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ABSTRACT



The functional and performance requirements for support of multi-mi~sion radio


science are established. The classes of radio science investigation.are des­

cribed and the needed data is discussed. This document is for a sliding ten


year period and will be iterated as the mission set evolves.
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I. INTRODUCTION



A. 	 The purpose of this document is to establish functional and perfor­


mance requirements which will support multi-mission radio s ince
 


and celestial mechanics investigations. This wil -be done by devel­


oping the scientific rationale for the various types of investigations



and extracting the system requirements in engineering terms. An addi­


tional purpose is to provide the mechanism for continuing two-way



communication between the scientific and engineering communities so



that the best advantage can be taken of future developments in both



areas.



B. 	 The goal is to plan for a sliding ten year period beginning with



the present systems and current mission set, and to iterate this



plan as the system evolves and new missions are studied and proposed.



The planning will encompass the End-to-EnddInformation System from



the spacecraft, through the Deep Space Network and the data systems,



to deliverable data products. The definitions below are included to



put a boundary around the territory to be discussed in this document:



C. 	 Radio Science and Celestial Mechanics are those investigations which



use radio metric data obtained from ground-to-spacecraft and spacecraft­


to-ground radio links to study the fundamental laws of gravitation,



the interplanetary medium, the sun and its corona, and the charac­


teristics and environments of the planets, their various satellites,



and other bodies including comets and asteroids.



D. 	 The End-to-End Information System includes all elements which can



affect the quality ofradiometric data. The end-to-end system thus



begins at the Deep Space Station (DSS) goes roundtrip through the
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spacecraft radio., the DSS receiving system, the Ground Communication 

Facility, the Mission Control and Computing Center (MCCC), the



Navigation computing facility, and enas with tapes in the hands of



,an investigator. The concern of this document therefore includes
 


spacecraft and ground system technical performance and engineering



support as well as data handling and processing.



The Multi-Project EElS mission set shown in Figure I-I has been



used to provide a set of initial conditions for the following sections.



As new missions are approved and as results come in from present



ones, this document will be revised.
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It. SCIENCE RATIONALE:



DATA TYPES AND THEIR SCIENTIFIC USES



Virtually all of the characteristics of,the electromagnetic signals



radiated to and from the earth stations and the spacecraft canbe and have



been used as tools for scientific investigation. To be useful scientifi­


cally the radiated and transponded characteristics of these signals must



be controlled and measured with a precision that isorder(s) of magnitude



be-tter than the size of the effects to be observed. The basic observables



are as follows:



I. Frequency/Phase



.2. Amplitude



3. Polarization



4. Angle of Arrival



5. Time of arrival/Range



Frequency, amplitude, polarization and time of-transmission can be



precisely controlled and all of them can accurately measured upon return



to earth. They are affected in different ways by the motion of the earth,



the spacecraft and the various regions through which the signal propagates



and thus can be used to separate, for example, plasma events from gravity



field perturbations.



The time history of each parameter is of prime interest; it should


I 

also be noted that the ability to separate effects and to do it precisely



depends upon performing all of the measurements simultaneously, often at



more than one frequency. Missions in the near future will be conducted





using S (2.1 to 2.3'GHz) and X (8.0 to 8.5 GHz) bands, while



K.('CI3 GHz) band is emerging inlong -term DSN planning, and L ,('l GHz)



-band beacons have been requested by. several investigators.



In the following section each of the currently known investigation



-area is'presented individually with a discussion of the data types



and accuracies'necessary to perform meaningful experiments. There is



'some overlap ih the discussions because the propagation medium effects



can be similar to, and sometimes larger than, those of the planets'



gravity fields and environment. In other words,' one investigator's



noise is another's data although it is possible in'many case to separate



the two.
 


Once the sizes of individual effects are known and their interactions



understood, itwill be possible to develop detailed functional and per­


formance requirements for the system. These will be the subject of Section
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"I. A. PLANETARY GRAVITY FIELDS AND COIPOSITION,



ATMOSPHERES, IONOSPHERES, MAGNETIC FIELDS, SURFACES, AND RINGS



CELESTIAL MECHANICS



Radio tracking observations of changes in the velocity vectors of



spacecraft, as they fly near the planets and their satellites, are used to



define the gravitational fields. For each of the primary targets (e.g.,



planet or satellite), the total mass and several higher mass moments can



be determined from a flyby trajectory. Orbiters of the planets and



satellites can be used also to obtain more detailed information on the



gravitational fields.



The scientific rationale for obtaining gravitational data differs,



depending on whether the concern iswith the terrestrial or the giant



planets, and, more fundamentally, whether the information will be used



for planetary studies or for a study of the nature of gravitation itself.



For purposes of experimental gravitation, the values of planetary mass



are needed in order to use planetary motions to test theories of gravi­


tation at the post-Newtonian limit of 10-8 or less. Once the masses are



determined accurately by spacecraft flybys, these masses can be treated



as known parameters in least squares fits to the planetary radiometric



and astrometric'data. This procedure can lead to asuperior test of



gravitational theory than would be the case if the masses had to be



treated as unknowns.



For purposes of planetology, the justification for gravitational



data differs for the terrestrial and giant planets. The latter are



probably very near to hydrostatic dquilibrium on a global scale, and



hence it is possible to study the interior structure of the planet by
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making measurements on its external gravitational field.. The terrestrial



planets, on the other hand, are not in hydrostatic equilibrium, and



studies of their interiors involve an analysis of the gravitational data



in conjunction with planetary topographic information (Sjogren et al., 1976).



The primary question for the terrestrial planets concerns the degree



of isostatic compensation of the surface topography, while the primary



question for the giant planets concerns the absolute magnitudes of the



even zonal gravitational harmonics and how they.are-related to the distri­


bution of mass in the interior.



Terrestrial Planets



The acquisition of both gravitational and topographic data is essen­


tial to a study of the terrestrial planets. Earth-based photography, star



occultations, and Earth-based radar provide good data over limited areas



for lunar and lanetary topography. Polar orbiting spacecraft can provide



more detailed topographic maps and also more complete coverage. In the



future, 'laser and radar altimeters will be extensively used to obtain



eVen better topographic data.



The removal of topographic effects (Bouguer correction) from the ­

primary gravity to a scale consistent with the overall analysis leaves 

the anomalous gravity due to .internal density variations only, the 

Bouguer-gravity. The Bouguer gravity values then formthe basisfor



studying planetary interiors. A primary guestion here is the degree to



which isostatic-compensation of planetary surface topography has occurred.



The principle of. isostasy requi'res that the internal mass of a planet



rearrange itself'to balance the topographic .loads. It is well established



that thecontoinents an'd ocean basins of the Earth are in approximate
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isostatic equilibrium. Studying the state of isostasy on other planets



should help us understand basic processes that lead to this type of



planetary equilibrium. The Bouguer gravity provides the fundamental



information with which to study isostasy. For example, the Airy hypo­


thesis adopts Archimedes' principle to explain a floatingtopography



underlain by "roots" under the mountains and "antiroots" under the



basins. The Airy hypothesis can be directly tested by comparing the



gravity from a "root-antiroot" system to the Bouguer gravity. If isostasy



is assumed, on the other hand, then one can search for density variations



deep in a planetary interior to explain Bouguer gravity anomalies. Deep



density variations may arise from convection currents or from density
 


variations created inthe original formation of the planet.



If analysis of the Bouguer gravity reveals that the topography is



not completely compensated, then this topography must be supported by



the elastic strength of the planetary interior or-by the viscous stresses



associated with solid-state flow. The longer the wavelength of the un­


compensated topography, the deeper are the associated maximum stresses.



Since the strength of a rock is directly relatable to temperature, it



is possible to infer a maximum radial temperature profile consistent with



the elastic support of the wavelength spectrum of uncompensated topography.



If the temperatures so derived are unreas6nably low, then it may be con­


cluded that the viscous stresses associated with the convection at least



partially support the topography.



To obtain detailed free-air gravity measures one should obtain si­


multaneous Doppler from three orbiting spacecraft along with relay li.nk



Doppler over two paths. These data allow the complete determination of



the acceleration vector and thus makes all geophysical modeling a simple
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static problem independent of orbital dynamics that plague all present



reductions. The basic configuration is a relatively lowaltitute space­


craft (100 - 300 km) in-a-circutar polar orbit with a two orbiting relay



spacecraft at high altitude (5000 km) (one polar the other near equatorial).
 


