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PHASED MODELS FOR EVALUATING THE

PERFORMABILITY OF COMPUTING SYSTEMS

by

L. T. Wu and J. F. Meyer

The University of Michigan
Ann Arbor, MI 48109

Abstract - On-line control applications of fault-tolerant com-
puters often require the computers to execute different sets of
computational tasks during different phases of a control process.
To evaluate the system's "ability to perform", a phase-by-phase
modeling technique is introduced. Intraphase processes are allowed
to differ from phase to phase, where the probabilities of interphase
state transitions (which occur at the time of a phase change) are
specified by interphase transition matrices. Based on constraints
imposed on the intraphase and interphase transition probabilities,
various iterative solution methods are developed for calculating
system performability.

I. INTRODUCTION

During recent years, the cse of probabilistic models as a basis

for evaluating the performance and reliability of computing systems

has become increasingly widespread. Typically, the models employed

are Markov processes (e.g., [11) or queueing models (e.g., [21) which

can often be analyzed in terms of imbedded Markov processes. However,

it is usually assumed that the underlying process is "time-homogeneous"

in the sense that state transition probabilities are invariant with

time. (By "state" here we mean the state of the "total system", i.e.,

the state of the computing system and its environment.) Although this

assumption of time-homogeneity Is appropriate for certain applications,

there :re many situations where the user's demands on the computing

system can change appreciably during different phases of its utiliza-

tion. This is particularly true for real-time control applications in
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't F
which the computing system is required to execute different sets of

computational tasks during different phases of a control process.

One approach to dealing with a time-varying environment is to

decompose the system's utilization period into consecutive time peri-

ods %usually referred to as a decomposition of the system's "mission"

into "phases"; see [3]-[5), for example). Demands on the system are

then allowed to vary from phase to phase; within a given phase,

however, they are assumed to be time-invariant. This permits intra-

phase behaviors to be evaluated in terms of conventional time-

homogeneous models, but raises the interesting question of how the

intraphase results are combined. This is the essential question

addressed in investigations of "phased mission" reliability evalua-

tion methods (e.g., [31-[5)) where the problem has been constrained

as follows. It is assumed, first, that a "success criterion" (formu-

lated, say, by a "structure function"; see [5] for example) can be

established for each phase, where the ciiterion is independent of

what occurs during other phases. It is required further that success-

ful performance of the system be identified with success during all

phases, that is, the system performs successfully if and only if,

for each phase, the corresponding success criterion is satisfied

throughout that phase.

Although the above constraints are reasonable for certain types

of systems, they exclude systems where successful performance involves

nontrivial interaction among the phases of the mission. In more

exact terms, it has been shown (see [6], Theorem 6) that such

"structure-based" formulations of success art? possible if and only if

the phases are "functionally independent" in a precisely defined

^y
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manner. What we wish to do, therefore, is to examine the utility

of "phased models" in a less restricted context.

In addition to removing the above constraints, we extend the

domain of application to include evaluations of computing system
s

"performability" (7], (8]. (Although performability concepts will

dC	 be introduced as needed in the presentation that follows, some prior

familiarity with this background may improve the reader's perspective

of what is being accomplished.) Finally, unlike the models used in

?k 	 phased mission reliability evaluation, we permit the state sets of

the intraphase models to differ from phase to phase. Thus, the

modeling of a particular phase can be tailored not only to the
I[

.,. computational demands of that phase but also to the relevant pro-

perties of the total system which influence performance during that

phase.

II. PHASED MODELS

Generally, in modeling the performability of a computing system

C in some specified computational environment E (see [7], (8]), the

most detailed view of the total system S = (C,E) is represented by

a stochastic process X S referred to as the base model of S. X S is

defined over a time interval T called the utilization period and each

random variable X  (tsT) takes values in a state space Q, i.e., with

respect to a common "description space" 0, X t -.Q->Q. In general, a

state qeQ represents a particular status of both the computer C and

its environment E. Moreover, the computer coordinate of q may include

both the structural state of C and the internal state of the struc-

ture.
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An instance of the base model's behavior corresponding to an

outcome w is a state trajectory (or "sample path") u
w 

where

uw :T-Q with uw (t) = Xt (w), for all tET. The collection

U = (uwjweSZ}

is referred to as the trajectory space of S. At a higher, less

detailed level of description, the user's view of total system behavior

is modeled by a random variable YS called the performance of S. YS

takes values in a set A of accomplishment levels where 't is assumed

that XS is refined ;enough to support Y., i.e., there exists a function

YS :U-.A, called the capability function of S, such that, for all wEQ,-

YS ( uw ) = YS (w) -

Finally, the performability of S is taken to be the probability dis-

tribution function of the performance variable Y S or, in case A is

discrete, the probability mass function p  where, for all aEA

PS ( a) = the probability that S performs at level a.

