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ABSTRACT

A differential equation for the scale tensor in turbulent flow '

is developed from basic considerations and applied to the flow of

a constant-density fluid in the boundary layer on a flat plate.

Results from preliminary runs of a computer implementation are

discussed.
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i.- INTRODUCTION

The method of analysis of turbulent flows known as fu!l second-order
closure modeling has been applied with great success to a variety
of flows by A.R.A.P. and others. However, one weak point has
remained in this method; that is, the determination of the scale
which is an important factor in many of the models. _£_chof the

_ work has used an empirical function to determine the scale.
Although this has worked well in many cases, it requires reevalua-
tion whenever a novel situation is considered.

Another approach has been to use a differential equation to follow
the evolution of the scale. This too has been reasonably successful
in many cases, but it requires considerably more modeling (and
evaluation of modeling parameters) and the results achieved have not
been such that universal validity is indicated.

One way of arriving at such a differential equation starts by
considering a two-point velocity correlation. This leads naturally
to the consideration of a scale tensor, measuring the correlation
length for the various pairs of fluctuations of velocity components.
It is the contraction (or trace) of this tensor that serves as a
measure of the scale in the modeling.

It is evident that much of the infor_mtion contained in the tensor
is lost in the contra_tio_ process. During the past year, a
computer program to solve the differential equations for the _ole
scale tensor has been deve!oped at A.R.A.P. for Ames Research Center
of NASA under Contract NAS2-8014, as an extension of an effort to
develop and understand turbulence modeling, especially as applied to
compressible boundary layers. It is hoped that an analysis of _le
results of this program will lead to a better understanding of the
concept of scale in turbulence modeling and of the turbulence
itself. In order to keep this first effort in the area at a
reasonable level, the project has been restricted to the flow of a

° _Onstant-density fluid in the boundary layer on a flat plate. This,"_ _'_ _° _''
of course, has the advantage that such flows are well understood
experimentally.

Much of the theory upon which the program is based was developed
with the support of the Air Force Office of Scientific Research ._
under Contract F44620-76-C-0048.

This paper presents a derivation of the equations that are integrated
_ by the program, with a description of the modeling entailed, and

includes a description of the results of some preliminary runs. A
companion paper, reference i, serves as a program manual with
descriptions of the numerical methods, operating instructions, and

_ so forth. In an attempt to make each paper self-contained, a
certain amount of material appears i_ both.
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Generaltensornoationisusedinmuchoftheanalysis.Thisis
done to emphasize that the modeling is intended to apply in any
(constant-density) flow situation using any coordinate system. It
is valid to think of the equations as Cartesian, with no distinc-
tion between subscripts and superscripts, with all derivatives

• interpreted as simple partial derivatives, and with the metric

tensor, gij ' interpreted as the Kronecker delta, 6ij . (Note

that _£E = 3 , by the su_nation convention.) The subscript t
-- denotes a derivative with respect to time.

The next section describes the modeling used in the equation for
the Reynolds stress, and the following section treats the derivation
of the scale equation. In section 4, the reduction of these equa- /
tions to the case of the boundary layer on a flat plate is
presented. Finally, section 5 discusses the evaluation of the
modeling parameters and the results of the computer calculations
made so far.

It is a pleas_=e to acknowledge the help of Morris Rubesin of NASA
Ames Research Center. His encouragement and support over the course
of several years have been instrumental in carrying out this
project. We also thank cur colleague, Ashok Varma, who made signi-
ficant contribution_ tO =everal aspects of the analysis.
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2.-THEBASICMODELS

For a fluid of constant density, the equations of motion are

Continuity
A

u£,_- o (i)

Momentum

+ u£ui - _ + vui' [ (2)_y uit ,_ -- p

In this instance, it is convenient to rewrite equation (2) as

+ (u_ui)= _p +vui,_uit ,£ ,i ,£ (3)

where equation (I) has been invoked to modify the second term and
P has been substitutedfor p/p P , sometimes called the
"kinematic pressure," is loosely called just the "pressure"in what
follows° The variables are written as sums of means, denoted by
bars, and fluctuations,denoted by primes:

Ui = Ui + ul (4)

P - _ + P' (5)

o _ ._< _ o:o _ _The _fluctuations then are the deviations from the means, and by, _ _:__
definition the mean of a fluctuation is zero. It is assumed that
the operation of taking the mean or averaging is interchangeable
with differentiation.

