V) - 
m'-	 (V - iV	 )	 (25)iat	 gi	

Az2	 i+l	
i	

Az2	
i	 -1

a e , KR
t! 	 i	 _1.+11

at	 Az2 (8i+1	 8i)	 Az2 (8 i	 ei-1)	
(Z6)

i4

	

	 where f is the Coriolis parameter and Az is a layer depth of 50 meters.

Advection has not been included in the model. The eddy exchange
i<

coefficients for momentum and heat, K^ and KH, are assumed equal in
i 

the stable nocturnal boundary layer and are given by a form proposed

a	 by Mellor and Yamada (1974) using boundary layer data and 2nd order

closure

i

C-
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_ R ,

Ki	
225i ( Rc Rc 	 1)	 ( 27)

1

where,

Si	
[ (Ui - Ui-1) 2 + (V i - V i-1) 211/2/AZ
	 (28)

and Q scales as kz (taken to be 28m) in the surface layer. The local

Richardson number is calculated as

R . = g (6i - 6i-1)

1 TA  S.21

while the critical Richardson number is calculated as a function of

the geostrophic wind using an empirical result given by Vigeant (1978)

Rci
 = .5542 e-[.2129(Ugi2 + Vgi2)1/2l + .2	 (30)

When the local Richardson number exceeds the critical value turbulent

exchange will cease at that height and K is arbitrarily set equal to

zero.

The lowest layer must be treated differently as there will be no

turbulent exchange through the underlying surface. Accordingly, the
-u 

*
2U1	 -U* 2V1

last terms in equations 24-26 must be replaced by W
AZz	 WA 	 ,

and cpp0z 
respectively.

The integration is performed over a 500 meter deep layer consisting

of 10 equi-spaced intervals (i =1,10) 50 meters apart (Figure 3) and is

begun in the late afternoon or evening when the surface heat flux has

changed sign and the nocturnal mode of calculation in the surface

(29)
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Figure 3. Basic structure of nocturnal component of model.
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layer outlined above has been implemented. Forward differencing is

used and a time step of 120s has been found adequate to insure

computational stability.

Initially the 500 meter layer is assumed to be well-mixed and the

vertical distribution of 6 is set equal to a constant 
6  

at the time

of the stability reversal, which'is reasonable for late afternoon on

a sunny day. The vertical shear of the geostrophic wind is determined

from an analysis of local surface fields of temperature and pressure;

usually only one or two additional wind observations above the surface

layer are available. In order to fit a profile for the actual winds

to the observations, free convection scaling is assumed to govern the

wind profile prior to the vanishing of the upward heat flux. The

assumption of free convection scaling assumes that turbulence in the lower

part of the mixed layer is buoyantly driven (Tennekes, 1970), and

provides a relationship for the wind shear

7z = bz-4/3	 (31)

which leads to a velocity defect expression

U - Uobs = bz-1/3	 (32)
y

where b is determined empirically and z is measured downward from zobs

(where z=0 and U=Uobs)' Equation 31 is applied to OOZ wind data for the

layer between the top of the surface layer at 50 meters and 200 meters;

above 200 meters the wind is assumed initially to be constant with height

.,WIB16
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F

to 500 meters. The complete form of the late-.afternoon wind and tempera-

ture profiles is represented in Figure 4. The specified initial wind

profile may possess a significant ageostrophic component but the model

has been found to adjust smoothly to the transition during the first

hour or two of integration beyond the time of reversal in the sign of

the heat flux, ultimately achieving a quasi-equilibrium with small

accelerations.

The value of the bulk Richardson number defines three stability

classifications for which events in the surface layer will be quite

dissimilar:

(L)	 B<0,	 UNSTABLE

(II) 0<B<.2,	 STABLE

(III) B>.2,	 NON-TURBULENT

In cases I and II the surface heat flux is given by equation 23 and

will be positive when the surface layer is unstable (a situation

which will rarely occur at night), and negative (downward directed)

if stable. For case III the surface layer will be decoupled from

events above 50 meters because of the strongly stable lapse rate near

the ground (e(50m) >6g); both u * and Ho will then become zero.

a	A typical sequence of events near sunset would follow a progression
i

through the three stability classifications outlined above with the

surface layer, initially unstable, becoming stable (B increasing). As

the ground temperature and wind shear stress decrease rapidly, the

stratification will act to decouple the surface layer from the

atmosphere above. As the stress decreases and the turbulence near the



9(Z)	 U (Z)	 Lnj
Figure 4. Schematic of initial wind and temperature profiles for the nocturnal

component of model.
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ground ceases (B>.2),	 the wind above will accelerate, increasing

the vertical shear.	 If this shear becomes large enough B may fall

below 0.2, allowing a turbulent event to occur with a downward
2

- directed exchange of heat which will act to elevate the ground tempera-

ture for a time.	 Such turbulence may continue to recur throughout

the night.	 While the model will certainly not have much accuracy in

timing these events, numerical tests demonstrate that this

formulation successfully predicts which nights are likely to experience

turbulent episodes.	 The governing parameter for these events is the

geostrophic wind (assumed constant with time). 	 On nights when the

surface geostrophic wind is large turbulent events are more likely.

An important aspect of the nocturnal model is the manner in which

the surface temperature is calculated.	 During the day the surface

layer is buoyantly driven and the heat flux will determine the thermal

response of the ground and atmosphere to the solar radiation. 	 At

night, however, Ho often becomes zero and is passively dependent on
a

the vertical temperature distribution.	 Because the integral I in

- equation 8 diverges toward infinity when the heat flux approaches

zero, the energy balance at the surface is used directly to solve

for the surface temperature. 	 Equating the right hand sides of 1 and 2

and solving for To produces the quartic equation

i
ATo4 + BTo + C = 0	 (33)

where
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E = a/Az
	

(33b)

and

C = XT-1/Az + Ho + E  - EAQTA
4 + S
	

(33c)

At each time step Newton's technique for finding real zeros of a

polynomial is iterated until the above expression converges to the

correct value for To . At night in the non-turbulent surface layer

Ho , Eo , and S are zero so that equation 33 expresses a balance

between the longwave terrestrial radiation and the ground heat flux.

