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FOREWORD

This is the Final Report on Grant NSG 8063, System Noise Analysis of the
Dumbbe11l Tethered Satellite for Gravity-Gradient Measurements, and covers the
period 1 July 1978 to 30 June 1979. For this program, Dr. Giuseppe Colombo
served as Principal Investigator, Dr. Michael R. Pearlman as Program Manager,
and Mr. David A. Arnold as Analyst.

This technical report fulfills the contractual obiigations of the Smith-
sonian Astrophysical Observatory with respect tc the cited grant.



ABSTRACT

This report contains an analysis of the feasibility of using the Dumbbell
gravity-gradiometer concept for measuring short-wavelength variations in the
earth's gravity gradient to a sensitivity of 0.01 eu. Variations in the gradient
are recorded by measuring tension variations in a vertically stabilized satel-
Tite consisting of heavy masses connected by a long wire or rod. Tension
noise can arise from the excitation of various mechanical oscillations of the
system. The principal noise sources that have been identified are fluctuations
in atmospheric drag heating and drag force resulting from density variations
and winds. Approximate analytical expressions are presented for the tension
noise as a function of the system design parameters for various possible con-
figurations. Computer simulations using numerical integration have been
performed to study the tension noise for several sample cazes. Three designs
consistent with Shuttle Taunch capabilities appear to be capable of achieving
the required sensitivity at reasonably Tow cost.
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SYSTEM NOISE ANALYSIS
OF THE DUMBBELL TETHERED SATELLITE
FOR GRAVITY-GRADIENT MEASUREMENTS

Final Technical Report

Grant NSG 8063

1. INTRODUCTION

The basic principle of the Dumbbell technique for gravity-gradient measure-
ments (Colombo et al., 1976; Kalaghan and Colombo, 1978) is to detect gravity
anomalies by measuring the tension change they produce in a long wire of
length g with a heavy ballast of mass M at either end. The tension T and the
tension change AT are proportional to the product M. The values of 2 and M
are made large enough so that AT is above the threshold of tension measuring
devices.

Great care must be taken to reduce system noise introduced from both
internal and external sources. The major noise source is the expansion and
contraction of the wire owing to small temperature fluctuations, which are
introduced through variations in atmospheric drag heating and variable radiative
heating from the earth. In addition to this is the direct effect of tension
variations caused by drag variations dus to density and wind fluctuations along
the orbit.

The properties of tension measuring devices require that not only AT but
also AT/T be above a certain threshold to be measurable. Since the signal
AT produced by a gravity anomaly decreases with altitude much more rapidiy
than the total tension T, owing to the central gravitational field of the earth,
AT/T depends on orbital height. Another consideration is the risetime and



transfer function of the system. The risetime is determined by the resonant
frequency of the longitudinal spring oscillations of Dumbbell. Near the
resonant frequency of the system, distortion of the signal occurs and higher
frequencies are filtered out. Damping is required for the various natural
oscillation modes of the system in order to absorb the energy from both noise
sources and previous signal inputs.



2. GRAVITY-ANOMALY SIGNAL

In this section, analytical formulas are derived for calculating the
approximate values of the tension change AT due to a gravity anomaly and the
total tension T for the Dumbbell gravity gradiometer. The calculation of AT
assumes that an observed gravity anomaly in cm/sec2 at the earth's surface can
be represented analytically by the density of a surface mass layer, which
causes a discontinuity in the strength of the gravitational field. The surface
layer is then represented by a grid of discrete mass points. The formulas for
AT and T can be used to calculate the absolute sensitivity AT and the fractional
sensitivity AT/T required to obtain a given sensitivity. Section 2.1 presents
an analytical calculation of the gravity-gradient signal, and Section 2.4
shows the response of the Dumbbell system as it passes over an anomaly.

2.1 Analysis of Expected Signal Level

A small computer program has been written for studying the signature of
a gravity anomaly represented by a grid of point masses on the surface of the
earth. Both the vertical componeni and the vertical derivative of the ac-
celeration are computed along a track passing over the anomaly. The vertical
- derivative is the signal that would be measured by a Dumbbell gravity gradio-
meter. The acceleration R produced by a point anomaly M is

>R

*o. _3

= -GM hh s

where G is the gravitational constant, i is the vector from the anomaly to the
gradiometer, and h = |ﬁ|. The vertical component z of the acceleration is

3= -aMznd

(5]



and the vertical derivative of Z is
87 _ ;79,2 =5 =3
E-GM(3Zh ~h )
In the case where the satellite is directly overhead, this reduces to

. .
gg=2eMz3 . (1)

If an area has a graviiy anomaly Ag (cm/secz), it can be represented by
a surface layer of density o (g/cmz) by using the formula

5z _ Ag dA
87 3 {(2)

In a Dumbbell system consisting of masses M connected by a wire of length ¢,
the tension due to the gravity anomaly is approximately

=

2 . Ag dA
3

I\)'Z
=

(3)

[= T =]
NN
™

AT =
nZ

In the cases run with the program, the total mass of the anomaly has been
set equal to the integrated surface density of a 100-mgal anomaly (0.100 cm/secz)



over a 120-km x 120-km area. This gives a value for GM* of

GM* = %%—dA = 95%99-(120 x 105 cm)2 = 2.29183 x 1012 cm3 sec'2

To study the effect of how the mass causing the anomaly is distributed,
the anomaly has been represented in three ways. In the first case, the anomaly
is represented by a point mass. This is equivalent to a sphere in the crust
whose density differs from the surrcunding material. In the second case, the
anomaly is represented by a 7 x 7 grid containing 49 points spaced 20 km apart,
thereby covering a 120-km x 120-km area. Each point contains one 49th of the
total mass. The third case has 40-km spacing between points, so that a
240-km x 240-km area is covered. Keeping the total mass constant, case three
is equivalent to a 25-mgal anomaly over a 240-km x 240-km area.

Figures 1 through 4 show the vertical component of the acceleration and
the vertical derivative of the acceleration, which is the quantity measured by
the Dumbbell gravity gradiometer. The four figures are for satellite altitudes
of 120, 200, 220, and 300 km, with the anomaly located on the surface of the
earth, The acceleration, which is negative, is plotted down from the zero line
and is given in milligals (1 mgal = 10"3 cm/secz). The derivative of the
acceleration, which is mastly positive, is plotted up from the zero line in
eotvos units {1 eu = 10'9/sec2). The horizontal scale is the distance along
the orbital path, with the origin directly over the center of the anomaly.

The three curves for each quantity correspond to a lumped mass and a

120-km x 120-km and a 240-km x 240-km distribution of mass. The lumped mass
always gives the most peaked curve, and the 240-km x 240-km distribution, the
flattest curve.
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Figure 1. Vertical acceleration (top) and vertical derivative (bottom) of the
acceleration along the orbital path due to a) a point mass, b) a
120-km x 120-km distribution of mass, and ¢) a 240-km x 240-km
distribution of mass. In 311 cases, the total mass equals the
integrated mass of a 100-mgal anomaly over a 120-km x 120-km area.
Satellite altitude = 120 km,
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Figure 2. Same as Figure 1 for a satellite altitude of 200 km,
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Figure 3. Same as Figure 1 for a satellite altitude of 220 km.
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Figure 4. Same as Figure 1 for a satellite altitude of 300 km.



2.2 Wire Tension in a Tethered-Satellite System

An object of mass M in a central gravitational field of strength GV,
where M is the mass of the earth and G = 3.986013 x ]020 cgs, experiences a

gravitational force Fg, given by
Fo= GMM
g "2

where a is the geocentric distance., In a circular orbit, this force is
balanced by the centripetal force Fc, given by

where v is the velocity of the object. In a tethered-satellite system, the
center of gravity of the system moves in accordance with the above equations.
If the system is vertically stabilized, all parts of the system move with the
same angular velocity w = v/a. The centripetal acceleration at any point is
then

Maw2 ,

where w is a constant., The equation F_ + FC = 0 holds only at the center of
gravity of the system. Since |Fg| decreases with a and [Fcl increases with a,
points not at the center of mass experience a net force away from the center
of gravity. The constant w, obtained by setting Fg + Fc = 0 for the center
of gravity, is



The rate at which the net force F changes with a is obtained by differen-
tiating the quantity F_ + Fc’ keeping w constant. We have

g
8F _ 8 _ 6 GvM 2, _ 26MM 2
sa~aa (FgtFc) =qg (- 7 ¥ M) = T+ o

By substituting for w2 determined from the center of gravity, the value of the

derivative at the center of gravity is

sF _ 2GMM , MGy _ 3GMM

a a3 a3 a3

The rate of change of the anceleration with respect to a is

da . l.%f.: §%@ _ (4)
a

As an examplie, consider a system consisting of two masses weighing 2
metric tons (= 2 x 1069) each connected by a tether of length 2 = 1 km
(= 105 cm) orbiting at 220 km. The force on the upper mass and therefore the
tension in the wire is approximately

T=%2""32 ° (5)

which gives

_ 3 % 3.986013 x 10°0 x 2 x 10% x 10°

.
(6.378 x 10° + 0.220 x 108)° x 2

= 476,316 dynes

As a second example, consider the same system as above with the mass
distributed uniformly along the wire. The force at a distance zq from the

10



center of mass is

2/2 o 1%/2 ? 22
Fzy = [ 3N ;. 3Em27 ' N O
0! /2 3 7 3 v \8 T

d

The tension at the center of gravity (Z0 = 0) is

F(0) = T(0) = I 208,158 dynes ,
a

which is half the tension obtained by having all the mass at the ends.

2.3 Tension Measuring Accuracy Required for 0.01-eu Sensitivity

At an uititude of 220 km, the acceleration gradient in a tethered satellite
system, from equation (4), is

20

58 _ 364 3 x 3,986013 x 10 -2

82 33 (6.378 x 10° + 0.220 x 105)°

= 4.16 x 1070 sec

Since 0.01 eu = 0.01 x 10'9 sec'z, the required precision is about 1 part in
4,16 % ]05, or between 2 and 3 parts per million.

In Figure 3 part c, a signal of about 0.23 eu is obtained from a mass
distribution that is approximately equivalent to a 25-mgal gravity anomaly
over an area 240-km x 240-km. For this case, a measuring sensitivity of
0.07 eu could detect a gravity anomaly on the order of 1 mgal.

2.4 System Response to Gravity Anomalies

The Dumbbell gravity gradiometer must be able to respond to a change in
gravity gradient within a time comparable to that required to pass over the
source of the signal. In addition to fast response time, the system must

1



have sufficient damping that the effect of the signal dies out in a time
comparable to the iength of time the signal Tasts. A series of runs has been
done with a simple computer program that models two masses M connected by a
perfectly elastic wire with a spring and dashpot at one end. The parameters
used for the runs are M= 2 x 106 g, £ 105 cm, the wire diameter = 0.5 cm,
the tether material is ULE {(elasticity = 0.7 x 1012 dyne/cmz), and the altitudes
are 50, 120, 160, 220, and 300 km above the gravity anomaly. The gravity
anomaly is modeled as a point having an integrated mass of a surface-layer
density sufficient to produce a 10-mgal gravity anomaly over a 1 square degree
{117 km x 111 km) area. The natural frequency for longitudinal oscillations
is about 13.4 sec without a damper. Adding a damper spring with the same

spring constant as the wire lengthens the period by v2, to about 19 sec.

Table 1 Tists, as a function of altitude, the equilibrium wire tension, the
maximum tension change AT directly over the anomaly, the half-amplitude fulil
width of the system response, and the magnitude of the secondary bounce of
the system if significant. The response of the system to a sharp signal is
an oscillation that decays by about a factor of 2 on each half-cycle. This
behavior is particularly evident in the 50-km run, which was included specifi-
cally for that purpose, even though it is not a realistic case.

Table 1. System response to a gravity anomaly as a function of altitude.

Alticude Tension Signal AT Width of Bounce Orbital
(km) (dynes} (dynes) rasponse signal {dynes) velocity
(sec) (km/sec)

50 450,332 439 6 111 7.87

120 435,934 27.5 13 1 7.83

160 427,981 10.7 19 — 7.81

220 416,410 3.85 27 - 7.77

300 401,622 1.46 39 — 7.73

12



is an example from the tabie, we see that at a 160-km altitude, the width
of the response signal is 19 sec and the orbital velocity is 7.8 km/sec; the
distance traveled along the ground is thus about 148 km. The runs for 160 km
and above show satisfactory response to the signal with no significant dis-
tortion due to bouncing. We can therefore conclude that the system response
will be satisfactory as Tong as the natural period of the longitudinal oscil-
lations of the system is less than the orbital height divided by the orbitail
velocity.

Figures 5 through 9 show the tension (in dynes) versus time (in sec) for
the five cases in Table 1.

The ten:ion signal AT and the total tension T can be calculated from
equations (3) and (5}, respectively. For the case in Figure 8, we have

>

2
g ddMe 10 x 1073 « (111.3 x 10°) x 2 x 10% x 10°

AT = = = 3,7 dynes
nzd 2 w % (0.220 x 108)° x 2
and
20 6 5
7o 3BM L3 x 3986018 x 10" x 2 x 10 x 10" . 436,316 ynes
a (6.378 x 10° + 0.220 = 108)° x 2

which agree approximately with the results of the actual integration of the
orbital dynamics.

13
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3. SYSTEM NOISE ANALYSIS

Several noise sources have been identified that can interfere with the
measurement of the tension signal of a gravity anomaly. The internal noise
of the tensiometer is discussed briefly in Section 7.1. The deployment of the
system in orbit (Section 4) will introduce various types of oscillations that
will die out with time as a result of damping present either naturally or by
deliberate design., This section discusses the external noise sources expected
to be present during the experiment lifetime. These include electrodynamic
forces, long-waveiength gravity features, radiation, and atmospheric drag.
Obtaining good resolution of short-wavelength gravity features requires operating
at the Towesti possible altitude. Since the atmospheric density increases
rapidly at Tow altitudes, the resolution that can be achieved appears to depend
primarily on the degree to which the problems, of atmospheric drag can be
minimized. Data quantity and coverage depend on orbital lifetime as determined
by the satellite's initial altitude and the area-to-mass ratio (Section 5).
The noise level of i1he data will increase as the magnitude of variations in
atmospheric density and velocity increase. Atmospheric granularity introduces
noise directly as a result of variations in drag force and indirect]y through
variaticns in drag heating, which cause thermal expansion and contraction of
the wire.