The substitution of equations (4) and (5) into equations (I) and _
(3) gives

"_ u'_ = 0 (6).°
,-. U £ + ,£ '-

..,

/
.

h!_"
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_it+u.lt+(_i)_+(_u._>_+(u'_i>_+(u'_u_)z. j J

,i _ ,_ _ ._ (7) _

Taking the mean of these two equations results in

-£
u £ = 0 (8)

)

ult- + (u£ui),£ + (_),£ = - P,i + _ui'£,£ (9)

}

Equation (8) is identical in form to equation (I), but equation (9)
has a term with no counterpart in equation (3). 111isterm, involv-
ing the correlation of fluctuations, is often called the turbulent
stress or Reynolds stress.

For engineering purposes, the main interest lies in determinin_ the
mean flow; to do so involves determining the Reynolds stress.
Until about ten years ago, the only practical approach was to mode!
the extra term in equation (9) in tel_msof the mean flow (using
Prandtl's "mixing length" concept, or "eddy viscosity'!). This
technique, which is still very useful in many circumstances, is
called first-order closure. However, it is recognized that in some

• circumstances this is not, indeed, cannot be, sufficient. The next
step then is to derive the equation that determines the evolution
of the Reynolds stress.

Subtracting equations (8) and (9) from equations (6) and (7) gives

u'£ = 0 (I0),£

u_ + (_Zu_)+ (u'£_) +(u'£u.i) - (u'£ui) =
it ,£ i ,£ ,£ ,£

= P'• + _u'.'£
,z _ ,£ (11)

//
/



Rewrite equation (II) with j substlruted for i and multiply by i:
u_ . Add the result =o the original equation (ii) multiplied by i
i Ii

uj Making use of equations (8) and (I0) and averaging, the
result is

_/ 'u''4" ,_ )= - uiP'. - u'e' + + ' ' (12)•a _ ,i _Ui j ,E UjUi ,£

Using the rule for the derivative of a product, the right-hand side
of this equation can be rearranged to give

°

=-(_),j - (P'u_),i + P'ui,j' + P'uj',i

, :---V__ 2_ u: ,_u_'_ (13)+ _(ui_j)' ,_- I

An attempt to find an equation for u'u' has introduced severalij
more unknowns, a triple correlation, correlations involving P'
and a correlation of derivatives of the velocity fluctuations.
Second-order closure consists of devising models for these te_s
in such a way that the new equation and equations (8) and (9) form

_" o_ ............ aclosed set.- • _,_ ,_ :.-_i_._: _4 °o"_ _o.:_'

' In order to ensure applicability over a wide range of circumstances,
the models used are invariant under Galilean transformations and
under coordinate transformations, they respect symmetry and, of

: course, they are dimensionally consistent. The "realizability" ._
conditions recently pointed out by Schumann (ref. 2) have not been
checked for these =mdels except partially and incidentally. It
appears from Schumann's results that a detailed check might provide

.... some useful constraints on the values of the parameters .........

Two quantities, A and q , appear in most of the models. The
determination of ti_efirst of these, A , the scale, is the motiva-

._ tion for this whole study. The square of the other, q , is
defined by



q2= u,£u_
L.t

so it is a measureof the energyof the turbulence.
%

Most of the modelingconstantsare designatedby rathercumbersome
three-orfour-letternamessuitablefordirectusein FORTRAN.
The particularnamesused here were arrivedat throughan attempt

-" _- to systematize the naming of the much larger set of constants
needed in the compressible case (ref. 3).