As such, the value of a 1 , the thermal conductivity, is an important

determinant in the nighttime behavior of To.

2.2 Data Reduction and Analysis

During the past decade several meteorological satellites with the

capacity to provide high-resolution thermal mapping of the earth's

surface have been placed in orbit. Three of these types, the

Geostationary Orbiting Environmental Satellite (GOES), the National

Oceanic and Atmospheric Administration (NOAA) satellites, and the NOAA

TIROS-N satellites possess sufficient resolution (.5 - 1 km) to allow

spatial representation of surface temperature (I.R. derived) and

albedo (visible channel) to be made on a scale necessary for resolving

details of the urban-rural canopy. Polar orbiting vehicles, however,

are capable of measuring the diurnal temperature cycle, and, until

recently, were set to scan at hours shortly after sunrise and sunset.

Recently, the Heat Capacity and Mapping Mission (HCMM) satellite was

'_•'	 '...»v ! :.X^.i.$+F.ui3ui[.. .. t.SSf^kL ' .-ar .V^^t

,

-
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launched by NASA to provide high resolution (.5 km) measurements of

the radiometric ground temperature with overhead passes occurring

very close to the times of local maximum and minimum temperatures;

approximately 2 P.M. and 2 A.M. respectively. Because of its schedule,

the HCMM satellite will be used to provide data for the present research;

in the future TIROS-N data may be used because of its high quality and

more frequent availability of day-night image pairs at these times.

The procedure of data reduction to arrive at maps of surface

temperature follows an approach described by Augustine (1978).

A sequence of computer programs is used to extract the raw data from

tape, grid the location of the working area, apply a calibration to

the digital counts and ultimately to produce maps of blackbody surface

temperature. A schematic representation of this procedure is shown

in Figure 5. The first step is to transfer onto a standard labeled

tape a smaller more manageable area from the raw data tape obtained

from NASA. This subset will have digital count information (DN

values) in a 512 x 512 matrix where, for the .polar orbiting HCMM

satellite, the pixel and scan line densities are approximately equal

at the sub-satellite point. The subset area contains the region to be

analyzed and is located geographically using the appropriate image

for that same data set. From the larger matrix a 130 x 130 working

area of about 4225 km2 is extracted which will center on the particular

region to be analyzed. A histogram of the count value density is also

extracted and this provides information on the temperature distribution

in the working area. The histogram allows a slicing of the data

according to a user-defined alphanumeric code whereby the DN values are

transferred into characters and written to output. The character
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•	 STEP 2
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STEP 3
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NAVIGATIONAL	 NAVIGATIONAL
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STEP 6

CONTOURING
INSTRUCTIONS
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MAPPING

RAMTEK
FALSE COLOR

DISPLAY

t
Figure 5. Schematic diagram of the satellite data processing

procedure.
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map of the working area allows the identification of geographic

features (parks, coastline, rivers) to which latitude and longitude

w

	

	values are assigned. Using these navigational points another utility

program is run which uses regression analysis to produce coordinate

labeling of the working area's boundaries. The matrix of DN values
E_.

	

	
is subsequently converted to surface temperatures which are then

drawn by computer on a gridded background. Before the analysis can

be completed digital count values are equated to temperature using

the calibration equation for the HCMM data which has a temperature

range of 260° - 340°K representing the count values of 0 - 255.

A water vapor correction suggested by Cogan and Willand (1974) is
f

also applied prior to the graphing procedure.

This final analysis can now be displayed in various ways. One

procedure involves mapping the working area in a geographical frame-

work suitable for identifying urban features or for investigating surface

temperature as a function of land use and ground cover type. In this

approach a CALCOMP plotter is used to produce an objective contouring

of temperatures over the working area with the navigational references

labelled on the border. An example of such a mapping for Los Angeles

is shown in Figure 6 in which the coastal and urban temperature

features are clearly evident. Another type of final product used as

an aide in locating surface features for gridding is a false--color-

enhanced image created by a RAMTEK color display monitor where the

color scale may be manipulated by the user to accentuate features

such as urban-rural temperature differences, mountains, clouds, etc.

-

	

	 A black-and-white copy representing the same Los Angeles study as above

is shown in Figure 7 with lighter areas corresponding to higher

temperatures.

Lad
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Figure 6. Example of daytime surface temperature mapping across
Los Angeles for May 31, 1978.
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Figure 7. Example of RAMTF.K graphics for daytime surface temperatures
across Los Angeles, May 31, 1978.
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Although these contoured and false- color- enhanced canvasses of

urban scale ground temperature variations are informative on their

own, the present research goes well beyond a simple temperature analysis.

As stated in section 1.3, the final goal is to produce maps of moisture

availability, thermal inertia, and daytime heat and moisture flux

at the surface. Accordingly, it is necessary to consider both day and

night temperatures, since further manipulation of the reduced temperature.

data is necessary to arrive at these fields. Thus, the surface

temperatures were stored as a function of their position within the

original working area on a grid in which the coordinates are not
3

J;	

longitude and latitude but an arbitrary set of reference coordinates,

one for each region of interest. Subsequent manipulation of the day-

night temperature images which have been rectified to this new grid

system will be discussed in the next section.

2.3 Coordination of Model Output and Satellite Data

As mentioned in section 1.3, the approach in deriving (or, more

precisely, inferring) the maps of M, P, H o and Eo will require com-

bining the observed temperatures with output from the boundary layer

model. In principle, if the functional forms of the expressions

governing the surface fluxes were simple, the model equations could

be analytically solved for these fluxes. Because of the complexity

of the surface layer model and the solar geometry, a facile solution

_	 is impossible and it is necessary to determine the relationship between

the model values of M, P and the surface fluxes and the observed day-

night temperature fields by a series of regression equations which

represent these relationships determined from the model output. A

ja
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F,
r
r pair of day and night temperature fields, each representing a 130 x 130

working area, constitutes the initial data set for obtaining the

terrain parameters and surface fluxes.	 Rather than embracing

the awkward notation of degrees longitude and latitude, it

° has been found convenient to define a fixed topographical coordinate

system (TOPO-coordinates) and represent the temperature and all other

fields within a common reference frame whose coordinates are assigned

integer values.	 The final analyses are ultimately transferred back

into geographical coordinates for display and interpretation. 	 A

^y
schematic representation of the entire analysis procedure is shown in

a^

j Figure 8.

