JPL PUBLICATION 77-24, REVISION 1

Software Design and
Documentation Language

Henry Kleine

{FASA-CR-162291} SOFTRARE DESIGN AND N79-32875
DOCUHENTATION LANGUAGE, REVISION 1 {Jet
Propuision Lab.) 88 p HC ANS/NF aAn1
CSCL N9B Unclas
G3/61 35777

August i, 1979

National Aeronautics and
‘Space Administration

Jet Propulsion Laboratory
California Institute of Technology .
Pasadena, California

REPRODUCED BY B
NATIONAL TECHNICAL
INFORMATION SERVICE

U3 DEPARTMENT OF COMMERCE
SPRINGFIELD, VA 22161

NQOTICE

THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSORING AGENCY. ALTHOUGH IT
IS RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.

JPL PUBLICATION 77-24, REVISION 1

Software Design and
Documentation Language

Henry Kleine

August 1, 1979

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The research described In this publication was carried out
by the Jet Propulsion Laboratory, California Insitute of
Technology. under NASA Contract No NAS7-100

~

i

COMMUNICATION
BY MEANS OF
SOFTWARE DESIGN
& DOCUMENTATION
LANGUAGE [SED1

MAINTENANCE
PROGRAMMER

” 7 £ .
PROGRAMMER e/ PROGRAMMER L

COMMUNICATION
BY MEANS OF
PROGRAMMING
LANGUAGES -

SOFTWARE DEVELOPMENT TEAM COMMUNICATIONS

aan

ity

PREFACE

The work described in this report was performed by the Information
Systems Division (360) and the Systems Division (310) of the Jet Propulsion
Laboratory.

ACKNOWLEDGMENT

Many aspects of the methodology for using SDDL, and enchancements
to the language and the processor, evolved from its application to
the design of two programs: the Vehicle Economy and Emissions Program
(VEEP) and the Solar Array Manufacturing Industry Simulation (SAMIS).
The current capabilities, present methodology, successful application,
and future prospects of SDDL are, in large measure, due to the many
gontributions of the members of these design teams. For their many
excellent suggestions, critical reviews of this document, critique of
new processor capabilities, conscaentious application of SDDL to the
design tasks, and hours of philosophical discussion of the goals of
a software design tool, I wish to express my thanks to Richard V. Morris,
Donald A. Heimburger, Marcia A. Metcalfe, Bruce L. Kleine,
Robert G. Chamberlain, Steve M. Jacobs, Robert L. Neorton, and
Gerhard J. Klose.

Preceding page blank |

ABSTRACT

The objective of the Software Design and Documentation Language
(SDDL) 1s to provide an effective communications medium to support
the design and documentation of complex software applications. Thas
objective is met by providing (1) a processor which can convert design
specifications into an intelligible, informative machine-reproducible
document, (Z2) a design and documentation language with forms and syntax
that are sample, unrestrictive, and communicative, and (3) methodology
for effective use of the language and processor.

The SDDL processor is written in the SIMSCRIPT II programming
language and has been implemented on the UNIVAC 1108, the IBM 360/370,
and Control Data machines.

vi

II.

111,

1v.

CONTENTS

INTRODUCTION ——=w=w — R —— 1-1
A, SDDL OBJECTIVE e —— 1-1
B. SDDL PROCESSOR - —— -_— 12
1. Document Formatting -==== - -———— - 1=2
2. Software Design Summary Information - 1=2
3. Processor Control Capabilities eeeermeercccccccceesen——- 1-3
SDDL OVERVIEW —weemoccceae o —— oo o m——————— - = e o i 21
A. SDDL SYNTAX - -— - 2-1
B. SDDL STRUCTURES commmmmmmdtmmscm e e mm e e ———————————— 2.2
SDDL METHODOLOGY —~—— ——— ———— -_— _— 3=1
A. USES OF THE SOFTWARE DESIGN DOCUMENT wew—wsarcm—cceace—w 3-1
B, REPRESENTATION OF DATA STRUCTURES - - 3~1
C. REPRESENTATION OF CONTROL/PROCEDURAL STRUCTURES ~=——==- 3=-2
D. SPECIFICATION OF MODULE INTERFACES- - - 3-5
E. INCLUSION OF MANAGEMENT INFORMATION IN THE 8DD -~———eee- 3-6
F. ADDITIONAL USES OF THE CROSS REFERENCE CAPABILITY -—ww=- 3-6
SDDL USER'S REFERENCE GUIDE ————————————— ——————— 41
A. CONTINUATION OF INPUT LINES ——memmemmcmmcmcmmcm——m—e—ee 41
B. CONTINUATION OF OUTPUT LINES —ccwmmaccome _— 4-1
cC. SDDL SYNTAX DEFINITION w—eme—mem — - lo2
1. Secondary Definitions (Level 1) —cmcmmcmmmmeecmcanaa—— 4-3
2. Keyword Statement Definitions (Level 2) =memm—m———————q y.7
3. Control Directives (Level 3) ——mmeemmmceemcce e k=16
L, SDDL Syntax Overview Diagrams (Level #) —cm—mmacucmcaaoa 4.38
SAMPLE DESIGN ~mrmeeee e e e e ——— 51

vii

VI. USING THE SDDL PROCESSOR mmstec oo ommmmm s m oo o o oo e e e e 6-1

A.

B.

C.

BIBLIOGRAPHY

Figures

2=1.

Tables

2«1.

2-2.

RUN-TIME PROCESSOR CONTROL OPTIONS ———-—mmemommemeeeeee 6-1
UNIVAC IMPLEMENTATION EXECUTION PROCEDURE —cmeomemmmeee 6-5
JCL REQUIRED FOR THE EXECUTION OF SDDL
IN AN IBM OS ENVIRONMENT mmemmmee——ecece—cm oo e m e 6-6
-------------------- - e =]
SDDL Processor ACtlons ——————cmm e 2-6
Default SDDL Structure Keywords ——————memmmmeemeeeeee 2-1
SDDL Directive Keywords —————mem o e oo 2-1
SDDL Primitive Definitions = m e oo b-3
SDDL Run Time Option Summary ==———e—memmmmemeemme e 6-1

Syntax Definitions

1.1.
1.2.

1.3.

1.4,

2.3.
2.4,
2- 5-

2.6.

Identifier mmmec e -3
Number —----- ——— e ——————— LY
WOPrd = e e e e e)
Statement ———~~rmm e e 4-5
Any Text —weemeem e —_— _——— a7
Module Initiator ----------------__-________; __________ y.7
Block Initiator — e e e 4.8
Terminator —-—eeemececeem—- SRS — b9
SUbStruCtUre ——m e e 4-10
ESCADPE ~~m = e e e e e e e e 4-11
Module INVOCAtion ———me—mmemee e e ——— e c e ——————— %11

viii

(8]

w
.

w W W

w

W W W W W W W

-10.
211,
2.
.13,
.14,
+15.
. 16.
17,

Mark Directive =—mem e 416
String Directive —-eee e e o e 4-18
Define Directive (Module Blogck) ————ervmmecc—eoe—————— Bop2
Define Directive (Module Invocation) =————memmmmcmomaan 424
Define Directive (Null) =——meemmm oo y4-25
Terminate Directive ——cmm e h-26
Text Directive ———ememm e 327
End Directive ——eemm oo .27
Title Directive —e—m oo e 4.28
Linenumber Directive ——mem oo e 4-29
Indent Directive ————— e e 4-30
Width Directive mmmemmmee-m - .30
Eject Directive == 3-31
Sequence Directive —mememcm e e y.32
Pagenumber Directive —mmmmmmmmmmm 4-33
Pagelength Directive ————m e 434
Samepage Directive =mw—m oo §-35
Heading Directive =—me—mmmem oo o 4-36
Blanks Directive —m—e—e ool 4-37
SDDL Program —-—swm———mmeeoe———————— e m e e 4-38
Title Group ———--mecceccccccmccm et e e e e =38
MOQULE e ———————— e e - 14-38
Statement Group ————m e oo o m e 4-39
TeXT GroUp —mme——re e e e e e e e 4-39
BlOCK mrmmm e e e e e e et e e e h-39
Control Directive —————m e 440

ix

SECTION I

INTRODUCTION

The frontispiece is a conceptual view of the software development
process. It identifies members of the software development team and
shows the many communication links over which information must flow.
The team member2 and the information flow shown in the diagram are
a part of every software development project regardless of the number
of individuals actually involved. Even when the entire task is done
by a single person, it is still essential to have precise, accurate,
orderly communication among the various roles the individual performs.
With orderly communication, decisions made last month can be acted
upon correctly this month, and valid information will be available
later when maintenance responsibilities may have to be assumed by others.

The diagram also suggests that a computer programming language
is a satisfactory communications medium for only a few links: primarily
between programmer and machine, and secondarily among programmers.
£11 other higher-level team communication reguires less restrictive,
mere human-oriented media to be effective.

Historically, software development has suffered because of the
lack of an effective communications medium for these high-level links.
One may generalize that everyone has experienced some painful results
of imprecise and/or incomplete communication in every aspect of life.
Programmers suffer immediately when imprecise, incorrect, or incomplete
directions are executed by the computer exactly as stated. Managers and
customers are ‘affected more seriously because bad communications at the
design stage may compound the error by allowing the programming effort,
with all its problems, to proceed toward an elusive or erroneous goal.

As long as the communication among members of the software
development team remains fuzzy, the misunderstanding will continue and
software development costs will be higher than tThey need be. Software
mainténance gets into the act later, when maintenance programmers must
deal with poorly written, out-of-date documentation, which, by Murphy's
Law, ig certain to be inconsistent where it matters.

Effective communication is not sufficient to insure efficient
software development, but it is certainly necessary. Therefore, the
Software Design and Documentation Language (SDDL) has been developed
to satisfy this necessity. ’

A. SDDL OBJECTIVE

The objective of SDDL is to satisfy the communications requirements
of the software design and documentation process. This objective is
met by providing

1-1

(1) A processor which can translate design specifications, couched
in SDDL syntax, into an intelligible, informative, machine-
reproducible Software Design Document (SDD).

(2) A design and documentation language with forms and syntax
that are simple, unrestrictive, and communicative.

(3) A methodology for effective use of the language and the processor.

B. SDDL PROCESSOR

The purpose of the SDDL processor is to translate the designer's
creative thinking into an effective communications document. The processor
must perform as many automatic functions as possible, thereby freeing
the designer's energy for the creative design effort.

Some of the automstic functions which the processor, in its current
state of development, performs are listed below.
1. Document Formatting

" (1) 1Indentation by structure logic.

(2) Flow lines for accentuating structure escapes.

(3) Flow lines for accentuating module invocations.

(n) Line numbering and/or card sequencing for input deck editing.

(5) Logic error detection.

(6) Special handling for title pages and text segments,

(7) Input and output line continuation.

(8) Line splitting (i.e., printing part of the line so that

the last character lines up at the right-hand margin).

2. Software Design Summary Information

(1) Table of contents showing all titles and modules, and the
location of the summary tables provided by the processor.

(2) Module invocation hierarchy.
(3) Module cross reference (where each module is invoked).

(u) Cross reference tables for selected words or phrases appearing
in the document. Selection is controlled by the user.

(5) Page reference numbers on module invocation statements.

-2

Prccessor Control Capabilities

(1)
(2)
(3
(%)
(5)
(6)

(1)
(8)

Page width, length, numbering, heading, and ejection.
Structure indentation amount.

Deletion of preceding blank characters on input lines.
Input line numbering sequence.

Keyword specification.

Selection of words for incluBion in the cross reference
tables.

Number of right-hand columns for card sequence numbers.

Execution time options for suppressing selected processor
features,

SECTION II

SDDL OVERVIEW

A, SDDL SY¥NTAX

The SDDL syntax consists of keywords (Table 2-1) used to invoke

design structures, and a collection of directiyes (Table 2-2) which
provide the user with control of processor actions such as indentation,

page width, start of a new page, ete,
the user to selectively suppress design summary information.

Execution time options allow

Table 2-1. Default 3DDL Structure Keywords

INITIATOR TERMINATOR ESCAPE SUBSTRUCTURE
MODULE PROGRAM ENDPROGRAM EXITPROGRAM

PROCEDURE ENDPROCEDURE EXITPROCEDURE

IF ENDIF ELSE

ELSEIF

BLOCK SELECT . ENDSELECT " CASE

LooP ENDLGOP EXITLOOP

REPEAT CYICLE
MODULE INVOCATION REYWORDS CALL, DO

Table 2-2, SDDL Directive Keywords
#DEFINE #EJECT
#TERMINATE © #SAMEPAGE
#MARK #HEADING
#STRING #PAGENUMBER
#TITLE #PAGELENGTH
#TEXT #LINENUMBER
#END #WIDTH
#INDENT #SEQUENCE
#BLANKS

Input to the SDDL processor consists of a seguence of SDDL statements.
An SDDL statement-begins and ends with a line (or record) of the input
medium. Continuation may be explicitly indicated by an ampersand (&)
as the last non-blank character of the line., Continued lines are
concatenated 1nto a single statement for processing. Any natural language
text, including a blank line, 1s an acceptable SDDL statement. Keywords
are recognized only in context, 1.e., only when they appear as the
first word of the input statement.

The user is provided complete control of the choice of keywords by
an SDDL directive which allows unlimited addition or deletion of keywords.
User control of keyword selection 1s one of the most important features of
SDDL because 1t allows the designer to command the capabilities of the
processor in the way which 1s best suited to communicating the intent of
the document.

A complete description of the SDDL semantics is given in Section IV,

'B. SDDL STRUCTURES

The basic forms of the language are the module and block structures
and the Module Invocation statement. A design is stated in terms of
modules that represent problem abstractions which are complete and
independent enough {relative to the level of. the design) to be treated as
separate problem entities, Modules are the highest-level structure. They
may not be nested. Descriptive names are given to the modules, and their
interrelationships are stated explicitly by the Module Invocation
statements, A Mcdule Invocation statement is the egquivalent of the
subroutine CALL statement in a programming language,

Blocks are the lower-level structures. They are used to build
representations of abstractions which should (relative to the specific
design) be a part of and appear in the higher-level abstraction represented
by the module. Thus blocks must be nested within modules and may be
nested within other blocks te any reasonable (1.e., understandable)
depth. Examples of the use of blocks are the representations of Struc-
tured Programming concepts such as IF-THEN-ELSE and LOOP-REPEAT.

Both kinds of structures may have up to four parts:

(1) Initaator (required)
(2) Terminator (optional)
(3) Escape (optional)

(4) Substructure (optional)

Structure parts are specified by statements which begin with a keyword
that has been defined as the part name. Table 2-1 displays the SDDL default
keywords for both kinds of structures and their corresponding structure parts.

DL~

The actions taken by the processor in response to keyword statements
are fully explained in Section IV and summarized in Figure 2-1, These
actions are quite simple but very effective for communicating design
information. Indentation of statements within structures and flow
lines that highlight structure escapes and module invocations provide
visual, two-dimensional information display which captures all of the
advantages offered by flowcharts without their attendant disadvantages
and constraints.

A simple illustration is presented in the example below.

In most of the following examples, the SDDL input statements
are shown with the resulting output produced by the processor, In
bractice, the input source listing is rarely needed. Where the source
statements are shown, as in the example below, it should be understood
that the line numbering is not part of the input statement.

Example: Structured programming constructs
As input:

PROGRAM EXAMPLE T0 DEMONSTRATE THE BASIC SDDL STRUCTURES

(THE LINE ABOVE IS A MODULE INITIATOR STATEMENT WHICH ESTABLISHES
"EXAMPLE"™ A5 THE NAME OF THIS PROGRAM/MODULED

NOTE: THE PARENTHESES IN THIS EXAMPLE ARE USED FOR
COMMENTARY PURPOSES ONLY AND HAVE NO EFFECT ON THE SDDL
PROCESSOR OR ITS OPERATION.

