
3 1176 00156 6562

NASA Contractor Report 159108

NASA-CR-159108

i Iq-TqoO ,2_
-.

EFFECTS OF REFRACTION BY MEAN FLOW VELOCITY GRADIENTS
ON THE STANDING WAVE PATTERN IN THREE-DIMENSIONAL,
RECTANGULAR WAVEGUIDES

Alan S. Hersh

_ HERSH ACOUSTICAL ENGINEERING
' Chatsworth, Ca. 91311
]

CONTRACT NASI-15311
JUNE 1979

...f:i.c; iYi§

_LANGLEYRFS'T.ARCHCENTER

LIBRARY_NASA

• I_AI_A HAM PTON, '/l RGII'JIA

j: National Aeronautics and
-:_ Space Administration

Langley Research Center
Hampton, Virginia 23665
AC804 827-3966



TABLE OF CONTENTS

DEFINITION OF SYMBOLS ....................................

• SUMMARY..................................................i

i. INTRODUCTION.............................................2
2. UNIFORMFLOWSOLUTION....................................5

2.1 Basic Equations.....................................5

2.2 Impedance...........................................8

3. VORTICAL MEAN FLOW CASE BASIC EQUATIONS ................ 9

4. PERTURBATION SOLUTION .................................... Ii

4.1 Mean Flow Velocity Profile and Boundary Conditions.. 12

4.2 General Solution .................................... 15

5. SOLUTION FOR THE CASE N=I ................................ 19

5.I First-Order Solution ................................. 19

5.2 Second-Order Solution., ............................. 21

6. CONCLUDING REMARKS ....................................... 29

REFERENCES ............................................... 30

FIGURES .................................................. 32

¢2
/V'77-J33



DEFINITION OF SYMBOLS

Symbol Definition

Ai, A amplitude of incident and reflected
• sound pressure waves respectively

Aoo, Am sound pressure coefficients defined by
Eqs. (39) and (47) respectively

A(_,n) function defined by Eq. (68)

B1 sound pressure coefficient defined by
Eq. (47)

B(_,_) function defined by Eq. (69)

Cml sound pressure coefficient defined by
Eq. (47)

C(_,n) function defined by Eq. (73a)

D(_,_) function defined by Eq. (73b)

Em sound pressure coefficient defined by
Eq. (51)

fo,f1,f2 non-dimensionalized perturbed sound
pressures defined by Eq. (28)

o F sound pressure defined by Eq. (20)

Goo, Gm sound pressure coefficients defined by
Eqs. (41) &(42) respectively

g transverse acoustic velocity defined
by Eq. (22)

H duct height defined in Fig. (4)

HI sound pressure coefficient defined by
Eq. (44)

h vertical acoustic velocity defined by
Eq. (21)

Iml sound pressure coefficient defined by
Eq. (46)

Jl sound pressure coefficient defined by
Eq. (45)

k sound wave number (=m/Co)

l,m running integers

L2 parameter defined by Eq. (9)

M mean flow Mach number

Mc mean flow centerline Mach line

Mg sound field group Mach number defined
by Eq. (65)



Symbol Definition

N exponent on mean flow velocity profile,
defined by Eq. (31)

P acoustic pressure

• R amplitude of upstream sound pressure,
defined by Eq. (Tb)

u,v,w acoustic velocites in x,y,z directions
respectively

Vo mean flow speed

Vc mean flow center line speed

Vp sound phase speed

Vg sound group speed defined by Eq. (63)

W duct width, defined in Fig. (4)

x,y,z duct coordinates, defined in Fig. (4)

6 duct aspect ratio (_H/W)

n duct nondimensionalized transverse
coordinates defined by Eq. (26)

sound wavelength

< system eigenvalue defined by Eq. (20)

" P density

sound circularfrequency
' _ phase angle shift between incident and

reflected sound waves in duct, defined
by Eq. (7b)

Subscripts

o denotes mean quantities

c denotes duct centerline values

max maximum value of quantity

min minimum value of quantity



SUMMARY

The influence of a mean vortical flow on the connection

between the standing wave pattern in a rectangular three-dimen-

sional waveguide and the corresponding duct axial impedance has

been determined analytically. The solution was derived using a

perturbation scheme valid for low mean flow Mach numbers and

plane-wave sound frequencies. The results show that deviations

of the standing wave pattern due to refraction by the mean flow

gradients are small.



