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and Mr. David A. Arnold as Analyst.
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sonian Astrophysical Observatory with respect to the cited grant.

V

^:,, :.^.^ r.... •	 t wvY.r^^^^-ter .	 .,.	
_ .._n,,.;,,e,„.^„..:eie::...^^.^'.^



FRECEIG p
1^GE BANK N()T 7rI7—^

Vii

ABSTRACT

This report contains an analysis of the feasibility of using the Dumbbell

gravity-gradiometer concept for measuring short-wavelength variations in the

earth's gravity gradient to a sensitivity of 0.01 eu. Variations in the gradient

are recorded by measuring tension variations in a vertically stabilized satel-

lite consisting of heavy masses connected by a long wire or rod. Tension

noise can arise from the excitation of various mechanical oscillations of the

system. The principal noise sources that have been identified are fluctuations

in atmospheric drag heating and drag force resulting from density variations

and winds. Approximate analytical expressions are presented for the tension

noise as a function of the system design parameters for various possible con-

figurations. Computer simulations using numerical integration have been

performed to study the tension noise for several sample cases. Three designs

consistent with Shuttle launch capabilities appear to be capable of achieving

the required sensitivity at reasonably low cost.
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SYSTEM NOISE ANALYSIS

OF THE DUMBBELL TETHERED SATELLITE

FOR GRAVITY-GRADIENT MEASUREMENTS

Final Technical Report

Grant NSG 8063

1. INTRODUCTION

The basic principle of the Dumbbell technique for gravity-gradient measure-

ments (Colombo et a1., 1976; Kalaghan and Colombo, 1978) is to detect gravity

anomalies by measuring the tension change they produce in a long wire of

length z with a heavy ballast of mass M at either end. The tension T and the

tension change AT are proportional to the product MQ. The values of z and M

are made large enough so that AT is above the threshold of tension measuring

devices.

Great care must be taken to reduce system noise introduced from both

internal and external sources. The major noise source is the expansion and

contraction of the wire owing to small temperature fluctuations, which are

introduced through variations in atmospheric drag heating and variable radiative

heating from the earth. In addition to this is the direct effect of tension

variations caused by drag variations due  to density and wind fluctuations along

the orbit.

The properties of tension measuring devices require that not only AT but

also AT/T be above a certain threshold to be measurable. Since the signal

AT produced by a gravity anomaly decreases with altitude much more rapidly

than the total tension T, owing to the central gravitational field of the earth,

AT/T depends on orbital height. Another consideration is the risetime and

1



transfer function of the system. The risetime is determined by the resonant

frequency of the longitudinal spring oscillations of Dumbbell. Near the

resonant frequency of the system, distortion of the signal occurs and higher

frequencies are filtered out. Damping is required for the various natural

oscillation modes of the system in order to absorb the energy from both noise

sources and previous signal inputs.
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2. GRAVITY-ANOMALY SIGNAL

In this section, analytical formulas are derived for calculating the

approximate values of the tension change AT due to a gravity anomaly and the

total tension T for the Dumbbell gravity gradiometer. The calculation of AT

assumes that an observed gravity anomaly in cm/sec t at the earth's surface can

be represented analytically by the density of a surface mass layer, which

causes a discontinuity in the strength of the gravitational field. The surface

layer is then represented by a grid of discrete mass points. The formulas for

AT	 d T	 b	 s d t	 al I t th	 b lut	 s't' 't AT	 d th f	 t'	 1an	 can e u e o c cu a e	 e a so	 a sen	 zvi y	 an	 a rac Iona

sensitivity AT/T required to obtain a given sensitivity. Section 2.1 presents

an analytical calculation of the gravity-gradient signal, and Section 2.4

shows the response of the Dumbbell system as it passes over an anomaly.

2.1 Analysis of Expected Signal Level
	

i.r

A small computer program has been written for studying the signature of

a gravity anomaly represented by a grid of point masses on the surface of the
f'

earth. Both the vertical component and the vertical derivative of the ac- t:

celeration are computed along a track passing over the anomaly. 'The vertical

derivative is the signal that would be measured b a Dumbbell gravity 9	 y	 g	 y gradio-

meter. The acceleration h produced by a point anomaly M* is
i^

S

h - -GM *W3

where G is the gravitational constant, h is the vector from the anomaly to the

gradiometer, and h	 The vertical component z of the acceleration is



and the vertical derivative of z is

Szdz - GM*(3z2h-5-h-3)

In the case where the satellite is directly overhead, this reduces to

az = 2GM*z-3	(1)

If an area has a gravity anomaly Ag (cm/sec 2 ), it can be represented by

a surface layer of density v (g/cm2 ) by using the formula

Go 4

Multiplying Go by an area dA gives a quantity with units of GM namely

GM = G6 dA = A dA

 this expression for GM into equation (1), we have

sz ^ Ag dA
8z	

7rz3
	 .

In a Dumbbell system consisting of masses M connected by a wire of length z,

the tension due to the gravity anomaly is approximately

AT= azMk=^dAW

	

8z 2	
^rz3 2

In the cases run with the program, the total mass of the anomaly has been

set equal to the integrated surface density of a 100-mgal anomaly (0.100 cm/sect}

(2)

(3)

4



over a 120-km x 120-km area. This gives a value for GM of

GM* _ A-dA = 
0.100 (120 x 105 cm) 2 = 2.29183 x 1012 cm  sec-2

2,T	 2 W

To study the effect of how the mass causing the anomaly is distributed,

the anomaly has been represented in three ways. In the first case, the anomaly

is represented by a point mass. This is equivalent to a sphere in the crust

whose density differs from the surrounding material. In the second case, the

anomaly is represented by a 7 x 7 grid containing 49 points spaced 20 km apart,

thereby covering a 120-km x 120-km area. Each point contains one 49th of the

total mass. The third case has 40-km spacing between points, so that a

240-km X 240-km area is covered. Keeping the total mass constant, case three

is equivalent to a 25-mgal anomaly over a 240-km x 240-km area.

Figures I through 4 show the vertical component of the acceleration and

the vertical derivative of the acceleration, which is the quantity measured by

the Dumbbell gravity gradiometer. The four -Figures are for satellite altitudes

of 120, 200, 220, and 300 km, with the anomaly located on the surface of the

earth. The acceleration, which is negative, is plotted down from the zero line

and is given in milligals (1 mgal = 10 -3 cm/sect ). The derivative of the

acceleration, which is mostly positive, is plotted up from the zero line in

eotvos units (l eu = 10 -9 /sec 2 ). The horizontal scale is the distance along

the orbital path, with the origin directly over the center of the anomaly.

The three curves for each quantity correspond to a lumped mass and a

120-km x 120-km and a 240-km x 240-km distribution of mass. The lumped mass

always gives the most peaked curve, and the 240-km x 240-km distribution, the

flattest curve.

P;

5



120 km
a

b

C

EOTVOS
2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

2

4

6

8

10

12

14

16
MILLIGALS

--360	 --240	 —120	 0	 120	 240	 360
DISTANCE (km)

Figure 1. Vertical acceleration (top) and vertical derivative (bottom) of the
acceleration along the orbital path due to a) a point mass, b) a
120-km x 120-km distribution of mass, and c) a 240-km x 240-km
distribution of mass. In all cases, the total mass equals the
integrated mass of a 100-mgal anomaly over a 120-km x 120-km area.
Satellite altitude = 120 km.
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Figure 2. Same as Figure i for a satellite altitude of 200 km.
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Figure 3. Same as Figure 1 for a satellite altitude of 220 km.
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Figure 4. Same as Figure l for a satellite altitude of 300 km.

8

.,"^^•^_,-^'.:...y..:-:• .^ 	
=^^f.Y4^^t^r^	 —	 ^_,	 "..: -... . ^	 _	 _	 _'^.y.	 ^__-.ems— __ _.^'aJ



2.2 Wire Tension in a Tethered-Satellite System

An object of mass M in a central gravitational field of strength GM,

where M is the mass of the earth and GM = 3.986013 x 1020 cgs, experiences a

gravitational force F9 , given by

F =	
GNIN

g a

where a is the geocentric distance. In a circular orbit, this force is

balanced by the centripetal force F c , given by

Mv2
Fc = a

where v is the velocity of the object. In a tethered-satellite system, the

center of gravity of the system moves in accordance with the above equations.

If the system is vertically stabilized, all parts of the system move with the

same angular velocity w = v/a. The centripetal acceleration at any point is

then

Maw2

where w is a constant. The equation F g + F
c

 = 0 holds only at the center of
 f

gravity of the system. Since IFg I decreases with a and IF c I increases with a,

points not at the center of mass experience a net force away from the center

of gravity. The constant w, obtained by setting F + F = 0 for the center
g	 c:

of gravity, is

i

w -AN

9



The rate at which the net force F changes with a is obtained by differen-

tiating the quantity F  + Fc , keeping w constant. We have

Sa	 sa (Fg + F
c ) = da (-

GNM
 -2— + Maw2 ) = 2^ + MwZ
a	 a

By substituting for w 2 determined from the center of gravity, the value of the

derivative at the cen tLer of gravity is

6F 2GW + MGM = 3GMN
Sa	 a 3	 a3	

a3

The rate of change of the acceleration with respect to a is

6 _. 1 sF = 3GM	 (4)
^a	 M da --9—
	

.

As an example, consider a system consisting of two masses weighing 2

metric tons (= 2 x 106g) each connected by a tether of length Q = 1 km

(= 106 cm) orbiting at 220 km. The force on the upper Mass and therefore the

tension in the wire is approximately

T= 6F Q - 3" z 	
(5)	sa 2	 3 2

a

which gives

T` 3 x 3.98601 8 x 1020 x 2 x16 x 105 = 416,316 dynes
(6.378 x 10 + 0.220 x 10 8 ) x 2

As a second example, consider the same system as above with the mass

distributed uniformly along the wire. The force at a distance z 0 from the

10



center of mass is

x/2	

^ -

	

2 Q/2	 2	
z2

F(Z)=	 3GM M z
dZ

_XV42Z	 = 3W 2	 0
0 ,f a32	

a 2
—

Z
 a3 k $

z 	 0

The tension at the center of gravity (ZO = 0) is

F(0) = T(0) = 3GM^-- 	 = 208,158 dynes

which is half the tension obtained by having all the mass at the ends,

2.3 Tension Measuring Accuracy Required for 0.01-eu Sensitivity

At an altitude of 220 km, the acceleration gradient in a tethered satellite

system, from equation (4), is

8a = 3GM	 3 x 3,986013 x 1020 8 3 = 4.16 x 10 -6 sec-2
a	 (6.378 x 10 + 0.220 x 10 )

Since 0.01 eu = 0.01 x 10
-9 

sec-2 , the required precision is about 1 part in

4.16 x 105 , or between 2 and 3 parts per million.

In Figure 3 part c, a signal of about 0.23 eu is obtained from a mass

distribution that is approximately equivalent to a 25-mgal gravity anomaly

over an area 240--km x 240-km. For this case, a measuring sensitivity of

0.01 eu could detect a gravity anomaly on the order of 1 mgal.

2.4 System Response to Gravity Anomalies

The Dumbbell gravity gradiometer must be able to respond to a change in

gravity gradient within a time comparable to that required to pass over the

source of the signal. In addition to fast response time, the system must

11
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have sufficient damping that the effect of the signal dies out in a time

comparable to the length of time the signal lasts. A series of runs has been

done with a simple computer program that models two masses M connected by a

perfectly elastic wire with a spring and dashpot at one end. The parameters

used for the runs are M = 2 x 10 6 g, Q = 105 cm, the wire diameter = 0.5 cm,

the tether material is ULE (elasticity = 0.7 x 10 12 dyne/cm 2 ), and the altitudes

are 50, 120, 160, 220, and 300 km above the gravity anomaly. The gravity

anomaly is modeled as a point having an integrated mass of a surface-layer

density sufficient to produce a 10-mgal gravity anomaly over a 1 square degree

(111 km x 111 km) area. The natural frequency for longitudinal oscillations

is about 13.4 sec without a damper. Adding a damper spring with the same

spring constant as the wire lengthens the period by F, to about 19 sec.

Table 1 lists, as a function of altitude, the equilibrium wire tension, the

maximum tension change AT directly over the anomaly, the half-amplitude full

width of the system response, and the magnitude of the secondary bounce of

the system if significant. The response of the system to a sharp signal is

an oscillation that decays by about a factor of 2 on each half--cycle. This

behavior is particularly evident in the 50-km run, which was included specifi-

cally for that purpose, even though it is not a realistic case.

Table 1. System response to a gravity anomaly as a function of altitude.

Alt?cude	 Tension	 Signal AT	 Width of	 Bounce	 Orbital
(km)	 (dynes)	 (dynes)	 response signal	 (dynes)	 velocity

(sec)	 (km/sec)

50 450,332 439 6 111	 7.87

120 435,934 27.5 13 1	 7.83

160 427,981 10.7 19 —	 7.81

220 416,410 3.85 27 —	 7.77

300 401,622 1.45 39 —	 7.73

I
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As an example from the table, we see that at a 160-km altitude, the width

of the response signal is 19 sec and the orbital velocity is 7.8 km/sec; the

distance traveled along the ground is thus about 148 km. The runs for 160 km

and above show satisfactory response to the signal with no significant dis-

tortion due to bouncing. We can therefore conclude that the system response

will be satisfactory as long as the natural period of the longitudinal oscil-

lations of the system is less than the orbital height divided by the orbital

velocity.

Figures 5 through 9 show the tension (in dynes) versus time (in sec) for

the five cases in Table 1.

The tension signal AT and the total tension T can be calculated from

equations (3) and (5), respectively. For the case in Figure 8, we have

AT - Ag dA 2Q - 10 x 10-3 x (111.3 x 105) 
2 

x 2 x 106 x 105 = 3.7 dynes
,rz	 x (0.220 x 108 ) 3 x 2

and

T	 3GAM 
g ;
3 	 x 3.986013 x 1020 x 2 x 10 6 x 10 6 = 416,316 dynes

a	 (6.378 x 10 t 0.220 x 10

8

) x 2

which agree approximately with the results of the actual integration of the

orbital dynamics.

A
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3. SYSTEM NOISE ANALYSTS

Several noise sources have been identified that can interfere with the

;measurement of the tension signal of a gravity anomaly. The internal noise

of the tensiometer is discussed briefly in Section 7.1. The deployment of the

system in orbit (Section 4) will introduce various types of oscillations that

will die out with time as a result of damping present either naturally or by

deliberate design. This section discusses the external noise sources expected

to be present during the experiment lifetime. These include electrodynamic

forces, long-wavelength gravity features, radiation, and atmospheric drag.

Obtaining good resolution of short-wavelength gravity features requires operating

at the lowest possible altitude. Since the atmospheric density increases

rapidly at low altitudes, the resolution that can be achieved appears to depend

primarily on the degree to which the problemse of atmospheric drag can be

minimized. Data quantity and coverage depend on orbital lifetime as determined

by the satellite's initial altitude and the area-to-mass ratio (Section 5).

The noise level of the data will increase as the magnitude of variations in

atmospheric density and velocity increase. Atmospheric granularity introduces

noise directly as a result of variations in drag force and indirectly through

variations in drag heating, which cause thermal expansion and contraction of

the wire.

3.1 Atmospheric Density Variations

Atmospheric density variations have been measured by several satellites.

The information needed to study the effect of density variations on the

Dumbbell systeri is the density as a function of time along the path of the

satellite. Presumably, this informaticn is contained in the density data

obtained by satellite sensors, but we have been unable to find data presented

in this form in the literature. the reports do indicate, however, that the

behavior of the atmosphere is variable, with the density sometimes showing a

smoothly varying profile and at other times showing pronounced variations.
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One report (Rice and Sharp, 1977) suggests that the profiles are smooth about

80% of the time or show variations up to 5%. Variations of 5 to 15% occur

about 10 to 15% of the time, and pronounced variations, greater than 15%, occur

5 to 109 of the time.