3.1 Atmospheric Density Variations

Atmospheric density variations have been measured by several sateilites.
The information needed to study the effect of density variations on the
Dumbbell syster is the density as a function of time along the path of the
satellite. Presumably, this informaticn is contained in the density data
obtained by satellite sensors, but we have been unable to find data presented
in this form in the literature. 7The reports do indicate, however, that the
behavior of the atmosphere is variable, with the density sometimes showing a
smoothly varying profile and at other times showing pronounced variations.
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One report (Rice and Sharp, 1977) suggests that the profiles are smooth about
80% of the time or show variations up to 5%. Variations of b5 to 15% occur
about 10 to 15% of the time, and pronounced variations, greater than 15%, occur
5 to 10% of the time.

In the absence of detailed information on the amplitude and wavelength of
the density variations to be expected, we have assumed that any wavelength may
be encountered, and we have studied the response of the system especially for
periods between 10 and 100 sec. We have assumed the ampiitude of the variation
to be +10% at 220 km, although the actual variations will probably not be that
great most of the time. Unless some means is available to know whether the
density is smooth during any set of tension measurements, it may be difficult
to tell from the data whether the variations observed are signal or noise.
Thus, it would be desirable to have the system designed so that the noise Tevel
is within acceptable 1imits for any density variation that may reasonably be
expected. Since the gravity gradient cannot vary with a wavelength shorter
than the satellite altitude, variations shorter than this must certainly be
noise.

As one means of evaluating the system noise level, it would be useful to
have a capability of reading out the tension data at rates faster than the
shortest signal expected, Multiple paths over the same ground track also
" provide a way to investigate the repeatability of measurements. Aside from
tidal effects, the gravity field is essentially constant, whereas atmospheric
density variations are expected to be random; thus, it should be possible to
reduce the effect of noise in the data by averaging the data from passes over
the same area. Another possibility is the inclusion of wind-~ and density-
measuring devices, such as the instrumentation carried by the Atmospheric
Explorer satellite. Data from these devices could be used as a weighting factor
or to compute approximate correction factors for the tension measurements.

At orbital heights, wind velocities on the order of 100 to 150 m/sec have
been observed. Since orbital velocities are on the order of 7.8 km/sec, the
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variation in the velocity of the atmosphere with respect to the satellite is
as much as 2%. Since drag heating effects are proportional to the cube of the
velocity and drag force is proportional to the square, winds can account for
variations of about 6% in drag heating and 4% in drag force.

3.2 Thermal Analysis

The temperature of the wire used in the Dumbbell satellite can undergo
short-period variations as a result of changes in atmospheric drag heating
or thermal and albedo radiation from the earth. The resulting changes in
natural iength of the wire cause variations in tension and excite longitudinal
oscillations of the wire. Various approaches and materials have been considered
for minimizing this probiem. A thermal model of the wire has been developed
and used in a computer program that calculates the thermal behavior of the wire
by numerical integration. In addition, an approximate anaiytical solution for
the thermal behavior has been derived to facilitate parameter optimization by
showing how the thermal variations depend on the design parameters. Sample
calculations using the analytical expressions are presented for comparison
with the numerical integration results.

Temperature changes cause tension noise by accelerating the end masses.
For example, if the temperature changed Tinearly with time, there would be no
- effect on the tension since the end masses would be moving at a uniform velocity.
The tension change depends on the second derivative of the temperature with
respect to time. Tension noise from thermal cycling can be reduced by insulat-
ing the wire to prevent rapid temperature changes.

3.2.1 Approaches to the thermal probiem
Three approaches have been considered for handling the problem of thermal
expansion and contraction of the wire: thermal compensation, thermal insulation,

and the use of low-expansion materials. Thermal compensation might be accom-
plished by the use of two wire materials, one with a positive coefficient and
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one with a negative coefficient such as Kevlar. If the wire is made with
alternating sections of two different materials, care must be taken that the
specific heat, emissivity, and absorptivity of the two materials are such
that they undergo the same thermal cycling. If interwoven strands of two
materials are used, it is essential that neither material goes slack under
different temperature conditions. Since certain Tow-expansion materials are
composite substances that achieve their properties essentially by internal
compensation, this approach appears to be sound and will achieve the same
objective as thermal compensation.

Thermal insulation can be used in conjunction with Tow-expansion materials.
The time constants for conduction in a small-diameter wire (such as 1 mm) are
very fast. Conductive isolation between the load-bearing tether and an in-
sulating jacket appears to be vequired for effective insulation. We have done
preliminary investigations into possible manufacturing techniques for achieving
such isolation {see Section 7.2).

3.2.2 Materials properties

Various materials have been ccnsidered for use either as %nsu]ating
materials or for construction of the tether itself. The first five entries
in Table 2 are are potential tether materials, presented in order of decreasing
expansion coefficient. The lowest expansion material is ULE,* a doped fused
silica. It could be drawn into fibers and used to construct a cable with a
suitabie filler material to bind the fibers together. Cervit, a giass ceramic
material with a fairly low expansion, cannot be reworked and would he unsuit-
able for use as a tetner. Kevlar is a very strong material but would require
much more thermal shielding than ULE does because of its higher expansion
coefficient.

*
ULE (Ultralow Expansion) is a synthetic amorphous silica glass of titanium
silicate and is a trademark of Corning Glass Works, Corning, New York 14830.
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Table 2. Materials Properties.

Material Concht1v1 Expans1on Heat caga t{ Elast1c1t¥
(ergs cn- sec” °c-1)  coeffi cienf (ergs cm- ) (dynes cm' )
(x109) (cm em™ ) (x107) (x1012
(x10- 6)
Steel — 20 - 2.11
Kevlar 10.3 -2 1.7 to 3.8 1.3
Invar 14.4 0.7 4.2 1.38
Cervit 1.67 0.1% 2.2 0.9
ULE 1.31 0.03 1.65 0.7
Foam 0.02 — - --
Mylar 0.15 - 1.17 -
Mylar 0.0001 - - —
superinsulation

The last three entries in the table are insulating materials. Calculating
the thermal behavior of a 1-mm-diameter wire with a condu.tivity of 0.02 x 105
(cgs) gives a time constant on the order of 10 sec. The five potential tether
materials listed in the table all have conductivities much larger than
0.02 x ]05 (cgs) and would therefore have fast thermal time constants. The
last entry in the table is for layers of aluminized mylar. The layers are con-
ductively isolated by spacers or a crinkied construction that provides point
contacts for conduction. When conductive isolation is used, the important
quantities in determining the effectiveness of a material are the heat capacity
and emissivity rather than conductivity. The elasticity of the potential tether
materials is given because it enters into the calculation of the risetime of
the system. In the diameters contemplated, all the tether materials possess
sufficient strength to support the loads that must be carried.

3.2.3 Analytical model of thermal behavior

Since thermal expansion and contraction of the wire is the major noise
source that has been identified, a computer program was written to analyze the
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thermal behavior of the wire. The wire is modeled as a series of concentric
cylinders with conductive or radiative heat transfer or both, between the layers.
Azimuthal temperature variations were not included. In practice, the thermal
time constants for conduction are so fast that layers having only radiative
coupling will be nearly isothermal. The model can represent layers of a
homogeneous material if the problem has azimuthal symmetry and will give order-
of-magnitude answers for asymmetric problems. Excluding the aximuthal dependence
gives conservative results, since the time constants are longer for asymmetric
problems. The model includes atmospheric drag heating and solar radiation for
the outer layer and thermal radiation from the surface.

The heat input from solar radiation at normal incidence per unit length is
Zrulsun, where r is the wire radius, o is the solar absorptivity, and ISun is
the solar radiation constant. The heat input from atmospheric drag at normal
incidence per unit length is rpav3, where py 18 the atmospheric density and v
is the velocity of the wire with respect to the atmosphere. The heat radiated
from the surface per unit length is anceT4, where o is the Stefan-Boltzmann
constant (= 5.6697 x 10™°), ¢ is the emissivity, and T is the temperature. The

heat conducted per unit Tength from the inside to the outside of a cylinder is

(T =T,
irz/rli 1 2

where k is the conductivity of the material and the subscripts 1 and 2 represent
the inner and outer surfaces of the cylinder. The net heat radiated per unit
area between two infinite parallel surfaces is

4 4
oey EZ(T-‘ - T2)

£ + 52 . e]az

It is assumed that the thermal absorptivity is the same as the emissivity. For
the case of two concentric cylindrical surfaces, the above formula has been
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multipiied by the area per unit length of the inner cylinder, giving

EqE

172 4 4
2“r10 e t &y - ey (T] h TZ)
as the net heat radiated from the inner to the outer surface. If €y << €95
the factor

€5 + €9 = E]EZ

reduces to €5e If €] 7 € and both are much less than unity, the factor reduces
to 52/2. If the total heat input to a layer due to radiation or conduction,
or both, is Q, the rate of change of temperature is

dT _ Q (6)

where CV is the heat capacity per unit volume and t is the time...——"7"

To simulate the effect of atmospheric'gfanularity, the atmospheric density
has been modeled as

o, = 0o [1+Asin EIt1 ,

where Py is the average density, A is the fractional variation, and P is the
period of the fluctuation. By means of a numerical integrator, we can determine
the temperature of each layer as a function of time starting from some initial
temperature distribution and using the rate of change of temperature given in
equation (6).
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3.2.4 Results of thermal analysis

Computer runs have been made to determine the thermal behavior under various
conditions of a 1-mm-diameter ULE tether. The wire is assumed to be moving at
7.7 km/sec through a region with an atmospheric density of 2.31 x 10']3 gfcc,
which is approximately the density at a typical Shuttie altitude of 220 km.

The density is varied sinusoidally with an ampiitude of +10% of the mean value.
Variations of the radiational heating of the wire have not been included. The
problem of radiative variations is easier to handle than that of drag-heating
variations since most of the radiation can be reflected from the surface. Once
absorbed at the surface, the effect on the thermal behavior of the wire is the
same for either source. If the wire has no insulation, it will be nearly
isothermal unless the period of the variations is a small fraction of a second.
If the amplitude of the varjation in drag heating is kept fixed and the period
is varied, the amplitude of the temperature variation of the wire is proportional
to the period. For a 20-sec period, the temperature variation is 0.0135°C.
Twenty seconds corresponds to 154 km along the ground at 7.7 km/sec.

A secend case analyzed is a 1-mm cable consisting of a 0.9-mm load-bearing
core and a 0.05-mm-thick jacket conductively isolated from the core. In this
case, the heat transfer is radiative and depends on the emissivity of the surfaces
exchanging energy. A Tow emissivity is desirable, and runs have been made
assuming an emissivity of 0.05 for one surface and 0.8 for the other. Table 3
gives some sample values of the emissivity factor, which determines the rate
of radiative heat transfer,

Table 3. Emissivity factors.

E € EIEZ
] 2 5] + 52 - E]Ez
0.8 0.8 0.6666
.05 0.8 0.0494
0.05 0.05 0.0256
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The protective jacket acts as a heat reservoir to contain the variations
in thermal input and transmit them only slowly to the core via radiation. 3ince
the conductive time constant of the jacket is a fraction of a second, it functions
solely as a heat reservoir, with the gap between it and the core providing a
thermal barrier. The effectiveness of the jacket as a heat reservoir is pro-
portional to the product of the specific heat and the mass of the jacket. Table
4 gives the temperature variation of the core for selected periods of drag-
heating variations. The variation of the core temperature increases nonlinearly
with period because the core has more time to come to thermal equilibrium when
the period is longer. In the limit of very long periods, the jacket would have
no effect, since the core would always be nearly in equilibrium with the jacket,
and the temperature variation of the core would be proportional to the period.
The 20- and 200-sec periods correspond to 154 and 1540 km, respectively, along
the ground.

Table 4. Temperature variations,

Period (sec) AT (°C)
20 +0.0005
50 £0.0035
100 +0.012
200 *+(.0415

A third type of run used two jackets. The core is 0.77 mm, the inner
Jacket is 0,06 mm, and the outer jacket is 0.05 mm, With a 20-sec period, the
temperature variation of the core is #0.00001°C. This type of multilayer in-
sulating jacket is clearly quite effective in principle. We have not looked
into the practical feasibility of such a design.

3.2.5 Approximate analytical solution of thermal behavior

The Dumbbell wire will receive heat input from solar radiation, atmospheric
drag heating, and infrared and albedo radiation from the earth. In equilibrium,
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the heat input equals the thermal radiation from the surface of the wire. In
general, the heat input will vary with orbital conditions, and the temperature

of the wire and its jacket will vary continuously with a time lag that depends

on the cooling time constants. Long-period temperature variations have negligible
effect on the wive tension. In this section, approximate solutions are derived
for short-period temperature fluctuations, expected primarily from variations

in drag heating. The short-period temperature fluctuations derived below will,

in general, be superimposed on the temperature variations of orbital period.

In the small-diameter wires considered for use with Dumbbell, the time
constants for conduction across the wire diameter are a fraction of a second.
We can therefore obtain an approximate solution for the thermal behavior of the
wire by assuming that all parts of the wire in conductive contact are essentially
isothermal. We consider here the cases of a bare wire and a wire with an in-
sulating jacket conductively isolated from the core.

The heat energy per second per unit length resulting from atmospheric
drag is approximately rpav3. If the drag heating varies by the factor
T + A sin ot, where w is the frequency, the wire will have a variable heat in-
put q given by

q = PpaVBA sin wt

If the temperature fluctuations are small enough that the fluctuations in
thermal radiation are negligible, the fluctuation in the wire temperature rate
is approximately

'=£.l
T H s

where H (= Cvﬂrz) is the heat capacity per unit length. The expression for
T is

rpav3A sin wt pav3A sin wt
T = =
2 bl

C rr
var v
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which we can integrate with respect to time to get

pav3A cos wt

T=- Cvnrw

The amplitude of the temperature fluctuation is then

3
pav A

AT =
varm

As an example, for the case of a 2-mm-diameter wire with Py = 2.3 x ]0']3

g/cc, v = 7.77 kn/sec, A = 108, C = 1,65 x 107 ergs em °c™', and w = 0.314
(20-sec period), we get AT = 0.00666°C. Since the temperature fluctuation

is inversely proportional to r, we can reduce AT by increasing r. The value
of r required to obtain a fluctuation AT 1is

r= C pwlT

So, for these same parameters, we can reduce AT to 0.0005°C if v = 1.33 cm.
(A temperature fluctuation of 0.0005°C gives an acceptable tension variation
with a ULE cable, as we will show in Section 3.3). For r = 0.1 cm, we have
AT = 0.0733°C, in good agreement with the resuit obtained by numerical
integration (first paragraph of Section 3.2.4).