To generalize the notion of a "phased mission" in the context of

performability modeling, let us suppose that the utilization period

T is the continuous interval T = [O,h]. Suppose further that T is

divided into a finite number of consecutivehp ases (time intervals)

T1 = [tort 1 1, T2 = [tl,t2l,..., Tm = [ten-1,tm] where 0 = to < ti < ...

< t  = h. During phase Tk , we assume that the system can be modeled

in the manner described earlier for the entire period T, i.e., by a

'	 (continuous time) stochastic process

X  = (X k,tETk}

where each random variable Xt takes values in the phase k state space

Ok (Xt :Qt Qk)• X  is referred to as the intraphase process (of phase

k) and, combining these processes, we obtain the process
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r X = U X k = U {XkIteT I.S	 k=1	 k=1 t	 ]c

On examining XS we see that it is similar to a base model except

that, for each time instant tk, 15k:m-1,the state of the system is

represented by two random variables Xk and Xk+l whose values,

respectively, are the final state of the k th phase and the initial

state of the k+l th phase (see Figure 1). However, if we consider

an augmented utilization period

T = T U {tk1k=l,2,...,m-1}

(where tk can be interpreted as the initial time of pahse k+l),

then XS can be expressed as

XS = {XtJteT}

where

	

Xp	 if t = 0

	

Xt = Xt	 k-1if to (t ' tk )	 Cl)

(( Xt+l if t = tk.
k

If, further, we regard the state space of X S as the union

m
Q = UQk

k=1

then XS is a base model in the sense defined above. When X S is so

constructed from intraphase processes, we will refer to it as a phased

base model.

Let us suppose now that the base model X S of a performability

model is phased and that X S "supports" the capability function YS in

the sense that the end-of-pahse "samples" of a state trajectory u
^X

,
I
^s

y

q=

L
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uniquely determine the accomplishment level y s (u). More precisely,
i

a phased model XS supports yS ifs
u(tk) = u'(tk), for all k, implies y S (u) = y S (u').	 (2)

Given that XS supports y S , the performability model can then be sim-

plified as follows. The simplified base model is taken to be the

imbedded discrete-time process

XS = (ZkIk=0,l,...,m}

where Z 0 = X0 and, for each k>-1,

Z k = Xt	 (3)
k

Since Z 0 is required only for the initial state distribution, the

trajectory space U of 7S can be effectively regarded as the product

space

U = Q1 x Q 2 x ... x Q 

(where Q  is the state space of phase k). The corresponding simpli-

fication of yS is the capability function

Y S :U -* A

where if u(tk) = qk , for k=1,2,....,m, then

YS(gl,g2, ... 1 qm ) = yS(u)

Then, by (2), it follows that, for all aeA,

PS ( a ) = Pr( y S l (a)) = Pr(ys l (a))	 (4)

and hence the performability model (Y S , -YS ) can be used to evaluate

the performability of S. We will thus refer to (XS ,yS ) as being

equivalent to the model (XS'yS).
t

	

	
Although the concept of "support" (2) might appear to be somewhat

restrictive, this is not the case when we look at what is typically
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tr!	 done in reliability modeling. Given a traditional single-phase
Y 

reliability model, tho system reliability can often be determined
^R

	i'	 by`sampling the state of the system at the end of its utilization
i

period. Such single phase equivalents (or multiple phase equiva-

lents in the case of phased models) exist whenever traditional reli-

ability modeling assumptions are made with regard to the intraphase

processes.