In the absence of detailed information on the amplitude and wavelength of

the density variations to be expected, we have assumed that any wavelength may

be encountered, and we have studied the response of the system especially for

periods between 10 and 100 sec. We have assumed the amplitude of the variation

to be ±10% at 220 km, although the actual variations will probably not be that

great most of the time. Unless some means is available to know whether the

density is smooth during any set of tension measurements, it may be difficult

to tell from the data whether the variations observed are signal or noise.

Thus, it would be desirable to have the system designed so that the noise level

is within acceptable limits for any density variation that may reasonably be

expected. Since the gravity gradient cannot vary with a wavelength shorter

than the satellite altitude, variations shorter than this must certainly be

noise.

As one means of evaluating the system noise level, it would be useful to

have a capability of reading out the tension data at rates faster than the

shortest signal expected. Multiple paths over the same ground track also

provide a way to investigate the repeatability of measurements. Aside from

tidal effects, the gravity field is essentially constant, whereas atmospheric

density variations are expected to be random; thus, it should be possible to

reduce the effect of noise in the data by averaging the data from passes over

the same area. Another possibility is the inclusion of wind- and density--

measuring devices, such as the instrumentation carried by the Atmospheric

Explorer satellite. Data from these devices could be used as a weighting factor

or to compute approximate correction factors for the tension measurements.

At orbital heights, wind velocities on the order of 100 to 150 m/sec have

been observed. Since orbital velocities are on the order of 7.8 km/sec, the
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variation in the velocity of the atmosphere with respect to the satellite is

as much as 2%. Since drag heating effects are proportional to the cube of the

velocity and drag force is proportional to the square, winds can account for

variations of about 6% in drag heating and 4% in drag force.

3.2 Thermal Analysis

The temperature of the wire used in the Dumbbell satellite can undergo

short-period variations as a result of changes in atmospheric drag heating

or therr•,al and albedo radiation from the earth. The resulting changes in

natural length of the wire cause variations in tension and excite longitudinal

oscillations of the wire. Various approaches and materials have been considered

for minimizing this problem. A thermal model of the wire has been developed

and used in a computer program that calculates the thermal behavior of the wire

by numerical integration. In addition, an approximate analytical solution for

the thermal behavior has been derived to facilitate parameter optimization by

showing how the thermal variations depend on the design parameters. Sample

calculations using the analytical expressions are presented for comparison

with the numerical integration results.

Temperature changes cause tension noise by acceleratirg the end masses.

For example, if the temperature changed linearly with time, there would be no

effect on the tension since the end masses would be moving at a uniform velocity.

The tension change depends on the second derivative of the temperature with

respect to time. Tension noise from thermal cycling can be reduced by insulat-

ing the wire to prevent rapid temperature changes.

3.2.1 Approaches to the thermal problem

Three approaches have been considered for handling the problem of thermal

expansion and contraction of the wire: thermal compensation, thermal insulation,

and the use of low-expansion materials. Thermal compensation might be accom-

plished by the use of two wire materials, one with a positive coefficient and
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one with a negative coefficient such as Kevlar. If the wire is made with

alternating sections of two different materials, care must be taken that the

specific heat, emissivity, and absorptivity of the two materials are such

that they undergo the same thermal cycling. If interwoven strands of two

materials are used, it is essential that neither material goes slack under

differert temperature conditions. Since certain low-expansion materials are

composite substances that achieve their properties essentially by internal

compensation, this approach appears to be sound and will achieve the same

objective as thermal compensation.

Thermal insulation can be used in conjunction with low-expansion materials.

The time constants for conduction in a small-diameter wire (such as I mm) are

very fast. Conductive isolation between the load-bearing tether and an in-

sulating jacket appears to be -equired for effective insulation. We have done

preliminary investigations into possible manufacturing techniques for achieving

such isolation (see Section 7.2).

3.2.2 Materials properties

Various material.; have been ccnsidered for use either as insulating

materials or for construction of the tether itself. The first five entries

in Table 2 are are potential tether materials, presented in order of decreasing

expansion coefficient. The lowest expansion material is ULE, a doped fusers

silica. It could be drawn into fibers and used to construct a cable with a

suitable filler material to bind the fibers together. Cervit, a glass ceramic

material with a fairly low expansion, cannot be reworked and would he unsuit-

able for use as a tether. Kevlar is a very strong material but would require

much more thermal shielding than ULE does because of its higher expansion

coefficient.

MULE (UltraLow Expansion) is a synthetic amorphous silica glass of titanium
silicate and is a trademark of Corning Class Works, Corning, New York 14830.
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A{ITable 2. Materials Properties.

Material	 Condyctivi ^y 	 1	 Expansion	 Heat capacit^r	 Elasticity

(ergs cm- sec' `'C- )	 coeff'c'	 (ergs cm- 3 °c- ) (dynes cm- )
(x105 )	 (cm cm- O C- )	 (x107)	 (x1012)

(xl0
_
 )

Steel — 20 — 2.11

Kevlar 10.3 -2 1.7 to 3.8 1.3

Invar 14.4 0.7 4.2 1.38

Cervit 1.67 0.11; 2.2 0.9

ULE 1.31 0.03 1.65 0.7

Foam 0.02 — -- --

Mylar 0.15 — 1 .17

Mylar 0.0001 — -- —
superi nsul ati on

The last three entries in the table are insulating materials. Calculating

the thermal behavior of a 1-mm--diameter wire with a conductivity of 0.02 x 105

(cgs) gives a time constant on the order of 10 sec. The five potential tether

materials listed in the table all have conductivities much larger than

0.02 x 10 5 (cgs) and would therefore have fast thermal time constants. The

last entry in the table is for layers of aluminized mylar. The layers are con-

ductively isolated by spacers or a crinkled construction that provides point

contacts for conduction. When conductive isolation is used, the important

quantities in determining the effectiveness of a material are the heat capacity

and emissivity rather than conductivity. The elasticity of the potential tether

materials is given because it enters into the calculation of the risetime of

the system. In the diameters contemplated, all the tether materials possess

sufficient strength to support the loads that must be carried.

3.2.3 Analytical model of thermal behavior

Since thermal expansion and contraction of the wire is the major noise

source that has been identified, a computer program was written to analyze the
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thermal behavior of the wire. The wire is modeled as a series of concentric

cylinders with conductive or radiative heat transfer or both, between the layers.

Azimuthal temperature variations were not included. In practice, the thermal

time constants for conduction are so fast that layers having only radiative

coupling will be nearly isothermal. The model can represent layers of a

homogeneous material if the problem has azimuthal symmetry and will give order-

of-magnitude answers for asymmetric problems. Excluding the aximuthal dependence

gives conservative results, since the time constants are longer for asymmetric

problems. The model includes atmospheric drag heating and solar radiation for

the outer layer and thermal radiation from the surface.

The heat input from solar radiation at normal incidence per unit length is

2ralsun' where r is the wire radius, a is the solar absorptivity, and I
sun is

the solar radiation constant. The heat input from atmospheric drag at normal

incidence per unit length is rp a v3 , where P a is the atmospheric density and v

is the velocity of the wire with respect to the atmosphere. The heat radiated

from the surface per unit length is 2rrracT 4 , where a is the Stefan-Boltzmann

constant (= 5.6697 x 10 -5 ), E is the emissivity, and T is the temperature. The

heat conducted per unit length from the inside to the outside of a cylinder is

27rk
^nr2/r1 ( T1 - T2)

where k is the conductivity of the material and the subscripts 1 and 2 represent

the inner and outer surfaces of the cylinder. The net heat radiated per unit

area between two infinite parallel surfaces is

ae I E 2 {T1 - T2)

E  + e 2 - E I E2

It is assumed that the thermal absorptivity is the same as the emissivity. For

the case of two concentric cylindrical surfaces, the above formula has been
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multiplied by the area per unit length of the inner cylinder, giving

27rrla	
62E1 + E2 	 El E2 (T1 - T2)

as the net heat radiated from the inner to the outer surface. If E2 <<

the factor

El E2

a	 El 
+ 

e 2	 E 1 E2

reducesto e 2 . If E l = E2 and both are much less than unity, the factor reduces

f	 to 62/2. If the total heat input to a layer due to radiation or conduction,

or both, is Q, the rate of change of temperature is

dT =	 Q	 (6)

dt Cvzr(r^ 9

where Cv is the heat capacity per unit volume and t is the time.---= —LL-_

To simulate the effect of atmospheric granularity, the atmospheric density

has been modeled as

P a = p o [ l + R sin (p'^ )t]

where p g is the average density, R is the fractional variation, and P is the

period of the fluctuation. By means of a numerical integrator, we can determine

the temperature of each layer as a function of time starting from some initial

temperature distribution and using the rate of change of temperature given in

equation (6).
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3.2.4 Results of thermal analysis

Computer runs have been made to determine the thermal behavior under various

conditions of a 1-mm-diameter ULE tether. The wire is assumed to be moving at

7.7 km/sec through a region with an atmospheric density of 2.3I x 10-73 g/cc,

which is approximately the density at a typical Shuttle altitude of 220 km.

The density is varied sinusoidaily with an amplitude of ±10% of the mean value.

Variations of the radiational heating of the wire have not been included. The

problem of radiative variations is easier to handle than that of drag-heating

variations since most of the radiation can be reflected from the surface. Once

absorbed at the surface, the effect an the thermal behavior of the wire is the

same for either source. If the wire has no insulation, it will be nearly

isothermal unless the period of the variations is a small fraction of a second.

If the amplitude of the variation in drag heating is kept fixed and the period

is varied, the amplitude of the temperature variation of the wire is proportional

to the period. For a 20-sec period, the temperature variation is 0.0135°C.

Twenty seconds corresponds to 154 km along the ground at 7.7 km/sec.

A second case analyzed is a 1-mm cable consisting of a 0.9--mm load-bearing

core and a 0.05-mm-thick jacket conductively isolated from the core. In this

case, the heat transfer is radiative and depends on the emissivity of the surfaces

exchanging energy. A low emissivity is desirable, and runs have been made

assuming an emissivity of 0.05 for one surface and 0.8 for the other. Table 3

gives some sample values of the emissivity factor, which determines the rate

of radiative heat transfer.

Table 3. Emissivity factors.

E I E2
E l	 EZ	

E l + E2 - EIE2

0.8 0.8 0.6666

0.05 0.8 0.0494

0.05 0.05 0.0256
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The protective jacket acts as a heat reservoir to contain the variations

in thermal input and transmit them only slowly to the core via radiation. Since

the conductive time constant of the jacket is a fraction of a second, it functions

solely as a heat reservoir, with the gap between it and the core providing a

thermal barrier. The effectiveness of the jacket as a heat reservoir is pro-

portional to the product of the specific heat and the mass of the jacket. Table

4 gives the temperature variation of the core for selected periods of drag-

heating variations. The variation of the core temperature increases nonlinearly

with period because the core has more time to come to thermal equilibrium whey,

the period is longer. In the limit of very long periods, the ,jacket would have

no effect, since the core would always be nearly in equilibrium with the jacket,

and the temperature variation of the core would be proportional to the period.

The 20- and 200-sec periods correspond to 154 and 1540 km, respectively, along

the ground.

Table 4. Temperature variations.

Period (sec)	 OT (°C)

	

20	 ±0.0005
	50 	 ±0.0035

	

100	 10.012

	

200	 &0.0415

A third type of run used two jackets. The core is 0.77 mm, the inner

jacket is 0.06 mm, and the outer jacket is 0.05 mm. With a 20-sec period, the

temperature variation of the core is ±0.0000]°C. This type of multilayer in-

sulating jacket is clearly quite effective in principle. We have not looked

into the practical feasibility of such a design.

3.2.5 Approximate analytical solution of thermal behavior

The Dumbbell wire will receive heat input from solar radiation, atmospheric

drag heating, and infrared and albedo radiation from the earth. In equilibrium,
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the heat input equals the thermal radiation from the surface of the wire. In

general, the heat input will vary with orbital conditions, and the temperature

of the wire and its jacket will vary continuously with a time lag that depends

on the cooling time constants. Long-period temperature variations have negligible

effect on the wire tension. In this section, approximate solutions are derived

for short-period temperature fluctuations, expected primarily from variations

in drag heating. The short-period temperature fluctuations derived below will,

in general, be superimposed on the temperature variations of orbital period.

In the small-diameter wires considered for use with Dumbbell, the time

constants for conduction across the wire diameter are a fraction of a second.

We can therefore obtain an approximate solution for the thermal behavior of the

wire by assuming that all parts of the wire in conductive contact are essentially

isothermal. We consider here the cases of a bare wire and a wire with an in-

sulating jacket conductively isolated from the core.

The heat energy per second per unit length resulting from atmospheric

drag is approximately rp av 3 . If the drag heating varies by the factor

I + A sin wt, where w is the frequency, the wire will have a variable heat in-

put q given by

q = rp av3A sin wt

If the temperature fluctuations are small enough that the fluctuations in

thermal radiation are negligible, the fluctuation in the wire temperature rate

is approximately

T = H

where H (- Cvwr2 ) is the heat capacity per unit length. The expression for

T is

rpav3A sin wt - p a v 
3 
A sin wt

T 
r	 C n^	

Cvirr
v
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which we can integrate with respect to time to get

p a v3A cos wt
T	 -	 Cvzrrw

The amplitude of the temperature fluctuation is then

pav3A

AT	 Cvzrrw

As an example, for the case of a 2-mm-diameter wire with pa = 2.3 x 10-13

g/cc, v = 7.77 km/see, A = 10%, C  =; 1,65 x 10 7 ergs cm-3 °C -1 , and w = 0.314

(20-sec period), we get AT = 0.00666°C. Since the temperature fluctuation

is inversely proportional to r, we can reduce AT by increasing r. The value

of r required to obtain a fluctuation AT is

3pavA
r C vp^oT	 '

So, for these same parameters, we can reduce AT to 0.0005°C if r = 1.33 cm.

(A temperature fluctuation of 0.0005% gives an acceptable tension variation

with a ULE cable, as we will show in Section 3.3). For r = 0.1 cm, we have

AT = 0.0133°C, in good agreement with the result obtained by numerical

integration (first paragraph of Section 3.2.4).

