
JPL PUBLICATION'77-24, REVISION 1

Software Design and
Documentation Language­

iHenry Kleine

(NASA-C-1E2291) SOFTWARE DESIGN AND N79-32875

DOCUMENTATIONI LANGUAGE, REVISION 1 (Jet
Propulsion Lab.) 88 p BC An5/MF A01

CSCL 19B Unclas

G3/61 35777

,Augustt, 1979

National Aeronautics and
'Space Administrition

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, Cahfornia

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

US DEPARTMENT OF COMMERCE
SPRINGFIELD,VA 22161

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED

FROM THE BEST COPY FURNISHED US BY

THE SPONSORING AGENCY. ALTHOUGH IT

IS RECOGNIZED THAT CERTAIN PORTIONS

ARE ILLEGIBLE, IT IS BEING RELEASED

IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

JPL PUBLICATION 77-24, REVISION 1

Software Design and
Documentation Language

Henry Kleine

August 1, 1979

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The research described in this publication was carried out
by the Jet Propulsion Laboratory, California Institute of
Technology. under NASA Contract No NAS7-100

COMMUNICATIONMAGE
BY MEANS OF

MACHINENC

LANGUAGES

SOFTWARE DEVELOPMENT TEAM COMMUNICATIONS
BY MEANSO

PROGRAMMIN

PREFACE

The work described in this report was performed by the Information

Systems Division (360) and the Systems Division (310) of the Jet Propulsion

Laboratory.

ACKNOWLEDGMENT

Many aspects of the methodology for using SDDL, and enchancements

to the language and the processor, evolved from its application to

the design of two programs: the Vehicle Economy and Emissions Program

(VEEP) and the Solar Array Manufacturing Industry Simulation (SAMIS).

The current capabilities, present methodology, successful application,

and future prospects of SDDL are, in large measure, due to the many

contributions of the members of these design teams. For their many

excellent suggestions, critical reviews of this document, critique of

new processor capabilities, conscientious application of SDDL to the

design tasks, and hours of philosophical discussion of the goals of

a software design tool, I wish to express my thanks to Richard V. Morris,

Donald A. Heimburger, Marcia A. Metcalfe, Bruce L. Kleine,

Robert G. Chamberlain, Steve M. Jacobs, Robert L. Norton, and

Gerhard J. Klose.

-Preceding page blank I

ABSTRACT

The objective of the Software Design and Documentation Language

(SDDL) is to provide an effective communications medium to support

the design and documentation of complex software applications. This

objective is met by providing (1) a processor which can convert design

specifications into an intelligible, informative machine-reproducible

document, (2) a design and documentation language with forms and syntax

that are simple, unrestrictive, and communicative, and (3) methodology

for effective use of the language and processor.

The SDDL processor is written in the SIMSCRIPT II programming

language and has been implemented on the UNIVAC 1108, the IBM 360/370,

and Control Data machines.

vi

CONTENTS

I. INTRODUCTION I--1-1

A. SDDL OBJECTIVE -- 1-1

B. SDDL PROCESSOR ------- -------------------------------- 1-2

1. Document Formatting ----------------------------------- 1-2

2. Software Design Summary Information ------------------ 1-2

3. Processor Control Capabilities ------------------------ 1-3

II. SDDL OVERVIEW --- 2-1

A. SDDL SYNTAX --- 2-1

B. SDDL STRUCTURES --------------------------------------- 2-2

III. SDDL METHODOLOGY -- 3-1

A. USES OF THE SOFTWARE DESIGN DOCUMENT ------------------ 3-1

B. REPRESENTATION OF DATA STRUCTURES --------------------- 3-1

C. REPRESENTATION OF CONTROL/PROCEDURAL STRUCTURES ------- 3-2

D. SPECIFICATION OF MODULE INTERFACES -------------------- 3-5

E. INCLUSION OF MANAGEMENT INFORMATION IN THE SDD -------- 3-6

F. ADDITIONAL USES OF THE CROSS REFERENCE CAPABILITY ----- 3-6

IV. SDDL USER'S REFERENCE GUIDE ---------------------------------- 1

A. CONTINUATION OF INPUT LINES ---------------------------- I-1

B. CONTINUATION OF OUTPUT LINES ---------------------------

C. SDDL SYNTAX DEFINITION -------------------------------- 4-2

1. Secondary Definitions (Level 1)------------------------ 4-3

2. Keyword Statement Definitions (Level 2)---------------- 4-7

3. Control Directives (Level 3) --------------------------- 16

4. SDDL Syntax Overview Diagrams (Level 4)--------------- 4-38

V. SAMPLE DESIGN --- 5-1

vii

VI. 	 USING THE SDDL PROCESSOR ------------------------------------ 6-1

A. 	 RUN-TIME PROCESSOR CONTROL OPTIONS -------------------- 6-1

B. 	 UNIVAC IMPLEMENTATION EXECUTION PROCEDURE ------------- 6-5

C. 	 JCL REQUIRED FOR THE EXECUTION OF SDDL

IN AN IBM OS ENVIRONMENT ------------------------------ 6-6

BIBLIOGRAPHY -- 7-1

Figures

2-1. SDDL Processor Actions -------------------------------- 2-6

Tables

2-1. Default SDDL Structure Keywords ----------------------- 2-1

2-2. SDDL Directive Keywords ------------------------------- 2-1

4-1. SDDL Primitive Definitions ---------------------------- 4-3

6-1. 	 SDDL Run Time Option Summary -------------------------- 6-1

Syntax Definitions

1.1. 	 Identifier --- 3

1.2. 	 Number -- 4-4

1.3. 	 Word 4-4---­

1.4. 	 Statement --- 4-5

1.7. 	 Any Text 4--4-7

2.1. 	 Module Initiator -------------------------------------- 4-7

2.2. 	Block Initiator --------------------------------------- 4-8

2.3. 	 Terminator -- 4-9

2.4. 	 Substructure -- 4-10

2.5. 	 Escape -- 4-11

2.6. 	Module Invocation ------------------------------------- 4-11

viii

3.1. Mark Directive -- 416

3.2. String Directive -------------------------------------- 4-18

3.3. Define Directive (Module Block) ------------------------ 4-22

3.3. Define Directive (Module Invocation) ------------------ 24

3.3. Define Directive (Null)-------------------------------- 4-25

3.4. Terminate Directive ----------------------------------- 4-26

3.5. Text Directive -- 4-27

3.6. End Directive --- 4-27

3.7. Title Directive --------------------------------------- 4-28

3.8. Linenumber Directive ---------------------------------- 4-29

3.9. Indent Directive -------------------------------------- 4-30

3.10. Width Directive --------------------------------------- 4-30

3.11. Eject Directive -------------------------------------- 31

3.12. Sequence Directive ------------------------------------ 4-32

3.13. Pagenumber Directive ---------------------------------- 4-33

3.14. Pagelength Directive ---------------------------------- 4-34

3.15. Samepage Directive ------------------------------------ 4-35

3.16. Heading Directive ------------------------------------- 4-36

3.17. Blanks Directive -------------------------------------- 4-37

4.0. SDDL Program -- 4-38

4.1. Title Group - 4-38

4.2. Module -- 4-38

4.3. Statement Group --------------------------------------- 4-39

4.4 Text Group -- 4-39

4.5. Block --- 4-39

4.6. Control Directive ------------------------------------- 4-40

ix

SECTION I

INTRODUCTION

The frontispiece is a conceptual view of the software development

process. It identifies members of the software development team and

shows the many communication links over which information must flow.

The team members and the information flow shown in the diagram are

a part of every software development project regardless of the number

of individuals actually involved. Even when the entire task is done

by a single person, it is still essential to have precise, accurate,

orderly communication among the various roles the individual performs.

With orderly communication, decisions made last month can be acted

upon correctly this month, and valid information will be available

later when maintenance responsibilities may have to be assumed by others.

The diagram also suggests that a computer programming language

is a satisfactory communications medium for only a few links: primarily

between programmer and machine, and secondarily among programmers.

All other higher-level team communication requires less restrictive,

more human-oriented media to be effective.

Historically, software development has suffered because of the

lack of an effective communications medium for these high-level links.

One may generalize that everyone has experienced some painful results

of imprecise and/or incomplete communication in every aspect of life.

Programmers suffer immediately when imprecise, incorrect, or incomplete

directions are executed by the computer exactly as stated. Managers and

customers are affected more seriously because bad communications at the

design stage may compound the error by allowing the programming effort,

with all its problems, to proceed toward an elusive or erroneous goal.

As long as the communication among members of the software

development team remains fuzzy, the misunderstanding will continue and

software development costs will be higher than they need be. Software

maintenance gets into the act lAter, when maintenance programmers must

deal with poorly written, out-of-date documentation, which, by Murphy's

Law, is certain to be inconsistent where it matters.

Effective communication is not sufficient to insure efficient

software development, but it is certainly necessary. Therefore, the

Software Design and Documentation Language (SDDL) has been developed

to satisfy this necessity.

A. SDDL OBJECTIVE

The objective of SDDL is to satisfy the communications requirements

of the software design and documentation process. This objective is

met by providing

I-I

(1) A processor which can translate design specifications, couched

in SDDL syntax, into an intelligible, informative, machine­
reproducible Software Design Document (SDD).

(2) 	 A design and documentation language with forms and syntax

that are simple, unrestrictive, and communicative.

(3) 	 A methodology for effective use of the language and the processor.

B. 	 SDDL PROCESSOR

The purpose of the SDDL processor is to translate the designer's

creative thinking into an effective communications document. The processor

must perform as many automatic functions as possible, thereby freeing

the designer's energy for the creative design effort.

Some of the automatic functions which the processor, in its current

state of development, performs are listed below.

1. 	 Document Formatting

(1) 	 Indentation by structure logic.

(2) 	 Flow lines for accentuating structure escapes.

(3) 	 Flow lines for accentuating module invocations.

(4) 	 Line numbering and/or card sequencing for input deck editing.

(5) 	 Logic error detection.

(6) 	 Special handling for title pages and text segments.

(7) 	 Input and output line continuation.

(8) 	 Line splitting (i.e., printing part of the line so that

the last character lines up at the right-hand margin).

2. 	 Software Design Summary Information

(1) 	 able of contents showing all titles and modules, and the

location of the summary tables provided by the processor.

(2) 	 Module invocation hierarchy.

(3) 	 Module cross reference (where each module is invoked).

(4) 	 Cross reference tables for selected words or phrases-appearing

in the document. Selection is controlled by the user.

(5) 	 Page reference numbers on module invocation statements.

1-2

3. Processor Control Capabilities

(1) 	Page width, length, numbering, heading, and ejection.

(2) 	 Structure indentation amount.

(3) 	 Deletion of preceding blank characters on input lines.

(4) 	 Input line numbering sequence.

(5) 	 Keyword specification.

(6) 	Selection of words for incluhion in the cross reference

tables.

(7) 	Number of right-hand columns for card sequence numbers.

(8) 	 Execution time options for suppressing selected processor

features.

1-3

SECTION II

SDDL OVERVIEW

A. SDDL SYNTAX

The SDDL syntax consists of keywords (Table 2-1) used to invoke

design structures, and a collection of directives (Table 2-2) which

provide the user with control of processor actions such as indentation,

page width, start of a new page, etc. Execution time options allow

the user to selectively suppress design summary information.

Table 2-1. Default SDDL Structure Keywords

INITIATOR TERMINATOR ESCAPE 	 SUBSTRUCTURE

MODULE PROGRAM ENDPROGRAM EXITPROGRAM

PROCEDURE 	 ENDPROCEDURE EXITPROCEDURE

IF ENDIF 	 ELSE

ELSEIF

BLOCK SELECT ENDSELECT 	 CASE

LOOP 	 ENDLOOP EXITLOOP

REPEAT CYCLE

MODULE INVOCATION KEYWORDS CALL, DO

Table 2-2. SDDL Directive Keywords

#DEFINE #EJECT

#TERMINATE #SAMEPAGE

#MARK #HEADING

#STRING #PAGENUMBER

#TITLE #PAGELENGTB

#TEXT #LINENUMBER

#END #WIDTH

#INDENT #SEQUENCE

#BLANKS

2-1

Input to the SDDL processor consists of a sequence of SDDL statements.

An SDDL statement-begins and ends with a line (or record) of the input

medium. Continuation may be explicitly indicated by an ampersand (&)

as the last non-blank character of the line. Continued lines are

concatenated into a single statement for processing. Any natural language

text, including a blank line, is an acceptable SDDL statement. Keylords

are recognized only in context, i.e., only when they appear as the

first word of the input statement.

The user is provided complete control of the choice of keywords by

an SDDL directive which allows unlimited addition or deletion of keywords.

User control of keyword selection is one of the most important features of

SDDL because it allows the designer to command the capabilities of the

processor in the way which is best suited to communicating the intent of

the document.

A complete description of the SDDL semantics is given in Section IV.

B. SDDL STRUCTURES

The basic forms of the language are the module and block structures

and the Module Invocation statement. A design is stated in terms of

modules that represent problem abstractions which are complete and

independent enough (relative to the level of. the design) to be treated as

separate problem entities. Modules are the highest-level structure. They

may not be nested. Descriptive names are given to the modules, and their

interrelationships are stated explicitly by the Module Invocation

statements. A Module Invocation statement is the equivalent of the

subroutine CALL statement in a programming language.

Blocks are the lower-level structures. They are used to build

representations of abstractions which should (relative to the specific

design) be a part of and appear an the higher-level abstraction represented

by the module. Thus blocks must be nested within modules and may be

nested within other blocks to any reasonable (i.e., understandable)

depth. Examples of the use of blocks are the representations of Struc­
tured Programming concepts such as IF-THEN-ELSE and LOOP-REPEAT.

Both kinds of structures may have up to four parts:

(1) Initiator (required)

(2) Terminator (optional)

(3) Escape (optional)

(4) Substructure (optional)

Structure parts are specified by statements which begin with a keyword

that has been defined as the part name. Table 2-1 displays the SDDL default

keywords for both kinds of structures and their corresponding structure parts.

2-2

The actions taken by the processor in response to keyword statements

are fully explained in Section IV and summarized in Figure 2-1. These

actions are quite simple but very effective for communicating design

information. Indentation of statements within structures and flow

lines that highlight structure escapes and module invocations provide

visual, two-dimensional information display which captures all of the

advantages offered by flowcharts without their attendant disadvantages

and constraints.

A simple illustration is presented in the example below.

In most of the following examples, the SDDL input statements

are shown with the resulting output produced by the processor. In

practice, the input source listing is rarely needed. Where the source
statements are shown, as in the example below, it should be understood
that the line numbering is not part of the input statement.