There should be a direct Doppler link between earth and each spacecraft



and between the low polar orbiter and each relay spacecraft. All signals



should be simultaneously acquired at one earth tracking station. The relay



link Doppler could be placed on the relay's sideband-depending on the



transponder design. Oscillator stability should be 1 part in 10II over



a 2 hour period, so 1-way systems may be applicable. These requirements



could be placed on VOIR, Mars Rover and LPO missions, where complete



global coverage is desired. In addition to the simultaneous acquisition



of 5 Doppler counters for the orbiters, it may be necessary to acquire



rover or lander tracking simultaneously for navigation and other science



requirements. The present Viking configuration prohibits acquiring data



from more, than two spacecraft and as a result many radio science experiments
 


are not obtaining the coverage they had requested.



Giant Planets
 


The relationship between the interior of a giant planet and its



gravity field is dominated by the efforts of a rapid rotation rate. If



the planet did not rotate and was fluid, itwould take on a spherical



shape under its own self-gravitation. For purposes of this discussion,



tidal effects produced by the Sun and other bodies can be neglected, and



as far as any gravity-sensing experiment is concerned, a nonrotating



planet would appear essentially as a point mass. The external gravi­


tational field would be spherical for all possible radial-density dis­


tributions, and itwould be impossible to infer anything about the density
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distribution from gravity data. However, because the planet rotates,



its shape differs from a sphere, and the amount of the deviation from



sphericity is reflected in the external gravitational field. It is
 


probable that the rotation rates vary with latitude and with depth. In



any case the amount of the deviation depends on the density distribution



within the planet. For example, if the mass of the planet were completely



concentrated at the center, then it would behave as a point mass and the



measurements of the external gravitational field would yield a spherical



structure. On the other hand, if the planet were homogeneous, the de­


viations from sphericity would be at a maximum, under the assumption that



the dehsity does not decrease with depth, and this maximum deviation



would be evident in the gravity data. The actual situation for the giant



planets can be expected to fall somewhere between the two extremes of



total concentration at the center and a homogeneous distribution.



Close flybys of the giant planets at distances of 2 radii or less



from the center may provide information on the second, third; and fourth



zonal harmonic coefficients (J2' J3' J4) to an accuracy of one part in



I05 or better. Jupiter Pioneer results to this accuracy have-been used



to test the assumption that the planet is in hydrostatic equilibrium,



and to limit the class of plausible interior model.s. One of the most



interesting features of the current Jupiter interior models is that they



require several tens of earth masses of elements heavier than helium



to fit the gravitational data, at least if the solar ratio of the abun­


dance of helium to hydrogen is retained. In any case, it is clear that



Jupiter is not of solar composition. By means .of close flybys, we should



similarly be able to determine the degree to which Saturn,. Uranus, and



Neptune deviate from solar composition. A comparison of the chemical
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compositions of these four giant planets will yield new clues to the
 


formation process for all of the planets.



Satellites



Close flybys of the Galilean satellites and Titan, within 1000 km



or so of their surfaces, will permit a determination of the second degree



harmonics in their gravitational- fields and hence a determination of



differences in the principal moments of inertia to an accuracy at least



an order of magnitude less than the expected size of the differences.



With this information it will be possible to use the fact that the satel­


lites respond to comparable perturbations from rotation and tides to dis­


criminate very well between an ensemble of plausible interior models



(Hubbard and Anderson, 1978). Because the rotational and tidal response



are, to an excellent approximation, separately excited, it is feasible



to deduce the degree of central condensation in the interior of the



satellite in two independent ways from the two independent measurements



of principal moment differences (B-A and C-(A+B)/2), and hence to verify



the assumptiob of hydrostatic equilibrium. This assumption is expected



toihold for low density satellites, such an-Ganymede, and if it does,



then it will be possible to use the second degree harmonics as important



.boundary conditions on the interior models.



Comets



A combination'of radio metric data with on-board radar and accelero­


meters during a comet rendezvous mission can be used to determine the



mass of the comet. A knowledge of-the heliocentric positions of the



comet and-spacecfaft from astrometric and radio metric data will allow a
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determination of the solar tidal perturbative acceleration on the space­


craft with respect to the comet. Cometary drag accelerations and other



non-gravitational accelerations on the spacecraft will be measured by



o-board accelerometers. The total relative acceleration between the ­


comet and spacecraft will be determined by subtracting the solar tidal



and nongravitational accelerations from the total acceleration. Because



the distance between the comet and spacecraft is known from the on-board



radar, a determination ofthe gravitational attraction will yield a



,value for the mass of the comet. The goal of such an experiment is to
 


measure the cometary mass to one percent.



References:



Sjogren, W. L., J. D. Anderson, R. J. Phillips, D. W. Trask, "Gravity


Fields" IEEE Trans..on Geoscience.Elec., GE-14, 172-183, 1976.



Hubbard, W. B. and J. D. Anderson, "Possible Flyby Measurements of


Galilean Satellite Interior Structure," Icarus, 33, Feb, 1978.
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RADIO OCCULTATION



The radio occultation technique uses the measured signal amplitudes,



phases, -and-pol-arizati-n as a function of time. Studies of planetary at­


mospheres using radio occultation techniques began with Mariner 4 and



have now been highly refined. In the case of bodies with thin atmospheres



(such as Mercury, liars, and Io), the amplitude data are used in con­


junction with the ephemeris data primarily to determine the radius of



the planet at the occultation points. For planets with denser atmospheres
 


(such as Venus, Jupiter, and Saturn), the amplitude measurements may be



used to determine the atmospheric microwave loss or the temperature and



pressure as a function of altitude in the regions probed by the radio links



and/or as an independent cross check on the frequency based results.



The frequency measurements made during occultation experiments are



utilized to determine the refractivity profiles in altitude for the



regions probed by the radio link. The refractivity profile can in turn be



used to determine the electron density distribution in the ionosphere and



the temperature and pressure profiles in the lower atmosphere if the



chemical composition is known. Amplitude and frequency fluctuations can



be used to study turbulence and other local atmospheric structure. Fara­


day polarization rotation measurements at S-band can be used during



Jupiter occultations, particularly polar ones, to measure the magnetic



field close to the planet. Polarization during occultation might also



be affected by rain in a planetary atmosphere. Basically, the following



three items have the greatest influence on the accuracy of radio occul­


tation results:
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a) Stable on-board (auxiliary) oscillator



This isnecessary to obtain useful data from the exit phases of



planetary occultations (deep within the atmosphere) when a reliable,



uplink frequency reference is not available. This requirement ismost,



important for Venus and the Outer Planets.



b) Precision-Steerable High-Ga4n Antenna



The high-gain antenna must be able to follow the refracted direction



of the Earth inorder to maximize penetration into the lower atmosphere



for planets with dense atmospheres, such as Venus and the Outer Planets.



It is necessary to keep the virtual earth at the peak of the antenna beam



so that small position fluctuations caused by limit cycle, for example,



do not produce large amplitude variations.
 


c) Knowledge of the local vertical direction



The precise .knowledge of this parameter is necessary for accurate



analysis of radio occultation data from Venus and the Outer Planets. It



involves the precise measurement of the gravity field and rotation rate



of a planet, as well as the local circulation velocities in a planetary



atmosphere.



Mercury



The primary objective for radio occultation at Mercury is to detect



and characterize an intrinsic Mercurian ionosphere or a solar wind-magneto­


sphere interaction region, having very low electron densities (lets than



102-103/cm3.) A lower up or down link frequency coherent with the S-band



down-link would-be useful, along ith the presence of another spacecraft



in the vicinity of Mercury for the calibration of interplanetary electron



fluctuations.
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Venus



On Venus, the most important radio occultation considerations are



the precise measurements of frequency (phase) and power fluctuations as



deep in the atmosphere as it is possible to measure before the critical



refraction level is reached. These measurements are necessary to obtain



accurate temperature-pressure profiles inthe neutral atmosphere, absorp­


tivity in the cloud regions, and characteristics of atmospheric turbulance.



To estimatethe necessary oscillator stability and knowledge of the local



vertical for accurate data analysis, the methods of Eshleman; and Hubbard



et al., were applied. To an isothermal approximation, the error AT in



derived temperature, T, is related to the error factor, 6 , as follows 

AT EsD



TTH



where



c = refractive bending angle (rad)



D = distance of spacecraft from limb at occultation'(ki)



H = scale height (km)



In turn, the error factor; 6 , is related to the unmodeled oscillator 

drift rate, Af', by 

- Af' 
6



f' is the total frequency rate due to refraction, approximately equal


to fV 2 /cD , where V is the projected-(in the plane of the sky) space­


n n 

craft velocity normal to the planet's limb and c is the speed of light. 

