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THE WAVE  STRUCTURES OF ME EADY  MODEL OF 
B A R O C L I N I C   I N S T A B I L I T Y  

INTRODUCTION 

A number of baroclinic  fluid  models have been  proposed  to  investigate 
the  large-scale  (synoptic  scale)  processes  in  geophysical  fluid  dynamical  sys- 
tems [ 1,2]. It is now generally  understood  that  the  initial  development of the 
large-scale  travelling  waves in the  westerlies  in  temperate  latitudes  may  be 
modelled  by use of a linear  stability  analysis of a structured zonal current of a 
baroclinic fluid. The  fundamental  source of energy  for  the growing disturbances 
is recognized to be  the  latitudinally  differential  solar  heating, which creates a 
temperature  gradient  in  the north-south  direction. 

Under the  assumptions of geostrophic  balance and hydrostatic  approxima- 
tion, which are  appropriate  for  scales of long waves  in  the mi-ddle latitudes, 
systematic  derivation of the  scaled  governing  hydrodynamic  equations of motion 
yields a set  of approximate  forms of equations known as  the quasi-geostrophic 
equations [ 31. 

Among several  models,  the well-known model of Eady [ 21, using the 
Boussinesq  fluid  approximation and neglecting  the p-effect, allows ready 
analytical  solutions; it captures  the  essential  features of the  baroclinic waves. 
In Eady's model; a (vertically)  stably  stratified  zonal  current is contained 
between two rigid,  parallel,  rotating,  horizontal  boundaries. Two principal 
results of the Eady model a re  that  there is a short wavelength cutoff for the 
unstable  wave  region and that  the  short wavelength cutoff and the  most  unstable 
wavelength do not depend on  the  vertical wind shear. 

In this report,  the  solutions of the Eady  eigenvalue  equation are  recast  
into a somewhat  more  manageable  form, and the  propagation  speed and the 
growth rate of baroclinic  waves of varying  sizes  pertinent to the Eady  model 
are computed. Another purpose of this  report is to provide a comprehensive 
picture of the  detailed  wave  structures,  characterized  by  the  amplitude and the 
phase  variations of the  relevant  physical  variables.  This  information  has  been 
available only piecemeal  in  the  literature.  Physical  interpretations of the 
interrelationships  among  the  detailed wave structures are given, which reveal 
important  aspects of the  mechanisms  responsible  for  the  energy  transfer  from 
the  basic  state to the  growing waves. 
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This  report  complements Eady's original  work, adding detailed  informa- 
tion  concerning  the  quasi-geostrophic  baroclinic  wave  structures. 

FORMULATION  AND EADY'S SOLUTION 

The  derivation of the  quasi-geostrophic se t  of equations  has  been  amply 
documented [ 3 J and will not be  repeated  here. We shall  recapitulate only the 
highlights of the  basic  assumptions  embedded  in  the  quasi-geostrophic set of 
equations . 

Let  the  Cartesian  coordinate  axes x, y,  z refer to eastward,  northward, 
and vertically  upward  directions,  respectively, while u, v, w a re  the corres- 
ponding velocity  components. A parallel flow in  the  x-direction of a  vertically 
stably  stratified  Boussinesq  fluid is confined within two horizontal  rigid 
boundaries  at  z = 0 and z = H . The  vertical  stratification of the fluid is 
described by (the  horizontally  averaged)  Brunt-Vaisaa  frequency N(  z) . We 
choose U to be a characteristic  horizontal  velocity,  L a horizontal length 
scale, L/U the  time  scale, and f/2 the  rotation rate parallel  to  the z-axis. 

The  geostrophic  balance is achieved when the  Rossby  number R is 
small, i. e., 

0 

The  comparable  importance of stratification and rotation  in  the  dynamical 
processes is expressed  by  the condition that the Froude  number F( z) is of 
order unity, i.e. , 

F( Z) = ' (f2L2) /(N2H2) - o( 1) . 
The  hydrostatic  approximation is also  necessary to  the  derivation of the 

quasi-geostrophic equations. Note that by invoking the  hydrostatic  approxima- 
tion we  do not allow the  vertical  acceleration  term dw/dt in  the  vertical 
momentum  equation; however, it is to  be  realized  that  the  vertical  velocity w 
itself is carried on in  the  formulation.  Typically,  the  vertical  velocity w is 
quite small, of the  order of 6 R U , where 6 = H/L , but because of vortex-tube 

0 '  
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stretching  the  vertical  velocity  plays a principal  role  in  the  quasi-geostrophic 
formulations. 