Example: Structured programming constructs

As input:

1 PROGRAM EXAMPLE TO DEMONSTRATE THE BASIC SDDL STRUCTURES
2
5 (THE LINE ABOVE IS A MODULE INITIATOR STATEMENT WHICH ESTABLISHES
4 "EXAMPLE" AS THE NAME OF THIS PROGRAM/MODULE)
5
6 NOTE: THE PARENTHESES IN THIS EXAMPLE ARE USED FOR
7 COMMENTARY PURPOSES ONLY AND HAVE NO EFFECT ON THE SDDL
8 PROCESSOR OR ITS OPERATION.
9

10 IF THIS CONDITION IS TRUE (BLOCK INITIATOR "IF")
11 ACT ON THIS STATEMENT (PASSIVE STATEMENT)
12
13 ELSE (SUBSTRUCTURE STATEMENT FOR "IF")
14 ACT ON THE FOLLOWING STATEMENTS (ANOTHER PASSIVE STATEMENT)
15
16 LOOP FOR INDEX = I TO SOMETHING (BLOCK INITIATOR "LOOP")
17 (PASSIVE STATEMENTS CAN BE PLACED ANYWHERE)

18 CALL SUBROUTINE (MODULE INVOCATION STATEMENT)
19 THE NAME OF THE MODULE INVOKED IN THE PREVIOUS STATEMENT

20 IS "SUBROUTINE" (PASSIVE STATEMENT)

21 IF THERE IS NOTHING LEFT TO DO (NESTED BLOCK INITIATOR "IF")
22 EXITLOOP (ESCAPE STATEMENT "LOOP")

23 ENDIF (TERMINATOR STATEMENT NESTED "IF")
24 ENDLOOP (TERMINATOR STATEMENT "LOOP")

25

26 ENDIF (TERMINATOR STATEMENT "IF")

27

28 ENDPROGRAM (MODULE TERMINATOR STATEMENT "PROGRAM")

29
30 PROCEDURE SUBROUTINE

31
32 NOTE: A MODULE INITIATOR STATEMENT CAUSES THE START OF A NEW PAGE.

33 ALSO NOTE THAT "PROCEDURE" CAN BE USED AS A SYNONYM FOR "PROGRAM".

34

35 SELECT CASE BASED ON SOME CRITERION (BLOCK INITIATOR "SELECT")

36

37 CASE 1: CHECK FOR SUBROUTINE ABORT (SUBSTRUCTURE STATEMENT

38 IF THERE IS NO MORE DATA TO BE READ (BLOCK INITIATOR "IF")

39 EXITPROCEDURE (ESCAPE STATEMENT "PROCEDURE")

40 ENDIF

41

42 CASE 2: CHECK FOR SUBROUTINE ERROR (SUBSTRUCTURE STATEMENT

43 IF AN ERROR OCCURS (BLOCK INITIATOR "IF")

44 PRINT AN ERROR MESSAGE (PASSIVE STATEMENT)

45 ENDIF

2-3

FOR "SELECT")

FOR "SELECT")

46
47 CASE 3: INVOKE ANOTHER SUBROUTINE (SUBSTRUCTURE STATEMENT FOR "SELECT")

48 DO ANOTHER SUBROUTINE (MODULE INVOCATION STATEMENT)

49 NOTE: "DO" IS A SYNONYM FOR "CALL" (PASSIVE STATEMENT)

50
51 ENDSELECT (TERMINATOR STATEMENT "SELECT")
52
53 ENDPROCEDURE (MODULE TERMINATOR STATEMENT "PROCEDURE")

As output:

TABLE OF CONTENTS PAGE I
PAGE LINE +++++++4+++++++++++++++++++++4++++++++++.++++++++++++++++++++++++++

NUMBER NUMBER MODULE NAME
1 1 PROGRAM EXAMPLE TO DEMONSTRATE THE BASIC SDDL STRUCTURES

2 30 PROCEDURE SUBROUTINE

3 MODULE REFERENCE TREE

4 MODULE - CROSS REFERENCE LISTING

LINE PAGE

I PROGRAM EXAMPLE TO DEMONSTRATE THE BASIC SDDL STRUCTURES

2
3 (THE LINE ABOVE IS A MODULE INITIATbR STATEMENT WHICH ESTABLISHES

4 "EXAMPLE" AS THE NAME OF THIS PROGRAM/MODULE)

5
6 NOTE: THE PARENTHESES IN THIS EXAMPLE ARE USED FOR

7 COMMENTARY PURPOSES ONLY AND HAVE NO EFFECT ON THE SDDL

8 PROCESSOR OR ITS OPERATION.

9

10 IF THIS CONDITION IS TRUE (BLOCK INITIATOR "IF")

11 ACT ON THIS STATEMENT (PASSIVE STATEMENT)

12

13 ELSE (SUBSTRUCTURE STATEMENT FOR "IF")

14 ACT ON THE FOLLOWING STATEMENTS (ANOTHER PASSIVE STATEMENT)

15
16 LOOP FOR INDEX = I TO SOMETHING (BLOCK INITIATOR "LOOP")

17 (PASSIVE STATEMENTS CAN BE PLACED ANYWHERE)

18 CALL SUBROUTINE (MODULE INVOCATION STATEMENT)-------------- >(2)

19 THE NAME OF THE MODULE INVOKED IN THE PREVIOUS STATEMENT

20 IS "SUBROUTINE" (PASSIVE STATEMENT)

21 IF THERE'IS NOTHING LEFT TO DO (NESTED BLOCK INITIATOR "IF")

22 < ----- EXITLOOP (ESCAPE STATEMENT "LOOP")

23 ENDIF (TERMINATOR STATEMENT NESTED "IF")

24 ENDLOOP (TERMINATOR STATEMENT "LOOP")

25
26 ENDIF (TERMINATOR STATEMENT "IF")

27

28 ENDPROGRAM (MODULE TERMINATOR STATEMENT "PROGRAM")

2-4

LINE PAGE 2
30 PROCEDURE SUBROUTINE
31
32 NOTE: A MODULE INITIATOR STATEMENT CAUSES THE START OF A NEW PAGE.

33 ALSO NOTE THAT "PROCEDURE" CAN BE USED AS A SYNONYM FOR "PROGRAM".

34

35 SELECT CASE BASED ON SOME CRITERION (BLOCK INITIATOR "SELECT")

36

37 CASE 1: CHECK FOR SUBROUTINE ABORT (SUBSTRUCTURE STATEMENT FOR "SELECT")

38 IF THERE IS NO MORE DATA TO BE READ (BLOCK INITIATOR "IF")

39 <-------- EXITPROCEDURE (ESCAPE STATEMENT "PROCEDURE")

40 ENDIF

41

42 CASE 2: CHECK FOR SUBROUTINE ERROR (SUBSTRUCTURE STATEMENT FOR "SELECT")

43 IF AN ERROR OCCURS (BLQCK INITIATOR "IF")

44 PRINT AN ERROR MESSAGE (PASSIVE STATEMENT)

45 ENDIF

46

47 CASE 3: INVOKE ANOTHER SUBROUTINE (SUBSTRUCTURE STATEMENT FOR "SELECT")

48 DO-ANOTHER SUBROUTINE (MODULE INVOCATION STATEMENT)----------- >(

49 NOTE: "DO" IS A SYNONYM FOR "CALL" (PASSIVE STATEMENT)

50
51 ENDSELECT (TERMINATOR STATEMENT "SELECT")
52
53 ENDPROCEDURE (MODULE TERMINATOR STATEMENT "PROCEDURE")

X N N MODULE REFERENCE TREE XxEx*x
LN PAGE
1 1 EXAMPLE
2 2 SUBROUTINE
3 - ANOTHER

MODULE

CROSS REFERENCE LISTING PAGE

IDENTIFIER MODULE NAME LINE NUMBERS

ANOTHER
PAGE 2 PROCEDURE SUBROUTINE 48

EXAMPLE
PAGE 1 PROGRAM EXAMPLE 1 4 6

SUBROUTINE

PAGE I PROGRAM EXAMPLE i 20

PAGE 2 PROCEDURE SUBROUTINE 30 37 42 47 48

2-5

4

DEFINITION NUMBER AND STATEMENT TYPE ENCOUNTERED

21 23 24 25 26 16 35 37 46

z
0 2- - <- 0 >

ACTIONTAKEN < c~< O> ~ ~ C 0- 5<oo><n<.u ua

STATEMENT ENTERED IN TABLE OF CONTENTS--

ALL NESTED, OPEN STRUCTURESARE

CLOSED WITH ERRORMESSAGES

NEW PAGE STARTED IN THE OUTPUT FILE

INDENTATION LEVEL DECREASED - ..

STATEMENT WRITTEN TO OUTPUT FILE - - - -- -

INDENTATION LEVEL INCREASED

LEFTARROW (ESCAPE LEVEL INDICATOR)
ADDED TO THE OUTPUT FILE

RIGHT ARROW (CALL INDICATOR) ADDED

TO THE OUTPUT FILE

SUBSEQUENT INPUT LINES ARE
DIVERTED TO A HOLDING BUFFER

THE LINES IN THE HOLDING BUFFER ARE WRITTEN

TO THE OUTPUT FILE (BOXED IN BY "*")

SUBSEQUENT INPUT LINES ARE DIVERTED

BACK FOR NORMAL PROCESSING

CONTROL PARAMETERS OF THE SDDL

PROCESSOR ARE ALTERED

*FOR MODULES ONLY

Fig. 2-1. SDDL Processor Actions

2-6

SECTION III

SDDL METHODOLOGY

The following discussion of techniques and style9 is intended as

a guideline or list of suggestions for using the capabilities of the

SDDL language and processor to fullest advantage in striving for the

goal of an informative and communicative Software Design Document.

The reader is encouraged to examine these suggestions with a

critical eye. Accept what is useful, adapt to your own recuirements

and taste, and invent new methods, but always keep in mind that the

primary purpose of the Software Design Document is to communicate

information to other people.

A. 	 USES OF THE SOFTWARE DESIGN DOCUMENT

Throughout the development of the software design, the SDD always

represents the definitive word on the current status of the ongoing,

dynamic design development process. It is easily updated and readily

accessible, in a familiar, informative, readable form, to all members

of the development team. This makes the SDD an effective instrument

for reconciling misunderstandings and disagreements in the evolutionary

development of design specifications, engineering support concepts,

and the software design itself. Using the SDD to analyze the design

makes it possible to eliminate many errors which otherwise might not

be detected until coding is attempted.

As a project management aid, the SDD is very useful for monitoring

progress and for recording task responsibilities. It is also effective

for analyzing and documenting existing programs.

B. 	 REPRESENTATION OF DATA STRUCTURES

A thorough knowledge of the content and organization of its input

and output data is an essential prerequisite to understanding a program.

For this reason, much attention was focused on developing data structure

representations that effectively display data organization and content.

SDDL techniques that facilitate achieving this goal include:

(1) 	 Group the data into appropriate data description modules

located in the beginning pages of the SDD.

(2) 	 Provide descriptive names for variables.

(3) 	Use the period (.) (because it lies low on the printed

line and does not interfere with readability) to connect

the words of a descriptive phrase to form identifiers which

can be automatically displayed in a cross reference table.

3-1

(4) 	Use the underscore to connect the words of a descriptive

phrase to form module names.

(5) 	Use the single or double quote mark to identify single

word variable names for cross referencing.

(6) 	Include information about the data (e.g., units, mode,

dimension, etc.) in the data structure module.

(7) 	Group all data which describe attributes of a design entity

with the entity they describe, ,and provide an entity name

which can be used as a qualifier with the attribute.

(8) 	 If the program is to be implemented in a language that does

not permit the use of descriptive variable names, include

the name to be used in the program code in the data structure.

(9) 	Define suitable keywords as block initiators to provide

automatic indentation. Use the #TERMINATE directive to

terminate the data structure blocks without printing a

termination statement.

Example: Data Structure

PROGRAM VEHICLECOMPONENTS DATA STRUCTURE

ENTITY ENGINE:
PCT.PEDAL
'RPM'
'TORQUE'
MIN.TORQUE

[PCTPED]
[ENGRPM]
[TORQUE]
[MINTOR]

PERCENT
REV/MIN
FT*LB
FT*LB

MAX.TORQUE [MAXTOR] FT*LB
'HORSEPOWER' (VECTOR) [HPOWER] HP

ENDPROGRAM VEHICLECOMPONENTS DATA STRUCTURE

C. 	 REPRESENTATIONS OF CONTROL/PROCEDURAL STRUCTURES

The constructs of Structured Programming, such as modules (e.g.,

PROGRAM - RETURN - ENDPROGRAM), iterations (e.g., LOOP - CYCLE/EXITLOOP -

REPEAT), conditionals (e.g., IF - ELSE -, ENDIF), and selections (e.g.,
SELECT - CASE - ENDSELECT) are used in a similar manner for software
design. The difference is that for software design the structures

should convey human-oriented, natural language information to the

level of precision and completeness necessary to communicate the design,

but free of the syntax constraints and detailed information requirements

imposed by programming languages.

3-2

Example: Module and block structures, high-level statements

1 PROGRAM MAIN ROUTINE
2 LOOP UNTIL THERE IS NO MORE DATA

3 READ THE DATA AND CHECK IT

4 IF THE DATA IS BAD OR INCOMPLETE

5 <----- CYCLE TO THE NEXT CASE
6 ELSE

7 CALL DATAPROCESSING ROUTINE--------- > (9)

8 ENDIF

9 REPEAT

10 TERMINATE THE PROGRAM

11 ENDPROGRAM

If the design must specify a list of conditions where all must

be tested and acted upon if true (incontrast to the SELECT-CASE-ENDSELECT

construct, which finds and executes only the first true condition),

a new structure is recommended in place of a sequence of IF-ENDIF structures.

Use the #DEFINE directive to establish the following structure:

CHECK - block initiator

ENDCHECKLIST - block terminator

CONDITION - substructure

Example: Checklist

As input:

1 #OEFINE BLOCK CHECK, ENDCHECKLIST,, CONDITION

2

3 PROGRAM FOR VACATION PREPARATION

4

5 CHECK AND ACT ON ALL TRUE CONDITIONS IN THE FOLLOWING LIST

6
7 CONDITION: CAR NEEDS TO BE SERVICED

8 TAKE CAR TO THE SERVICE STATION

9 GET GAS AND OIL

10 INFLATE TIRES

11

12 CONDITION: DELIVERIES HAVE TO BE CANCELLED

13 CANCEL NEWSPAPER

14 CANCEL MILK

15

16 CONDITION: TRIP HAS TO BE PLANNED

17 GET MAPS

18 MAKE HOTEL RESERVATIONS

19

20 ENDCHECKLIST

21 ENDPROGRAM

3-3

As output:

3 PROGRAM FOR VACATION PREPARATION

4

5 CHECK AND ACT ON ALL TRUE CONDITIONS IN THE FOLLOWING LIST

6

7 CONDITION: CAR NEEDS TO BE SERVICED

8 TAKE CAR TO THE SERVICE STATION

9 GET GAS AND OIL

10 INFLATE TIRES

11

12 CONDITION: DELIVERIES HAVE TO BE CANCELLED

13 CANCEL NEWSPAPER

14 CANCEL MILK

15

16 CONDITION: TRIP HAS TO BE PLANNED

17 GET MAPS

18 MAKE HOTEL RESERVATIONS

19

20 ENDCHECKLIST

21 ENDPROGRAM

The following forms are recommended for use when the design has

progressed to the point where engineering calculations need to be expressed:

Example: Calculation - Equation not yet determined

CALCULATE VEHICLE.STATE: DISTANCETRAVELLED (TARGETTED)

* GIVEN: VEHICLE.STATE: DISIANCE.TRAVELLED (CURRENT)
* VEHICLE.STATE.VELOCITY (CURRENT)
ft VEHICLE.STATE.ACCELERATION (TARGETTED)
* TIME INCREMENT

Example: Calculation - Equation included

COMPUTE VEHICLE.STATE: DISTANCE.TRAVELLED (TARGETTED)

D + V*T + (A/2)*T**2

D == VEHICLE.STATE: DISTANCE.TRAVELLED (CURRENT)

V == VEHICLE.STATE: VELOCITY (CURRENT)

T == TIME.INCREMENT
A VEHICLE.STATE: ACCELERATION (TARGETTED)

Indentation in the examples above may be imposed by indenting the input

statements or by defining COMPUTE to be a Block Initiator keyword.

3-4

D. SPECIFICATION OF MODULE INTERFACES

Explicit specification of the data passed between modules and

accessed from a global store will eliminate many debugging problems

in the coding and integration stages.