IF THIS CONDITION IS TRUE (BLOCK INITIATOR "IF™)
ACT ON THIS STATEMENT (PASSIVE STATEMENT)

ELSE (SUBSTRUCTURE STATEMENT FOR MIF")
ACT ON THE FOLLOWING STATEMENTS (ANOTHER PASSIVE STATEMEHT)

LOOP FOR INDEX = 1 TGO SOMETHING (BLOCK INITIATOR "LOOP™)
(PASSIVE STATEMENTS CAN BE PLACED ANYWHERE)

CALL SUBROUTINE (MODULE INVOCATION STATEMENT)

THE NAME OF THE MODULE INVOKED IN THE PREVIOUS STATEMENT

IS5 "SUBROUTINE™ (PASSIVE STATEMENT)

IF THERE IS NOTHING LEFT T0 DO (NESTED BLOCK INITIATQGR ™IF"™)

EXITLOOP (ESCAPE STATEMENT “LOOP™)

ENDIF (TERMINATOR STATEMENT NESTED "IF™)

ENDLOOP (TERMINATOR STATEMENT "LOOPT™)

ENDIF (TERMINATOR STATEMENT “IF™)
ENDPROGRAM (MODULE TERMINATOR STATEMENT "PROGRAM™)
PROCEDURE SUBROUTINE

NOTE: A MODULE INITIATOR STATEMENT CAUSES THE START OF A NEW PAGE.
ALS0 HOTE THAT "PROCEDURE™ CAN BE USED AS A SYRONYM FOR “PROGRAMY.

SELECT CASE BASED ON SOME CRITERION (BLOCK INITIATOR YSELECT™)

CASE 1: CHECK FOR SUBROUTINE ABORT (SUBSTRUCTURE STATEMENT FOR “SELECT™)
IF THERE IS NO MORE DATA 70 BE READ (BLOCK INITIATOR "IFM)
EXITPROCEDURE (ESCAPE STATEMENT “PROCEDURE™)

ENDIF

CASE 2: CHECK FOR SUBROUTINE ERROR (SUBSTRUCTURE STATEMENT FOR “SELECT™)
IF 4N ERRQOR OCCURS (BLOCK INITIATOR "IF™)

PRINT AN ERROR MESSAGE (PASSIVE STATEMENT)

ENDIF

2-3

46

47 CASE 3: INVOKE ANOTHER SUBROUTINE (SUBSTRUCTURE STATEMENT FOR YSELECT™)
48 DO ANOTHER SUBROUTINE (MODULE INVOCATION STATEMENT)

gg NOTE: ™DO™ IS A SYNONYM FOR M™CALL™ (PASSIVE STATEMENT)

g% ENDSELECT (TERMINATOR STATEMENT "SELECT™)

53 ENDPROCEDURE (MODULE TERMINATOR STATEMENT "PROCEDURE™)

A=z output:

TABLE OF COKTENTS PAGE I
PAGE LINE ++++t+dtddtdttittittbtttdtrtittdrdddrddtdbbdttitibbdrdirrbrtristis

NUMBER NUMBER MODULE KRAME

1 PROGRAM EXAMPLE TO DEMONSTRATE THE BASIC SDDL STRUCTURES
30 PROCEDURE SUBROUTINE

1

2

3 MODULE REFERENCE TREE

4 MODULE - CROSS REFERENCE LISTING

LINE PAGE 1

; PROGRAM EXAMPLE TO DEMONSTRATE THE BASIC SDDL STRUCTURES

3 (THE LINE ABOVE IS A MODULE INITIATDR STATEMENT WHICH ESTABLISHES

4 "EXAMPLE"™ AS THE NAME OF THIS PROGRAM/MODULE}

5 -

6 NOTE: THE PARENTHESES IN THIS EXAMPLE ARE USED FOR

7 COMMENTARY PURPOSES ONLY AND HAVE NO EFFECT ON THE SDDL

8 PROCESSOR OR ITS OPERATION.

9

10 IF THIS CONDITION IS TRUE (BLOCK INITIATOR ™IF™}

11 ACT ON THIS STATEMENT (PASSIVE STATEMENT)

12

13 ELSE (SUBSTRUCTURE STATEMENT FOR "IF™))

14 ACT ON THE FOLLOWING STATEMENTS (ANOTHER PASSIVE STATEMENT

15

16 LOOP FOR INDEX = 1 70 SOMETHING (BLOCK INITIATOR ¥LOOP™)

17 (PASSIVE STATEMENTS CAN BE PLACED ANYWHERE)

18 CALL SUBROUTINE (MODULE INVOCATION STATEMENT)-——--om—m—aew- > 22
1% THE NAME OF THE MODULE INVOKED IN THE PREVIOUS STATEMENT

20 IS M"SUBROUTINE™ (PASSIVE STATEMENT)

21 IF THERE 'IS NOTHING LEFT TO DO (NESTED BLOCK IHITIATOR "IF™)
22 o EXITLOGP (ESCAPE STATENMENT "LOOP™)
23 ENDIF (TERMINATOR STATEMENT KESTED ™IF™)
2% ENDLOOP (TERMINATOR STATEMENT "LOOP™)

25

26 ENDIF (TERMINATOR STATEMENT YIF")
27
28 ENDPROGRAM (MODULE TERMINATOR STATEMENT "PROGRAM™)

2-4

PAGE 2

30 PROCEDURE SUBROUTINE

NOTE: A MODULE INITIATOR STATEMENT CAUSES THE START OF A NEW PAGE.
ALS0 NOTE THAT "PROCEDURE™ CAN BE USED AS A SYNONYM FOR "PROGRAM™.

SELECT CASE BASED ON SOME CRITERIGN (BLOCK INITIATOR "SELECT™)

CASE 1: CHECK FOR SUBROUTINE ABORT (SUBSTRUCTURE STATEMENT FOR “SELECT™)
IF THERE IS NO MORE DATA TO BE READ (BLOCK INITIATGR “IF'™)
--“EE-EXITPROCEDURE (ESCAPE STATEMENT "PROCEDURE™)
DIF

CASE 2: CHECK FOR SUBROUTINE ERROR (SUBSTRUCTURE STATEMENT FQR WSELECT™)
IF AN ERROR GCCURS (BLOCK INITIATOR "IF")

PRINT AN ERROR MESSAGE (PASSIVE STATEMENT)
ENDIF

CASE 3% IKRVOKE ANOTHER SUBROUTIKE (SUBSTRUCTURE STATEMENT FOR TSELECT™)
DO "ANOTHER SUBROUTINE (MOBULE INVOCATION STATEMENT)-——------— >{ J
NOTE: “DO™ IS A SYNONYM FOR "CALL® (PASSIVE STATEMENT)

ENDSELECT (TERMINATOR STATEMENT "SELECT™)

53 ENDPROCEDURE (MODULE TERMINATOR STATEMENT "PROCEDURE™)}

WM RUARAARAXN MODULE REFERENCE TREE #xxxxx

LN PAGE

1 1 EXAMPLE

2 2 . SUBROUTINE
3 ¥ . . AHOTHER

~

MODULE
CROSS REFERERCE LISTING PAGE %

R b D R o R s b = S - HUE AUNIS S SRR 3 A
IDENTIFIER MOBDULE NAME LINE NUMBERS
ANOTHER

PAGE 2 PROCEDURE SUBROUTINE &8
EXAMPLE

PAGE 1 PROGRAM EXAMPLE 1l 4 6
SUBROUTINE

PAGE 1 PROGRAM EXAMPLE 13 20

PAGE 2 PROCEDURE SUBROUTINE 30 37 42 47 48

2=5

DEFINITION NUMBSER AND STATEMENT TYPE ENCOUNTERED
21 23 74 25 z6 16 35 37 16
o g p4
= 0= == — 9= =
=z =z U2 z =~ Z ™ w o
22 | 38) 2% | ¥ | 832 w¥ Z g | 9=
S& | SE | BE | 25 |20E| ZE | .8 | w8 | BB
ACTION TAKEM £l =< L ug |02 | 9% X & o =
ZG | B5 | 25 | 85 |2z5| £% | 25 | EE | Q%
STATEMENT ENTERED IN TABLE OF CONTENTS - -* -
ALL NESTED, OPEN STRUCTURES ARE *
CLOSED WITH ERROR MESSAGES - b - -
NEW PAGE STARTED IN THE OUTPUT EILE - -—
FNDENTATION LEVEL DECREASED -— -—
STATEMENT WRITEEN TO QUTPUT FILE - - -— - - -
INDENTATION LEVEL INCREASED -— -—
LEFT ARROW (ESCAPE LEVEL INDICATOR) -
ADDED TO THE QUTPUT FILE
RIGHT ARROW (CALL INDICATOR) ADDED .
TO THE QUTPUT FILE -
SUBSEQUENT INPUT LINES ARE
DIVERTED TO A HOLDING BUFFER I
THE LINES [N THE HOLDING BUEFER ARE WRITTEN -
TO THE QUTPUT FILE (BOXED IN BY "*")
SUBSEQUENT INPUT LINES ARE DIVERTED
BACK FOR NORMAL PROCESSING -
CONTROL PARAMETERS OF THE SDDL
PROCESSOR ARE ALTERED -

*FOR MODULES ONLY

Fig.

2-1. S8DDL Processor Actions

2-6

SECTION III

SDDL METHODOLOGY

The following discussion of techniques and stylea is intended as
a guldeline or list of suggestions for using the capabilities of the
SDDL language and processor to fullest advantage in striving for the
goal of an informative and communicative Software Design Document.

The reader 15 encouraged to examine these suggestions with a
critical eye. Accept what is useful, adapt to your own requirements
and taste, and invent new methods, but always keep in mind that the
primary purpose of the Software Design Document is to communicate
information to other people.

A. USES OF THE SOFTWARE DESIGN DOCUMENT

Throughout the development of the software design, the SDD always
represents the definative word on the current status of the ongoing,
dynamic design development process. It is easily updated and readily
accessible, in a familiar, informative, readable form, to all members
of the development team. This makes the SDD an effective instrument
for reconciling misunderstandings and disagreements in the evolutionary
development of design specaifications, engineering support concepts,
and the software design itself, Using the SDD to analyze the design
makes it possible to eliminate many errors which otherwise might not
be detected unpll ¢oding is attempted.

As a project management aid, the SDD is very useful for monitoring
progress and for recording task responsibilities. It is also effective
for analyzing and documenting existing programs.

B. REPRESENTATION OF DATA 3STRUCTURES

A thorough knowledge of the content and organization of its input
and output data is an essential prerequisite to understanding a program.
For this reason, much attention was focused on developing data structure
representations that effectively display data organization and centent.
SDDL techniques that facilitate achieving this goal include:

(1) Group the data into appropriate data description modules
located in the beginning pages of the SDD.

(2) Provide descriptive names for variables.

(3) Use the period (.) (because it lies low on the printed
line and does not interfere with readability) to connect
the words of a descriptive phrase to form identifiers which
can be autcmatically displayed in a cross reference table.

(4}

(5)

(6)

(7)

(8)

(9)

Example:

Use the underscore to connect the words of a deseriptive
phrase to form module names.

Use the single or double quote mark to identify single
word variable names for cross referencing.

Include information about the data (e.g., units, mode,
dimension, ete.) in the data structure module.

Group all data which describe attributes of a design entity
with the entity they describe, ,and provide an entity name
which can be used as a qualifier with the attribute.

If the program is to be implemented in a language that does
not permit the use of deseriptive variable names, ineclude
the name to be used in the program code in the data structure.

Define suitable keywords as block initiators to provide
automatic indentation. Use the #TERMINATE directive to
terminate the data structure blocks without printing a
termination statement.

Data Structure

PROGRAM VEHICLE_COMPONENTS DATA STRUCTURE

ENTITY ENGINE:
PCT. PEDAL [PCTPED] PERCENT
'RPM! [ENGREM] REV/MIN
'TORQUE? [TORQUE] FT*LB
MIN.TORQUE [MINTOR] FT*LB
MAX. TORQUE [MAXTOR] FT¥*LB
'HORSEPOWER' (VECTOR) [HPOWER] HP

ENDPROGRAM VEHICLE COMPONENTS DATA STRUCTURE

c. REPRESENTATICNS OF CONTROL/PROCEDURAL STRUCTURES

The constructs of Structured Programming, such as modules (e.g.,
PROGRAM - RETURN - ENDPROGRAM), iterations (e.g., LOOP - CYCLE/EXITLOOP -
REPEAT), conditionals (e.g., IF - ELSE - ENDIF), and selections (e.g.,
SELECT - CASE ~ ENDSELECT) are used in a similar manner for software

design.

The difference is that for software design the structures

should convey human-oriented, natural language information to the

level of precision and completeness necessary to communicate the design,
but free of the syntax constraints and detailed information requirements
imposed by programming languages.

3-2

= O O] VT Il N

P

Example: Module and block structures, high-level statements

PROGRAM MATN ROUTINE
LOOP UNTIL THERE IS NO MORE DATA
READ THE DATA AND CHECK IT
IF THE DATA IS BAD OR INCOMPLETE

{mmmmem CICLE TO THE NEXT CASE
ELSE
CALL DATA_PROCESSING ROUTINEw-====wr= > (9)
ENDIF
REPEAT
TERMINATE THE PROGRAM
ENDPROGRAM

If the design must specify a list of conditions where all must
be tested and acted upon if true (in contrast to the SELECT-CASE-ENDSELECT

construct, which finds and executes only the first true condition),

a new structure is recommended in place of 2z sequence of IF-ENDIF structures.

Use the #DEFINE directive to establish the following structure:

M DU

CHECK - block initiator
ENDCHECKLIST - block terminator
CONDITION -~ substructure

Example: Checklist

As input:

s

#DEFINE BLOCK CHECK, ENDCHECKLIST,, CONDITION
PROGRAM FOR YACATION PREPARATION
CHECK AND ACT ON ALL TRUE CONDITIONS IN THE FOLLOWING LIST

CONDITION: CAR NEEDS TO BE SERVICED
TAKE CAR TD THE SERVICE STATION

GET GAS AND OIL

INFLATE TIRES

CONDITION: DELIVERIES HAVE TO BE CANCELLED
CANCEL NEWSPAPER
CANCEL MILK

CONDITION: TRIP HAS TO BE PLANNED
GET MAPS '
MAKE HOTEL RESERVATIONS

ENDCHECKLIST
ENDPROGRAM

3-3

As output:

3 PROGRAM FOR VACATION PREPARATION

4

5 CHECK AND ACT ON ALL TRUE CONDITIONS IN THE FOLLOMWING LIST
6

7 CONDITION: CAR NEEDS T0 BE SERVICED

& TAKE CAR TO THE SERVICE STATION

g GET GAS AND OIL

10 INFLATE TIRES

11

12 CONDITION: DELIVERIES HAVE 70 BE CANCELLED
13 CANCEL MHEWSPAPER

14 CANCEL MILK

15

16 CONDITION: TRIP HAS TO BE PLANNED

17 GET MAPS

18 MAKE HOTEL RESERVATIONS

13

20 ENDCHECKLISY
21 ENDPROGRAM

The following forms are recommended for use when the design has
progressed to the point where engineering calculations need to be expressed:
Example: Caleculation - Equation not yet determined

CALCULATE VEHICLE.STATE: DISTANCE.TRAVELLED (TARGETTED)
* GIVEN: VEHICLE.STATE: DISTANCE,.TRAVELLED (CURRENT)

¥ VEHICLE.STATE.VELOCITY (CURRENT)
* VEHICLE.STATE ,ACCELERATION (TARGETITED)
* TIME INCREMENT

Example: C(Calculation - Equation included

COMPUTE VEHICLE,STATE: DISTANCE,.TRAVELLED (TARGETTED} =
D + VET & (A/2)%T%%2
== VEHICLE.STATE: DISTANCE.TRAVELLED (CURRENT)
== VEHICLE.STATE: VELOCITY (CURRENT)
== TIME.INCREMENT
== VEHICLE,.STATE: ACCELERATION (TARGETTED)

bl Bl
1
!

Indentation in the examples above may be imposed by indenting the input
statements or by defining COMPUIE to be a Block Initiator keyword.

D. SPECIFICATION OF MODULE INTERFACES

Explicit specification of the data passed between modules and
accessed from a global store will eliminate many debugging problems
in the coding and integration stages.

(1) Use the words GIVEN and YIELD to specify parameters transmitted
to and returned from a module. Use the word USING to specify
global variables accessed.

(2} List the GIVEN and YIELD parameters with Module Invocation
statements.

Example: Display of module interface parameters

NOW CALCULATE_DRIVE_WHEEL OUTPUT_REQUIRED==~--ceememmem e cvnemin > { 38)
* GIVEN: VEHICLE.STATE:

* SCHEDULED,TIME

% YTELD: VEHICLE.STATE: TIRE.RPM, ACCELERATION

* WHEEL FORCE REQUIRED

b WHEEL TORQUE REQUIRED

In the above example, NOW 1s the Module Inveocation keyword.
The lines specifying arguments passed to and from the module all begin
with an asterisk to emphasize their association with the Invocation
statement.