The model for triple correlations is practically the same as that
.. given in reference 4:

' ' +" 'U'"

Note that the three terms are needed for symmetry.

The model for the dissipation term given in reference (4) is

--7-7,

u' u (15)i,£ i =

where l is another scale given by

h212=
a+b _

:'_'_,o_:i,.'_. _".o_,.,.°'_(_a_and b being const_ts) , .....Thus, equation_(15) can he'written _ ...... ".... (_-' _

u'.-u'.'£ = a b__q, ,
I,_ 3 h-_ _ + hu UiUj (16)

AS was mentioned in reference 4, an isotropic dissipation model in

which gijq2/3 is substituted for _ in equations (15) and
-" (16), had been tried and found to lead to negative values of autocor-

relations in some circumstances. (That is, we had violated one of
the realizability conditions.) Eventually it was realized that the

._ arguments favoring isotropic dissipation apply only at high values
of

..... t!_ l
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O

ReA = SA_ (17)
o

and that the problems had occurred only at low values, so gijq=/3 .

was substituted for u_u_ in the second term on the right in
equation (16) but not in the first. Actually, the formula in use

._ allows a choice through another parameter, B :o

£,,:,£_j a 'u' 5q( _ • 1 - 8 jq2_/ (18)
U:

= ui j + %%* -:-- gi/ z, Av
/

O: Thus, _ = I correspondsto equation (15) or (16)and 6 = 0 to
isotropicdissipationin the high Reynolds number term only.

The models involving the pressure fluctuationhave been expanded
considerablyfrom those given in reference4. They have been
suggestedby the following considerations. If the divergence of

_ equation (ii) is taken, many terms drop out by virtue of equation
(i0). Solving the resulting expression for the Laplacian of P'
and using equation (8) gives

--,

_'Z,n'n= _ 25£ £ - u'£,nu'n,£ 4-(u'£u'n),,£n (19)

Regarding this as Poisson's equation for P' , the solution can be
represented,in the absence of wall effects, as an integral

P (x)= - _ _ d_
........,.,,__..._o ,_.....o-_o _,_.o_,,,__o-_"0._.;°'c,o ..... :_ o_.,_,--'_..__ ?.__• X .... ,,_ .=• - :,-' __:_ _° .-'.,_': _o,_'_'_'

:. o

.....: .:!-where S" represen.ts the °right-hand side of equation (19). The
correlationof P' with another fluctuation,say _' , can thus be

" written ,: .-:_:. -" ,_ .,:_::i,'_.......

,,p,= 1 ,' d:

Recognizing that the two-point correlation under the integral can
-- be expected to be negligible outside a region of characteristic



.h

size A , and that the value of S' at _ = x can be assumed to
be representative, this expression is written

O

= ¢,u,n + ¢,u'__u'n _• ,.p---:cA27Ts.: c^2 ,,, ...
where C is a dimensionless quantity of order one. The P'

_" _J correlations needed for equation (13) are, therefore, written

_ ( ' '_u 'n )P'u'= h2 PMUu_ u'.u'n-+ PMU2uiu (20)i 1 ,11 1 ,_ ,n ,E
i( t

P'u._,j= A2(PGUu_ u.'.u'n^+ PGU2 u'. u'E u'n ),n l,j ,_ 1,j ,n ,_ (21)

The four constants introduced here should, by the arguments just
given, be all equal to C or 2C . They have been given separate
names in the interest of flexibility and in particular to allow
studies of the effect of separate terms.

It appears tha_ not much progress has been made; in modeling two
correlations, four new ones that need modeling have been introduced.
However, the nature of some of the new ones is such that the model-

ing is quite constrained. This is particularly true of _l/hen i and j are equal

, , i -v-_- (not summed)uiui,k = 2- (uiui),k

" ° _ _mus_:_hold.' On the c)therhand, _if j and k _ are contracted, .... _ ,_ _

u'.u'_= 0
1 ,_

by equation (I0). Putting these conditions together practically
forces

-'- , , 1 Cu'u'_ 1 g_,.(u,_,u,) _ u,_,uiuj,k = _ - i j-,k - $ j_ . ,% gik(uj), (22)

a model remarkable fo_ having no adjustable constants.