To illustrate this point, consider a continuous time Markov

model of a TMR (Triple-Modular-Redundancy) system with a perfect

voter where the simplex system has failure rate a, i.e., the base

model XS = {Xt jteT} is represented by the graph

1131
3	

2,1

If the utilization period is T = [t 0 ,t1 ] and the accomplishment set

is A = {a 0 ,a 1 } (where a 0 = success and al = failure) then a 0 is

accomplished if and only if the system is in state 1 or 2 throughout

T. Thus the capability function is

1 1 if u(t)E{1,2}, for all teT

Y S (u) _

0 otherwise

and accordingly the performability at a 0 (i.e., the reliability) is
'	

pS(a0) 	 ,Pr(y-1(a0)) = Pr((ujy S (u) = a0}).

	

k	 Since state; 3 is absorbing, it follows that Pr({ujy S (u) 3A a 0 and

u(tl)e{1,2}}) = 0, and hence

PS ( a0 ) = Pr({ulYS ( u) = a 0 }) + Pr({uly S (u)	 a0 and u(tl)E{1,2}})

Pr({ulu(tl)r{1,2}})

	

jV	 = Pr(xt e{1,2})

	

^ ...	 1
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j
Accordingly, the equivalent base model is a pair of random variables 	

A

XS = {Z0,Z1}
r
M

describing the state of the original model at the beginning and the

end of the utilization period, i.e., Z0 = X 	 and Z 1 = X 
1, 

Tl:e
0 

corresponding equivalent capability function is the structure function

yS :Q -}A where

(
a0 if qe{1,2},

Y S ( q ) _ {

al otherwise.

III. PROBABILITY COMPUTATION OF CARTESIAN TRAJECTO RY SETS

If (7S1 7 S ) is a perforr:,;.bility model of S, then the performability

of S is determined by the probabilities of the trajectory sets y S l (a)E- U

(see (4)) where, for each aeA, YS (a)is the set of all state trajec-

tories of XS corresponding to accomplishment level a. Generally, the

evaluation of Pr(yS l (a)) requires a detailed knowledge of how intra-

phase processes cooperate to accomplish level a, i.e., a thorough

understanding of their "functional dependencies" (see [61). The dif-

ticulties are further aggravated by statistical dependencies between

phases. However, we have found that when a trajectory set VDU is

Cartes ian in the sense that, for every phase k, there exists Rk Qk

such that V = R1 x R2 x ... x Rm , then Pr(V) can be determined iter-

atively using matrix multiplications. Moreover, given this ability to

compute the probabilities of Cartesian sets, the probabilities of more

general sets can be determined by decomposing them into disjoint

unions of Cartesian components. (The latter is taken care of auto-

matically by algorithms which determine yS l (a); see [8]). Hence, the

problem reduces to that of computing the probabilities of Cartesian

trajectory sets.

74,!4........



if XS is the phased model from which X S is derived, for each

phase k, let Yk =X tk-i  he the initial state of the k th intraphase pro- !
)

cess and let n  be the number of states in Qk . Then, for a Cartesian

trajectory set V = R 1 x R2 x ... x Rm , the conditional intraphase

transition matrix of the k th phase is the n  x n  matrix PV,k where,

for all i,jEQk'

P	 (ij) = Pr(Z,	 =i,Z	 eR	 ,...,Z eV,k	 k=jŶ k	 k-1 k-1	 1R 1).

In other words, PV,k (i,j) is the initial-to-final state transition

x

	

	 probability of the kth intraphase process, conditioned by the first

k-1 components of V. Similarly, for all but the first phase, the

conditional interphase transition matrix is the nk-1 x n  matrix

HV,k where, for all ieQk-1 and jeQk,

HV,k(i,j) = Pr(Yk jl2 ).-1 i,Zk-2eRk-2,...,Z1eR1).

In other words, HV k (i,j) is the probability that the kth phase

initiates in state j given that the final state of the k-l th phase

is i, conditioned by the first k-2 components of V. For consistency,

we let 'V'l be the n  x n  identity matrix. Finally for each phase,

the characteristic matrix of the kth phase is the n  x n  matrix

GV,k where

1 if i=j and ieRk

0 otherwise.