(1) 	 Use the words GIVEN and YIELD to specify parameters transmitted

to and returned from a module. Use the word USING to specify

global variables accessed.

(2) List the GIVEN and YIELD parameters with Module Invocation

statements.

Example: Display of module interface parameters

NON CALCULATEDRIVEWHEEL OUTPUT.REQUIRED------------------------ > (38)

* GIVEN: VEHICLE.STATE:
* SCHEDULED.TIME
' YIELD: VEHICLE.STATE: TIRE.RPM, ACCELERATION
* WHEEL FORCE REQUIRED
* WHEEL TORQUE REQUIRED

In the above example, NOW is the Module Invocation keyword.

The lines specifying arguments passed to and from the module all begin

with an asterisk to emphasize their association with the Invocation

statement.

(3) 	 List USING, GIVEN, and YIELD parameters with Module Initiator

statements.

Example: Display of parameters with the module definition

PROCEDURE TO CALCULATEDRIVEWHEELOUTPUT.REQUIRED

* USING: DRIVE.POWER.TRAIN: DATA *

* CHASSIS: DATA *

* GIVEN: VEhICLE.STATE: *

* SCHEDULED.TIM *

* YIELD: VEHICLE.STATE: TIRE.RPM, ACCELERATION *

* WHEEL FORCE REQUIRED
* WHEEL TORQUE REQUIRED

The parameters in this structure are set off by using the

#TEXT - #END directives to enclose them in a box formed by asterisks.

In addition to the GIVEN and YIELD arguments, the USING category lists

global parameters which are accessed by the module.

3-5

E. INCLUSION OF MANAGEMENT INFORMATION IN THE SDD

Project management information, just as program design, must

be kept up to date and accurate. The SDD is the ideal place to maintain

this information, and the language can be used effectively to present

the information. Listed below are several Module Initiator statements

which suggest kinds of management information, as indicated by their

wording, that should be included in the SDD.

PROGRAM OBJECTIVES

PROGRAJ REVISIONS MEMORANDA

PROGRAM MEETING CALENDAR & AGENDA

PROGRAM DOCUMENT READING CONVENTIONS

PROGRAM COMPLETION SCHEDULE

F. ADDITIONAL USES OF ThE CROSS REFERENCE CAPABILITY

The SDD typically will contain much information, in addition

to the names of design parameters, for which it would be useful to

have a cross reference. Individual cross reference tables for each

type of information can be obtained by associating a different cross

reference title with each (see the #MARK directive). Some that have

proved to be useful appear in the sample design which follows. The

example shows the form of the #MARK directive which establishes the

cross reference character and the way in which the data appear in the

main body of the SDD. The pound sign (#) has been used in the input

to cause some information to be printed at the right-hand margin of

the SDD for increased readability (See Section IV, 1.6, PASSIVE STATEMENT,

item 5).

Example: Uses of the cross reference capability

As input:

1 #MARK REVISIONS % FOOTNOTES [FILE NAMES $
2 #MARK UPDATE RESPONSIBILITY ?

3 PROGRAM TO PROCESS CUSTOMER DATA # [REF I]
4 READ NAMES FROM CUSTOMER$FILE # %I

5 MATCH NAMES TO CREDIT DATA 4 ?HK
6 WRITE CREDIT INFO TO CREDIT$FILE # %2

7 ENDPROGRAM

3-6

As output:

TABLE OF CONTENTS PAGE I
PAGE LINE ++++4++++++++4. ++++++++..+++++++++++++.+++++++++.++++++++.

NUMBER NUMBER MODULE NAME

1 3 PROGRAM TO PROCESS CUSTOMER DATA [REF1]

2 MODULE REFERENCE TREE

3 MODULE - CROSS REFERENCE LISTING

4 REVISIONS - CROSS REFERENCE LISTING

5 FOOTNOTES - CROSS REFERENCE LISTING

6 FILE NAMES - CROSS REFERENCE LISTING

7 UPDATE RESPONSIBILITY - CROSS REFERENCE LISTING

LINE PAGE 1

3 PROGRAM TO PROCESS CUSTOMER DATA [REF1]

4 READ NAMES FROM CUSTOMER$FILE %1

5 MATCH NAMES TO CREDIT DATA ?HK

6 WRITE CREDIT INFO To CREDIT$FILE X2

7 ENDPROGRAM

REVISIONS

............
CROSS REFERENCE LISTING

...
PAGE

...........
4

...

IDENTIFIER MODULE NAME LINE NUMBERS

x1

%2
PAGE

PAGE

1

1

PROGRAM TO PROCESS

PROGRAM TO PROCESS

4

6

FOOTNOTES

CROSS REFERENCE LISTING PAGE

IDENTIFIER MODULE NAME LINE NUMBERS

[REF1
PAGE 1 PROGRAM TO PROCESS 3

3-7

5

FILE NAMES
CROSS REFERENCE LISTING PAGE 6

IDENTIFIER MODULE NAME LINE NUMBERS

CREDIT$FILE
PAGE 1 PROGRAM TO PROCESS 6

CUSTOMER$FILE
PAGE 1 PROGRAM TO PROCESS 4

UPDATE RESPONSIBILITY

CROSS REFERENCE LISTING PAGE 7

IDENTIFIER MODULE NAME LINE NUMBERS

?HK
PAGE 1 PROGRAM TO PROCESS 5

3-8

SECTION IV

SDDL USER'S REFERENCE GUIDE

Input to the SDDL processor consists of a sequenceof design state­
ments and processor control directives.

Statements and Directives begin and end with a line (or record) of

the input medium, unless line continuation is explicitly indicated, as

described below. Continued lines are concatenated into a single statement

for processing.

A. 	 CONTINUATION OF INPUT LINES

A continuation mark, the ampersand, can be used to concatenate

several input lines/cards into a single SDDL input statement. The

following rules apply to its use:

(1) 	 If the last non-blank character (excluding card sequence numbers

-- see #SEQUENCE directive) of an input line is an ampersand,

the processor will concatenate the next line of input with

the current line to form a single statement.

(2) 	 The ampersand which caused the continuation is removed

from the newly formed line, but all other characters, including

other ampersands and blanks, are used as they were input

to fbrm the new line.

(3) 	 The continuation mark may be used on as many subsequent

input lines as desired to form a single SDDL statement

or directive.

(4) 	 If the resulting input statement exceeds the allowable
output line space, it Will be handled as described below.

B. 	 CONTINUATION OF OUTPUT LINES

Occasionalfly a line of output may be long enough to extend beyond
the right-hand page margin. When this occurs, the processor handles
the line in the following way: ­

(1) 	 Beginning at the appropriate indentation level, as many

characters (including blanks) of the input line as space

permits are printed on the current line.

(2) 	 An ampersand is printed at the right margin.

(3) 	 On the next line of the document-, one space to the right

of the current indentation level, the remaining characters

are printed. Steps 2 and 3 are repeated as many times

as necessary to complete the output.

4-1

(4) If the indentation level is such that no characters can be

printed on the first line, then step 3 is repeated with

output beginning at the left margin instead of at the indenta­
tion level.

Example: Line continuation (input and output)

As input:

1 PRIOR LINE

2 THIS IS AN EXAMPL&
3 E OF A LONG INPUT &

4 LINE & A LONG OUTP&

5 UT LINE

6 NEXT LINE

As printed:

1 PRIOR LINE

2 THIS IS AN EXAMPLE OF A LONG INPUT LIN &

E & A LONG OUTPUT LINE

6 NEXT LINE

C. SDDL SYNTAX DEFINITION

The SDDL syntax definitions are subdivided into five levels. The

primitive definitions are presented in Level 0. Secondary definitions

based on the primitive definitions are in level 1. Level 2 contains

SDDL statement definitions. The SDDL control directives are defined

in level 3. Finally, an overview diagram of an SDDL program, based

on definitions in levels 2 and 3, is given in level 4. The definitions

in levels 1 through 4 are accompanied by flow diagrams which specify

the requirements and options of the syntax. To interpret the diagram,

trace the flow line'from the term being defined to the end of the definition.

Boxes which are unavoidable are requirements, boxes which can be bypassed

are options, and boxes which can be returned to are repeatables. The

contents of a box may refer to another definition or a literal. To

differentiate between them, definitions appear in smaller type, with

the definition number in the lower right-hand corner,,and literals,

in larger type, have no accompanying number.

Primitive Definitions (Level 0)

The following description and discussion of SDDL is based on the

short list of primitive definitions shown in Table 4-1. Note especially

that the definition of a letter includes the pound sign in addition

to the alphabet. Also note that initially no MARK characters are defined.

As will be explained later in the discussion of the #MARK directive,

any punctuation may be converted to a MARK by user specification.

4-2

Table 4-1. SDDL Primitive Definitions

Definition

Number Name Description

0.1
 character set The entire set of allowable characters

(including the blank).

0.2 letter 	 The alphabet (A-Z) and the pound sign (i).

0.3 digit 	 The digits (0-9).

o.4 	 punctuation The characters remaining after subtracting

letter, digit, and the blank from the

entire character set.

0.5 	 mark Any punctuation which has been converted

by a control directive. (Initially, this

is the empty set.)

0.6 	 e.o.s. The end of an input statement or directive,

determined by the end-of-line/record

indicator (e.g., carriage return) of an

input line without a continuation mark.

1. Secondary Definitions (Level 1)

The definitions of identifier, number, and word shown below are

based on the SDDL primitive definitions shown in Table 4-1.

1.1 IDENTIFIE3

4-3

Note that a number may not have a decimal point. This constraint

only affects SDDL control directives which only use integers and has

no impact on the design statements which appear in the SDD.

[IDENTIFIER [

1.3 WO.D

As shown above, a word can be an identifier, a number, or punctuation;

in short, any token or object definable under the preceding definitions

of the language. As in natural languages, the space or blank is a

very important part of the syntax which is needed for delimiting or

separating words.

4-4

Example: Lexical analysis of identifiers

ABC123 X Y#Z?E 12 4W

Lexical analysis of the above line yields the following words:

ABC123 (identifier)
X (identifier)
Y#Z (identifier)
? (punctuation)
E (identifier)
12 (number)
4 (number)
W (identifier)

If ? had previously been converted to a mark, the result would yield

the following words:

ABC123 (identifier)

X (identifier)

Y#Z?E (identifier)

12 (number)

4 (number)

W (identifier)

1.4 STATEMENT

A statement, as shown in the diagram above, consists of any sequence

(including the null case) of words.

1.5 KEYWORD

The SDDL processor is keyword-driven. A keyword is an indentifier

which has been predefined to be the name of a structure part (initiator,

terminator, escape, substructure), a Module Invocation word, or a

control directive. Keywords are recognized only in context, i.e.,

only when they appear as the first word, though not necessarily starting

in the first column, of the statement or directive.

4-5

1.6 	 PASSIVE STATEMENT

A Passive statement is any statement which does not begin with

a keyword. Passive statements may be used to convey any design information

as desired but they do not have any special meaning to the processor

as do the Keyword statements.

Passive statements are processed as follows:

(1) 	Since Passive statements must be imbedded within a module

structure, if one does not already exist, the processor will

supply a module, with an error message (see next example).

(2) 	 The entire statement is scanned for the appearance of any

identifiers which have been designated for inclusion in

the cross reference tables. The means for designating

identifiers for inclusion in the cross reference tables

are explained under the discussion of the #MARK and the

#STRING directives.

(3) The input line number (i.e., the number corresponding to

the statement's sequential location in- the input medium)

is written at the left margin.

(4) The entire statement including all blanks is copied to

the SDD output file beginning at the current point-of

indentation.

(5) If the statement contains a pound sign, the portion of

the statement which follows it will all be right shifted

so that the last non-blank character lines up at the right

margin. The pound sign itself is replaced with a space.

This feature has many important applications which are

examined under the discussion of the #MARK directive.

Example: Passive statement without an existing module

As iAput (input line=1)

ADD 1 # COUNT CASES

As output:

LINE 	 PAGE 1

PROGRAM UNNAMED# - STATEMENT SUPPLIED BY PROCESSOR

ADD I 	 COUNT CASES

4-6

1

1.7 ANY TEXT

2. Keyword Statement Definitions (Level 2)

This section describes the Keyword statements which drive the

processor formatting actions. The primary function of the processor

is to reproduce the input statements on the SDD output file in a manner

which enhances the reader's capabililty to understand the resulting

document with the least effort. This is accomplished by indentation

of statements within structures and superimposition of flow lines to

highlight structure escapes and module invocations. The actions taken

by the processor in response to specific statement types are described

below and summarized in Fig. 2-1.

2.1 MODULE INITIATOR

MODULEI

(TABLE ,2-11

FOR

PUNCTUATION0.

Example: Module initiator statement

PROGRAM TO READ THE PROGRAM INPUT

4-7

(1) 	The keyword PROGRAM is recognized as a Module Initiator.

(2) 	 The optional noise word TO (FOR or punctuation are

alternative noise words) is ignored.

(3) 	The next identifier, READ, is established as the module's

name and recorded for future cross referencing. The remaining

words, including the second appearance of PROGRAM, are

handled as though they were part of a Passive statement).

(4) 	 Since a module is the highest-level structure and may not

be nested within other structures, the processor terminates

any open structures (i.e., structures which have been initiated

but left unterminated) with appropriate error messages.

(5) 	 The entire Module Initiator statement is entered into the

SDD table of contents.

(6) 	 The module structure is entered into a push-down (last­
in, first-out) structure stack for later matching with subsequent

statements specifying other parts of the structure.

(7) 	 A new page of the SDD is started with appropriate heading.

(8) 	 The indentation point is set to level zero (just to the

right of the location of the input line number field).

0

(9) 	 The 4tatement is written to the SDD output file in the

manner described above for Passive Statements.

(10) 	 The indentation is increased one level by moving the

indentation point the required number (default = 3) of spaces

to the right.

2.2 BLOCK INITIATOR

KEYWORD /E07..s.I"" 47^ / i-
I ABLE 2-l1 J

4-8

Example: Block initiator statement

LOOP UNTIL FILES A, B & C HAVE BEEN READ

(1) 	 The keyword LOOP is recognized as a Block Initiator keyword.

(2) 	Since blocks must be nested within modules, if an open

module does not already exist, the processor supplies a

module initiator statement and an error message.

(3) 	 The block structure is entered into a push-down (last-in,

first-out) structure stack for later matching with subse­
quent statements specifying other parts of the structure.

(4) 	The statement is written to the SDD output file, as described

above for Passive statements.

(5) 	 Indentation is increased one level by moving the indentation

point the required number (default = 3) of spaces to the right.

. TERMINATOR

([TABLE 2-1)l

Example: Terminator statement

ENDPROGRAM TO READ INPUT

(1) 	The identifier ENDPROGRAM is recognized as a Terminator

keyword.

(2) 	The structure stack is searched for a matching Structure

Initiator. If none is found, the statement is processed as a

Passive statement and is followed by an error message. No

further action is taken.

(3) 	If a matching structure is found, all nested open structures

are terminated with error messages.

(4) 	The structure to be terminated is removed from the top of the

structure stack.

4-9

(5) 	Indentation is decreased (shifted left) to match the

indentation of the Structure Initiator statement.

(6) 	The statement is written to the SDD output file in the

manner of a Passive statement.

2.4 SUBSTRUCTURE

KANYlTOXT

(TABLE 	 2-1)1

Example: Substructure statement

ELSE TRY ANOTHER ALTERNATIVE

(1) 	The identifier ELSE is recognized as a Substructure keyword.

(2) 	The structure stack is searched for a matching Structure

Initiator. If none is found, the statement is processed as a

Passive statement and followed with an error message. No

further action is taken.