If the wire is protected by a jacket that is conductively isolated from
the core, we can obtain an approximate analytical solution under the assumption
that the fluctuation of the heat transfer between the jacket and the core is
small compared to the fluctuations of drag heating. The rate of change of the
jacket temperature due to drag fluctuations is

d
T, = ,
27 H,
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where 62 = r3pav3A sin wt and H2 is the heat capacity of the jacket, given by,

2 2
Hy = Conlrg = r5) 5

rs is the outer and ro is the inner radius of the jacket. Integrating %2 with
respect to time gives

3
ra0,V A cos wt

T =
2
2 Czw(rg - r2) w

The amplitude of the temperature fluctuation of the jacket is

r3p V3A
AT, = 8
2 eon(il - pd)
2°\'3 2/ ¢

The radiative heat input from the jacket to the core, é], is

.E g
. 172 4 4
q] = 2Hr]d S] T E2 - E]Ez {Tz - T]) s

where " is the radius of the core, €1 and e, are the emissivities of the core
and the inner surface of the jacket, and TT and T2 are the core and jacket
temperatures. If we assume that the fluctuation of T? is small compared to the
fluctuation of Tg, then the amplitude of the fluctuation in heat input to the
core is
o T, =2
AQ, = = Al, = Zrry0o

€€
172 3
415 AT,

The heat input as a function of time has the form

dT = Ad] sin wt
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and the rate of change of core temperature is

: Ad] sin wt
Hy

[

—f
—r
I
o

1

where H1 = C]wrlz. Integrating, we obtain

T1 = - H?E cos wt

The amplitude of the temperature variation is

3 3
T - ng]us]ez4T2 AT, : 80€]€2T2 AT,
! C]wrlw(sl + Ep = e]ez) C1 ]m(e €2 ~ 5182)

We can substitute for ATZ to obtain

‘ 3 3
) 853132T2r3pav A

As an example, consider the case of a 1-mm cable consisting of a core and
a jacket with rys oo and r equa] to 0.044, 0 045 and 0.05 cm. For the other
parameters, take T27— 448, 7°K§ Py ; 2,3 x ]0 g/cc, v = 7.77 km/sec,
C] =C, =1.65 x 10" ergs cm ~ °C °, e = 0.05, ¢, = 0.8, and w = 0.314 (20-sec
period). The amplitude of the fluctuation of the core temperature is 6 x 1074
°C, which agrees approximately with the first entry in Table 4, obtained by
numerical integration. If the outside diameter of the cable is increased to
4 mm and we use r= 0.1 cm, r, = 0.15 cm, agd rs = 0.2 c¢cm, keeping the other
parameters the same, we obtain AT] =3 x 1077 °C. Increasing the wire diameter
simplifies the problem of thermal insulation, as the example shows. Equation (7)
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can be used to determine a set of wire parameters that will reduce the temper-
ature fluctuations of the core to the Tevel required for keeping the tension
noise below the signal.

3.3 Longitudinal Oscillations

Longitudinal oscillations of the Dumbbell system can be excited by various
means, such as the process of deployment, drag-force variations, short-period
gravity-gradient variations (which avre the signal being measured), and thermal
expansion and contraction of the wire. Damping is required to prevent con-
tinuous oscillation at the resonant frequency, which would obscure the signals
being measured. The resonant frequency of the longitudinal oscillations is an
important design consideration, since it determines the risetime of the system.

A physical model of the Dumbbell system, including an end-mass damper,
has been implemented in a small computer program that calculates, by numerical
integration, the orbital motion of two masses connected by a massless tether.
The program also models the natural length of the wire as a function of tempera-
ture., The results of the thermal analysis in Section 3.2 are used as input to
this program to study the effect of temperature variations on the wire tension.
In addition, an approximate analytical expression is derived for the tension
noise due to temperature varjations. Two limiting cases are considered,
depending on whether the frequency of the temperature variations is faster or
slower than the resonant frequency of the longitudinal oscillations. These
approximations utilize the high- and low-frequency limits of the general
solution for the steady-state behavior of a driven harmonic oscillator.

The approximations for & harmonic oscillator are also employed in various
other parts of this report for obtaining closed-form solutions valid in certain
frequency ranges. The analytical expression for the tension noise shows the
dependence on the design parameters and can be used in selecting a set of
parameters to achieve the required tension noise level.
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3.3.1 System risetime and frequency of the longitudinal oscillations

For a change in the gravity gradient due to a gravity anomaly to be detected,
the Dumbbell system must stretch to a new length such that the change in wire
tension equals the change in the gravity-gradient force on the system. The
risetime for this to be accomplish depends on the natural frequency of the
Tongitudinal oscillations of the system. Consider a system consisting of two
weights of mass M connected by a wire of length &. The system can perform
tongitudinal oscillations with the center of the wire remaining fixed, and the
problem is jdentical to that of & mass on the end of a spring of Tength 2/2
attached to a fixed support. The restoring force F supplied by the wire is
F = -kx, where x is the lisplacement of the mass from equilibrium and k is the
spring constant, given by

. A
k-EQ/Z *
E being the wire's elasticity and A is its cross section. The equation of

motion of the system is
Mx = -kx

and the frequency w of the .scillations is
w = vk/M

For a system consisting of two masses of 2 x ]06 g each, connected by a
105—cm wire with an elasticity of 0.7 x 10]2 dynes/cm2, a wire thickness of

2 mm is required to give a fast enough risetime. Since A = nrz, the vrw juency
w is

_ 2
0 = rSETE o 0_]\/;r X 0-; al 105 = 0.4689 rad/sec (8)
2 x 107 x 10

e
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and the corresponding period is

P = 2 = 13.4 sec.
{1}

Since the end masses have spring dampers whose spring constart is comparable
to that of the wire, the period of the longitudinal oscillations is increased.
If the effective k is reduced by a factor of 2, the period is increased by

/2. Considering only the wire, the frequency is proportional to the wire

radius,

Equation (8) can be used to make sure that a given set of system parameters
allows for an adequate risetime for measuring gravity anomalies. Since dampers
will lower the frequency, the frequency from equation (8) should be about a
factor of /2 faster than that required for the overall system. The cross
section A = nrz is the cross section of the load-bearing part of the cable
only. For a stranded cable, void >r filler space should be taken into account.

3.3.2 Analytical model of Tongitudinal wire osciilations

The temperature variation of the wire obtained from the thermal model is
the form

) . .2;
T = T0 [1 + B sin (ﬁ—t)] ,

where T0 is the average temperature, B is the fractional variation of the
temperature, and P is the period of the variation. A simple orbital dynamics
program has been used to determine the tension variation produced in the
Dumbbell wire by a temperature variation of a given amplitude and period.

If the temperature variation has the same frequency as the resonant

frequency of Dumbbell, the amplitude of the oscillations will increase indef-
initely. This can be prevented by having a damper on the end mass to dissipate
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the energy of the oscillations. The Skyhook dynamic simulation computer program
(Kalaghan et al., 1978} has a damping force proportional to the rate of change
of the length of the wire. The damping constant is usually chosen large enough
to provide critical damping and allow rapid numerical integration, since there
are no fast wire oscillations to integrate. This damping model could repre-
sent hysteresis in the tether; however, the actual hysteresis would presumably
be far smaller than the values that have been used simply to obtain fast
numerical integration. A model of an end-mass damper has been added to a simple
version of the Skyhook program to study the effect of wire temperature varia-
tions with a more physically realistic model. This damper consists of a spring
and dashpot inserted between the wire and the end mass, as shown in Figure 10.

SPRING

00000 —

WIRE END

MASS

|
| DASHPOT
|

T 1 Fy

< -5

Figure 10. Model of damper inserted between the tether and the end mass.

The force Fd exerted by the damper is equal to the wire tension TW. The
wire tension can be written '

T, = k[s - EO(T)] .

where zO(T) is the natural length of the wire, given by

f,U(T) = EO(TO) + G(T = TO) s
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in which « is the thermal expansion coefficient and T0 is some reference
temperature. The damping force is given by

Fa = kqlag - 2g) * bgty >
where kd is the spring constant of the damper, 24 is the actual length of the
damper, %04 is the natural length of the damper, and bd is the damping constant
of the dashpot. In the orbital dynamics computer program, the Tength of the
damper Ed must be added to the other variables to be integrated numerically as

a function of time. The rate of change of &, is obtained by solving the
equation

ki - QO(T)] = kd(zd - EOd) * bty
for id, which gives

U"H

id y {k[z - RO(T)] - kd(gd - zOd)}

The end-mass damper does not appear to be capable of providing the critical
damping by which the system returns to equilibrium in minimum time without over-
shooting. However, if kd is set equal to k and bd is set equal to vk/M, the
amplitude of the oscillations is reduced by about a factor of 2 on each half-
cycle. The damper lengthens the natural period of oscillation of the wire,
because if reduces the overall spring constant of the system. If kd = k, the

period is lengthened by a factor of /2.
3.3.3 Results of mechai.ical analysis

When the period of the temperature variations in the wire is less than
the resonant frequency of the Dumbbell system, the end masses do not have time
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to adjust their positions to an equilibrium configuration during a cycle.
Therefore, the fractional change in tension in the wire is independent of the
period of the temperature variations. As the period becomes longer than the
resonant period, the fractional change in tension drops off and becomes
negligible for long periods because the end masses are in quasi-static equilib-
brium throughout the cycle of temperature variations. Table 5 shows the
fractional tension change when the temperature variation is £1°C and the reso-
nant frequency of the system is 35 sec.

Table 5. Effect of temperature-variation period
on fractional tension change.

Period (sec) A tension ]0"4

“tension .
1 4,05
2 4,17
5 3.94
10 3,73
20 4.2
50 2.74
100 0.336
200 0.0875

For a tether with no insulation, the magnitude of the temperature variation
in the wire is proporticnal to the period. Since the fractional change in
tension is proportional to the amplitude of the temperature variation, the
fractional tension variation is obtained by multiplying the tension in Table 5
by the actual temperature variation. For an uninsulated wire, this results in
a kind of resonance curve, where the maximum tension change for a constant-
amplitude drag-heating variation occurs at the resonant frequency of the Dumb-
bell system. Table 6 gives the fractional tension change for an uninsulated
tether and a tether with one jacket.
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Table 6. Fractional tension change for an uninsulated tether and for
a tether with one jacket.

Uninsulated tether Insulated tether
Period (sec) AT (°C) A{éﬁ%%g%ﬂ‘“ 107 aT (°C) é%%ﬁg%%%a « 10°

0.000675 n.27 - -

2 0.00135 0.56 - -

5 0.00337 1.3 - -

10 0.00675 2.5 ~ -

20 0.0135 5.7 0.0005 0.21

50 0.0337 9.2 0.0035 0.96

100 0.0675 2.27 0.0120 0.40

200 0.135 1.18 0.0415 0.36

The design goal is a fractional tension change of a few parts per million.
The tether with no insulation does not quite meet this requirement, but the
insulated tether is well within the Timit.

3.3.4 Driven harmonic oscillator

A number of sections in this report contain approximate analytical solutions
for the behavior of the Dumbbell systam under various conditions. The ap-
proximations depend primarily on whether the driving force is faster or slower
than the natural frequency of the system being driven. The equation of motion
for a damped harmonic oscillator driven by a force of magnitude F and frequency
wis

mx + bx + kx = Fe'®? ,
where m is the mass of the object and b is the damping coefficient. A solution
of the form

X = Ceiwt
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gives
C(--mm2 + jwb + k) = F

where C is the amplitude of the oscillation. If there is no driving force,
the frequency of the natural oscillation is

_ib + Vb2 + amk

W= 2m

With no damping, the natural frequency is w = vk/m; for critical damping,
|bl = 2/mk. The amplitude of the oscillation with a driving force is

-
Kk - mo? + iwb

C =

When the driving force is at the resonant frequency, k - mm2 = 0, and the

amplitude is Targest. Without damping, the ampiitude increases indefinitely
with time. If the frequency is low compared to the natural frequency, the
amplitude is C = F/k; in other words, the restoring force is in equilibrium
with the driving force. This assumes either that the natural frequency has
not been excited at any time in the past or that any natural oscillation has
died out owing to the presence of some damping in the system. If the driving
frequency is fast compared to the natural frequency, the amplitude is

A= -F/mwz, which is small in this case because of the factor mz.

The derivations in various sections of this report use the approximation
that the system is in equilibrium for Tow frequencies and stationary for
high frequencies.

3.3.5 Tension variations due to end-mass acceleration

The end masses in the Dumbbell system can be accelerated as a result of
temperature variations in the wire or transverse oscillations of the wire.
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We can write approximate analytical solutions for the tension noise in two
limiting cases. If the period of the variations is long compared to the
resonant frequency of the longitudinal oscillations of the system, the wire
acts nearly as & rigid rod and the motion of the end masses is approximately
equal to the change in natural length of the wire or the change in distance
between the ends of the wire. If the oscillations are Tast compared to the
response time of the system, the end masses do not have time to move and

the tension noise is that due to the stretching of the wire.

If the end mass M is forced to oscillate so that the position y as a
function of time is

y = Ay sinwt

then the tension force as a function of time is

2

F=my= My Ay sin wt

and the amplitude of the tension noise is aF Mmz aAy. For exampie, if
each end mass is 1069, =2 x 105 cm, and o = 3 x 10'8/°C, then the amplitude
of the motion for a 1°C temperature fluctuation is

1l

by = 32T =3x 107 em

The tension noise for a 200-sec-period variation is

2
AF = 106 x (%%ﬁ) x3x 1073 = 3 dynes

and the fractional tension noise for T = 416,000 dynes is

AF _ 3

_ -6
= = 716,000 -/ * 10 :

in approximate agreement with the last entry in Table 5, obtained by numerical
integration.
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If the frequency of the change in wire length is faster than the resonant
frequency, the tension noise is F = k Ay. The spring constant k for the
wire is

_ EA
k==

Setting E = 0.7 x 1012 dynes/cmz, A= n(0.05)2 cmz, and 2 = 2 x 105 CIi,
we have k = 2.75 x 107 dynes/cm. With o = 3 x 10°8/°C and aT = 1°C, the
change in natural length of the wire is

1

Ay = a2 AT = 6 x 1075 cm
-The tension change is
AF = k Ay = 165 dynes

and the fractional tension noise is

=4 x 10 .

in good agreement with the first five entries of Table 5, which are below
the resonant frequency.

In summary, we can use the formula
a2
AF = Mw™ Ay (9}
to obtain the tension noise when the end mass M is executing a motion of
amplitude Ay at a frequency w that is small compared to the resonant

frequency. When w is larger than the resonant frequency, we can use

AF = k ay (10)
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where k is the spring constant of the whole wire and Ay is the change in
natural Tength of the wire (thermal expansion and contraction) or the
change in arc length of the wire (transverse wire oscillations).