The error factor, 6 , is also related to the uncertainty in the local 
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vertical, Au , by



6 2Aatan0



where 6 = angle between S/C velocity vector and vertical direction in 

a plane normal to the earth - S/C line of sight. For the purpose of a ­

typical Venus computation 

D = 25,000 km, E = 17' (0.297 rad), H = 10 km, and the 

characteristic time, 7 , of the measurement of 5 min (300 sec). 

If the error in derived temperature is to be kept below 1% then



AT/T = 0.01, and 6 = 1.35x10-5 . The corresponding one way frequency



rate due to refraction, f', is about 7.4 Hz/sec, and hence



Af'T = f 10-4x300 = 3xI0 -2 Hz 

and the stability of the oscillator must be



Af


l.3xl0 1

-

It must be emphasized, that this is the required stability relative to



a modeled part of the oscillator drift, i.e., the residual instability



after removing a linear drift.
 


Although the gravity field of Venus has not been observed,to display



any asphericity, the sensitivity is so great that effects of planetary



circulation may be important. For instance, for a.l% effect on the



derived temperature, the direction of the local vertical must be known



to a precision of



-5 -4
6 0 0
 
Aa = 2tan6 0.675x0 rad = 3.S6xl deg. 
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.
assuming, e.g., a representative value of 0 45' Itmust be



pointed out that this great sensitivity only applies at the maximum



penetration level, when the refractive bending ismaximum. One-may



view this sensitivity to geometry inversely and note that it is possible



that atmospheric circulation effects and very small departures from



sphericity may be observable with the apoapsis occultations of Pioneer
 


Venus, for example.



Relative to the oscillator stability constraints,'a good example



of inadequate stability was provided by the Mariner 10 oscillator,



and in view of the absence of an ultra-stable oscillator on the Pioneer-


Venus Orbiter it will be a fortunate accident if most of the exit



occultation data will be useful for profile measurements.



In addition to those discussed above, an important requirement for



Venus is the presence of a steerable high-gain antenna, capable of



essentially tracking the refracted position of the earth along the limb.



It is difficult to arrive at quantitative specification for the operation



of this system. However, it is desirable that the post-facto knowledge



of the gain of the antenna at any time during the occultation, at both
 


S- and X-band frequencies, be better than 0.1 db (relative to its gain



in the free-space position prior to the occultation). This has been



very difficult to accomplish in the case of the Mariner 10 X-band data.



Mars 

From the point of view of the stringency of geometrical factor in 

accuracy constraints on oscillator drift, Mars is the most amenable planet 

in the solar system. This is because of the very small refractive bending 

angles that are encountered. For the case of less than one percent error 

in temperature, and D = 10,000 km, H = 10 km, E = 0.011 rad, the limit 
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on unmodeled oscillator instability is:



Af 2 4x0-9 

f 

and the allowable uncertainty in knowledge of the local vertical is



Act 5xl0 3 rad = 0.29 deg.



(again for 8 = 450).



Such an oscillator stability can be achieved with ordinary



auxiliary oscillators. However, it should-be pointed out that this



figure applies to long-term ("300 sec) components of unmodeled drift,



and rapid excursions in frequency of this magnitude would have influence



on the shape of temperature profiles. Thus on-board oscillator stability



remains an important parameter for one-way experiments.
 


Because of the small values of refractive bending, there is no



necessity to have steerable antennas for Mars radio occultation experiments,



.unless surface reflection (bistatic radar) measurements are contemplated.



The Outer Planets
 


The outer planets are discussed here together, because of certain



similarities in their characteristics for radio occultation. They all



have large diameters, deep atmospheres which cause at least moderate



refractive bending before extinction due to absorption, relatively large



fly-by distances and high spacecraft velocities during occultation.



The radio occultation objectives for these planets are also similar, namely:
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a) Pressure and temperature profiles inneutral atmospheres



b) Absorption and possibly depolarization in neutral atmospheres



c) Turbulence and other local structure in the atmosphere



d) Magnetic field measurements using Faraday Rotation techniques



e) lonospheffic electron density profiles and characteristic


ionospheric turbulence



The last objective is made more diffi.cult by the large fly-by distances



coupled with high electron density gradients in the lower ionosphere



(ifthe other outer planets have ionospheres similar to the one found



on Jupiter by Pioneers 10 and 11). This causes the spacecraft trajectory



to lie beyond the caustics, which leads to diffculties in the data
 


analysis due to multipath.



The values of Af/f and 6a required for the outer planets are
 


shown in Table I, along with the values for the other planets, in each



case assuming 0 = 45'. They were computed assuming D= 10 Rplanet,



c = 0.01 to 0.1 (the angle of 0.01 was not exceeded for Pioneers 10



and 11 before absorption and possibly turbulence extinguished the



signal; deeper penetration, however, may be possible at the other planets),



H = 20, 40, 45 and 25 km for Jupiter, Saturn, Uranus and Neptune, respectively,



assuming temperatures of 200, 170, 150 and 130 0K.



The resulting stability limits lie between 9.3xlO -II for Uranus 

with E = 0.01 to 1.6xlO -12 for Jupiter with s = 0.1. These limits, 

although stringent when compared to present-day unstabilized auxiliary 

oscillators, are well within the capabilities of the temperature-controlled



ultra-stable oscillators to be used for Voyager and, hopefully, for all



missions beyond Pioneer-Venus. (The stability of the Voyager USO, as
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12
 

reported by G. Wood in a private communication is 1.5-2.08x10

­


relative to a linear fit). The corresponding figure for the Pioneer



-
10 and 11 oscillators was about 5x]0 1 0 which, while adequate for



gross features of the atmosphere, leaves much to be desired for



accurate detailed temperature structure and precision at high altitudes.



The situation relative to the local vertical uncertainties is not



quite a's satisfactory. Although the general shape of the planet can



be very well determined from the measured gravity field and rotation,



the effects of planetary general circulation (differential rotation)



are not well known and could have serious effects upon the derived



results (Hubbard et al., 1975). For instance, differential rotation



between the zones and belts on Jupiter can introduce deviations in the



local vertical of up to 5xlO -3 rad. This is more than two orders of



magnitude higher than the allowable uncertainty of 1.4xlO 5 rad. for



= 0:01, and such an error, if not correctable, would invalidate 

profile data in the lower atmosphere. The situation is analogous for 

the other planets, especially if penetration to lower levels than those 

probed on Jupiter should be possible, in which case a knowledge of the



-
local vertical to an accuracy of 10 6 to 10-5 rad. is required for



accurate data analysis.



Since it is doubtful that such accurate determination of planetary



circulation can be made from imaging observations, it is possible that



vertical occultations (those for which the projected velocity vector



is along the local vertical) will-be necessary to obtain good radio



occultation data for atmospheric profiles of the outer planets. Con­


versely, if the atmospheric refractivity profiles are known from probe
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measurements, non-vertical occultations can be used to study deviations



of the local vertical from the gravity normal in planetary atmospheres.



E. Satellites



Satellite occultations, with the exception of Titan, are likely to'



impose the same sort of requirements as Mercury, i.e., a lower frequency



to measure tenuous electron density distributions. For Titan, the



oscillator stability limit is probably somewhere between those for Mars



and Uranus, and any oscillator designed to be adequate for the outer



planets will also be adequate for-Titan.



F. Comets



For radio occultation experiments during cometary fly-bys, one can



expect to be able to achieve an occultation by the tail and possibly



the coma, but probably not the head or nucleus. For this reason, the



ability to measure low electron concentrations will be desirable, indi­


cating the use of a lower coherent frequency and two-spacecraft cali­


bration of interplanetary electron fluctuations. A passage behind



the nucleus would be very useful for size measurements and determination



of possible effects of particulate matter near the solid core.
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TABLE I-1



Parameters Important to Radio Occultation Accuracy



Limb. Dist. Scale Ht. Refr. Ang. Local Vertical Unmodelled


Planet D (km)is H (km) (rad) Uncertainty Oscillator Drift
Limit (Rad) Limit (Af/f)



Mercury N.A. N.A. N.A. N.A. Nominal



-11

0.297 O.7xlO-5 1.3xlO
Venus 25,000 10 
 

0.001 5.OxlO 4.OxlO
Mars 10,000 10 3 9



0.01 l4xlO"5 l.6xio-]1
 
20 0.1
 1.4xlO5
 1.6xlO
-1 1
 

Jupiter 700,000 
 

Saturn 600,000 40 0.01 3.3xi0"3.3x10"6 2.1xlO ­
0.1 2.lxlO_112
 

0.01 lxlO"4 9.3xlo 11 
Uranus 240,000 45 0.1 IxlO 5 9.3xi0"12 

0.01 5.7x10-5 6.OxlO 11



Neptune 220,000 25 0.1 5.7xI0 -6 6.OxlO 12



Satellites - lower frequency and two S/C calibration desirable



Comets same as Satellites
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SURFACE SCATTERING



Scattering of radio waves from planetary surfaces allows determination



of two primary quantities: reflectivity of the surface material and



roughness of its uppermost parts. Measureiment of reflectivity may be



used to infer dielectric constant of the material; from that one may



infer the density. Roughness of the surface is obtained by inverting



the dispersion of the echo (ineither time or frequency). Both density



and -roughness are of interest from an engineering point of view (as



they-apply to landing vehicles); they are also useful as inputs to



geologicmodels of surface structure.