In terms of the above matrices, we are able to establish the following

matrix formula for computing the probability of a Cartesian trajectory

set V. Given X S , let I(0) denote its initial state distribution, i.e.,

I(0) = (p1,p2,...,Pn) where p i = Pr(Z O =i) = Pr(X0 =i); and let F 

denote the n  x 1 column matrix with "1" in each entry. Then by
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induction on k, it can be established that

Theorem 1:

If V = Rl x ... x Rk x Qk+l x	 x Qm then

k

Pr(V) = I(0)' H HV,R'PVXGV,R]'Fk

Proof:

For k=1,

I(0)•HV,1 'Pv,l = I(0)•PV , 1 = (a1,...,aj,...,anl]

where

n L

aj = ij Pr(Z0=i)•Pr(Zl=jlzo=i)
l 

n,

_ > e Ir(Z O=i,Z l=j ) = Pr(Zl=j).
i=1

Multiplied by GV,1 and Fl,

I(0)•HV,1•PV,1.GV,1•F1

Z Pr(Z 1=j) = Pr(Z1ER1)
j CRl

= Pr(Z1ER1,Z1EQ2,...,ZmsQm)

= Pr (V) •

Suppose that the formula holds for k<m, then

k+l
I(0)•( II HV,2 PV , R GV,R]•Fk+l

2=1

k
y	 = I(0)•(^II1 HV , k' PV Q.GV,R]'HV , k+l'PV,k+).' GV,k+l'Fk+l

A1'HV,k+l'PV , k<;•1'GV,k+l'Fk+l
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where

Al = (bl ,...,bj .... ;bn 1
1

and

Pr(Zk
=j ' Z k-l eek-1 " ..,Z 1 eR1 ) if jERk

b. =
J

0 otherwise,

by applying the equation for k.

When we iteratively compute the matrix product, beginning from

the left, the first two terms become

A2 = Al'HV,k+1 _ (ci,...,c.,...,c 	 l

	

J	 nk+1

where

nk
c  =	 bi'HV,k+l(1'j)i=1

Pr(Zk i,Zk-leRk-1'...,Z1ER1).
ieRk

Pr(Yk+l- JIZk i,Zk-ieRk-1,...,Z1eR1)

1ERk Pr(Yk+1=j,Zk i'Zk-leRk-1,...,Z1eR1)

Pr(Yk+l-J,Zk ERk,...,z1eR1).

The next partial product is the result of multiplying A 2 by the

transition matrix PV,k+l which yields:

A3 - A2*PV,k+1 = [dl,...,d.,...,d	 1

	

J	 nk+1

where

nk+1

dj

	

	 ci PV,k+1(1'7)i=1

`i
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nk+l

Pr(Yk+1-l,ZksRk , ... ,Z1ER1)

Pr(Zk+l=3lYk+l-i'ZkeRk,...,ZleR1)

nk+1

= i£l Pr
(Zk+1=7'Yk+1=i'ZkeRk,...,Z1eR1)

= Pr(Z
k+l-3 ,ZkeRk ,...,Z1 eRl ) .

The product is completed by multiplying A3 by the characteristic
matrix GV,k+l of the k+lth phase and the summing vector Fk+l' that is,

k+l
I(0)•E9=1 

HVrQ PV'R.*GV,R.) •Fk+l

A3•GV,k+1-Fk+1

= i£R	
Pr(Zk+1—i'ZkeRk,...,Z1ER1)

k+1

Pr(Zk+leRk+l'ZkeRk,...,Z1eR1)

= Pr (Z eR ,.
1 1 ..'Zk+leRk+l'Zk+2eQk+2'...,ZmeQm)

= Pr(R ...XR	 xQ	 ...xIx	 k+1 k+2 x	Qm)•

Ac
cordingly, the equation holds for all k<m, which completes the

Proof of Theorem 1.

Corollary.

For any Cartesian set V = R1xR2x ... xR
m

M
Pr (V) = I ( O N P,TI1HV 

Q•PVXGV,R)'Pm (5)

To illustrate this method, consider a system with three identical
subsystems M1 , M2 and M3 . During the first phase T1'

= [tO ,tl ], eachof the subsystems is ded
icated to different computational tasks.



However, during the second phast T 2 = [ti lt 2 1, the system is recon-

figured into a TMR configuration. The system is capable of degraded

performance which occurs when (i) at least one subsystem has failed

during phase 1 and at least two subsystems are fanctional thr:ugh.u:

phase 2, or (ii) no failures occur during phase 1 and the system

functions as a simplex system at the end of phase 2. Suppose that

each of Mi . M 2 and M 3 fail permanently with a constant failure rate

X and failure characteristics of the subsystems are statistically

independent. Then the probabilistic nature of phase 1 and phase 2

can be represented, respectively, by finite-state time -homogeneous

Markov processes with transition graphs as illustrated in Figure 2.