I. INTRODUCTION

° Three different methods to measure the impedance of sound

absorbing liners in the presence of grazing flow have been report-

ed in the literature I-8. The three methods are (I) the two-micro-

phone method of measurement (References 1-6), (2) the impedance

tube method (Reference 7) and (3) the wave guide method (Refer-

ence 8). The two-microphone method is a particularly attractive

method of measuring the impedance of cavity-backed, thin face-

sheet liners consisting of either porous materials or perforates.

Its use however, is restricted to single cavity liners - thus its

application is restricted to the measurement of the impedance of
only locally reacting liners.

The impedance tube method has been used successfully to

measure the normal impedance of locally reacting materials in a

nongrazing flow environment. In an attempt to apply this method

in a grazing flow environment, Feder and Dean _ experienced con-

. siderable difficulty in properly accounting for the radiation

impedance losses of the sample liners mounted in the side of the

flow duct facility.

Armstrong 8 outlined a waveguide method to measure the

impedance of a liner installed along one side wall of a constant

area rectangular duct facility with grazing flow. By assuming

that the rectangular duct consisted of a source at one end and a

non-reflective termination at the other, Armstrong °was able to

model the duct mathematically as semi-infinite with one side

wall lined, the others acoustically rigid. With this assumption,

he proceeded to solve for the sound field within the duct assuming

a uniform mean duct flow. In this way, Armstrong was able to

show a connection between the liner impedance and the sound field

o attenuation and phase change per unit duct length (recall that

one side wall of an entire infinite duct was lined - thus the

. sound pressure decayed continuously). Straight forward measure-

ment of the sound field attenuation and phase change per unit

length with an axially mounted microphone yielded, after relatively



minor computations, prediction of the liner impedance. Although

this approach appears to be straight forward, difficulties

associated with flow noise in the downstream diffuser (the flow

appeared to separate in the diffuser) prevented Armstrong from

assessing the accuracy of the waveguide approach.

Despite the difficulties experienced by Armstrong, the

wave guide approach is attractive because it will permit, at

least conceptually, the measurement of the effects of flow on

the impedance of extended liners. As noted above, the other

two methods described above are restricted to locally reacting

liners (by "locally reacting" from a practical viewpoint, it

is meant that the size of the liner is very small compared to

the wavelength). A critical aspect in the development of a

waveguide method of measuring impedance in a flow duct environ-

ment is the connection between the standing wave pattern along

the wave guide and the corresponding duct axial impedance. Of

special interest here is the details of this connection when

o the mean flow is vortical. An analytical solution has been

derived by restricting the Mach number of the mean flow to be

small and the sound frequencies of interest to be below the

first rigid-wall, zero Mach number cut-on mode - the plane wave

mode. Under these restrictions, deviations of the standing

wave pattern from its nongrazing flow plane wave distribution

will not be large. This permits an analytic representation

of the flow related standing wave pattern in terms of regular

perturbations from its zero grazing flow distribution.

The use of the perturbation theory has been successfully

used by Hersh and Carton 9 to study the effects of mean flow

velocity gradients on the refraction of sound in infinite two-

dimensional rigid-walled ducts. Their results showed good
, agreement with exact numerical solutions.

Within the past decade, there has been an enormous intere'st

in understanding the manner in which sound attenuation in lined

ducts is affected by flow. A rather extensive review of this

subject was recently presented by Nayfey, Kaiser and Telionus I°



Briefly, previous studies in this field can be divided into two

parts, one describing the effects of flow on the propagation

of sound in rigid-walled flow ducts and the other to the propa-

gation <and attenuation) of sound in acoustically lined flow
ducts.