Systematic  scaling of the  equations of motion  indicates  that  the  pressure 
deviation from  the  horizontally  averaged  hydrostatic  pressure, nondimensional- 
ized by p UfL where p is an  average  density  for  the  Boussinesq  fluid, is a 

nondimensional  streamfunction $ for the  horizontal  velocities.  Then  the non- 
dimensional  velocity  components  (u, v, w) are 

0 0 

v =  $ 
X 

a 

in which (u, v) are  scaled  by U ,  w by 6 R U ,  (x, y) by L , z by H , and 
t by L/U. 

0 

Under the above assumptions, we  can write a single  equation which 
expresses the  conservation of potential  vorticity 

Now, let z) = z) (y, z) be a zonally  uniform,  time-independent  solution 
0 

of  Eq. (4) , associated  with  a  zonal  current  u = . This  solution is per- 

turbed by $' , and  normal-mode  solutions are  assumed for the  disturbances, 
i. e. 

-+o y 
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and 

Consequently,  the  eigenvalue  problem  posed for the  quasi-geostrophic 
normal-mode  perturbation  pressure  can be written as 

with two rigid-lid  boundary  conditions 

A A 
( u  - C )  $z - uz$ = O on z = 0, 1 ( 7 )  

In Eq. (6) the  dimensionless zonal wavenumber k is considered real, and the 
eigenvalue C [ C + i C ] and the  eigenfunction cp are generally  complex, 

while p = d( R -I) /dy =" const. represents  the south-north  variation of f. 

A 

R I 

0 

The Eady  model specializes  to  the case in which u = z , p= 0, F (z) = 
const. ; Thus Eqs. (6) and (7) reduce  to 

and 

( z - C )  cpz-$ = 0 
A A  

( 9) 

Separating out the  y  dependence  as $= CP (z) e , where I is required  to  be 
real, Eady obtained  the  closed form solutions: 

il y 
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where 

K = F-Ih  (k2+ P 2 ) Ih 

and the  eigenvalue C is given as 

where A is an  arbitrary constant. 

Equation (12)  shows that there is a critical wavelength below which all 
waves are  neutral ( C  = 0). The  critical  neutral  wavenumber K is computed 
to  be I C 

KC = F -Ih ( k2 + P2)" = 2.3994 . ( 13) 

The  most  unstable  wave, which is associated with the  maximum  growth 
rate  k CI , occurs when 

The growth rate  k C is maximized when P = 0 ,  i. e. , when the  disturbances 

a r e  of infinite  extent  in  the  south-north  direction. 
I 

Note that in Eady's model,  the zonal  wavenumber k and the  latitudinal 
wavenumber P always  appear  simultaneously  in  the combined form ( k2 + P2). 
A s  a  consequence, apart  from  the  fact  that P = 0 corresponds to  the  most 
rapidly  growing mode, setting I = 0 from the  outset  does not cause any loss of 
generality  in  the  dynamics  in Eady's model. However, it is worth  pointing  out 

5 

I .  



here  that  in  attempting any improvement of Eady's solution  by  incorporating 
terms of higher  order  in R , neglecting  the  y-variation of solutions would give 

r i s e  to  inconsistency and erroneous  interpretations [4]. 
0 

Employing the following shorthand  notations 

Q , =  1 - K C R  , 

Q, = K C  I '  

Q, = 1 + K C  R '  

@( z) may  be  rewritten  as 

Once the  analytical  expression fo r  the pressure  perturbation @( z) is 
found, other  dynamical  variables  may  be  derived  from the quasi-geostrophic  set. 
In view of the  relation linking the  latitudinal  velocity component, 

V = Re { V(.z) exp[  ik( x - Ct) I} , 

to the  pressure  perturbation, we can  write 

V(z)  = ik@ (z) ; 
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thus 

The  vertical component of the relative vorticity, 

5 = Re{ Z(z) exp[ik(x - Ct) I }  Y 

may  be  derived  from < = V ZC, ; thus 

Based  on  the  thermodynamic  relation  in  the  quasi-geostrophic set, the 
dimensionless  temperature  perturbation, 

8 = R {@(z) exp[i  k(x - a ) ] }  , e 

is given as 8 $'/8z. Hence, 0 is expressed as 

@(') = (Qi A f) Gg) 
+ Q3 

l41 exp[i tan" (GZ(/G;)] , (19) 

where 

dG 1 dG2 
G; = - , G ' =  - 

dz 2 dz . 
Note that under  the  Boussinesq  fluid  assumption  the  nondimensional  density  per- 
turbation p is simply  given as p = - e .  