3.4 Transverse Oscillations and Drag

This section discusses the tension noise introduced by variations in
atmospheric drag force. Since the area-to-mass ratio of the Dumbbell
wire is much larger than that of the end masses, the wire will be curved
back by the drag force. If the drag force varies along the orbital path,
the amount of curvature will vary and a force will be exerted on the end
masses as a result of the change in distance between the ends of the wire.

Three effects of drag are considered here, in order of increasing
significance with respect to tension ncise: the change in average tension
from the constant part of the drag, tension nojse from higher modes of
transverse oscillation of the wire, and tension noise from the excitation
of the fundamental transverse oscillation mode by drag-force variations.
The change in average tension affects the measurement of the absolute
value of the total gravity gradient but does not interfere with measuring
the short-wavelength gravity-gradient variations. The excitation of higher
transverse oscillation modes can occur as a result of nonuniform drag along
the wire. Thrs excitation force is weak, and large oscillations develop only
under resonant conditions. The excitation of the fundamental transverse
meae is the most significant effect.

Computer runs using numerical integration have been performed to
stuay the fundamental and higher transverse oscillation modes. The program
models the wire as 2 series of discrete masses having the Tumped properties
of a section of the wire (Kalaghan et al., 1978). For studying the funda-
mental mode, & single point is used to rerresert the wire. The accuracy of
this approximation is compared to an anaiyticar calculatics of the wire con-
figuration resulting from drag force (see Section 3.4.1). The derivation
(which contains nothing new) indicates the approximations and 1imits o:
validity of the analytical expression.
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In addition to the computer runs, an approximate analytical expression
is derived for the tension noise arising from the excitation of the fundamental
mode. This can be used to calculaic the noise as a function of the system
parameters. Sample calculations are compared with the numerical-integration
results. Practical considerations Timit the extent to which the tensinn
noise can be minimized by varying the system parameters for a configquration
consisting of two masses connected by a flexible wire. Such a system would
probably be Timited to operation at altitudes where drag effects are not
too severe. For this reason, two additional configurations designed to help
cope with the problems of drag are also considered. One includes ballast
masses along the wire, and the other uses a rigid rod to resist the bending
effects of drag. Analytical expressions are presented for the tension noise
in each case, and sample calculations are compared with the results of
numerical integration of the system dynamics. '

3.4.1 Wire curvature due to drag

When drag acts on a wire connecting two masses, each section is given an
acceleration that depends on its area-to-mass ratioc. Assuming that the area-
to-mass ratio of the wire is large compared to that of the end masses, we
can neglect the effect of the acceleration of the end masses. Other assumptions
are that the tension in the wire is constant, the curvature of the wire is
smail, and the drag force is prependicular to the wire. In equilibrium, the
drag force on each element of wire must equal the restoring force due to wire
curvature,

fee  — e —

|
Xg x0+dx

Figure 11. Equilibrium drag force on a wire element.
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In Figure 11, we see that the transverse force FT due to wire tension is

dy(x,) dy(x, + Ax) 2
Fro= T —2-+ T —-0 =14y

+ ax
T dx dx dx2

The drag force on each section is
Fro = 2rp_ve dx
D Pa

Since
FT + FD = Q

in equilibrium, we can substitute for F; and Fj, and get

2
T Eng dx + eravz dx. = 0 ,
dx

2rpaV2

T

42
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dx2

For simplicity, let the origin of the coordinates be at the center of
the wire, so that y and dy/dx are zero at the origin (see Figure 12).

-4r2
Figure 12. Coordinate system for wire configuration.

Integrating twice to get the wire configuration, we have
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2rp_V
dy . _""a
dx T % (11)
and
2
rp.V
y=-—3-x . (12)

To evaiuate th. displacement of the end masses due to changes in wire
curvature, we need the arc lengths of the curve from x = -2/2 to x = /2.
This is given: by

82 2/2 /2 .
s=zf ds=2f de2+dy2=2f 1+(—f§§) dx
0 0 0

Assumin_g that dy/dx is a small guantity, the integral is approximately

2/2 . 5112
S%Zf [I”L"Z"(dx)]dx
Substituting dy/dx from equation (11), we have

" 2 N2

/2 1 2rpav2 5 1 Rrpav‘z\ 3
Zf 1+§ T x~| dx = 2x+§ T/x

0
2
2

2+l 2rpav) &3

3 T 2

If the wire configuration changes due to a change in atmospheric density,
the change in arc length is '

wy
I

1]

45



2 2
ds =35 ¢ =2 (2”’6" 2\ 3 (..____zrdpav )
ap. Pa 3 T 2 T y

a

IT we write dpa as apgs where o« is the fractional variation of the drag force,
the expression becomes

2\2 . 2\?
2 erav ) N reqv ) 3
dsS = 3 (—-—.]-.—-— (—2) =3 T L . (13)

In tne Skyhook dynamic simuiation computer program, when a sing.. mass
point is used to represent the Tumped properties of the wire, the cross
section for drag is computed as fthe total cross section divided by the number
of wire sections, which in this case is two. In Figure 13, the Tumped
properties of the wire are represented by the mass m. The drag force F

Figure 13. Equilibrium displacement of wire midpoint by atmospheric drag.

displaces the mass m by a distance x such that in equiiibrium,

F=2T_i_=ﬂ’i

Y ) . (14)
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or

=2

By convention, the drag force on m is

= L 2
F=2rp_v 5= Ve s (16)

and thus the displacement of the midpoint of the wire is

2 Y'Davzf.z

= %_ =9
X = ZF regv e T (17)
The accuracy of this convention can be compared to the results of the
analytical solution. From equation (12), the magnitude of the displacement
of the middie of the wire relative to the ends is

2
r
oaV

T

2 rpavzz2

B s

(3) =

in agreement with equation (17).

The distance S between the ends of the wire in the lumped-mass case is

2 2 2
S=2<J('§-) "‘X2=.Q.Jl-( ) :'2[1_%(%_&)}

If the drag force changes, the change dS in distance between the ends of
the wire is

= N\
b

”

LK)

- 2Xy (2y 3 = o & o3x
ds-m[- (2 (2 ]dpa do

Pa 2 apa a
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Differentiating equation (17) with respect to Pa gives

ax_ ol x
Spa 4T Pq ?
and thus
Ax X ax2 Urg
ds - T - d a bt _"9'_' — .
Pa Pa

If dp, = ap,» then, from equation (17), we have

2 2
2,2 2
d5=_£«;_>f.=_ﬂg_(’ia_"i_)=_&(i‘ia_",) 23 (18)
D A g \°T ‘

Equation (18) differs from equation (13) by having a factor of 4 in
the denominator instead of 3, so that the lTumped-mass approximatinn under-
estimates the change in displacement of the ends by the factor 3/4. (The
minus sign results from computing the change in distance between the ends
for a fixed wire length rather than computing the stretching of the wire with
fixed end points, as is done in the analytical treatment.} Since the amount
of computer time increases sharply with the number ¢f mass points, most
runs were done with two points rewresenting the end masses and one point
representing the wire.

3.4.2 Effect.of drag on total equilibrium wire tension

In equilibrium, the tension force that the wire exerts on each end
mass has a vertical component TG resulting from gravity-gradient and centripetal
forces and a horizontal component TD due to drag. Since the drag force is
shared equally by the two end masses, TD is half the total drag force on the
wire. The total tension T is the vector sum of the two components, and the
wagnitude of T is
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2 2
—JT2+T2 J1+ o1 e L{ ot 4ol
A B ¢ D G 2 TG G 2TG
For example, if & = 105 cm and the wire diameter is 0.5 cm, TD = 2130 dynes
and TG = 416,400 dynes. The change AT in T due to Tp is

Tp -3
AT = TD = 2130 x 2.557 x 10 © = 5,45 dynes ,
2T

and the fractional tension error is

T 1T2 6
AT 1 (') _ -
_T‘“E‘(Té) =13 x 10

This tension error affects the absolute value of the gravity-graciont measure-
ment but will not interfere with measuring the variations in the gravity
gradient due to gravity anomalies.

If the bailast is distributed along the wire, the effect of drag is
different. Suppose, for example, that the ballast consists of N equal masses
distributed uniformly along the wire. Let us assume that the area-to-mass
ratio of each section is designed to be uniform, so that the ballast masses
stay in a straight configuration. Near the center of the system, the tension
will be half as great as the tension produced by the same total mass concen-
trated at the ends of the wire. Compared to the system with two end masses,
the tension due to the gravity gradient with N masses is TG/Z and the tensicn
due to drag is Tp/N 7or a wire section in the middle. The fractional tension
arror becomes

The effect of drag on the total tension can be reduced by 4/N% with this
technique.
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3.4.3 Normal modes of transverse wire oscillations

This section reviews the analytical expressions for the transverse
oscillation modes of a string fixed at both ends. The formulas can be used
to caiculate the frequencies of the normal oscillation modes. The frequency
of the fundamental mode calcuiated analytically is compdared to the frequency
of the Tumped-mass approximation used in the Skyhook dynamic simuiation
computer program.

In a system consisting of a long wire with heavy end masses, the normal
modes for transverse wire oscillations are given by (Morse, 1948)

= sip (TRX mne
yAna‘in(E)cos(zt) .

th

where An is amplitude of the n~" mode and n is a positive integer. The veloc-

ity of wave propagation ¢ is VT/e, where T is the tension and e is the mass
per unit length of the wire. The frequency of the transverse oscillation is

- mnc _m
£ 2

w =

(19)

‘:?4-' .

In the Skyhook dynamic simulation computer program, the wire is represented
by discrete masses having the Tumped properties of the secticn of the wire
that they represent. If the wire is divided into N sections, each of the N - 1
masses representing a section of the wire has 1/N of the total mass and
total cross section of the wire. A single point halfway between the ends is
used to represent the properties of the wire (see Figure 13)}. If the mass m
is displaced from its equilibrium position by a distance x, the restoring
force is (reversing the sign in equation (14)),

a1x
A

The equation of motion of the mass is
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m;="ﬂI— 3

X
[
and the frequency of the transverse oscillation of m is

w =

e
i
N

"TTE- . (20)

By convention, the Skyhook program computes the mass m by the formula

_ e
m = ;

Substituting this into equation {20) gives

= 2 gI...:& I-=2'828 I..
w Lek L £ 2 £

This value is 0.9 times the frequency of the fundamental frequency computed
from equation (19), which has a factor of w. The agreement is sufficient
for the purpose of system noise analysis.

3.4.4 Resonant excitation of higher modes of transverse wire oscillations

Transverse oscillations of the Dumbbell wire can exist initially as a
result of deployment or can develop during the course of the system lifetime
as a resuit of drag-force variations on the wire, These oscillations can be
controlled by the use of dampers on the wire. The frequencies of the normal
modes given in Section 3.4.3 are proportional to the integers. If the frequency
of the drag-force variation is the same as that of the fundamental period or
any of the higher harmonics, there will be a resonant excitation of transvers-2
wire oscillations. In the absence of dampers on the wire, the amplitude of
the oscillations and the resulting tension variations will increase with
time as Tong as the force variations are applied. Because the drag force
decreases with altitude, higher harmonics can be excited by drag variations
since the force on the lower part of the wire is greater than that on the
upper part.

51



Simulations have been done to see the rate at which higher harmonics
are excited by drag. For example, when the periods of the first three
harmonics are 320, 160, and 106 sec and the drag varies with a 160-sec
period, a drag variation of 10% at 220 km produces a tension variation of
+20 dynes in two cycles. The total tension is 372,000 dynes. At 106 sec,
a tension noise of +20 dynes is reached in three cycles. The excitation of
transverse modes other than the fundamental can be minimized by changing the
mass-to-area ratio along the wire to match the decrease in atmospheric density
with altitude. In this way, the wire receives a nearly uniform acceleration
at each point, but since the scale height varies with altitude, the correction
is only approximate. In the case of a wire with heavy masses at each end,
we cannot prevent the excitation of the fundamental transverse mode, although
the freguency can be designed to be outside the bandwidth of interest, which
is roughly between 20 and 100 sec.

3.4.5 Tension noise due to drag-force variations

Computer simulations have been used to study the tension noise resulting
from drag excitrtion of the fundamental transverse oscillation mode of a
wire connecting two heavy end masses. The atmospheric density is assumed to
vary with time according to the expression
. 2nt
= polAy + Aq sin =)

]

Pa

where 03 is the density as a function of time, Py is the mean value of the
density, Aj is a constant, Al is the fractional variation, and P is the
period of the variations. If the Dumbbell system begins with the wire
straight, atmospheric drag forces the wire back and an oscillation is set up
whose frequency is that of the fundamental transverse mode.

Figures 14, 15, and 16 show the results of a simulation using a wire 2 km

long and 2 mm thick, with a density of 1.5 g/cc; masses of 2 metric tons each
are at the ends of the wire, which is orbiting at 220-km altitude. The
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TIME
(sec)

0,0000000
20000000
4,0000000
b, 0000000
8,0000000
10,0000000
12,9000000
14,0000000
16,0000000
18,0000060
20.0800000
22,0000000
24,0000000
26,0000000
28,0000000
30,0000000
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34, 0000000
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38,0000000
40,0000000
42,0000000
44,0000000
46,0600000
48,0000000
50,0000000
52,0000000
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92,0000000
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58,0000000
19¢,0000000
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104,0000000
106,0000000
1048,0000000
110,0000000
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Figure 14,

TENSION
{dynes)
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B33058,430000
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833U54,570000
£33144.410000

Transient behavior of a wire subjected to atmospheric drag starting from a straight
configuration.

Wire tension (dynes) versus time (sec).
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Figure 15. Transient behavior of a wire subjected to atmospheric drag starting from a straight
configuration.
wire versus time (sec).

In-plane displacement (cm) of the center mass point representing the
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Transient behavior of a wire subjected to atmospheric drag starting from a straicht
configuration.
time (sec).

Vertical position (cm) of the bottom mass with respect to the top versus




middle of the wire moves back 207 cm in 53 sec and returns to the straight
position in 105 sec. The displacement of the center of the wire causes the
end masses to be pulled back and forth, resulting in tension variations. The
aquilibrium tension is 833,000 dynes, and the variations in tension are +957
and ~1724 dynes. A 20-sec 10% atmospheric density fluctuation was also
included in the run, but its effect is not visible on the plot compared

with the large tension variation due to the transient behavior of the system.

Some runs were done with the wire straight and with only the variable
part of the drag included (AO = 0). For P = 20 sec, the tension noise is
negligible. For P = 105 sec (the fundamental frequency), the tension noise
increases with t° and reaches +200 dynes, out of a total of 833,000 dynes,
in 200 sec. Resonant excitation of the fundamental frequency can be prevented
by having a damper on the wire. However, the excitaticn within one cycle
would still be substantial.