If the wire is protected by a jacket that is conductively isolated from

the core, we can obtain an approximate analytical solution under the assumption

that the fluctuation of the heat transfer between the jacket and the core is

small compared to the fluctuations of drag heating. The rate of change of the

jacket temperature due to drag fluctuations is

qT2 = 2
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where 6 2 = r3p a v3A sin wt and H2 
is the heat capacity of the jacket, given by,

H2 = C
27r(r2 - r2)

r3 is the outer and r 2 is the inner radius of the jacket. Integrating T 2 with

respect to time gives

r3p a v3A cos wt
T2 = - 

C2Tr( r3
 - r2) 

w

The amplitude of the temperature fluctuation of the jacket is

r3pav3A
4T2 = 

C
2 7r( ^ 

3 - r2 ) w

The radiative heat input from the jacket to the core, q l , is

E l E 2	 44
q l	 2Tr rI - 

E l + E2 - E l E2 ( T2 ~ Tl)

where r  is the radius of the core, e l and E2 are the emi ssi vi ti es of the core

and the inner surface of the jacket, and T  and T 2 are the core and jacket

temperatures. If we assume that the fluctuation of T4 is small compared to the

fluctuation of T2, then the amplitude of the fluctuation in neat input to the
core is

4q l = 8Tl qT2 = 27rr1^ E
	 El

E2 

E E 
4T2 AT2

2	 1	 2	 12

The heat input as a function of time has the form

g l = A91 
sin wt
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and the rate of change of core temperature is

- q 1 ` Aq 1 sin wt
T 1 - H -	

H1

where H 1 = C 1 7rr1 2 . Integrating, we obtain

Aq
Tl = - H	 cos wt

1

The amplitude of the temperature variation is

21rr1ae1e24T3 AT2	 8ae1e T3 AT22
AT 	 C1---- ^ 1 ^ E2 e3Ez)	 1Z r1w(E1 + E2 - EIE2

We can substitute for AT 2, to obtain

8UET3r3pav3A

q T 1 =	 ,
C 1 C2 zrr 1 w (r3 - r2 ) ( e 1 + E2 - e1E2)

As an example, consider the case of a 1-mm cable consisting of a core and

a jacket with r 1 , r2 , and 
r3 

equal to 0.044, 0.045, and 0.05 cm. For the other

parameters, take T2 = 448.7°K, p a = 2.3 x 10 -13 g/cc, v = 7.77 km/sec,

C 1 = C2 = 1.65 x 10 7 ergs cm-3 °C-1, E1 = 0.05, E2 = 0.8, and w = 0.314 (20-sec

period). The amplitude of the fluctuation of the core temperature is 6 x 10-4

°C, which agrees approximately with the first entry in Table 4, obtained by

numerical integration. If the outside diameter of the cable is increased to

4 mm and we use r 1 = 0.1 cm, r 2 = 0.15 cm, and r 3 = 0.2 cm, keeping the other

parameters the same, we obtain AT  = 3 x 10 -5 °C. Increasing the wire diameter

simplifies the problem of thermal insulation, as the example shows. Equation (7)

(7)
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can be used to determine a set of wire parameters that will reduce the temper-

ature fluctuations of the core to the level required for keeping the tension

noise below the signal. 	 ;a

3.3 Longitudinal Oscillations
a

Longitudinal oscillations of the Dumbbell system can be excited by various

means, such as the process of deployment, drag--force variations, short-period
	

J

gravity-gradient variations (which are the signal being measured), and thermal
3

expansion and contraction of the wire. Damping is required to prevent con-

tinuous oscillation at the resonant frequency, which would obscure the signals

being measured. The resonant frequency of the longitudinal oscillations is an

important design consideration, since it determines the risetime of the system.

A physical model of the Dumbbell system, including an end-mass damper,

has been implemented in a small computer program that calculates, by numerical
integration, the orbital motion of two masses connected by a massless tether.

The program also models the natural length of the wire as a function of tempera-

ture. The results of the thermal analysis in Section 3.2 are used as input to

this program to study the effect of temperature variations on the wire tension.

In addition, an approximate analytical expression is derived for the tension

noise due to temperature variations. Two limiting cases are considered,

depending on whether the frequency of the temperature variations is faster or

slower than the resonant frequency of the longitudinal oscillations. These

approximations utilize the high- and low-frequency limits of the general

solution for the steady-state behavior of a driven harmonic oscillator.

The approximations for a harmonic oscillator are also employed in various

other parts of this report for obtaining closed-form solutions valid in certain

frequency ranges. The analytical expression for the tension noise shows the

dependence on the design parameters and can be used in selecting a set of

parameters to achieve the required tension noise level.

32



3.3.1 System risetime and frequency of the longitudinal oscillations

For a change in the gravity gradient due to a gravity anomaly to be detected,

the Dumbbell system must stretch to a new length such that the change in wire

tension equals the change in the gravity-gradient force on the system. The

risetime for this to be accomplish depends on the natural frequency of the

longitudinal oscillations of the system. Consider a system consisting of two

weights of mass M connected by a wi re of length Q. The system can perform

longitudinal oscillations with the center of the wire remaining fixed, and the

problem is identical to that of a mass on the end of a spring of length z/2

attached to a fixed support. The restoring force F supplied by the wire is

F = -kx, where x is the ;'isplacement of the mass from equilibrium and k is the

spring constant, given by

k = E 
A

Q/2

E being the wire's elasticity and A is its cross section. The equation of

motion of the system is

K = -kx

and the frequency w of the ,,scillations is

W =/k M

For a system consisting of two masses of 2 x 10 6 g each, connected by a

106-cm wire with an elasticity of 0.7 x 10 12 dynes/cm 2 , a wire thickness of

2 mm is required to give a fast enough risetime. Since A = wr 2 , the ;!--Auency

W is

W '

_ 
r 11

/wE ` o 	 x 0.7 X 10	
= 0.4689 rad/sec	 t^3}

e	
2 x 

106 x 10 
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and the corresponding period is

P= 2'r= 13.4 sec.
W

Since the end masses have spring dampers whose spring constant is comparable

to that of the wire, the period of the longitudinal oscillations is increased.

If the effective k is reduced by a factor of 2, the period is increased by

r. Considering only the wire, the frequency is proportional to the wire

radius.

Equation (8) can be used to make sure that a given set of system parameters

allows for an adequate risetime for measuring gravity anomalies. Since dampers

will lower the frequency, the frequency from equation (8) should be about a

factor of	 faster than that required for the overall system. The cross

section A = rr2 is the cross section of the load-bearing part of the cable

only. For a stranded cable, void 3r filler space should be taken into account.

3.3.2 Analytical model of longitudinal wire oscillations

The temperature variation of the wire obtained from the thermal model is

the form

T = Td [l + 8 sin (pnt)]

where TO is the average temperature, 8 is the fractional variation of the

temperature, and P is the period of the variation. A simple orbital dynamics

program has been used to determine the tension variation produced in the

Dumbbell wire by a temperature variation of a given amplitude and period.

If the temperature variation has the same frequency as the resonant

frequency of Dumbbell, the amplitude of the oscillations will increase indef-

initely. This can be ;prevented by having a damper on the end mass to dissipate
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the energy of the oscillations. The Skyhook dynamic simulation computer program

(Ka]aghan et a]., 1978) has a damping force proportional to the rate of change
	 t

of the length of the wire. The damping constant is usually chosen large enough

to provide critical damping and allow rapid numerical integration, since there

are no fast wire oscillations to integrate. This damping model could repre-

sent hysteresis in the tether; however, the actual hysteresis would presumably

be far smaller than the values that have been used simply to obtain fast

numerical integration. A model of an end-mass damper has been added to a simple

version of the Skyhook program to study , the effect of wire temperature varia-

tions with a more physically realistic model. This damper consists of a spring

and dashpot inserted between the wire and tht: end mass, as shown in Figure 10.

SPRING

WIRE
	

END
MASS

	

I	 ^— U --

	

I	 DASHPOT

I

Figure 10. Model of damper inserted between the tether and the end mass.

The force F  exerted by the damper is equal to the wire tension T w . The

wire tension can be written

	

T  = k[A - A0 ( T )l	 a

where Q 0 (T) is the natural length of the wire, given by

Y.
0
 (T)= 20 (T0 ) + a(T - T0)

35

r	 _-



in which a is the thermal expansion coefficient and T O is some reference

temperature. The damping force is given by

Fd = kd (9,d - k0d ) 
+ bdQd	

,

where kd is the spring constant of the damper, R  
is the actual length of the

damper, P. gd is the natural length of the damper, and b d is the damping constant

of the dashpot. In the orbital dynamics computer program, the length of the

damper z  must be added to the other variables to be integrated numerically as

a function of time. The rate of change of % d is obtained by solving the

equation

Tw = Fd

kCQ - Q O (T)]	 kd(Qd - ROd )	bdQd

for ! d , which gives

id = b 
jk[kk 	_ QO (T)] - kd(Qd - 

QOd)^

The end-mass damper does not appear to be capable of providing the critical

damping by which the system returns to equilibrium in minimum time without over-

shooting. However, if k  is set equal to k and b  is set equal to v rk—lM, the

amplitude of the oscillations is reduced by about a factor of 2 on each half--

cycle. The damper lengthens the natural period of oscillation of the wire,

because if reduces the overall spring constant of the system. If k  - k, the

period is lengthened by a factor of 42F.

3.3.3 Results of mechajA cal analysis

When the period of the temperature variations in the wire is less than

the resonant frequency of the Dumbbell system, the end masses do not have time
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to adjust their positions to an equilibrium configuration during a cycle.

Therefore, the fractional change in tension in the wire is independent of the

period of the temperature variations. As the period becomes longer than the

resonant period, the fractional change in tension drops off and becomes

negligible for long periods because the end masses are in quasi-static equilib-

brium throughout the cycle of temperature variations. Table 5 shows the

fractional tension change when the temperature variation is ±1°C and the reso-

nant frequency of the system is 35 sec.

Table 5. Effect of temperature-variation period
on fractional tension change.

Period (sec)	
o tension	 -4
tension -- x l 0

4.05

2 4.17

5 3.94

10 3.73

20 4.21

50 2.74

100 0.336

200 0.0875

For a tether with no insulation, the magnitude of the temperature variation

in the wire is proportional to the period. Since the fractional change in

tension is proportional to the amplitude of the temperature variation, the

fractional tension variation is obtained by multiplying the tension in Table 5

by the actual temperature variation. For an uninsulated wire, this results in

a kind of resonance curve, where the maximum tension change for a constant-

amplitude drag-heating variation occurs at the resonant frequency of the Dumb-

bell system. Table 6 gives the fractional tension change for an uninsulated

tether and a tether with one jacket.



Table 6. Fractional tension change for an uninsulated tether and for
a tether with one jacket.

Uninsu lated tether	 Insulated tether

Period (sec)	 AT (°C)	 A tension x 10-6	
AT (OC)	 A tension X 106

tension	 tension

1 0.000675 0.27 — —

2 0.00135 0.56 --- —

5 0.00337 1.3 -- —

10 0.00675 2.5 — —

20 0.0135 5.7 0.0005 0.21

50 0.0337 9.2 0.0035 0.96

100 0.0675 2.27 0.0120 0.40

200 0.135 1.18 0.0415 0.36

The design goal is a fractional tension change of a -Few parts per million.

The tether with no insulation does not quite meet this requirement, but the

insulated tether is well within the limit.

3.3.4 Driven harmonic oscillator

A number of sections in this report contain approximate analytical solutions

for the behavior of the Dumbbell syst ,^m under various conditions. The ap-

proximations depend primarily on whether the driving force is faster or slower

than the natural frequency of the system being driven. The equation of motion

for a damped harmonic oscillator driven by a force of magnitude F and frequency

W is

mx + bx + kx = Fe7Wt

where m is the mass of the object and b is the damping coefficient. A solution

of the form

x = CeiWt
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gives

C (-mw2 + i wb + k) = F

where C is the amplitude of the oscillation. If there is no driving force,

the frequency of the natural oscillation is

ib ± b + 4mk
w	

2m

With no damping, the natural frequency is w = vrk--lm; for critical damping,

Ibf = 2AW. The amplitude of the oscillation with a driving force is

C=

	

	 F
k-mw2+iwb

When the driving force is at the resonant frequency, k - % 2 = 0, and the

amplitude is largest. Without damping, the amplitude increases indefinitely

with time. If the frequency is low compared to the natural frequency, the

amplitude is C = F/k; in other words, the restoring force is in equilibrium

with the driving force. This assumes either that the natural frequency has

not been excited at any time in the past or that any natural oscillation has

died out owing to the presence of some damping in the system. If the driving

frequency is fast compared to the natural frequency, the amplitude is

A = -F/mw 2 , which is small in this case because of the factor w2.

The derivations in various sections of this report use the approximation

that the system is in equilibrium for low frequencies and stationary for

high frequencies.

3.3.5 Tension variations due to end-mass acceleration

The end masses in the Dumbbell system can be accelerated as a result of

temperature variations in the wire or transverse oscillations of the wire.

3

i
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We can write approximate analytical solutions for the tension noise in two

limiting cases. If the period of the variations is long compared to the

resonant frequency of the longitudinal oscillations of the system, the wire

acts nearly as a rigid rod and the motion of the end masses is approximately

equal to the change in natural length of the wire or the change in distance

between the ends of the wire. If the oscillations are fast compared to the

response time of the system, the end masses do not have time to move and

the tension noise is that due to the stretching of the wire.

If the end mass M is forced to oscillate so than the position y as a

function of time is

y = Ay sin wt

then the tension force as a function of time is

F = my = -Mca 2 4y sin wt

and the amplitude of the tension noise is of = Mw  4y. For example, if

each end mass is 10 68, X = 2 x 10' cm, and a = 3 x 10-8/°C, then the amplitude

of the motion for a PC temperature fluctuation is

oy = Za AT = 3x 10-3 cm

The tension noise for a 200-sec-period variation is

2	 -
AF 106 x (TO 0) x 3 x 10-3 = 3 dynes

and the fractional tension noise for T = 416,000 dynes is

T 416 3000 - 7 x 10-6

in approximate agreement with the last entry in Table 5, obtained by numerical

integration.
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If the frequency of the change in wire length is faster than the resonant

frequency, the tension noise is F = k Ay. The spring constant k for the

wire is

k=E

Setting F = 0.7 x 10 12 dynes/cm 2 , A = 7r(0.05) 2 cm2 , and z = 2 x 105 cm,

we have k = 2.75 x 104 dynes/cm. With a = 3 x 10-8P C and AT = 1°C, the

change in natural length of the wire is

Ay = az AT = 6 x 10-3 cm

The tension change is

AF = k Ay = 165 dynes

and the fractional tension noise is

AF =	 165 ` 4 x 10-4
T	 416,000

in good agreement with the first five entries of Table 5, which are below

the resonant frequency.

In summary, we can use the formula

AF = Mw  Ay	 (9)

to obtain the tension noise when the end mass M is executing a motion of

amplitude Ay at a frequency w that is small compared to the resonant

frequency. When w is larger than the resonant frequency, we can use

AF= kAy	 5
	

(10)



where k is the spring constant of the whole wire and ay is the change in

natural length of the wire (thermal expansion and contraction) or the

change in arc length of the wire ( transverse wire oscillati ons).

3.4 Transverse Oscillations and Drag

This section discusses the tension noise introduced by variations in

atmospheric drag force. Since the area-to -mass ratio of the Dumbbell

wire is much larger than that of the end masses, the wire will be curved

back by the drag force. If the drag force varies along the orbital path,

the amount of curvature will vary and a force will be exerted on the end

masses as a result of the change in distance between the ends of the wire.

Three effects of drag are considered here, in order of increasing

significance with respect to tension noise: the change in average tension

from the constant part of the drag, tension noise from higher modes of

transverse oscillation of the wire, and tension noise from the excitation

of the fundamental transverse oscillation mode by drag -force variations.

The change in average tension affects the measurement of the absolute

value of the total gravity gradient but does not interfere with measuring

the short-wavelength gravity-gradient variations. The excitation of higher

transverse oscillation modes can occur as a result of nonuniform drag along

the wire. Th,- excitation force is weak, and large oscillations develop only

under resonant conditions. The excitation of the fundamental transverse

€u de is the most significant effect.

Computer runs using numerical integration have been performed to

study the fundamental and higher transverse oscillation modes. The program

models the wire as a series of discrete masses having the lumped properties

of a section of the wire (Kalaghan et al., 1978). For studyino the funda-

mental mode, a single point is used to re?r  ^-:art the wir?. The accuracy of

this approximation is compared to an analytical calculr:ticas of the wire con-

figuration resulting from drag force (see Section 3.4.1). The derivation

(which contains nothing new) indicates the approximations and limits o

validity of the analytical expression.
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In addition to the computer runs, an approximate analytical expression

is derived for the tension noise arising from the excitation of the fundamental

mode. This can be used to calculait the noise as a function of the system

parameters. Sample calculations are compared with the numerical-integration 	
j

results. Practical considerations limit the extent to which the tension

noise can be minimized by varying the system parameters for .a configuration

consisting of two masses connected by a flexible wire. Such a system would

probably be limited to operation at altitudes where drag effects are not

too severe. For this reason, two additional configurations designed to help

cope with the problems of drag are also considered. One includes ballast

masses along the wire, and the other uses a rigid rod to resist the bending

effects of drag. Analytical expressions are presented for the tension noise
,.j

in each case, and sample calculations are compared with the results of
i

numerical integration of the system dynamics.