Pridmore-Brownllwas one of the first to study the effects

of vortical flow on the propagation of sound in two-dimensional

ducts. Since the publication of Pridmore-Brown's work, there

has been considerable interest in the manner in which sound propaga-

tes in a vortical flow. Recent publications of interest include

the work of Mungur and Gladwell 12 Mechel Mertens and Schilz 13

Tack and Lambert 14 and Mungur and Plumblee Is These studies

which are primarily limited to the case of downstream propagation,

have results consistent with those of Pridmore-Brown.

It is intuitively clear that if the effect of mean flow

shear is to refract thereby amplify the sound pressure near the

duct wall for downstream sound propagation and into the duct cen-

ter for upstream sound propagation, then the standing wave pattern

and the corresponding duct axial impedance must take this into
account.

The report is organized as follows. The solution of the

standing wave pattern for the case of uniform mean flow is

presented in Section 2. The basic equations governing the

propagation of sound in a rigid-wall three dimensional rectangular

duct containing a mean vortical flow are derived in Section 3.

The analytical solution is based on application of the perturbation

method described in Section 4. A detailed solution is derived in

Section S corresponding to the special case of plane wave propaga-

tion in a square duct containing a fully-developed mean flow.

' The velocity profile of the mean flow was assumed to be linear.

This permitted an analytic solution to be d'erived. The main

findings of the study are summarized in Section 6.
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2. UNIFORM FLOW SOLUTION

The connection between the standing wave pattern in a wave-

guide and the corresponding duct axial impedance is derived below

for the special case of uniform duct flow. This case is important

because it provides a check case for the more complicated vortical

flow solution described in Section 4 and serves as an excellent

introduction to the complexities associated with a vortical mean

flow. The solution is presented in two parts, one in which the

basic equations and the other the duct axial impedance are derived.

2.1 Basic Equations

Assume that the duct shown in Fig. 1 contains a uniform

mean flow. Assume further that sound, introduced into the duct

at, say, x=-L, generates a standing wave pattern between x=-L

and x=0. The strength of the reflected wave is a function of the

duct effective axial impedance Z. The objective of the analysis

is to derive a relationship between the standing wave pattern and

the duct axial impedance Z with the duct mean flow speed, Vo,a
parameter.

For uniform flow in a rectangular duct, the linearized con-

tinuity and momentum equations are

+ =o

-- -- + = (2a)

_v 8v I _p_-- + Vo = o
+ (2b)

a, ax _o ay

+ Vo-- + = o (Zc)



Here the subscript (o) denotes mean flow quantities. Thus Po and

Vo represent the mean density and uniform duct speed respectively.

The quantities p,p,u,v,w represent acoustic excitations of pressure,

density, axial, transverse in y direction, and transverse in z

direction velocities respectively. Assuming p and p are adiabati-

cally related, Eqs. (I) and (2) may be combined to form the well

known convected wave equation

c_ at _ ax_ 672 az _ Co axat

where Mo=Vo/c o .

For frequencies below the first cut-on mode, only plane

wave modes are excited in a hard-walled duct. The acoustic pressure

and velocity fields excited by the source are obtained by solving

Eq. (3) to yield

i (_t- k+x) A-e i(m*+k_×)
• _ •_, LXV = A . _ + (4)

foCo {,oCo

where A+ and A_ represent the (complex) amplitudes of the incident

and reflected waves respectively• The wave numbers

k. K _ k - K K = oa= ) (6a,b,c)
I+Mo I-Mo co

represent respectively the elongation and contraction of the sound

wavelength X = 2_Co/_ due to the mean flow. Since the objective

• of this analysis is to derive an analytic expression connecting

the impedance of a specimen located effectively at x=0 to the duct

6



mean flow speed, no loss of generality results by setting

• A+ - I and A_ - R_ i# (7a,b)

The time-averaged pressure standing wave distribution along

the duct follows immediately from Eq. (4)upon substitution of Eqs.