(3) List USING, GIVEN, and YIELD parameters with Module Initiator
statements.

Example: Display of parameters with the module definitaon

PROCEDURE TO CALCULATE_DRIVE_ WHEEL_OUTPUT_REQUIRED
Bleh kR R Rk KRR NN R NA AR R AR A RN RN R R R LR RE

*

* USING: DRIVE,.POWER,TRAIN: DATA

* CHASSIS: DATA

% GIVEN: VEHICLE.STATE:

* SCHEDULED.TIME

* YIELD: VEHICLE.STATE: TIRE.RPM, ACCELERATION
* WHEEL FORCE REQUIRED

* WHEEL TORQUE REQUIRED

%

WOW O R N ok K kX

RNk AR E R AR R R AR R E AR R R LRI EERNHERERERERRERES

The parameters in this structure are set off by using the
#TEXT - #END directives to enclose them in a box formed by asterisks.
In addition to the GIVEN and YIELD arguments, the USING category lists
global parameters which are accessed by the module.

E. INCLUSION OF MANAGEMENT IﬁFORMATION IN THE SDD

Project management information, just as program design, must
be kept up to date and accecurate. The SDD 1s the ideal place to maintain
this information, and the language can be used effectively to present
the information. Listed below are several Module Initiator statements
which suggest kinds of management information, as indicated by their
wording, that should be ineluded in the SDD.

PROGRAM OBJECTIVES

PROGRAM REVISIONS MEMORANDA

PROGRAM MEETING CALENDAR & AGENDA
PROGRAM DOCUMENT READING CONVENTIONS
PROGRAM COMPLETION SCHEDULE

F. ADDITIONAL USES OF ThE CROSS REFERENCE CAPABILITY

The SDD typically will contain much information, in addition
to the names of design parameters, for which it would be useful %o
have a cross reference. Individual cross reference tables for each
type of information can be obtained by associating a different cross
reference title with each {see the #MARK directive). Some that have
proved to be useful appear in the sample design which follows. The
example shows the form of the #MARK directive which establishes the
cross reference character and the way in which the data appear in the
main body of the SDD. The pound sign (#) has been used in the input
to cause some information to be printed at the right-hand margin of
the SDD for increased readability (See Section IV, 1.6, PASSIVE STATEMENT,
1tem 5).

Example: Uses of the cross reference capability

As input: ‘

#MARK REVISIONS ¥ FOOTNOTES [FILE NAMES $
#MARK UPDATE RESPONSIBILITY ?

PROGRAM TO PROCESS CUSTOMER DATA # [REF1]
READ NAMES FROM CUSTOMERSFILE % %1

MATCH NAMES TO CREDIT DATA & %HK

WRITE CREDIT INFO TO CREDITS$FILE # %2
ENDPROGRAM

N IR -

As output:

TABLE OF CONTENTS PAGE I
PAGE LINE ++t+i++++ittdtditttrrtrdtrtititisdtdttbiterribtttttd+isebtti+biddidt
NUMBER NUMBER MODULE NAME
1 3 PROGRAM TO PROCESS CUSTOMER DATA [REF1]
2 MODULE REFERENCE TREE

MODULE - CRGSS REFERENCE LISTING

w

G REVISIONS - CROSS REFERENCE LISTING

5 FOOTNOTES - CRO05S5S REFERENCE LISTING

6 FILE NAMES - CROSS REFERENCE LISTING

7 UPDATE RESPONSIBILITY - CRUSS REFERENCE LISTING
LINE PAGE 1

3 PROGRAM TO PROCESS CUSTOMER DATA [REF11]

& READ NAMES FROH CUSTOMERSFILE %1

5 MATCH NAMES TCG CREDIT DATA THK

6 WRITE CREDIT INFO TO CREDITSFILE %2

7 ENDPROGRAM

REVISIONS
CROSS REFERENCE LISTING PAGE G

B b T T S T T e e s T S L2
IDENTIFIER MOBULE NAME LINE NUMBERS
%1

PAGE 1 PROGRAM TO PROCESS G
s

PAGE 1 PROGRAM TO PROCESS 6

FOOTKOTES
CROSS REFERENCE LISTING PAGE 5

R o R g R B T S LA S L e TR L R E R L e e
IDENTIFIER MODULE NAME LINE NUMBERS
[REF1

PAGE 1 PROGRAM TO PROCESS 3

FILE NAMES

CRO5S REFERENCE LISTING PAGE 6
R L R b B X b o DU 3 SR AR S i e S A S AEAESE A O Y S A SR B AU R ey
IDENTIFIER MOCULE MNAME LINE NBUMBERS
CREDITSFILE
PAGE 1 PROGRAM TO PROCESS 6
CUSTOMERSFILE
PAGE 1 PROGRAM TO PROCESS 4
UPDATE RESPONSIBILITY
CROSS REFERENCE LISTING PAGE 7
R R R R B B i b R e R N R B S B o L & Tk T S AU S IR AT ArY
IDENTIFIER MODULE HNAME LINE NUMBERS
?HK
PAGE 1 PROGRAM TO PROCESS 5

SECTION IV

SDDL USER'S REFERENCE GUIDE

Input to the SDDL processor consists of a sequence*of design state-
ments and processor control directives.

Statements and Directives begin and end with a line (or record) of
the input medium, unless line continuation is explicitly indicated, as

described below. Continued lines are concatenated into a single statement
for processing.

A. CONTINUATION OF INPUT LINES

A continuation mark, the ampersand, can be used to concatenate
several input lines/cards into a single SDDL input statement. The
following rules apply to its use:

(1) If the last non-blank character (exeluding card sequence numbers
-- see #SEQUENCE directive} of an input line is an ampersand,
the processor will concatenate the next line of input with
the current line to form a single statement.

(2) The ampersand which caused the continuation is removed
from the newly formed line, but all other characters, including
other ampersands and blanks, are used as they were input
to form the new line.

(3> The continuation mark may be used cn as many subsequent
input lines as desired to form a single 3DDL statement
or directive.

(4) If the resulting input statement exceeds the allowable
’ output line space, it will be handled as described below.

B. CONTINUATION OF OUTPUT LINES

Occasiona%ly a line of ocutput may be long enough to extend beyond
the right-hand page margain. When this occurs, the processor handles
the line in the following way:

(1) Beginning at the appropriate indentation level, as many
characters (including blanks) of the input line as space
permits are printed on the current line.

(2) An ampersand is printed at the right margin.

(3) On the next line of the document, one space to the right
of the current indentation level, the remaining characters
are printed. Steps 2 and 3 are repeated as many times
as necessary to complete the output.

41

(4) If the indentation level is such that no characters can be
printed on the first line, then step 3 is repeated with
output beginning at the left margin instead of at the indentaw
tion level. ‘

Example: Line continuation (input and output)
As input:

PRIOR LINE

THIS IS AN EXAMPLE&
E OF A LONG INPUT &
LINE & A LONG OUTPZ
UT LINE

NEXT LINE

VU WM —

As printed:

1 PRIOR LINE

2 THIS IS AN EXAMPLE OF A LONG INPUT LIN &
E & A LONG OUTPUT LINE

6 NEXT LINE

c. SDDL SYNTAX DEFINITION

The SDDL syntax definitions are subdivided into five levels. The
primitive definitions are presented in Level 0. Secondary definitions
based on the primitive definitions are in level 1. Level 2 contains
SDDL statement definitions. The SDDL control directives are defined
in level 3. Finally, an overview diagram of an SDDL program, based
on definitions in levels 2 and 3, is given in level 4. The definitions
in levels 1 through 4 are accompanied by flow diagrams which specify
the requirements and options of the syntax. To interpret the diagram,
trace the flow line' from the term being defined to the end of the definition.
Boxes which are unavoidable are requirements, boxes which can be bypassed
are options, and boxes which can be returned to are repeatables. The
contents of a box may refer to another definition or a literal. To
differentiate between them, definitions appear in smaller type, with
the definition number in the lower right-hand corner, and literals,
in larger type, have no accompanying number.

Primitive Definitions (Level 0)

The following description and discussion of SDDL is based on the
short list of primitive definitions shown in Table U4-1. Note especially
that the definition of a letter includes the pound sign in addition
to the alphabet. Also note that initially no MARK characters are defined.
As will be explained later in the discussion of the #MARK directive,
any punctuation may be converted o a MARK by user specification.

Table 4-1.

SDDL Primitive Definitions

Definition
Number Name Description

0.1 character set The entire set of allowable characters
(including the blank).

0.2 letter The alphabet (A-Z) and the pound sign (#).

0.3 digit The digits (0-9).

0.4 punctuation The characters remaining after subtracting
letter, digit, and the blank from the
entire character set.

0.5 mark Any punctuation which has been converted
by a control directive. (Initially, this
is the empty set.)

0.6 €.0.8. The end of an input statement or directive,
determined by the end-of-line/record
indicator (e.g., carriage return) of an
input line without a continuation mark.

1. Secondary Definitions (Level 1)

The definitions of identifier, number, and word shown below are
based on the SDDL primitive definitions shown in Table 4-1.

f.t IDENTIFIE

LETTER

5}

HARK

1.2 NUMBER

[=[Imc:r /a—;,,’) -

Note that a number may not have a decimal point., This constraint
only affects SDDL control directives which only use integers and has
no impact on the design statements which appear in the SDD.

1.3 _NORD

Y

of
= IDENTIFIER [‘,—,‘f

NUMBER [12

PUNCTUAT 10N /W/—J

As shown above, a word can be an identifier, a number, or punctuation;
in short, any token or object definable under the preceding definitions
of the language. As in natural languages, the space or blank is a

very important part of the syntax which 1s needed for delimiting or
separating words.

Example: Lexical analysis of identifiers
ABC123 X I#Z?E 12 UW

Lexical analysis of the above line yields the following words:

ABC123 (identifier)

X (1dentifier)

Y#Z (1dentifier)

? {punctuation)
E (identifier)

12 {number)

y { number)

W {1dentifier)

If ? had previously been converted to a mark, the result would yield
the following words:

ABC123 (identifier)

X (identifier)
Y#Z72E (identifier)
12 (number}
4 {number)
W (identifier)

1.4 STATEMENT

Y0R T3

A statement, as shown in the diagram above, consists of any sequence
(including the null case) of words.

1.5 KEYWORD

The SDDL processor is keyword-driven. A keyword is an indentifier
which has been predefined to be the name of a structure part {(initiator,
terminator, escape, substructure), a Module Invocation word, or a
control directive., Keywords are recognized only in context, i.e.,
only when they appear as the first word, though not necessarily starting
in the first column, of the statement or directive.

1.6 PASSIVE STATEMENT

A Passive statement is any statement which does not begin with
a keyword. Passive statements may be used to convey any design information

as desired but they do not have any special meaning to the processor
as do the Keyword statements.

Passive statements are processed as follows:

(1) Since Passive statements must be imbedded within a module
structure, if one does not already exist, the processor will
supply a module, with an error message (see next example).

(2) The entire statement is scanned for the appearance of any
identifiers which have been designated for inclusion in
the cross reference tables. The means for designating
identifiers for ineclusion in the cross reference tables
are explained under the discussion of the #MARK and the
#STRING directives.

{(3) The input line number (i.e., the number corresponding to
the statement's sequential location in- the input medium)
is written at the left margin.

(4) The entire statement including all blanks is copied to
the SDD output file beginning at the current point of
indentation. , -

(5) If the statement contains a pound sign, the portion of
the statement which follows it will all be right shifted
so that the last non-blank character lines up at the right
margin. The pound sign itself is replaced with a space.
This feature has many important applications which are
examined under the discussion of the #MARK directive.

Example: Passive statement without an existing module

As input (ainput line=1)

ADD 1 # COUNT CASES

As output:
LINE PAGE 1
PROGRAM UNNAMED# - STATEMENT SUPPLIED BY PROCESSOR

1 ADD 1 COUNT CASES

4-6

1.7 _ANY TEXT

v

VORD 1.3

2. Keyword Statement Definitions (Level 2)

This section describes the Keyword statements which drive the
processor formatting actions. The primary function of the processor
is to reproduce the input statements on the SDD output file in a manner
which enhances the reader's capabililty to understand the resulting
document with the least effort. This is accomplished by indentation
of statements within structures and superimposition of flow lines %o
highlight structure escapes and module invocations. The actions taken
by the processor in response to specific statement types are described
below and summarized in Fig. 2-1.

2.1 MODULE INITIATOR

MODULE

'REOR. o IDENTIFIER [T MY TEXT [77] E.0.5.

0.6

(TABLE 2-1}{ | 10 J

~—=1F0R g

\a/ PUNCTUATION /0—4/—1

Example: Module initiator statement

PROGRAM TO READ THE PROGRAM INPUT

4-7

(1)
(2)

(3)

(4

(5)

(6)

(7)

(8)

(9)

(10)

The keyword PROGRAM is recognized as a Module Initiator.

The optional noise word TO (FOR or punctuation are
alternative noise words) is ignored.

The next identifier, READ, is established as the module's

name and recorded for future cross referencing. The remaining
words, including the second appearance of PROGRAM, are

handled as though they were part of a Passive statement).

Since a module is the highest-level structure and may not

be nested within other structures, the processor terminates

any open structures (i.e., structures which have been initiated
but left unterminated) with appropriate error messages.

The entire Module Initiator statement is entered into the
3SDD table of contents.

The module structure is entered into a push-down (last-
in, first-out) structure stack for later matching with subsequent
statements specifying other parts of the structure.

A new page of the SDD is started with appropriate heading.

The indentation point is set to level zero (just to the

right of the location of the input line number field).
»

The statement is written to the SDD ocutput file in the

manner described above for Passive Statements.

The indentation is increased one level by moving the
indentation point the required number (defaulf = 3) of spaces
to the right.

2.2 BLOCK INITIATOR

mﬁ?%na
KEYWORD 4‘1 ANY TEXT Ir.r]{*—"f E.0.5 Io.s}
(TABLE 2-1)

Example: Block initiator statement
LOOP UNTIL FILES A, B & C HAVE BEEN READ

(1) The keyword LOOP is recognized as a Block Initiator keyword.

(2) Since blocks must be nested within modules, if an open
module does not already exist, the processor supplies a
module initiator statement and an error message.

(3) The block structure is entered into a push-down (last-ain,
first-out) structure stack for later matching with subse-
quent statements specifying other parts of the structure.

() The statement is written to the SDD output file, as described
above for Passive statements.

(5) Indentation is increased one level by moving the indentation
point the required number {(default = 3) of spaces to the right.

2.3 TERMINATOR

TERMIAATOR
| EWOR {0 BT [T E0S. o]
TABLE 2-1) : :

Example: Terminator statement

ENDPROGRAM TO READ INPUT

=

(1) The identifier ENDPROGRAM is recognized as a Terminator
keyword.

(2) The structure stack is searched for a matching Structure
Initiator. 1If none is found, the statement is processed as a
Passive statement and is followed by an error message. No
further action is taken.

(3) If a matching structure is found, all nested open structures
are terminated with error messages.

(4) The structure to be terminated is removed from the top of the
structure stack. Lo .

{(5) Indentation is decreased (shifted left) to match the
indentation of the Structure Initiator statement. -

(6) The statement is written to the SDD output file in the
manner of a Passive statement.

2,4 SUBSTRUCTURE

SUBSTRUCTURE
KEYWORD -——ﬂfANY TEXT mf—-bl E.0.8. 0.6
(TABLE 2-1) = -

Example: Substructure statement
ELSE TRY ANOTHER ALTERNATIVE
(1 The identifier ELSE is recognized as a Substructure keyword.

(2) The structure stack is searched for a matching Structure
Initiator. If none is found, the statement is processed as a
Passive statement and followed with an error nmessage. No
further action is taken.

(3) If a matching structure is found, all intervening, open
structures are terminated with error messages.

(4) In the case where the substructure corresponds to a module
(rather than a block) the statement is entered into the
SDD table of contents.

(5) 1Indentation is decreased (shifted left) to match the indentation
of the Structure Initiator statement.

(6) The statement is written like a Passive statement.
(7) Indentation is increased one level (shifted right), as

when the structure had just been initiated, in effect re-
initiating the structure.