Because the day and night pixels are initially not exactly 	 a

coincident, a utility program (REGGIE) was used to transform the day
a

and night temperatures from their 130 x 130 working areas onto a smaller
ia

TOPO area which is a subset of the region common to both the daytime

and nighttime working areas. 	 This subset TOPO grid is represented in
k

Figure 9.	 Note that the image areas are oriented 20° - 30' from each

other.	 The extraction of the TOPO subset area reduces the effective

working area to a region which was arbitrarily arranged to contain about

100 x 100 TOPO subgrid intersections over ar, area of approximately

2000 km2.

Such a reduced region will nevertheless be large enough to include

even the largest urban centers although care must be exercised in the

initial extraction of the two working areas such that the common TOPO

subset remains within both of the initial 130 x 130 working areas while

the size of the TOPO subset is still maximized. The final output of

REGGIE is two files, one containing the subgrid TOPO coordinates, the

other the temperature pair of each point within the TOPO subgrid.

X

,:^- 
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Figure S. Flow diagram for inferring surface parameters.
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The other component necessary before the final analysis can be

performed is output from the model which will produce temperature as

a function of M and P. For each case study the weather situation was

studied and the model carefully initialized using a morning surface

weather map and the OOZ upper air data as stated in section 2.1.

An accurate initialization is crucial in assuring that the model will

yield results which are compatible with the observed temperature fields.

Typically, the model is initialized at a time near sunrise and

allowed to proceed for about 22 hours. The fundamental parameters,

M and P, are set equal to .05 and .005 in the first cycle but upon

completion of each 22-hour period, the model is re-initialized with an
n

incremented value of M(.3, .55,...) and P(.03,.055....) while all other

conditions remain the same. Each cycle yields a day and night tempera-

ture appropriate to the times of satellite overflight and corresponds to

a unique M, P pair. A graphical representation of the solutions for

the relationship between M, P and surface temperature is illustrated

in Figure 10. In this diagram the full range of physically realistic

[Ti
values of thermal inertia (.005 - .1) and moisture availability

(.05 - 1) corresponds to a field which encompasses a unique solution

for a given pair of observed temperatures, which are those intersections

of the day and night temperature curves. For HCMM or TIROS -N, the

y	 times of overflight occur near those of the diurnal maximum and minimum
z

temperature or heat flux, approximately 2:00 A.M. and 2:00 P.M. For

those times, the model output (M, P, H , E , T , etc.) was written to0 o g

a data file for further manipulation. It was found that an essentially
^f

complete solution for M and P could be determined with reasonable

accuracy after the model had been cycled through 16 times Thus 32

tr

R
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records of output information representing 16 unique M, P pairs were

used to construct a set of relationships between the simulated

temperatures and the respective values of M and P.

The next step in the analysis procedure was to derive quadratic

equations for M, P, Ho and E  as a function of the day-night temperature

pairs (Td , TN). These equations were obtained from a regression

analysis (MINITAB II) of the model output and are expressed generally as

M = Cl + C2 Td
+ C 3Td 2 + C4 TN

+ C5TN
2
	(34)

i.

r
	 P = C 6 + C

7 Td
+ C8Td2 + C9 TN

+ C10TN2	 (35)

Ho = C 11 + C12Td + C
13Td2 + C14TN + C15TN2	 (36)

Eo - 
C16 + C17Td + C18Td2 + C19TN + C20TN2	 (37)

where the coefficients are written to a data file. In this way,

thermal. inertia, moisture availability, sensible heat flux, and

evaporative heat flux are determined from the model results and sub-

sequently combined with the observed satellite temperatures within the

TOPO grid to produce the final products which are fields of heat and

moisture flux, and the parameters M and P. Accordingly, the last step

in the analysis procedure involves a convolution of the regression

coefficients with the temperature data in the TOPO grid to create maps

of M, P, Ho, and E  over the domain contained within the TOPO subgrid.

To accomplish this task, a final system program, PROVALS, is i-aiplemented

which uses the satellite day-night temperature pairs from REGGIE
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and the coefficient file to calculate values of M, P, H o , and Eo

within the 100 x 100 TOPO subgrid. The TOPO coordinates are then

transferred back into latitude and longitude and the matrices of M,

P, Ho , and Eo values are written to another data file which was used

to graph the analysis. The procedure previously described for mapping

P..
	 temperatures is also used for mapping these other fields. The results

are presented in this thesis as isopleths on conventional map back-

grounds; however a capability exists for displaying the fields using

RAMTEK false-color graphics.

i

s

1
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3.0 RESULTS

3.1 Background

The Heat Capacity Mapping Mission (HCMM) satellite day-night

data tapes containing surface blackbody temperature measurements were

obtained from the National Aeronautics and Space Administration (NASA).

The orbital characteristics of the HCMM satellite are contained in

Table 1. These data were used in conjunction with the surface layer

model to infer the surface energy budget and terrain parameters using

the method described in the previous chapter. The data pertain to

two urban areas, the Los Angeles Basin and the St. Louis

area including the surrounding suburbs. Both locations are highly

urbanized and exhibit important anomalies in temperature and other

meteorological parameters in a manner which is peculiar to the urban

microclimate. The working areas chosen for analysis also contain

sizeable areas with little or no urban sprawl and thus have not yet

become substantially modified from their natural state; these areas

will provide an interesting contrast with the urban centers where

values of temperature, moisture availability, thermal inertia, and

heat flux differ greatly from those over the surrounding countryside.

The extracted working areas cover approximately 2000 km 2 and

center on the commercial centers of Los Angeles and St. Louis, the

dates being May 30-31 and June 9-10, 1978, respectively. Figures 11

and 12 display base maps for the appropriate city and contain a

letter key for identifying specific locations which are to be referenced

in subsequent discussion. As described in the previous chapter, the

boundaries of the final analysis are contained within an area common



Figure 11. A population density map of the Los Angeles area with
a letter key marking areas of interest references in
the text.