The resonant frequency of 105 sec Tor this case is very close to the
bandwidth of interest (approximately 20 to 100 sec, which corresponds to
horizontal wavelengths of 150 to 770 km along the ground). The fundamental
period can be lengthened by increasing the mass of the wire and thereby moving
the frequency away from the bandwidth of interest. Runs done with the wire
density set to 6 g/cc and the wire diameter increased to 4 mm do not show
resonant excitation for P = 100 sec. The Tow noise for P = 20 sec, unfortunately,
is not representative of the actual system noise to be expected, because '
only the variation of the drag was included. When the wire is straight,
slight motions of the wire back and forth do not produce significant motion
in the end masses, because the distance between the ends of the wire changes
as the cosine of the angle of the bending of the wire.

To be able to see the effect of atmospheric density variations in the
presence of transient wire oscillations, pairs of runs were done with and
without the drag variations. Subtracting the tension in the baseline run
from the tension with the drag variations included makes 1t possible to see
the effect of the variations. With a 1-km wire, 5 mm thick, having an
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average density of 5 g/cc and 2-ton masses at either end, the noise due to
atmospheric density fluctuations increases as the drag bows the wire back
(see Figures 17 and 18). The tension noise becomes about 20 dynes when the
wire displacement has reached 125 cm, at about 80 or 90 sec into the run.
The noise is about the same for 20-sec and 50-sec drag variations, and the
total tension is 416,000 dynes.

Additional runs were done with the wire initially displaced to the
approximate equilibrium position (125 cm) to eliminate most of the transient
motion (see Figure 19). Drag fluctuations with P = 20 and 100 sec show a
nearly constant tension noise of about 23 dynes.

A1l the runs described above involved integrating the motion of three
masses, two at the ends of the wire representing the ballast masses and one
half-way between the ends representing the Tumped properties of the wire.

A pair of runs with four points representing the wire and two end masses
gave essentially the same results for the tension noise due to drag-force
variations.

If the area-to-mass ratio for each point whose motion is being inte-
grated is the same, drag-force varijations will have no effect. A pair of
runs was done integrating the motion of six 700-kg masses having a cross
section of 1 m2. The length of the system was 1 km and the tensions between
the pieces were 145749, 233154, 262338, 233185, and 145737 dyne:, There was
no observable tension noise resulting from a 20-sec 10% atmospheric drag
variation.

3.4.6 Approximate analytical solution for drag-force tension noise

In & Dumbbell system consisting of a long wire with two heavy end masses,
tension noise will result from drag-force variations. The particular case
shown in Figures 14 through 18 indicates that the tension noise is above
the sensitivity required for the system. In order to study the dependence
of the tension noise on the orbital, atmospheric, and system design parameters,
an approximate analytical expression has been derived that is valid in the
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TIME TENSION .
(sec) DIFFERENCE

(dynes)
9. 0066000 0.060000
2.0000088 ~-0,1270286
4.980B08 -8.353880
6.0086000 -8, 459060
8.0000068 -8, 717086
16.0080009 -8.220000
12. 0009060 -6. 327660
14. 8006060 -0.395080
16. 8808000 -8.573200
18. 2066800 -0.339008
20.0800885 8. 398900
22.8002000 1.427608
24. 0600050 2.554800
26.6000200 3.324p80
28. 0908088 3.207208
30. B2600BE 1. 772080
32, 0060000 -6.437838
34.0000908 s2.612089
36. 0630000 “3.817008
38.5060000 ~2.960080
19.6008000 -5.118085
42. 8089660 3. 746680
44,9000600 7. 364000
46.0000080 8.888080
48.20080060 7. 289088
58.8800000 2.812008
52.0080000 -3.188600
54. 6800009 -8.376000
56. 0¢6290D -18. 354060
58. 8000000 -7.886009
60.0000000 -1.616800
62. 0060020 6. 687099
64.0890000 13043800
66. 0800088 14,967008
68. 6BDO00G 11898034
78, 2600END 2.328000
72.0000008 -8.353000
74.8080200 -16.927808
76. 6800600 -19.334080
’8.8000800 -14.471869 :
86.6000808 ~3.573060 -
£2.0000009 9.a11800
84.06606080 15184088
86.0080080 21.533060 A___ﬂ;::::Zhn
88.0860069 14.933006 .
9¢. 0000600 1.192600
92.0000828 -14.653060
94.8800060 -26.335000
96.0084409 -28.698084 ‘Q__
98.0090080 -21.167080

Figure 17. Effect of wire curvature on tension noise arising from atmospheric granularity. Differ-
ence between tension with a 20-sec period atmospheric density fluctuation and tension for
a baseline run with no density fluctuation. Time is in sec, and tension difference is in
dynes.
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TIME IN-PLANE
(sec) DISPLACEMENT

(cm)

@.epeespo g.p8dp08 *

2.9000008 B.8B85715 *

4.0008008 B.342748 +

6.0000800 9. 778750 *

ENCEESEED] 1.369137 *
14.8008688 2.137891 *

12,8880480 3.873561 *
14. 9098060 4.177267 =

16.00P98R0 R.496G96  *

18._ppooeas 6.880110 .

28.08800B0 8.57554) *
22.0008008 15.230810 "

24.P008080 12.143584 »

26.0¢80008 14. 211002 .
28.0000860 16.438469 .
3p. 0880868 18. 798861 .

32.papsega 21.312931 .

34.8050000 23,969228 -

36.0200008 26, 762109 .
38.8088000 25,693741 *

48.0008000 32.754102 .

42.p808800 35.940999 *

44. 0808000 19,256044 -

$6.8826008 42.676711 .
48.p5@03006 46.216292 d
50.8068008 49,863938 *
52,¢008008 53.61461% .

54.B000800 57.463221 *
56.5004008 61,404424 .
58.80B008F 65.432849 .
60.2P90000 63.542957 *
62. 0900680 73. 729198 *
64.80050030 7. 985555 *
66.8058600 82.396458 .
68.,9806000 B6. 25886 *
78.0800689 51.117830 .

72.0808890 95.596288 .
74.60809888 160.114875 .
76.0000808 194.,667633 *

78.06090000 189.248233 ’
80.p020BB0 113,850394 .
B2.@80BABE 118, 467801 b
84. 00029090 123,894k 24 *
86.08000808 127,723816 .
83.0050003 132, 348132 *

98.0808089 136.963331 .
92.08200000 141,561688 b
94.0080889 146,137495 .

96.00P0808 150, 664287 - *

. 98.8886384 1%5.195834 *

180.980800P 159, 665956 *
182, 8880009 164, 888538 "
194_8p@a0da 168.457581 ) *
186.08808000 172. 766888 .
108.880a880 177.9018793 *
118.89e0089 181, 183488 *
112.08800880 185.279827 d
114. 8889008 189.2%2847 .
116.pp2dagd 193, 216981 .

Figure 18. Effect of wire curvature on tension noise arising from a}tmospheric granularity. In-plane
displacement (cm) of the center mass representing the wire versus time (sec).
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84, 600086 20.451000 —3
BG, 6AGANAS 20,4718088
B8, 0030500 12,237008
S3.6090006 ~1.1714p8
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96.0000009 -22,.868808
98, 9098000 -14. 458980 P,

Figure 19. Difference between tension with a 20-sec period atmospheric density fluctuation and a
baseline run with no density fluctuation. The center mass representing the wire has a
nearly constant in-plane displacement of 125 cm.




wavelength range of the gravity anomalies to be measured. This expression
can be used to determine a set of parameters that will achieve the required
noise level.

Because the area-tec-mass ratio of the wire is Tlarge compared to that of
the end masses, atmospheric drag forces the Dumbbell wire into a bowed con-
figuration. If the drag force varies, the amount of bowing fluctuates about
the equilibrium configuration. If the period of the fundamental transverse
oscillation of the wire is designed to be Tong compared to the period of the
gravity-gradient signals of interest, then drag fluctuations within the
bandwidth of the system will excite transverse oscilliations at a frequency
well below the resonant frequency. In this situation, the actual displace-
ment of the wire will be small compared to that required to establish equilibrium
between the drag force and the restoring force resulting from curvature in
the wire. The movement of the wire is that due to inertial acceleration by
the drag-force variations. As the wire osciilates, the distance between the
ends of the wire changes, since the curvature of the wire is changing, and
the end masses are displaced back and forth.

If the end masses undergo a periodic acceleration of amplitude ay, the
force causing that oscillation is o amplitude M Ay, where M is the mass of
the baliast. This force is the tension noise resuiting from drag-force vari-
ations. We assume that the response time of the end masses is fast compared
to the frequency of the drag variations, so the masses move with the wire.

If the wire changes its length or configuration at a frequency faster than
the risetime of the system, the tension change will be that due to elastic
stretching of the wire, since the end masses do not have time to respond and
remain essentially stationary.

In equilibrium, the drag force displaces the mass m, representing the
Tumped properties of the wire (see Figure 13), by the distance x, given in
equation (15). If the force changes by an amount AF, the mass m will be
accelerated from its equilibrium position and the mass M will undergo an
acceleration y, where
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Similarly, the velocity y of mass M is ¥ = 2%x/%.

For typical parameters, the work done by the drag variation aF goes
almost entirely into the kinetic energy of m, and thus we can neglect M in
the equation of motion. For example, if the velocity of m is x, and x = 125 cm,
g = 105 cm, m = &0 x 103 g, and M = 2 x 106 g, the ratio of the kinetic
energy of the mass M to that of m is

: 2 2
(1/2)M(2x¥££)__= 4M(;/£) - 2.5 x 1072
(1/2)mx

Therefore, the equation of motion of the system due to force AF is approximately
AF = m§

The acceleration of m is‘AF/m, and the acceleration of M is & = 2AF X/mg.
The tension noise is

AT = M; = TSm0

and the relative tension noise is

2M AF x
meT

AT _
T
To see how the relative noise depends on the design parameters of the
system, we can rewrite equation (21) as follows. Using x = F2/4T, from
equation (15), and setting AF = oF, where o is the fractional variation of
the drag force, we get

Al o clofrf _ : (22)
T 4meT ~ 2
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If the density of the wire is G the mass m of half the wire is m = ar pw2/2.
The tension in the wire given by equation (5), is

p=3ML (23)

a

The velocity v for a circular orbit of radius a is

v=+yaa ,
so the expression for the drag force in equation {16) becomes

s B

F=rp, 7 * . (24)
Substituting these expressions into equation (22), we have

AT aMrng(GMVa)Zﬁz 4&p§a4 (25)

T 2%, (1/2) (3ae/2a%)2 9™y

The analytical derivation above can be compared with the results obtained
by numerical integration in Section 3.4.5. The simulation of Figure 19 was
run with T = 416,400 dynes, i = 2 x 105 g, x = 125 cm, m = 49 x 10° g, and
g = 105 cm, with a 5-mm-diameter wire of average density 5 g/cc at an
orbital altitude of 220 km. The drag force of 2130 dynes was varied by
10%, giving AF = 213 dynes. Using equation (21), we get AT = 2M AF x/mg = 21./
dynes which agrees approximately with the tension noise of 23 dynes in
Figure 19.

From equation (25), we see that the noise can be reduced to an acceptable
Tevel by some combination of increasing Py? % OF M or by going to an altitude
where Pa is sufficiently reduced. The dependence of noise on a’' results
from the decrease in wire tension as the radjus of the orbit increases.
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Since Pa decreases with altitude much more rapidly than the factor a4, the

tension noise can be significantly reduced by going to a higher altitude.
The factor o probably depends on altitude alsoc, so o and p; should be
evaluated together.

3.4.7 Drag-force noise with a small number of ballast masses

In Section 3.4.2, we considered what effect adding ballast masses along
the wire would have on the change in total tension resuiting from atmospheric
drag on the wire. ilere, we consider the effect of ballast masses on the
tension noise arising from short-period drag-force variations.

The expression derived below is an approximate solutien for the case
where the frequency of the drag-force variations is fast compared to the
natural frequency of the transverse wire oscillations but slow compared to
the risetime of the system determined by the natural frequency for Tongitudinal
oscillations. For simplicity, we assume that the ballast masses are heavy
enough to create nodes in the wire but not heavy enough to increase the
tensicn sigrificantly, which we assume to be constant.

In equilidrium, the drag force F on each section of wire egquals the
harizontal components of the tension vectors, so we have, from Figure 20,

. 4
g - (26)
a) ¢ I}.’/N b)
l/ZNI F\T
y b
ix
4
!

Figure 20. Dumbbell wire with a small number of ballast masses. a) System
configuration. b) Equilibrium displacement of a section of the wire.
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If a force aF = ofF is applied, the equation of motion of the mass m is
af = mx . (27)

The pcceleration x will cause an acceleration in the vertical direction at
each end of the section of wire. given by

X 2NxX

T t———

Since the center of the whole system remains fixed, the acceleration produced
on the end mass is

2 .
y =y, = A (28)

and the tension noise produced is AT = My. The relative tension noise is

AT My
T T

To see the dependence on the basic parameters of the system, we must
substitute the expressions ¥ and T. Solving equations (26) and (27) for
x and X, we have

_ F&
X = 'E]-'N' Y (29&)
R=o (29b)

which can be substituted into equation (28) to give

2
. .2 F& of _ ofF
Y= 2N Tme = 2w
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so that

AT _ oMNF2

2Tm

Since F is the total drag force FT divided by N and m is the total wire mass
My divided by N, we have

uMNF%/Nz aMF$
LA (30)
2T mT/N 2T M.

AT
T

This is exactly the same expression as equation (22}, which was obtained
for the tension noise without ballast masses on the wire. Therefore, the
noise is independent of the number of ballast masses in this approximation
and is given by equation (25),

AT _ 4ap§a4
T 9npr2

A simuTation has been run with a mass of ]06 g at the center of the wire,

so that N = 2. The other parameters are the same as those in Section 3.4.6
with two end masses, namely, M = 2 x 10° g, x = 125 cm, & = 105 cm, and

T = 416,400 dynes. The mass m of each wire segment is 24.5 x 103 g and

the tension noise is about *22.5 dynes, as in the case with no ballast in
the canter of the wire. Since the factor N cancels in equation (30), the
effect of short-period drag variations cannot be reduced by adding ballast
masses along the wire. This result holds in the frequency range where the
drag variations are faster than the natural frequency for the transverse
osciliation of each section of wire. In this bandwidth, the effect of drag
Tiuctuations is inertial acceleration of the wire mass, and the wire does

not have time to assume an equilibrium configuration.
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3.4.8 Drag-force noise with a large number of ballast masses

At the end of Section 3.4.2, we noted that dividing the wire into
N equal sections reduced the effect of drag on the equilibrium wire tension,
but in Section 3.4.7, we found that adding ballast masses did not reduce
the effect of short-period drag fluctuations. The difference in these
resuits arises from the fact thal the first case is an equilibrium condition
while the second is a dynamic situation. Let us now consider the case
where the wire segments are made sufficiently short that their response time
is fast enough for them to stay approximately in equilibrium with the
drag fluctuations. We wish to see how the tension noise depends on the
number of ballast masses as a means of reducing drag noise.