Accurate amplitude measurements of a reflected signal are necessary to



obtain planetary reflectivity. Errors of 1 dB in total received power



result in dielectric constant estimate errors of 14% for typical values.



These then propagate to 17% errors in density when applying accepted



models (Gold et all, 1970). Though the density



error may not appear large in absolute terms, the geologic interpreta­


tion (based on particle size, origin, etc.) may change quite dramatically.



Surface scattering, in general, arises from the entire planet. Those



parts of the surface far from the specular region contribute only



weakly, however, andare sometimes lost in the noise. With current



spacecraft antenna design, such areas may also be underilluminated as



a result of narrow antenna beamwidths. When beam patterns are known



in both azimuth and zenith angle, post-experiment processing can be



used to compensate for the underillumination. In the case of very



rough surfaces, however, the beamwidth may be so narrow as to mask
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points of inflection on the scattering curve and permit only a lower



bound estimate for the surface roughness.



-Rather than track the specular reflection region, one may select a point



target on the surface for study. In this case the antenna is directed­


toward the target insuch a way that the radio photometric function can



be derived. Here a narrow beanwidth may be an advantage, since echo from



regions surrounding the target can be suppressed by antenna directivity.



In either case, accurate pointing is required in order that the target



not drift out of the beam; good reconstruction of antenna performance



during the experiment is necessary for later analysis, including com­


pensation for pointing errors when and if they did occur. Tolerances of 1/10th



beamwidth have been used in the past; spa6ccraft beamwidths of 200 would



be desirable to obtain high angle scattering'behavior during specular



point tracking.
 


The frequencies used for surface scatteringexperiments determine the



sizes of the structure sensed -.-shorter wavelengths respond to smaller scale



roughness. As technology has advanced, operating frequencies for space­


craft communication have increased and this scale size has decreased.



For X-band we believe that structure between about 3 cm and 30 meters



is responsible for most of the scattering, with ibout 5 meters being an



"effective" scale size for the averaged result (Tyler et at., 1'971). 

Thus, X-band.scattering results would be expected to be quite appro­


priate' for lander/rover engineering studies bf the surface.*



The move to higher frequencieS-and shorter scale sizes is accompanied



by greater demands indata acquisition and processing. A uniform
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roughness over some range of operating frequencies leads to a linear



increase in the signal bandwidth which must be processed. Infact,



the roughness appears to increase as a fractional power of the frequency



(because smaller structure is being sensed) so the effect ismore than



one-to-one (Parker et a]., 1973). The move to higher frequencies



also means more directive antennas and (for the simpler types of 

scattering experiments) under-illumination of the target area, as



discussed above.



Dual-frequency operation, such as with S- andX-band, permits one



to study the roughness on two different scales. To guarantee that the



same physical surface is responsible for the echo received, operation



at the two frequencies should occur simultaneously.



The echo received after scattering by the planetary surface will be



spread over a range of frequenctes. Closed-loop receiving systems



are inappropriate for-these types of operations and all data must be



recorded from open-loop receivers. Bandwidths required depend on many



factors, the most important of which is spacecraft-to-target velocity.



Typical experiments could result in received signals having bandwidths
 


of a few tend of hertz to several tens of kilohertz; in-some cases the



center frequency may 'drift considerably with respect to the bandwidth.



Telemetry sidetones have the potential for causing interference with



the desired echo signal. The position and spacing of sidetones and



their interference potential' depends on the experimental geometry. A



simple solution is to turn off as much of the telemetry as possible



during bistatic radar operations; if the remaining sidetones are several
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tens of kilohertz from the carrier, it is unlikely that interference



would be a major problem.



For scattering experiments, oscillator stability by present standards



is not a constraint. The scattered signal is broadened and shifted by­


amounts-discussed above. So long as the oscillator does not drift



appreciably with respect to these limits, no experimental problems



are likely to arise. The possibility of an analysis using synthetic



aperture techniques would require that the transmitter and receiver



have very stable frequencies; no such experiment has been proposed,



however.



Depolarization studies have not progressed far with bistatic radar;
 


some results on unpolarized vs polarized echo power have been reported



by Tyler and Howard (Tyler and Howard, 1973). Earth-based studies of



Mars (Downs et al., 1975) suggest that 20 dB isolation between circular



polarizations may be needed for proper study of depolarization of that



planet.



The oblique nature of most bistatic-radar scattering studies necessitates



the reception of both polarizations of a scattered signal. Near the



Drewster angle equal powers return in each circular component so that



a simple 3 dB in total signal power is lost when only one polarization



is received. Studies with both circulars are also useful in identifying



the Brewster angle itself. The capability to transmit orthogonal linear



polarizations from the spacecraft would be of great benefit in this



respect since the vertically polarized component incident on the surface



gives rise to no first-order scattered signalat the Brewster angle



itself. Detection of this null with linear polarizations would be easier



than with circulars, but overall, circular polarization is preferred.
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SCATTERING FROM PLANETARY RINGS



Planetary rings when encountered by a spacecraft in a fly-by trajectory



affect the amptitude, phase, and power spectrum of a radio signal trans­


mitted from the spacecraft to Earth. These effects when studied as a



function of geometry, wavelength, and polarization yield information



concerning particle size, shape, orientation, material, number density,



and radial structure. Such information is valuable in studying the



origin and evolution of planetary rings.



The wave that propagates straight through the rings is coherent with the



incident wave. The amplitude and phase of both the copolarized (CP) and



crosspolarized (XP) received'waves are.measurable parameters. Trans­


mission of-two.orthogonal linear polarizations from the spacecraft with



simultaneous measurement of the CP and XP components on the ground is



required to allow a full construction of a weighted forward scattering



matrix. Symiaetry properties of this matrix



reveal the existence of any orderly orientation of the particles. 

Simultaneous measurement at two or more coherent wavelengths is very 

useful in identifying the effective particle size. For example, 

dispersive measurements at S- and X-bands are quite sensitive to the size 

of ice particles with effective radius in the 0.5 - 10 cm range. 

The phase of the coherent signal is actually measured as an additional



shift in the carrier frequency. If two adjacent incident rays undergo



differential phase change through the rings, the wavefront of the



exciting wave will be slightly bent causing a doppler shift of the



received signal, much in the same-way as atmospheric ray-bending. A



closed-loop receiver tracking the frequency of the coherent signal
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yields the doppler history which when integrated gives the phase infor­


mation.



The precision of a coherent phase measurement is determined by the



frequency stability of the spacecraft oscillator over the measurement ­

integration time. If 6 is the fractional change in oscillator fre­

quency, f, over integration time, T, then the smallest detectable 

phase change A over a small radial distance Ar = V • T is 

A4/Ar = (6. f/V), where V is the spacecraft velocity projected
 


along the radial line. For single scattering conditions 0 is directly



proportional to the particle areal density, n, and hence the smallest



detectable gradient An/Ar is directly proportional to 6.



The main error in estimating the coherent signalamplitude is due to



pointing accuracies of the spacecraft antenna, with the error for X-band
 


more critical because of the very narrow antenna beam. For the Voyager



mission accuracy is limited to about 10% at X-band and 1% at S-band



(Eshleman et al., 1977).



Unlike for atmospheric measurements, the.closed-loop receiver will probably,



be tracking the coherent signal received mixed with a possible strong wide­


band incoherent component. The receiver must be optimized for operation



under such conditions.