B Bellflower

BH Baldwin Hills

C Downtown Business
District

CC Compton

I Maywood Industrial
Site

IN Inglewood Country
Club

PV Palos Verdes Penninsula

RH Rancho/Hillcrest Park

SM Santa Monica Mountains

T Torrance

U USC Campus

I. -
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Figure 12. A road map of St. Louis and vicinity with a letter key
marking areas of interest referenced in the text.

C Cropland-Pasture Sites

D Downtown St. Louis

E East St. Louis

F Deciduous Forest

FP Forest Park

G Granite City

H Horseshoe Lake

i
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TABLE 1. HCMM Satellite Orbital and
Radiometer Characteristics

Orbital Altitude	 620 km

Angular Resolution	 0.83 milleradians

Resolution	 0.6 x 0.6 km at nadir

Scan Angle	 600

Scan Rate	 14 revolutions/second

Sampling Interval	 9.2 microseconds

Swath Width	 716 km

`	 Thermal Channel	 10.5 to 12.5 microns
t

Usable Range	 2600 to 340° K

a
to both the day and night working areas. Ideally, the day and night

images will pertain to data 12 hours apart, at times when the day-

time and nighttime temperatures are close to those of the maximum

and minimum values in the same diurnal cycle. Unfortunately, 12-hour

coverage was unavailable for this study and both cases analyzed

utilize day and night image data which are separated by 36 hours,

the daytime data corresponding to measurements made a day and one

half after the nighttime satellite pass. This situation will, of

course, necessitate some additional assumptions concerning the station-	 -

!	 arity of the diurnal temperature wave.

For each case study the model was carefully initialized using

hourly surface observations and vertical soundings for OOZ and 12Z.

A full summary of the specific values of initialized quantities is
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presented in Table 2. In the case of the Los Angeles data it was

found that an acceptable assumption was that the surface temperature

changes little from one afternoon to the next (or from one morning

to the next). Therefore the model was still cycled through a 22-hour

period but the 2 P.M. (daytime) observations were treated as though

they were 12 hours apart rather than 36 hours, a reasonable approximation

in view of the usually small day to day variability in weather over the

Los Angeles Basin during the late spring and summer. Therefore,

after the model was cycled for pairs of M and P it was reinitialized

ti	 for each subsequent cycle and the output information stored for times

corresponding to the day and night satellite observations.

For the St. Louis case a large high pressure area of unseason-

ably cool air was moving eastward across the center of the country

during the 48-hour period prior to June 10. This weather pattern

resulted in much colder temperatures being recorded the morning of

the 9th than the morning of the 10th, when southerly flow commenced

and temperatures moderated. Due to an apparent warming trend, the

model was initialized at 6 A.M. for conditions appropriate to the 9th

and cycled over a 36-hour period for each M and P pair to yield

first a simulated nighttime temperature followed by a succeeding

daytime temperature. Although the model was reinitialized at 6 A.M.,

V
the change of air mass was simulated by including in the ground

1
a realistic initial vertical temperature distribution which provides

a variable surface initialization for each M and P pair. It is felt

that in the absence of 12-hour data pairs the variable initialization

should represent a more accurate set of conditions than would be the

case for an initialization which does not vary between each cycle.

I
14



TABLE 2. Model Input Parameters for Case Studies

CASE Tg TA Zo
U q 

W
Ao

eg

Los Angeles 289.0 290.0 30.0 552.0 .009 1.1 .19 .95

St. Louis 282.0 286.0 30.0 600.0 .007 .74 .17 1.0

€	 Units °K °K cm cm/sec ND* cm ND* ND*

i

4
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7

r	 Since the model will be used to infer a field of values it is evident

that the variable initialization and 36-hour cycling interval provides

..	 some initial spatial hetergeneity which can compensate for the observed

warming trend and also simulate inherent variations in this warming

due to terrain irregularities.

It should be noted that for both case studies the nighttime

(2 A.M.) satellite overpass occurred prior to the daytime (2 P.M.)

overpass. For the St. Louis case, the nighttime model temperatures

correspond to a time before that of the daytime output. However,

for the Los Angeles case the simulated daytime temperatures actually

occur before the night (i.e., in reverse order of the actual obser-

vations), although the order in which the temperature pairs are

generated in the model is -not thought to be a significant source of

error because of the stationarity of the temperature cycle and slowly

changing nature of the Los Angeles weather. In principle, it would

be possible to represent the observed 36-hour day and night tempera-

ture pairs in the correct sequence within the model by operating

over a 60-hour cycle starting 24 hours prior to the nighttime orbit

and continuing through the afternoon of the following day at the time

of the daytime measurement which occurs on the afternoon 36 hours

after the nighttime orbit. Such an extensive cycle would, however,

add significant cost to the procedure (since it was found necessary

to perform 16 cycles) without contributing very much additional

realism.

r
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3.2 Los Angeles May 30 and 31, 1975

The weather during the 36-hour period of May 30-31 was rather

typical for late spring in Los Angeles. Skies were clear as the

marine layer stratus remained offshore and the sea breeze became

established during the afternoon in response to the land-sea tempera-

ture gradient. Atmospheric moisture was quite small resulting in a

small correction to the derived blackbody temperatures. Precipitation

had not occurred over Southern California for several days prior to

this period, thus the ground can be expected to be relatively dry.

L

3.2.1 May 31 Daytime Temperatures, TD

The daytime thermal map in Figure 13 displays a large area

centered on the cities of Maywood and Commerce where the ground

temperatures are in excess of 32°C, warmer than nt any other location

within the Basin. Highest values, in excess of 34°C, are found over

the Maywood industrial site (I) where commercial centers, railroads,

and heavy industry conglomerate to form a sizeable region in which

there is almost no vegetation. The 32% isotherm extends to the

northwest of the industrial area to include the business district of

downtown Los Angeles (C), an area several miles square composed of

high-rise office buildings, parking lots, and a dense intersecting

network of streets. Other local temperature maxima are all related

to business or industrial centers such as Compton (CC), the oil

refinery sites near Torrance (T), and the commercial district in

Bellflower (B).