Based on the above description of the system, three accomplish-

ment levels can be established, i.e., A = {a 0 ,a l ,a 2 } where a id = no

failure, a 1 = degraded performance and a 2 = failure. When expressed

in terms of the state trajectories

Y S
1
(a 0 ) _ {(1,1),(1,2)} _ {1}x{1.^}

YS l (a ` ) 	 {2,3,4}x{1,2}U{1}x{3}

_ {2.3,4, 5 }x{3,4}U{1}x{4}U{5}x{1,2}YS1(a2) 

Then, solving the intraphase probabilities which, in this case, are

the same for all Cartesian sets V,

r3 	r 2 s	 r 2 s	 r 2 s	 3rs2+s3

0	 r2	 0	 0	 2rs+s2 	 -a(t -t )

PV,1	 0

0

0	 0	 10

0

0

0

r = e	 1 0

	

r 2	 0	 2rs+s2
s = 1 - r

	

0	 r2	 2rs+s2

and
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p3	 3p2q	 3Pg2	 q3

	

2	 2	 -a(t2-t1)
0	 p	 2Pq	 q P = e

_V,2	 0	 0	 p	 q q = 1 - p

0	 0	 0	 1

Suppose that the initial state distribution of XS is I(0) _ [1,0,0,0,0]

If at time t,, the system is in state 5 with respect to the phase 1

model (i.e., at least two subsystems have failed) then, depending on

the exact number of subsystems failed, the state of the system with

respect to phase 2 model is either 3 or 4.

By applying the definition of interphase transition probability,

Pr(two failures before t1)

HV,2(5'3) - Pr(two or three failures before t1)

3e
-A(tl-t 0)

 -a(tl-t0 ) = of
1 + 2e

and

-a(t-t0)
_

HV,2 (5 ' 4) _ 
1 - e 

-a(t1-t0 ) - c2
1+2e

Transitions from states other than 5 happen to be deterministic, and

thus we obtain the following interphase transition matrix

,

,a
it
A

s

0

0

0

0

c2

identity matrix.

,4
1	 0	 0

0	 1	 0

f	 2 =	 0	 1	 0

0	 1	 0

0	 0	 c1

HV 1 , by definition, is the 5x5
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,a

Using these intraphase and interphase matrices, the probability

of V = yS l (a 0 ) can be computed using equation 5, i.e., since

1 0 0 0 0

0 0 0 0 0	 1 0 0 0	
3

'	 GV'1 = 0 0 0 0 0 and GV,2 = 0 1 0 0

0 0 0 0 0	 0 0 0 0

0 0 0 0 0	 0 0 0 0

we have

Pr(V) = I(0)•HV,l*PV,1'GV,l,HV,2'PV,2*GV,2*F2

= r 3p3 + 3r 3 p 2 q

Similarly,

Pr(YS l (a l )) = 3r 2 sp2 + 3r3pg2

and

Pr ( YS 1 ( a 2 )) = s3+3rs2+3pgr2s+3gr2s+r3g3.

Although equation 5 provides us with a general formula for computing

the probability of a Cartesian set, its disadvantages derive from 	 4

the fact that HV k and PV k matrices may be difficult to obtain in

practical applications. In particular, these matrices will generally

depend on V as well as XS and, moreover, will generally depend on the

history of XS prior to phase k. However, the latter objections dis-

appear when the transition probabilities are "memoryless". More pre-

i' cisely, let the (unconditional) intraphase transition matrix of the 	 y

kth phase to be the nk x nk matrix Pk where, for all i,jeQk,

Pk (i, j ) = Pr(Zk jlyk=i),

i.e., the probability that the k th intraphase process ends up in state

j given that it initiates in state i. Similarly, let the (unconditional)

interphase transition matrix be the nk_1 x nk matrix Hk where, for all

I;+

_	 .,n»,. _.	 _ ., .- ..n 3.+ r-^s.... 3u.wT'+Y'aMN Hy.49:1i .	X.M4wJ.m..u.........e .<.: _.
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^.	 ieQk-1 and jeQk,
5-

1(

Hk(i,j) = Pr(Yk j^Zk-1=i),

i.e., the probability that the kth intraphase process initiates in

state j given that the k-l th intraphase process ends up in state i.