An approximate analytical solution is derived for the tension noise

when a large number of ballast masses are distributed along the wire, as
shows in Figure 21. Considered as a continuum, the distributed ballast gives

4 M

$em

v om

Figure 21. Dumbbell wire with a large number of ballast masses.
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the wire as a whole a high effective mass-to-area ratio a.d lengthens the
period for transverse wire osciliations. The tension noise from drag-force
variations in such a system would result from oscillations of the short
sections of wire between the ballast masses. We assume that the ballast
masses are heavy compared to the connecting pieces of wire, thus creating
nodes that are nearly stationary. The tension in each section of wire will
be at least as large as that produced by the end masses M. If the total mass
of the lumps is comparable to the mass M, the tension can be significantly
increased, especially at the middle of the wire. For simplicity in the
present calculation, we assume a constant tension equal to that produced by
the masses at the ends.

The short sections of wire of length 2/N are displaced by a distance
X, as shown in Figure 20 b, by the drag force F. In equilibrium, the drag
force is given by equation (26). With a Targe number of ballast masses,
the period of the fundamental transverse wire oscillation will be short.
If we assume that the period of the driving force is long compared to the
natural period of the oscillations, the wire will have time to move to a
new position that is neariy in equilibrium with the instantaneous value of
the drag force. Oscillations at the natural frequency are assumed to be
at a high frequency outside the bandwidth of interest, and the& can be
minimized by damping.

Under these conditions, if a force AF is applied to the vive, the
additional displacement of the wire is obtained by »eplacing F and x with
AF and ax in equation (26) and solving for Ax to obtain

ax = A0 (31)

From Figure 20, we see that the distance between the ends of the section
of wire will be decreased by

_ X _ ANx ax
AYy = 20X TNy T T
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This assumes that the risetime of the system for longitudinal motion is fast
compared to the period of the drag-force variations, so that the system
has time to respond. Since there are N equal sections, the length of the whole
system will decrease by N Ay, and each end mass will be displaced by a
distance

2

M:%NMN_—;.Z_N__E._M . (32)

If the end masses oscillate witn an amplitude Ay and frequency w, the
tension noise according to equation (9) will be

AT = aF = My? ay . (33)
We can express Ay in terms of the basic system parameters to see the

dependence of the noise on the choice of paramcters. IF we set AF = of
in equation {31) to obtain

and substitute this plus equation (29a) into equation {32), we have

_ W (eF/aTn)? _ osF? (34)
D gt

Ay

The drag force F on each section is obtained by dividing equation (24) by N:

rpa(GM/a)sa

F= —N . (35)

The fractional tension noise, given by dividing equation (33) by T and
substituting equation (34) for Ay, is

2 2
TTTOT

AT _ Mw™ AY _ Mu

2
a§F : (36)
8T
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eﬁﬁbstituting equation (23} for T and equation (35) for F gives

AT Mw alr p‘?(GM/a) /'N2 mzar2p§a7 (37)
T 8(3amMe/2a%) > 276MMEN2 '
For example, 1f we take w = 0.314 (20-~-sec period), o« = 0.1, r = 0.25 cm,

= 1.6 x 10733 g/cc, a = 6 Rqa « 10% em (220~km a1t1tude), =2 x 108 g,

N = 100, and GM = 3.986 x 1020 (cge), we have AT/T = 2 x 1070, which is
an acceptable noise level.

Equation {37) is valid only when the transverse freguency of the wire
segments is faster than the frequency of the drag variations. The frequency
of the transverse osciliations of each wire is proportional to N. We can
show this, starting from equation (19) and setting n = 1 to give the
frequency of the fundamental, which is

L
u £ %e

If the wire is split up into N sections by baliast masses so that the length
of each section is 2/N, the fregquency as a function of N becomes

Wy L ¥e

Equation (37) for AT/T contains the factor w“, which indicates that the
tension noise rises sharpiy with the frequency of the drag~force fluctuations.
If the driving frequency « becomes greater than the longitudinal risetime
of the system, the assumption that the end masses move with the wire breaks
down. The tension noise in this case results from elastic stretching of
the wire. The spring constant for half the wire is

2

0

iy _
/ L

k=575
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where AD = wrg and ro is the radius of the core. The tension noise is AT =

k Ay, where Ay is the stretching of half the wire, and the fractional tension
noise is

= kay ) (38)

The expression ay/T appears in equation (36) multiplied by sz. Therefore,
we can evaluate equation (38) by multiplying the right side of equation (37)
by k/Mo® to obtain
AT ar‘zp §a7k
&

—— (high frequency) . (39)
27 GMMN?

For example, using the same case calcuiated for eguation (37}, together with
E=10.7 x 1012 dynes/cmz, rg = 0.1cm, & = 105 cm, k = 4.4 x 105 dynes/cm,
and k/M 2 < 2.24, we get a fractional tension noise at high frequency of
4.46 x 1075, The variable r in equation (39), on which the drag force
depends, should not be confused with the core radius ro which determines

the wire stiffness.

In the Skyhook computer program, the amount of space and time required
tc integrate the motion of the system rises sharply as the number of masses
increases. For this reason, no attempt has been made to verify the calcula-
tions for N = 100, However, a computer run has been done for N = 2 and a
drag variation of 60 sec. The other parameters for the run were v = 7.29
km/sec, M = 2 x 1069, a drag cross section of half of each wire segment of
A =1.25 x 10* con?, (drag force) F = 1063 dynes, 2 = 10° cm, and T = 416,410
dynes. Using equation {15), we get an equilibrium displacement of each wire

midpoint:

< & __10° x 1063
TN "~ Tx 416,410 = 2

= 31.9 cm
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The amplitude of the end-mass motion with « = 0.1, from equation {32), is

2
=2X2 x31.9x3-19=8.14x10"3
10°

Ay

With w = 2n/60 = 0.1047, the tension noise calculated analytically from
equation (33) is

3

AT = Mo® ay = 2 x 108 x (0.1047)% x 8.17 x 10™° = 179 dynes

We could have used eguation (39) directly, but the above calculation allows
a more precise comparison with the computer simulation, which takes into
account factors like corotation of the atmosphere.

Since the formula (37) assumes that the driving force is sTlower than
the natural frequency of the transverse oscillations, the masses representing
the lumped-wire propebtfes were set to 337.5 g, which gives a transverse
period of 20 sec (equation (39) is independent of the wire mass). The
Skyhook program has no médel in it for transverse wire dampers. An initial
attempt to run this case failed because the wire was oscillating at the
natural frequency and giving a large tension noise (about #500 dynes) with
a pericd of 20 sec. A crude damping model was added to the program by putting
in a force proportional to the velocity of the wire mass relative to its
equilibrium position with no drag. With this model, the tension noise
was +168 dynes with a 60-sec period. in approximate agreement with the noise
level calculated analytically. Equation (39) shows that the tension noise
from drag-force fluctuations is reduced by the factor N2 when the system
has a large number of ballast masses along the wire.

3.4.9 Short Dumbbell system
Preliminary information regarding performance data on tension measuring

devices indicates that the dynamic range required for tension measurements
can be substantially exceeded with full-scale signals much less than the
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1-1b signals considered so far. For example, it appears that 0.5 parts in
107 can be achieved on a total signal of 0.1 1b. This means that the minimum
detectable signal is 0.002 dyne, rather than 1 dyne, as previously assumed.
Since the tension is proportional to the mass times the length of the system,
a reduction of at least two orders of magnitude could be achieved in masg

or length, or in a combination of both. Because system lifetime is a
Timiting factor in the choice of parameters, and the drag cross section of
the wire is the major contributor, the high measuring sensitivity of the
tensiometer could best be utilized Lo decrease the length of the system.
Looking at equation (25) for the drag-force variations, we see that the noise is
inversely proportional to the product M2; thus, decreasing this product by
two orders of magnitude increases the noise by the same factor. Equation
(39), for noise with a Targe number of ballast masses, is independent of
length. If N = 100 and ¢ = 10 m, the wire segments would be 10 cm Tong.
Equations {25) and (39) are both derived under the assumption of negligible
bending stiffness for the wire, with the only restoring force to keep the
wire straight being the tension. In a very short system, the cross section
of the wire for drag is not a problem. For example, if the length of the
system is 10 m and we allow 1 m2 for the cross section, the support could

be as much as 10 cm in width. In the case of a rod instead of a flexible
string, the restoring force is the stiffness rather than the tension. As
the diameter of the rod increases, the temperature fluctuations due to drag-
heating fluctuations are reduced because of the larger thermal mass of the
rod. The rod can still be insulated with a jacket to reduce the temperature
fluctuations further. Because the rod is both short and thick, the system
risetime is very fast. The frequencies of both the Tongitudinal and the
transverse oscillations of the rod are fast, and damping devices should

be simple to construct. Given that the area-to-mass ratio of the system

can be kept low, the orbital Tifetime is larger. Such a system appears to
be capable of providing a high signal-to-noise ratio at tow altitudes with
reasonabie Tifetime. Analysis of this system requires inciuding models ror
the stiffness of the rod.

73



3.5 Pendulum Oscillations of the Dumbbell System

The periods of the pendular oscillations of the Dumbbell are

<7
o

I
£ ‘:l

0

for the out-of-plane oscillation and

2w
I

0

= 1.15P0

for the in-plane oscillation, where W, is the orbital frequency. Since

these periods are long, they do not present a problem for measuring short-
period gravity-gradient variations. Such oscillations do affect the absolute
value of the gravity gradient, however, by changing the orientation of the
system. A correction for this effect can be made by measuring the attitude
of the system.

Pendulum osciliations also affect the drag force on the tether. Since
the drag force is parallel to the velocity of the atmosphere wjth respect
to the wire, drag can have a component along the wire, which has the effect
of increasing the tension at one end and decreasing it at the other. Tension
~ variations due to this effect can be removed by measuring the tension at
both ends of the wire.

The oscillations of the system are induced primarily by the oblatieness
of the earth, which changes the direction of the gravity force. Orbital
eccentricity also produces oscillations. The oscillations produced by
differential drag at low altitudes can be reduced by tailoring the area-to-
mass ratio of the system to the variation of atmospheric density with altitude,
so that the acceleration from drag is the same on all parts of the system.
This can be done only approximately, though, because the scale height varies
with altitude. The samr technique can be used to minimize the excitation
of higher modes of the transverse oscillations of the wire.
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3.6 Rotation of the End Masses

A set of computer simulations has been done to investigate the possibility
of passive triaxial stabilization of the end masses of the Dumbbell system.
In the configuration shown in Figure 22, a total mass of 2 metric tons is
at each end of a 1-km wire that is 2 mm in diameter. Mass A is a 100-kg

Figure 22. End-mass configuration.

instrument package, mass B a 950-kg ballast, mass C a 475-kg shell with a
475-kg three-axis spring damper inside, and mass D a 2000-kg ballast that
would, in pracvice, be « structure Tike masses A, B, and C. Masses A, B,
and C form a triangular structure lying in the orbital plane. Computer runs
have been made with the configuration as shown {integrating the motion of
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five masses) and with C as a single ballast identical to B (integration of
four masses with no spring damper).

To test the rotational stability of the system, the four-mass configura-
tion (no damper) was run with the following initial conditions: The
triangular structure was given a small initial ancular momentum parallel
to the wire direction by assigning out-of-plane velocities of 0.2 cm/sec
and -0.2 c¢cm/sec for masses B and C. the initial conditions were otherwise
those for a circular orbit in the xy plane (the equatorial plane). Masses B
and C reached a maximum out-of-plane separation of 335 cm in a quarter of
an orbit, and after half an orbit, the displacements returned to zero.

The initial out-of-plane velocities given to B and C have the effect of

putting those masses into orbits having a sTight inclination with respect

to the orbital plane of the center of mass. Since the orbital planes of

B and C and the center of mass all ‘intersect in the x axis, the end masses
return to the orbital plane of the center of mass twice per orbit. The
configuration is stable against rotation as Tong as the initial angular velocity
about the wire direction is smalier than the orbital angular velocity, so

that the baliast masses do not rotate past +90° from the orbital plane.

A complication in achieving rotational stabilization is that the orbital
piane of the center of mass precesses if the orbit is not exactly equatorial
or polar, because cf the effect of the earth's oblateness. To study this
effect, the system was run for two orbits at an inclination of 45°, The
out-of-plane separation increased by about 0.1 cm per orbit. This change in
the plane of the triangular end-mass configuration with respect to the
orbital plane is about 2% of the change of the orbital plane in inertial
space due to the earth's oblateness. It appears that the end-mass configuration
stays in the plane of the orbit as it precesses, at least to first order.
The small discrepancy observed is probably due to the fact that the end mass
is not at the center of mass of the Dumbbell and is therefore acted on
slightly differently by the earth's oblateness.



Finally, the configuration shown in Figure 22 was run for two orbits
with the damper mass included and the orbital plane inclined 45° from the
equator. Masses B and C were given initial out-of-plane velocities of
0.2 cm/sec. The maximum out-of-plane separation decreased from 335 cm on
the first orbit to 334 c¢m on the second orbit. This decrease is an order of
magnitude larger than the out-of-plane displacement induced by the earth's
oblateness. The motion of the damper mass with respect to the shell con-
taining it was about 20 cm in the in-plane direction and 8 cm in the out-of-
plane direction. It appears that the reason the damping is effective is
that the shell of the damper is constrained to move in a circle about the
center of the triangle, whereas the damper mass tries to move in a direction
perpendicular to the orbital plane. The constants used for the stiffness
of the damper springs and the damping coefficient of the fiuid in the damper

cavity are 0.3 dynes/cm and 560 dynes cm * secL, respectively.

Since the development of out-of-plane oscillations of the ballast
masses is very slow, and a siight rotation of the end masses is probably
not detrimental, the damper system described above (with its extremely
small damping coefficient and spring stiffness) may not be required. An
active system for occasional control of end-mass rotation would not result
in the loss of a significant number of data (due to tension noise introduced
by the maneuvering). An active system may be required for inftial stabiliza-
tion of the system.

3.7 Electrodynamic Forces

A satellite moving at ve1ocity'? with respect to the earth's magnetic
fie]d'ﬁ has an electric force acting on it given by’? ='? x'§. This electric
force will redistribute the electrons in the satelilite if they are free to
move and will thereby build up an electrostatic potential difference whose
maximum value will be V’x'ﬁ -'f, where T is the 1length of the satellite. 1In
the case of a long tether in space, a substantial voltage can develop if
the tether is an electrical conductor. If there are electrically conducting
surfaces with a potential difference with respect to the plasma, these
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surfaces will attract charged piarticles from the ionospheric plasma, thereby
setting up a current Toop throuih the satellite. The current through the
satellite will result in a force I » B d2 on each segment of the current path.