The most obvious minimum occurs just east of the strong gradient

along the coast where the relatively cool ocean (15°C) bounds the
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Figure 13. Los Angeles, May 31, 1978 daytime surface temperature
analysis.
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beaches and beach cities. Other prominent minima occur over the Santa

Monica Mountains (SM), which border the Basin to the northwest, the

hills immediately north of downtown, and the Palos Verdes Penninsula

(PN). The notably lower temperatures (less than 22°C), evident at

SM and PV, are likely due to the higher elevation as well as to the

higher evaporation potential of these vegetated regions. On the urban

plain itself the only other apparent minima center on large grassy

areas which include Rancho-Hillcrest Park, Inglewood Country Club,

and the Baldwin Hills (RH, I, B). The temperature range over the

lower density suburban residential areas which comprise a majority

of the Los Angeles Basin exhibits a small temperature variability,

between 29° and 31°C.

3.2.2 May 30th Nighttime Temperatures, TN

The nighttime pattern shown in Figure 14 is certainly less well-

defined than the daytime pattern with the range of temperatures

between 10° and 13°C over the Basin. In general, temperatures 5 to

10 miles inland are warmer than those near the coast but this is more

likely a direct reflection of an urban rather than a marine influence

since the wind at night is a weak easterly drainage flow from land

to sea. The warmest temperatures exceed 13°C and are centered on a

high population density business and residential area near the University

of Southern California (USC) campus (U). Since surface features here

probably differ little from other districts surrounding the downtown

area there is no obvious physical reason for this anomaly; however,

an explanation will be offered later. Generally, regions which

exhibit a warm daytime anomaly are also the warmest at night although

in places this correspondence is weak.

i
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Figure 14. Los Angeles, May 31, 1978 nighttime surface temperature
analysis.
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It is evident that at night the coastline is poorly defined by

the isotherms because the land temperatures do not differ significantly

r	 from the ocean. The only distinct feature near the coast is a weak

gradient offshore which separates very shallow water along the coast
1

from deeper and warmer water further offshore. Presumably this

gradient reflects upwelling along the immediate coastline. Temperature

signatures across the remainder of the Basin exhibit rather weak

gradients and no other important maxima or minima are present.

3.2.3 May 30-31 Moisture Availability, M

The pattern of moisture availability, M, shown in Figure 15

reveals a striking similarity with the daytime temperature map,

maxima of M being highly correlated with temperature minima and vice

versa. This inverse relationship is to be expected since a large

evaporation potential results in a relatively small portion of the net

radiation partitioned as sensible heat flux, a situation which trans-

lates into low surface temperatures. Conversely, dry ground suppresses

evaporation and allows a greater surface heating. Values of M show

a wide range across the domain, from .25 to .75. A large area below .25

centers on the Maywood industrial site (I) extending westward and

northward to include most of the downtown business district (C). The

surface fabric within this region is a heterogeneous mix of urban

materials with vegetation or open fields almost non-existent over areas

larger than one acre. The .35 contour encloses approximately one-

fourth of the inland working area reflecting the extensive alteration
h

of the surface due to urbanization. Other local minima with M below

.35 surround the Compton business district (CC), extending southwest to

include the oil refineries near Torrance and Wilmington (T).
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Local maxima of M are all sparsely populated hilly areas or large

parks scattered over the Los Angeles environs. The most prominent
ff

w	 maxima include Rancho-Hillcrest Park (RH), the Baldwin Hills (B),

and the area of low population density centered on Signal Hill (S)

i

	

	 near Long Beach. The Santa Monica Mountains (SM) and Palos Verdes

Penninsula (PV) are large areas where the moisture availability was

greater than .5. The trend for M to be higher in these areas is

reasonable in view of the fact that both sites have small population

densities and significant vegetation. It should be pointed out that

elevation effects are not included in the model and some error is

to be expected in these regions; however, it is felt that an accurate

representation of the spatial variability is fundamentally more

important than the exact values of the parameters at any point. As

in the daytime temperature pattern (Figure 13) the coastline again

corresponds to a strong gradient in M although smoothing the data

tends to widen the strong gradient which would likely be discontinuous

along the coast. In general, M values of about .7 for completely

vegetated areas, .4 for suburban sites, and .3 or less for the

industrial and commercial districts appear to be representative for

the Los Angeles area in this case.

3.2.4 May 30-31 Thermal Inertia, P

The map of thermal inertia presents a distribution unexpectedly

lacking in focus. This quantity is thought to vary significantly

across an urban domain and is presumed to be largely responsible for

determining the nighttime urban temperature pattern. The values

shown in Figure 16, however, reflect a rather small variability with

u
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j.

P generally restricted between .04 and .05. The one obvious exception

is a maximum centered near the USC campus (U) where P exceeds .06.

This is the same location which exhibited the maximum nighttime

temperature anomaly and is quite close to the Los Angeles civic center

(C). The pattern of P over the Santa Monica Mountains (SM) and Palos

Verdes (PV) again appears to be somewhat distorted due to the

elevation; however, a strong gradient coincides with the coastline

although the smoothing of data undoubtedly broadens the gradient

near the coast.

No other pronounced maxima or minima of thermal inertia appear

in the analysis and the distribution across the entire Los Angeles

Basin is remarkably uniform except for the one strong maximum.

3.2.5 May 31 Surface Heat Flux, Ho

Perhaps the most interesting analysis to be discussed is that

of the surface heat flux which is displayed in Figure 17. This figure,

showing the inferred surface heat flux at 2:30 P.M., offers a unique

picture of the variation of Ho across a heterogeneous urban domain.

As anticipated, the maximum values appear centered in the same area

where the largest daytime temperature anomaly is found, the 202 w/m2

contour enclosing almost exactly the same region. as the 33°C temperature

contour in Figure 3.3. A strong maxima is located at the Compton

commercial district (CC) extending southwest to the oil refinery site

near Torrance (T).