8



Similar considerations lead to

u' _ WGU ! u'u' 2#\
ui,j' n,m- 7_j i n - _ gt%mUlUj - _ g':x.3nm'U'U' + _ gijgnm q

/

WGUB '--;--'r

+ A-_!--(- u'u' -_mjin gniUjUm)

The next has just one free index, so it is modeled by

o.o-,n ,£

Finally, the model

u'. u '£ u 'n = W-_GU i j gij ) (25)• ,j ,n ,£ _(u'u'. I q2

is governed by the requirement that it b¢ zero when i an_ j are
contracted.

Substitution of equations (22) through (25) into (20) and (21) with
the use of equation (8) gives

P'u--_ = PMU A2(½ U£,n(Ui u'n) ,£ + _ Ui,n(U'£U 'n) ,,.)
• + " oo o

+ q,,(

P'u' = GUA(uj u,u,n _ I g _£ u,u,n)i,j ,n l 3 ij ,n

u'.u'n u£ " + GUC ui q•-. + GUB Uj,n z ,i j £J ,j

-- q2
._ +½ GU2 _(ului - ½ gij ) (27)

9



where PUW = PMU2 • _[WUI

GUA= PGU •WGU
° GUB = PGU WGUB

GUC = PGU - WGUC

GU2 = 2 PGU2 WWGU

%

Equations (26) and (27) are taken to be models. The steps leading
to them are considered to be merely suggestive. The last temn in
each is essentially the corresponding model in reference 4. The "
GUA, GUB, and GUC terms in equation (27) are equivalent to terms
arrived at by a different route by Naot, Shavit, and Wolfshtein
(ref.5). Theirparameters,_ , 8 , and _ are relatedto
these by

= GUA+ GUB

8 = GUB

y = 3 - GUC

(It should be pointed out that the relationship between u 8
and y which is given in reference 5 is rescinded in reference 6.')

One reason for not taking literally the process leading to equations
(26) and (27) is that equation (23) does not agree with (18) when
j and m are contracted. The fact that the latter is used in a
term multiplied by the viscosity serves as one justification for
the discrepancy. The use of equation (23) only as a suggestion for
arriving at (27) is another.

The substitution of the model given by equations (14), (18), (26),

d (27)in /13}y _ :
an to ieldsthe modeledequationfor

g e_

(uiu )t+ + uj, +u, u,.3 ui,£

"" [A2 1 _£ n) _i,n(_u_,n) )],n ,£ , ,

I0



0

.... U_U3 giju ,n

-- _ ! In]

+o_[(uj.°- a..j) ,iu."+ (_:.,- Un._,ujua

+ GUC (u.,:.,j + uj ,i)q2

" 'u'''_ - 2 _a u' '
+ _ _Ui j] ,£ _ iUj

2b A_(Bulu _ + 1 - 6 q2gij ) (28)

Given a method for determining A , equations (8), (9), and (28)
form a closed set.

11
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3.-THESCALETENSOR

Understandingof A is sought through the scale tensor, and the
scale tensor is defined iu terms of the two-pointvelocity

- correlation. Considerationof two points a finite distance apart
is cumbersome in general coordinates. Therefore, Cartesian
coordinatesare employed for most of this section.