3.4.1 dire curvature due to drag

When drag acts on a wire connecting two masses, each section is given an

acceleration that depends on its area-to-mass ratio. Assuming that the area-

to-mass ratio of the wire is large compared to that of the end masses, we

can neglect the effect of the acceleration of the end masses. Other assumptions

are that the tension in the wire is constant, the curvature of the wire is

small, and the drag force is prependicular to the wire. In equilibrium, the

drag force on each element of wire must equal the restoring force due to wire

curvature.

Y
	

FD
	

T

E
}

T

K
X 0	X0+ dx 

Figure 11. Equilibrium drag force on a wire element.
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In Figure 11, we see that the transverse force FT due to wire tension is

dy(x^)	 dy(x^ + ax)	 d2
FT = wT dx + T	 dx 	= T	 dx

dx

The drag force on each section is

FD = 2rp a v 2 dx

Since

FT}FD=Q

in equilibrium, we can substitute for FT and F D and get

2
T da dx + 2rp a v 2 dx = 0

!X . _ 2rpa v2

dx2	 T

For simplicity, let the origin of the coordinates be at the center of

the wire, so that y and dy/dx are zero at the origin (see Figure 12).

Y

,P/2
T	 ---,-- 	 x

O	 9

Figure 12. Coordinate system for wire configuration.

Integrating twice to get the wire configuration, we have
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d	
2rpav2 x	 ^II^

dx	 T
f.

and

2
rp v 2

y = -	
T	

x	 (12)

i

To evaluate t^_ displacement of the end masses due to changes in wire

'	 curvature, we need the arc lengths of the curve from x = -k/2 to x = R/2.

This is giver. by

R'/2

	 Z/2 	 Q/2

f	 S=2f	 ds = 2 f Vdx2+dV2 =2f 	
1+^ A

T
 

dx

fi	 0	 0	 \ ////

Assuming that dy/dx is a small quantity, the integral is approximately

/2r Q

5 2
1	

I z (

0	
dx

`

Substituting dy/dx from equation (11), we have
Q/2

	

2	 ,112A,/2	
1 2rpav2	

1 2rp aA 3S_2
0	 1}2 -T) x` dx = 2x^ 3	 T /x
0	 0

2
2rp a v2	R3	 .

3	 T

If the wire configuration changes due to a change in atmospheric density,

the change in arc length is



a

d5 = B L dp = 
2 2rp a v2 	3 ((!,'2rc+pav2

apaa 3	 T	 ^2}	 T

If we write dpa as ap a , where a is the fractional variation of the drag force,

the expression becomes

22	
22

dS - 3°S. 2r^
Tv	 3 - a 1 av	 ^3	

(13)^2)	 3	 T

In the Skyhook dynamic siimuiation computer program, when a sing.. mass

point is used to repreFent the lumped. properties of the wire, the cross

section for drag is computed as the total cross section divided by the number

of wire sections, which in this case is two. Ire Figure 13, the lumped

properties of the wire are represented by the mass m. The drag force F

M

I	 T

r-
x 

m ---^

T

1

M

Figure 13. Equilibrium displacement of wire midpoint by atmospheric drag.

displaces the mass m by a distance x such that in equilibrium,

F = 2T V2aQx	 (14),
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or

x` 4T
F

By convention, the drag force on m is

F = 2rpav2 Z = rpav2k

and thus the displacement of the midpoint of the wire is

Q	 2	
rpav2z2

x= 4T rp avQ=	 4T

The accuracy of this convention can be compared to the results of the

analytical solution. From equation ( 12), the magnitude of the displa cement

of the middle of the wire relative to the ends is

rpav2 
Jt 

2	 rpav2k2

T	 (2 )	 4T

in agreement with equation (17).

The distance S between the ends of the wire in the lumped-mass case is

2	 2	 2
S=2(^} - x2 =Q 1- (Qx) ^Q1-2 (2x)

If the drag force changes, the change dS in distance between the ends of

the wire is

dS =	 (4x) (Q) ap dpa = - ^
x a^ 

dpa
a	 a

(15)

(16)

(17)



Differentiating equation (17) with respect to p a gives

i
ax _ rv

2Q2 
_ x

ap a - 4T	 pa

and thus

dS _ 4x L-
 

dp	 _ 4x2 
dp 

a

pa	
a	 Q	 pa

If dp a = ap a , then, from equation (17), we have

i,

	

2 2	
2 2	 .;

dS=- 4°' x2 =-
4a 

Y'pavR	 =-a rpav	
3	

(1$)
Q	 4T	 4	 T

Equation (18) differs from equation (13) by having a factor of 4 in

the denominator instead of 3, so that the lumped-mass approximation under- 	 A

estimates the change in displacement of the ends by the factor 3/4. (The

minus sign results from computing the change in distance between the ends

for a fixed wire length-rather than computing the stretching of the wire with

fixed end points, as is done in the analytical treatment.) Since the amount

of computer time increases sharply with the number ff mass points, most

runs were done with two points representing the end masses and one point

representin, the wire.

3.4.2 Effect of drag on total equilibrium wire tension

In equilibrium, the tension force that the wire exerts on each end

mass has a vertical component TG resulting from gravity-gradient and centripetal

forces and a horizontal component T
D
 due to drag. Since the drag force is

shared equally by the two end masses, T D is half the total drag force on the

wire. The total tension T is the vector sum of the two components, and the

:,iagni tulle of T is
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2	 2T	 T	 T
T -^TG2 TD = TG V + T^ = TG 1 ^ 2 TD	 R TG f 2TG	 G	 G

For example, if Q = 10 5 cm and the wire diameter is 0.5 cm, TD = 2130 dynes

and TG = 416,400 dynes. The change AT in T due to T D is

AT = TD TD	 2130 x 2.557 x 10-3 = 5.45 dynes

^UG)

and the fractional tension error is

T 2
AT = 1	 D	 = 13 x 10"62 G

This tension error affects the absolute value of the gravity-grad i ent measure-

ment but will not interfere with measuring the variations in the gravity

gradient due to gravity anomalies.

If the ballast is distributed along the wire, the effect of drag is

different. Suppose, for example, that the ballast consists of N equal masses

distributed uniformly along the wire. Let us assume that the area-to-mass

ratio of each section is designed to be uniform, so that the ballast masses

stay in a straight configuration. Near the center of the system, the tension

will be half as great as the tension produced by the same total mass concen-

trated at the ends of the wire. Compared to the system with two end masses,

the tension due to the gravity gradient with N masses is T G/2 and the tension

due to drag is TD/N for a wire section in the middle. The fractional tension

error becomes

AT _ I TD/N 
2	

2
(TD)2

T 2 'G/2 	 2TG



3.4.3 Normal nodes of transverse wire oscillations

This section reviews the analytical expressions for the transverse

oscillation modes of a string fixed at both ends. The formulas can be used

to calculate the frequencies of the normal oscillation modes. The frequency

of the fundamental mode calculated analytically is compared to the frequency

of the lumped-mass approximation used in the Skyhook dynamic simulation

computer program.

In a system consisting of a long wire with heavy end masses, the normal

modes for transverse wire oscillations are given by (Morse, 1948)

y = A n sin ('rnx ) cos (-nc t)

where An is amplitude of the n th mode and n is a positive integer. The veloc-

ity of wave propagation c is VTI—E, where T is the tension and E is the mass

per unit length of the wire. The frequency of the transverse oscillation is

wn c _ vn T

^ ^ Q r k E

In the Skyhook dynamic simulation computer program, the wire i5 represented

by discrete masses having the lumped properties of the section of the wire

that they represent. If the wire is divided into N sections, each of the N - I

masses representing a section of the wire has 1/N of the total mass and

total cross section of the wire. A single point halfway between the ends is

used to represent the properties of the wire (see Figure 13). If the mass m

is displaced from its equilibrium position by a distance x, the restoring

force is (reversing the sign in equation (14)),

4Tx

The equation of motion of the mass is

(19)
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mX-_ 
4x

and the frequency of the transverse oscillation of m is

4T 

_ Fit
)

-
2 
	 20

By convention, the Skyhook program computes the mass m by the formula

i7t = 
X2

Substituting this into equation (20)	 gives

ri—Ta_ 

r2 T 2.828 T
2

= Q	 -	 1t I e

This value is 0.9 times the frequency of the fundamental frequency computed

from equation (19), which has a factor of r. The agreement is sufficient

for the purpose of system noise analysis.

3.4.4 Resonant excitation of higher modes of transverse wire oscillations

Transverse oscillations of the Dumbbell wire can exist initially as a

result of deployment or can develop during the course of the system lifetime

as a result of drag-force variations on the wire. These oscillations can be

controlled by the use of dampers on the wire. The frequencies of the normal

modes given in Section 3.4.3 are proportional to the integers. If the frequency

of the drag-force variation is the same as that of the fundamental period or

any of the higher harmonics, there will be a resonant excitation of transverse

wire oscillations. In the absence of dampers on the wire, the amplitude of

the oscillations and the resulting tension variations will increase with

time as long as the force variations are applied. Because the drag force

decreases with altitude, higher harmonics can be excited by drag variations

since the force on the lower part of the wire is greater than that on the

upper part.

51



Simulations have been done to see the rate at which higher harmonics

are excited by drag. For example, when the periods of the first three

harmonics are 320, 160, and 106 sec and the drag varies with a 160-sec

period, a drag variation of 10% at 220 km produces a tension variation of

±20 dynes in two cycles. The total tension is 372,000 dynes. At 106 sec,

a tension noise of ±20 dynes is reached in three cycles. The excitation of

transverse modes other than the fundamental can be minimized by changing the

mass-to-area ratio along the wire to match the decrease in atmospheric density

with altitude. In this way, the wire receives a nearly uniform acceleration

at each point, but since the scale height varies with altitude, the correction

is only approximate. In the case of a wire with heavy masses at each end,

we cannot prevent the excitation of the fundamental transverse mode, although

the frequency can be designed to be outside the bandwidth of interest, which

is roughly between 20 and 100 sec.

3.4.5 Tension noise due to drag-force variations

Computer simulations have been used to study the tension noise resulting

from drag excitation of the fundamental transverse oscillation mode of a

wire connecting two heavy end masses. The atmospheric density is assumed to

vary with time according to the expression

Pa = p 0 (A 0 + A l sin Lt-)

where p a is the density as a function of time, p 0 is the mean value of the

density, A0 is a constant, A l is the fractional variation, and P is the

period of the variations. If the Dumbbell system begins with the wire

straight, atmospheric drag forces the wire back and an oscillation is set up

whose frequency is that of the fundamental transverse mode.

Figures 14, 15, and 16 show the results of a simulation using a wire 2 km

long and 2 mm thick, with a density of 1.5 g/cc; masses of 2 metric tons each

are at the ends of the wire, which is orbiting at 220-km altitude. 7h(,
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TIME TENSION
(sec)	 (dynes)

	0,0000000 833010,607000	 +

	

2,0000000 833021.073000	 t

	

4,0000000 833058.430000	 s

	

6,0000000 833138.172000 	 a

	

8,0000000 833146.291000	 s
10.00000F0 h33376,800000

	

12.0000000 833491,401000	 s

	

14,0000000 833613.418000	 s

	

16.0000000 633706,953000 	 s

	

18.0000000 833781.714000	 s

	

20.000000n 833664.695000	 s
22,0000000 833928.423000

	

24.0000000 833967,894000	 s

	

26.0000000 833951.935000	 s

	

28,0000000 633869.314000 	 s

	

30,0000000 833705.402000 	 s

	

32.0000000 833451.762000	 s

	

34.0000000 633156.511000	 -	 s

	

36,0000000 8321151.387000 	 s

	

3B.0000000 832584.264000 	 s

	

40.0000000 632373.597000	 s

	

42.0000000 832211.625000	 s

	

44,0000000 832072.177000	 s

	

46.0000000 831927.004000	 »

	

48,0000000 831754.412000 	 s

	

50.0000000 631565,568000	 s

	

52.00D0000 631352.731000	 s
Ul	 54.0000000 83I286.906000 0
W	 56,0000000 831297.147000 a

	

58.000D000 831429,643000	 s

	

60.0000000 831674,556000	 •

	

62.0000000 831962.014000	 •

	

64,0000000 832300.379000	 s

	

66,0000000 b32572.795000	 a

	

60.0000000 032796.247000	 +

	

70.0000000 632570.850000	 s

	

72,0000000 833127.860000	 s

	

74.000000D n33289. g 40000	 0

	

76,0000000 d33473,060000	 s

	

78.0000000 033664,297000	 0

	

80.0000000 633834.840000	 +

	

82,0000000 1133948.276000 	 s

	

84.0000000 833969.47b000	 0

	

86.0000000 833950.650600	 s

	

08.0000000 633849.334000	 s

	

90,0000000 833714.902000	 4

	

92,0000000 633572.552000	 s

	

94.0000000 n33439.764000	 s

	

96,0000000 633320.618000	 s

	

98.000000D 633217.114000	 s

	

100.0000000 033124.943000 	 •

	

102.0000000 833046.015000 	 s

	

104.0000000 h32991.091000	 s

	

106.0000000 832973.61900	 •

	

106.0000000 R32495.09b0U0 	 +
110.0000000 b33654.67.1000	 +

	

112.0000000 633144.41000n	 •

Figure 14. Transient behavior of a wire subjected to atmospheric drag starting from a straight
configuration. Wire tension (dynes) versus time (sec).
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T A ME	 IN-PLANE
(sec) WSPLACEMENT

(CM)

a, 000OUGO rr , riaomm	 s
2,0000000 4.T4F1n1	 •
4,130001100 4.021916	 s
6,0.00440 h.d61609
8, Da600DO 12 .,0	 401	 s

1D .DaDn.Da 18.7',9107	 s
17.0011D00D I.,,.639	 +
14.000000. 35.714156	 s
16.000(,0.0 45.447511
18.0000000 5S.860527
20.004000 66.H6249N
22.0000060 70.1812+"4
24.0000000 90.336292
26.0000000 t02.610211
20.00.0000 1)5.079395
30.ODODn00 127.36h55h
32.0DO4060 139.364581
34.0000000 150.77471 1,
36,0000000 161.373344
38,0000000 171023129
40.0000000 179.635122
42.D000000 187.174191
44.0000060 193.614813
46,00GD000 198.S19035
48.0000000 203.012323
50.0DO0000 2US.785979
52.0000000 207.118616
54,0000000 206.948640
56,0000DOO 2n5.107646
5U.04DOD00 201.741916
60.000006n 196.9U9260
62.0000000 190.760943
64.0000000 163.465656
66.0000000 175.177355
68.0000000 166.012260
70.00000DO 1:6.048076
72.0000000 145.141729
74.000D000 133.961480
76.0000000 122.016288
78.OD00000 109.674933
80.0000000 97.163173
82.0000000 84.741508
84.0000000 72.66U596
86.000600n 61.167122
88,000000+1 50,400083
90.0040006 40.468687	 s
92.00000DO 31.430435	 s
94.000DODO 23.329856	 s
96.0006606 16.230655	 +
98.0004000 10.233252	 s

140.0000040 5.41404H	 s
102.0000000 2.103772	 s
104.0000000 0.253H46 +
106.000OGUO 0.061641 +
108.0000000 1.3511:7
110.OD00000 4.231534	 s
112,0000000 8.$19280	 +

s
s
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s
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Figure 15. Transient behavior of a wire subjected to atmospheric drag starting from a straight
configuration. In-plane displacement (cm) of the center mass point representing the
wire versus time (sec).