(6) & (7),

p ) = l+ + 2p. _,s + € (8)
I-M =

Equation (8) describes the output of a microphone at location

x - see Figure 2. The impedance of the specimen is assumed to be

located at x=0. It contains two unknowns, R the amplitude of the

reflected wave and ¢ the phase shift between the incident and

reflected wave. Referring to the standing wave pattern shown in

Fig. 2, LZ is defined as

L2 " = _ n_._×- -- (9)
rain

where from Eq. (8) the maximum and minimum values occur at the

L €)corresponding maximum and minimum values of cos_ + . Thus,
Z

L z = I+R R = L-I (i0)
I-R L.I

The phase angle _ follows immediately from Eq. (8) by measuring

the distance dl between the specimen at x=0 and the first pressure

• minimum (see Fig. 2),

ZKa, + € = TI-,..,..). (I)= IT 2K,3, (11)
1- Mo2 I - Moz



2.2 Impedance

In the absence of a reflected wave (see Fig. I), the effec-

tive impedance of a specimen located at x=0 is defined as the ratio

of the acoustic pressure to axial acoustic velocity. Using this

definition and substituting Eqs. (4)-(7) yields

7__ _ p(o,e) F I+ Rei¢

_(°,_) = _oCoLi- R__€ (12)

Separating Z into its real and imaginary parts,

= . + [ 2_R sin 4_ (13)
[_oCo I+P_Z _2_Rcosap I+p2-ZRcos¢

J _ 2
"v y

resistance reacianee

To verify the validity of Eq. (13), three different check cases

will be applied. They are (I) rigid wall impedance, R=I, 4=0, (2)

pressure release surface, R=I,¢ =_Tand (3) no reflected wave case

(i.e., PoCo effective impedance), R=¢=0.

(1_. O) - I-1_-2 - 1 4-R _ (14a)
Case (1): Z -- I, _p = (1 -- P") 2 I-P-.

Case (2) E (R=_,qb='rr)= I-Rz - I-R - O (14b)

(, I

Case (3): _ (p..=o, (_ = O) = I (14c)

It is clear from the above that Eq. (13) appears reasonable.

• Solving for the resistance and reactance in terms of the

parameters L2and d_ results in

8



R 2L
= (15)

l+cos l-M _ + l-cos \I-M_J

X (L}-I) Sin _ Kd, )
-- I-tvl (16)

Equations (15) and (16) show that the mean flow reduces the effective

wavelength of the incident sound via the cos ( Kd, ) term. ThisL-_ 2
can be seen by replacing K- _o _ 2_Co X , thus

where _e_ e = _ ( I- M _')

3. VORTICAL MEAN FLOW CASE - BASIC EQUATIONS

In a real duct flow environment the duct flow speed is not

uniform but instead contains the boundary layer region wherein the

velocity profile varies from zero at the duct walls to an almost

maximum value at the layer outer edge. The principal effect of

the boundary layer region is to refract the sound pressure into

the wall for sound propagating in the same direction as the duct

flow (the downstream case - see Fig. 3a) and into the duct center

for sound propagating in the direction opposite to the duct flow

(the upstream case - see Fig. 3b).

The basic equations derived in Section 2 governing the propaga-

tion of sound in rigid-walled rectangular ducts containing a mean

flow are generalized below to apply to vortical mean flow. Figure 4

• is a schematic of the rectangular duct geometry and coordinate

system used in the derivation.



The equations governing the conservation of mass and momen-

tum flux in the y and z directions are identical to Eqs. (I), (2b)

and (2c) respectively. The x-component of the momentum flux con-

servation equation, however, takes on the following form

(18)

The convected wave equation is solved in the usual way to
become

# -I

uni_:orr_plow pari_ she._r_-Flowpart-
The following wave-like solution to P,q.(19) is proposed based

on a generalization of Pridmore-Brown's approach,

t

Here K is the system eigenvalue. It will be shown later to

be related to the group velocity of the propagating sound field.