4-10

2.5 ESCAPE

ESCAPE
\ KEYNORD —c-/m' TEXT IT?/—:-E 8.5. {—70 5
(TABLE 2-1) : :

Example: Escape statement
EXITLOQP IF DELTA < EPSILON
(1) The identifier EXITLOOP 1s recognized as an Escape keyword,

(2) The statement is written to the SDD in the manner described
for the Passive statement,

(3) The structure stack is searched for a matching Structure
Initiator. If none is found, an error message is added
to the SDD output file.

(1) 1f a matching structure is found, the escépe statement
is completed by the addition of a flow line (left arrow)
extending from the current indentation level to the indentation
level of the matching Structure Initiator statement.

2,6 MODULE INVOCATION

HODULE
INVOCAT I ON

of
ke of IDBNTIFIER [T 71| WY TEXT [T71e{E0S. [ag
BOLE 20 \of puncruATioN 5

Example: Module invocation statement
CALL : INITIALIZATION ROUTINE

(1) The identifier CALL is recognized as a Module Invocation
keyword.

{2) The optional punctuation, :, is ignored.

(3 The identifier INITIALIZATION is established as the name
of the module to be invoked and recorded for module cross
referencing.

(4) The statement is written to the SDD in the manner described
for a Passive statement.

(5) The output line is augmented by a flow line (right arrow)
extending from the rightmost non-blank character of the
statement to within six columns of the right-hand margin.

(6) The last six columns of the output line are filled in
with parentheses enclesing the page number of the module
referenced by the Module Invocation statement.

The processor actions for SDDL statements described above are

summarized in Figure 2-1. The following example illustrates the statements
as they might be combined in a simple design:

h-12

Example: A simple design

As input:

1 PROGRAM TO SUNMMARIZE: DATA »

2 CALL INITIALIZE

3 LOOP URTIL ALL NUMBERS HAVE BEEN READ

% READ A VALUE

5 CALL ERRORCHECK .

6 IF THE ERRDRCHECK INDICATES AN ERROR

7 PRINT THE FOLLOMWIKNG MESSAGE

3 "SOMETHING'S WRONG™

9 CYCLE BACKX FOR ANOTHER ITERATION

10 ELSE

11 SUM VALUES & SQUARED VALUES

12 INCREMENT COUNTER

13 ENDIF

14 REPEAT

15 DISPLAY MEAN AND STANDARD DEVIATION,

16 ENDPROGRAM

17 PROCEDURE TO INITIALIZE -

18 VARIABLE INITIAL VALUE
19 SUM 0.0 #REAL
20 SUM OF SQUARES 0.0 #REAL
21 COUNT 6 FINTEGER
22 LOWER BOUND ¢ #REAL
23 UPPER BOUND 100.0 #REAL
2% PROCEDURE FOR ERRORCHECK
25 INITIALIZE ERRORCHECK TO INDICATE AN ERRER

26 IF LOWER BOUND < VALUE

27 IF VALUE < UPPER BOUND

28 RESET ERRORCHECK TO INDICATE NO ERROR
29 ENDIF
30 ENDIF

4-13

PAGE

NUMBER NUMBER

As output:

TABLE OF ,CONTENTS
MODULE NAME

1 1 PROGRAM TO SUMMARIZE DATA
2 17 PROCEDURE TO INITIALIZE

3 24 PROCEDURE FOR ERRORCHECK

4§ MODULE REFERENCE TREE *

5 MGDULE ~ CROSS REFEREHCE LISTING’

LINE

1 PROGRAM TO SUMMARIZE DATA

2 CALL INITIALIZE-=—-—m=———m—eer e e e e ——— e ————————
3 LOOP UNTIL ALL NUMBERS HAVE BEEN READ

4 READ A VALUE

5 CALL ERRORCHECK === o i e et e et e e e
6 IF THE ERRORCHECK INDICATES AN ERROR

7 PRINT THE FOLLOWING MESSAGE

8 TSOMETHING'S LWRONG™ -

9 C——--- CYCLE BACK FOR ANOTHER ITERATION

10 ELSE

11 SUM VALUES & SQUARED VALUES

12 INCREMENT CDUNTER

13 ENDIF
14 REPEAT

15 DISPLAY MEAN AN
16 ENDPROGRAM

LINE
17 PROCEDURE TO INITI
18 VARIABLE
19 SUM
20 SUM OF SQUAR
2l COUNT
22 LOWER BOUND
23 UPPER BOUND
ENDPROCEDURE - STM
LINE

24 PROCEDURE FOR ERRD
25 INITIALIZE ERRD
26 IF LOWER BOUND

27 IF VALUE < U
28 RESET ERR
29 ENDIF

30 ENDIF

D STANDARD DEVIATION

ALIZE
INITIAL VALUE
ES 6.0
0
0
190.0
T SUPPLIED BY PROCESSOR

RCHECK

RCHECK TO INDICATE AN ERROR
< VALUE

PPER BOUND

ORCHECK TO INDICATE NO ERROR

ENDPROCEDURE - STMT SUPPLIED BY PROCESSOR

h-14

PAGE I

LINE 44444444445 4ddbtiititttidttiditdiittiittdtdsitdiriddrddidbdbdtas

PAGE 2

REAL .

REAL
INTEGER
REAL
REAL

PAGE 3

EXAXKRKXXRNN¥X MODULE REFERENCE TREE ¥éh¥¥X PAGE %
LN PAGE

1 1 SUMMARIZE
2 2 . INITIALIZE
3 3 . ERRBRCHECK
MODULE 4
CROSS REFERENCE LISTING PAGE 5
AR e e a T N A I RO A SR A e o A e
IDENTIFIER MODULE NAME LINE NUMBERS
ERRORCHECK
PAGE- 1 PROGRAM TO SUMMARIZE 5 6
PAGE 3 PROCEDURE FOR ERRORCHECK 24% 25 28
INITIALIZE
PAGE 1 PROGRAM TO SUMMARIZE 2
PAGE 2 PROCEDURE TD INITIALIZE 17
PAGE 3 PROCEDURE FOR ERRORCHECK 25
SUMMARIZE
PAGE 1 PROGRAM TO SUMMARIZE 1

4-15

3. Control Directives (Level 3)

Contrel directives allow the user to set processor background
control specifications (e.g., page width, indentation) and to cause
some lmmediate actions to be taken (e.g., page eject). Control directives
are read, interpreted, and acted upon by the processor. They are not
written to the SDD output file and hence are not seen in the final
document. Control specifications set by directives are put into effect
as soon as they are interpreted and remain in effect for all subsequent
irput, or until overridden by another directive, Directives can be
used to set and reset processor control specifications as often as
desired. The SDDL control directives are defined and described on the
following pages. The sequence of presentation i1s intended to avoid
lookahead caused by definitions based on terms defined on subsequent
pages. :

Control directive keywords all begin with the pound sign character.
They are preset (see Table 2-2) and must not be altered. The user must be
careful not to define a new meaning for a control directive keyword

(see #DEFINE directive) since 1t will cause the preset defainition
to be overridden and lost.

3.1 MARK DIRECTIVE

L, EMARK - =II E.0.S. /ﬁ/
\—/ 1DENTIFIER /mfa—/

\—[mfa fizF
¥-/PUNCTHAHOH m/n—)

]

Selection of words or identifiers for cross referencing is controlled
by the #MARK and the #STRING directives. When using the #MARK directive,
the designer specifies a list of punctuation symbols which the processor
will subsequently treat in the following manner:

(1) A1l punctuation appearing in the statement is converted
into a MARK (syntax definmition 0.5), i.e., those characters

which are used to form identifiers. They can then be used
as connectors to build a single identifier out of separate

words.

4-16

Example: Mark directive without cross reference title

#MARK .
EVERY.GOOD.BOY DOES FINE

(2) Every identifier which includes a MARK, such as in
EVERY.GOOD.BOY in the example above, is included in
a cross reference listing produced at the end of the
design document.

Titles for the cross reference listings may be supplied by placing
any string of characters (except punctuation) prior to the punctuation
to be converted. If, as in the above example, no title is supplied
prior to the first punctuation in the directive, a blank title is assumed.

The SDDL processor provides individual cross reference listings
for each unique title found in the #MARK and/or #STRING directives.

Identifiers containing MARKs which were specified with identical titles
are merged into a single cross reference listing. Titles are considered
to be identical if, after deleting leading and following blanks, they
are an exact, character-by-character match, including internal (between
word) blanks. Identifiers which contain marks associated with several
unique titles will appear in each appropriate cross reference. These
conventions are exemplified below, apd an additional, more comprehensive
example is given following the #STRING directive.

Example: Mark directive with and without cross references titles
f#MARK ?! DATA ITEMS % REVISIONS $
#MARK ; DATA ITEMS .:

The MARKs specified in the above example are associated with the titles
(null), DATA ITEMS, and REVISIONS as follows:

(nulli)
CROSS REFERENCE LISTING

? ! »
H : H

DATA ITEMS
CROS3 REFERENCE LISTING
g .

REVISIONS
CROSS REFERENCE LISTING

3.2 STRING DiRECTI

#STRING— S JE0.5. [o5]

This directive allows the user to specify one or more punctuation
marks to be used as string delimiters., The purpose of enclosing text
within string delimiters is to have xt included i1n a cross reference
table at the end of the document. The following rules govern the use of
this feature.

(1) Several punctuation symbols may be specified as string
delimiters but no distinction is made between left (opening)
or right (closing) delimiters

Example: String directive with 2 delimiters specified

#STRING ()
1 SAMPLE STATEMENT (STRING ONE(
2 J STRING TWO (NOT A STRING) STRING ABC)

In the above example, the following text segments are defined and
will be cross referenced:

"STRING ONE" "STRING TWO" "STRING ABC"

(2) Preceding and following blanks are excluded from the string,
but interior blanks are included.

Example: String directive - internal and external blanks

#STRING '

LIRE 1 ' ABC D!
LINE 2 "ABC D !
LINE 3 *ABC D

The strings in LINE 1 and LINE 2 are the same because they match
exactly after preceding and following blanks are stripped off.
The string in LINE 3 does not match the others because it

does not have the same number of spaces between ABC and D,

Each unique string, where uniqueness is defined by rules

1 and 2, becomes a single entry in the cross reference.

4.18

(3) If the closing delimiter is omatted, the string is terminated
by the end of the input statement.

Example: String directive - missing terminator

#3TRING !
LINE 1 'ABC' AND 'DEF G

Strings ABC and DEF G are recognized.

(4) If the text enclosed in string delimiters consists of a
single identifier, regardless of preceding or following
blanks, 1t is recognized as described above, but in addition,
the processor will thereafter recognize and cross reference
the named identifier whether it appears with or without string
delimiters.

Example: Strings containing a single identifier

#3TRING "
LINE 1 YYEHICLE "
LINE 2 VEHICLE AND VEHICLE

In the above example, VEHICLE is recognized and the cross
reference will show that it was found once in LINE 1 and
twice in LINE 2.

(5) A title for the cross referencing of text strings may be
supplied by including any characters except punctuation
between the #STRING keyword and the first punctuation symbol
to be converted to a string delimiter.

The title, including (null), supplied with the #STRING directive
is compared with the titles supplied with the #MARK directives for
merging of the cross reference listings. When several #STRING or #MARK
directives with conflicting title specifications are used, the rule
followed is that the last usage overrides all prior usage.

An execution-time option (N-option) provides a means to suppress
the output of the cross reference table which has the null title.

Exampie: Mark and String directives

As input:

1 HMARK ?; DATA ITEMS X% REVISIONS ¢

2 #MARK DATA XITEMS .:

3 #STRING DATA ITEMS "

& PROGRAM TO READ DATA AND ™CHECK™ IT

5 READ VEHICLE: , MAX.RPM , %POWER , "AND WHAT EVER ELSE THERE IS "
6 IF ANY VALUES ARE UNKHOWM? OR UNTESTED? :
7 CHECK THE DATA;; FOR DOUBTFUL.STUFF? $1

8 ENDIF

% AN ADDITIONAL CHECK MAY BE NEEDED HERE
10 ENDPROGRAM

As output:

TABLE OF CONTENTS PAGE I

PAGE LINE 44+++++++4+4+4+5d4+dbbbbdddddtbtbbtittttdtitdt+d++F00E 34344 +34+44
NUMBER NUMBER MODULE HNAME

1 4 PROGRAM TO READ DATA AND "CHECK™ IT

2 MODULE REFERENCE TREE

3 MODULE - CROSS REFERENCE LISTING

4 DATA ITEMS - CROSS REFERENCE LISTING

5 REVISIONS - CROSS REFERENCE LISTING
6

CRUSS REFERENCE LISTING

4-20

PAGE 1
PROGRAM TO READ DATA AND "CHECK"™ IT
READ VEHICLE: , MAX.RPM , %POWER , "AND WHAT EVER ELSE THERE 135 "
IF ANY VALUES ARE UNKNOWN? OR UNTESTED?
CHECK THE DATA;; FOR DOUBTFUL.STUFF? $1

=
[~ RV Re RN LUN Ny |

ENDIF
AN ADBITIONAL CHECK MAY BE NEEDED HERE
10 ENDPROGRAM
DATA ITEMS
CROSS REFERENCE LISTING PAGE G
LS N N e L Rk e S T e RS S SR e e e L 22t
IDENTIFIER MODULE NAME LINE NUMBERS
ZPOWER
PAGE 1 PROGRAM TO READ 5
AND WHAT EVER ELSE THERE IS
PAGE 1 PROGRAM TO READ 5
CHECK
PAGE 1 PROGRAM TO READ 4 7 3
DOUBTFUL .STUFF?
PAGE 1 PROGRAM TO READ 7
MAX.RPM
PAGE 1 PROGRAM TO READ 5
VEHICLE:
PAGE 1 PROGRAM TO READ 5
SKEL
REVISIGNS
CROS5S REFERENCE LISTING PAGE 5
R L e L A R TS es e e e P e R LR S e R S S L o L
IDENTIFIER MOGDULE NAME LINE NUMBERS
$1
PAGE 1} PROGRAM TO READ 7
CROS5 REFERENCE LISTING PAGE &
R I T B o m T R S R S N R e ndaass e S R T TR T e S L o
IDENTIFIER MODULE HAME LINE NUMBERS
DATA;;
PAGE 1 PROGRAM TO READ 7
DOUBTFUL.STUFF?
PAGE 1 PROGRAM TO READ 7
UNKNOWN?
PAGE 1 PROGRAM TO READ $
UNTESTED?
PAGE 1 PROGRAM TO READ 5

421

The #DEFINE directive is used to specify new or to delete old SDDL

keywords., To seléct the desired action, one of the four words shown below
must follow the SDDL keyword, #DEFINE.

MODULE BLOCK CALL NULL

3.3 DEFINE DIRECTIVE (NODULE, BLOCK]

#DEF INEl~—={MODULE of IDENTIFIER [77
L BLOCK-—J 1-=/NUHBER (T{]—f
[~E0.5. (53]

PUNCTUATION [4

IDENTIFIER [777

The word MODULE or ELOCK is used to define a control structure. In
SDDL, a control structure has four parts:

(1} Initiator: Increases the indentation level for subsequent
lines,
{2) Terminacor: Closes all nested structures left open and

returns the indentation level to that of the
Initiator statement.

(3) Escape: A left arrow is added to the statement to
indicate the program control flow. The arrow
extends. from the indentation level of the
escape statement to the indentation level of
the corresponding Initiator statement,

(4) Substructure: Closes all nested structures left open, returns
the indentation level to that of the Initiator

statement, prints the line, and increases the
indentation level,

When defining a module or block, names for the four parts must be
specified in the order shown above., Any punctuation may be used to
separate the part names, but care must be taken to avoid using a MARK
(i.e., punctuation which has been converted by means of the #MARK or
#STRING direetive). Names for any of the parts except the initiator
may be omitted by using consecutive punctuation to show where a name
has been left out. Any text following the name of the substructure
will be ignored. Synonyms for part names, except for the initiator
name, may be established by additional #DEFINE directives.

4.22

Indentation specific to the named structure may be indicated
by including an unsigned integer between the word MODULE (BLOCK) and
the initiator name. If a zero is specified or the infeger is omitted,
the current default indentation amount (see #INDENT) will be used.