Consider the case of a long metallic tether moving through the ionosphere.
If the satellite moves in an easterly direction, electrons will be forced to
the bottom of the w' e, creating a negative potential with respect to the
plasma and Teaving the top at a positive potential. Ions will be collected
along the part of the wire that is negative, and electrons will be collected
at the top of the wire. The collection of charge from the plasma continuously
neutralizes the charges on the wire, and the 7 x'ﬁ'force continually moves
electrons from the upper part of the wire to the bottom, replenishing the
charge concentrations at the ends of the wire and maintaining a current
along the wire. The potential difference *hat develops along the wire and
the value of the current through the wire depend on the efficiency of the
charge collection relative to the conductance of the wire. If the wire has
a high conductance, the electrostatic potential will be nearTy'7 x B -'f.
As the resistance of the wire increases, the ions and electrons in the plasma
neutralize the charges built up toward the ends of the wire faster than
they can be replenished by tha current in the wire. In the Timit of a
nonconducting wire, there is no potential difference and no current. If the
wire is a conductor but is covered by an insulator so that no charge is
collected along the wire, a potential difference will build up along the
tether but no current will exist {other than the transient current required
to create the charge concentrations that produce the electrostatic potential .
difference). If the ends of a metal wire with a dielectric shield are elec-
trically connected to a package with exposed conducting surfaces, then
charges collected by these surfaces will flow through the wire. If there
is no electrical connection between the wire and the package, there will be
no current.

In the case of Dumbbell, electrodynamic forces can be aveided by not

having Tong exposed metal surfaces and by not permitting electrical contact
between any Tong metallic pieces and exposed conducting surfaces. Since
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orbital velocities are about 7.7 km/sec and the magnetic field is about 0.3
gauss, the potential difference that can develop along a conductor is 0.23 voits/m.

3.8 Parameter Optimjzation

Three system configurations have beer considered that appear to be
capable of providing gravity-gradient measurements with a resolution of
0.01 eu. The first two are designed for a tensiometer regquiring a minimum
signal of 1 dyne, end the third assumes a minimum detectable signal of 0.01
dyne.

The first configuration consists of twe heavy ballast masses on the order
of 2 metric tons each connected by a tether whose length is on the order of
1 km. Factors that must be taken into account in the design include system
risetime, temperature variations of the wire, and transverse oscillations of
the wire due to drag fluctuations. Approximate analytical expressions have
been derived for estimating each of these quantities as a function of the
design parameters for the system. Adequate risetime requires that the load-
bearing core of the tether have a cross section equivalent to that of a 2-mm
solid wire {the core will probably consist of multiple strands). A thermal
jacket conductively isolated fi~a the core should easily provide the required
thermal insulation for a core of this diameter.

The T1imiting factor in the sensitivity of this design appears to be
transverse wire oscillations induced by drag variations. Estimates of the
noise level are somewhat uncertain owing to the lack of detailed informa-
tion on the atmospheric granularity to be expected. The noise from drag-
force variations can be calculated from equation (25},

2.4
AT dap a8
T gnprk’.

The noise can be reduced by going to higher altitudes (around 300 km), as
a resuit of lower atmospheric density py at higher altitudes. [.imitations on
increasing the mass are cost and payload capability of the Shuttle. Increasing
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the length decreases the lifetime, unless the mass is also increased, although
the lifetime is not too great a problem at higher altitudes. The average

wire density can be increased by constructing the jacket from a heavy material.
For example, a 1l-mm-thick wire-wound jacket of density 7.5 g/cc around a
2-mm-diameter core of density 1.5 g/cc gives an averaga wire density of Py =

5 g/cc. The period of the fundarental transverse wire oscillation should

be kept as long as possible {300 sec or more).

The second configuration has about the same Tength and total mass as
the first, except that a large number of ballast masses (at Teast 100) are
distributed along the wire. The risetime and thermal considerations are the
same as for the first case. The noise from transverse oscillations of the
wire segments due to drag variations from equation (37), is
wzarzp§a7

276N 2

AT
T

The wire should have a thin Jacket 1n this case to reduce the factor rz.

Increasing the mass is more effective here than in the first configuration,
because the noise decreases as MZ. The only limitation on increasing N is
the complexity of construction and deployment. The system could be packaged

to take advantage of the gravity gradient for deployment.

The third system has about the same total mass as the first two but
is on the order of 10 m Tong; a rigid rod replaces the wire. The system
does not appear to be limited by risetime. thermal variations, or drag-
force tension noise.
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4, DEPLOYMENT OF THE DUMBBELL SYSTEM FROM THE SHUTTLE

To simplify the deployment of the Dumbbell system, we can take advantage
of the gravity gradient, and we suggest three such possibilities below.

The first possibility is to inject a compact package into orbit and
deploy it at a distance from the Shuttle. We assume that the iritial
Dumbbell orbit is circular at a 320-km altitude. The shuttle could be in
an eccentric orbit with perigee at 220 km and apogee at 320 km. For circulari-
zation, the package would require an injection velocity, Av in the direction
of motion of the order of 30 m/sec. For a 300-km circular orbit, Av would
be smalier.

After injection, the payload has to be deployed. In the gravity-gradient
field, there are two possible stable equilibrium configurations of the Dumb-
bell system, requiring a relatively complex deployment system. Attitude
sensors and logics for properly timed activation of the spring mechanism
will be needed in order to impress the required relative velocity of separa-
tion to the two components of the system. Moreover, it will be necessary to
remove the angular momentum (at least to a certain extent) in order to avoid
a critical configuration at the beginning of the deployment phase.

Alternatively, the deployment can be done from the Shuttle. Assuming
the payload package to be located on one of the pallets, either the upper
or the lTower component can be deployed directly from the pallet by activation
of a single spring until the total length of the tether has been fully
deployed; this technique is the same as that of the tethered subsatellite
deployment. The second component can be released from the pailet with a
very low relative velocity. Actuaily, the Shuttle can be thrusted away
after low-velocity separation. This method provides a very gentie delivery
of the system, and the orientation of the payload can be controlied before
reiease. However, the system can be delivered only into the same orbit as
the Shuttle, so if the Dumbbell orbit is to be circular, the Shuttle orbit
would have to be circularized.
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The third possibility is to use a tethered teleoperator for delivery
and control of the package, if such a facility is availabie on the Shuttle.
In this way, the package can be delivered and stabilized at the end of a
10-km-Tong teleoperator, thus increasing the gravity-gradient forces and
making deployment activation and control easier.

As an exampie of this Tast possibility, assume that the Shuttle is in a
sTightly eccentric orbit with semimajor axis a and eccentricity e. We can
release the gravity gradiometer at the apogee of the Shuttle orbit at the
end of a tether that is vertically oriented upward with a length of ea/3.

In particular, if a{l - 3) = 6378 + 200 km and a{l + e) = 6378 + 320 km,
the tether will be 20 km long and the system will be gentiy injected at
an altitude of 340 km into a circular orbit. Another example, using

a(l - 3) = 6378 + 195 km and a(l + 3) = 6378 + 285 km, gives a tether
Tength of 15 km. Thus, the procedure will achieve injection at a 300-km
altitude.
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5. ORBITAL LIFETIME

The principal censtraint in maximizing the signal and minimizing the
nojse is the orbital lifetime, as determined by the area-to-mass ratio of
the satellite and the orbital altitude. The thermal noise and risetime
prablems could be solved easily by using a thicker wire, but this would
increase the atmospheric drag and shorten the lifetime. The fractional and
absoTute magnitudes of the signal are better at Tower altitudes., but the
time spent in a given altitude range is less because of the higher air density.
Figure 23 shows the orbital height versus time for a satellite with an area-to-
mass ratio of 0.02 cm2/g starting at almost 300 km. This area-to-mass
ratio corresponds to a system consisting of a wire 1 km Tong and 2 mm thick
with a mass at each end weighing 1 metric ton and having a cross section of
1 me. The time spent between 220 and 150 km is about 10 days. At 16
revolutions per day, 10 days gives 320 equator crossings with an average
separation of 125 km. At 300 km, the sensitivity is less than half of that
at 220 km, but the time spent at higher altitudes is much greater. It would
be desirable to Taunch the Dumbbell at a higher altitude, such as 300 km,
since it will eventualiy decay to Tow altitudes anywzy and useful data
and operating experience could be gained at the higher altitude.
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6. POSSIBLE SHUTTLE EXPERIMENTS

The noise Tevel aboard the Shuttle due to maneuvering and motions within
it is expected to be high compared to the sensitivity required for gravity-
gradient measurements. However, this would not invalidate a Shuttie experi-
ment for the purpose of an engineering evaluation of the design and operation
of the systems to be.used on Dumbbell, aTthough the data might be too noisy
for geophysical analyses. At the same time, the noise from the Shuttle
could be reduced by a combination of filtering and calibration. In the
system shown in Figure 24, the lines from the Shuttle to filter mass C and

—

O A
Figure 24. Shuttle-Dumbbell configuration with an isolating filter.

from C to B are designed to have a very slow risetime (a few “wundred seconds
or more). Since the freguency is vk/M, the risetime can be made slow by
choosing a very small spring stiffness k. Short-period accelerations (less
than 100 sec) of the Shuttle cause only small motions of mass C because the
mass is being driven below its resonant frequency. Similarly, the motions
of B are small compared to the motions of C because B is being driven well
below resonance. By placing a tensiometer at the upper end of mass B,
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measurements of the tension between B and C can be used to record any tension
fiuctuations that are transmitted through the two-stage filter between the
Shuttle and mass B. The system from A to B is the Dumbbell experiment.
Tensiometers on either A or B can measure the tension from the gravity
gradient. The tension will be Targer than that produced in a free flyer
since it will include the tension in the 1ine connected to the upper part
of B. This will reduce the fractional sensitivity somewhat, but the effect
will not be too Targe so long as the distance from the Shuttle to B is not
large compared to the distance from A to B. If the tension between B and

C changes by ATB in a time long compared to the risetime of the Dumbbell
system, the change in the tension ATA between A and B is ATB times the mass
ratio MA/(MA + MB). This relation can be used to correct gravity-gradient
measurements for the effect of tension noise from the Shuitle.

The tension noise transmitted through the filter can be computed &pproxi-
mately, as follows. Suppose the Shuttie oscillates in the vertical direction
according to the equation

Yo = AYg sin wt . (40)

If we assume that the motion of C is small compared to the motion of the
Shuttle and that the spring constant of the 1ine connecting C to the Shuttle
is kl’ then C will be subjected to a force given by

= 1 = {2
ATC k1 Ays sin wt Mcyc , (71)
Integrating equation (41) twice with respect to time, the motion of C is

kg byg . . .
y, & = > sin wt = Ayp sin wt . (42
Mcm

Assuming that the motion of the Dumbbell system {including A and B) is small
compared to the motion of C and that the spring constant of the 1ine joining
B and C is k2’ the force on B is
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8Tg = ky aye sin wt = (M, + M)¥g . (43)
Integrating equation (43) twice, we have

ko oy
Yo = - 2 C sin wt = AYR Sin ot . (44)
B 2 B
(MA + MB )m

Substituting the expression for 8Ye from equation (42) into equation (44) gives

k (~k, AYe) k,k
Wp = -y s g g (45)
(MA + MB)w Mcw (MA + MB)MCm

Since the ampli‘tude AYp of the motion of A is approximately the same as AYps
the tension noise produced in the line from A to B obtained by differentiating
equation (44) twice and substituting equation (45} for AYp is

ATA = MAyB = aMA AyB m2 sin ut = Y

M, k. k
ALZ __sinwt . (46)

The tension noise on B obtained by substituting Ayc from equation (42) into
equation (43) is

ATB = -AYg —l—%-sin wt (47)

Mcw

S0 we can correct the tension measurements in the line from A to B for the
effect of tension noise measured from B to C by noting that equations (46)
and (47) are related by the equation

" (48)
AT, = aTp 27— - 48
AT B F
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If mass A is connected directly to the Shuttle and subjected to an
osciliation given by equation (40), where w is small compared o the natural
osciilation frequency of mass A at the end of the wire, the tension noise
resulting from the oscillation of MA obtained by differentiating equation (40)
twice would be

AT = My = ~Mzaysw2 sin wt . (49)

Dividing the tension noise ATA from equation (46) with the filter by the
tension noise AT in equation (49) without the filter, we get the ratio R, given
by the equation

—% X (50)

By defining

- ’ K2
(0] Salor—
AB "My * Mp
)
C Mo

equation (50) for R becomes

2 2 2 2
2 o UABUC (‘”AB) (“’c)
- ABC . 2
® ) &)

The quantity we is the natural oscillation frequency of MC at the end of
spring ky» and wan is the natural frequency of MA + MB at the end of spring
k2. If we call we the freguency of one of the filters, we see that nvuise
of frequency w is reduced by (mf/m)z each time it passes through a filter.
In this way, the noise from the Shuttle can be reduced to an acceptable
level by passing it through a series of filters whose natural frequency We
is low compared to the frequency w being filtered.

and
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7. ENGINEERING CONSIDERATIGNS

7.1 Survey of Tension Measuring Devices

In designing the Dumbbell configuration, Timits with respect to present-
day instrumentation were taken into consideration. The sensitivity required
of the configuration is tc measure changes in the gravity gradient of 0.01 eu,
which translates to a few parts per million (2 to 3 parts in 106) in tension
at Shuttle altitudes (220 km).

When fully deployed, the Dumbbell can be simulated by a 1-~1b weight
attached to a Tine approximately 1 km in length with a core diameter of 2 mm.
This is equivalent to a force of approximately 400,000 dynes, which will
cause the tether to stretch approximately 1 cm., Therefore, the instrumenta-
tion could measure either the changes in the tension or the actual stretching
of the tether itself due to applied forces. Our first choice is to measure
the tension in the line because the configuration of the Dumbbz11 is 1ikely
to change during the feasibility study. Every effort will be made to reduce
the Tlength of the tether in order to increase the lifetime of the experiment.

As a result, we are increasing the absolute sensitivity required of
the sensor to maintain a few parts per miilion for a reduction in tether
length.

The expected variation in the force on the Tine can have a periodicity
from 10 to 100 sec. Therefore, sampling the data once per second vi11
yield adequate information regarding tension variations. It would also be
convenient to reduce the sampling rate when the tether is operating in the
standby mode or when fewer data are needed.