Note that the acoustic pressure and transverse velocities are written"

to depend explicitly upon the mean flow Vo. The functions g and h

can be immediately related to F by substitution into the transvers

momentum equations [see Eqs. (2b)] to yield

, _ Vo)

 Mo)
10



Substitution of Eqs. (20) thru (24) into Eq. (20) results in the

following form of the wave equation,

,:)F )F 2.._ ,:)Mo <)F _Mo _F co :: z __
-- -t--- '-'r + + I-,_Mo)-_ F=O(9) (25)
_y:_ a:_ (t-StMo') _y ,)y ,)_" b=

It is convenient to non-dimensionalize Eq. {25) by letting

where Pref is arbitrary since Eq. (25) is linear. The quantity 2H

is the duct height (see Fig. 4). Substituting Eq. (26) into Eq.(25)

the nondimensional wave equation is written

where K_/Co.

4. PERTURBATION SOLUTION

A perturbation scheme to solve Eq. (27) is sought by expanding

the eigenfunction f and eigenvalue _ in a power series of Mc, the

mean flow center-line Mach number as follows

II



Here the mean flow center line Mach number is defined as

- ' 7 = = -- (s0)• H Co

The physical meaning of Eqs. (28) and (29) is straight-forward.

The expansion procedure assumes that the effects of convection and

refraction are small - sufficiently small so that the leading or

dominant term is independent of the mean flow. This is the physical

basis for the perturbation approach adopted.

4.1 Mean Flow Velocity Profile and Boundary Conditions

Before proceeding further, the mean flow velocity profile must

° be specified. The analysis will be restricted to duc_sufficiently

long to establish fully-developed mean flow. Thus the mean flow

boundary layer will be independent of the duct axial position.

This means that the boundary-layer thicknesses in both the y and z

direction will extend to the duct center defined in Fig. 4 as

z=H and y=W. The rectangular duct geometry is such that the mean

12



flow is symmetrical in the y and z direction with respect to the

duct center. With this understanding, the solution to Eqs. (28)

and (29) will be derived only for the quadrant defined by z_H and
y_W.

The following fully-developed mean flow is proposed,

where N is an arbitrary parameter that depends upon the flow Rey-

nolds numbers _V_Hi_) and/or _V_ W/72), and Vc is the mean flow

centerline value. For Reynolds numbers of the order of several

million, representative of the usual kind of duct turbulence, N--I/7.

In nondimensional terms, Eq. (31) is written

where _-H/_ is the duct aspect ratio. Substituting Eqs. (28)-(32)

into Eq. (27) and collecting coefficients of the powers of Mc yields
to order Mc 2,

+ + (KH)"(,
_5_ _

L

13



The first term in Eq. (33) is the classical wave equation govern-

ing the propagation of sound in a rectangular duct for the ease of

zero grazing flow. The solution is well-known and corresponds

physically to the propagation of all the cut-on modes consistent

with the source excitation frequency. Observe that the influence

of the lower -order solutions act as nonhomogeneous source terms

on the right-hand-side of the higher-ordered equations.

The governing sound propagation equations described by Eq. (33)

must satisfy the rigid-wall boundary conditions of zero normal flow
defined as,

From Eqs.(23) and (24) this translates into the Neumann boundary
conditions

° _hF (o, z.) _ _F(W,z-') _ _F(y,o) DF ('y, H)
- = o (ss)

by 9y 9z 9z

14



For the special case wherein the zero-ordered perturbation

represents the plane-wave sound field, the leading terms of

Eqs. (28) and (29) become

In this case, Eq. (33) simplifies to

and

E
(38)

4.2 General Solution

Equations (37) and (38) are the well known Poisson Equations

subject to the Neumann boundary conditions defined by Eq. (35)

Solutions to the functions f (_) and f2(_,_) are sought by

expanding them in a double Fourier series in terms of the homogeneous

eigenfunctions ¢os(mn_) cos({_7). The general solution to Eq.