(3) 	 If a matching structure is found, all intervening, open

structures are terminated with error messages.

(4) 	 In the case where the substiucture corresponds to a module

(rather than a block) the statement is entered into the

SDD table of contents.

(5) 	Indentation is decreased (shifted left) to match the indentation

of the Structure Initiator statement.

(6) 	 The statement is written like a Passive statement.

(7) 	 Indentation is increased one level (shifted right), as

when the structure had just been initiated, in effect re­
initiating the structure.

4-10

2.5 ESCAPE

Example: Escape statement

EXITLOOP IF DELTA < EPSILON

(1) 	 The identifier EXITLOOP is recognized as an Escape keyword.

(2) 	 The statement is written to the SDD in the manner described

for the Passive statement.

(3) 	 The structure stack is searched for a matching Structure

Initiator. If none is found, an error message is added

to the SDD output file.

(4) If a matching strudture is found, the escape statement

is completed by the addition of a flow line (left arrow)

extending from the current indentation level to the indentation

level of the matching Structure Initiator statement.

2.6 MODULE INVOCATION

MODULE

ITABLE 	 2-1) PUNCTUATION 0.

4-11

Example: Module invocation statement

CALL : INITIALIZATION ROUTINE

(1) 	 The identifier CALL is recognized as a Module Invocation

keyword.

(2) 	 The optional punctuation, :, is ignored.

(3) 	 The identifier INITIALIZATION is established as the name

of the module to be invoked and recorded for module cross

referencing.

(4) 	 The statement is written to the SDD in the manner described

for a Passive statement.

(5) 	 The output line is augmented by a flow line (right arrow)

extending from the rightmost non-blank character of the

statement to within six columns of the right-hand margin.

(6) 	 The last six columns of the output line are filled in

with parentheses enclosing the page number of the module

referenced by the Module Invocation statement.

The processor actions for SDDL statements described above are

summarized in Figure 2-1. The following example illustrates the statements

as they might be combined in a simple design:

4-12

Example: A simple design

As input:

I PROGRAM TO SUMMARIZE DATA .
2 CALL INITIALIZE

3 LOOP UNTIL ALL NUMBERS HAVE BEEN READ

4 READ A VALUE

5 CALL ERRORCHECK

6 IF THE ERRORCHECK INDICATES AN ERROR

7 PRINT THE FOLLOWING MESSAGE

3 "SOMETHING'S WRONG"

9 CYCLE BACK FOR ANOTHER ITERATION

16 ELSE

11 SUM VALUES & SQUARED VALUES
12 INCREMENT COUNTER
13 ENDIF
14 REPEAT
15 DISPLAY MEAN AND STANDARD DEVIATION,
16 ENDPROGRAM
17 PROCEDURE TO INITIALIZE ­

i8 VARIABLE INITIAL VALUE

19 SUM 0.0 #REAL

20 SUM OF SQUARES 0.0 #REAL

21 COUNT 0 #INTEGER

22 LOWER BOUND 0 #REAL

23 UPPER BOUND 100.0 #REAL

24 PROCEDURE FOR ERRORCHECK

25 INITIALIZE ERRORCHECK TO INDICATE AN ERROR

26 IF LOWER BOUND < VALUE

27 IF VALUE < UPPER BOUND

28 RESET ERRORCHECK TO INDICATE NO ERROR

29 ENDIF

30 ENDIF

4-13

As output:

TABLE OFCONTENTS PAGE I

PAGE LINE ++++++.+++++++++++++4..++++++++++++++++++++.++++++++++++++++++++

NUMBER NUMBER MODULE NAME

I 1 PROGRAM TO SUMMARIZE DATA

2 17 PROCEDURE TO INITIALIZE

3 24 PROCEDURE FOR ERRORCHECK

4 MODULE REFERENCE TREE *

5 MODULE - CROSS REFERENCE LISTING,'

LINE PAGE 1
1 PROGRAM TO SUMMARIZE DATA
2 CALL INITIALIZE--- >(2)
3 LOOP UNTIL ALL NUMBERS HAVE BEEN READ
4 READ A VALUE
5 CALL ERRORCHECK-- >(3)
6 IF THE ERRORCHECK INDICATES AN ERROR
7 PRINT THE FOLLOWING MESSAGE
8 "SOMETHING'S WRONG"
9 < .-- CYCLE BACK FOR ANOTHER ITERATION

10 ELSE

11 SUM VALUES & SQUARED VALUES

12 INCREMENT COUNTER

13 ENDIF

14 REPEAT

15 DISPLAY MEAN AND STANDARD DEVIATION

16 ENDPROGRAM

LINE

17 PROCEDURE TO INITIALIZE

18 VARIABLE

19 SUM

20 SUM OF SQUARES

21 COUNT

22 LOWER BOUND

23 UPPER BOUND

PAGE 2

INITIAL VALUE

0.0 REAL

0.0 REAL

0 INTEGER

0 REAL

100.0 REAL

ENDPROCEDURE - STMT SUPPLIED BY PROCESSOR

LINE PAGE 3
24 PROCEDURE FOR ERRORCHECK

25 INITIALIZE ERRORCHECK TO INDICATE AN ERROR

26 IF LOWER BOUND < VALUE

27 IF VALUE < UPPER BOUND

28 RESET ERRORCHECK TO INDICATE NO ERROR

29 ENDIF

30 ENDIF

ENDPROCEDURE - STMT SUPPLIED BY PROCESSOR

4-14

MO 4 MODULE REFERENCE TREE X OE PAGE 4
LN PAGE
1 1 SUMMARIZE
2 2 INITIALIZE
3 3 ERRORCHECK

MODULE

CROSS REFERENCE LISTING PAGE 5

IDENTIFIER MODULE NAME LINE NUMBERS

ERRORCHECK
PAGE-
PAGE

INITIALIZE
PAGE
PAGE
PAGE

SUMMARIZE
PAGE

I
3

1
2
3

I

PROGRAM TO SUMMARIZE
PROCEDURE FOR ERRORCHECK

PROGRAM TO SUMMARIZE
PROCEDURE TO INITIALIZE
PROCEDURE FOR ERRORCHECK

PROGRAM TO SUMMARIZE

5
24

2
17
25

1

6
25 28

4-15

3. Control Directives (Level 3)

Control directives allow the user to set processor background

control specifications (e.g., page width, indentation) and to cause

some immediate actions to be taken (e.g., page eject). Control directives

are read, interpreted, and acted upon by the processor. They are not

written to the SDD output file and hence are not seen in the final

document. Control specifications set by directives are put into effect

as soon as they are interpreted and remain in effect for all subsequent

input, or until overridden by another directive. Directives can be

used to set and reset processor control specifications as often as

desired. The SDDL control directives are defined and described on the

following pages. The sequence of presentation is intended to avoid

lookahead caused by definitions based on terms defined on subsequent

pages.

Control directive keywords all begin with the pound sign character.

They are preset (see Table 2-2) and must not be altered. The user must be

careful not to define a new meaning for a control directive keyword

(see #DEFINE directive) since it will cause the preset definition

to be overridden and lost.

3.1 MARK DIRECTIVE

PUNCTUATION 0.4

Selection of words or identifiers for cross referencing is controlled

by the QMARK and the #STRING directives. When using the #MARK directive,

the designer specifies a list of punctuation symbols which the processor

will subsequently treat in the following manner:

(1) All punctuation appearing in the statement is converted

into a MARK (syntax definition 0.5), i.e., those characters

which are used to form identifiers. They can then be used

as connectors to build a single identifier out of separate

words.

4-16

Example: Mark directive without cross reference title

#MARK .

EVERY.GOOD.BOY DOES FINE

(2) 	 Every identifier which includes a MARK, such as in

EVERY.GOOD.BOY in the example above, is included in

a cross reference listing produced at the end of the

design document.

Titles for the cross reference listings may be supplied by placing

any string of characters (except punctuation) prior to the punctuation

to be converted. If, as in the above example, no title is supplied

prior to the first punctuation in the directive, a blank title is assumed.

The SDDL processor provides individual cross reference listings

for each unique title found in the #MARK and/or #STRING directives.

Identifiers containing MARKs which were specified with identical titles

are merged into a single cross reference listing. Titles are considered

to be identical if, after deleting leading and following blanks, they

are an exact, character-by-character match, including internal (between

word) blanks. Identifiers which contain marks associated with several

unique titles will appear in each appropriate cross reference. These

conventions are exemplified below, apd an additional, more comprehensive

example is given following the #STRING directive.

Example: Mark directive with and without cross references titles

#MARK ?! DATA ITEMS % REVISIONS $

#MARK ; DATA ITEMS .:

The MARKs specified in the above example are associated with the titles

(null), DATA ITEMS, and REVISIONS as follows:

(null)

CROSS REFERENCE LISTING

9!;

DATA ITEMS

CROSS REFERENCE LISTING

REVISIONS

CROSS REFERENCE LISTING

4-17

This directive allows the user to specify one or more punctuation

marks to be used as string delimiters. The purpose of enclosing text

within string delimiters is to have it included in a cross reference

table at the end of the document. The following rules govern the use of

this feature.

(I) Several punctuation symbols may be specified as string

delimiters but no distinction is made between left (opening)

or right (closing) delimiters

Example: String directive with 2 delimiters specified

#STRING C)

1 SAMPLE STATEMENT (STRING ONEC

2) STRING TWO (NOT A STRING) STRING ABC)

In the above example, the following text segments are defined and

will be cross referenced:

"STRING ONE" "STRING ThO" "STRING ABC"

(2) Preceding and following blanks are excluded from the string,
but interior blanks are included.

Example: String directive - internal and external blanks

#STRING (

LINE 1 S ABC D'

LINE 2 'ABC D

LINE 3 'ABC D'

The strings in LINE 1 and LINE 2 are the same because they match

exactly after preceding and following blanks are stripped off.

The string in LINE 3 does not match the others because it

does not have the same number of spaces between ABC and D.

Each unique string, where uniqueness is defined by rules

1 and 2, becomes a single entry in the cross reference.

4-18

(3) If the closing delimiter is omitted, the string is terminated

by the end of the input statement.

Example: String directive - missing terminator

#STRING I

LINE 1 'ABC' AND 'DEF G

Strings ABC and DEF G are recognized.

(4) If the text enclosed in string delimiters consists of a

single identifier, regardless of preceding or following

blanks, it is recognized as described above, but in addition,

the processor will thereafter recognize and cross reference

the named identifier whether it appears with or without string

delimiters.

Example: Strings containing a single identifier

"
 #STRING
LINE 1 "VEHICLE "

LINE 2 VEHICLE AND VEHICLE

In the above example, VEHICLE is recognized and the cross
reference will show that it was found once in LINE 1 and
twice in LINE 2.

(5) A title for the cross referencing of text strings may be

supplied by including any characters except punctuation

between the #STRING keyword and the first punctuation symbol

to be converted to a string delimiter.

The title, including (null), supplied with the #STRING directive

is compared with the titles supplied with the #MARK directives for

merging of the cross reference listings. When several #STRING or #MARK

directives with conflicting title specifications are used, the rule

followed is that the last usage overrides all prior usage.

An execution-time option (N-option) provides a means to suppress

the output of the cross reference table which has the hull title.

4-19

Example: Mark and String directives

As input:

I .AMARK?; DATA ITEMS % REVISIONS

2 #MARK DATA ITEMS .:

3 #STRING DATA ITEMS "
4 PROGRAM TO READ DATA AND "CHECK" IT

5 READ VEHICLE: , MAX.RPM , %POWER , "AND WHAT EVER ELSE THERE IS "

6 IF ANY VALUES ARE UNKNOWN? OR UNTESTED?

7 CHECK THE DATA;; FOR DOUBTFUL.STUFF? $1

S ENDIF

9 AN ADDITIONAL CHECK MAY BE NEEDED HERE

10 ENDPROGRAM

As output:

TABLE OF CONTENTS PAGE

PAGE LINE .+++++++++++++4++

NUMBER NUMBER MODULE NAME

1 4 PROGRAM TO READ DATA AND "CHECK" IT

2 MODULE REFERENCE TREE

3 MODULE - CROSS REFERENCE LISTING

4 DATA ITEMS - CROSS REFERENCE LISTING

5 REVISIONS - CROSS REFERENCE LISTING

6 CROSS REFERENCE LISTING

4-20

LINE PAGE 1
4 PROGRAM TO READ DATA AND "CHECK" IT
5 READ VEHICLE: , MAX.RPM , %POWER , "AND WHAT EVER ELSE THERE IS "
6 IF ANY VALUES ARE UNKNOWN? OR UNTESTED?

7 CHECK THE DATA;; FOR DOUBTFUL.STUFF? $1

8 ENDIF

9 AN ADDITIONAL CHECK MAY BE NEEDED HERE

10 ENDPROGRAM

DATA ITEMS

CROSS REFERENCE LISTING PAGE 4

+++++.++.+++.+++++++++.++++++++++++++. +++++.++++++++++++..+. .++++++++++++...++

IDENTIFIER MODULE NAME LINE NUMBERS

%POWER

PAGE I PROGRAM TO READ 5

AND WHAT EVER ELSE THERE IS

-PAGE 1 PROGRAM TO READ 5

CHECK
PAGE 1 PROGRAM TO READ 4 7 9

DOUBTFUL.STUFF?
IAGE 1 PROGRAM TO READ 7

MAX.RPM
PAGE I PROGRAM TO READ 5

VEHICLE:
PAGE I PROGRAM TO READ 5

SKEL

REVISIONS

CROSS REFERENCE LISTING PAGE 5

..

IDENTIFIER MODULE NAME LINE NUMBERS

$1

PAGE I PROGRAM TO READ 7

.........
CROSS REFERENCE LISTING

..................
PAGE

.
6

. ..

IDENTIFIER MODULE NAME LINE NUMBERS

DATA;;
PAGE 1 PROGRAM TO READ

DOUBTFUL.STUFF?
PAGE 1 PROGRAM TO READ

UNKNOWN?
PAGE 1 PROGRAM TO READ

7

7

6
UNTESTED?

PAGE I PROGRAM TO READ 6

4-21

The #DEFINE directive is used to specify new or to delete old SDDL

keywords. To sel~et the desired action, one of the four words shown below

must follow the SDDL keyword, #DEFINE.

MODULE BLOCK CALL 	NULL

3.3 DEFINE DIRECTIVE (MODULE, BLOCK)

E.0. S. 0.,6

PUNCTUATION 0.4

The word MODULE or BLOCK is used to define a control structure. In

SDDL, a control structure has four parts:

(1) Initiator: Increases the indentation level for subsequent
lines.

(2) Terminauor: Closes all nested structures left open and

returns the indentation level to that of the

Initiator statement.

(3) Escape: A left arrow is added to the statement to

indicate the program control flow. The arrow
extendsfrom the indentation level of the
escape statement to the indentation level of
the corresponding Initiator statement.

(4) 	 Substructure: Closes all nested structures left open, returns

the indentation level to that of the Initiator

statement, prints the line, and increases the

indentation level.

When defining a module or block, names for the four parts must be

specified in the order shown above. Any punctuation may be used to

separate the part names, but care must be taken to avoid using a MARK

(i.e., punctuation which has been converted by means of the #MARK or

#STRING directive). Names for any of the parts except the initiator

may be omitted by using consecutive punctuation to show where a name

has been left out. Any text following the name of the substructure

will be ignored. Synonyms for part names, except for the initiator

name, may be established by additional #DEFINE directives.

4-22

Indentation specific to the named structure may be indicated

by including an unsigned integer between the word MODULE (BLOCK) and

the initiator name. If a zero is specified or the integer is omitted,

the current default indentation amount (see #INDENT) will be used.