Thus. preliminary specifications for a sensor suitable for feasibility
trials in the laboratory can be given, as follows:
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Full-scale range

Tension: 0 to 400,000 dynes.
Length: 0 to 1 cm,
Measurement accuracy: 2 to 3 parts in 106
Data output
Analog volitages: 0 to 10 volts DC
Analog impedance: 5 ko maximum.
Digital voltages and impedance: TTL.
Data sampiing rate: 1.0/10 sec minimum, 1.0/sec maximum.
Other requirements: “Safety stops" must be provided to

prevent damage to the sensor if the
full-scale range is exceeded. The
sensor will be mechanically coupled
to the tether and must be capable of
attachment and removal by remote
control.

Input voltage and power: For laboratory testing, power con-
sunption in the sensor is not critical;
inputs of +28 voits DC or +16 volts DC
are preferred. In space, the ex-
periment will run continuously for
3 months; thus, the electronics should
be designed for minimum power con-
sumption.

Measurement techniques have been investigated, and two suitable methods
have been selected: a null balance (servo) type of accelerometer to measure
the tension and a Taser interferometer to measure the stretching of the tether.
A market search showed that suitabie sensors using these technigues are
available and could be adapted for the experiment and eventually packaged
and qualified for operation in space. The most promising such senmsor by
far is the null balance (servo) accelerometer made by Systron-Donner Cerperation
{(Inertial Division) in Concord, California. It and a Hewlett-Packard
laser interferometer are described below.

7.1.1 Null balance servo accelerometer
The basic operation of the servo accelerometer as described here is

taken from Morris (1976). The Systron-Donner Model 4841 accelevometer is
based on the captured-pendulum principle, wherein the perculum is held
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almost precisely at its null or aligned position by an analog servo capture
loop; this is shown diagrammatically in Figure 25. As indicated, the pendulum

Systron - Donner

Mode! 4841
Fo
PICKOF\F.. SERVD 1 i

AMPLIFIER

PENDULLIM
e

. TOROUER
INPUT s, i WINDING
4

AXIS
b

Figure 25. Operational block diagram of the Modei 4841 accelerometer.

comprises primarily the torquer itself on a Tever arm, constrained to rotate
about an axis precisely defined by the cuspension. At the end of the pendulum,
a pickoff plate is mounted, whose position is sensed by the dual-balanced
pickoff system, which converts the pendulum position error to a high-level

DC voltage.

The pickoff drives the servo amplifier, forcing current through the
combined torquer winding and Toad (sampling) resistor, so that a current is
produced that is Tinearly proportiona® to the deflection of the pendulum
away from its ideal or null position. This produces the basic high-performance
position servo system, which constrains the pendulum motion to very minuiz
angles, reaching less than 1 arcsec at maximum input acceleration. Thus,
the pendulum is held tightly by the servo to a position that precisely defines
the sensing axis of the accelerometer in the direction perpendicuiar to
the plane containing both the axis of rotation and the pendulum axis.
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Input acceleration acts on the pendulum to produce a proportional torque
that tends to rotate the pendulum, causing the servo to produce a precisely
matching torque in its action of holding the pendulum fixed. This, in turn,
requires a current flow in the precision torquer; the current flow is
directly proportional to the torque produced and hence provides a direct
indication of the input acceleration. The output current igs forced to
flow in the Toad or sampling resistor, yields a signal output voltage that
is also directly proportional to the input acceleration. In some systems,
the output voltage is used directly, while in others, it is converted to
digital form for compatibility with the using circuitry. Figure 26 is a

Systron-Donner . l
Integrator pigitizer .
™

R '
E.no"w‘"——?l>"’ =" 1 Ep
el

£ SOV

Ept 1 LB 1 g8

Figure 26. Digitizer block diagram.

block diagram of such a digitizer, illustrating the conversion of the
acceleration signal EA into a pulse train with a frequency directly propor-
tional to the input acceleration.

The digitizer in Figure 26 is but one of several manufactured by
Systron Donner to convert acceleration into digital form without degradation
of the information from the precision guidance accelerometer. It operates
by use of a precision analog integrator, which is reset to zero each time
its output exceeds a reference value, producing an output pulse at each
reset point. For maximum input, the reset rate is as high as 15,000/sec,
providing a pulse train with a frequency directly proportional to the input

92

¢ <L



voltage from the accelerometer. Such a digitizer converts the ultra-precision
analog output signal from the accelerometer to a 1ike one of digital nature,
so that all subsequent computations can be digital and hence fully independent
of errors. The digitizer shown will thus preserve the basic high accuracy

of the Model 4841 inertial guidance accelerometer and convert the data into
the digital domain.

The Model 4841 accelerometer is space qualified and was designed to
operate with a full-scale input force of 0.1 1b; test data show that it
can readily measure to an accuracy of 0.5 parts in 107 or better. To
accommodate the forces expected, the interface to the sensor must be designed
to scale them down to 0.1 1b.

Systron Donner has indicated that it could provide a fully operational
breadboard system to our specifications for about $25,000, with delivery
in 90 to 120 days. The breadboard would consist of two packages, one
containing the force transducer and the other, the electronics; each package
has a volume of 75 cc and a weight of about 200 g. Two signal outputs are
provided; one is a general-purpose analog signal (0 to 10 volts DC) for
interface with a chart recorder or a filter, and the other is digital (TTL
levels). The latter is derived from a voltage-to~frequency converter
whose output (0 to 400 kHz full scale) is directly proportional to changes
in applied force. The 0 to 400-kHz range will give a measurement accuracy
of a few parts in 106, as desired. A block diagram of the package is shown
in Figure 27.

+15 YOLTS DC -15 YOLTS DC +15 VOLTS DC -15 VOLTS DC

FORCE ELECTRCNICS
TRANSDUCER PACKAGE
ANALOG VOLTAGE-TO-
QUTPUT FREQUENCY CONVERTER
af af

(0 TO 10 VOLTS DC) (O TO 400 kHz, TTL LEVELS)

Figure 27. Block diagram of the servo accelerometer package.
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7.1.2 laser interferometer

If it is decided to measure the stretching of the tether, we would
consider a laser interferometer system similar to the Hewlett Packard 5501A
laser transducer, used in a plane mirror interferometer configuration.

A block diagram of the basic measurement system is given in Figure 28, while
Figure 29 shows the path of the plane mirror interferometer laser beam. The

¢+ RETROREFLECTOR

3

Figure 28. Basic measurement system.

Iy JUARTERWiVE PLANE
LATE AEFLECTOR
ty 12 & 1 tyrat

1y 1241 fyrot fye2at

[N

N/

10706A
PLANE MIRROR INTERFEROMETER

Figure 29. Path of the plane mirror interferometer laser beam.
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following description and diagrams were taken from Hewlett Packard Applica-
tion Note 197-2, Laser and Optics 5501A.

The beam entering the interferometer is split into fl and fz, with
f2 returning to the receiver after retroreflection by the reference corner
cube. As in a linear interferometer, fl is transmitted out to the plane
retroreflector and reflected back on itself (Figure 29). The quarter-wave
plate causes the polarization of the return frequency to be rotated through
90°, so that fl + AT is reflected out a second time and dopplier-shifted
again. The polarization of fl + 2ATf is rotated again through 90° and
transmitied back to the receiver. Resolution doubiing is inherent because
of the double doppler shift. Any tilting of the plane reflector relative
to the beam axis results only in an offset of the return, not in a tilt,
since tilting of the first reflected beam is exactly compensated by the

second reflection.

A typical setup for a Taboratory to measure a l-cm full-scale displace-
ment to 2 to 3 parts per million would cost approximately $20,000; this
includes the laser, receiver, numeric display, and optical package.

7.1.3 Summary

At present, the measurement of tension in the tether appears to be a
superior technique over the measurement of tether stretch. Thus. the servo
accelerometer should be seriously considered as the prime candidate for the
tension sensor on the Dumbbell experiment. Because of the accelerometer's
sensitivity, we are optimistic that changes in the Dumbbell configuration,
such as shortening the tether, can be accommodated without Toss of measurement
accuracy. Shortening the tether will increase the lifetime of the experi-
ment. For example, for a full-scale input to the sensor of 0.1 1b, the
length of the tether could be reduced from 1 km to ~100 to 200 m, and for
0.01 1b full scaie, it could be 20 m Tong. In the case of the laser inter-
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ferometer, & vaduction in tether length would compromise the accurz:y of
the measurement because of the reduction in full-scale input.

Another advantage of the accelerometer is its compactness and minimum
calibration requirements, in comparison with the interferometer, whose
laser transmitter/receiver, interferometer, and reflector all require
careful and stable alignment with each other.

However, we recommend that the final choice be made after both types
of sensors have been thoroughly investigated against the background of
the actual Dumbbell configuration during the feasibility stages of the
experiment.

7.2 Manufacturing Feasibility of Tether

A study was undertaken to determine if a tether could be manufactured
to satisfy the requirements previously stated within current tecnnology,
cost, and schedule constraints. Briefly stated, those requirements are as
follows:

System risetime: < 10 sec
Thermal time constant: > 20 sec
Fractional tension noise: <3 1076
System area-to-mass ratio: < 0.02 cmz/g
Cabie test strength: > 1.5 kg
Average load: =~ 0.4 kg

One possible tether construction is shown in Figure 30. The tether has
three main components, a central core, a bridal veil net, and an outer shield.
The central core is composed of 5-u strands of ULE tightly wound into a
core measuring 1 to 2 mm in diameter. The exact central-core size will be
determined later to match the system requirements such as end mass
natural frequency. If required, the individual strands can be bonded by
Lising a suitable binder of similar mechanical characteristics. The central
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Figure 30.

Tether construction.
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core will then have a Tow-emissivity coating applied to its outer diameter
to minimize radiative heat exchange. The coating will be done by a process
similar to that of applying optical coatings to glass optical elements.
Several cindidate coatings exist {for example, aluminum, silver, and gold)
that will yield an effective emissivity of between 0.03 to 0.05.

A bridal veil net will be applied over the central core to minimize the
conductive heat transfer between the outer shield and the central core. It
accomplishes this by employing a low-conductance material, such as nylon, and
varying the number of strands, attachment points, spacing, and diameter of
the strands. The exact design of the bridal veil will be deferred until
several combinations can be tested to evaluate their effective thermal
isolation, although it is evident that bridal veils can be fabricated to
provide an effective means of 1imiting thermal conductance via point contact
{at tie points) and high thermal impedance.

The outer shield is a loosely fitting extruded plastic tube. It acts
as a protective covering for the tether during preflight han<'ing and deploy-
ment. It also absorbs or reflects all the impinging thermal energy. It is
decoupled from the central core such that its length and stiffness excursions
do not impact gravity-gradient measurements. The shield is only thermally
coupled to the central core via conduction through the bridal veil and
radiation across the (vacuum) gap caused by their respective differences in
diameter. Along the length of the outer shield, appropriate interruptions
will be made such that the internal free volume of the tether will evacuate
to the local ambient pressure within a reasonable period of time.

This cable design evolved after discussions with vendors currently in-
volved in manufacture of optical communication cables. The tether cable
described poses no significant technical problems in its manufacture, and
several vendors have expressed an interest in participating in its construction.
We thus feel sure that a tether with the required characteristics to perform
the gravity-gradient measurements proposed is totally feasible at this time
at a reasonable cost and that such a tether does not represent a major tech-
nological development program,
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7.3 Damper Design

The use of dampers will be required to prevent tension noise from various
natural oscillations of the system. The design of the damper will depend
primarily on the freguency of the oscillation it has to damp and on the
gravity-gradient acceleration at the place where the damper is located. The
gravity-gradient acceleration can also be used as a restoring force for a
damper. A basic requirement for the dampers is that their operation be smooth,
so that tension noise is not introduced; a nutation damper consisting of a
cavity partiaily filled with 1iquid could introduce noise as a result of
splashing, for example. Dampers must be designed so that they do not stick
and can move smoothly even at low velocity. One possible design consists of
a mass suspended in a fluid by springs. Another possibility is a pendulum
that takes advantage of the gravity gradient. A third configuration is the
use of liquids with different densities in a cavity; this design could also
take advantage of the gravity gradient by designing the system with a curved
surface to that there would be a restoring force on the heavier liquid.

In the case of dampers for transverse wire osciilations, the weight of
the damper must be less than the weight of the section of wire whose motion
it is damping, so that it does not create a node. The damper must be ac-
celerated, and there must be significant movement for the damper to be
effective.

Dampers for low frequencies will probably be the most difficult to design,
since they require that the ratio of the restoring force to the mass be very
low. The most important periods to damp are those in the approximate range
of 10 tn 100 sec, as this is the most significant range for measuring gravity
anomalies. The motions that have to be damped are the Tongitudinal and
transverse oscillations of the wire and the rotational motions of the end
mass, especially those rotations that change the angle between the wire and
the end mass, resulting in tension noise.
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8. CONCLUSIONS AND RECOMMENDATIONS

Three designs have been identified that appear to be capable of achieving
the required sensitivity of 0.01 eu in making gravity-gradient measurements.
The first consists of two end masses connected by a long wire. The most
difficult problem to solve in this configuration is the tension noise due to
drag-force variations; noise as a function of the system parameters is dis-
cussed in Section 3.4.6. Such a system would probably be Timited to operation
at higher altitudes or to times when atmospheric granularity is not severe.
Inclusion of wind and and density measuring devices could allow the system
to operate at Tower altitudes and under higher noise conditions by identifying
times of noisy data or by allowing corrections to be made to the data accord-
ing to the expressions given in Section 3.4.6.

The second configuration is similar to the first but uses a large number
of ballast masses along the wire to solve the problem of drag-force variations;
the expression for drag-force noise is given in Section 3.4.8. An added
benefit of this design is the wider bandwidth, since the fundamental period
of the transverse oscillation of the system as a whole can be made long or
even eliminated by proper design of the area-to-mass ratio along the system.
The center of the system would probably be an advantageous place for the
sensor, because the tension signal is largest at that point.

The third design, described in Section 3.4.9, is possibie only with the
high-sensitivity force transducer described in Section 7.1. The problem of
drag-force variations is handled by use of a relatively short rod whose stiff-
ness resists the bending effect of atmospheric drag. Since this third design
appears very promising, we recommend further study of the tension measuring
device on which it depends.

A tradeoff analysis will be necessary to choose among the three config-
urations considered and to decide on the best set of parameters for the design
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selected. Depending on the approach taken, further study is also required

of dampers suitable for the particular configuration. Since the exact nature
of the atmospheric granularity is critical, particulariy for the first con-
figuration, further study of this area would be helpful. For the third design,
additional mechanical and thermal analyses of the rod would be required,
because the present studies did not include the effects of stiffness.
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