7 
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W e  now proceed to find an  expression  for  the  vertical  velocity, 

w = Re{W(z)  exp[i  k(x - Ct)]} . 
From  the  quasi-geostrophic  relations, we can show that 

( 20) 

arranging, we have By  use of equations (17) and 

where 

(J:+ J;)l/2j x k F  exp[i tan1(- J1/J2)] (21) 

J1 = ( Z  - CR) G ; +  C I G' 2 - G 1  ' 

J2 = ( Z  - C R )  G i  - C  I G' 1 - G 2  

Finally, we consider  the  horizontal  divergence, 

div VH = Re{D(z) exp[i  k(x - Ct)]}  . 
After  some  algebraic  manipulation, we can show that 

D(z)  = ( Q;: .:) l(M:+ xk3 exp[i  tan*(- M1/M2)] . (22) 

where 

M = ( z - C R )  G 1 + C  G 
1 1 2 '  

M = ( z -  
2 G2 I 1 

- C  G 
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In summary,  based  on  the  pressure  perturbation CP in  equation ( I O ) ,  
we  have found expressions  for  the  relevant  dynamical  variables  in  the  Eady 
model. The  variables are the  latitudinal  velocity  component v,  the  vertical 
component of the  relative  vorticity 5 ,  the  temperature  perturbation 8 , the 
vertical  velocity w , and the  horizontal  divergence div V in  equations (15) 
through (22) . H 

RESULTS AND D l  SCUSSION 

Firstly,  the eigenvalue C ( =  C + i C ) of the  Eady  problem is computed. 
R I 

Figure 1 shows  the  propagation  speed C as a function of the  scaled  horizontal R 
wavenumber K. A s  was stated  earlier, I = 0 ,  which is the  most  rapidly  growing 

mode,  leads  to  the  ready  identification of the zonal  wavenumber k = F1/2 K of 
Figure 1. When the  wavenumber is smaller than  the cutoff wavenumber K = 

2.399,  CB is 0.5 , implying  that  the  unstable  waves ( C  # 0, K c KC) in 

Eady's  model  propagate with the  same  speed  (which is the  basic  current  speed 
at the mid-level z = 0.5) , regardless of the wavelength. In  view of the  dis- 
persive  nature of the  real  atmospheric  baroclinic  unstable  waves, it appears 
that  some of the  hitherto  ignored  mechanisms have to  be included  in  the  Eady 
model to bring it closer  to  realistic  atmospheric  situations. 

C 

I 

0 '  1 I 

0 1 2 3 4 

K 

Figure 1. Propagation  speed C versus  scaled  wavenumber K. R 
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If K > Kc , equation  (12)  shows  that C = 0 and there are two branches 

of CR , pointing to the  existence of two neutral  waves  propagating with different 

speeds,  one  greater  than and the  other smaller than  the wind speed at the  mid- 
level.  This  point will be discussed  further later. 

I 

The  growth rate ( K  C ) is plotted  in  Figure 2. The  unstable  region I 
(K e K = 2.40) and the cutoff wavenumber beyond  which neutral  waves 

exist are clearly shown. The  most  unstable wave, which is associated with the 
maximum  growth rate, is seen  to have  wavenumber K z 1.6062 . It is also 
apparent  that  in  the  unstable  region  (C # 0, K e K ) , for every growing  mode 

solution  corresponding to C > 0 there  exists a damped wave with C e 0.  

C KC 

I C 

I  I 

I 

3 4 
K 

Figure 2. Growth Rate KC versus  scaled wavenumber K.  I 

W e  now present  detailed  information  about  the wave structure for the 
disturbances of varying  zonal wavelengths.  Since an eigenfunction is generally 
complex,  the  amplitude ( o r  the  modulus) and the  phase will  be displayed 
separately.  For  example,  in  the  case of the  perturbation  pressure @ (2) , 

10 



Figures 3( a) and 3(b), respectively. Note that the  eigenfunction  solution of 
equation (8) contains  an  arbitrary  constant A , which is set to  be unity; there- 
fore,  the  amplitude  plots  display only the  relative  magnitude of variation with z . 
Also,  for  the  sake of better  graphical  presentation,  different scale factors (for 
the  plot of amplitude  variations) and phase  shift  factors  (for  the  plot of phase 
variations) are employed for  each  variable in the  figures. 