Example: Three equivalent define directives

#DEFINE MODULE 10 PROGRAM, END, STOP, ENTRYPOINT

#DEFINE MODULE 10 PROGRAM-END, STOP ENTRYPOINT

#DEFINE MODULE 10 PROGRAM END STOP ENTRYPOINT WHATEVER

type indentation initiator terminator escape substructure

module 10 PROGRAM END STOP ENTRYPOINT

Example: Block initiator and terminator definition

#DEFINE BLOCK BEGIN END

type indentation initiator terminator escape substructure

block default BEGIN END

Example: Block definition - escape synonyms

#DEFINE BLOCK START, FINISH, LEAVE

#DEFINE BLOCK START, , SCRAM

#DEFINE BLOCK 2 START, , VAMOOSE

typ_ indentation initiator terminator escape substructure

LEAVE

block 2 START FINISH SCRAM

VAMOOSE

Note that in this example, the last directive established the indentation

amount to be two columns, overriding the default indentation amount indicated

on the previous directives.

4-23

3.3 DEFINE DIRECTIVE (MOM INVOCATION)

'DEF INE - CALL E .S o.J

The word CALL is used with the #DEFINE directive to establish

synonyms for the Module Invocation keyword (default keywords are CALL

and DO), which indicates that a module is to be invoked at the point

where the statement occurs. The identifiers to be defined as synonyms

are listed after the word CALL. Punctuation for separating the words

is optional.

Example: CALL keyword definitions

#DEFINE CALL PERFORM EXECUTE, GOGOGO
#DEFINE CALL DOITNOW

Example: Call keywords with marks

#MARK .
#DEFINE CALL DO.IT.NOW, PERFORM

The identifier DO.IT.NOW (also PERFORM) becomes a Module

Invocation keyword because the period has been converted to a MARK

by the prior #MARK directive. Where DO.IT.NOW appears in the context

of a keyword (first word of the statement), it will not be included

in the cross reference table.

When a Module Invocation statement is encountered, the processor

places the statement in the output file with the appropriate indentation

and adds a right arrow from the rightmost character in the line to the

right margin. Matching parentheses are added to the right of the arrow

to provide a place for adding the page number of the called module. If

the module that is referenced in the Module Invocation statement has

been defined on a prior page, the page number is supplied in the allocated

space when the statement is encountered. Page reference numbers which

cannot be supplied immediately will be filled in automatically on a

second pass over the output file. The user may exercise the P option

at execution time to suppress the second pass, which supplies the remaining

page reference numbers.

4-24

3.3 DEFINE DIRECTIVE (NULL)

The NULL action of this directive provides a means for returning

any previously defined keywords to the state of being undefined.

Punctuation may be used as a keyword separator if desired. MARKs

which have been converted to letters by a previous #MARK or #STRING

directive may also be listed for redefinition as punctuation. MARKs

being redefined in this manner must have adjacent blanks or punctuation

to disassociate them from other text.

Example: Nulling keywords

#DEFINE NULL PROGRAM, ENDPROGRAM PROCEDURE

The words PROGRAM, ENDPROGRAM, and PROCEDURE are not recognized

as keywords in the statements following this directive.

Example: Nulling keywords and marks

#MARK .$

#DEFINE NULL DO.IT.NOW $

The word DO.IT.NOW is no longer a keyword and $ reverts

to punctuation again. The periods in the keyword DO.IT.NOW are part

of the identifier (unlike the $ in the example), and therefore the status

of the period remains unchanged; i.e., it is still a MARK.

Example: Nulling marks

#MARK .

#DEFINE NULL . DO.IT.NOW

This example differs in that the status of the period is reconverted

to punctuation first and is treated as such in the remainder of the

statement. Therefore, DO, IT, and NOW are the words which become undefined.

If DO, IT, and NOW are already undefined, they are not affected.

4-25

3.4 TERMINATE DIRECTIVE

This directive is a generalized terminator for block structures.

It may be used in place of a number of speofic terminators (specific

terminators must match their respective initiators) to terminate the

n innermost, nested, open block structures. If no integer is specified

in the directive, only one structure will be terminated. If n is greater

than the number of open block structures, they will all be terminated,

but the module structure will not be affected.

Example: Terminate directive

As input:

I PROGRAM "TERMINATE" EXAMPLE

2 IF P INDENT 1 LEVEL

3 LOOP Q INDENT 1 LEVEL

4 INDENTATION IS 3 LEVELS DEEP

5 ENDLOOP - SPECIFIC TERMINATOO

6 ENDIF - SPECIFIC TERMINATOR

7 IF P INDENT 1 LEVEL

8 LOOP Q INDENT 1 LEVEL

9 INDENTATION IS 3 LEVELS DEEP

10 #TERMINATE 100

11 ALL BLOCK STRUCTURES ARE TERMINATED - MODULE NOT AFFECTED

12 IF P INDENT I LEVEL

13 LOOP Q -INDENT 1 LEVEL

14 INDENTATION IS 3 LEVELS DEEP

15 #TERMINATE ONLY ONE STRUCTURE TERMINATED

16 IF P INDENT I LEVEL

17 INDENTATION IS STILL 3 LEVELS DEEP

18 ENDPROGRAM - STRUCTURES LEFT OPEN ARE TERMINATED BY THE PROCESSOR

LINE PAGE

1 PROGRAM "TERMINATE" EXAMPLE

2 IF P INDENT 1 LEVEL

3 LOOP Q INDENT 1 LEVEL

4 INDENTATION IS 3 LEVELS DEEP

5 ENDLOOP - SPECIFIC TERMINATOR

6 ENDIF - SPECIFIC TERMINATOR

7 IF P INDENT 1 LEVEL

8 LOOP Q INDENT I LEVEL

9 INDENTATION IS 3 LEVELS DEEP

11 ALL BLOCK STRUCTURES ARE TERMINATED - MODULE NOT AFFECTED

12 IF P INDENT I LEVEL

13 LOOP Q INDENT I LEVEL

14 INDENTATION IS 3 LEVELS DEEP

16 IF P INDENT I LEVEL

17 INDENTATION IS STILL 3 LEVELS DEEP

ENDIF - STMT SUPPLIED BY PROCESSOR

ENDIF - STMT SUPPLIED BY PROCESSOR

18 ENDPROGRAM STRUCTURES LEFT OPEN ARE TERMINATED BY THE PROCESSOR

4-26

3.5 TEXT DIRECTIVE

Example: Text directive

#TEXT +

The #TEXT directive is'used to signal the beginning of a sequence

of lines (not statements) of text intended as commentary to the SDD.

When this directive is encountered, the processor performs the following

actions:

(1) 	The first character following the keyword is saved for

use in forming a box around the body of text. If no character

is specified, the asterisk is used for the boxing character.

(2) 	 The processor begins reading input lines into a holding

buffer and continues until it encounters an input line

whose first non-blank character is the pound sign.

(3) 	The lines buffered in step 2 (this does not include the

line which terminated step 2) are not analyzed as statements

but simply saved unaltered.

(4) 	The buffered lines, enclosed in a box formed with the boxing

character, are then written to the SDD output file at the

current level of indentation.

(5) 	The line which signaled the end of step 2 (the buffering

step) is then processed in the usual way. Thus, any control

directives or any statement which begins with a pound sign

may be used as a terminator and still be recognized for

regular processing. If no action other than termination

of the text statement is desired, the #END directive may

be used.

3.6 END DIRECTIVE

4-27

This directrlve has no effect or purpose other than that of terminating

line buffering for #TEXT and #TITLE directives.

3.7 TILE DIRECTIVE

Example: Title page

#TITLE SDDL DESIGN DOCUMENT

This directive is used to produce a title page in the SDD. The

#TITLE directive is similar to the #TEXT directive, but different in

that the #TEXT directive is analogous to a Block Initiator statement

while the #TITLE directive is analogous to a Module Initiator statement.

The processor performs the following actions in response to input of

a #TITLE directive.

(1) 	The keyword #TITLE is recognized.

(2) 	 The initial pound sign is stripped off, and the remainder

of the directive is entered into the SDD Table of Contents.

Title line entries in the Table of Contents are preceded

by a blank line and are written two columns to the left of

module entries in order to distinguish them as the beginning

of a document section.

(3) 	 All structures left open are terminated with error messages.

(4) 	 As in the case of a #TEXT directive, the processor reads

and buffers input lines until it encounters a line whose

first non-blank character is a pound sign. Termination

of the title text is the same as for the #TEXT directive.

(5) 	 A new page is started in the SDD output file.

(6) 	A title page is formed by (a) enclosing the lines in a

box formed by asterisks, (b) centering each line within

the box, and (c) centering the entire box on the page.

4-28

3.8 LINENUMBER DIRECTIVE

This directive provides control of the starting point of the

input line numbering sequence which the processor produces in the left

margin of the SDD.

The input line numbers supplied by the SDDL processor correspond

exactly to the positional line numbers of the data element (card deck)

of the input to the SDDL processor. This feature obviates the need

for listing of the raw input for revising and augmenting the SDD.

Where more than one element (deck) is used as input to SDDL, it is

desirable to reset the line counter so that numbering can be made to

match the subsequent elements (card decks.)

If this instruction is issued without an accompanying integer, the

processor will begin numbering subsequent lines from 1; otherwise it will

begin numbering with the value specified by the integer. The syntax of

this directive allows noise to be used for commentary if desired.

Examples: Line number specification

#LINENUMBER 1001 STARTS THE NEXT ELEMENT

#LINENUMBER

4-29

3.9 INDENT DIRECTIVE

The SDDL #INDENT directive allows the user to override the default

value for the number of spaces to be skippqd for automatic statement

indentation.

User-defined structures (see #DEFINE directive 3.3) which

do not have a specific indentation amount declared, and SDDL default

structure definitions always use the current default indentation value.

The initial value of the system defined default indentation amount

is three spaces.

Text following the integer (i.e., noise) may be used for commentary

if desired. If no integer is specified in the directive, the default

value of three spaces is assumed.

Examples: Indentation specification

#INDENT 5 SPACES UNLESS OTHERWISE SPECIFIED

#INDENT SET TO DEFAULT OF THREE SPACES

3.10 WIDTH DIRECTIVE

The #WIDTH directive provides user control of the width of the

output pages. The default page width is 80 characters = 20 cm (8 in.).

An integer specifying the width, in characters/output line,

should be supplied. If the integer value is not in the range 60-130,

an error message will be printed and the page width will not be altered.

If no integer is specified in the directive, the default value of 80

columns is assumed.

This directive may be used as many times as desired throughout

the program. Each use affects only the output which follows it.

4-30

Example: Page width specification

#WIDTH 130 COLUMNS FOR A TABLE

#WIDTH RESUME NORMAL PAGE WIDTH

3.11 EJECT DIRECTIVE

This directive provides immediate control of the start of a

new page in the SDD. This page control is over and above the automatic

new page start caused by (1) a title, (2) the beginning of a new module,

or (3) page overflow. When a module becomes lengthy enough to cause

an overflow to a new page, it is often desirable to control the start

of the new page to prevent a group of lines from being split over a

page boundary.

The #EJEC1 directive, without an accompanying integer, causes a

new page to be started beginning with the next SDDL statement in the

input stream.

Examples: Page ejection

#EJEC2

#EJECT A PAGE NO MATTER WHAT

When an integer is included in this command, it causes a new page

to be started only when the remainder of the page cannot accommodate

the number of lines specified by the value of the integer. An integer

value greater than 50 gives rise to an error message and causes the

directive to be ignored. Noise following the integer is ignored and

may therefore be used for commentary.

Examples: Conditional page ejection

#EJECT 5

#EJECT 7 THE FOLLOWING 7 LINES MUST BE KEPT TOGETHER

4-31

The #SEQUENCE directive is provided for use with card input to the

SDDL processor. When SDDL is used in a timesharing environment with file

management and editing capabilities, card sequencing is unnecessary.

In this case, the full 80 columns of the input line may be used entirely

for SDDL statements and directives and the #SEQUENCE directive can be

ignored, except to avoid its inadvertent use. The input line numbers

supplied in the left margin of the output file correspond exactly to

the line to edit in the input file for corrections and updates and may

be reliably used for this purpose. This feature makes it unnecessary to

punch cards or print out copies of the input file.

Where cards are used as the input medium, it may be desirable to

have card sequence numbers at the right-hand edge of the card, in which

case the #SEQUENCE directive must be used to differentiate between the

input text and the sequence numbers. As shown in the syntax diagram

above, the #SEQUENCE keyword may be followed by an optional integer.

This integer may be used to specify the number of rightmost columns to be

designated to contain sequence numbers. If no integer is supplied or a

value greater than 8 is specified, the default value of eight characters,

columns 73 through 80, is assumed. An integer value of zero has the

effect of disabling the card sequence capability. When the #SEQUENCE

capability is used, the input line (except for the sequence numbers) is

handled in the usual way, and the sequence numbers are printed in the

rightmost columns of the output page as determined by the #WIDTH directive

(default = 80 columns). Where an input line is continued over more than

one card, only the sequence number of the last card is printed.

Example: Sequence columns specification

#SEQUENCE 4

Columns 1 through 76 of the input deck are assumed to contain
SDDL statements or directives, and columns 77 through 80 are assumed to
contain sequence numbers.

4-32

3.13 PAGENUMBER DIRECTIVE

The #PAGENUMBER directive allows the user to specify the starting

number which will be used for the page numbering sequence. Each time
the directive is used it will cause the next page number to be set

to the integer specified in the directive. Any value between 0 and

9900 is permitted. If no value is specified the default "Page 1" is

assumed. The page numbering sequence may be reset as often as desired.

Although duplicate sequences are permitted they should be avoided because

they are confusing and detract from the document readability. This

directive can be useful for segmenting the SDD.

Examples: Pagenumber directive

#PAGENUMBER 100

(SDDL input of less than 100 pages)

#PAGENUMBER 200

(SDDL input of less than 100 additional pages)

#PAGENUMBER 300

The purpose of this directive is to jump pagenumbers for sections

of the document (e.g., 1,2,3..., 101,102,103,..., 201, 202...) or for

producing documents to be inserted into other documents.

4-33

3.14 PAGELENGTH DIRECTIVE

The #PAGELENGTH directive allows the user to specify the maximum

number of lines to be allowed on each page. If M is the largest number

of lines that will fit on a page of output, then:

The normal or default page length = M

The allowable range for resetting the page length is 35 through M

If no integer is specified in the directive then M is assumed

Examples: Pagelength directive

#PAGELENGTH

#PAGELENGTH 50

The page length may be set and reset in this manner as often as desired

without affecting other SDDL operations.

4-34

3.15 SAKlPAGE DIRECTIVE

This directive can be used to reduce the size of the Software

Design Document (SDD) by causing more than one module to appear on

an output page. When this directive is encountered, the processor

will suppress the start of a new page for as many modules as indicated

by the specified integer (if no integer is specified the default = 1).

Use of this directive has no effect on page overflow, page reference

numbering, or the #EJECT directive. Page ejects within modules are

not included in the count. ks an alternative to counting modules to

ascertain the correct value of n to specify, the user can bracket a

group of modules by specifying a large value of n, say 1000, to turn

compression "on," and a zero value of n to turn compression "off."

Examples: SAMEPAGE directive

#SAMEPAGE

#SAMEPAGE 2

4-35

The #HEADING directive allows the user to specify a text string

which the processor will then insert between the words "LINE" and "PAGE"

which appear at the top of each page of the body of the SDD.

The text string which begins immediately following #HEADING and

ends with the last non-blank character of the statement is centered

in the heading at the top of the page. If there is insufficient space

the text string is truncated on the right.