Power lost from the incident coherent wave is scattered incoherently in



all directions. The Keplerian motion of the particles and the motion



of the spacecraft cause the received incoherent signal to spread in



frequency. For example, during the. JST Voyager clear-rings occultation



period the frequency spread may reach 6 kHz, if particles in the
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centimeter-meter size range are dominant. For transmission at two
 


orthogonal linear polarizations, the wide-band open-loop recefver can-,



therefore, be used to record both the CP and XP components of the



incoherent signal. The coherency matrix can then be constructed as a



function of time. Symmetry properties of the coherency matrix reveal



information about the shape and orientation of the particles. Spectral



processing of the coherency matrix elements yields power spectra which,



for optimized trajectories, can be directly related .to the radial struc­


ture of the rings. The accuracy of the inversion of the incoherent



signal spectra is primarily determined by the signal-to-noise ratio at



the receiver.
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II. B. 	 SOLAR PLASMA, GRAVITATIONAL PHYSICS,



MAGNETISM, AND GRAVITY-WAVES
 


THE CORONA, THE SOLAR WIND AND MAGNETIC FIELD AND COMET INTERACTIONS
 


Earth and the other planets of our solar system are immersed in



streaming, irregular plasma generated by the sun which is thought to



have profound effects on our environment. The fortunate circumstance
 


which makes life on earth possible and, perhaps, unique is the earth's



magnetic field which produces the protective barrier, qr bottle, in



which we live. This magnetic field, while quantitatively known,.



is produced by totally unknown means.



The sun's atmosphere extends into interplanetary space because it



is so hot. This extended atmosphere is referred to as the corona very



near the sun (r 5 R0 ) and'as the solar wind as it flows supersonically



outward at greater distances. The heat source for the corona is not



well-understood, but is thought to be energy transported from the con­


vection zone by mechanical (sound) waves having periods on the order



or 300 seconds. Further measurements of boththe average density and



the density fluctuations as a function of distance from the sun, es­


pecially 	 very near the sun, will help in improving this understanding.



Radiometric data from spacecraft are a unique source of such measurements.



Refinements in radiometric techniques can greatly enhance the usefulness



of the measurements.
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Steady State Corona



flany optical earth-based experiments have been conducted during solar 

eclipses in order to determine a model of the steady state coronal electron



density distribution. The model commonly used to describe the electron



distribution is static and spherically symmetric and referred to as the



Baumbach-Allen interpolation formula



Ne(r) _ A B


r r2+ 

where'-A, B, £, are coefficients to be determined from the data analysis,



and r is the radial distance from the sun. Experiments to investigate



this model have been conducted optically during solar eclipses for many



years and at radio frequencies by measuring the bending of radiowaves



from natural sources and spacecraft. More recently several spacecraft



have provided a unique opportunity to conduct similar experiments based



upon the group retardation of a ranging signal transmitted to and from the



spacecraft at a single frequency or at two frequencies simultaneously



(Muhleman et al., 1977; Tyler et al., 1977). Under such circumstances



the signal exhibits a time-delay given by



Atg ds fNe(S)ds 

path g



where;

 : + e2 
2 

2



wnere N 'and V are the group index of refraction and group: speed



respectively. It is evident that the group-delay is directly propor-'



tional to the integrated electron density along the ray path and inver­


sely proportional to the frequency squared. Thus, spacecraft dual fre­


quency radiometric data are a unique source for high accuracy determination
 


of the-paraiieters of this simple model.
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olwever, Lhe model iLself is inneed oI sophis Licai Lion. Ihis can be 

accomplished by adding solar latitude terms, and perhaps time variation 

as well. Thus, the purpose of this analysis is to deduce coronal electron 

density models for a wide range of solar geometries and over 

the solar cycle. in addition, this analysis should provide an averaged 

integrated electron density along a raypath and thus interface directly 

with the analysis of variations in columnar electron densities. Analysis 

of the data for properties of long term solar eyents, such as solar 

streamers, coronal holes, etc., appears feasible. Finally, the electron 

density profile may couple with the evaluation of other more physical



properties of the solar corona.



Solar Wind Fluctuations



Inorder to have a complete understanding of the solarwind we must learn



more about the temporal and spatial distribution of wave energy as well



as the average properties of the solar wind. One would like to understand



the fluctuations in the solar-wind: What is their relationship to the



average solar wind? How are they related to the sun or features in the



lower corona? What is their amplitude and frequency distribution-with



heliocentric distance? How do the fluctuations and average properties vary



during the 11 year sunspot cycle, the earth's putative 22-year weather cycle,



and the long term increases and decreases in solar output? Unique new in­


formation which will help in answering these questions can be obtained



from radio metric data of improved quality. The two major improvements



required are longer-continuous records and reduced noise on the data



measuring the change in columnar content.
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We wish to study the power spectrum of solar wind fluctuations at a 

function oF time and of the distance of the ray path from the sun. The power



spectrum gives the rms' fluctuation on a given time scale. To study a broad



range of frequencies one needs long records of the columnar content (change)



sampled frequently, but with the noise on each point being as low as



possible. Ifone is dealing with dual-frequency Doppler data, one needs



assurance that there are essentially no cycle slips in eithef channel. For



DRVID data the equipment drifts during a pass must be small: For range



data, which measures the total columnar content, the absolute system cali­


bration and its variation with communication parameters must be known to



good accuracy. To relate changes in the columnar content to features on the



sun one needs round trip data on which to perform autocorrelation analysis.



Round trip data also may give an indication of the solar wind velocity



distribution through the power spectrum (Callahan, 1974).



From radio metric tracking data one can investigate the power spectrum



of the solar wind in the frequency range 1/0.2T v : l/2At, where T



is the length of the-record and At is the sampling rate. Thus, one needs



long passes (T > 12 hours) and fast sample rates (At < 1 min., n10 sec.)



in order to investigate a useful range of frequencies. The parameters



-4 -3
specified give 1 x lO < v < 8 x 10 , 5x l0-2 Hz. Ultimate'ly,'contin­


uous records as long as a solar rotational period will be desirable.



The power density of the coluinar content for ray paths at uO.15AU



-4 Hz-l


(32R) from the sun was found to be P (v)= 4.4 x 10+20 v-29cm
 

from Mariner 6, 7, and 9 DRVID data (Callahan, 1975). To.fully utilize



the frequency range above 'requires (1)drifts,, cycle slips, etc. during
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a pass be less than 1 meter of two-way S-band range change and (2)



total noise per point be less than 0.01 meter. Increased noise reduces



x 10-2 
 the highest frequency available to %5 NIO.0I Hz, where N is



the noise in meters. Larger drift rates cannot be tolerated in obtaining



data on the low frequency structure of the solar wind. Round trip



data of the specified quality and duration would allow autocorrelation



analysis to detect plasma streams crossing ray paths to spacecraft out



to 5 AU. Simulations of the autocorrelation technique are being planned



in order to fully explore the noise requirements.



Data are needed over a rangeof SEP (sun-earth-probe) angles, from the



°
smallest at which data can be obtained (%0.5 ) to at least 350 in order



to investigate the radial dependence of the fluctuation spectrum. The



communication system must be designed and calibrated so that no additional



unknown equipment effects occur in near-sun tracking and there is a reason­


able probability of obtaining data on any given day for SEP angles > 10.



If data of the quality specified above are obtained from more than I



station per day so that the records are (nearly) continuous, or if



measurements of 'Im accuracy of the total columnar content are obtained



during each pass, it becomes possible to study the large scale (%2-7 day)



changes of the solar wind.. This density structure is known to be related



to magnetic sectors, but further data are required to link the density



to, surface features and to study the turbulence within the large scale



structures. Continuous data would allow improved separation of radial



and temporal effects. It wouldbe possible to study the effect of flares



on the solar wind structure. In addition to investigating temporal



effects on a time scale of a few days, it is of interest, and could be
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of importance for understanding climatic trends since the solar wind is



known to affect the earth's magnetic field, to determine the average



solar wind properties and-the fluctuation spectrum over the sunspot cycle.



Thus, the data specified above should be collected from all possible



missions and be included in any future plans for radio science. These



data would be especially useful if obtained from more than one spacecraft



at a time in different solar geometries.



Magnetic Field Interactions



The sun and Jupiter are prime candidates for studying plasma-magnetic



field interactions. The combination of two-frequency ranging and the



ability to measure signal polarization at S-band would make it possible



to measure the magnetic field strength deep in the corona and deep in the



atmosphere, over the poles of Jupiter.