x

TIME	 RADIAL
{sec) DISPLACEMENT

(CM)
4.aoocauo -2nDuOa, 000000
2.0000000 -209040.000060
4.0000000 -2000GO.OD640O
6,0000004 -240000.0000oo
6.^000000 -199999,999000

1O.OdOODOD « 199999, 99806U +

	

12.0000040 - 199'099.99hri40	 t

	

14,000000n -199999.490060 	 •

	

16.00000UO - 199999.983400	 •

	

18.0000000 -199999.971600 	 +

	

20.000DOOd - 199959.964000	 +

	

22.000004(, - 199499.944000	 •
24.4000000 -199999.925uGd
26.00000 & 0 -199999,902000
28,000D000 -199999.875000
30.0000090 -199999,645000
32,000000D -199999.912000
34.0000040 -149999.774000
36.0000000 -199999.743000
38.0000000 -199999.709000
40.000DODO -199999.677080
42.0000000 -199999.648000
44.0000000 -199999.6210DD
46.000D000 -199999,599000
48.000D000 -199999.561000
50.0006000 -199999.568000

(Ti	 52.0000000 -199999.561044
[37	 54.0000000 -199999.561000

56.0000000 -199999.567000
58.0000000 -199999,580000
60.000000x -199999,599000
62.0000000 -199999.624000
64,0000000 -199999,657000
66.0000000 -199999.684000
68.0000060 -199999.717000
70.000D000 -199999.751000
72.0000060 - 199994.785000
74,000000E -199999,619000
76.0000{,40 -194999,851000
76,0000000 -199999.863006
80,0004004 -199999.909000

	

82,0000000 -199999.933000	 •

	

84.0000000 -I99999.953000	 +

	

66,0000DOG -199999.969000	 •

	

68,0000000 -199999.982000	 +

	

90.0000000 -199999.991000 	 •

	

92.0000000 -199999.997000	 •
94.0000000 -200000.001000 +
96.0000000 -2000nO.003000 +
98,0000000 -200000,004000

100.0000000 -200000.003000
,102.0000000 -200000.003000 +
104.0000000 -200000,002600 +
106,0000060 -200GOO.001DOO •
108.0000000 -200000.001000
110,0004000 -20GOOO.OD1000 +
112,0000000 -200040,000000 +

s
s

•

a
s

a
s
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t

s
s

a•

t
ss

s
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Figure 16. Transient behavior of a wire subjected to atmospheric drag starting from a straight
configuration. Vertical position (cm) of the bottom mass with respect to the top versus
time (sec).



middle of the wire moves back 207 cm in 53 sec and returns to the straight

position in 105 sec. The displacement of the center of the wire causes the

end masses to be pulled back and forth, resulting in tension variations. The

equilibrium tension is 833,000 dynes, and the variations in tension are x-957

and -1724 dynes. A 20-sec 10% atmospheric density fluctuation was also

included in the run, but its effect is not visible on the plot compared

with the large tension variation due to the transient behavior of the system.

Some runs were done with the wire straight and with only the variable

part of the drag included (AO = 0). For P = 20 sec, the tension noise is

negligible. For P = 105 sec (the fundamental frequency), the tension noise

increases with t ;	and reaches *200 dynes, out of a total of 833,000 dynes,

in 200 sec. Resonant excitation of the fundamental frequency can be prevented

by having a damper on the wire. However, the excitation within one cycle

would still be substantial.

The resonant frequency of 105 sec for this case is very close to the

bandwidth of interest (approximately 20 to 300 sec, which corresponds to

horizontal wavelengths of 150 to 770 km along the ground). The fundamental

period can be lengthened by increasing the mass of the wire and thereby moving

the frequency away from the bandwidth of interest. Runs done with the wire

density set to 6 g/cc and the wire diameter increased to 4 mm do not show

resonant excitation for P = 100 sec. The low noise for P = 20 sec, unfortunately,

is not representative of the actual system noise to be expected, because

only the variation of the drag was included. When the wire is straight,

slight motions of the wire back and forth do not produce significant motion

in the end masses, because the distance between the ends of the wire changes

as the cosine of the angle of the bending of the wire.

To be able to see the effect of atmospheric density variations in the

presence of transient wire oscillations, pairs of runs were done with and

without the drag variations. Subtracting the tension in the baseline run

from the tension with the drag variations included makes it possible to see

the effect of the variations. With a 1 -km wire, 5 mm thick, having an
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average density of 5 g/cc and 2-tan masses at either end, the noise due to

atmospheric density fluctuations increases as the drag bows the wire back

(see Figures 17 and 18). The tension noise becomes about ±20 dynes when the

wire displacement has reached 125 cm, av about 80 or 90 sec into the run.

The noise is about the same for 20-sec and 50-sec drag variations, and the

total tension is 416,000 dynes.

Additional runs were done with the wire initially displaced to the

approximate equilibrium position (125 cm) to eliminate most of the transient

motion (see Figure 19). Drag fluctuations with P = 20 and 100 sec show a

nearly constant tension noise of about ±23 dynes.

All the runs described above involved integrating the motion of three

masses, two at the ends of the wire representing the ballast masses and one

half-way between the ends representing the lumped properties of the wire.

A pair of runs with four points representing the wire and two end masses

gave essentially the same results for the tension noise due to drag-force

variations.

If the area-to-mass ratio for each point whose motion is being inte-

grated is the same, drag-force variations will have no effect.. A pair of

runs was done integrating the motion of six 700-kg masses having a cross

section of I m2 . The length of the system was 1 km and the tensions between

the pieces were 145749, 233194, 262338, 233185, and 145737 dyne:. There was

no observable tension noise resulting from a 20-sec 10% atmospheric drag

variation.

3.4.6 Approximate analytical solution for drag-force tension noise

In a Dumbbell system consisting of a long wire with two heavy end masses,

tension noise will result from drag-force variations. The particular case

shown in Figures 14 through 18 indicates that the tension noise is above

the sensitivity required for the system. In order to study the dependence

of the tension noise on the orbital, atmospheric, and system design parameters,

an approximate analytical expression has been derived that is valid in the
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TIME
	

TENSION .
(sec)

	

	
DIFFERENCE

(dynes)

U1
00

0.0000000
2.0000000
4.0000009
6.000(3000
8.0000000

10.0000009
12.0000000
14.0000000
16.0009000
18.0000000
20.0000090
22.0008800
24.0000090
26.0000900
28.0000000
30.0000000
32.0000000
34.0000809
36.0000000
38.8000000
40.0800000
42.0000000
44.8000000
46.0000000
48.9009000
50.0000000
52.0000088
54.0800000
56.9000000
58.0000000
60.0000009
62.0009000
64.0000000
66.0000009
68.0000000
70.0000000
72.0000000
74.0000909
76.0000000
28.0000000
80.0000000
82.0000900
84.0000000
86.0000009
88.0008000
90.0000000
92.0000099
94.9000000
96.0000000
98.0000000

0.000000
--0. 127000
-0.353000
-0,459000
-0. 717080
-0.220000
-0.327000
-0.395008
-8.573000
-0.339000
0.398000
1.427000
2.554000
3.344000
3.20 7090
1.772000

-0.43700
-2.612809
-3.817000
-2.960000
-0.110088
3.746000
7.304000
8.888000
7.289000
2.812000

-3.188000
-8.376000

-10.354000
-7.886000
-1.616000

6.687880
13,043000
14.907000
11.098000

2.328000
-8.353000

-16.927000
-19.394800
-14.471000
-3.573000
9.411000

19.184800
21.533000
14.933008

1.102000
-14.653000
-26.335800
-28.898000
-21.107000

Figure 17. Effect of wire curvature on tension noise arising from atmospheric granularity. Differ-
ence between tension with a 20-sec period atmospheric density fluctuation and tension for
a baseline run with no density fluctuation. Time is in sec, and tension difference is in

dynes.



0_6606000
2.0000000
4.6000000
6.0600600
56060660

10.. 00 
000 0012.0000600

14.0009000
16.0000000
18_9000600
20.0000000
22.0000000
24.0000000
26.0P60000
28.6000000
30.0000008
32.0000000
14.0000000
36.0000000
38.0009000
40.0000000
42.09P0800
44.0096000
46.0060000
48.0000000
50.9000000
52.0600000
54.0000000
56.0006000
58_0060009
60.0000000
62.0000000
64.0000000
66.0000006
68.0000000
70.0000000
72.0666060
74.0000000
76.0000000
70.0000000
80.0000000
82.0000006
84.0000000
86.0000000
88.0000000
90.0006000
92.0000000
94.0000000
98.0000000
98.0006000

100.0000000
102.0000000
194_0000000
106.0000000
106.8060860
116.0000000
112.0000000
114.0000000
116.0040000

C."
lD

TIME	 IN-PLANE
(sec)	 DISPLACEMENT

(cm)
0.600000
0.085715
0.342748
0.770750
1.369137
2.137091
3.073561
4.177267
F.v46696
6.880110
8.475543

10.230810
12.143504
14.211002

	

16.430469	 •_
18.790861
21.312931
23.969228
26.764109
29.693741
32.754102
35.940994
39.250044
42.676711
46.216292
49.863930
53.614619
57.463211
61.404424
65.432849
69.542957
71.729108

	

7','. 985555	 •
82.306458
86.:•95BB6
91.117830
95.596208

100.114875
184.667633
109.248233
113.850394
118.467801
123.094124
127.723016
132.348132
136.963131
141.561686
146.137495
1$0.684287
1$5.195834
159.665956
164.088530
166.457501
172.766888
177.010793
161.183408
185.279027
109.292047
193.216981

Figure 18. Effect of wire curvature on tension noise arising from atmospheric granularity. In-plane
displacement (cm) of the center mass representing the wire versus time (sec).



CA
C]

ca

TIME
(sec)

0.0000000
2.0000000
4.0000000
6.0000000
8.9000000

10.0000000
12.0000006
14.0060096
16.0606099
18.0000005
20.0000090
22.0000000
24.0000500
26.0060009
28.9609090
30.0000000
32.0000000
34.0000000
36.0000000
38.0960000
40.0000000
42.0000000
44.0000000
46.0000006
48.6069006
50.6000000
52.0000000
54.0090000
56.9069006
58.0000000
60.0000000
62.0000000
64.0000000
66.0000000
68.0000000
76.9609990
72.9006000
74.0006960
76.0000000
78.0000900
80.6890009
82.0609900
84.0600000
86.0009000
88.0000000
90.0000000
92.0000000
94.0000000
96.0000000
98.0000000

TENSION
DIFFERENCE

(dynes)
0.500000

11.598000
20.501000
20.701000
12.479000
-1.013000

-14.457000
-22.797000
-22.784000
-3 4. 461000
-1.032000
12.284000
26.453600
20.345000
12.063000
-1.328000

-14.896000
-23.0B3000
-23.102900
-14.778000
-1.333000
12.088000
20.304000
20.248000
12.103000
-1.462000

-14.875000
-23.221000
-23.173000
-I4.893000
-1.276000
12.590000
20.512000
20.366000
11.974000
-1.363900

-14.886006
-23.223000
-23.026008
-14 710000

-1.. 3040u0
12.214600
20.451000
20.471000
12.237000
-1.171000

-14.679000
-22.750000
-22.868000
-14.450000

Figure 19. Difference between tension with a 20-sec period atmospheric density fluctuation and a
baseline run with no density fluctuation. The center mass representing the wire has a
nearly constant in-plane displacement of 125 cm.



wavelength range of the gravity anomalies to be measured. This expression

can be used to determine a set of parameters that will achieve the required

noise level.

Because the area-to-mass ratio of the wire is large compared to that of

the end masses, atmospheric drag forces the Dumbbell wire into a bowed con-

figuration. If the drag force varies, the amount of bowing fluctuates about

the equilibrium configuration. If the period of the fundamental transverse

oscillation of the wire is designed to be long compared to the period of the

gravity-gradient signals of interest, then drag fluctuations within the

bandwidth of the system will excite transverse oscillations at a frequency

well below the resonant frequency. In this situation, the actual displace-

ment of the wire will be small compared to that required to establish equilibrium

between the drag force and the restoring force resulting from curvature in

the wire. The movement of the wire is that due to inertial acceleration by

the drag-force variations. As the wire oscillates, the distance between the

ends of the wire changes, since the curvature of the wire is changing, and

the end masses are displaced back and forth.

If the end masses undergo a periodic acceleration of amplitude Ay, the

force causing that oscillation is V-r amplitude M A 	 where M is the mass of

the ballast. This force is the tension noise resulting from drag-force vari-

ations. We assume that the response time of the end masses is fast compared

to the frequency of the drag variations, so the masses move with the wire.

If the wire changes its length or configuration at a frequency faster than

the risetime of the system, the tension change will be that due to elastic

stretching of the wire, since the end masses do not have time to respond and

remain essentially stationary.

In equilibrium, the drag force displaces the mass m, representing the

lumped properties of the wire (see Figure 13), by the distance x, given in

equation (15). If the force changes by an amount AF, the mass m will be

accelerated from its equilibrium position and the mass M will undergo an

acceleration y, where

1
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a

Y
_	 x = 2xx

x Q/2	 k	 a

Similarly, the velocity y of mass M is , = 2Xx/z.

For typical parameters, the work done by the drag variation AF goes

almost entirely into the kinetic energy of m, and thus we can neglect M in

the equation of motion. For example, if the velocity of m is x, and x = 125 cm,

X = 105 cm, m = 50 x 10 3 g, and M = 2 x 10 6 g, the ratio of the kinetic

energy of the mass M to that of m is

1/2)M(2Xx^ = 4M z 2 = 2.5 x 10-4

(1/2)mx

2

Therefore, the equation of motion of the system due to force AF is approximately

OF = mx

The acceleration of m is AF/m, and the acceleration of M is y = 2AF x/mt.

The tension noise is

AT = My = 2Mm°F 
x	 (21)

and the relative tension noise is

AT _ 2M AF x
T	 m2T

To see how the relative noise depends on the design parameters of the

system, we can rewrite equation (21) as follows. Using x = F2/4T, from

equation (15), and setting of = aF, where a is the fractional variation of

the drag force, we get

AT _ 2MaHk _ aM
T r 4TmQT	

2mT2	
.

(22)
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If the density of the wire is p w, the mass m of half the wire is m = 7rr2pwi/2.

The tension in the wire given by equation (5), is

T = 3GW R	 (23)
a 3 2

c

The velocity v for a circular orbit of radius a is

v =	 ,
a

so the expression for the drag force in equation (16) becomes

F = 
rp a a Q
	 (24)

Substituting these expressions into equation (22), we have

AT =	
aMr2p 2( GM/a) 22 2 	4a.p22a4

T	 27rr2pw (Q/2) (3G(vjMQ/2a 3 ) 2	 97TPWM21 (25)

The analytical derivation above can be compared with the results obtained

by numerical integration in Section 3.4.5. The simulation of Figure 19 was

run with T = 416,400 dynes, i=i = 2 x 10 6 g, x = 125 cm, m = 49 x 103 g, and

't = 10 5 cm, with a 5-mm-diameter wire of average density 5 g/cc at an

orbital altitude of 220 km. The drag force of 2130 dynes was varied by

10%, giving AF = 213 dynes. Using equation (21), we get AT = 2M AF x/mk = 21.i

dynes which agrees approximately with the tension noise of 23 dynes in

Figure 19.

From equation (25), we see that the noise can be reduced to an acceptable

level by some combination of increasing p w , °, or M or by going to an altitude

where p a is sufficiently reduced. The dependence of noise on a 4 results

from the decrease in wire tension as the radius of the orbit increases.
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Since 
pa decreases with altitude much more rapidly than the factor a

4 , the
	 a

tension noise can be significantly reduced by going to a higher altitude.
r

The factor a probably depends on altitude also, so a and p a should be

evaluated together.