Regions of relative minima, where the heat flux is less than half

that in the downtown area, are centered over the Baldwin Hills (B)

and at Marina Del Rey (MD), the latter being a man-made marina which

^^	 r
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Figure 17. Los Angeles surface sensible heat flux (. 10) at
2:00 P.M. (IN = 630 iJ/m-') •
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extends inland and covers an area several kilometers square. As with

the daytime temperatures, the coastline again corresponds to a sharp

gradient in the pattern.

The most general feature is the increase in flux between

the coastline and interior, reflecting the land use pattern in which

` suburban tracts congregate near the coast while heavy industry and

commercial centers are located inland.	 Thus, a striking relationship

between urbanization and large sensible heat flux is quite apparent

in this figure.

r

3.2.6	 May 31 Surface Evaporative Flux, Eof

The map of surface moisture flux, Eo , presented in Figure 18
i

exhibits a pattern which is closely related to the distribution of the

sensible heat flux over the Los Angeles Basin. 	 In general, areas

which are minima of Ho appear as maxima of E 	 and vice versa.	 The

value of E	 has a marked minimum over the commercial-industrial
0

districts near downtown Los Angeles (M,I) with the lowest isopleths

surrounding two areas where E o is below 237 w/m2 .	 The largest moisture

fluxes occur over the high terrain (SM and PV), and over the grassy

open areas where the moisture availability (Figure 15) was also

found to be large.	 It is evident that the evaporation over sparsely

vegetated regions is relatively small although E 	 exhibits values which

t are as-large as Ho in regions where the latter is a maximum.

3.3	 St. Louis	 June 9 and 10, 1978

This case study uses data derived from a day-night pair of orbits,

one on the morning of the ninth and another during the afternoon of

the tenth.	 During this 36-hour period a high pressure ridge moved

rF
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eastward across the center of the country bringing fair weather and

mild temperatures. Large-scale subsidence resulted in cloudless

skies throughout the period with values of precipitable water less

than one-half of an inch. The dry atmosphere resulted in only small

water vapor corrections being applied to the satellite-derived black-

body surface radiometric temperatures. Precipitation in the area had

amounted to less than one-quarter inch over the four days prior to

the satellite passes and therefore the.ground surface was probably

quite dry.

3.3.1 St. Louis Daytime Temperatures, T 

The map of daytime temperature in Figure 19 displays a wide

variation over the working area with values ranging from 23% to

above 32°C in city centers. The three urban sites which show the

highest temperatures include downtown St. Louis (D), East St. Louis

across the river (E), and the industrial center of Granite City (G).

Metropolitan St. Louis is contained mostly within an area of approximately

25 km2 . In this region the ground temperatures vary from 32° to 34°C.

Maximum temperatures are located near the City Hall and Memorial Plaza

district where high-rise office buildings, parking lots, and a dense

network of roads and highways compose an urban ground fabric with

little vegetatian. Both East St. Louis and Granite City are also

completely urbanized with significant areas of heavy industry.
t

Several other non-urban sites (identified by the letter C) possess

daytime temperatures exceeding 30°C; all of these sites are separated

from the urban centers by several kilometers and are located to the

northwest, northeast, and southeast of the city. Examination of U.S.

Geological Survey Land Use maps indicates that these areas consist

,z
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Figure 19. St. Louis, June 10, 197E daytime surface temperature
analysis.
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of cropland and pasture characterized by extensive areas of open

field and low vegetation.

The water bodies are all well-defined by isopleths of lower

temperature with the lowest isotherm being 23°C. Although actual

river and lake temperatures varied from 15° to 19°C in the raw

measurements, the smoothing of the data combined with the elimination

in the analysis of isotherms below a certain value tend to remove

detail from the analysis around bodies of water such as the Mississippi

River. The most evident ground temperature minima are centered in the

L°	 southwest corner of the map (F) where a large expanse of deciduous

I F
	 trees remains despite the proximity of urbanization.

3.3.2 St. Louis Nighttime Temperatures, TN

The nighttime range of temperature presented in Figure 20 reflects

urban-rural differences which are much smaller than during the day

with values between 3.5° and 6.5°C. The St. Louis urban center

possesses the warmest temperatures. Over the downtown area near the

river, values are above 6°C while a significant region surrounding

this area exceeds 5.5°C. In comparison, typical rural temperatures

vary from 4° to 5°C. The urban sites of East St. Louis (E) and

Granite City (G), which were pronounced daytime maxima, do not display

significant nighttime anomalies. Also, the cropland and pasture

sites (C) which were daytime hotspots are actually nighttime minima,

especially the areas to the northwest and northeast of the city where

temperatures are below 4 0 . The rivers and Horseshoe Lake appear in

the isotherm pattern as distinct temperature maxima in excess of 8°C,

but the actual surface temperature pattern over the water is not
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Figure 20. St. Louis, June 9, 1978 nighttime surface 
temperatureanalysis.
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3.3.3 St. Louis Moisture Availability, M

The moisture availability plot shown in Figure 21 reflects the

remarkable variability in M across the working area with values

ranging from less than .2 over the downtown area to greater than .9

over the forested region southwest of the city. As would be expected,

the rivers and Horseshoe Lake are well-delineated by large values of

M although this is partly fortuitous because the model in its present

form is designed to simulate the energy balance of a boundary layer

with a solid substrate-atmosphere interface.

The most obvious feature in this figure is certainly the marked

reduction in the evaporation potential over the city where a large

area centered on the downtown district is enclosed by the .2 contour

and is almost coincident with the same region defined by the 32°C

contour on the daytime temperature map. East St. Louis (E) and Granite

City (G) also appear as M minima. The lack of vegetation in these

industrial-commercial sites is the obvious causal mechanism for the

low evaporation. The other sites which display M values below .3 are

the pasture-cropland (C) areas, discussed earlier, where the vegetation

is sparse and cropped short, allowing for strong heating of the surface

during the day.