Example: Three equivalent define directives
#DEFINE MODULE 10 PROGRAM, END, STOP, ENTRYPOINT
#DEFINE MODULE 10 PROGRAM®END, STOP ENTRYPOINT
#DEFINE MODULE 10 PROGRAM END STOP ENTRYPOINT WHATEVER

type indentation initiator terminator escape substructure

module 10 PROGRAM END STCP ENTRYPQINT

Example: Block initiator and terminator definition

#DEFINE BLOCK BEGIN END

type indentation initiator terminator ese¢ape substructure
block default BEGIN END

Example: Block definition - escape synonyms
#DEFINE BLOCK START, FINISH, LEAVE
#DEFINE BLOCK START, , SCRAM
#DEFINE BLOCK 2 START, , VAMOOSE

type indentation initiator terminator escape substructure

- LEAVE
block 2 START FINISH SCRAM —-—
VAMOOSE

Note that in this example, the last directive established the indentation
amount to be two columns, overriding the default indentation amount indicated
on the previous directives.

4-23

3.3 DEFINE DIRECTI!E (MODYLE INVOCATION}

#DEF INE}|—={CALL oJE0S. [55]

PUNCTUATION [5-

IDENTIFIER [T

The word CALL is used with the #DEFINE directive to establish
synonyms for the Module Invocation keyword (default keywords are CALL
and DO), which indicates that a module is to be invoked at the point
where the statement occurs. The identifiers to be defined as synonyms
are listed after the word CALL. Punctuation for separating the words
is optional.

Example: CALL keyword definitions

#DEFINE CALL PERFORM EXECUTE, GOGOGO
#DEFINE CALL DOITNOW

Example: Call keywords with marks

#MARK .
#DEFINE CALL DO.IT.NOW, PERFORM

The identifier DO.IT.NOW (alsc PERFORM) becomes a Module
Invocation keyword because the period has been converted to a MARK
by the prior #MARK directive. Where DO.IT.NOW appears in the context
of a keyword (first word of the statement), if will not be included
in the cross reference table.

When a Module Invocation statement is encountered, the processor
places the statement in the output file with the appropriate indentation
and adds a right arrow from the rightmost character in the line to the
right margin. Matching parentheses are added to the right of the arrow
to provide a place for adding the page number of the called module. If
the module that is referenced in the Module Invocation statement has
been defined on a prior page, the page number is supplied in the allocated
space when the statement is encountered. Page reference numbers which
cannot be supplied immediately will be filled in automatically on a
second pass over the output file. The user may exercise the P option
at execution time to suppress the second pass, which supplies the remaining
page reference numbers.

h-24

3.3 DEFINE DIRECTIVE [NULL)

$DEF INE}—~{NULL {05 [og]

PUNCTUATION [g

IDENTIFIER [77]

The NULL action of this directive provides a means for returning
any previously defined keywords to the state of being undefined.
Punctuation may be used as a keyword separator if desired. MARKs
which have been converted to letters by a previous #MARK or #STRING
directive may also be listed for redefinition as punctuation. MARKs
being redefined in this manner must have adjacent blanks or punctuation
to disassociate them from other text.

Example: Nulling keywords
#DEFINE NULL PROGRAM, ENDPROGRAM PROCEDURE

The words PROGRAM, ENDPROGRAM, and PROCEDURE are not recognized
as keywords in the statements following this directive.

Example: Nulling keywords and marks

#MARK .$
#DEFINE NULL DO.IT.NOW $

The word DO.IT.NOW is no longer a keyword and $ reverts
to punctuation again. The periods in the keyword DO.IT.NOW are part
of the identifier (unlike the $ in the example), and therefore the status
of the pericd remains unchanged; i.e., it is still a MARK.

Example: Nulling marks

#MARK
#DEFINE NULL. . DQO.IT.NOW

This example differs in that the status of the period is reconverted
to punctuation first and is treated as such in the remainder of the
statement, Therefore, DO, IT, and NOW are the words which become undefined.
If DO, IT, and NOW are already undefined, they are not affected.

425

—
—
==

3.4 TERMINATE DIRECTIVE

£TERMINATE =l’ ANY TEXT /W/—"/ E.0.5. ﬁd
1-=[.wumsﬂ T3

This directive is a generalized terminator for block structures.
It may be used in place of a number of specific terminators (specific
terminators must match their respective initiators) to terminate the
n innermost, nested, open block structures. If no integer is specified
in the directive, only one structure will be terminated. If n 1s greater
than the number of open block structures, they will all be terminated,
but the module structure will not be affected.

Example: Terminate directive

As input:

1 PROGRAM "TERMINATE™ EXAMPLE

2 IF P INDENT 1 LEVEL

3 {L00P @ IMDENT 1 LEVEL

% INDENTATION IS 3 LEVELS DEEP

5 ENDLOOP - SPECIFIC TERMINATOR

6 ENDIF - SPECIFIC TERMINATOR

7 IF P INDENT 1 LEVEL

3 LOOP @ INDENT 1 LEVEL

9 INDENTATION 15 3 LEVELS DEEP

10 $TERMINATE 100

11 ALL BLOCK STRUCTURES ARE TERMINATED - MODULE NOT AFFECTED
12 IF P IRDENT 1 LEVEL

13 LOOP @ -INDENT 1 LEVEL

14 INDENTATION IS 3 LEVELS DEEP

15 ¥TERMIHATE ONLY ONE STRUCTURE TERMINATED
16 IF P INDENT 1 LEVEL
17 INDENTATION IS STILL 3 LEVELS DEEP
18 ENDPROGRAM - STRUCTURES LEFT OPEN ARE TERMINATED BY THE PROCESSOR
E PAGE
1 PROGRAM M"TERMINATE™ EXAMPLE

2 TF P INDENT 1 LEVEL

3 LOOP Q@ INDENT 1 LEVEL

4 INDENTATION IS 3 LEVELS DEEP

5 ENDLOOP - SPECIFIC TERMINATOR

6 ENDIF - SPECIFIC TERMINATOR

7 IF P INDENT 1 LEVEL

8 LOGP @ INDENT 1 LEVEL

9 INDENTATION IS 3 LEVELS DEEP

11 ALL BLOCK STRUCTURES ARE TERMINATEDR - MODULE NOT AFFECTED
12 IF P INDENT 1 LEVEL

13 LOOP & INDENT 1 LEVEL

14 INDENTATION IS 3 LEVELS DEEP

15 IF P INDENT 1 LEVEL

17 INDENTATION IS STILL 3 LEVELS DEEP

ENDIF ~ STMT SUPPLIED BY PROCESSOR
ENDIF - STMT SUPPLIED BY PROCESSOR
18 ENDPROGRAM - STRUCTURES LEFT OPEN ARE TERMINATED BY THE PROCESSOR

4-26

3.5 TEXT DIRECTIVE

*TEXT —w/m TEXT /TT/'—"/ E.0.5. [ﬁf

Example: Text directive

#TEXT +

The #TEXT directive is' used to signal the beginning of a sequence
of lines (not statements) of text intended as commentary to the SDD.
When this directive is encountered, the processor performs the following
actions:

{1 The first character following the keyword is saved for
use in forming a box around the body of text. If no character
is specified, the asterisk is used for the boxing character.

{2) The processor begins reading input lines into a holding
buffer and continues until it encounters an input line
whose first non-blank character is the pound sign.

(3) The lines buffered in step 2 (this does not inelude the
line which terminated step 2) are not analyzed as statements
but =imply saved unaltered.

(4) The buffered lines, enclosed in a box formed with the boxing
character, are then written to the SDD output file at the
current level of indentation.

(5) The line which signaled the end of step 2 (the buffering
step) is then processed in the usual way. Thus, any control
directives or any statement which begins with a pound sign
may be used as a terminator and still be recognized for
regular processing. If no action other than termination
of the text statement is desired, the #END directive may
be used.

3.6 END DIRECTIVE

L___g 2END ———1’/ANY TEXT Fﬂ-——:{;ﬂ.s. /ﬁi

h-27

This directive has no effect or purpose other than that of terminating
iine buffering for #TEXT and #TITLE directives.

TITLE DIRECTH

ATITLER—=faw it [7—{E0.5. [o5

Example: Title page
#TITLE SDDL DESIGN DOCUMENT

This directive is used to produce a title page in the 3SDD. The
#TITLE directive is similar to the #TEXT directive, but different in
that the #TEXT directive is analogous to a Block Initiator statement
while the #TITLE directive is analogous to a Module Initiator statement.
The processor performs the following actions in response to input of
a #TITLE directive.

(1) The keyword #TITLE is recognized.

(2) The initial pound sign is stripped off, and the remainder
of the directive is entered intc the SPD Table of Contents.
Title line entries in the Table of Contents are preceded
by a blank line and are written two columns to the left of
module entries in order to distinguish them as the beginning
of a document section.

(3) A1l structures left open are terminated with error messages.
(4) As in the case of a #TEXT directive, the processor reads
and buffers input lines until it encounters a line whose
first non=-blank character is a pound sign. Termination
of the title text is the same as for the #TEXT directive.
(5) A new page is started in the SDD output file.
(6) A title page is formed by (a) enclosing the lines in a

box formed by asterisks, (b) centering each line within
the box, and (e) centering the entire box on the page.

4.28

3.8 1| INENUMBER DIRECTIVE

#L. INENUMBER >/m TEXT mf—c-/f.o.s. 0.6]
1«[&0&353' 7

This directive provides control of the starting point of the
input line numbering sequence which the processor produces in the left
margin of the SDD.

The input line numbers supplied by the SDDL processor correspond
exactly to the positional line numbers of the data element (card deck)
of the input to the SDDL processor. This feature obviates the need
for listing of the raw input for revising and augmenting the SDD.
Where more than one element (deck) is used as input to SDDL, it is
desirable to reset the line counter so that numbering can be made to
mateh the subsequent elements (card decks.)

If this instruetion is issued without an accompanying integer, the
processor wWill begin numbering subsequent lines from 1; otherwise it will
begin numbering with the value specified by the integer. The syntax of
this directive allows noise to be used for commentary if desired.

Examples: Line number specification

#L.INENUMBER 1001 STARTS THE NEXT ELEMENT

#LINENUMBER

4-29

3.5 INDENT DIRECTIVE

% INDENT o WY TEXT [T 605 [ag]
L=,/4.rm\un.=n —

The SDDL #INDENT directive allows the user to override the default

value for the number of spaces to be skipped for automatic statement
indentation.

User-defined structures (see #fDEFINE directive 3.3) which
do not have a specific indentation amount declared, and SDDL defaunlt
structure definitions always use the current default indentation value,

The initial value of the system defined default indentation amount
1s three spaces.

Text following the integer (i.e., noise) may be used for commentary

if desired. If no integer is specified in the directive, the default
value of three spaces 13 assumed.

Examples: Indentation specification

#INDENT 5 SPACES UNLESS OTHERWISE SPECIFIED

#INDENT SET TO DEFAULT OF THREE SPACES

3.10_WIDTH DIRECTIVE

¢WIDTH =ﬁmr TEXT [,—,f—a/ E.0.S. 0.6
NUUBER 1.2

The #WIDTH directive provides user control of the width of the
output pages. The default page width is 80 characters = 20 cm (8 in.).

An integer specifying the width, in characters/output line,
should be supplied. If the integer value is not in the range 60-130,
an error message will be printed and the page width will not be altered,

If no integer is specified in the directive, the default value of 80
columns 1s assumed.

This directive may be used as many times as desired throughout
the program. Each use affects only the output which follows it.

4-30

Example: Page width specification

#WIDTH 130 COLUMNS FOR 4 TABLE

#WIDTH RESUME NORMAL PAGE WIDTH

3.11EJECT DIRECTIVE

\
REJECT P O e [0
1-={Hnt:u:s:;n /,—zfj '

This directive provides immediate control of the start of a
new page in the SDD. This page control is over and above the automatic
new page start caused by (1) a title, {2) the beginning of a new module,
or (3) page overflow. When a module becomes lengthy enough to cause
an overflow to a new page, it is often desirable to control the start
of the new page to prevent a group of lines from being split over a
page boundary.

The #EJECT directive, without an accompanying integer, causes a
new page to be started beginning with the next SDDL statement in the
input strean.

Examples: Page ejection
#EJECT
#EJECT & PAGE NO MATTER WHAT
When an integer is included in this command, it causes a new page
to be started only when the remainder of the page cannot accommodate
the number of lines specified by the value of the integer. An integer
value greater than 50 gives rise toc an error message and causes the
directive to be ignored. Noise following the integer is ignored and
may therefore be used for comamentary.
Examples: Conditional page ejection

#EJECT 5

#EJECT 7 THE FOLLOWING 7 LINES MUST BE KEPT TOGETHER

4-31

3,12 SEOE%E DIRECYIVE
#SEQUENCE oMY BT [elE0s 5]
V= mij

The #SEQUENCE directive is provided for use with card input to the
SDDL processor. When SDDL is used in a timesharing environment with file
management and editing capabilitiezs, card sequencing is unnecessary.
In this case, the full 80 columns of the input line may be used entirely
for SDDL statements and directives and the #3EQUENCE directive can be
ignored, except to avoid its inadvertent use. The input line numbers
supplied in the left margin of the output file correspond exactly to
the line to edit in the input file for corrections and updates and may
be reliably used for this purpose. This feature makes it unnecessary to
punch cards or print out copies of the input file.

Where cards are used as the input medium, it may be desirable to
have card sequence numbers at the right-hand edge of the card, in which
case the #SEQUENCE directive must be used to differentiate between the
input text and the sequence numbers. As shown in the syntax diagram
above, the {{SEQUENCE keyword may be followed by an opticnal integer.

This integer may pe used to specify the number of rightmost columns to be
designated to contain sequence numbers. If no integer is supplied or a
value greater than 8 is specified, the default value of eight characters,
columns T3 through 80, is assumed. An integer value of zero has the
effect of disabling the card sequence capability. When the #SEQUENCE
capability is used, the input line (except for the sequence numbers) is
handled in the usual way, and the sequence numbers are printed in the
rightmost columns of the cutput page as determined by the #WIDTH directive
(default = 80 columns). Where an input line is continued over more than
one card, only the sequence number of the last card is pranted.

Example: Sequence columns specification
#SEQUENCE 4
Columns 1 through 76 of the input deck are assumed to contain

SDDL statements or directives, and columns 77 through 80 are assumed to
contain sequence numbers.

4-32

3.13 PAGENUMBER DIRECTIVE

2
2P AGENUMBER oMY T [T7e R0 5

NUMBER 1.2

The #PAGENUMBER directive allows the user to specify the starting
number which will be used for the page numbering sequence. Each time
the directive is used it will cause the next page number to be set
to the integer specified in the directive. Any value between 0 and
9900 1s permitted. If no value is specified the default "Page 1" is
assumed. The page numbering sequence may be reset as often as desired.
Although duplicate sequences are permitted they should be avoided because
they are confusing and detract from the document readability. This
directive can be useful for segmenting the SDD.

Examples: Pagenumber directive

#PAGENUMBER 100

(SDDL input of less than 100 pages)
#PAGENUMBER 200

(SDDL input of less than 100 additional pages)
#PAGENUMBER 300

The purpose of this directive is to jump pagenumbers for sections

of the document (e.gz., 1,2,3..., 101,102,103,..., 201, 202...) or for
producing documents to be inserted int¢ other documents.

4-33

3.14_ PAGELENGTH DIRECTIVE

*$PAGELENGTH A e N T

NWBER —— [1.2

The #PAGELENGTH directive allows the user to specify the maximum
number of lines to be allowed on each page. If M is the largest number
of lines that will fit on a page of output, then:

The normal or default page length = M

The allowable range for resetting the page length is 35 through M

If no integer is specified in the directive then M is assumed
Examples: Pagelength darective

#PAGELENGTH
#PAGELENGTH 50

The page length may be set and reset in this manner as often as desired
without affecting other SDDL operations.)

4-34

3.15 SAMEPAGE DIRECTIVE

#SAMEPAGE =-/ ANY TEXT ﬁ?/——vl E.0.5.

Jo‘&]

NUMBER 1.2

This directive can be used to reduce the size of the Software
Design Document (SDD) by causing more than one module to appear on
an oubput page. When this directive is encountered, the processor
will suppress the start of a new page for as many modules as indicated
by the specified integer (if no integer is specified the default = 1}.
Use of this directive has no effect on page overflow, page reference
numbering, or the #EJECT directive. Page ejects within modules are
not ineluded in the count. As an alternative to counting modules to
ascertain the correct value of n to specify, the user can bracket a
group of modules by specifying a large value of n, say 1000, to turn
compression "on," and a zero value of n to turn compression "off."