3.4.7 Drag-force noise with a small number of ballast masses

In Section 3.4.2, we considered what effect adding ballast masses along

the wire would have on the change in total tension resulting from atmospheric

drug on the wire. '4ere, we consider the effect of ballast masses on the

tension noise arising from snort-period drag-force variations.

The expression derived below is an approximate solution for the case

where the frequency of the drag-force variations is fast compared to the

natural frequency of the transverse wire oscillations but slow compared to

the risetime of the system determined by the natural frequency for longitudinal

oscillations. For simplicity, we assume that the ballast masses are heavy

enough to create nodes in the wire but not heavy enough to increase the

tension significantly, which we assume to be constant.

In equilibrium, the drag "Force F on each section of wire equals the

horizontal comp-)nents of the tension vectors, so we have, from Figure 20,

F = 2T - 
x= 4TTxN
	

(26)

Figure 20. Dumbbell wire with a small number of ballast masses. a) System
configuration. b) Equilibrium displacement of a section of the wire.
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If a force AF aF is applied, the equation of motion of the mass m is

aF	 (27)

	

The i4 cceleration	 will cause an acceleration in the vertical direction at
each end of the section of wire. given

x

	

X	
2Nxi

—/2—N

Since the centpr uf the whole system remains fixed, the acceleration produced
on the end mass is

	

*	
2N

2
 X^	

(281
N	 z

and the tension noise produced is 
AT	 The relative tension noise is

AT M
T T

To see the dependence on the basic parameters of the system, we must

substitute the expressions ^ and T. Solving equations (26) and (27) for

x and ^, we have

X

	

	 Fk	 (29a)4TN

aFX	
M	

(29b)

which can be substituted into equation (28) to give

2N 
2 FZ aF = aNF2

4 TW Tk 2Tm
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so that

AT _ aMNF2

T ` 2T2m

Since F is the total drag force FT divided b.Y N and m is the total wire mass

mT divided by N, we have

AT - aMNFT/N 2 AFT

T	
2T2mT/N = 2T2MT

This is exactly the same expression as equation (22), which was obtained

for the tension noise without ballast masses on the wire. Therefore, the

noise is independent of the number of ballast masses in this approximation

acid is given by equation (25),

AT 4apaa4

T - 9npwMt

A simulation has been run with a mass of 10 6 g at the center of the wire,

so that N = 2. The other, parameters are the same as those in Section 3.4.6

with two end masses, namely, M = 2 x 10 6 g, x = 125 cm, z = 10 5 cm, and

T = 416,400 dynes. The mass m of each wire segment is 24.5 x 10 3 g and

the tension noise is about ±22.5 dynes, as in the case with no ballast in

the c,^nter of the wire. Since the factor N cancels in equation (30), the

effect of short-period drag variations cannot be reduced by adding ballast

masses along the -wire. This result holds in the frequency range where the

drag variations are faster than the natural frequency for the transverse

oscillation of each section of wire. In this bandwidth, the effect of drag

fluctuations is inertial acceleration of the wire mass, and the wire does

not have time to assume an equilibrium configuration.

(30)

66



3.4.8 Drag-force noise with a large number of ballast masses

At the end of Section 3.4.2, we noted that dividing the wire into

N equal sections reduced the effect of drag on the equilibrium wire tension,

but in Section 3.4.7, we found that adding ballast masses did not reduce

the effect of short-period drag fluctuations. The difference in these

results arises from the fact that the first case is an equilibrium condition

while the second is a dynamic situation. Let us now consider the case

where the wire segments are made sufficiently short that their response time

is fast enough for them to stay approximately in equilibrium with the

drag fluctuations. We wish to see how the tension noise depends on the

number of ballast masses as a means of reducing drag noise.

An approximate analytical solution is derived for the tension noise

when a large number of ballast masses are distributed along the wire, as

shows in Figure 21. Considered as a continuum, the distributed ballast gives

M

L

JXP/N

M

Figure 21. Dumbbell wire with a large number of ballast masses.
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the wire as a whole a high effective mass-to-area ratio a..d lengthens the

period for transverse wire oscillations. The tension noise from drag-force

variations in such a system would result from oscillations of the short

sections of wire between the ballast masses. We assume that the ballast

masses are heavy compared to the connecting pieces of wire, thus creating

nodes that are nearly stationary. The tension in each section of wire will

be at least as Iarge as that produced by the end masses M. If the total mass

of the lumps is comparable to the mass M, the tension can be significantly

increased, especially at the middle of the wire. For simplicity in the

present calculation, we assume a constant tension equal to that produced by

the masses at the ends.

The short sections of wire of length Q/N are displaced by a distance

x, as shown in Figure 20 b, by the drag force F. In equilibrium, the drag

force is given by equation (26), With a large number of ballast masses,

the period of the fundamental transverse wire oscillation will be short.

If we assume that the period of the driving force is long compared to the

natural period of the oscillations, the wire will have time to move to a

new position that is nearly in equilibrium with the instantaneous value of

the drag force. Oscillations at the natural frequency are assumed to be

at a high frequency outside the bandwidth of interest, and they cari be

minimized by damping.

Under these conditions, if a force AF is applied to the vire, the

additional displacement of the wire is obtained by ,-eplacing F and x with

AF and Ax in equation (26) and solving for Ax to obtain

Ax 
LAF
	

(31)

From Figure 20, we see that the distance between the ends of the section

of wire will be decreased by

x	 4Nx Ax
AyN = 2Ax 

V 2N) 
= 

Q

s'^
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This assumes that the risetime of the system for longitudinal motion is fast

compared to the period of the drag-force variations, so that the system

has time to respond. Since there are N equal sections, the length of the whole

system will decrease by N 4y, and each end mass will be displaced by a

distance

AY =? N 4y -- 2N2xox
=	 z

If the end masses oscillate with an amplitude Ay and frequency w, the

tension noise according to equation (9) will be

AT = AF = Mw  Ay	 (33)

We can express Ay in terms of the basic system parameters to see the

dependence of the noise on the choice of parameters. If we set AF = aF

in equation (31) to obtain

RaF
Ax 4TN

and substitute this plus equation (29a) into equation (32), we have

4Y 2N2a (2 4TN)2 = aQF2	
(34)

8T

The drag force F on each section is obtained by dividing equation (24) by N:

rp (GM/a)Q
F =	

a 
N	 (35)

The fractional tension noise, given by dividing equation (33) by T and

substituting equation (34) for 4y, is

AT ` Mw 	 MW2axF2	
(36)T	

T	
8T3

(32)
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Substituting equation (23) for T and equation (35) for F gives

AT _ MW
2aQr2p 2 (GM/a) 2z2A2 m2ar2Paa7

(37)
T	 8(3GvjMQ/2a3)3 	 27"2N2	 .

For example, if we take w = 0.314 (20-sec period), a = 0.1., r r 0.25 cm,

Pa = 1.6 x 10
-13 

g/cc, a = 6.598 x 108 cm (220 ,-km altitude), M = 2 x 10
6
 g,

N = 100, and GV = 3.986 x 10 20 (cgs), we have aT/T = 2 x 10-6 , which is

an acceptable noise level.

Equation (37) is valid only when the transverse frequency of the wire

segments is taster than the frequency of the drag variations. The frequency

of the transverse oscillations of each wire is proportional to N. We can

show this, starting from equation (19) and setting n = 1 to give the

frequency of the fundamental, which is

^ T

If the wire is split up into N sections by ballast masses so that the length

of each section is Q/N, the frequency as a function of N becomes

_ N ?r T
W QI E

Equation (37) for 4T/T contains the factor w 2 , which indicates that the

tension noise rises sharply with the frequency of the drag-force fluctuations.

If the driving frequency m becomes greater than the longitudinal risetime

of the system, the assumption that the end masses move with the wire breaks

down. The tension noise in this case results from elastic stretching of

the wire. The spring constant for half the wire is

EAO - 2EA0
k =Q/2_	

k
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where A O = nra and r0 is the radius of the core. The tension noise is AT =

k Ay, where Ay is the stretching of half the wire, and the fractional tension

noise is

tT = k 6y

	

T	
(38)

The expression Ay/T appears in equation (36) multiplied by Mw . Therefore,

we can evaluate equation (38) by multiplying the right side of equation (37)

by k/Mw 2 to obtain

AT - ar2p22a7k
(high frequency)	 (39)

T 27 GMM3N2

For example, using the same case calculated for equation (37), together with

E = 0.7 x 10 i2 dynes/cm2 , r0 = 0.1 cm, 2 = 10 5 cm, k = 4.4 x 10 5 dynes/cm,

and k/M 2 = 2.24, we get a fractional tension noise at high frequency of

4.46 x 10-6 . The variable r in equation (39), on which the drag force

depends, should not be confused with the core radius r 0 , which determines

the wire stiffness.

In the Skyhook computer program, the amount of space and time required

to integrate the motion of the system rises sharply as the number of masses

increases. For this reason, no attempt has been made to verify the calcula-

tions for N = 100, however, a computer run has been done for N = 2 and a

drag variation of 60 sec. The other parameters for the run were v = 7.29

km/sec, M = 2 x 1068, a drag cross section of half of each wire segment of

A = 1.25 x 10 4 cm2 , (drag force) F = 1063 dynes, 2 = 105 cm, and T = 416,410

dynes. Using equation (15), we get an equilibrium displacement of each wire

midpoint;

	

2F -	 105 x 1063

x- 4^ 4 x 416,410 x 2= 31.9 cm
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The amplitude of the end-mass motion with a = 0.1, from equation (32), is

4y = 2 x 22 x 31.9 x 3.19 = 8.14 x 10-3
10

With w = 2w/60 = 0.1047, the tension noise calculated analytically from

equation (33) is

AT = Mw  ay = 2 x 106 x (0.1047) 2 x 8.17 x 10-3 = 179 dynes

We could have used equation (39) directly, but the above calculation allows

a more precise comparison with the computer simulation, which takes into

account factors like corotation of the atmosphere.

Since the formula (37) assumes that the driving force is slower than

the natural frequency of the transverse oscillations, the masses representing

the lumped-wire properties were set to 337.5 g, which gives a transverse

period of 20 sec (equation (39) is independent of the wire mass). The

Skyhook program has no model in it for transverse wire dampers. An initial

attempt to run this case failed because the wire was oscillating at the

natural frequency and giving a large tension noise (about ±500 dynes) with

a period of 20 sec. A crude damping model was added to the program by putting

in a force proportional to the velocity of the wire mass relative to its

equilibrium position with no drag. With this model, the tension noise

was ±168 dynes with a 60-sec period, in approximate agreement with the noise

level calculated analytically. Equation (39) shows that the tension noise

from drag-force fluctuations is reduced by the factor N 2 when the system

has a large number of ballast masses along the wire.

3,4,9 Short Dumbbell system

Preliminary information regarding performance data on tension measuring

devices indicates that the dynamic range required for tension measurements

can be substantially exceeded with full-scale signals much less than the
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1-lb signals considered so far. For example, it appears that 0.5 parts in 	
r

10' can be achieved on a total signal of 0.1 lb. This means that the minimum

detectable signal is 0.002 dyne, rather than I dyne, as previously assumed.

Since the tension is proportional to the mass times the length of the system,

.a reduction of at least two orders of magnitude could be achieved in mass

or length, or in a combination of both. Because system lifetime is a

limiting factor in the choice of parameters, and the drag cross section of

the wire is the major contributor, the high measuring sensitivity of the

tensiometer could best be utilized to decrease the length of the system.

Looking at equation '25) for the drag-force variations, we see that the noise is

inversely proportional to the product MZ; thus, decreasing this product by

two orders of magnitude increases the noise by the same factor. Equation

(39), for noise with a large number of ballast masses, is independent of

length. If N = 100 and z = 10 m, the wire segments would be 10 cm long.

Equations (25) and (39) are both derived under the assumption of negligible

bending stiffness for the wi:',e, with the only restoring force to keep the

wire straight being the tension. In a very short system, the cross section

of the wire for drag is not a problem. For example, if the length of the

system is 10 m and we allow 1 m2 for the cross section, the support could

be as much as 10 cm in width. In the case of a rod instead of a flexible

string, the restoring force is the stiffness rather than the tension. As

the diameter of the rod increases, the temperature Fluctuations due to drag-

heating fluctuations are reduced because of thle larger thermal mass of the

rod. The rod can still be insulated with a jacket to reduce the temperature

fluctuations further. Because the rod is both short and thick, the system

risetime is very fast. The frequencies of both the longitudinal and the

transverse oscillations of the rod are fast, and damping devices should

be simple to construct. Given that the area-to-mass ratio of the system

can be kept low, the orbital lifetime is larger. Such a system appears to

be capable of providing a high signal-to-noise ratio at low altitudes with

reasonable lifetime. Analysis of this system requires including models for

the stiffness of the rod.
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3.5 Pendulum Oscillations of the Dumbbell System

The periods of the pendular oscillations of the Dumbbell are

P=
0 W 

for the out-of-plane oscillation and

P	 27T = 1.15Pi 
^`^0	

0

for the in-plane oscillation, where wo is the orbital frequency. Since

these periods are long, they do not present a problem for measuring short-

period gravity-gradient variations. Such oscillations do affect the absolute

value of the gravity gradient, however, by changing the orientation of the

system. A correction for this effect can be made by measuring the attitude

of the system.

Pendulum oscillations also affect the drag force on the tether. Since

the drag force is parallel to the velocity of the atmosphere with respect

to the wire, drag can have a component along the wire, which has the effect

of increasing the tension at one end and decreasing it at the other. Tension

variations due to this effect can be removed by measuring the tension at

both ends of the wire.

The oscillations of the system are induced primarily by the oblateness

of the earth, which changes the direction of the gravity force. Orbital

eccentricity also produces oscillations. The oscillations produced by

differential drag at low altitudes can be reduced by tailoring the area-to-

mass ratio of the system to the variation of atmospheric density with altitude,

so that the acceleration from drag is the same on all parts of the system.

This can be done only approximately, though, because the scale height varies

with altitude. The same technique can be used to minimize the excitation

of higher modes of the transverse oscillations of the wire.
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3.6 Rotation of the End Masses

A set of computer simulations has been done to investigate the possibility

of passive triaxial stabilization of the end masses of the Dumbbell system.

In the configuration shown in Figure 22, a total mass of 2 metric tons is
at each end of a 1-km wire that is 2 mm in diameter. Mass A is a 100-kg

Figure 22. End-mass configuration.

instrument package, mass B a 950-kg ballast, mass C a 475-kg shell with a

475-kg three-axis spring damper inside, and mass D a 2000-kg ballast that

would, in practice, be o structure like masses A, B, and C. Masses A, B,

and C form a triangular structure lying in the orbital plane. Computer runs

have been made with the configuration as shown (integrating the motion of
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five masses) and with C as a single ballast identical to B (integration of

four masses with no spring damper).

To test the rotational stability of the system, the four-mass configura-

tion (no damper) was run with the following initial conditions: the

triangular structure was given a small initial angular momentum parallel

to the wire direction by assigning out-of-plane velocities of 0.2 cm/sec

and -0.2 cm/sec for masses B and C. the initial conditions were otherwise

those for a circular orbit in the xy plane (the equatorial plane). Masses B

and C reached a maximum out-of-plane separation of 335 cm in a quarter of

an orbit, and after half an orbit, the displacements returned to zero.

The initial out-of-plane velocities given to B and C have the effect of

putting those masses into orbits having a slight inclination with respect

to the orbital plane of the center of mass. Since the orbital planes of

B and C and the center of mass all intersect in the x axis, the end masses

return to the orbital plane of the center of mass twice per orbit. The

configuration is stable against rotation as long as the initial angular velocity

about the wire direction is smaller than the orbital angular velocity, so

that the ballast masses do not rotate past ±90 0 from the orbital plane.