Then the intraphase transitions of X S are memoryless for V at phase k

if

PV,k - Pk'
a

Similarly, the interphase transitions of X S are memoryless for V at
s

phase k if

HV,k - Hk'
D

Accordingly, when transitions are memoryless through phase k, by the

4e£initions and Theorem 1 we obtain.

Theorem 2•

If V = R1 xR2 x ... xRkxQk+l x " 'xQm and the intraphase and inter-

phase transitions of X S are memoryless for V through phase k, then

k
Pr (V) = I (0) • [ Q 11 HR•PQ•GV.R)-Fk

Corolla:

For any Cartesian set V, if the intraphase and interphase tran-

sitions of XS are memoryless for V for all phases, then

m
Pr (V) = I (0)J II H2'P2`GV,k) FmQ=1

When V is a Cartesian, set and R Q = QV for 2 = 1,2,...,k-1, then the

intraphase and interphase transitions of X S are memoryless for V

through phase k. Moreover, GV 
R 
is an identity matrix for Q = 1,2,...,

k-1. Accordingly, applying Theorem 2, we obtain the following formula

for'the probability of the trajectory set V = Q 1 x ... xQk-1xRkxQk+lx ... xQm

J
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which, alternatively, is the probability of the event "ZkERk".

Theorem 3:

If V = Q1 x ... xQk-1xRkxQk+lx" .xQ
m , then

k
Pr(V) = I(0)•[ II Hk.PR]•GV,k•Fk

k=1

When Theorem 3 is specialized to singleton sets R  = fi}, where

iEQk , it permits us to compute the probability of the event "Zk i".

More generally, if we denote the probability distribution

of the random variable Z  by the n k-dimensional vector I(k)

[p l' p2" " 'Pnk) where p i = Pr(Zk i), then

Theorem 4:

k
I(k) = I(0) • [ R Hk•Pk]•

k=].

Proof:

By Theorem 3,

Pr(Zk=i) = Pr.(Q1 x...xQk-1
x{i}xQ

k+l x ... xQm)

k
I((1)•[ II Hk • P k ] • GV,k F k=1

where, by the nature of V, GV k • Fk E i , i.e., the n  x 1 column matrix

with "1" on the ith entry and "0" elsewhere. Thus, Pr(Zk i) is equal

to the ith entry of the nk-dimensional row vector

k
I(0) • [ II H k Pk].

Z=1

By Theorems 2-4, when certain intraphase and interphase transi-

tions are memoryless for V, the probability of a Cartesian set V is

relatively easily obtained. However, such results may still be

difficult to use due to the fact that, even though the transitions

are memoryless for V, they may not be memoryless for other Cartesian

i
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sets. Accordingly, we have sought to identify stronger conditions
	 s

under which the formulas will hold for all Cartesian trajectory sets.

First, by extending previous definitions, the intraphase (interphase)

transitions of XS are memoryless at phase k if they are memoryless

for all Cartesian sets V at phase k; the intraphase (interphase) transi-

tions of XS are memoryless if they are memoryless at all phases. The

advantage of memoryless transitions are obvious, for by their defini-

tion and the corollary to Theorem 2, we have

Theorem 5:

If XS is a phased model and the intraphase and interphase transi-

tions of XS are memoryless then, for all Cartesian sets V,

m
Pr(V) = I(OH II H  PR•G VIZ I • FM • 	 ( 6)

R=1

Moreover, we find that the memoryless property is relatively easy to

characterize, that is, we are able to show the following characteris-

tic conditions for the memoryless property. It is important to note

that the conditions do not involve any specific Cartesian sets.