Examples: SAMEPAGE directive

#SAMEPAGE
#SAMEPAGE 2

4-35

3.16 HEADING DIRECTIVE

3
PHEAD ING————= m et Ha.s. |

The #HEADING directive allows the user to specify a text string

which the processor will then insert between the words "LINE" and "PAGE"
which appear at the top of each page of the boedy of the SDD.

The text string which begins immediately following #HEADING and
ends with the last non-blank character of the statement is centered

in the heading at the top of the page. If there is insufficient space
the text string is truncated on the right.
Examples: Heading directive

#HEADING TEST RUN 5/1/79
#HEADING

436

3.17 BLANKS DIRECTIVE

3
2BLANKS —— ——s WY TET [E0.5. [o

OFF

The #BLANKS directive allows the user to specify whether the
blanks preceding the first non-blank character in the input line shall

be included or excluded when establishing the indentation level of
the output line.

Syntax:

default mode
#BLANKS

#BLANKS ON
#BLANKS any text

Causes preceding blanks to be left
on as part of the line when estab-
lishing the indentation of the
output line.

#BLANKS OFF Causes preceding blanks to be
stripped off before establishing

the i1ndentation of the output line.

This directive may be used as often as desired to alternate between
including and excluding blanks in the SDD.

4-37

g, DDI. tax erview Diagrams Level &

4.0 SDDL prosaau

CORTROL
ﬂmn v [i6

4.0 _TITLE sRoUP

TITLE

r——q] CONTROL
DIRECTIVE /3.7] \ | DIRECTIVE }4.6?
STATEMENT
= ANY TEXT rﬂ,

4.2 MODULE

VODUE WATCHING
INITIATOR STATEUENT TERWINATOR
STATEUENT (2.1 2l 4.3 STATENENT [2.3

4-38

4,3 STATEMENT SROUP

s S o

\—/swfum ﬁj/:#
ESCAPE
whi i

SUBSTRUCTURE,
STATEMENT |2.4

] TexT showp 41
ook 75

CONTROL
DIRECTIVE | 4.6

4.4 TEXT GROUP

[CONTROL
m&cms 3.5] BIRECTIVE [4.6
STATEMENT [7 4
o 8 |1 ANY TEXT (—/,.,

4.5 BLOCK

BLOCK WATCHING
STATEMENT

INITIATOR BROUP TERMINATOR /-——/

STATEMENT (2.2 STATEUENT [2.3

TERMINATE
DIRECTIVE /3.4

4-39

. 4.6 CONTROL DIRECTIVE

T

[5]
o srring Iﬁ—J
->[DEFINE f;j—J
o TERUINATE [3.711
B [53
0[]
o TiTLE]
*{L INENUNBER ﬁP
\{:mm N
\-{mm [@U
i =
o SEQENCE [5.7

o PAGENUUBER [l
\o[mﬂsnsm ﬁEU
o SWEPAGE 73]~
o HEADINE [

s 7

4-Lo

SECTION V

SAMPLE DESIGH

The following example is presented to illustrate the capability
and potential of the SDDL proecessor. The design of the SDDL processor
itself is the subject of this example, Only a small subset of the
actual SDDL design is shown 1n order to reduce the example size to
expedient proportions. Even this small, top-level portion of the SDDL
processor design, however, reveals information which has an important

impact on the processor.

Example: Top=level 3DD for the SDDL processor:

As input:

1 #MARK REVISIONS % PROGRAM PORTABILITY CONSIDERATIONS ?

2 #1ARK ROUTINES ARD FUNCTIONS _ DATA ITENS

3 #STRING DATA ITEMS ™

4 SBEFINE BLOCK 2 LIST

5 #DEFINE BLOCK 2 MEMBER

6 #DEFINE BLOCK LOOP, . , BEGIN

; #TITLE SDDL EXAMPLE

9 SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE

11

12 (AN ILLUSTRATION OF THE APPLICATIOGN OF SDBL USING THE)

iz (SDDL PROCESSOR ITSELF AS THE OBJECT OF THE EXAMPLE.)

15 #END

16 PROGRAM OBJECTIVES

17 STEXT

18 THE OBJECTIVE OF SDDL IS TO PROVIDE AN EFFECTIVE COMMUNICATIOKS
19 MEDIUM TO SUPPORT THE DESIGNH AND DOCUMENTATION OF COMPLEX SOFTWARE
22 APPLICATIONS. THIS OBJECTIVE IS MET BY PROVIDING:

2

22 (1) A DESIGN AND DOCUMENTATION LANGUAGE WITH FORMS AND SYNTAX

gg THAT ARE SIMPLE, UNRESTRICTIVE, AND COMMUNICATIVE

25 {2> A PROCESSOR WHICH CAM CONVERT DESIGN SPECIFICATIONS INTD AN
g? INTELLIGIBLE, INFORMATIVE, MACHINE REPRODUCIBLE DOCUMENT

28 (3> METHODOLOGY FOR EFFECTIVE USE 0OF THE LANGUAGE AND PROCESSOR
29

30 ZEND

gé PROGRAM DATA_STRUCTURE AND GLOSSARY
33 INPUT.TEXT.BUFFER A GLOBAL CHARACTER ARRAY CONTAINING
34 & SINGLE IHPUT STATEMENT FORMED BY
35 CONCATENATION OF CONTINUED IKPUT LINES
36

37 TEXT.LENGTH THE LENGTH OF THE CURRENT INPUT LINE
§% (TRAILING BLANKS NOT INCLUDED)

>

40 LIST: TOKEN.DICTIONARY LINKED LIST OF DICTIONARY ENTRIES
41 MEMBER ENTITY: ENTRY POINTER 7O A SINGLE DICTIONARY ENTRY
42 CHARACTER.COUNT NUMBER OF CHARACTERS IN THE ENTRY
43 TEXT.POINTER POINTER T0O THE CHARACTER ARRAY

44 CONTAINING THE TEXT OF THE ENTRY
45 PROGRAM. NAME IF ENTRY IS A KEYWORD THIS IS THE
66 LOCATION OR IDENTIFICATION OF THE
47 ROUTINE FOR PROCESSING THE STMT

48 VALUE=0 IF ENTRY IS NOT A XKEYWORD

ok oot oot ot ot it ot ot foed fod ot fmd ot
HHHIH S HO S OO0 0 O
NP UNOOOSIOUT

LIST: REFERENCE.LIST FIRST-IN,FIRST-0UT LIST OF

REFERENCES TO THE ENTRY
MEMBER ENTITY: “REFERENCE™
PAGE.NUMBER
LINE.NUMBER
#TERMINATE 4 *

LIST: MODULE.STACK PUSH DOWN STACK OF NODES REPRESENTING
) THE NESTED STRUCTURES OF THE DESIGH
MEMBER ENTITY: NODRE

NODE.NAME { IF,L00P,PROGRAM,ETC)
INDENTATIGN.COLUMN

STERMINATE 2

ENDPROGRAM DATA_STRUCTURE

PROGRAM MAIN ROUTIKE

CALL INITIALIZATION ROUTIHNE

LOOP UNTIL ALL INPUT DATA HAS BEEN PROCESSED

CALL GET_STATEMENT & X1

¥YIELD TEXT.LENGTH

CALL TOKEN_FINDER (FINDS THE FIRST TOKEN IN THE STATEMENT)
¥YIELD TOKEN.TYPE

IF TOKEN.TYPE IS "IDENTIFIER™
%gh&FENTABLE TO FIND THE TOKEN IN THE TOKEN.DICTIONARY

IF THE TOKEN WAS FOUND AND IT IS A KEYWORD

CALL KEYWORD_PROCESSOR

ELSE THE STATEMENT DOES NOT BEGIN WITH A KEYKORD

IF THE MODULE.STACK IS EMPTY

PgS? A PROGRAM MODULE ON THE MODULE.STACK

ENDIF

EQEEFSOURCE_LISTER TO SEND THE STATEMENT TO0 THE OUTPUT FILE

FLUSH ANY TERRDR MESSAGES™ TRIGGERED BY THE STATEMENT
REPEAT

CALL MRAP_UP

EXITPROGRAM

ENDPROGRAM

PROCEDURE: GET_STATEMENT # «1

¥USING INPUT.TEXT.BUFFER

*YIELD TEXT.LENGTH

READ AN INPUT RECORD

LOOP UNTIL A NOR-BLANK RECORD IS FOUND

IF THE MDDULE.STACK IS HOT EMPTY {A MODULE EXISTS)

Pﬁ%?T THE INPUT RECORD NUMBER AND A BLANK LINE TO THE "5DD%

E F

READ ANOTHER INPUT RECORD

REPEAT

COPY THE INPUT RECORD INTO THE INPUT.TEXT.BUFFER

EEEPTEXT.LENGTH = MUSABLE COLUMNS™(80 - CARD SEQUENCE COLSY & ?%%
FIND THE LAST NON-BLANK CHARACTER IN INPUT.TEXT.BUFFER

SET TEXYT.LENGTH = COLUMN NUMBER OF THE CHARACTER

IF THE CHARACTER IS HOT A CONTINUATION.MARK

XITPROCEDURE

ENDIF

SUBTRACT 1 FROM THE TEXT.LENGTH (BACK UP CVER THE CONTINUATION.MARK)
IF THERE IS NO MORE DATA (END OF FILE ENCOUNTERED)

EXITPROCEDURE

ENDIF

IF THE SPACE LEFT IN INPUT.TEXT.BUFFER < &0 CHARACTERS # 7?27
Eﬁ;%gD INPUT.TEXT.BUFFER BY AT LEAST 80 CHARACTERS #® 77?

116 READ IN ANOTHER INPUT RECORD

117 COPY THE INPUT RECORD INTO INPUT.TEXT.BUFFER BEGINNING AT TEXT.LENGTH
118 ADD "USABLE COLUMNS"™ TO TEXT.LENGTH
119 REPEAT
129 ENDPROCEDURE
121 PROCEDURE FOR INITIALIZATION
122 READ IN EXECUTION TIME OPTION FLAGS FROM EXECUTION STATEMENT
123 OPTION.B = BREAKPOINT
124 OPTION.C = CROSS REFERENCE
125 OFTION.E = MERROR MESSAGES™
126 OFTION.K = KEYWORDS
127 OPTION.M = MODULE CRUSS REFERENCE
123 OFTION.P = PAGE REFERENCE NUMBERS
129 OFTION.R = REFERENCE TREE
138 OPTION.T = TABLE OQF CONTENTS
131
132 IF QPTION.B IS NOY SET BREAKPUDINTING IS REQUIRED
133 READ IN REMAINDER OF EXECUTION STATEMENT
134 IF A NAME IS SPECIFIED FOR THE SDD OUTPUT FILE
135 SET UP A AUSE RELATIONSHIP WITH SDD
136 ENDIF
137 CATALOG AND ASSIGH SDPD A5 THE DUTPUT FILE
138 IF THE CATALOG STEP FAILED
139 PRINT AN ERROR MESSAGE
140 TERMINATE THE PROCESSOR
143 EXITPROCEDURE
142 ENDIF
143 BREAKPOINT THE OUTPUT TO SDD
144 ENDIF
145 ESTAELISH THE FOLLOWING MACHINE DEPENDENT CONSTANTS
146 CHARACTERS .PER.WORD =6 # 222
147 BUFFER.COUNT = 14 {(14%6=84 CHARS/LINED #2722
148 READ.UNIT =5 ¥ 77
149 WRITE.UHIT S ¥ 777
159 DEFAULT, INDENT = 3
ig% RIGHT.MARGIN = 80
153 INITIALIZE INPUT.TEXT.BUFFER TO AT LEAST &80 CHARACTERS § 277
154 ESTABLISH TOKEN.DICTIGNARY DATA STRUCTURE
155 CALL KEYWORD_SET_UP TO ESTABLISH DEFAULT KEYWORDS
156 EXITPROCEDURE
157 ENDPROCEDURE
158 PROCEDURE FOR KEYWORD_SET_UP
159 LOOP USING THE FOLLOWING DATA PAIRS
160 ($ = POUND SIGN IN KEYWORDS BELODW)
%21 KEYWORD PROCEDURE NAME
2 _____________________
163 $HMARK SET_DATA_CHAR X1
164 $STRING SET_STRING_CHAR ¥ x1
165 SINDENT SET_INDENTATION § %1
166 SLINENUMBER SET_LINENUMBER B oxL
147 STEXT BOX_TEXT # %1
168 $TITLE BOX_TEXT # %1
169 SEND END_CONTROL § %1
170 SDEFINE DEFINE_WORDS £ %1
171 $EJECT EJECT_PAGE # X1
172 SUIDTH SET_PAGE_WIDTH %1
173 $SEQUENCE CARD_SEQRUENCING § %1

5-3

174
175
176
177
173
179
180

$TERMINATE
BEGIN ITERATION

BLIND_TERMINATOR

FORCE THE KEYWORD INIO THE TOKEN.DICTIONARY
STORE THE PROCEDURE NAME INTO PROGRAM.NAME OF THE ENTRY

ENDLODOP
ENDPRBCEDURE

As output:

AR M MR KRR RN N MR MMM M D R MUK M RN N NN RN N MEEHR NN MKNNMRRNNHAR

*
x
*
*
*
*
*
3

PAGE
NUMBER NUMBER

16
31
63
30
121
158

~4 FRHUND D

= o »

SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE

TABLE OF CONTENTS
MODULE NAME

7 TITLE SDDL EXAMPLE

PROGRAM OBJECTIVES
PROGRAM DATA_STRUCTURE AND GLOSSARY
PROGRAM MAIN ROUTINE
PROCEDURE:
PROCEDURE FOR INITIALIZATION
PROCEDURE FOR KEYWORD_SET_UP

MODULE REFERENCE TREE

MODULE - CROS55 REFERENCE LISTING
DATA ITEMS - CROSS REFERENCEilISTING
REVISIONS - CROSS REFERENCE LISTING

GET_STATEMENT

{SDDL PROCESSOR ITSELF AS THE OBJECT OF THE EXAMPLE.

¥
¥
*
3
(AN ILLUSTRATION OF THE APPLICATION OF SDDL USIKG THE) X
¥
*
396 33636 36 26 36 36 36 636 36 36 636 36 36 36 36 336 36 26 24 36 36 36 336 36 JE3E JE 06 26 96 36 36 36 3 96 36 36 56 26 36 4 36 26 0 3

)

PAGE

12 PROGRAM PORTABILITY CONSIDERATIONS — CROSS REFERENCE LISTING
13 ROUTINES AND FUNCTIONS - CROSS REFERENCE LISTING

o

I

LINE ++43+++ 44+ ++ 544+t 4 443+ + 44+ 43354+ F 444 b3+ F 444 H4 4

LINE PAGE

16 PROGRAM OBJECTIVES

17 36 5% 36 36 36 306 36 36 36 X ¥ 36 3 30 33636 X 2 56 3 MO N6 KM M KK 3 36 M XM MK M M H MR KN HK KN KU RHANN
18 % THE OBJECTIVE OF SDDL IS TO PRCVIDE AN EFFECTIVE COMMUNICATIONS X
19 * MEDIUM TO SUPPORT THE DESIGN AND DOCUMENTATION OF COMPLEX SOFTWARE X
20 ¥ APPLICATIONS. THIS OBJECTIVE IS MET BY PROVIDING: X
21 * %
22 * (1) A DESIGN AND DOCUMENTATION LAHGUAGE WITH FORMS AND SYNTAX ¥
23 * THAT ARE SIMPLE, UNRESTRICTIVE, AND COMMUNICATIVE ¥
26 ® ¥
25 ¥ {2 A PROCESSOR WHICH CAN CONVERT DESIGN SPECIFICATIONS INTO AN X
26 * INTELLIGIBLE, INFORMATIVE, MACHINE REPRODUCIBLE DOCUMENT s
27 ¥ ¥
28 * (3) METHODOLOGY FOR EFFECTIVE USE OF THE LANGUAGE AND PROCESSOR X
29 * x
30 T R T T P AR S I S S S T PP T T T RS T 2T S+ 32+ 33

ENDPROGRAM - STMT SUPPLIED BY PRUCESSOR

33 INPUT.TEXT.BUFFER

37 TEXT.LENGTH

40 LIST: TOKEN.DICTIONARY
41 MEMBER ENTITY: ENTRY

E
31 PROGRAM DATA_STRUCTURE AND GLOSSARY

PAGE

A GLOBAL CHARACTER ARRAY CONTAINING

A SINGLE INPUT STATEMENT FORMED BY

1

2

CONCATENATION OF CONTINUED INPUT LINES

THE LENGTH OF THE CURRENT INPUT LINE

(TRAILING BLANKS NOT INCLUDED)