Examples: Heading directive

#HEADING TEST RUN 5/1/79

#HEADING

4-36

3.17 BLANKS DIRECTIVE

The #BLANKS directive allows the user .to specify whether the

blanks preceding the first non-blank character in the input line shall

be included or excluded when establishing the indentation level of

the output line.

Syntax:

default mode Causes preceding blanks to be left
#BLANKS(on as part of the line when estab­
#BLANKS ON lishing the indentation of the
#BLANKS any text output line.

#BLANKS OFF Causes preceding blanks to be
stripped off before establishing
the indentation of the output line.

This directive may be used as often as desired to alternate between

including and excluding blanks in the SDD.

4-37

4,
 SDDL Syntax Overviewriagams (Level 4)

4.0 SDDL 90g

DIRECTIVE 4.6

4.1 TITLE GROUP

I RECTIVYE 3. - TTE NT [CONTROL
T TLE "

INITIATOR sA-EEN- N

P , _1 STATX r 2.

4-38

4.3 STATEMENTL GROUP

STATEIEIN" 1.4

SU$BSTRUCTUR~r--
STATEMENT 2.z4

- TEXT GROUP

-BLOCK 4.5

SCONTROL
DIRECTIVE 4.6

4.4 TEXT GROUP

DIRECTIVE lJ-5DIECIV

4.5 BLOCK

MATHIN

* 4.6 CONTROL DIRECTIV E

,EE

HTEADING 7IO4

BLANKS

4-40

SECTION V

SAMPLE DESIGN

The following example is presented to illustrate the capability

and potential of the SDDL processor. The design of the SDDL processor

itself is the subject of this example. Only a small subset of the

actual SDDL design is shown in order to reduce the example size to

expedient proportions. Even this small, top-level portion of the SDDL

processor design, however, reveals information which has an important

impact on the processor.

Example: Top-level SDD for the SDDL processor:

As input:

I #MARK REVISIONS % PROGRAM PORTABILITY CONSIDERATIONS ?

2 wlMARK ROUTINES AND FUNCTIONS _ DATA ITEMS

3 #STRING DATA ITEMS "

4 #DEFINE BLOCK 2 LIST

5 #DEFINE BLOCK 2 MEMBER

6 #DEFINE BLOCK LOOP, , , BEGIN

7 #TITLE SDDL EXAMPLE

8

9 SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE

10
11

12 (AN ILLUSTRATION OF THE APPLICATION OF SDDL USING THE)

13 (SDDL PROCESSOR ITSELF AS THE OBJECT OF THE EXAMPLE.

14

15 #ENO
16 PROGRAM OBJECTIVES

17 #TEXT

18 THE OBJECTIVE OF SDDL IS TO PROVIDE AN EFFECTIVE COMMUNICATIONS

19 MEDIUM TO SUPPORT THE DESIGN AND DOCUMENTATION OF COMPLEX SOFTWARE

20 APPLICATIONS. THIS OBJECTIVE IS MET BY PROVIDING:

21
22 (1) A DESIGN AND DOCUMENTATION LANGUAGE WITH FORMS AND SYNTAX

23 THAT ARE SIMPLE, UNRESTRICTIVE, AND COMMUNICATIVE

24
25 (2) A PROCESSOR WHICH CAN CONVERT DESIGN SPECIFICATIONS INTO AN

26 INTELLIGIBLE, INFORMATIVE, MACHINE REPRODUCIBLE DOCUMENT

27
28 (3) METHODOLOGY FOR EFFECTIVE USE OF THE LANGUAGE AND PROCESSOR

29
30 #END
31 PROGRAM DATASTRUCTURE AND GLOSSARY
32
33 INPUT.TEXT.BUFFER A GLOBAL CHARACTER ARRAY CONTAINING

34 A SINGLE INPUT STATEMENT FORMED BY

35 CONCATENATION OF CONTINUED INPUT LINES

36
37 TEXT.LENGTH THE LENGTH OF THE CURRENT INPUT LINE

38 (TRAILING BLANKS NOT INCLUDED)

39
40 LIST: TOKEN.DICTIONARY LINKED LIST OF DICTIONARY ENTRIES

41 MEMBER ENTITY: ENTRY POINTER TO A SINGLE DICTIONARY ENTRY

42 CHARACTER.COUNT NUMBER OF CHARACTERS IN THE ENTRY

43 TEXT.POINTER POINTER TO THE CHARACTER ARRAY

44 CONTAINING THE TEXT OF THE ENTRY

45 PROGRAM.NAME IF ENTRY IS A KEYWORD THIS IS THE

46 LOCATION OR IDENTIFICATION OF THE

47 ROUTINE FOR PROCESSING THE STMT

48 VALUE=O IF ENTRY IS NOT A KEYWORD

5-1

49 LIST: REFERENCE.LIST

50

51 MEMBER ENTITY: "REFERENCE"

52 PAGE.NUMBER

53 LINS.NUMBER

54 #TERMINATE 4

55
56 LIST: MODULE.STACK

57

58 MEMBER ENTITY: NODE

59 NODE.NAME

60 INDENTATION.COLUMN

61 #TERMINATE 2

62 ENDPROGRAM DATA-STRUCTURE

63 PROGRAM MAIN ROUTINE

64 CALL INITIALIZATION ROUTINE

FIRST-IN,FIRST-OUT LIST OF

REFERENCES TO THE ENTRY

PUSH DOWN STACK OF NODES REPRESENTING

THE NESTED STRUCTURES OF THE DESIGN

C IF, LOOP,PROGRAM,ETC)

65 LOOP UNTIL ALL INPUT DATA HAS BEEN PROCESSED

66 CALL GETSTATEMENT 4 %I

67 *YIELD TEXT.LENGTH

68
69 CALL TOKEN FINDER (FINDS THE FIRST TOKEN IN THE STATEMENT)

70 iYIELD TOKEN.TYPE

71

72 IF TOKEN.TYPE IS "IDENTIFIER"

73 CALL ENTABLE TO FIND THE TOKEN IN THE TOKEN.DICTIONARY

74 ENDIF

75

76 IF THE TOKEN WAS FOUND AND IT IS A KEYWORD

77 CALL KEYWORDPROCESSOR

78 ELSE THE STATEMENT DOES NOT BEGIN WITH A KEYWORD

79 IF THE MODULE.STACK IS EMPTY

80 PUSH A PROGRAM MODULE ON THE MODULE.STACK

81 ENDIF

82 CALL SOURCELISTER TO SEND THE STATEMENT TO THE OUTPUT FILE

83 ENDIF

84
85 FLUSH ANY "ERROR MESSAGES" TRIGGERED BY THE STATEMENT

86 REPEAT

87 CALL WRAPUP

88 EXITPROGRAM

89 ENDPROGRAM

90 PROCEDURE: GETSTATEMENT # %1

91 USING INPUT.TEXT.BUFFER

92 ?YIELD TEXT.LENGTH

93
94 READ AN INPUT RECORD

95 LOOP UNTIL A NON-BLANK RECORD IS FOUND

96 IF THE MODULE.STACK IS NOT EMPTY (A MODULE EXISTS)

97 PRINT THE INPUT RECORD NUMBER AND A BLANK LINE TO THE "SDD"

98 ENDIF

99 READ ANOTHER INPUT RECORD

100 REPEAT

101 COPY THE INPUT RECORD INTO THE INPUT.TEXT.BUFFER

102 SET TEXT.LENGTH = "USABLE COLUMNS"(80 - CARD SEQUENCE COLS) # ???

103 LOOP

104 FIND THE LAST NON-BLANK CHARACTER IN INPUT.TEXT.BUFFER

105 SET TEXT.LENGTH = COLUMN NUMBER OF THE CHARACTER

106 IF THE CHARACTER IS NOT A CONTINUATION.MARK

107 EXITPROCEDURE

108 ENDIF

109 SUBTRACT I FROM THE TEXT.LENGTH (BACK UP OVER THE CONTINUATION.MARK)

110 IF THERE IS NO MORE DATA (END OF FILE ENCOUNTERED)

ill EXITPROCEDURE

112 ENDIF

113 IF THE SPACE LEFT IN INPUT.TEXT.BUFFER < 80 CHARACTERS # ???

114 EXPAND INPUT.TEXT.BUFFER BY AT LEAST 80 CHARACTERS #

115 ENDIF

5-2

116 READ IN ANOTHER INPUT RECORD
117 COPY THE INPUT RECORD INTO INPUT.TEXT.BUFFER BEGINNING AT TEXT.LENGTH
118 ADD "USABLE COLUMNS" TO TEXT.LENGTH
119 REPEAT
120 ENDPROCEDURE
121 PROCEDURE FOR INITIALIZATION
122 READ IN EXECUTION TIME OPTION FLAGS FROM EXECUTION STATEMENT
123 OPTION.B = BREAKPOINT
124 OPTION.C = CROSS REFERENCE
125 OPTION.E = "ERROR MESSAGES"
126 OPTION.K = KEYWORDS
127 OPTION.M = MODULE CROSS REFERENCE
128 OPTION.P = PAGE REFERENCE NUMBERS
129 OPTION.R = REFERENCE TREE
130 OPTION.T = TABLE OF CONTENTS
131
132 IF OPTION.B IS NOT SET BREAKPOINTING IS REQUIRED
133 READ IN REMAINDER OF EXECUTION STATEMENT
134 IF A NAME IS SPECIFIED FOR THE SOD OUTPUT FILE
135 SET UP A @USE RELATIONSHIP WITH SDD
136 ENDIF
137 CATALOG AND ASSIGN SDD AS THE OUTPUT FILE
138 IF THE CATALOG STEP FAILED
139 PRINT AN ERROR MESSAGE
140 TERMINATE THE PROCESSOR
141 EXITPROCEDURE
142 ENDIF
143 BREAKPOINT THE OUTPUT TO SDD
144 ENDIF
145 ESTABLISH THE FOLLOWING MACHINE DEPENDENT CONSTANTS
146 CHARACTERS.PER.WORD = 6 # ???
147 BUFFER.COUNT = 14 (14X6=84 CHARS/LINE) # ???
148 READ.UNIT = 5 ???
149 WRITE.UNIT = 6 ???
150 DEFAULT.INDENT = 3
151 RIGHT.MARGIN = 80
152
153 INITIALIZEAINPUT.TEXT.BUFFER TO AT LEAST 80 CHARACTERS # ???
154 ESTABLISH TOKEN.DICTIONARY DATA STRUCTURE

155 CALL KEYWORDSETUP TO ESTABLISH DEFAULT KEYWORDS

156 EXITPROCEDURE

157 ENDPROCEDURE

158 PROCEDURE FOR KEYWORD SET UP

159 LOOP USING THE FOLLOWING DATA PAIRS

160 ($ = POUND SIGN IN KEYWORDS BELOW)

161 KEYWORD

162
163 SrARK
164 SSTRING
165 $INDENT
166 $LINENUIBER
167 $TEXT
168 $TITLE
169 $END
170 SDEFINE
171 SEJECT
172 SWIDTH
173 SSEQUENCE

PROCEDURE NAME

SETDATACHAR

SET STRING CHAR

SETINDENTATION

SETLINENUMBER

BOXTEXT

BOX TEXT

END-CONTROL

DEFINEWORDS

EJECT-PAGE

SETPAGEWIDTH

CARDSEQUENCING

%1
x1
%I
%I
* %1

%i

x1

% 1

%I

x1

y1

5-3

174 STERMINATE BLINDTERMINATOR %i
175
176 BEGIN ITERATION
177 FORCE THE KEYWORD IN-TO THE IOKEN.DICTIONARY
178 STORE THE PROCEDURE NAME INTO PROGRAM.NAME OF THE ENTRY
179 ENDLOOP
180 ENDPROCEDURE

As output:

SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE X

w (AN ILLUSTRATION OF THE APPLICATION OF SDDL USING THE) m

X (SDDL PROCESSOR ITSELF AS THE OBJECT OF THE EXAMPLE.) x

x

TABLE OF CONTENTS PAGE
PAGE LINE + +++++++++++++++.++++++++++++++++++++++++.++++++++++++++++++

NUMBER NUMBER MODULE NAME

0 7 TITLE SDDL EXAMPLE
1 16 PROGRAM OBJECTIVES
e 31 PROGRAM DATASTRUCTURE AND GLOSSARY
3 63 PROGRAM MAIN ROUTINE
4' 90 PROCEDURE: GET STATEMENT
5 121 PROCEDURE FOR INITIALIZATION
6 158 PROCEDURE FOR KEYWORDSET-UP

fMODULE REFERENCE TREE

8 MODULE - CROSS REFERENCE LISTING

9 DATA ITEMS - CROSS REFERENCELISTING

11 REVISIONS - CROSS REFERENCE LISTING

12 PROGRAM PORTABILITY CONSIDERATIONS - CROSS REFERENCE LISTING

13 ROUTINES AND FUNCTIONS - CROSS REFERENCE LISTING

5-44

LINE PAGE
16 PROGRAM OBJECTIVES
17 x)(Nm M'4N
18 N THE OBJECTIVE OF SDDL IS TO PROVIDE AN EFFECTIVE COMMUNICATIONS x
19 N MEDIUM TO SUPPORT THE DESIGN AND DOCUMENTATION OF COMPLEX SOFTWARE x
20 N APPLICATIONS. THIS OBJECTIVE IS MET BY PROVIDING: X
21 N
22 h (1) A DESIGN AND DOCUMENTATION LANGUAGE WITH FORMS AND SYNTAX
23 X THAT ARE SIMPLE, UNRESTRICTIVE, AND COMMUNICATIVE
24 y
25 X (2) A PROCESSOR WHICH CAN CONVERT DESIGN SPECIFICATIONS INTO AN
26 N INTELLIGIBLE, INFORMATIVE, MACHINE REPRODUCIBLE DOCUMENT
27 N
28 N (3) METHODOLOGY FOR EFFECTIVE USE OF THE LANGUAGE AND PROCESSOR
29 N

ENDPROGRAM - STMT SUPPLIED BY PROCESSOR

LINE

31 PROGRAM DATA-STRUCTURE AND GLOSSARY

32

33 INPUT.TEXT.BUFFER

34

35

36

37 TEXT.LENGTH

38

39

40 LIST: TOKEN.DICTIONARY

41 MEMBER ENTITY: ENTRY

42 CHARACTER.COUNT

43 TEXT.POINTER

44

45 PROGRAM.NAME

46

47

48

49 LIST: REFERENCE.LIST

50

51 MEMBER ENTITY: "REFERENCE"

52 PAGE.NUMBER

53 LINE.NUMBER

55
56 LIST: MODULE.STACK

57

58 MEMBER ENTITY: NODE

59 NODE.NAME

60 INDENTATION.COLUMN

62 ENDPROGRAM DATA-STRUCTURE

PAGE

A GLOBAL CHARACTER ARRAY CONTAINING

A SINGLE INPUT STATEMENT FORMED BY

CONCATENATION OF CONTINUED INPUT LINES

THE LENGTH OF THE CURRENT INPUT LINE

(TRAILING BLANKS NOT INCLUDED)

LINKED LIST OF DICTIONARY ENTRIES

POINTER TO A SINGLE DICTIONARY ENTRY

NUMBER OF CHARACTERS IN THE ENTRY

POINTER TO THE CHARACTER ARRAY

CONTAINING THE TEXT OF THE ENTRY

IF ENTRY IS A KEYWORD THIS IS THE

LOCATION OR IDENTIFICATION OF THE

ROUTINE FOR PROCESSING THE STMT

VALUE=O IF ENTRY IS NOT A KEYWORD

FIRST-IN,FIRST-OUT LIST OF

REFERENCES TO THE ENTRY

PUSH DOWN STACK OF NODES REPRESENTING

THE NESTED STRUCTURES OF THE DESIGN

C IF,LOOP,PROGRAM,ETC)