(37) will be formulated. First expand fl(_,_) as follows

15



m=O _=0

r_=L ,_.=1

Next, expand the nonhomogeneous terms (RHS) of Eq. (37) in a similar
manner

m=l ,_" I

The coefficients Aoo, Am, B2, Cmi, Goo, Gm, Hi and Im! are

constants. The constants Goo, Gm, H£ and Im£ are defined using

standard Fourier analysis as

= i / 1 (41)
o

I

o o (N+,) m (42)

16



where

In a similar manner, the coefficient H_ may be evaluated as

H_ - IN__._il _ (44)

where

I

D

The final coefficient Imi is

The solution to Eq. (37) follows immediately upon connecting the

coefficients Aoo , Am, B_, Cm£ to the known coefficients Goo, Gm, Hg,

Im£. Substitution of Eq. (39) into Eq. (37) and collecting coeffi-

cients of the various cosine terms yields the following relations

17



The coefficient Goo is determined by satisfying the compatibility
relationship defined as

}; -,p _,d_d _ = - Goo = - _ (_)_d_ (N+')z (48a)
o 0 o o

Thus

0_'j = - I (48b)
CN_-,) z

Putting it all together, the first term perturbation solution is

m=l

co

(N+,3 rr_ Iz 7rz (m:.pz ._ ._z) (49)Z.=l m=t. ,f,,= !

The coefficient Aoo in Eq. (49) is arbitrary for the Neumann problem.

The following tentative physical interpretation is offered. A

nonzero value couldbe interpreted as a source of acoustic energy.

The idea here is based on Morfey's1%tudy of production of acoustic

energy in a flow duct/sound system from interaction between the

sound field and the mean flow vorticity (JSV: Vol 14, 159-170, 1971).

Morfey showed that sound can be generated (or absorbed) by the

mean flow providing the mean flow is (I) vortical and (2) three-

dimensional. Both conditions are satisfed in the present case.

Since it is beyond the scope of this study to consider the production

of acoustic energy, it will be assumed herein that the sole effect

of the mean shear flow is to redistribute acoustic pressure. Thus

it follows that the plane wave pressure, normalized to unity, must

satisfy the constraint that

18



I I

0 0 o 0

for all i.

5. SOLUTIONFOR THE CASE N=I

A detailed solution to second order for the case N=I is presented

for a linear mean flow velocity profile. The advantage of the linear

velocity gradient case (N=I) is that Eqs. (43), (44) and (45) can be

easily integrated to yield analytic expressions for the perturbation

solutions of f, (_,7) and f2(5,_). For this flow, the refraction

effect of the shear flow (e.g.,_v_ _N ) is larger for this case than

for, say, the N=I/7 velocity profile. To further simplify the analy-

sis, the duct cross-section will be square so that B_H/W=I (this

shape corresponds to the Langley flow duct facility).

5.1 First-Order Solution

Substituting N=I into Eqs. (43), (44) and (45) and evaluating
the integrals yields

= - I [,-C-,)L]Ci_)z = (sz)

19



Substitutfng these values into Eq. (49) results in the following

solution to f, (_),

Equation (54)is exact. It is clear that it satisfies the

boundary conditions

In order to satisfy the constraint imposed by Eq. (50) that the

mean flow vorticitydoes not act as a source (or sink) of acoustic

energy production, it is straight-forward to show that Aoo=0 in

Eq. (54). With Aoo=0, Eq. (54) is shown graphically in Fig. S.

The symbols shown in Figure 5 represent the solution Eq. (54)

calculated to within one percent accuracy. The dashed lines

represent the following curve fit,

J

2O



As an independent check on the accuracy of the above curve fit

to f_ (_), it satisfies the energy constraint Eq. (50) , to the

following accuracy

0 0

The purpose of the above curve fit is to simplify enormously the

calculations required to compute the second-ordered perturbation

solution f_(_). The curve fit is sufficiently accurate to re-

present both the function fl (_) and its first derivativesa_,/_

and9¢'_ both of which are required to calculate fz(_,_) as shown

in Eq. (38). It is clear from Fig. 5 that the effect of the shear

flow is to redistribute the initially plane wave acoustic pressure

in such a way as to increase (decrease) the local pressure near the

wall for downstream (upstream) sound propagation (i.e., near _ =o

and _ = O ) relative to its value at the duct center (5= 7=I).
From Eq. (48) the eigenvalue