LINKED LIST OF DICTIONARY ENTRIES
POINTER TD A SINGLE DICTIONARY ENTRY

CHARACTER.COUNT
TEXT.POINTER

PROGRAM.NAME

LIST: REFERENCE.LIST
MEMBER ENTITY: ™REFERENCET™
PAGE. HUMBER
LINE.NUMBER

LIST: MODULE.STACK

53 MEMBER ENTITY: NODE
59 NODE.NAME
60 INDENTATION.COLUMN

62 ENDPROGRAM DATA_STRUCTURE

NUMBER OF CHARACTERS IN THE ENTRY
POINTER TO THE CHARACTER ARRAY
CONTAINING THE TEXT OF THE ENTRY
IF ENTRY 15 A KEYWORD THIS IS THE
LOCATION OR IDENTIFICATION OF THE
ROUTINE FOR PROCESSING THE STMT
VALUE=0 IF ENTRY IS NOT A KEYWORD
FIRST-IN,FIRST-0UT LIST OF
REFERENCES TO THE ENTRY

PUSH DOMN STACK OF NODES REPRESENTING
THE NESTED STRUCTURES OF THE DESIGH

{ IF,LO0P,PROGRAM,ETC)

LINE PAGE
63 PROGRAM MAIN ROUTINE
64 CALL INITIALIZATION ROUTINE-—-—————————————m——— e —m e m o e >(
65 LOOP UNTIL ALL INPUT DATA HAS BEEN PROCESSED
66 CALL GET_STATEMENT ———r—-o——mmm e m e oo m e o e e %Z1>(
67 XYIELD TEXT.LENGTH
68
69 CALL TOKEN_FINDER (FINDS THE FIRST TOKEN IN THE STATEMENT)----—— >(
;g XYIELD TOKEN.TYPE
72 IF TOKEN.TYPE IS "IDENTIFIER"™
73 CALL ENTABLE TO FIND THE TOKEN IN THE TOKEN.DICTIONARY=w=--—- >
;g ENBIF
76 IF THE TOKEN WAS FOUND AND IT IS A KEYWORD
77 CALL XEYWORD_PROCESSOR-———————-— e e e m o s e >(
78 ELSE THE STATEMENT DOES NOT BEGIN WITH A KEYWORD
79 IF THE MODULE.STACK IS EMPTY '
80 PUSH A PROGRAM MODULE ON THE MODULE.STACK
31 ENDIF
82 CALL SQURCE_LISTER T8 SEND THE STATEMENT TO THE QUTPUT FILE->(
82 ENDIF
3
&5 FLUSH ANY "ERROR MESSAGES™ TRIGGERED BY THE STATEMENT
86 REPEAT
&7 CALL WRAP _UPwwrmmr e e e e e e e e e e e e e e >(

88 <==-EXITPROGRAM
89 ENDPROGRAM

3
5)
%)

LINE

g2
103
104
105
106
107
168
109
116
111
112
113
114
115
116
117
118
119

120 ENDPROCEDURE

5-7

PAGE 4
PROCEDURE: GET_STATEMENT %1
¥USING INPUT.TEXT.BUFFER
*YIELD TEXT.LENGTH
READ AN INPUT RECORD
LOOP UNTIL A NON-BLANK RECORD IS FOUND
IF THE MODULE.STACK IS NOT EMPTY (A MGDULE EXISTS)
PRINT THE INPUT RECORD NUMBER AND A BLANK LINE TO THE ™S5DD"™
ENDIF .
READ ANOTHER INPUT RECORD
REPEAT
COPY THE IHPUT RECCRD INTO THE INPUT.TEXT.BUFFER
SET TEXT.LENGTH = "USABLE COLUMNS"(80 — CARD SEQUENCE COLS) 2?2
LOOP
FIND THE LAST NON-BLANK CHARACTER IN INPUT.TEXT.BUFFER
SET TEXT.LENGTH = COLUMN NUMBER OF THE CHARACTER
IF THE CHARACTER IS NOT A CONTINUATION.MARK
Cmmmmm——— EXITPROCEBURE
ENDIF
SUBTRACT 1 FROM THE TEXT.LENGTH (BACK UP OVER THE CONTINUATION.MARK)
IF THERE IS NO MORE DATA (END OF FILE ENCOQUHTERED)
Cmmmm EXITPROCEDURE
ENDIF
IF THE SPACE LEFT IN INPUT.TEXT.BUFFER < 80 CHARACTERS 117
EXPAND INPUT.TEXT.BUFFER BY AT LEAST 80 CHARACTERS 227
ENDIF
READ IN ANOTHER INPUT RECORD
COPY THE INPUT RECORD INTQ INPUT.TEXT.BUFFER BEGINNING AT TEXT.LENGTH
ADD "USABLE COLUMNS™ T8 TEXT.LENGTH
REPEAT

LINE PAGE 5

121 PROCEDURE FOR INITIALTIZATION
122 READ IN EXECUTION TIME OPTION FLAGS FROM EXECUTION STATEMENT

123 OPTION.B = BREAKPOINT

124 OPTION.C = CROSS REFERENCE

125 OPTION.E = "ERROR MESSAGES®

126 OPTION.K = KEYWORDS

127 OPTION.M = MODULE CROSS REFERENCE

128 QPTION.P = PAGE REFERENCE NUMBERS

129 OPTION.R = REFERENCE TREE

130 OPTION.T = TABLE OF CONTENTS

131

132 IF OPTION.B I5 NOT SET BREAKPOINTING IS REQUIRED
133 READ IN REMAINDER OF EXECUTION STATEMENT
134 IF A NAME IS5 SPECIFIED FOR THE SDD QUTPUT FILE
135 SET UP A QUSE RELATIONSHIP WITH SDD

136 ENDIF

137 CATALOG AND ASSIGH SBD AS THE OUTPUT FILE
138 IF THE CATALOG STEP FAILED

13% PRINT AN ERROR MESSAGE

140 TERMINATE THE PROCESSOR

161 <=—===rm—- EXITPROCEDURE

142 ENDIF

143 BREAKPOINT THE OUTPUT TO SDD

144 ENDIF
145 ESTABLISH THE FOLLOWING HACHINE DEPENDENT, CONSTANTS

146 CHARACTERS.PER.WORD = 222
147 BUFFER.COUNT = 14 (14%6=84 CHARS/LINE) e
158 READ.UNIT = 79?2
149 WRITE.UNIT = 6 222
150 DEFAULT.INDENT =3

%g% RIGHT.MARGIN = 80

153 INITIALIZE INPUT.TEXT.BUFFER TO AT LEAST 80 CHARACTERS 7?7
154 ESTABLISH TOKEN.DICTICGNARY DATA STRUCTURE

155 CALL KEYWORD_SET_UP TO ESTABLISH DEFAULT KEYWORDS-———===——=w=————- >0 6)

156 <--EXITPROCEDURE
157 ENDPROCEDURE

LINE
158
159
150
151
162
163
164
165
166
167
168
169
178
171
172
173
174
175
176
177
178
179

PROCEDURE FGR KEYWORD_SET_UP

LOOP USING THE FOLLOWING DATA PAIRS
($ = POUND SIGN IN KEYWORDS BELGOW)

KEYWRORD
$MARK
S$STRING
$INDENT
$LINENUMBER
STEXT
STITLE
$END
$DEFINE
$EJECT
SWIDTH
$SEQUENCE
$TERMINATE

BEGIN ITERATION

PROCEDURE NAME
SET_DATA_CHAR
SET_STRING_CHAR
SET_INDENTATIGON
SET,_LINENUMBER
BOX_TEXT
BOX_TEXT
END_CONTROL
DEFINE_WORDS
EJECT_PAGE
SET_PAGE_WIDTH
CARD_SEQUENCING
BLIND_TERMINATOR

Vil

|

FORCE THE KEYWORD INTO THE TOKEN.DICTIONARY

STORE THE PROCEDURE NAME INTO PROGRAM.NAME OF THE ENTRY

ENDLOOP

130 ENDPROCEDURE

5-9

PAGE

6

HUXHKXKHXKHXXXX MODULE REFERENCE TREE ®¥¥xxx¥x PAGE 7
LN PAGE
1

1 OBJECTIVES
2 2 DATA_STRUCTURE
3 3 MAIN
4 5 ., INITIALIZATION
5 & . . KEYWORD_SET_UP
3 4 . GET_STATEMENT
7 ¥ . TOKEN_FINDER
8 ¥ . ENTABLE
9 ¥ . XEYWORD_PROCESSOR
10 %X . SOURCE_LISTER
11 ¥ . WRAP_UF
MODULE
CR0O55 REFERENCE LISTING PAGE 8
22t T P S S T L RS S P R L eSS S S S LR X S L SR LS A S ST SN LSS B S LA LSS L SR E L L L LY X 4L
IDENTIFIER MODULE NAME LINE NUMBERS
DATA_STRUCTURE
FAGE 2 PROGRAM DATA_STRUCTURE 31 62
ENTABLE
PAGE 3 PROGRAM MAIN 73
GET_STATEMENT
PAGE 3 PROGRAM MAIN 66
PAGE 4 PROCEDURE: GET_STATEMENT 90
INITIALIZATION
PAGE 3 PROGRAM MAIN - 64
PAGE 5 PROCEDURE FOR INITIALIZATION 121
KEYWORD_PROCESSOR .
PAGE 3 PROGRAM MAIN 77
KEYWORD_SET_UP
PAGE 5 PROCEDURE FOR INITIALIZATION 155
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP 158
MAIN
PAGE 3 PROGRAM MAIN 63
OBJECTIVES
PAGE PROGRAM OBJECTIVES 16
SOURCE_LISTER
PAGE 3 PROGRAM MAIN 82
TOKEN_FINDER
PAGE 3 PROGRAM MAIN 69
WRAP_UP
FAGE 3 PROGRAM MAIN 87

5-10

DATA ITEMS
CRO3S REFERENCE LISTING

PAGE

9

R R R T R B L L R L e

IDENTIFIER MODULE NAME

BUFFER.COUNT

PAGE 5 PROCEDURE FOR INITIALIZATION
CHARACTERS.PER.WORD

PAGE 5 PROCEDURE FOR INITIALIZATION
CHARACTER. COUNT

PAGE 2 PROGRAM DATA_STRUCTURE
CONTINUATION.MARK

PAGE 4 PROCEDURE: GET_STATEMENT
DEFAULT.INDENT

PAGE 5 PROCEDURE FOR INITIALIZATION
ERROR MESSAGES

FAGE 3 PROGRAM MAIN

PAGE 5 PROCEDURE FOR INITIALIZATIGN
IDENTIFIER

PAGE 3 PROGRAM MAIN
INDERTATION.COLUMN

PAGE 2 PROGRAM DATA_STRUCTURE
INPUT.TEXT.BUFFER

PAGE 2 PROGRAM DATA_STRUCTURE

PAGE 4 PROCEDURE: GET_STATEMENT

PAGE 5 PROCEDURE FOR INITIALIZATION
LINE.NUMBER

PAGE 2 PROGRAM DATA_STRUCTURE
MODULE.STACK

PAGE 2 PROGRAM DATA_STRUCTURE

PAGE 3 PROGRAM MAIN

PAGE 4 PROCEDURE: GET_STATEMENT
NODE.NAME

PAGE 2 PROGRAM DATA_STRUCTURE
OPTICN.B

PAGE 5 PROCEDURE FOR INITIALIZATIGN
OPTION.C

PAGE 5 PROCEDURE FOR INITIALIZATION
OPTION.E

PAGE 5 PROCEDURE FOR INITIALIZATION
OPTION.K

PAGE 5 PROCEDURE FOR INITIALIZATION
OPTION.M

PAGE 5 PROCEDURE FDR IHITIALIZATION
OPTION.P

PAGE 5 PROCEDYRE FDR INITIALIZATION
OPTION.R

PAGE 5 PROCEDURE FOR INITIALIZATIOR
OPTION.T

PAGE 5 PROCEDURE FOR INITIALIZATION
PAGE.HNUMBER

PAGE 2 PROGRAM DATA_STRUCTURE
PROGRAM,NAME

PAGE 2 PROGRAM DATA_STRUCTURE

PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
READ.UNIT 5

PAGE PROCEDURE FOR INITIALIZATION

5=11

147
146

G2
106
159

85
125

72
60
33
31
153
53
56
79
96
59
123
124
125
126
127
128
129
130
52

45
178

148

LINE NUMBERS

109

101

80

132

104

113

114

117

DATA ITEMS

CROSS REFERENCE LISTING PAGE 10

B B L g S T T o B A e L e S L T L TR 0 MU R A A S S
IDENTIFIER MODULE NAME LINE NUMBERS
REFERENCE

PAGE 2 PROGRAM DATA_STRUCTURE 51

PAGE 5 PROCEDURE FOR INRITIALIZATION 124 127 128 129
REFERENRCE.LIST

PAGE 2 PROGRAM DATA_STRUCTURE 49
RIGHT .MARGIN

PAGE 5 PROCEDURE FOR INITIALIZATION 151
5DD

PAGE % PROCEDURE: GETY_STATEMENT 97

PAGE 5 PROCEDURE FOR INITIALIZATION 134 135 137 143
TEXT.LENGTH

PAGE 2 PROGRAM DATA_STRUCTURE 37

PAGE 3 PROGRAM MAIN 67

PAGE 4 PROCEDURE: GET_STATEMENT 92 182 105 109 117 118
TEXT.PDINTER

PAGE 2 PROGRAM DATA_STRUCTURE 3
TOKEN.DICTIONARY -

PAGE 2 PROGRAM DATA_STRUCTURE G0

PAGE 3 PROGRAM MAIN 73

PAGE 5 PROCEDURE FOR INITIALIZATION 154

PAGE 6 PROCEDURE FOR KEYWORDB_SET_UP 177
TOKEN.TYPE

PAGE 3 PROGRAM MAIN 78 72
USABLE COLUMNS

PAGE 4 PROCEDURE: GET_STATEMENT 102 118
WRITE.UNIT

PAGE 5 PROCEDURE FOR INITIALIZATION 143

REVISIONS
CROSS REFERENCE LISTING PAGE 11

L L A R B e L LD L L E S TR RN S AR RS ¥ By
IDENTIFIER MODULE NAME LINE NUMBERS
%1

PAGE 3 PROGRAM MAIN 66

PAGE 4 PROCEDURE: GET_STATEMENT 90

PAGE 6 PROCEDURE FOR KEYWORD_SET_UP 163 164 165 166 167 168

169 170 171 172 173 174

5=-12

PROGRAM PORTABILITY CONSIDERATIONS

CROSS REFERENCE LISTING PAGE 12
AR b T B N N R R W T A 3 e
IDENTIFIER MODULE NAME LINE NUMBERS
227
PAGE 4 PROCEDURE: GET_STATEMENT 102 113 114
PAGE 5 PROCEDURE FOR INITIALIZATION 146 147 148 149 153

ROUTINES AND FUNCTIONS

CROSS REFERENCE LISTING PAGE 13

e e i U REIE I SR SN MRS A BN S WA
IDENTIFIER MODULE NAME LINE NUMBERS
BLIND_TERMINATOR

PAGE 6 PROCEDURE FOR KEYWORD_SET_UP 174
BOX_TEXT

PAGE 6 PROCEDURE FOR KEYWORD_SET_UP 167 168
CARD_SEQUENCING

PAGE 6 PROCEDURE FOR KEYWORD_SET_UP 173
DEFINE_WORDS

PAGE 6 PROCEDURE FOR KEYWORD_SET_UP 170
EJECT_PAGE

PAGE § PROCEDURE FOR KEYWORD_SET_UP 171
END_CONTROL 3

PAGE 6 PROCEDURE FOR KEYWORD_SET_UP 169
SET_DATA_CHAR

PAGE 6 PROCEDURE FOR KEYWORD_SET_UP 163
SET_INDENTATION

PAGE & PROCEDURE FOR KEYWORD_SET_UP 1565
SET_LINENUMBER

PAGE 6 PROCEDURE FOR KEYWORD_SET_UP 166
SET_PAGE_WIDTH -

PAGE 6 PROCEDURE FOR KEYWORD_SET_UP 172
SET_STRING_CHAR

PAGE 6 PROCEDURE FOR KEYWORD_SET_UP l64

5-13

SECTION VI

USING THE SDDL PROCESSOR

A. RUN-TIME PROCESSOR CONTROL OPTIONS

Run-time control options permit the user %o cause certain processor
functions, listed below, to be suppressed or altered. These options
are invoked by adding the appropriate letter keys to the SDDL execution
statement and remain in effect throughout the execution of the program.
The letter keys, shown below in Table 6-1, may be given in any order.