A complication in achieving rotational stabilization is that the orbital

plane of the center of mass precesses if the orbit is not exactly equatorial

or polar, because of the effect of the earth's oblateness. To study this

effect, the system was run for two orbits at an inclination of 45 0 . The

out-of-plane separation increased by about 0.1 cm per orbit. This change in

the plane of the triangular end-mass configuration with respect to the

orbital plane is about 2% of the change of the orbital plane in inertial

space due to the earth's oblateness. It appears that the end-mass configuration

stays in the plane of the orbit as it precesses, at least to first order.

The small discrepancy observed is probably due to the fact that the end mass

is not at the center of mass of the Dumbbell and is therefore acted on

slightly differently by the earth's oblateness.
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Finally, the configuration shown in Figure 22 was run for two orbits

with the damper mass included and the orbital plane inclined 45° from the

equator. Masses B and C were given initial out-of-plane velocities of

0.2 cm/sec. The maximum out-of-plane separation decreased from 335 cm on

the first orbit to 334 cm on the second orbit. This decrease is an order of

magnitude larger than the out-of-plane displacement induced by the earth's

oblateness. The motion of the damper mass with respect to the shell con-

taining it was about 20 cm in the in-plane direction and 8 cm in the out-of-

plane direction. It appears that the reason the damping is effective is

that the shell of the damper is constrained to move in a circle about the

center of the triangle, whereas the damper mass tries to move in a direction

perpendicular to the orbital plane. The constants used for the stiffness

of the damper springs and the damping coefficient of the fluid in the damper

cavity are 0.3 dynes/cm and 560 dynes cm -1 sec-1 , respectively.

Since the development of out-of-plane oscillations of the ballast

masses is very slow, and a slight rotation of the end masses is probably

not detrimental, the damper system described above (with its extremely

small damping coefficient and spring stiffness) may not be required. An

active system for occasional control of end-mass rotation would not result

in the loss of a significant number of data (due to pension noise introduced

by the maneuvering). An active system may be required for initial stabiliza-

tion of the system.

3.7 Electrodynamic Forces

A satellite moving at velocity v with respect to the earth's magnetic

field B has an electric force acting on it given by F = v x B. This electric

force will redistribute the electrons in the satellite if they are free to

move and will thereby build up an electrostatic potential difference whose

maximum value will be vx B • z, where Q is the length of the satellite. In

the case of a long tether in space, a substantial voltage can develop if

the tether is an electrical conductor. If there are electrically conducting

surfaces with a potential difference with respect to the plasma, these

W

77



ft

s

surfaces will attract charged pi^rticies from the ionospheric plasma, thereby

setting up a current loop through the satellite. The current through the

satellite will result in a force I x B dQ on each segment of the current path.

Consider the case of a long metallic tether moving through the ionosphere.

If the satellite moves in an easterly direction, electrons will be forced to

the bottom of the w" e, creating a negative potential with respect to the

plasma and leaving the top at a positive potential. Ions will be collected

along the part of the wire that is negative, and electrons will be collected

at the top of the w're. The collection of charge from the plasma continuously

neutralizes the charges on the wire, and the v x 6 force continually moves

electrons from the upper part of the wire to the bottom, replenishing the

charge concentrations at the ends of the wire and maintaining a current

along the wire. The potential difference .hat develops along the wire and

the value of the current through the wire depend on the efficiency of the

charge collection relative to the conductance of the wire. If the wire has

a high conductance, the electrostatic potential will be nearly v x B 	 ^.

As the resistance of the wire increases, the ions and electrons in the plasma

neutralize the charges built up toward the ends of the wire taster than

they can be replenished by the current in the wire. In the limit of a

nonconducting wire, there is no potential difference and no current. If the

wire is a conductor but is covered by an insulator so that no charge is

collected along the wire, a potential difference will build up along the

tether but no current will exist (other than the transient current required

to create the charge concentrations that produce the electrostatic potential

difference). If the ends of a metal wire with a dielectric shield are elec-

trically connected to a package with exposed conducting surfaces, then

charges collected by these surfaces will flow through the wire. If there

is no electrical connection between the wire and the package, there will be

no current.

In the case of Dumbbell, electrodynamic forces can be avoided by not

having long exposed metal sur faces and by not permitting electrical contact

between any long metallic pieces and exposed conducting surfaces. Since
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orbital veiocities are about 7.7 km/sec and the magnetic field is about 0.3

gauss, the potential difference that can develop along a conductor is 0.23 volts/m.

3.8 parameter Optimization

Three system configurations have beer considered that appear to be

capable of providing gravity-gradient measurements with a resolution of

0.01 eu. The first two are designed for a tensiometer requiring a minimum

signal of I dyne, and the third assumes a minimum detectable signal of 0.01

dyne.

The first configuration consists of two heavy ballast masses on the order

of 2 metric tons each connected by a tether whose length is on the order of

1 km. Factors that must be taken into account in the design include system

risetime, temperature variations of the wire, and transverse oscillations of

the wire due to drag fluctuations. Approximate analytical expressions have

been derived for estimating each of these quantities as a function of the

design parameters for the system. Adequate risetime requires that the load-

bearing core of the tether have a cross section equivalent to that of a 2-mT11

solid wire (the core will probably consist of multiple strands). A thermal

jacket conductively isolated f -a the core should easily provide the required

thermal insulation for a core of this diameter.

The limiting factor in the sensitivity of this design appears to be

transverse wire oscillations induced by drag variations. Estimates of the

noise level are somewhat uncertain owing to the lack of detailed informa-

tior on the atmospheric granularity to be expected. The noise from drag-

force variations can be calculated from equation (25),

AT4(xpaa4

T	 91rpwMt

The noise can be reduced by going to higher altitudes (around 300 km), as

a result of lower atmospheric density p a at higher altitudes. (.imitations on

increasing the mass are cost and payload capability of the Shuttle. Increasing

^r

79

z



E

t`

the length decreases the lifetime, unless the mass is also increased, although

the lifetime is not too great a problem at higher altitudes. The average

wire density can be increased by constructing the jacket from a heavy material.

For example, a 1-mm-thick wire-wound jacket of density 7.5 g/cc around a

2-mm-diameter core of density 1.5 g/cc gives an average wire density of p w =

5 g/cc. The period of the fundamental transverse wire oscillation should

be kept as long as possible (300 sec or more).

The second configuration has about the same length and total mass as

the first, except that a large number of ballast masses (at leas. 100) are

distributed along the wire. The risetime and thermal considerations are the

same as for the first case. The noise from transverse oscillations of the

wire segments due to drag var •;ations from equation (37), is

AT _ w 
ar2paa7

T 27GW2N2

The wire should have a thin jacket in this case to reduce the factor r2.

Increasinq the mass is more effective here than in the first configuration,

because the noise decreases as M 2 . The only limitation on increasing N is

the complexity of construction and deployment. The system could be packaged

to take advantage of the gravity gradient for deployment.

The third system has about the same total mass as the first two but

is on the order of 10 m long; a rigid rod replaces the wire. The system

does not appear to be limited by risetime. thermal variations, or drag-

force tension noise.
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4. DEPLOYMENT OF THE DUMBBELL SYSTEM FROM THE SHUTTLE

To simplify the deployment of the Dumbbell system, we can take advantage

of the gravity gradient, and we suggest three such possibilities below.

The first possibility is to inject a compact package into orbit and

deploy it at a distance from the Shuttle. We assume that the iritial

Dumbbell orbit is circular at a 320 -km altitude. The shuttle could be in

an eccentric orbit with perigee at 220 km and apogee at 320 km. For circulari-

zation, the package would require an injection velocity, av in the direction

of motion of the order of 30 m/sec. For a 300-km circular orbit, 6v would

be smaller.

After injection, the payload has to be deployed. In the gravity-gradient

field, there are two possible stable equilibrium configurations of the Dumb-

bell system, requiring a relatively complex deployment system. Attitude

sensors and logics for properly timed activation of the spring mechanism

will be needed in ord,,r to impress the required relative velocity of separa-

tion to the two components of the system. Moreover, it will be necessary to

remove the angular momentum (at least to a certain extent) in order to avoid

a critical configuration at the beginning of the deployment phase.

Alternatively, the deployment can be done from the Shuttle. Assuming

the payload package to be located on one of the pallets, either the upper

or the lower component can be deployed directly from the pallet by activation

of a single spring until the total length of the tether has been fully

deployed; this technique is the same as that of the tethered subsatellite

deployment. The second component can be released from the pallet with a

very low relative velocity. Actually, the Shuttle can be thrusted away

after low-velocity separation. This method provides a very gentle delivery

of the system, and the orientation of the payload can lje controlled before

release. However, the system can be delivered only into the same orbit as

the Shuttle, so if the Dumbbell or-bit is to be circular, the Shuttle orbit

would have to be circularized.
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The third possibility is to use a tethered teleoperator for delivery
and control of the package, if such a facility is available on the Shuttle.
In this way, the package can be delivered and stabilized at the end of a

10-km-long teleoperator, thus increasing the gravity-gradient forces and

making deployment activation and control easier.

As an example of this last possibility, assume that the Shuttle is in a

slightly eccentric orbit with semimajor axis a and eccentricity e. We can

release the gravity gradiometer at the apogee of the Shuttle orbit at the

end of a tether that is vertically oriented upward with a length of ea/3.

In particular, if all	 3) = 6378 + 200 km and a(I + e) = 6378 + 320 km,

the tether will be 20 km long and the system will be gently injected at

an altitude of 340 km into a circular orbit. Another example, using

all - 3) = 6378 + 195 km and all + 3) = 6378 + 285 km, gives a tether

length of 15 km. Thus, the procedure will achieve 'injection at a 300-km

altitude.
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5. ORBITAL LIFETIME

The principal constraint in maximizing the signal and minimizing the

noise is the orbital lifetime, as determined by the area-to-mass ratio of

the satellite and the orbital altitude. The thermal noise and risetime

problems could be solved easily by using a thicker wire, but this would

increase the atmospheric drag and shorten the lifetime. The fractional and

absolute magnitudes of the signal are better at lower altitudes, but the

time spent in a given altitude range is less because of the higher air density.

Figure 23 shows the orbital height versus time for a satellite with an area-to-

mass ratio of 0.02 cm2/g starting at almost 300 km. This area-to-mass

ratio corresponds to a system consisting of a wire 1 km long and 2 mm thick

with a mass at each end weighing 1 metric ton and having a cross section of

I m2 . The time spent between 220 and 150 km is about 10 days. At 16

revolutions per day, 10 days gives 320 equator crossings with an average

separation of 125 km. At 300 km, the sensitivity is less than half of that

at 220 km, but the time spent at higher altitudes is much greater. It would

be desirable to launch the Dumbbell at a higher altitude, such,as 300 f<m,

since it will eventually decay to low altitudes anyway and useful data

and operating experience could be gained at the higher altitude,
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6. POSSIBLE SHUTTLE EXPERIMENTS

The noise level aboard the Shuttle due to maneuvering and motions within

it is expected to be high compared to the sensitivity required for gravity-

gradient measurements. However, this would not invalidate a Shuttle experi-

ment for the purpose of an engineering evaluation of the design and operation

of the systems to be.used on Dumbbell, although the data might be too noisy

for geophysical analyses. At the same time, the noise from the Shuttle

could be reduced by a combination of filtering and calibration. In the

system shown in Figure 24, the lines from the Shuttle to filter mass C and

Figure 24. Shuttle-Dumbbell configuration with an isolating filter.

from C to B are designed to have a very slow risetime (a few '7undred seconds

or more). Since the frequency is 4kTM, the risetime can be made slow by

choosing a very small spring stiffness k. Short-period accelerations (less

than 100 sec) of the Shuttle cause only small motions of mass C because the

mass is being driven below its resonant frequency. Similarly, the motions

of B are small compared to the motions of C because B is being driven well

below resonance. By placing a tensiometer at the upper end of mass B,

1
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Y	 measurements of the tension between B and C can be used to record any tension

E

	

	 fluctuations that are transmitted through the two-stage filter between the

Shuttle and mass B. The system from A to B is the Dumbbell experiment.

Tensiometers on either A or B can measure the tension from the gravity

gradient. The tension will be larger than that produced in a free flyer

since it will include the tension in the line connected to the upper part

i
of B. This will reduce the fractional sensitivity somewhat, but the effect

will not be too large so long as the distance from the Shuttle to B is not

large compared to the distance from A to B. If the tension between B and

C changes by AT  in a time long compared to the risetime of the Dumbbell

system, the change in the tension ATA between A and B is AT  times the mass

ratio MA/(MA + MB ). This relation can be used to correct gravity-gradient

measurements for the effect of tension noise from the Shuttle.

The tension noise transmitted through the filter can be computed approxi-

mately, as follows. Suppose the Shuttle oscillates in the vertical direction

according to the equation

yS = AyS sin wt
	 (40)

If we assume that the motion of C is small compared to the motion of the

Shuttle and that the spring constant of the line connecting C to the Shuttle

is k 1 , then C will be subjected to a force given by

AT  = k  AYS sin wt = MCyC	 (PI)

Integrating equation (41) twice with respect to time, the motion of C is

A

y,	
I 2S sin wt = AyC sin wt	 (42)

..	

Y

MCw

Assuming that the motion of the Dumbbell system (including A and B) is small

compared to the motion of C and that the spring constant of the line ,joining

B and C is k2 , the force on B is

'j

1

1
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I

ATB = k2 
"C 

sin wt = (MA + MB )yB	(43)

Integrating equation (43) twice, we have

= - k
2 AyC

yB 
	

Z sin wt =-4YB sin wt	 (44)

(MA + Mg )w

Substituting the expression for Ay  from equation (42) into equation (44) gives

AY	 k2	
(-kI 4YS) = 4Y
	 kIk28	 (MA + MB)w2	 MCw2	 S	 45

(MA + MB)MCw4
	( }

Since the amplitude AyA of the motion of A is approximately the same as Ayg,

the tension noise produced in the line from A to B obtained by differentiating

equation (44) twice and substituting equation (45) for Ay. is

Mkk
"TA = MAYB = =MA AYB w2 sin wt = -AyS

	

	 A 1 2 2 sin wt	 (46)
( MA + MB)MCw

The tension noise on 8 obtained by substituting Ay  from equation (42) into

equation (43) is

AT
B
	 =̂ ^AyS k -^- sin wt

MCw

so we can correct the tension measurements in the line from A to S for the

effect of tension noise measured from B to C by noting that equations (46)

and (47) are related by the equation

M
AATA = ATB M 
A MB	

(48)

(47)
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If mass A is connected directly to the Shuttle and subjected to an

oscillation given by equation (40), where w is small compared to the natural

oscillation frequency of mass A at the end of the wire, the tension noise

resulting from the oscillation of MA obtained by differentiating equation (40)

twice would be

AT = MAYS - -MZAySw2 sin wt
	 (49)

Dividing the tension noise AT  from equation (46) with the filter by the

tension noise AT in equation (49) without the filter, we get the ratio R, given

by the equation

k2	
k
I i

R 
MA + MB MC w4	

(50)

By defining

2
wAB

; 
MA + MB

and

k 
wC - MO ,

equation (50) for R becomes

2 2	 2	 2
to

R 

wAB4C 

ŵwB^ (WC)
W

The quantity w  is the natural oscillation frequency of M C at the end of

spring k I , and wAB 
is the natural frequency of M, f MB at the end of spring

k2 . If we call w  the frequency of one of the filters, we see that nuise

of frequency w is reduced by (wf/w)2 each time it passes through a filter.

In this way, the noise from the Shuttle can be reduced to an acceptable

level by passing it through a series of filters whose natural frequency wf

is l-ow compared to the frequency w being filtered.