/ z= 1 

(a) Amplitude  variations.  Scale  factors are 0.5 for I I , 0.5 for 
101, 1.0 for I W l ,  and 0.3 for ID[ .  +- \-J\z=l *T 0 

1. . .  1 ~ 

- A  
~. I 

- A  0 z=o 
A - 

2 
- 
2 

w 

(b) Negative relative  phases of perturbation  pressure ch and 
temperature 0 .  Phase  shift  factor is 11.35". 

- A  0 n 

(c) Negative relative  phases of vertical  velocity W and 
divergence D. Phase  shift  factor is 11.35O. 

Figure 3. Amplitude and phase  variations of the  most  unstable mode 
( K =  1.6061, C = 0.5, C = 0.1929). R I 
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The wave structures of the  most  unstable  mode are described  in  Figure 
3. These  plots  may  also be construed as being  qualitatively  representative of 
the wave structures of unstable  waves  in  general. Because of the  simple  linear 
wind profile and the rigid  boundary  conditions,  the  amplitudes of the eigen- 
functions of the  Eady  unstable  waves are  symmetrical with respect to the  mid- 
level.  The temperature and pressure  perturbations are largest at the  boundaries. 
The  vertical  velocity I W( z )  I is zero at both boundaries and reaches  the  maxi- 
mum at the mid-level. On the  other hand, the  horizontal  divergence ID( z) I is 
a maximum at both boundaries and decreases to its minimum at the mid-level. 
Figures  3(b) and 3( c) show the  vertical  structure of the negative  phase  plot of 
the  dynamical  variables of the  most  unstable mode. The  negative  phase  dia- 
grams show the  actual  side view of the wave structures. Combining  the  ampli- 
tude and the  negative  phase  information,  the x-z cross  section  over one 
wavelength is constructed in Figure 4 to illustrate  the  interrelations among 
dynamical  variables. In Figure 4, the  size of the  letterings  indicates  the rela- 
tive magnitude of the  variables denoted. Both the pressure trough  (high 
pressure, denoted by 4, ) and the  pressure  ridge  (low  pressure, denoted  by @ ) 

a re  tilted upward and backward.  The warm tongue (the  perturbation  temperature 
maximum, denoted by 0 ) lies ahead of the pressure trough but to the rear  of 

the  pressure ridge.  Again, the  cold tongue (the  perturbation  temperature  mini- 
mum, denoted by @ ) is located at half-wavelength apart  from  the  warm tongue. 

In a similar  fashion,  the  vertical  velocity  distribution W, denoted  by vertical 
arrows, and the horizontal  divergence D, denoted by horizontal arrows, are  marked 
in Figure 4. At  the same  time, the  south-north (y) component of velocity V 

+ - 
+ 

- 

-"- 0 - @-e+ - 63 - @+ - z=o 

Figure 4. The x-z plot showing the  interrelationships among the dynamical 
variables,  The  size of the  letterings  indicates  the  relative 

magnitude of the  variables. 
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expressed  in equation (17), which is shown by @ ,a in Figure 4, has  the same 
amplitude  variation as the  perturbation  pressure @ , but  the  phase of V is 
n/2 ahead of the  phase @ . The x-z cross  section of Figure 4 reveals  the well- 
known potential  energy release mechanism  associated with the  baroclinically 
unstable  waves [ 51 . If the  kinetic  energy of the wave field is to increase with 
time,  the  vertical  velocity  has to be  positively  correlated with the  perturbation 
temperature so that  on  the  average  warm fluid rises while  cold  fluid falls. The 
correlation  between w and e in  Figure 4 for  unstable  waves  verifies  the 
preceding condition. Another  significant  aspect of the  baroclinically unstable 
wave energetics is that  the  correlation  between  the  south-north  velocity  com- 
ponent  v  and  the  perturbation  temperature e should  be  positive,  suggesting 
that  the  unstable  waves,  on  the  average,  transport  heat down the  basic  tempera- 
ture  gradient  in  the south-north direction.  This is also shown in  Figure 4; 
warm  (cold)  fluid is correlated with the  velocity  component into (out  of)  the 
plane of  paper.  In summary,  the  detailed wave structures of Figure 3, together. 
with the x-z plane  plot, show how baroclinically  unstable  waves  withdraw  energy 
from the store of available  potential  energy of the  basic  current which is sus- 
tained by the  latitudinally  varying  temperature field. 