Table 6-1. SDDL Run Time Option Summary

Option
Letter Key Meaning

B Breakpoint operation (available only on the
UNIVAC implémentation) 1is suppressed

Cc Lross reference tables for all marks and
strings are suppreased

D Do-nothing (i.e., passive, non-keyword)
statements are omitted from the body
of the SDD

E Error messages are suppressed

K Keyword definition (for the default set,
see Table 2-1) is suppressed

M Module croas reference table is suppressed

N Null-titled, cross reference table output
is suppressed

P Page reference numbers on module invocation
statements are cmitted

R Reference tree of forward calls to modules
is suppressed

T Table of contents is omitted

F FORTRAN option. The processor is configured

to handle input of FORTRAN programs

6-1

Characters other than a letter key corresponding to one of the available
options will be ignored. Note that, with only one exception (F), the
option meanings are consistent in that they all cause the suppression

or omission of a processor function. Thus if no options are specified,
the processor will perform all of its functions.

1. B Option - BREAKPOINT Suppression

This option only applies to the UNIVAC 1108 implementation, which
requires that the SDDL output be breakpointed to a print file. Normally,
the processor performs all of the steps necessary to do the breakpoint
operation, but occasionally, for a quick look at a small part of the
output, it is convenient to have the output come directly to an interactive
terminal. Use of the B option for this purpose will cause the input
and output streams to be merged together on the terminal screen/paper.
Since the processor always reads ahead one statement, the user will
be required to enter input one statement ahead of the processing.

2. C Cption - Cross Reference Tables Suppression

This option will suppress the output of all the cross reference
tables.

3. D Option - Do-Nothing Statement Suppression

This option will cause the processor to suppress the output of all lines
which do not begin with an SDDL keyword. The D option may be used to reduce
the volume of the output in situations where the user is only interested
in seeing the program's flow of control. This option directs the processor
to output only those lines which begin with keywords such as IF, ELSE, ENDIF,
LOCP, CYCLE, ENDLOOP, PROGRAM, RETURN, ENDPROGRAM, and most importantly CALL.
These statements show the logical flow of the program control, including
page reference numbers for subroutine calls. Since the size of the
modules may be considerably reduced, the user may wish to use the #SAMEPAGE
directive to suppress page ejects bhetween modules.

b, E Option - Error Message Suppression

The error messages pertaining to nested structures closed automat-
ically, keywords used out of context, and syntax errors on SDDL direc-
tive specifications are omitted from the output. Incorrectly specified
SDDL directives are always listed in the output, but with the E option
in effect the accompanying error message will be omitted.

5. K Option -~ Keyword Suppression
This option, which causes the processor to bypass definition

of default keywords (see Table 2-1), can be useful in situations
where most or all of the default keywords are inappropriate. Use of

6-2

this option will obviate the need to explicitly null out all the default
keywords with the #DEFINE NULL directive.

6. M Option - Module Cross Reference Table Suppression

The module crozs reference table is a list of all the modules
encountered, either defined or called, in your program. The mcdules
are listed alphabetically with every occurrence referenced by module
name, page number, and line number.

7. N Option - Null Titled Cross Reference Table Is Suppressed

This option causes the processor te omit the output of the cross
reference table for which a null or blank title has been specified.
The text encountered between the directive keyword, #MARK, and the
punctuation symbols being specified is recognized as the title of the
eross reference table. If this space is left blank {(no title specified,
blank assumed), then the execution time N option will suppress the
printout of the cross reference table for those marks.

Example: Cross reference table with a null title
#MARK 9 7

Note that both the % and the ? have the same title (i.e., blank or
null), and therefore the N option will suppress the cross reference
table associated with these marks.

8. P Option - Page Reference Numbers on Module Invocation Statements

When the processor encounters a module invocation statement it
prints a right arrow extending from the last non-blank character in
the line to a pair of parentheses at the right-hand margin of the document.
In the parentheses the processor places the page number where the invoked
module is defined. If the module was defined prior to its invocation,
its page number is known and is printed in place with the rest of the
statement. If the module has not been defined, however, its page number
cannot be known and placement of the reference number must be deferred.
Thus, the processor must make a second (automatic) pass over the output
file to supply the missing page reference numbers. If page reference
numbers are not needed, as in a test run, the user may suppress the
second pass operation with the P option.

Note that the information contained in the table of contents
also cannot be known until all of the input has been processed, and
therefore it must be the last output written to the SDD. This means
that the second pass operation must also move the table of contents
to the front of the output file. Thus if the P option is used to
suppress page reference numbers, it will also have the side effect of
printing the table of contents at the end of the output.

6-3

9. R Option - Reference Tree of Forward Calls to Modules

This table displays the module invocation hierarchy in a tree format.
Each module named in the document appears in this table in relation to
where it was invoked in the overall structure., The relationship between
the modules is shown by listing the called modules below and indented
one level to the right of the module in which it was called. This
results in a cascade of indentation {modules may appear more than once
in the table) which displays the calling hierarchy of the document.
The R option suppresses this table.

10. T Option - Table of Contents

The T option suppresses the output of the table of contents.
(Note that use of the P option will cause the table of contents to
be printed at the end instead of the beginning of the document.)

11. F Option - FORTRAN Option

The F option may be used for processing FORTRAN programs with
SPDL in order to obtain a table of contents, cross reference tables,
module reference tree, and the module c¢ross reference table. When
exercised, this option directs the processor to exclude columns 1 through
6 of the input line when interpreting the meaning of the statement.
Thus the input line is considered to begin in column 7, which is the
FORTRAN convention.

The user must bear in mind that this convention will also apply
to SDDL directives, which therefore must begin at column 7 or beyond.

The SDDL processor copies columns 1-6 of the input deck onto
the output listing, placing them at the left, between the input line
numbers and the left margin of the body of the text.

The F option also establishes the following default SDDL keywords
in place of the ones listed in Table 2-1.

Initiator Terminator Escape Substructure

.o

Type

Module : SUBROUTINE END RETURN ENTRY
Module : FUNCTION ENDFUNCTION
Module : PROCEDURE ENDPROCEDURE = EXITPROCEDURE

Block : DO CONTINUE
Block IF ENDIF ELSE

Call : CALL, GO

6-4

B. UNIVAC IMPLEMENTATION EXECUTION PROCEDURE

After the SDDL input has been loaded into one or more elements
{say QUAL¥®FILE.INt, QUAL®FILE.IN2), it is processed and printed by
entering the following EXEC 8 commands:

6SDDL,[options] [SDD-output-file name.]
6ADD QUAL®FILE. IN1

6ADD QUAL®#FILE.IN2

6FREE SDD$.

83¥M SDD%..... .

The output file name specification is optional (default = SDD$.) but

if supplied it must have a terminal period, e.g., "SDDTEST.," to indicate
that it is a file. It need not be cataloged or assigned prior to use
since these functions, and the breakpointing, will be performed by

the processor. The processor will execute an EXEC 8 @USE command to
relate the user's output file name to SDD$.

Example: UNIVAC execution procedure with options

@SDDL ,CMR TEMP.

€ADD QUAL¥FN.A

€ADD QUAL¥*FN.B

@FREE TEMP.

85SYM,U TEMP.,HOLD/HOLD,GYHSPA

In the above example the C, M, and R run time options are exercised
and TEMP. is established as the output file name. Two input elements
are fed into the processor with the EXEC 8§ €6ADD command and the output
file is freed and printed.

Example: UNIVAC execution procedure, no options, no file name

@SDDL

@ADD Q¥F.A

#LINENUMBER

@ADD Q¥F.B

@FREE SDD$.

6SYM SDD$., HOLD/HOLD, GOHSPA

This example exercises no run-~time options and defaults the cutput
file name to SDD$. It also utilizes the #LINENUMBER directive (which
could equally well have been internal to the input element) between
the input elements to restart the line numbering sequence.

C. JCL REQUIRED FOR THE EXECUTION OF SDDL IN AN IBM OS ENVIRONMENT
//jobname job
Job card

//stepname EXEC PGM=SDDL,REGION=150K,PARM=options
In some facilities the region parameter may be omitted

//STEPLIB DD program object library

The STEPLIB DD card permits the SDDL processor to be loaded from
a data set other than SY¥S1.LINKLIB. If your copy of SDDL has
been loaded onto SYS1.LINKLIB, then the STEPLIB DD card may be
omitted. K

//8IMUQ5 DD DUMMY

This data set is mnot used when SDDI, is executed in batch mode,
but because an open is issued, the DD card is required.

//SIMU11 DD DCB= (RECFM=FBA,LRECL=133,BLKSIZE=nnn),
SPACE=(TRK, (50,50)), UNIT=SYSDA

This DD card specifies an intermediate scrateh file that is writ-

ten using this DDNAME and read back using SIMU12. Since the

DSN parameter has been omitted, a temporary data set is created

with the DISP of (NEW,DELETE,DELETE). If it is desired that

this data set be obtained from a specific device, then the UNIT=SYSDA
must be replaced by parameters specifying the device type and
identifying the VOLUME. The BLKSIZE should be chosen as an integer
multiple-of the logical record length (133) in order to make
efficient use of the disk space. The maximum BLKSIZE varies

with the disk system.

//8IMU12 DD DCB=(RECFM=FB, LRECL=133,BLKSIZE=nnn),
DSN=¥,3IMU11,VOL=REF=%.SIMU11,DISP=0LD

The scratch file written out using SIMU11 is read back through this
DDNAME. The DCB parameters must be identical except for the RECFM
parameter, which must be different, as shown. The DSN must be
equated to that assigned by the system to 3IMUT1, and it must be
allocated to the same physical volume. Since the data set was
created by the previous DD statement, the disposition parameter
must be coded as DISP=0LD.

6-6

//3IMU10 DD SYSOUT=4,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=nnn)

The output listing is written to SIMU10. Since the record format

must be RECFM=FBA, it is necessary to supply all of the DCB parameters.
A convenient cholce would be the DCB parameters used in SIMUi1t.

Should the default space in your facility for a SYSOUT data set

be very small, or your designh very large, it may be necessary

to explicitly provide SPACE parameters.

//3IMUD6 DD SYSOQUT=A

The SDDL normal termination message and SDDL processor malfunction
messages are output to this file.

//S8IMUOG DD¥*

SIMUQS is the SDDL input file. When an input deck is to be ineluded
with the job stream, the DD card should be coded as above. As

shown below, the source may also be obtained from a partitioned

data set or any serial data set containing logical records of
length 80 bytes.

//SIMUOY DD UNIT=TAPE,VOL=SER=999999, DCB=(RECFM=FM, LRECL=80,
BLKSIZE=800), LABEL=(,SL),DSN=INCARDS, DISP= (OLD,KEEP)

The input DD statement may be written as above to take the source
from a magnetic tape.

//SIMUQ9 DD DSN=SDDLS(PROGRAMA),DISP=SHR

The above DD statement will select the member "PROGRAMA"™ from
the cataloged partitioned data set "SDDLS."

Kernighan, B. W., and Plauger, P. J., The Eiements of Programming Style,
McGraw-Hill Book Co. New York, 1974, pp. 36-39.

Kleine, H., and Morris, R. V., "Modern Programming: A Definition,"
SIGPLAN Notices, Vol. 9, No. 9, Sept. 1974, pp. 1ib-17.

Kleine, H., "Automating the Software Design Process by Means of the
Software Design and Documentation Language", Proceedings of the No.
15 Design Automation Conference, IEEE Catalog #78 Ch. 1363-1C, Las
Vegas, Nev., June 1978, 371-379.

Kleine, H., "& Vehicle for Developing Standards for Simulation

Programming", Proceedings of Winter, 77 Simulation Conference, Highland,
3argent, and Schmidt, eds., 731-T#1.

Liskov, B., and Zilles, S., "Programming with Abstract Data Types,"
SIGPLAN Notices, March 1974, pp. 50-59.

Luppino, F. B., and Smith, R. L., "Programming Support Library Functional
Requirements,” Vol. V of Structured Programming Series, RADC-TR-74-300,
U. S. Air Forece, July 25, 1974.

Miller, E. F., Jr., A Compendium of Language Extensions to Support
Structured Programming, EN-42, General Research Corp., Santa Barbara,

C4A, Jan. 1973.

Miils, H. D., "Top-Down Programming in Large Systems," in Debugging
Technigques in large Systems, Edited by R. Rustin, Prentice-Hall, Inec.,
Englewood Cliffs, NJ, 1971, pp. 43-U5.

Mills, H. D.,-Mathematical Foundationg of Structured Programming, IBM

Document F3C 72-6012, IBM Federal Systems Division, Gaithersburg, MD,
Feb. 1972.

Myers, G. J., Composite Design: The Design of Modular Programs, Technical
Report TR00.2406, IBM, Poughkeepsie, N. Y., Jan. 29, 1973.

Ogdin, C.A., Software Design for- Mierocomputers, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1978.

Robert, D. C., "File Organization Techniques," Advances in Computers,
Vol. 12, Academic Press, New York, 1972.

Shneiderman, B., "A Review of Design Techniques for Programs and Data,"
Software-Practice and Experience, Vol. 6, 1976, pp. 555-567.

Shneiderman, B., et al., "Experimental Investigations of the Utility
of Detailed Flowcharts in Programming," Communications of the ACM,
Vol. 20, No. 6, June 1977, pp. 373-381.

Tausworthe, R. C., Standardized Development of Computer Software. Part
1. Methods, SP 43-29, Jet Propulsion Laboratory, Pasadena, CA, July 1976.

T=2 NASA—JPL—Coml, LA, Calif

BIBLIOGRAPHY

Baker, F. T., "Structured Programming in a Production Programming

Environment ," JEEE Trans. on Software Engr., Vol. SE-1, No. 2, pp.
241-252, June 1975.

Baker, F. T., and Mills, H. D., "Chief Programmer Teams," Datamation,
Vol. 19, No. 12, pp. 58=61, Dec. 1973.

Basili, V, R., SIMPL-X, A Language for Writing Structured Programs,
Nat. Tech. Info. Service Report AD755-T03, U.S. Dept. of Commerce,

Springfield, VA, Jan. 1973.

Boehm, B. W., "Software and Its Impact: A Quantitative Assessment,"
Datamation, Vol. 19, No. 5, May 1973.

Brinch Hansen, P., "The Purpose of Concurrent Pascal," Proceedings

of the 1975 TInternational Conference on Reliable Software, IEEE Catalog
No. 75 CHO940-7CSR, pp. 305~-309. (Also published in SIGPLAN Notices,
June 1975, pp. 305-309.)

Brinch Hansen, P., Concurrent Pascal: A Programming Language for Operating
System Design, California Institute of Technology Information Science

Technical Report No. 10, Pasadena, CA, April 1974.

Brooks, F. P., "The Mythical Man-Month," Datamation, Vol. 20, No. 12,
pp. 45-52, Dec. 1974.

Caine, 8. H., and Gordon, E. K., "PDL--A Tool for Software Design,"
Program Design lLanguage Reference Guide, Caine, Farber, and Gordon,
Inc., Pasadena, CA, Sept. 18, 19T74.

Constantine, L. L., Fundamentals of Program Design, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1976.

Dahl, 0. J., and Hoare, C. A. R., "Hierarchical Program Structures,"
in Structured Programming, Academic Press, New York, 1972.

Dijkstra, E. W., "Notes on Structured Programming," in Structured
Programming, Academic Press, New York, 1972 {(particularly pp. 16-23).

Flymn, J., SFIRAN User's Guide, Comput. Memo. 914-337, Jet Propulsion
Laboratory, Pasadena, CA, July 1973 (JPL internal document).

Heimburger, D. 4., et al} "VEEP: Vehicle Economy, Emissions and Performance
Program" Proceedings of Winter, 77 Simulation Conference, Highland,
Sargent, and Schmidi, eds.

Hoare, C. A. R., "Notes on Data Structuring," in Structured Programming,
Academic Press, New York, 1972.

Katzan, H., Jr., Advanced Programming, D. Van Nostrand Reinhold Co.,
NJ, 1970, pp. 153-163.

7-1