88



7. ENGINEERING CONSIDERATIONS

7.1 Survey of Tension Measuring Devices

In designing the Dumbbell configuration, limits with respect to present-

day instrumentation were taken into consideration. The sensitivity required

of the configuration is to measure changes in the gravity gradient of 0.01 eu,

which translates to a few parts per million (2 to 3 parts in 10 6 ) in tension

at Shuttle altitudes (220 km).

When fully deployed, the Dumbbell can be simulated by a 1-lb weight

attached to a line approximately 1 km in length with a core diameter of 2 mm.

This is equivalent to a force of approximately 400,000 dynes, which will

cause the tether to stretch approximately 1 cm. Therefore, the instrumenta-

tion could measure either the changes in the tension or the actual stretching

of the tether itself due to applied forces. Our first choice is to measure

the tension in the line because the configuration of the Dumbbell is likely

to change during the feasibility study. Every effort will be made to reduce

the length of the tether in order to increase the lifetime of the experiment.

As a result, we are increasing the absolute sensitivity required of

the sensor to maintain a rew parts per million for a reduction in tether

length.

The expected variation in the force on the line can have a periodicity

from 10 to 100 sec. Therefore, sampling the data once per second vill

yield adequate information regarding tension variations. It would also be

convenient to reduce the sampling rate when the tether is operating in the

standby mode or when fewer data are needed.

Thus, preliminary specifications for a sensor suitable for feasibility

trials in the laboratory can be given, as follows:
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Input voltage and power:

0 to 400,000 dynes.
0 to 1 cm.

2 to 3 parts in 106

0 to 10 volts DC
5 kn maximum.
TTL.

3..0/10 sec minimum, 1.0/sec maximum.

"Safety stops" must be provided to
prevent damage to the sensor if the
full-scale range is exceeded. The
sensor will be mechanically coupled
to the tether and must be capable of
attachment and removal by remote
control.

For laboratory testing, power con-
sumption in the sensor is not critical;
inputs of +28 volts DC or ±15 volts DC
are preferred. In space, the ex-
periment will run continuously for
3 months; thus, the electronics should
be designed for minimum power con-
sumption.

Full-scale range
Tension:
Length:

Measurement accuracy:

Data output
Analog voltages:
Analog impedance:
Digital voltages and impedance:

Data sampling rate:

Other requirements:

Measurement techniques have been investigated, and two suitable methods

have been selected: a null balance (servo) type of accelerometer to measure

the tension and a laser interferometer to measure the stretching of the tether.

A market search showed that suitable sensors using these techniques are

available and could be adapted for the experiment and eventually packaged

and qualified for operation in space. The most promising such sensor by

far is the null balance (servo) accelerometer made by Systron-Donner Corpora Mson

(Inertial Division) in Concord, California. It and a Hewlett-Packard

laser interferometer are described below.

7.1.1 Null balance servo accelerometer

The basic operation of the servo accelerometer as described here is

taken from Morris (1976). The Systron-Donner Model 4841 accelerometer is

based on the captured-pendulum principle, wherein the pendulum is held
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almost precisely at its null or aligned position by an analog servo capture

loop; this is shown diagrammatically in Figure 25. As indicated, the pendulum

Figure 25. Operational block diagram of the Model 4841 accelerometer.

comprises primarily the torquer itself on a lever arm, constrained to rotate

about an axis precisely defined by the suspension. At the end of the pendulum,

a pickoff plate is mounted, whose position is sensed by the dual-balanced

pickoff system, which converts the pendulum position error to a high-level

DC voltage.

The pickoff drives the servo amplifier, forcing current through the

combined torquer winding and load (sampling) resistor, so that a current is

produced that is linearly proportiona', to the deflection of the pendulum

away from its ideal or null position. This produces the basic high-performance

position servo system, which constrains the pendulum motion to very minut:.

angles, reaching less than I aresec at maximum input acceleration. Thus,

the pendulum is held tightly by the servo to a position that precisely de`ines

the sensing axis of the accelerometer in the direction perpendicular to

the plane containing both the axis of rotation and the pendulum axis.
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Input acceleration acts on the pendulum to produce a proportional torque

that tends to rotate the pendulum, causing the servo to produce a precisely

matching torque in its action of holding the pendulum fixed. This, in turn,

requires a current flow in the precision torquer; the current flow is

directly proportional to the torque produced and hence provides a direct

indication of the input acceleration. The output current i s , forced to

flow in the load or sampling resistor, yields a signal output voltage that

is also directly proportional to the input acceleration. In some systems,

the output voltage is used directly, while in others, it is converted to

digital form for compatibility with the using circuitry. Figure 26 is a 	 3

Syntron-Donner .
InteB^aSOT	

Digitizer

C
EI	 I I ^f F I F

i	 Pulse	 E
^A	 A	 Gon.	 P

	

Etertron.	 Ero!	 Resat J

	

•	 .ate

EP 1l-l. I F f if

Figure 26. Digitizer block diagram.

block diagram of such a digitizer, illustrating the conversion of the

acceleration signal 
FA into a pulse train with a frequency directly propor-

tional to the input acceleration.

The digitizer in Figure 26 is but one of several manufactured by 	 +:

Systron Donner to convert acceleration into digital form without degradation

of the information from the precision guidance accelerometer. it operates`'E:
by use of a precision analog integrator, which is reset to zero each time

its output exceeds a reference value, producing an output pulse at each

reset point. For maximum input, the reset rate is as high as 15,000/sec, fl ;
providing a pulse train with a frequency directly proportional to the input

J
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voltage from the accelerometer. Such a digitizer converts the ultra-precision

analog output signal from the accelerometer to a like one of digital nature,

so that all subsequent computations can be digital and hence fully independent

of errors. The digitizer shown will thus preserve the basic high accuracy

of the Model 4841 inertial guidance accelerometer and convert the data into

the digital domain.

The Model 4841 accelerometer is space qualified and was designed to

operate with a full-scale input force of 0.1 lb; test data show that it

.	 can readily measure to an accuracy of 0.5 parts in 10 7 or better. To

accommodate the forces expected, the interface to the sensor must be designed

to scale them down to 0.1 lb.

Systron Donner has indicated that it could provide a fully operational

breadboard system to our specifications for about $25,000, with delivery

in 90 to 120 days. The breadboard would consist of two packages, one

containing the force transducer and the other, the electronics; each package

has a volume of 75 cc and a weight of about 200 g. Two signal outputs are

provided; one is a general-purpose analog signal (0 to 10 volts DC) for

interface with a chart recorder or a filter, and the other is digital (TTL

levels). The latter is derived from a voltage-to-frequency converter

whose output (0 to 400 kHz full scale) is directly proportional to changes

in applied force. The 0 to 400-kHz range will give a measurement accuracy

of a few parts in 105 , as desired. A block diagram of the package is shown

in Figure 27.

+15 VOLTS DC -15 VOLTS DC 	 +15 VOLTS DC -15 VOLTS DC

.
FORCE	 IELECTRONICS
TRANSDUCER-APACKAGE

ANALOG	 VOLTAGE-TO-
OUTPUT	 FREQUENCY CONVERTER

a 	 aF
(0 TO 10 VOLTS DC) (0 TO 400 kHz, TTL LEVELS)

Figure 27. Block diagram of the servo accelerometer package.
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7.1.2 user interferometer

If it is decided to measure the stretching of the tether, we would

consider a laser interferometer system similar to the Hewlett Packard 5501A

laser transducer, used in a plane mirror interferometer configuration.

A block diagram of the basic measurement system is given in Figure 28, while

Figure 29 shows the path of the plane mirror interferometer laser beam. The

Figure 28. Basic measurement system.

QUARTER -WAVE	 PLANEPLATE	 REFLECTOR
1 1 	12	 }I	 t	 \\

} 1 1, :2.'J	 11'L11	 I I .2'}

II'„I

10706A
PLANE MIRROR INTERFEROMETER

Figure 29. Path of the plane mirror interferomet-er laser beam.
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following description and diagrams were taken from Hewlett Packard Applica-

tion Note 197-2, baser and Optics 5501A.

The beam entering the interferometer is split into f i and f2 , with

f2 returning to the receiver after retroreflection by the reference corner

cube. As in a linear interferometer, f  is transmitted out to the plane

retroreflector and reflected back on itself (Figure 29). The quarter-wave

plate causes the polarization of the return frequency to be rotated through

90°, so that fi ± Af is reflected out a second time and doppler-shifted
b

again. The polarization of f 1 ± 2Af is rotated again through 90 0 and

transmitted back to the receiver. Resolution doubling is inherent because

of the double doppler shift. Any tilting of the plane reflector relative

to the beam axis results only in an offset of the return, not in a tilt,

since tilting of the first reflected beam is exactly compensated by the

second reflection.

A typical setup for a laboratory to measure a 1-cm full-scale displace-

ment to 2 to 3 parts per million would cost approximately $20,000; this

includes the laser, receiver, numeric display, and optical package.

7.1.3 Summary

At present, the measurement of tension in the tether appears to be a

superior technique over the measurement of tether stretch. Thus, the servo

accelerometer should be seriously considered as the prime candidate for the

tension sensor on the Dumbbell experiment. Because of the accelerometer's

sensitivity, we are optimistic that changes in the Dumbbell configuration,

such as shortening the tether, can be accommodated without loss of measurement

°	 accuracy. Shortening the tether will increase the lifetime of the experi-

ment. For example, for a full-scale input to the sensor of 0.1 lb, the

length of the tether could be reduced from 1 km to -,100 to 200 m, and for

0.01 lb full scale, it could be 20 m long. In the case of the laser inter-

u
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ferometer, a reduction in tether length would compromise the- accut..'y of

the measurement because of the reduction in full-scale input.

Another advantage of the accelerometer is its compactness and minimum
calibration requirements, in comparison with the interferometer, whose

laser transmitter/receiver, interferometer, and reflector all require

careful and stable alignment with each other.

However, we recommend that the final choice be made after both types

of sensors have been thoroughly investigated against the background of

the actual Dumbbell configuration during the feasibility stages of the

experiment.

7.2 Manufacturing Feasibility of Tether

A study was undertaken to determine if a tether could be manufactured

to satisfy the requirements previously stated within current technology,

cost, and schedule constraints. Briefly stated, those requirements are as

follows:

System risetime: 	 < 10 sec

Thermal time constant:	 > F_ sec

Fractional tension noise:	 < 3	 10_6

System area-to-mass ratio:	 < 0.02 cm2/g

CaM e test strength:	 > 1.5 kg

Average load:	 = 0.4 kg

One possible tether construction is shown in Figure 30. The tether has

three main components, a central core, a bridal veil net, and an outer shield.

The central core is composed of 5-p strands of ULE tightly wound into a

core measuring I to 2 mm in diameter. The exact central-core size will be

determined later to match the system requirements such as end mass

natural frequency. If required, the individual strands can be bonded by

using a suitable binder of similar mechanical characteristics. The central
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Figure 30. Tether construction.



core will then have a low-emissivity coating applied to its outer diameter

to minimize radiative heat exchange. The coating will be done by a process

similar to that of applying optical coatings to glass optical elements.

Several c--ndidate coatings exist (for example, aluminum, silver, and gold)

that will yield an effective emissivity of between 0.03 to 0.05.

A bridal veil net will be applied over the central core to minimize the

conductive heat transfer between the outer shield and the central core. It

accomplishes this by employing a low-conductance material, such as nylon, and

varying the number of strands, attachment points, spacing, and diameter of

the strands. The exact design of the bridal veil will be deferred until

several combinations can be tested to evaluate their effective thermal

isolation, although it is evident that bridal veils can be fabricated to

provide an effective means of limiting thermal conductance via point contact

(at tie points) and high thermal impedance.

The outer shield is a loosely fitting extruded plastic tube. It acts

as a protective covering for the tether during preflight han,fling and deploy-

ment. It also absorbs or reflects all the impinging thermal energy. It is

decoupled from the central core such that its length and stiffness excursions

do not impact gravity--gradient measurements. The shield is only thermally

coupled to the central core via conduction through the bridal veil and

radiation across the (vacuum) gap caused by their respective differences in

diameter. Along the length of the outer shield, appropriate interruptions

will be made such that the internal free volume of the tether will evacuate

to the local ambient pressure within a reasonable period of time.

This cable design evolved after discussions with vendors currently in-

volved in manufacture of optical communication cables. The tether cable

described poses no significant technical problems in its manufacture, and

several vendors have expressed an interest in participating in its construction.

We thus feel sure that a tether with the required characteristics to perform

the gravity-gradient measurements proposed is totally feasible at this time

at a reasonable cost and that such a tether does not represent a major tech-

nological development program.
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7.3 Damper Design

The use of dampers will be required to prevent tension noise from various

natural oscillations of the system. The design of the damper will depend

primarily on the frequency of the oscillation it has to damp and on the

gravity-gradient acceleration at the place where the damper is located. The

gravity-gradient acceleration can also be used as a restoring force for a

damper. A basic requirement for the dampers is that their operation be smooth,

so that tension noise is not introduced; a nutation damper consisting of a

cavity partially filled with liquid could introduce noise as a result of

splashing, for example. Dampers must be designed so that they do not stick

and can move smoothly even at low velocity. One possible design consists of

a mass suspended in a fluid by springs. Another possibility is a pendulum

that takes advantage of the gravity gradient. A third configuration is the

use of liquids with different densities in a cavity; this design could also

take advantage of the gravity gradient by designing the system with a curved

surface to that there would be a restoring force on the heavier liquid.

In the case of dampers for transverse wire oscillations, the weight of

the damper must be less than the weight of the section of wire whose motion

it is damping, so that it does not create a node. The damper must be ac-

celerated, and there must be significant movement for the damper to be

effective.

Dampers for low frequencies will probably be the most difficult to design,

since they require that the ratio of the restoring force to the mass be very

low. The most important periods to damp are those in the approximate range

of 10 to 100 sec, as this is the most significant range for measuring gravity

anomalies. The motions that have to be damped are the longitudinal and

transverse oscillations of the wire and the rotational motions of the end

mass, especially those rotations that change the angle between the wire and

the end mass, resulting in tension noise.
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8. CONCLUSIONS AND RECOMMENDATIONS

Three designs have been identified that appear to be capable of achieving

the required sensitivity of 0.01 eu in making gravity-gradient measurements.

The first consists of two end masses connected by a long wire. The most

difficult problem to solve in this configuration is the tension noise due to

drag-force variations; noise as a function of the system parameters is dis-

cussed in Section 3.4.6. Such a system would probably be limited to operation

at higher altitudes or to times when atmospheric granularity is not severe.

Inclusion of wind and and density measuring devices could allow the system

to operate at lower altitudes and under higher noise conditions by identifying

times of noisy data or by allowing corrections to be made to the data accord-

ing to the Pxpressions given in Section 3.4.5.

The second configuration is similar to the first but uses a large number

of ballast masses along , the wire to solve the problem of drag-force variations;

the expression for drag-force noise is given in Section 3.4.8. An added

benefit of this design is the wider bandwidth, since the fundamental period

of the transverse oscillation of the system as a whole can be made long or

even eliminated by proper design of the area-to-mass ratio along the system.

The center of the system would probably be an advantageous place for the

sensor, because the tension signal is largest at that point.

The third design, described in Section 3.4.9, is possible only with the

high-sensitivity force transducer described in Section 7.1. The problem of

drag-force variations is handled by use of a relatively short rod whose stiff-

ness resists the bending effect of atmospheric drag. Since this third design
	 0

appears very promising, we recommend further study of the tension measuring

device on which it depends.

A tradeoff analysis will be necessary to choose among the three config-

urations considered and to d ocide on the best set of parameters for the design
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selected. Depending on the approach taken, further study is also required

of dampers suitable for the particular configuration. Since the exact nature

of the atmospheric granularity is critical, particularly for the first con-

figuration, further study of this area would be helpful. For the third design,

additional mechanical and thermal analyses of the rod would be required,

because the present studies did not include the effects of stiffness.

0

0

0
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