The only pronounced maximum of M (apart from the rivers and lakes)

coincides with the forested region (F) in the far southwestern corner

of the map where the moisture availability locally exceeds .9. Thus,

M has a wide variability across the domain and is inextricably related

to the land use and particularly to the vegetation type. The average

range of M was generally between .3 and .6.

.^ v
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Figure 21. St. Louis moisture availability analysis.
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I

3.3.4 St. Louis Thermal Inertia, P

As with Los Angeles, the spatial distribution of thermal inertia

displayed in Figure 22 is unexpectedly indistinct. The rivers and

Horseshoe Lake are delineated by sharp gradients in P and by large

values over water; as with M the values of P are not reliable over

bodies of water. Across most of the map the variation of P is

minimal with values mostly between .025 and •035. The only

disernible pattern appears at the cropland-pasture sites (C) where

three minima of P below ,025 are identifiable. Although these areas

are quite hot during the day their relative inability to store that

heat during the day and conduct it to the surface at night is typical

of a surface fabric with low thermal inertia.

3.3.5 St. Louis Surface Heat Flux, Ho

The derived mapping of surface heat flux appearing in Figure 23

presents an intriguing representation of the spatial variation of Ho

at the time of the afternoon orbit. The St. Louis metropolitan area

is enclosed by the 251 w/m2 contour which closely coincides with the

location of the 32 °C daytime isotherm. A large area where the flux

t 
exceeds 230 w/m2 surrounding this region includes the commercial and

industrial districts near the city center. The other urban sites of

East. St. Louis (E) and Granite City (G) also reflect the significant
L^

alteration which urban substrates impose upon the energy balance compared

to suburban or densely vegetated areas. The other maxima appear at the

cropland sites which surround the suburbs of the city. The magnitude of

Ho is as large at these locations as in the most built-up-areas; indeed,

the only isopleth where Ho exceeds 250 w/m2 outside the city is centered

over cropland just northeast of St. Louis. The typical range of Ho
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Figure 22. St. Louis thermal inertia analysis.
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Figure 23. St. Louis surface sensible heat flux (: 10) at 2:00 P.I.
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outside of the heavily urbanized areas is from 150 to 200 w/m2 with

the site of smallest heat flux located in the forested area southwest

of the city where large evaporation by the plant canopy inhibits Ho.
1

3.3.6 St. Louis Evaporative Heat Flux, Eo

The map of surface moisture flux, Eo , shown in Figure 24 displays

a distribution which closely corresponds to the fields of moisture

availability and sensible heat flux shown in Figures 15 and 17. The

downtown area (D) exhibits a strong minimum where an isopleth encloses

a region over which E  is below 265 w/m2 ; this is the same area where
i

M is smallest and Ho largest. The two other large urban sites (E,G)

and the cropland-pasture areas (C) also appear as relative minima of

4

Eo , reflecting the strong influence which vegetation exercises on the

surface energy balance. The moisture flux is largest over the heavily

forested area southwest of the city where E o exceeds 500 w/m2.

Interestingly, as was the case with Los Angeles, the smallest values of

E^ are larger than the maximum sensible heat flux.

3.4 Summary of Results

The maps of temperature, moisture availability, thermal inertia,

and daytime heat and moisture flux across the areas centered on the
i

f;
cities of Los Angeles and St. Louis should aid in understanding the

mechanisms responsible for the creation and maintenance of the urban

heat island. The nature and magnitude of this anomaly is well-represented

in the four plots of day and night temperatures. The daytime spatial

variation is especially impressive with the city centers as much as	
4

10°G warmer than nearby rural areas. Both St. Louis and Los Angeles

exhibited well-defined maxima focused on the downtown, commercial and

I
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Figure 24. St. Louis surface moisture flux (: 10) at 2:00 P.M.
(? = 640 W/m2).
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industrial districts near the civic centers reflecting the strong

influence which land use plays in influencing the surface response

to the solar forcing. Temperature minima consistently appear in

locations with significant vegetation. Various grass-covered hilly

areas scattered across the Los Angeles Basin and the forested region

f	 southwest of St. Louis all appear as sites where the surface temperature

is distinctly lower than those over urban areas just a few kilometers away.

The patterns of moisture availability also show similarly

clear variation with terrain, a reduction of M over urban and non-

	

s	 vegetated areas being the most obvious relationship. Over both St.

	

's	 Louis and Los Angeles these minima of M center directly on the down-

town sites where commercial activity congregates and the urban fabric

is a heterogeneous mixture of asphalt and concrete with few freely

transpiring surfaces. The moisture budget over cities thus reflects

excessive urban alteration of the substrate. Suburban regions

consistently exhibit values of moisture availability between .3 and

.5, values which seem to be typical for the overall region. The

	

F_	 largest evaporation potential is found over grassy park areas in Los

Angeles and the forested region southwest of St. Louis which had a

moisture availability above .8, a value which seems reasonable over a

completely vegetated site. The wide range of M values again reflects

the profound effect that land cover variations have in producing the

anamolies of urban microclimates.

The patterns of thermal inertia were more difficult to interpret.

It was expected that P would show a wide variation across the working

area with distinct maxima near the city centers reflecting the

enhanced ability of urban substrate materials to store and conduct



heat. Both Los Angeles and St. Louis, however, failed to show any

significant elevation of thermal inertia in the downtown districts.

The only strong exception is a site southwest of Los Angeles where a

local maxima of P is found. Since one- to four-story :structures

s	 dominate this area, the land use would not seem to be significantly

different from that in other high population density districts nearby.

Therefore, it is not immediately apparent why the thermal inertia

should be higher at this particular location. The only readily under-

standable feature in the pattern of P appears on the St. Louis map over

the pasture-cropland sites surrounding the perimeter of the city where

there was a clear pattern of anomalously low values of thermal inertia,

implying that open areas of close cropped vegetation or bare soil

store heat less efficiently than fully vegetated or urbanized surfaces.