5-5

2

LINE PAGE 3

63 PROGRAM MAIN ROUT-INE
64 CALL INITIALIZATION ROUTINE --------------------------------------- >(5)
65 LOOP UNTIL ALL INPUT DATA HAS BEEN PROCESSED
66 CALL GETSTATEMENT --- %1>(4)
67 XYIELD TEXT.LENGTH
68
69 CALL TOKENFINDER (FINDS THE FIRST TOKEN IN THE STATEMENT)- >C)
70 XYIELD TOKEN.TYPE
71
72 IF TOKEN.TYPE IS "IDENTIFIER"
73 CALL ENTABLE TO FIND THE TOKEN IN THE TOKEN.DICTIONARY------ >(
74 ENDIF
75

76 IF THE TOKEN WAS FOUND AND IT IS A KEYWORD

77 CALL KEYWORDPROCESSOR-------------------------------------- >)

78 ELSE THE STATEMENT DOES NOT BEGIN WITH A KEYWORD

79 IF THE MODULE.STACK IS EMPTY

80 PUSH A PROGRAM MODULE ON THE MODULE.STACK

81 ENDIF

82 CALL SOURCELISTER TO SEND THE STATEMENT TO THE OUTPUT FILE->(

83 ENDIF

84

85 FLUSH ANY "ERROR MESSAGES" TRIGGERED BY THE STATEMENT

86 REPEAT

87 CALL WRAP-UP-- >(

88 <--EXITPROGRAM

89 ENDPROGRAM

5-6

LINE PAGE 4

90 PROCEDURE: GETSTATEMENT %I

91 MUSING INPUT.TEXT.BUFFER

92 NYIELD TEXT.LENGTH

93
94 READ AN INPUT RECORD

95 LOOP UNTIL A NON-BLANK RECORD IS FOUND

96 IF THE MODULE.STACK IS NOT EMPTY (A MODULE EXISTS)

97 PRINT THE INPUT RECORD NUMBER AND A BLANK LINE TO THE "SDD"

98 ENDIF

99 READ ANOTHER INPUT RECORD

100 REPEAT
101 COPY THE INPUT RECORD INTO THE INPUT.TEXT.BUFFER
102 SET TEXT.LENGTH = "USABLE COLUMNS"(80 - CARD SEQUENCE.COLS) ???
103 LOOP
104 FIND THE LAST NON-BLANK CHARACTER IN INPUT.TEXT.BUFFER
105 SET TEXT.LENGTH = COLUMN NUMBER OF THE CHARACTER
106 IF THE CHARACTER IS NOT A CONTINUATION.MARK
107 <-------- EXITPROCEDURE
108 ENDIF
109 SUBTRACT I FROM THE TEXT.LENGTH (BACK UP OVER THE CONTINUATION.MARK)
110 IF THERE IS NO MORE DATA (END OF FILE ENCOUNTERED)
1<--------- EXITPROCEDURE

112 ENDIF
113 IF THE SPACE LEFT IN INPUT.TEXT.BUFFER < 80 CHARACTERS ?
114 EXPAND INPUT.TEXT.BUFFER BY AT LEAST 80 CHARACTERS ???
115 ENDIF
116 READ IN ANOTHER INPUT RECORD
117 COPY THE INPUT RECORD INTO INPUT.TEXT.BUFFER BEGINNING AT TEXT.LENGTH
118 ADD "USABLE COLUMNS" TO TEXT.LENGTH
119 REPEAT
120 ENDPROCEDURE

5-?

LINE PAGE 5

121 PROCEDURE FOR INITIALIZATION

122 READ IN EXECUTION TIME OPTION FLAGS FROM EXECUTION STATEMENT

123 OPTION.B = BREAKPOINT

124 OPTION.C = CROSS REFERENCE

125 OPTION.E = "ERROR MESSAGES"

126 OPTION.K = KEYWORDS

127 OPTION.M = MODULE CROSS REFERENCE

128 OPTION.P = PAGE REFERENCE NUMBERS

129 OPTION.R = REFERENCE TREE

130 OPTION.T = TABLE OF CONTENTS

131

132 IF OPTION.B IS NOT SET BREAKPOINTING IS REQUIRED

133 READ IN REMAINDER OF EXECUTION STATEMENT

134 IF A NAME IS SPECIFIED FOR THE SOD OUTPUT FILE

135 SET UP A @USE RELATIONSHIP WITH SOD

136 ENDIF

137 CATALOG AND ASSIGN SOD AS THE OUTPUT FILE

138 IF THE CATALOG STEP FAILED

139 PRINT AN ERROR MESSAGE

140 TERMINATE THE PROCESSOR

141 <-------- EXITPROCEDURE
142 ENDIF

143 BREAKPOINT THE OUTPUT TO SOD

lq4 ENDIF

145 ESTABLISH THE FOLLOWING MACHINE DEPENDENT CONSTANTS

146 CHARACTERS.PER.WORD = 6

147 BUFFER.COUNT = 14 (14X6=84 CHARS/LINE)

148 READ.UNIT = 5

149 WRITE.UNIT - 6
150 DEFAULT.INDENT z 3

151 RIGHT.MARGIN Z 80

1'S 2 4

153 INITIALIZE INPUT.TEXT.BUFFER TO AT LEAST 80 CHARACTERS ???

154 ESTABLISH TOKEN.DICTIONARY DATA STRUCTURE

155 CALL KEYWORDSETUP TO ESTABLISH DEFAULT KEYWORDS----------------- >(6)

156 <--EXITPROCEDURE

157 ENDPROCEDURE

5-8

LINE PAGE 6

158 PROCEDURE FOR KEYWORDSETUP

159 LOOP USING THE FOLLOWING DATA PAIRS

160 ($ = POUND SIGN IN KEYWORDS BELOW)

161 KEYWORD PROCEDURE NAME

162

163 $MARK SETDATACHAR %1

164 $STRING SET STRING CHAR %I

165 SINDENT SETINDENTATION xi

166 SLINENUMBER SETLINENUMBER 71

167 $TEXT BOX-TEXT %I

168 $TITLE BOX-TEXT %I

169 SEND END-CONTROL %1

170 $DEFINE DEFINEWORDS x1

171 SEJECT EJECTPAGE %1

172 $WIDTH SET PAGE-WIDTH %I

173 $SEQUENCE CARDSEQUENCING %I

174 STERMINATE BLINDTERMINATOR %1

175

176 BEGIN ITERATION

177 FORCE THE KEYWORD INTO THE TOKEN.DICTIONARY

178 STORE THE PROCEDURE NAME INTO PROGRAM.NAME OF THE ENTRY

179 ENDLOOP

180 ENDPROCEDURE

5-9

LN
1

WKEOEEA MODULE REFERENCE TREE
PAGE

1 OBJECTIVES

Nxmtmw PAGE 7

2 2 DATASTRUCTURE

3
4
5
6
7
8
9

10
11

3
5
6
4

MAIN '
INITIALIZATION

KEYWORDSETUP
GET-STATEMENT

. TOKENFINDER
ENTABLE
KEYWORD PROCESSOR
SOURCE LISTER
WRAP_UF

MODULE

CROSS REFERENCE LISTING PAGE 8

IDENTIFIER MODULE NAME LINE NUMBERS

DATASTRUCTURE
PAGE 2 PROGRAM DATASTRUCTURE

ENTABLE
-AGE 3 PROGRAM MAIN

GETSTATEMENT
PAGE 3 PROGRAM MAIN
PAGE 4 PROCEDURE: GETSTATEMENT

INITIALIZATION
PAGE 3 PROGRAM MAIN
PAGE 5 PROCEDURE FOR INITIALIZATION

KEYWORD-PROCESSOR
PAGE 3 PROGRAM MAIN

KEYWORDSETUP
PAGE 5 PROCEDURE FOR INITIALIZATION
PAGE 6 PROCEDURE FOR KEYWORDSETUP

MAIN
PAGE 3 PROGRAM MAIN

OBJECTIVES
PAGE 1 PROGRAM OBJECTIVES

SOURCELISTER
PAGE 3 PROGRAM MAIN

TOKENFINDER
PAGE 3 PROGRAM MAIN

WRAPUP
PAGE 3 PROGRAM MAIN

31

73

66
90

64
121

77

155
158

63

16

82

69

87

62

5-10

DATA ITEMS

CROSS REFERENCE LISTING PAGE 9

IDENTIFIER MODULE NAME LINE NUMBERS

BUFFER.COUNT
PAGE 5 PROCEDURE FOR INITIALIZATION 147

CHARACTERS.PER.WORD
PAGE 5 PROCEDURE FOR INITIALIZATION 146

CHARACTER.COUNT
PAGE 2 PROGRAM DATASTRUCTURE 42

CONTINUATION.MARK
PAGE 4 PROCEDURE: GET-STATEMENT 106 109

DEFAULT.INDENT
PAGE 5 PROCEDURE FOR INITIALIZATION 150

ERROR MESSAGES
PAGE 3 PROGRAM MAIN 85
PAGE 5 PROCEDURE FOR INITIALIZATION 125

IDENTIFIER
PAGE 3 PROGRAM MAIN 72

INDENTATION.COLUMN
PAGE 2 PROGRAM DATASTRUCTURE 60

INPUT.TEXT.BUFFER
PAGE 2 PROGRAM DATA-STRUCTURE 33
PAGE 4 PROCEDURE: GET STATEMENT 91 101 104 113 114 117
PAGE 5 PROCEDURE FOR INITIALIZATION 153

LINE.NUMBER
PAGE 2 PROGRAM DATASTRUCTURE 53

MODULE.STACK
PAGE 2 PROGRAM DATA-STRUCTURE 56
PAGE 3 PROGRAM MAIN 79 80
PAGE 4 PROCEDURE: GETSTATEMENT 96

NODE.NAME
PAGE 2 PROGRAM DATASTRUCTURE 59

OPTION.B
PAGE 5 PROCEDURE FOR INITIALIZATION 123 132

OPTION.C
PAGE 5 PROCEDURE FOR INITIALIZATION 124

OPTION.E
PAGE 5 PROCEDURE FOR INITIALIZATION 125

OPTION.K
PAGE 5 PROCEDURE FOR INITIALIZATION 126

OPTION.M
PAGE 5 PROCEDURE FOR INITIALIZATION 127

OPTION.P
PAGE 5 PROCEDURE FOR INITIALIZATION 128

OPTION.R
PAGE 5 PROCEDURE FOR INITIALIZATION 129

OPTION.T
PAGE 5 PROCEDURE FOR INITIALIZATION 130

PAGE.NUMBER
PAGE 2 PROGRAM DATA-STRUCTURE 52

PROGRAM.NAME
PAGE 2 PROGRAM DATA-STRUCTURE 45
PAGE 6 PROCEDURE FOR KEYWORDSETUP 178

READ.UNIT
PAGE 5 PROCEDURE FOR INITIALIZATION 148

5-11

DATA ITEMS

CROSS REFERENCE LISTING PAGE 10

IDENTIFIER MODULE NAME

REFERENCE

PAGE 2 PROGRAM DATASTRUCTURE

PAGE 5 PROCEDURE FOR INITIALIZATION

REFERENCE.LIST

PAGE 2 PROGRAM DATASTRUCTURE

RIGHT.MARGIN

PAGE 5 PROCEDURE FOR INITIALIZATION

SDD
PAGE 4 PROCEDURE: GET-STATEMENT
PAGE 5 PROCEDURE FOR INITIALIZATION

TEXT.LENGTH
PAGE 2 PROGRAM DATA-STRUCTURE
PAGE 3 PROGRAM MAIN
PAGE 4 PROCEDURE: GETSTATEMENT

TEXT.POINTER
PAGE 2 PROGRAM DATA_STRUCTURE

TOKEN.DICTIONARY -
PAGE 2 PROGRAM DATA-STRUCTURE
PAGE 3 PROGRAM MAIN
PAGE 5 PROCEDURE FOR INITIALIZATION

PAGE 6 PROCEDURE FOR KEYWORDSETUP

TOKEN.TYPE

PAGE 3 PROGRAM MAIN

USABLE COLUMNS

PAGE 4 PROCEDURE: GETSTATEMENT

WRITE.UNIT

PAGE 5 PROCEDURE FOR INITIALIZATION

REVISIONS

LINE NUMBERS

51
124

49

151

97
134

37
67
92

43

40
73

154
177

70

102

149

127

135

102

72

118

128

137

105

129

143

109 117 118

CROSS REFERENCE LISTING PAGE 11

.+ +4+4
IDENTIFIER

++ 44 ++
MODULE NAME

+ ++4 ++ ++4

%1

PAGE
PAGE
PAGE

3
4
6

PROGRAM MAIN
PROCEDURE: GET-STATEMENT
PROCEDURE FOR KEYWORD SETUP

169 170 171 172 173 174

+ + + +4+4+ + + +4+4+4+ +4 + ++ +4+4++++44+44+
LINE NUMBERS

66

90

163 164 165 166 167 168

5-12

PROGRAM PORTABILITY CONSIDERATIONS

CROSS REFERENCE LISTING PAGE 12

4+4+444 +++++++++4+4+4+44+4+ ++ ++++ ++ 4444+4+++4+
++4+4+44++4+ + +4

IDENTIFIER MODULE NAME LINE NUMBERS

PAGE 4 PROCEDURE: GET STATEMENT 102 113 114

PAGE 5 PROCEDURE FOR INITIALIZATION 146 147 148 149 153

ROUTINES AND FUNCTIONS

CROSS REFERENCE LISTING PAGE 13

.+4+4+4+4 ++ + 4 + ++++4+++++4 + +4 +444+ + + +4 ++4 44+4+ 44++4.++

IDENTIFIER MODULE NAME LINE NUMBERS

BLINDTERMINATOR

PAGE 6 PROCEDURE FOR KEYWORDSET-UP 174

BOXTEXT

PAGE 6 PROCEDURE FOR KEYWORDSETUP 167 168

CARDSEQUENCING

PAGE 6 PROCEDURE FOR KEYWORDSETUP 173

DEFINE-WORDS

PAGE 6 PROCEDURE FOR KEYWORDSETUP 170

EJECT PAGE

PAGE 6 PROCEDURE FOR KEYWORDSETUP 171

END CONTROL

PAGE 6 PROCEDURE FOR KEYWORDSETUP 169

SETDATACHAR

PAGE 6 PROCEDURE FOR KEYWORDSETUP 163

SET-INDENTATION

PAGE 6 PROCEDURE FOR KEYWORDSETUP 165

SETLINENUMBER

PAGE 6 PROCEDURE FOR KEYWORDSETUP 166

SETPAGEWIDTH

PAGE 6 PROCEDURE FOR KEYWORDSETUP 172

SETSTRINGCHAR

PAGE 6 PROCEDURE FOR KEYWORDSETUP 164

5-13

SECTION VI

USING THE SDDL PROCESSOR

A. RUN-TIME PROCESSOR CONTROL OPTIONS

Run-time control options permit the user to cause certain processor

functions, listed below, to be suppressed or altered. These options

are invoked by adding the appropriate letter keys to the SDDL execution

statement and remain in effect throughout the execution of the program.

The letter keys, shown below in Table 6-1, may be given in any order.