_K_',- (s8)4

Further physical interpretation is deferred until the solution to

_(_,7)i_ob_inod
5 .2 Second-Order Solution

The solution to the second-order pressure fz(_,_) perturbation

is similar to that used to calculate f, (5;_). Substituting N=_=I
into Eq. (38) results in the following Poisson equation

a_ + a% _7 a_, z5 a_, (K_)_[(__-_)_,-,= - - _ + _7a5_ a_ _ a_
(sg)

J

21



The eigenvalue _z is completed from the RHS of Eq. (59) by im-

posing the compataiblity relation that
I I

/ a7 =o c60)
o O

Substituting Eq. (56) into Eq. (59) and integrating results in the

following approximate expression for )fz,

_z _-- o15 009 K.H_ z• + • ,, (61)

Thus an approximate solution to the effects of refraction on the

axial propagation of the plane wave, valid to second-order, is

¢_(= I - Me c. .015-.oog KH z
4- (62)

Referring back to Eqs. (4)-(6), the eigenvalue _ is related to

the propagation speed of the sound energy - that is, the group speed

(Vg). Recall that for sound propagation through a dispersive media,

the group speed is a measure of the average rate of transport of

acoustic energy. Its mathematical definition is

_60

V"'5= 3<×
(63)

- where

22



Performing the necessary differentiation, the group speed, normalized

, to the local sound speed Co, is approximately

Mg- v.g _ t c6s)
4

Figure 6 shows a comparison between the group velocity defined

by Eq. (65) and the group velocity corresponding to the propagation

of plane wave sound in a uniform mean flow. It is well known that for

sound propagation in a uniform mean flow, the group velocity is

equivalent to the sound wave phase speed. Thus

V_ _ V_ = _+A4 c (66)
Co C o

Figure 6 shows that the group speed for the shear flow case is

quite insensitive to the centerline mean flow speed

in contrast to the uniform flow case. The effects of refraction

appear to focus the group velocity to values near co for both up-

stream and downstream sound propagation.

With _z specified, the RHS of Eq. (59) is known. Its solution

follows exactly the procedure described above in Section 5.1.

Substituting Eq. (56) for ft(_,7) into the RHS of Eq. (59) results

in the following rather complicated Poisson Equation,

+

\2J

23



Obviously, the RHS of Eq. (67) is quite complicated. To reduce

the computational calculations, it has been simplified as shown in

Figures 7 and 8 to the following curve fit expressions for AQ_,_)

and B (_,7) ,

As a check on the accuracy of Eqs. (68) and (69) , the compatibility

. relationship requires that the integral of the RHS of Eq. (67)

vanish yielding
l I

o 0

24



The RHS of Eq. (70) is sufficiently close to zero to verify the

accuracy of the curve fits defined by Eqs. (68) and (69). Using

these equations and following the approach used in Section 5.1 above

to evaluate the Fourier coefficients to the first perturbation pres-

sure solution, the solution to the second perturbation pressure

r_=I

E I._4G 1.906C-I) _ 3.402.

.4
(71)

_._ i.),..+ £

E _ -10.77 + _r5.74(-
+

C2_-')_C_z"YC_:+_9_ _:-_C.'"+z_)_"
m=l £=I

81.65 81.6S 32.6.$9 ]

7TG =

"< '-+ i; ]• 2= I

_ [_ -I.55_ _r.099_-I) "_._]

25



Equation (71) is rewritten in the more convenient form with one

term proportional to (KH)a and a second proportional to (KH)4,

The coefficients and approximate curve fits to C(_,_) and

D_,_) are shown graphically in Figs. 9andl0. The symbols represent

numerical solutions to Eq. (71) and the dashed and continuous lines

represent the following curve fits,

Equations (73a) and (73b)satisfy the constraint of zero energy

transfer between the mean vortical flow and the sound field. The

integrals of the curve fits, Eqs. (72) and (73) , are

i I

o o

which approximate zero sufficiently accurately. Thus the free

constant equivalent to Aoo in Section .i above is set equal to zero.