Now, it will  be of interest  to  examine  in  detail  the  peculiar features of 
the  baroclinic wave structures as the wavenumber K increases.  Figure  5 
illustrates  the  structure of an  unstable mode at wavenumber K = 2.2 , which has 
a reduced  growth rate ( C  = 0.5, C = 0.0961). Although the  overall 

patterns of the wave structure at this wavenumber are quite  similar  to  those of 
the  most  unstable  mode,  some  differences are easily  discernible with respect 
to  the  negative  phase  diagrams of Figures  5(b) and 5(c).  Whereas  the  phase 
line of 0 is further  stretched  toward  the  horizontal,  the  phase  line of @ is more 
erect.  Perhaps,  the  behavior of the  vertical  velocity W is the  most  interesting 
to  analyze  because  other  variables  may  be  readily  expressed  in  terms of W in 
the  quasi-geostrophic  formulation.  The  constant  phase  line of W of Figure 
5(c) still slopes  upward and backward, which is characteristic of unstable 
baroclinic  waves;  however,  the  slops is steeper  (toward  the  vertical)  than  the 
case of the  most  unstable mode of Figure  3(c) . This  steepening of the  phase 
line of W will become  more  apparent as the  wavenumber  approaches  the 
cutoff wavenumber K 

R I 

C' 

Figure 6 shows the  structure of an  unstable wave with the  wavenumber 
closer to the cutoff wavenumber. A t  this  wavenumber ( K  = 2.35) , the  phase 
speed is still 0.5, but  the  growth rate is quite small (C = 0.0476) . The  phase 

lines of 0 and D are further  stretched  toward  the  horizontal, and a trend  may 
be  recognized  in  that  the  phase  lines of 0 and D tend to a step-like shape. 
However,  the  phase  lines of @ and W are further  steepened  toward  the  vertical. 

I 
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1 0 1 

z=l 

z=o 
-7T 0 lr 

(b) Negative relative  phases of perturbation  pressure 9 and 
temperature 0 . Phase  shift  factor is 5.13O. 

"'IT 0 7 l  

(c) Negative relative  phases of vertical  velocity W and 
divergence D. Phase shift  factor is 5.13O. 

Figure 5. Amplitude and phase  variations of an  unstable  wave ( K  = 2.2,  
C = 0.5,  C = 0.0961) . The  wavenumber K(= 2.2) is greater than 

the  wavenumber of the  most  unstable mode K =  1.6061. 
R I 
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z=l 

z=o 
-7T 0 ?r 

(b) Negative relative  phases of perturbation  pressure @ and 
temperature 0 .  Phase  shift factor is 2.49". 

(c) Negative relative  phases of vertical  velocity W and 
divergence D. Phase  shift factor is 2-49" . 

Figure 6. Amplitude  and phase.variations of an  unstable wave ( K =  2.35, 
C = 0.5, C = 0.0476). The  wavenumber K(.= 2.35) is close R I to  the  critical  wavenumber K 

C' 
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When the  wavenumber  equals  the  critical  wavenumber, we have a 
marginally  stable mode. The  structure of this marginally  stable mode (K = 
2.3993, C = 0.5, C = 0) , as shown in  Figure 7, exhibits  features which are 

the  limiting  behavior of the  unstable waves. For  this  marginally  stable  mode, 
the  amplitude  functions of Figure  7(a) are still symmetric with respect to  the 
mid-level.  Both the  temperature  perturbation 0 and the  horizontal  divergence 
D vanish at  the mid-level.  The phase  lines of @ and W are  now vertical, and 
the  phase  lines of 0 and D are step functions  with steps at the mid-level. These 
vertical  phase  line  patterns are typical of the  neutral  waves ( C  = 0) in  general, 

where  the  mechanism  for  converting  energy  from  the  basic  current to perturba- 
tions is absent.  Tokioka [6], by  computing the  energy  transfer  rate  in  terms 
of the  vertical  velocity,  demonstrated  that  the  phase  line  of W is vertical  [i. e. , 
dcr /dz = 0 , if W is written  as W = I W I exp( icr ) 3 when there is no energy  release 
from the  basic  state  to  the  disturbances. 

R I 

I 

In  the  stable wave region  where  the  wavenumber is larger than  the cutoff 
wavenumber, as is shown  in  the  eigenvalue plots of Figures 1 and 2, there 
appear two neutral  modes (C = 0) , each of which has a  different  phase  speed 

one larger  than and  the  other  smaller  than  the  basic  current  speed  at  the 
I 

mid-level. 