Table 6-1. SDDL Run Time Option Summary

Option

Letter Key Meaning

B Breakpoint operation (available only on the
UNIVAC implmqntation) is suppressed

C ross reference tables for all marks and

strings are suppressed

D2o-nothing (i.e., passive, non-keyword)

statements are omitted from the body

of the SDD

E Error messages are suppressed

K Keyword definition (for the default set,

see Table 2-1) is suppressed

M Module cross reference table is suppressed

N Null-titled, cross reference table output

is suppressed

P Page reference numbers on module invocation
statements are omitted

R Reference tree of forward calls to modules

is suppressed

T Table of contents is omitted

F FORTRAN option. The processor is configured

to handle input of FORTRAN programs

6-1

Characters other than a letter key corresponding to one of the available

options will be ignored. Note that, with only one exception (F), the

option meanings are consistent in that they all cause the suppression

or omission of a processor function. Thus if no options are specified,

the processor will perform all of its functions.

1. B Option - BREAKPOINT Suppression

This option only applies to the UNIVAC 1108 implementation, which

requires that the SDDL output be breakpointed to a print file. Normally,

the processor performs all of the steps necessary to do the breakpoint

operation, but occasionally, for a quick look at a small part of the

output, it is convenient to have the output come directly to an interactive

terminal. Use of the B option for this purpose will cause the input

and output streams to be merged together on the terminal screen/paper.

Since the processor always reads ahead one statement, the user will

be required to enter input one statement ahead of the processing.

2. C Option - Cross Reference Tables Suppression

This option will suppress the output of all the cross reference

tables.

3. D Option - Do-Nothing Statement Suppression

This option will cause the processor to suppress the output of all lines

which do not begin with an SDDL keyword. The D option may be used to reduce

the volume of the output in situations where the user is only interested

in seeing the program's flow of control. This option directs the processor

to output only those lines which begin with keywords such as IF, ELSE, ENDIF,

LOOP, CYCLE, ENDLOOP, PROGRAM, RETURN, ENDPROGRAM, and most importantly CALL.

These statements show the logical flow of the program control, including

page reference numbers for subroutine calls. Since the size of the

modules may be considerably reduced, the user may wish to use the #SAMEPAGE

directive to suppress page ejects between modules.

4. E Option - Error Message Suppression

The error messages pertaining to nested structures closed automat­
ically, keywords used out of context, and syntax errors on SDDL direc­
tive specifications are omitted from the output. Incorrectly specified

SDDL directives are always listed in the output, but with the E option

in effect the accompanying error message will be omitted.

5. K Option - Keyword Suppression

This option, which causes the processor to bypass definition

of default keywords (see Table 2-1), can be useful in situations

where most or all of the default keywords are inappropriate. Use of

6-2

this option will obviate the need to explicitly null out all the default

keywords with the #DEFINE NULL directive.

6. M Option - Module Cross Reference Table Suppression

The module cross reference table is a list of all the modules

encountered, either defined or called, in your program. The modules

are listed alphabetically with every occurrence referenced by module

name, page number, and line number.

7. N Option - Null Titled Cross Reference Table Is Suppressed

This option causes the processor to omit the output of the cross

reference table for which a null or blank title has been specified.

The text encountered between the directive keyword, #MARK, and the

punctuation symbols being specified is recognized as the title of the

cross reference table. If this space is left blank (no title specified,

blank assumed), then the execution time N option will suppress the

printout of the cross reference table for those marks.

Example: Cross reference table with a null title

#MARK % ?

Note that both the % and the ? have the same title (i.e., blank or

null), and therefore the N option will suppress the cross reference

table associated with these marks.

8. P Option - jage Reference Numbers on Module Invocation Statements

When the processor encounters a module invocation statement it

prints a right arrow extending from the last non-blank character in

the line to a pair of parentheses at the right-hand margin of the document.

In the parentheses the processor places the page number where the invoked

module is defined. If the module was defined prior to its invocation,

its page number is known and is printed in place with the rest of the

statement. If the module has not been defined, however, its page number

cannot be known and placement of the reference number must be deferred.

Thus, the processor must make a second (automatic) pass over the output

file to supply the missing page reference numbers. If page reference

numbers are not needed, as in a test run, the user may suppress the

second pass operation with the P option.

Note that the information contained in the table of contents

also cannot be known until all of the input has been processed, and

therefore it must be the last output written to the SDD. This means

that the second pass operation must also move the table of contents

to the front of the output file. Thus if the P option is used to

suppress page reference numbers, it will also have the side effect of

printing the table of contents at the end of the output.

6-3

9. R Option - Reference Tree of Forward Calls to Modules

This table displays the module invocation hierarchy in a tree format.

Each module named in the document appears in this table in relation to

where it was invoked in the overall structure. The relationship between

the modules is shown by listing the called modules below and indented

one level to the right of the module in which it was called. This

results in a cascade of indentation (modules may appear more than once

in the table) which displays the calling hierarchy of the document.

The R option suppresses this table.

10. T Option - Table of Contents

The T option suppresses the output of the table of contents.

(Note that use of the P option will cause the table of contents to

be printed at the end instead of the beginning of the document.)

11. F Option - FORTRAN Option

The F option may be used for processing FORTRAN programs with

SDDL in order to obtain a table of contents, cross reference tables,

module reference tree, and the module cross reference table. When

exercised, this option directs the processor to exclude columns I through

6 of the input line when interpreting the meaning of the statement.

Thus the input line is considered to begin in column 7, which is the

FORTRAN convention.

The user must bear in mind that this convention will also apply

to SDDL directives, which therefore must begin at column 7 or beyond.

The SDDL processor copies columns 1-6 of the input deck onto

the output listing, placing them at the left, between the input line

numbers and the left margin of the body of the text.

The F option also establishes the following default SDDL keywords

in place of the ones listed in Table 2-1.

Type Initiator Terminator Escape Substructure

Module SUBROUTINE END RETURN ENTRY

Module FUNCTION ENDFUNCTION

Module PROCEDURE ENDPROCEDURE EXITPROCEDURE

Block DO CONTINUE

Block IF ENDIF ELSE

Call CALL, GO

6-4

B. UNIVAC IMPLEMENTATION EXECUTION PROCEDURE

After the SDDL input has been loaded into one or more elements

(say QUAL*FILE.INI, QUAL*FILE.IN2), it is processed and printed by

entering the following EXEC 8 commands:

@SDDL,[options] [SDD-output-file name.]

@ADD QUAL*FILE.INI

@ADD QUAL*FILE.IN2

@FREE SDD$.

@SYM SDD$

The output file name specification is optional (default = SDD$.) but

if supplied it must have a terminal period, e.g., "SDDTEST.," to indicate

that it is a file. It need not be cataloged or assigned prior to use

since these functions, and the breakpointing, will be performed by

the processor. The processor wili execute an EXEC 8 @USE command to

relate the user's output file name to SDD$.

Example: UNIVAC execution procedure with options

@SDDL,CMR TEMP.

@ADD QUAL*FN.A

@ADD QUAL*FN.B

@FREE TEMP.

@SYM,U TEMP.,HOLD/HOLD,G9HSPA

In the above example the C, M, and R run time options are exercised

and TEMP. is established as the output file name. Two input elements

are fed into the processor with the EXEC 8 @ADD command and the output

file is freed and printed.

Example: UNIVAC execution procedure, no options, no file name

@SDDL
§ADD Q*F.A

#LINENUMBER

@ADD Q*F.B

@FREE SDD$.

@SYM SDD$., HOLD/HOLD, G9HSPA

This example exercises no run-time options and defaults the output

file name to SDD$. It also utilizes the #LINENUMBER directive (which

could equally well have been internal to the input element) between

the input elements to restart the line numbering sequence.

6-5

C. JCL REQUIRED FOR THE EXECUTION OF SDDL IN AN IBM OS ENVIRONMENT

/Ijobname job

Job card

//stepname EXEC PGM=SDDL,REGION=150K,PARM=options

In some facilities the region parameter may be omitted

//STEPLIB DD program object library

The STEPLIB DD card permits the SDDL processor to be loaded from

a data set other than SYS1.LINKLIB. If your copy of SDDL has

been loaded onto SYS1.LINKLIB, then the STEPLIB DD card may be

omitted.

//SIMU05 DD DUMMY

This data set is not used when SDDL is executed in batch mode,

but because an open is issued, the DD card is required.

//SIMU11 DD DCB=(RECFM=FBA,LRECL=133,BLKSIZEinnn),

SPACE=(TRK,(50,50)), UNIT=SYSDA

This DD card specifies an intermediate scratch file that is writ­
ten using this DDNAME and read back using SIMU12. Since the

DSN parameter has been omitted, a temporary data set is created

with the DISP of (NEW,DELETE,DELETE). If it is desired that

this data set be obtained from a specific device, then the UNIT=SYSDA

must be replaced by parameters specifying the device type and

identifying the VOLUME. The BLKSIZE should be chosen as an integer

multiple-of the logical record length (133) in order to make

efficient use of the disk space. The maximum BLKSIZE varies

with the disk system.

//SIMU12 DD DCB=(RECFM=FB,LRECL=133,BLKSIZE=nnn),

DSN=*.SIMU11,VOL=REF=*.SIMU11,DISP=OLD

The scratch file written out using SIMU11 is read back through this

DDNAME. The DCB parameters must be identical except for the RECFM

parameter, which must be different, as shown. The DSN must be

equated to that assigned by the system to SIMU11, and it must be

allocated to the same physical volume. Since the data set was

created by the previous DD statement, the disposition parameter

must be coded as DISP=OLD.

6-6

//SIMU10 DD 	SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=nnn)

The output listing is written to SIMUI0. Since the record format

must be RECFM=FBA, it is necessary to supply all of the DCB parameters.

A convenient choice would be the DCB parameters used in SIMU11.

Should the default space in your facility for a SYSOUT data set

be very small, or your design very large, it may be necessary

to explicitly provide SPACE parameters.

//SIMU06 DD 	SYSOUT=A

The SDDL normal termination message and SDDL processor malfunction

messages are output to this file.

//SIMU09 DD*

SIMU09 is the SDDL input file. When an input deck is to be included

with the job stream, the DD card should be coded as above. As

shown below, the source may also be obtained from a partitioned

data set or 	any serial data set containing logical records of

iength 80 bytes.

//SIMU09 DD 	UNIT=TAPE,VOL=SER=999999,DCB=(RECFM=FM,LRECL=80,

BLKSIZE=800),LABEL=(,SL),DSN=INCARDS,DISP=(OLD,KEEP)

The input DD statement may be written as above to take the source

from a magnetic tape.

//SIMUO9 DD 	DSN=SDDLS(PROGRAMA),DISP=SHR

The above DD statement will select the member "PROGRAMA" from

the cataloged partitioned data set "SDDLS."

6-7

Kernighan, B. W., and Plauger, P. J., The Elements of Programming Style,

McGraw-Hill Book Co. New York, 1974, pp. 36-39.

Kleine, H., and Morris, R. V., "Modern Programming: A Definition,"

SIGPLAN Notices, Vol. 9, No. 9, Sept. 1974, pp. 14-17.

Kleine, H., "Automating the Software Design Process by Means of the

Software Design and Documentation Language", Proceedings of the No.

15 Design Automation Conference, IEEE Catalog #78 Ch. 1363-1C, Las

Vegas, Nev., June 1978, 371-379.

Kleine, H., "A Vehicle for Developing Standards for Simulation

Programming", Proceedings of Winter, 77 Simulation Conference, Highland,

Sargent, and Schmidt, eds., 731-741.

Liskov, B., and Zilles, S., "Programming with Abstract Data Types,"

SIGPLAN Notices, March 1974, pp. 50-59.

Luppino, F. B., and Smith, R. L., "Programming Support Library Functional

Requirements," Vol. V of Structured Programming Series, RADC-TR-74-300,

U. S. Air Force, July 25, 1974.

Miller, E. F., Jr., A Compendium of Language Extensions to Support

Structured Programming, RN-42, General Research Corp., Santa Barbara,

CA, Jan. 1973.

Mills, H. D., "Top-Down Programming in Large Systems," in Debugging

Techniques in Large Systems, Edited by R. Rustin, Prentice-Hall, Inc.,

Englewood Cliffs, NJ, 1971, pp. 43-45.

Mills, H. D.,-Mathematical Foundations of Structured Programming, IBM

Document FSC 72-6012, IBM Federal Systems Division, Gaithersburg, MD,

Feb. 1972.

Myers, G. J., Composite Design: The Design of Modular Programs, Technical

Report TROO.2406, IBM, Poughkeepsie, N. Y., Jan. 29, 1973.

Ogdan, C.A., Software Design for. Microcomputers, Prentice-Hall, Inc.,

Englewood Cliffs, NJ, 1978.

Robert, D. C., "File Organization Techniques," Advances in Computers,

Vol. 12, Academic Press, New York, 1972.

Shneiderman, B., "A Review of Design Techniques for Programs and Data,"

Software-Practice and Experience, Vol. 6, 1976, pp. 555-567.

Shneiderman, B., et al., "Experimental Investigations of the Utility

of Detailed Flowcharts in Programming," Communications of the ACM,

Vol. 20, No. 6, June 1977, pp. 373-381.

Tausworthe, R. C., Standardized Development of Computer Software. Part

1. Methods, SP 43-29, Jet Propulsion Laboratory, Pasadena, CA, July 1976.

7-2 NAS-JP Oml.L& Calf

BIBLIOGRAPHY

Baker, F. T., "Structured Programming in a Production Programming

Environment," IEEE Trans. on Software Engr., Vol. SE-i, No. 2, pp.

241-252, June 1975.

Baker, F. T., and Mills, H. D., "Chief Programmer Teams," Datamation,

Vol. 19, No. 12, pp. 58-61, Dec. 1973.

Basili, V. R., SIMPL-X. A Language for Writing Structured Programs,

Nat. Tech. Info. Service Report AD755-703, U.S. Dept. of Commerce,

Springfield, VA, Jan. 1973.

Boehm, B. W., "Software and Its Impact: A Quantitative Assessment,"

Datamation, Vol. 19, No. 5, May 1973.

Brinch Hansen, P., "The Purpose of Concurrent Pascal," Proceedings

of the 1975 International Conference on Reliable Software, IEEE Catalog

No. 75 CH0940-7CSR, pp. 305-309. (Also published in SIGPLAN Notices,

June 1975, pp. 305-309.)

Brinch Hansen, P., Concurrent Pascal: A Programming Language for Operating

System Design, California Institute of Technology Information Science

Technical Report No. 10, Pasadena, CA, April 1974.

Brooks, F. P., "The Mythical Man-Month," Datamation, Vol. 20, No. 12,

pp. 45-52, Dec. 1974.

Caine, S. H., and Gordon, E. K., "PDL--A Tool for Software Design,"

Program Design Language Reference Guide, Caine, Farber, and Gordon,

Inc., Pasadena, CA, Sept. 18, 1974.

Constantine, L. L., Fundamentals of Program Design, Prentice-Hall,

Inc., Englewood Cliffs, NJ, 1976.

Dahl, 0. J., and Hoare, C. A. R., "Hierarchical Program Structures,"

in Structured Programming, Academic Press, New York, 1972.

Dijkstra, E. W., "Notes on Structured Programming," in Structured

Programming, Academic Press, New York, 1972 (particularly pp. 16-23).

Flynn, J., SFTRAN User's Guide, Comput. Memo. 914-337, Jet Propulsion

Laboratory, Pasadena, CA, July 1973 (JPL internal document).

Heimburger, D. A., et al, "VEEP: Vehicle Economy, Emissions and Performance

Program" Proceedings of Winter. 77 Simulation Conference, Highland,

Sargent, and Schmidt, eds.

Hoare, C. A. R., "Notes on Data Structuring," in Structured Programming,

Academic Press, New York, 1972.

Katzan, H., Jr., Advanced Programming, D. Van Nostrand Reinhold Co.,

NJ, 1970, pp. 153-163.

7-1