Comet Interactions



Columnar content data and especially fluctuations in the content



make it possible to investigate some properties of comets and their



interaction with the solar wind. The cometary ionosphere causes 1-2 m



of. S-band range change. It is likely that fluctuations in this Value



would be large ( %0.lm) on time scales of seconds. More rarefied regions
 


of the comet where i-t interacts with the solar' wind' may contrib'ute range



changes of %O.lm, again on timescales of seconds to minutes. Dual



frequency data need to have resolution of %O.Olm on time scales of 

0.1-1 sec to resolve these -changes. Polarization data to determine



the fate of the solar wind magnetic field would also be useful. Measure­


ment of the attenuation by solid particles is probably not possible.
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GRAVITATIONAL PHYSICS



Since the advent of special relativity in 1905, it has been recognized



that Newtonian gravitation cannot be a complete description of the gravita­


tional interaction. Progress in experimental relativity and gravitation



is closely tied to advances in technology and the discovery of new as­


trophysical phenomena. Even though there are other formidable difficulties



in carrying out measurements of relativistic gravitational effects, they



are of profound importance both as they allude to the description of the



physics in strong gravitational fields which may be'encountered in astro­


physics and cosmology,and, in the deepest sense, as they further our



understanding of one of the fundamental physical interactions of nature.
 


Extremely strong gravitational fields are important in astrophysics and in



studies of the early history of the universe. In some cases such as black



holes, the gravitational potential energy is believed to be comparable



with the rest energy of the systems considered. The presently accepted



theory of gravitation, General Relativity, may be incorrect in this limit.



However, the differences of its predictions from those of Newtonian theory



have been tested so far only in the weak field limit and to about 1%



accuracy.



Greatly improved accuracy is possible without stretching the present



state of technology. Measurement of the vacuum-equivalent range from



tracking station to spacecraft with errors of only a'few centimeters is



now feasible. With dual-frequency, say S- and X-band, uplinks and down­


links the plasma contribution tothe apparent range can be deduced. For



signals that pass near the sun a third frequency would be necessary to


account for scattering whose effect on delay behaves 
 as f-4 .
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However, to interpret such range measurements at a comparable level 

of accuracy requires planetary landers or really drag-free spacecraft.



Ordinary spacecraft in heliocentric orbit are buffeted unpredictably by



non-gravitational forces to such an extent that the accuracy of interpre­


tation of these measurements would be degraded by up to four or five
 


orders of magnitude. Planetary orbiters represent an intermediate class



of spacecraft: the possibility for frequent "calibration" of their orbits



with respect to a planet, whose non-gravitational accelerations are very
 


small, prevents a large buildup of errors in the determination of the orbit



of the orbiter.



A Lander with such a ranging system on either-Mercury or Mars, if



usable for several years, could allow up to three or four orders of magni­


tude improvement in tests of several aspects of post-Newtonian gravi­


tation theory such as: (i)the fundamental principle of equivalence



for massive bodies; (ii)the direct effect of solar gravity on light



propagation; (iii) the post-Newtonian orbitalmotions of planets; (iv)



possible "preferred-frame" effects; and (v)a possible time variation of



the gravitational constant.



A drag-free spacecraft with an atomic clock on board, with a frequency



stability of better than 1 part in lO14 over time scales longer than a



few seconds, would allow a test of the so-called second:order redshift



if the spacecraft approached to within a few solar radii of the sun.



In addition such a spacecraft, or a Mercury orbiter or lander, would allow



a determination of the (dimensionless) coefficient, J2' of the second har­


monic of the sun's gravitational field with an uncertainty of under IxlO 7 .



An accurate determination of J2 is essential, for example for the proper



interpretation of the perihelion advance of Mercury's orbit in terms of



the non-Newtonian, or relativistic, part.
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Even without the full advantages of.present technology, substantial



advances can be made in probing the fundamental attributes of gravitation.
 


In fact, a-ll raevant solar-system measurements need be combined to­


allow the most stringent conclusions to be drawn.



In its recommendation to NASA, the Subpanel for Relativity and



Gravitation put this matter especially well:



"Precision measurement of the dynamics of the objects in the solar


system and observation of the behavior of electromagnetic waves in


the 	 gravitational field of the Sun is, in our opinion, the single


most important program to advance the understanding of relativistic


gravitation. As the natural time scales are of the order of planetary

orbital periods, the program by its very nature is a long term effort;


no single measurement or unique mission can provide the complete


description needed. Precision range, angular, and timing data evolved


over a matter of decades will constitute a rich legacy to natural


science provided by the~space program.



A rational program is multifaceted and should include:



1) 	 Vigorous and continuing support of radar ranging to the planets


and the laser ranging experiments to the moon.



2) 	 The development of a dual-frequency NASA transponder with 10 cm


ranging capability and its utilization on all planetary orbiter


and lander missions as well as the upgrading of NASA tracking


facilities for dual-frequency reception and transmission.



3) 	 Allocation of enough time and budget for data acquisition to


utilize fully ranging data from planetary orbiters and landers


even after the prime objectives of the mission in other disciplines


have been accomplished.



4) 	 The strong support of data analysis, preferably involving two


independent groups."
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GRAVITATIONAL WAVES



A gravitational wave pulse or train is a transverse spatial strain



propagating at the speed of light. Its effect on matter is to produce



a time varying change of distance between separated masses. Gravitational



radiation is now being sought by a variety of resonant or broadband



experimental techniques, in different wavelength bands. Methods proposed
 


for detection include observing the fringe shifts produced in a Michelson



interferometer, monitoring the Doppler frequency shift of an electro­


magnetic signal exchanged between two or more free bodies, and measuring



the resonant stresses excited in a single massive body. Various astro­


physical objects could be sources of such pulses, or of incident wave



trains. Double starts, supernovae, quasars, pulsars, and black holes



all should emit gravitational radiation at some level. At present, cal­


culation of the intensities and frequencies of occurrence of the strongest



possible sources is very uncertain. What is sure is the high scientific



importance of any successful observation of such radiation,.and of the



consequent "gravitational wave astronomy" thus made possible (Thorne and



Braginsky, 1976).



High precision Doppler tracking data will in general show three
 


pulses in response to each sufficiently intense pulse of gravitational
 


radiation incident on the solar system (Estabrook and Wahlquist; 1975).



The DSN capability for observing the strains of gravitational radiation



is non-resonant, and most sensitive in the very long wavelength band



(periods from 5 sec to 3000 sec). The low frequency edge of this response-­


corresponding to perhaps a 3000 second period--is set by the consideration



that the 3 pulses to be observed Most be separated by the round-trip-light­


time (RTLT) to a remote Doppler transponder. Missions to Mars and beyond



have RTLT's of this order. The high frequency limit of response--at
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perhaps 5 second period--is set by the increase, with frequency, of



interfering receiver phase noise and interplanetary plasma scintillations,



and by the poorer stability of timekeeping standards (Estabrook and Wahlquist,



1977; Wahlquist, Anderson, Estabrook and Thorne, 1977).



The radio science system requirements to make possible high pre­

cision Doppler observations of gravitational radiation are, first, that 

all competing phase fluctuations in the very long wavelength band be kept 

at a minimum for selected extended tracking passes of interplanetary 

missions--passes long compared to a RTLT. This minimum, as a practical 

ma-tter, is set by the station timekeeping standard. The best fractional 

frequency fluctuation (to be precise, the root Allan variance ay(2,,T), 

where y = Av/v0, v0 is the carrier frequency) attainable with H-maser 

timekeeping is somewhat worse than 10 15 --perhaps 3 x 10 15 -- from 30 sec 

to 3000 sec averaging times T. So that this is not significantly degraded, 

a comparable fractional frequency fluctuation upper limit mustbe required 

of all other elements of the Doppler tracking system: station cabling 

and timing electronics; transmitter, transponder, and receiver .elements; 

Doppler resolver and readout. A proposed precise statement of this re­

quirement in terms of a measure of phase fluctuation, viz., -- 360 VoTOy 

degrees, is that for X-band A-'s 0.10 for 5 sec < r 5 30 sec, and 

0.10 (T/30) for T > 30 sec.



The second radio science system requirement is equally important, and



similarly motivated. Measurements and calculations of the fractional



frequency fluctuation due to solar wind inhomogeneities show that, even



during solar quiet times and when tracking spacecraft in antisolar direc­


tions, the plasma noise at S-band exceeds the above limits by perhaps a
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factor of 10-100. Round-trip X-band should show solar plasma fractional



frequency fluctuation reducedfrom this by a factor of 16. Radio science



gravitational wave experimenters on future interplanetary'projects will



require coherent X-band uplink and downlink Doppler tracking, coupled­


with S-X or perhaps X-K dual-frequency links for separation of remaining



plasma noise from other Doppler signals (Anderson and Estabrook, 1978).



Accordingly, itwill be necessary to implement a ground transmit capability



for X-band Doppler, and receive capability for K-band, again with system



noise less than that of the hydrogen maser timekeeping. This approach



reduces the plasma phase noise problem by going to higher radio frequencies.