Combining Eqs. (28) , (36) , (56), (72) , (73) and (74) results

in the following approximate solution to second-order, for the sound

pressure
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Here Pref is an arbitrary source strength. Equation (75) is only

approximately correct - but is is sufficiently accurate to

demonstrate the importance of the effects of refraction by the mean

flow. Figure Ii shows the acoustic pressure distribution across the

duct for the case KH=I and Mc=0.2. The refraction effects are quite

small. Figure Ii suggests that the ratio of the acoustic pressure

at the origin y=z=O to its value at the duct center y=z=H(_=7 = I )
is a good measure of the distortion of the plane wave due to the mean

flow refraction. From Eq. (75),
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Figure 12 summarizes Eq. (76) for a wide range of mean flow

center Mach numbers and sound frequencies. It is clear that for

low speed flow and for sound frequencies below the first mode cut-

on frequency (corresponding to a axial wave number value KH<_2), the

effects of mean flow refraction are on the order of idB or less.

For application to the Langley SWT duct flow facility, clearly

the effects of refraction are unimportant. For downstream sound

propagation, Fig.17 shows the effects of the mean flow is to re-

fract the sound into the duct walls. For the upstream case, the

sound is refracted into the duct center.

It is implicit in the formulation of the perturbation scheme

described by Eqs. (28) and (29) , that both Mc and KH must be small

in some "sense". The frequency parameter KH is straight-forward.

For perturbations about plane-waves, KH<=/2. The range of validity

of the centerline Mach number is defined in terms of convergence

of Eqs. (28) and (29). From Eq. (78), it is clear that the maximum

value of Mc for which Eq. (78) is valid is related directly to the

value of (KH). Thus, Mc can be larger for smaller values of (KH).

Consider for example, the numerator of Eq. (78) . For Poo to be

valid, the following two constraints must be met,

In general, the mlh.Iter m must be smaller than the m th term. Equations

(79) and (80) show that for KH<_/2, all subsonic center duct flow

Mach number Values are permissible.
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6. CONCLUDING REMARKS

The perturbation model shows clearly that for low speed

mean flows and for sound frequencies corresponding to plane-wave

excitation, the mean flow velocity gradients only negligible

distort the plane wave transverse pressure distribution across

the duct. This conclusion is conservative in the sense that

for mean velocity profiles defined by Eq. (32), the velocity

gradient (vorticity) in either the y or z direction is proportion-

al to N; thus selecting N=I results in a much larger value of

vorticity than the usual turbulent value of N=I/7. It is im-

portant to remind the reader that the above conclusion has been

verified only for perturbation about the plane-wave case. An

important finding of this study is that the effects of refraction

do not significantly affect the standing wave pattern in a

wave guide. This is valid providing the flow speed is low and

only plane wave motion is excited within the waveguide.

A rather interesting result of this study is that the

mean flow velocity gradients seems to focus thepropagation

of acoustic energy into a narrow window around the undisturbed

adiabatic sound speed, both for upstream and downstream propaga-

tion. This is in contrast to the uniform mean flow sound energy

propagation speed of co(l+Mo) , which is a strong function of the

mean flow velocity.

Another interesting result is that the perturbation tech-

niques permits the possibility of allowing for the production

(or absorption) of acoustic energy through interaction between

the mean (vortical) flow and the sound field. To consider this,

however, the energy conservation equation must be studied using

the technique described by Morley.
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Figure i. Schematic of SWT Impedance Model
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Figure 2. Connection Between SWT Pressure Distribution
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FIGURE 9. CURVE-FIT TO THE TERM PROPORTIONAL TO (KH) 2 ON THE RHS
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FIGURE 12. EFFECT OF FLOW AND SOUND FREQUENCY ON THE RATIO OF
WALL TO CENTERLINE ACOUSTIC PRESSURE
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