Theorem 6:

(1) The intraphase transitions of XS are memoryless at phase

k if and only if, for all i.EQQ

Pr(Zk=7IYk i'Zk-l=ik-l'...,Z1=i1) = Pk (i, j )•	 (7)

(2) The interphase transitions of XS are memoryless at phase k
i

if and only if, for all i Q eQ Z (2=1,2,...,k-2),

Pr(Yk jIZk-I=i'Z'--.2='k-2'...,Z1=il) = Hk ( i , j ) .	 (8)

Proof

Suppose PV k is memoryless for all Cartesian sets V = R1xRx ...xRm

	

By taking RQ to be the singleton set {iC}, R = 1,2,...,k-1,	 u

PV,k(i,i) = Pr ( Zk-JI Yk " Zk-1-'k-1'...,Z1=i1)

= Pk(i,j)•

	

_.	 p
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Now, suppose that, for all i ZEQZ (R = 1,2,...,k-1),

Pr(Zk jlyk=i,Zk--l-ik-1,.•.,Z1=i1)

= Pr(Zk j IYk i)'
Then, for any Cartesian set V = R 1xR2 x ... xRm,

PV k (i, j ) = Pr(Zk jlyk-i•Zk-lERk-1,...,Z1eR1)

[Pr(Zk jlYk=" Zk-1=ik-1,••-,Z1=i1)
i1eR1,•^••ik-lERk-1

Pr(Yk=i,Zk-l=ik-1,.••,Z1=i1)]

Pr(Yk i'Zk-leRk-l" ..,Z1eR1

Thus, by the assumption, P V,k (i,j) is equal to

E Pr ( Zk=jl yk i)-Pr(Yk i'Zk-1-ik-1,...,Z1=i1)

ileR1,..., ik-1eRk-1
Pr(Yk=i,Zk-1 Rk-1,...,Z1 R1)

Factoring out the term Pr(Z k=jl yk i), we have

PV,k(i,j) = Pr(Zk j l yk i)'1 = Pk(i,j)

which completes the proof for part (1) of the theorem. Part (2) is

proven in a like manner.

Finally, when the transitions of X S are memoryless, the equiva-

lent model XS is a time-varying Markov chain. This con be demonstrated

as follows.

By Theorem 6 and the definition of memoryless transition, we have

Pr(Zk=iklyk j,Zk-l-'k-1,...,z1=i1)

= Pr(Zk iklyk=j)

= Pr(Zk ik lYk j,Zk-l-'k-1).

Accordingly, for each k<m and i,6Q Q (£ = 1,2,...,k),

Y
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,t
Pr(Zk iklZk-1=^'k-1'...,Z1=i1)

	

= E	 Pr(Zk iklYk=j,Zk-l-'k-1"' -,Z 1=il )-
jEQk

Pr(YO lZk-l-'k-l'...,Z1 =i 1)

	

E	 Pr(Zk 
ik lyk j'Zk-1='k-1)'Pr(Yk=jlZk-l='k-1)

j e Qk
r

E Pr(Zk=ik,Yk IZk-l=ik-1)
jeQk

Pr(Zk 1klZk-1 lk-1).

Hence, XS = {Zklk=O,l,...,m} satisfies the Markov properties.

Moreover, the transition probabilities of X S associated with

phase k can be expressed as a matrix.

Pk = (Pk(i,j)]

,.	 where

Pk ( i , j ) = Pr(Zk=jlZk-1=i)

	

hE	
Pr(Zk=jlyk h,Zk-1=i)•Pr(Yk hlZk-1=i)Q

^L
	 k

hE

hI
Pr(Zk 7IYk=h)'Pr(Yk hlzk-1=i)Qk

Pk(h,i)•Hk(i,h).
Qk

Accordingly, in terms of matrix multiplication,

Pk = Hk'Pk

and equation 6 can be represented in a more convenient form:

m
Pr (V) = 1(0),I 

nP2'
G
v,2 ] Fm'

R =1
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IV. SUMMARY

It has been shown that the concept of a "phased mission" "an be

extended to performability models via the notion of a "phased" base

model XS . Under reasonable conditions, XS yields an equivalent per-

formability model (Xs ,yS ) and, as demonstrated by the results of the

paper, the intraphase and interphase probabilities of X S suffice to

determine the probabilistic nature of XS . In particular, it has been

shown that, for any trajectory set V of XS with a "Cartesian" struc-

ture, the probability of V can be computed as a product of matrices

(Theorem 1). In general, each matrix depends on X S and V but, as

established in subsequent results (Theorems 2-5), the formulations

may be simplified when certain phases of X S are "memoryless for V."

Finally, it has been demonstrated (Theorem 6) that transitions which

are memoryless for all Cartesian sets V are characterized by a

"Markovian property" relative to preceding end-of-phase observations

of the phased base model XS.
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A state trajectory of XS
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Figure 2

Markov model transition graphs for XS
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