A complementary method is to measure the phase noise by transmitting si­


multaneously from the spacecraft at a lower frequency, e.g., S or L band,



and "calibrating out" the interplanetary medium. A combination of the



two approaches may be optimum.
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III. FUNCTIONAL AND DETAILED PERFORMANCE



This section specifies the functions which must be performed and the flow 

of information required to produce complete Radioscience data products. -

Since there is overlap with navigation requirements as specified in JPL 

Document 900-745 (Multimission Planetary Tracking System Requirements), 

it-should be noted that the Radio Science requirements cover more space­

craft and ground data types and further specify certain real time displays 

which are necessary to insure data quality. A block diagram of the overall 

system isshown in Figs. 1I1-I, 2, and 3. 

The individual blocks of the system are discussed in the following text



along with a table of functional capabilities and deliverables for each
 


element. Content and format documentation are also listed. The final



table of this section contains detailed performance specifications for



the system and allocations among the elements where appropriate.
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Track 2-12 and Track 2-14) 

820-i4 Deep Space Network Requirements - Subsystem Interface Design 

821-8 Deep Space Network System Requirements - Deep Space Network 
Radio Science System 1978 through 1983 
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Table III-1. Spacecraft Functional Requirements



The spacecraft capabilities presented reflect scientific experiment possi­


bilities for missions envisioned through 1988. With the exception of the



linear S-band- pol-arization and XKband re-ctive capabilfty required for the 

Jupiter missions, and perhaps others, the capabilities are currently in



existence. Further, the NASA standard transponder has several features



which will permit new types of experiments if they are proposed i'n the



future.



TABLE III-I



SPACECRAFT



Equipment:



NASA STD TRANSPONDER



S receive (X receive on selected future missions)



S &,X (11/3)S coherent transmission



RFS Capabilities



Two-way coherent



Two-way non-coherent (Receive & Lock on S-band)


Uplink transmit S & X down link with'frequency controlled


by auxilliary or ultra-stable oscillator



S & X band ranging [wide-band and/or one-way ranging on selected


mission]



Ranging Channel AGC



One-way transmit S and X or individual frequencies



Earth directable high gain antenna for reception and transmission



Linear S transmit for selected future missions



Telemetry required



RFS status



S & X transmitted powers



Temperatures



S/C attitude 
 -

Antenna pointing angles



RCVR AGC



Ranging AGC



VCO voltages



Modulation indices
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Table 111-2. Deep Space Network Functional Requirements



The capabilities called out in this table match those of the spacecraft and 

the needs of radio science experimenters. Review of current DSN planning



reveals that all of the functions exist or are planned.



Table 111-2



DEEP SPACE NETWORK
 


Deep Space Stations, Ground Communications Facility,


and Network Operations ard Control Center



Uplink



S transmit Right hand circular or rotatable linear polarization


X transmit Right hand circular



Sufficient power for 20 AU missions - controllable


Ranging


Control mod index


All frequencies tied coherently to station reference



Downlink - Closed Loop



Simultaneously and coherently receive S & X band and count doppler


Recover range information at .S & X
 

Produce amplitude information at S & X
 

Recover S/C telemetry



Downlink - Open Loop



Simultaneously and coherently receive S & X band right and left hand


circular polarization



Keep signals in receiver passbands either by use of wide band width


techniques (digital or analog) or by the use of programmed local


oscillators



Data outputs



S & X receiver system
 

Doppler


Range


Amplitude


S/C telemetry



Station condition



Transmitter power and frequency


Station status


System calibration -"



System temperature


Antenna pointing angles'
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Significant Event Data



Open Loop analog and/or digital tapes

Program local oscillator and/or synthesizer frequencies


Station logs (hard copy)


Post track report & eaTibration data,


Command event files



Other Data



Post track reports


Solar data


Weather


lonospheric electron content
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Table 111-3 Real-Time Radio Science Operations



Experience has demonstrated that-real time ifteraction between the radio



science experimenters, the project, and the DSN is necessary during



critical operations to maintain data quality and to assure quick recovery
 


from unusual situations. The requirements are based on Mariner 1O and



Viking operational experience as reviewed for the Voyager mission.



These displays should be available to the experimenter in the mission



support area.



Table 111-3



REAL-TIME RADIO SCIENCE OPERATIONS



Displays and Hardcopy



I. Capabilities Requirements



A. The program shall have the basic capability to display the


following parameters versus the corresponding data time (source


of parameter indicated):



1. S-band doppler frequency (Low rate, data type 37


2. X-band doppler frequencyj \High rate, data type 38]


3. S-band pseudo residual (TRK-2-14)


4. X-band pseudo residual (TRK-2-14)


5. S-band doppler noise (TRK-2-14)



a. High rate Data type 43



b. Medium high rate Radiometric


d. Medium validation
ratelow rate 
 

6. X-band doppler noise (TRK-2-14)



a. High rate


Radiomeri
b. Medium high rate Radi ometri c 

c. Medium low rate validation


d. Low rate



7. S-X doppler, discrete (TRK-2-14)


8. S-X doppler, summed
 

9. Signal level (TRK-2-14­


10. Angle 1 (TRK-2-14.)
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ll.- Angle 2 (TRK-2-14)


12. S-band DRVID (TRK-2-14)


13. X-band DRVID (TRK-2-14)


14- S-band DRVID noise (TRK-2-14)


15. X-band DRVID noDise (TRK-2-14)


16., S-band pseudo DRVID (TRK-2-14)


17. X-band pseudo DRVID (TRK-2-14)


18. S-X range (TRK-2-14)


19. PrIN (TRK-2-14) 

B. The program shall have the capability to continue displaying para­

meters with time module the full scale time.



C. The program shall have the capability of translating a full screen


Digital Television display to:



1. 	 Half screen vertical


2. 	 Half screen horizontal


3. Quarter screen



consistent with current display capability.



D. The program shall have capability of displaying up to 12 parameters



at the same time, consistent with 3 quad-channel capability.



II.Operational Requirements



It is a requirement that the operator interface be irreducibly simple;


the operator shall specify no more than the following parameters:



1. 	 Station number, spacecraft number


2. 	 Band (ifnecessary)


3. 	 Parameter


4. 	 Beginning time, full scale time


5. Lower limit parameter value, full scale parameter value



to initialize a display.



III. Test Requirements



Testing shall consist of:



1. 	 Verification of capability and operational requirements.


2. 	 Comparison of Digital Television displays to corresponding tabular



NOCC Support Subsystem output for verification of basic graphics


accuracy.



Line Printer



Single and dual-frequency range and doppler observables and


ranging system parameters



TTY



Solar data and DSN post track reports
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Voice Nets



Access to mission operations and station through project channels


during critical periods.



Computation Capability



1108 Demand terminal and hardcopy unit
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Table 111-4



NON-REAL-TIME RADIO SCIENCE PROCESSING



The 	goal of the non-real time processing is to produce a series of tapes



which contain all of the-calibration, trajectory, radiometric and telemetry



data needed by the experimenters. The tapes involved are shown in Figures



III-I, 2, 3 and are as follows:



1. Wideband radio science Intermediate Data Record (IDR) which contains



all open loop receiver data and housekeeping data in digital form


as specified in Document 820-13, Module RSC-II-l, IDR 12-2 (CTA 21



Radio Science System deliverable).



2. Radio Science Intermediate Data Record which contains all open loop


receiver and housekeeping data recorded in digital form on computer 

compatible tape after frequency steering has been accomplished by 

the programmed local oscillator. Content and format are specified 

in document 820-13,Module RSC-ll-3, IDR 12-1 (DSS Radio Science 
System deliverable) , and Document 824-17. 

3. Open loop receiver analog tapes as back-up to the Radio Science IDR.



Tapes will be available until such time that the digital IDR system



is accepted by the experimenters. The back-up system will then


be the Wideband IDR.



4. Tracking IDR which contains closed loop receiver data and Deep Space



Station (DSS) information as specified inDocument 820-13, Track



2-14 and formatted as Document 900-700 (content summary).



5. Radio Science Calibration delivered by the Tracking System Analytic



Calibration (TSAC) computer as defined in Document 820-13, Track 2-12.



6. Trajectory Save Tape (TRAJ SAVE) as defined in Document 618-638 -

Software Requirements Document/Software Planning Document Part I 

Trajectory Analysis Subsystem. 

7. 	 User Tracking Data File (UTDF).as defined in Document 900-772 -


User Tracking Data File Interface Document.