Maps of the surface heat and moisture flux were the most

interesting as these plots represent H o and E  very near the time of

maximum flux within a diurnal. cycle. As expected, the urban centers

are the foci of H maxima where the heat flux is two to three times
0

greater than over more vegetated areas nearby. Both St. Louis and Los

Angeles exhibit local values of Ho in excess of 250 w/m2 downtown while

over densely vegetated areas Ho was below 100 w/m2 . More importantly,

the urban anomaly is not confined to small areas a few blocks square,

but encompasses significant regions of 25-50 km2 surrounding the city

centers where the heat flux was much larger than suburban and rural

values. A glaring example of the scale of variation can be seen in an

unsmoothed enlargement of the 5t. Louis downtown district (Fig. 25)

where Forest Park (FP) is seen to have a heat flux roughly half that

of the city center just a few kilometers away.
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Figures 26 and 27 display results from a model simulation which

calculated the daytime evolution of the heat and moisture flux and

net radiation over an urban and urral site, respectively, for the

initial St. Louis conditions of June 9-10. It is evident that the low

	

r '
	

moisture availability (.175) in the urban simulation inhibits the

A

	

	 evaporation and produces a large sensible heat flux whereas in the

rural example (M=.5) the moisture flux is the most important term in

the surface energy balance. Near solar noon (360 minutes) E  is about

60% as large as the net radiation, RN , for the rural case whereas

	

t
	

in the urban example E  is about 30% of RN . Thus, it is evident

that the energy balance at the surface must have a significant variation

across an urban-rural canopy.



Figure 26. Daytime evolution of surface heat and moisture flux
and net radiation from model simulation for St. Louis
urban site (M = .175, P = .035).
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Figure 27. Daytime evolution of surface heat and moisture flux
and net radiation from model simulation for
St. Louis rural site (M = ,5, P = .035).
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A numerical procedure has been developed which uses satellite-

derived surface temperature fields in combination with output from a

numerical model of the boundary layer to infer the spatial distribution

of the effective surface parameters, M and P, and the sensible and

evaporative heat fluxes at the surface. The approach is general and

may suitably be applied to any surface for which temperature data

are available and over which horizontal homogeneity of large scale

meteorological features may be assumed. The final result of the

analysis is the mapping of the above quantities over the two urban

areas examined in this research; Los Angeles and St. Louis. The plots

presented represent a unique array of information which allows

objective conclusions to be formulated concerning the mechanisms

which produce and maintain the temperature anomaly in cities known as

the urban heat island. Moreover, the maps of sensible and latent heat

flux at the surface present for the firat time the spatial representation

of how the available radiation at the surface is partitioned according

to the land use and vegetation cover.

Thermal inertia and moisture availability have been proposed as

the two parameters which are most responsible for the temperature

`	 variations over a rural-urban complex (Carlson and Boland, 1978).

The two case studies performed in the present research suggest that M

is indeed the governing parameter during the day with both downtown

areas appearing as distinct: minima in M whereas suburban and rural

areas possess much larger evaporation rates. The areas of daytime

y5	 temperature maxima all correspond quite closely to minima in moisture

availability. Conversely, the two plots of thermal inertia were

f
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surprisingly ill-defined.	 It was anticipated that both Los Angeles

and St. Louis would exhibit maxima in P, reflecting the enhanced

#
ability of the urban substrate to store and conduct heat. 	 Although

r

both cities were relatively warm at night, P did not exhibit significant

I` elevations in either location. 	 The only exception is a small maximum in P

f, centered approximately five miles southwest of downtown Los Angeles in a

L
high population density residential area. 	 This site is quite similar

to numerous others within the Los Angeles Basin and the only hypothesis

which may partly explain this anomaly is that the anthropogenic

heat input (which has not been considered in the present form of the

model) is relatively large over this location. 	 This would suggest
f
b

that the site is not a maximum of P but instead might actually possess

significant values of anthropogenic heating with values of thermal

inertia similar to those over the remainder of the Basin.	 In any case,

_ it may be concluded that the nighttime temperature anomalies over both

St. Louis and Los Angeles are not exclusively determined by large values

of thermal inertia but are mainly the residual of the daytime anomalies
.,1

produced by a larger heat storage due to a reduction. in evaporation.

This result is intriguing and differs from previous supposition con-

cerning the distribution of P over an urban-rural canopy.

Clearly, any comprehensive study of urban m:^croclimates should

include an investigation of the anthropogenic heat input.	 Especially

over cities at high latitude during the winter season, anthropogenic

heat input may represent a significant fraction of the surface energy

balance.	 In principle., if the thermal inertia can be 4ssumed constant

(or at least approximately so) across an urban basin, the same analysis
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which was employed to solve for M and P might be used to infer M and

the anthropogenic input, Ao . In general, any two terrain parameters

may be determined from the analysis of day-night temperature pairs if

all other parameters are known. In the future, the spatial variation

of roughness length might be investigated but it is unlikely that

present models possess the necessary accuracy to correctly infer

effects of changes in roughness

The mapping of the sensible and evaporative heat fluxes at the

surface have visibly demonstrated the alteration of the surface energy

balance caused by cities. Both urban centers appear as distinct

maxima of Ho and minima of Bo and these regions correspond very closely

with the sites of highest daytime temperature. The variation of

the surface heat flux undoubtedly has significant influence on the

distribution of cloudiness and rainfall over and downwind of cities.

During the convective precipitation season especially, the large heat

flux over cities may act as a trigger mechanism for shower and

thundershower activity.

The combination of modeling and remote sensing techniques

described in this thesis holds promise for a variety of practical

applications. The spatial variation of Ho could constitute an important

input to mesoscale models for investigating the dynamic response of

the atmosphere to urban and mesoscale variations in terrain parameters

such as M and P which are presently only crudely estimated or entirely

neglected in boundary layer components of large-scale models.

Operationally, the spatial variation of moisture availability could

provide important information for use in agricultural and forest

meteorology. For example, from an analysis of M it may be determined
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if the moisture content of vegetation has reached the wilting point,

the knowledge of which will aid in irrigation scheduling and also in

the evaluation of forest fire threat. Also, determination of the

time-integrated heat flux may supply useful information for diffusion

models which employ mixed-layer scaling. Other uses, not yet foreseen,

will undoubtedly emerge in the future.
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