The wave structure of a  fast-propagating ( C  > 0.5) neutral mode ( K  = R 
3.5, C = 0.7131, C = 0) is shown in Figure 8. For  this  neutral mode,  thp 

amplitude  functions of Figure 8(  a) are no longer  symmetric with respect to the 
mid-level.  It is also evident  that  the  amplitude  distribution  functions are 
enhanced  in the  region  near  the upper boundary. The  perturbation  temperature 
0 is zero  at  a  level in the  lower  half of the  fluid  depth, and the  phase  line of 0 
has a  step  at  this  level.  The  horizontal  divergence D becomes  zero  at a  level 
between  the  mid-level  and  the  upper  boundary, and the  phase  line of D has a 
step  at  this  level. A s  was  pointed  out earlier,  the  phase  lines of + and W are 
vertical, allowing no energy  conversion  mechanism  from  the  basic  state  to  the 
disturbance. 

R I 

The wave structure of a  slow-propagating ( C  < 0.5) neutral mode ( K  = 

3 . 5 ,  C = 0.2869, C = 0) is shown in  Figure 9. The  bulk of the  disturbance is 

confined  to the  bottom half-depth of the fluid. This slow-propagating neutral 
mode  exhibits  features  opposite to the  fast-propagating  neutral mode described 
in Figure 8. 

R 

, R  I 
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1 0 1 

(a) Amplitude  variations.  Scale factors are 0.5 for I CP I, 0.2 for 
101, 0.25for I W l ,  and0.1for ID!. 

"s 

" 

0 1T 

(b) Negative  relative  phases of vertical  velocity W and 
perturbation  pressure 9. Phase  shift  factor is 0.0. 

L- .. 1.. " 1 I 
-T 0 ' z=o 

7T 

(c) Negative relative  phase of perturbation  temperature 0 .  
Phase  shift  factor is 0.0. 

*=l 
I 1 1 I 

"s 0 ' z=o 
n 

(d)  Negative  relative  phase of divergence Do 
Phase shift factor is 0.0. 
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(a) Amplitude  variations.  Scale factors are 0.5 for I @ I , 0.1 for 
101, 0.2 for IWl,  and 0.05 for IDI. 
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(b) Negative relative  phases of perturbation  temperature 0 and 
divergence D. Phase  shift factor is 0.0. 
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(c) Negative relative  phases of vertical  velocity W and perturbation 
pressure @ . Phase  shift  factor is 0.0. 
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(a) Amplitude  variations.  Scale  factors are 0.5 for I @ I, 0.1 for 
101, 0.2 for IWl ,  and 0.05 for  IDI. 
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(b) Negative relative  phases of perturbation  temperature 0 and 
divergence D. Phase  shift factor is 0.0. 

0 

"s 

W 

- 

0 

(c) Negative relative  phases of vertical  velocity W and 
perturbation  pressure @ . Phase  shift  factor is 0.0. 

Figure 9. Amplitude and phase  variations of a slow-propagating  stable 
mode ( K =  3 . 5 ,  C = 0.2869, C = 0.0) . R I 
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A physical  interpretation is helpful in  explaining  the  transition  from  the 
neutral  modes  to  the  unstable  modes  as  the wavelength increases.  In  the  stable 
region (K  > K ) the  horizontal  length  scale (i. e., wavelength) L is small so C S 

that  the  corresponding  penetration  scale  height [ 7 , 8 ] ,  of the  order of fL /N, 

is smaller  than  the  half-depth of the fluid. As a consequence,  the  motion  forced 
by  the  external  conditions at the  rigid  boundaries  cannot  penetrate fully into  the 
interior of the fluid. The  resulting  motion is thus  concentrated  in  regions 
adjacent  to  the  boundaries. Under these  circumstances,  the two neutral  modes, 
energetically  incapable of converting  potential  energy  from  the  basic  current to 
the  disturbances, a r e  simply  advected by the  basic  current.  Since  the  basic 
current is linearly  increasing with z, the  mode  whose  motion is concentrated 
near  the  upper  boundary is advected faster than  the  mode  whose motion is 
concentrated  near  the  bottom boundary. 

S 

A s  the wavelength increases to  the  point  where  the  penetration  scale 
height  becomes  comparable  to  the  half-depth of the  fluid,  the two neutral  modes 
coalesce  to  form  a  single  mode, and instability  begins to set  in. 
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