8. 	 Telemetry EDR (TLM EDR) as defined in Document 820-13, Module IDR 12-1.



56



http:UTDF).as


Detailed Performance Requirements (Closed Loop)



PARAMETER 
 

Frequency Band Capability 
 

Received Signal Amplitude Calibration 
 

Received Signal Amilitude Precision



Error between any two points in a
 

10 db range 
 

Error between any two points in a
 

40 db range 
 

Absolute enc of Spacecraft


RE Carrier!T-


Single Frequency Doppler Phase


Stability

The error contained in doppler


measurements at S or X bands with an 
 

Cintegration time of 12 hours



Dual Freguency Doppler Differential


StabiTt


[heerror contained in differential 
 
doppler measurements S-3X/1l with an 
 
integration time of 12 hours 
 

Single Frequency an e Calibration


The error c nta ineabsolute 
 
range measurements made at either 
 
S-band or X-band throughout mission 
 
lifetime



Sin.ge Frequency Range Delay
StebI ity

Theia tion inthe error contained


insuccessive range measurements 
 
taken at S-band or X-band over a 12 
 
hour period with signal to noise ratio 
 
effects excluded



Dual Frequency Rane Differential


Calibration


The absolute error contained indif-

ferential range measurements, S-X 
 
throughout mission lifetime



MISSION REQUIREMENTS 

VOYAGER .PIONEER 
JUPITER SATURN VENUS 

S up S up S up 
S&X dn SaX dn S&X dn 

oE db 0.5 db 

GALL 

S& up 
SxSX 

ALLOCATION 

S/C GROUND 

NA NA 

0.1db 0.5 db 

SYSTEMDESIGN GOAL 

0.167 db 

FUTURENEEDS 

SX&K up 
dn 

NSP 

REMARKS 

Current DSN capability 
0.67 db 

0.033 db 0.033 db 0.033 db 0.0167 db 

.167 db .167 db 0 167 db 0.083 db 

Sxl0­12  5x10 1 2  x015 2xIO 12  3xlO12  1xl& 12  IxIo 17  JOP and future need based on 
gravity wave experiments for 
averaginq times from 30 to 
3000 sec 

0 367,m 0.367 m 0.33 a 0 1 m 0.1 m 

0.043 m 0.043 m 0.04 ri 0.02 m 
Current DSN capability 2m; 
continued testino and re­
desion to improve. 

Current DSN capability 2.5m;
continued testing and re­
design to improve 

0.36 m 0.36 11 0.33 m 0.1 m 
Current DSN capability O.Sm, 
continued testing and re­
design 

0.233 an 0.233 m 0.2 m 0.1 M 
Current DSN capability O.33m, 
continued testingand redesign 



Detailed Performance Requirements (Closed Loop)



MISSION REQUIREMENTS ALLOCATION


PAAEESVYGRPOERSYSTEM 	 FUTURE 
 REMARKS



Current DSN capability 0.5m,
 
continued testina and re­

desiqn
 

Requires ex ost facto


antenna pointing information


from S/C. Current USN capa­

bilities 0 67 m



Requirement comes from need


to do differential amplitude


measurments to I" accuracy.


Knowledqe of DSS open loop



noise temperature to
 
1. accuracy during critical
 
events is necessary



Goal is to know frequency of 

oscillators in open loop sys­
tem to clxln-l with nhase

noise jitter <IxlO- 12 . Currert
 
DSN performance of the or6­

arammed oscillator- < OCS H1z 
(S-band) yields:
 

"12
 
Af- 2xlO


F



All requirements (other than


Saturn ring) stem from pre-

diction system accuracy
 
Saturn ring experiment band­

width requirements are pre­

1himinary.



PARAMETERS 	
 

Dual Frequency Range Differential



The variation in the error contained


in successive differential range 
 
measurements, S-X, in a 12-hour 

period excluding signal to noise 	
 
ratio effects 	
 

Received Signal Amplitude Calibration 


Received Signal mplitude Precision


for changes in a 30 minute period 
 
with 1 sec averaging time 
 
Error between two points in 

range 

rn
Error between two points in 

range 


Absolute ency Accuracy


C wy) f 'v-1xlO 

a 10 db 


a 40 db 
 

Phase Drift (1000 sec period) S
Phaerif() <36O 3 <36O 3 
 
14 

Differential Phase 	
 
Betwee-nchneTs-SS, XX, S-3x/ll 


Absolute Differential Phase 

Across passband of each channel 


Receiver Bandwidth 
 
S-Band 


X-Band 


VOYAGER PIONEER GALILEO S/C GROUND DESIGN GOAL NEEDS
JUPITER SATURN VENUS



0.033 m 0.033 m 
 0.03 m .01 M 	
 

Detailed Performance Requirements (Open Loop)



0.5 db 0.5 db 


0.033 db 0.033 db 

0receiver 

0.167 db 0.167 db 


- 1 	 IxlO- I  

<36 ° <36 


c36'xll/3 <36-xll/3 	
 

° 	
 <I° 
 <	


<I <I' <10 
 

2 5,10kHz 100 kHz 1 5 kHz 


7.5,3OkHz 100 kHz 3,15kHz 


0.1 db 0.5 db .167 db 	
 

.033 db .033 db .0167 db 


.167 db 167 db .083 db 	
 

2x10 1 2  -1 1  lxl0- 11 lxl 

<1o
 

NA <I 	
 

NA 	 1,2 5, 5 NA 

10, 100 k1 


NA 	 3, 7.5, 15, NA



30, 100 kHz





Ancillary Data Requirements


(Time, Earth Atmosphere and Ionosphere, and Navigation parameter requirements' which affect and/or correct Radioscience data)



MISSION REQUIREMENTS ALLOCATION


VOYAGER PIONEER SYSTEM FUTURE REMARKS


VOYAGER PIONEER GALILEO S/C GROUND DESIGN GOAL NEEDS
JUPITER SATURN VENUS



Calibration data



Universal Time 
 4 m sec 4 m sec


Polar Motion



X 
 .7m .7m


Y 
 .7 m .7m



Station Time

Synchronization 
 20 1 sec 20 , sec 

Distance normal to spin axis 
 1.5 m 1.5 m


Lorgitude 
 3.0 m 3.0 m


Relative 2-station Z height 
 6.0 m 6.0 m



Earth Troposphere


Temperature 
 5°C 5°C


Pressure 
 8.3 m Bar 8.3 mBar


Relative Humidity 
 7.3% 7.3%



Earth Ionosphere

Faraday rotation 12-hr period 
 5xlOl6el/m 2 5xlO l6el/m 2 
 Equivalent to '1/3 m A range



ORVID 
 .83 m .83 m



Multi-Station Doppler, S and X Band


and Dual Frequency



Short Term (60 sec) 
 .067 m .067 m


Long Term (12 hours) 
 .83 m .83 m



3-way Oscillator Offset
 

Absolute 
 1 mm/sec 1 m/sec


Stability, 36 hrs " 
 .017 mm/sec .017 mi/sec



Simultaneous Dual Frequency Ranging


6 hours 
 I'm 1 m .75 m





IV. IMPLEMENTATION



The science rationale as presented in this document represents the state



of man's knowledge in 1978. The engineering requirements levied upon the



system reflect this knowledge tempered with the realization that the state­


of-the-art is still advancing. Similarly, the state of knowledge is still



moving rapidly ahead and we can expect both changes and new requirements



as results are obtained from future missions. The best and least expen­


sive science will thus come from a developing, dynamic system which is



designed to retain flexibility. We have therefore stated hard require­


ments for known experiments which have identifiable objectives and have



specified goals for investigative areas which at present appear to be



speculative but, which in fact, are the frontiers of basic science. This



document will be updated periodically.



This is an iterative process between science and technology and it is the



goal' of this document to promote communication between the two while



providing an interface document which will get the known jobs done and make the



problems visible to all.



Thus, this document should be used through all phases of mission planning.



This will assure not only that the system can perform all of the scientific



experiments possible but that none will be excluded by oversight or



budgetary constraints caused by experiments emerging late in planning.' Table



IV-l lists the various phases of a typical project and shows the types of



interaction which will maximize the science return for the minimum cost. This



is no different from any project interaction with any of the multi-mission or



standard equipment efforts though it has been regarded so in the past due to



the fact the basic charter is science rather than engineering and cost benefit



analysis.
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Table IV-l


Radio Science Interaction with Typical Project



3 

0Project Phase MM Radio Science 
Requirements Document 

MM Radioscience 
Representative 

Experiment Reps 
DSN Systems 

NASA Selected 
Radio ,Science Team 

I. Advanced Planning ' 

2. Mission Study 

3. Proposal Evaluation1 

4. S/C design, 

5. Ground System Design 

6. Mission ,Planning 

7. Flight Operations 

8. Science Data Analysis 