Consider t_2,opoints in the same flow: x = (x* n2 x') and
= (_1, _ , _). Proceedingmuch as in the developmentof

equation (12), rewrite equation (Ii)with j substitutedfor i ,
interpret it as applying at _ , and multiply by ul(x) . Add the
result to the original equation (II) interpretedas applying at x
and multiplied by u_(_). Note that a function of x behaves as
a constant in differentiationwith respect to _ and vice versa.
Using equations (8) and (I0) and averaging, the result is

_u'"" ' _ ' ' _u._(=:)uj(0itx;uj(OG_ ui(x)u_(0 G_
at + (O _ + (x) --

+ aSiCx)

au'_C_)u._(x)u_(O au'g(x)u'_(x)__(O+ ] _ + _ _
_£ _x£

_P'(Oui(x)ap'(x)u"(O=
_3 _xx

/

+ _x£_x£ J
It is not obvious that this equation is equivalent to equation
(12) in the limit as x and _ approach the same point. The :,_
demonstrationcan be accomplishedusing techniques that are
employed here for a different purpose.

Sandri introduced the concept of modeling at this stage (ref. 7).
-_ One advantage is that the modeled equation should reduce to equa-

tion (28) as x and y approach each other. This helps estab-
lish the form of the models and also determines some of the
constants. Thus, part of the arbitrariness in other approaches
(see, for example, ref. 8) is avoided.

12
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Another advantage is that it is possible to relate the properties
of the modeled equation to the spectral properties of the turbu- i

, lence of which so much is known. This aspect is not, however, i
pursued in this paper except to note that it has influenced the
models. A third advantage is that the terms to be modeled have I'
known properties that can be exploited in the construction of the
model.

•. Some technical apparatus is needed for _at follows. New indepen-
dent variables, _ = (_1 _2 _3), the centroid, and
r = (rl, r2, r_), the relative separation, are defined by

ffi½ (x+ (30)

r ffi_ _ x (31)

Note that

_xI _ _ - _@rl (32)

@ I @ + @ (33)
@_z 2 B Brz

B B (34)
@_:L Bxz 1)_,,

A consequence of equation (34) is that for a function of x only,
say 8

_8 De
- e = e(x) ..... (36)

.-- .- @xf B_i '

and for a function of _ only, say X

---_= • X = X(_) (37)

13
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Another new symbol is

Note that

but in general it has neither the i - j symmetry nor the r

symmetry separately. A new tensor, Sij(_,r) , a functional of _j,
_. ! is introduced. Its exact definition is not needed for this paper;

it is enough to record the following two properties:

I. Sij is isotropicas a function of r (ref. 9).

If. If R.. itself is isotropic,then S.. = R..
13 13 13/

It can be shown from Property I that

S..(_,0)= 1 gijx] S££(_,0) (39)

and

fff Sij (_'r) 1 £_£S££ (_'r)4_1r12 drldr2dr3 = _ gijJJJ 4_ir]2 drldr2dr3 (40)

Another____=auxiliarytensor, Nij , is required to have the following
........._,_ -ootwo_rop_r_es:_ o__ ........._o o _o........ _........._

I. Nij(_,0)_= Rij(_,0) = ulu_ (41) .,i
[

II. f f f Nij (_ ,r) -4=[r12 drldr2dr3 = 0 (42) i'

OtNer_se, for the purposes of this paper, Nij is arbitrary and
can be different in the differentplaces it appears in the models

.% below. An example is

14
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I

_Ri.

l_ Nij = Ri_ + r£

The terms of equation (29) are now considered in groups. Tae first

three, in terms of Rij , are

_/l+ (O + =

8R.. 8R..
= _

_J _+ ½(U£(_) + U£(X)) _--_£+ (U£(_) U£(X)) _r£

(43)

by equations (32) and (33). On the right-hand side of (43) and in
similarcircumstancesbelow, _ and r are the independent

O variables; x and _ are merely abbreviations for _ - ½r and
+ %r , respectively. The next two terms, the "production terms,"

are

£_ R£ _ui(x) £ _ + R£. _ui(x)
Ri + . -= R. £ _X- (44). _£ 3 8x£ _ _ ] 8

by equations(36)and (37).

The triplecorrelationtermsare modeled:

_u'_(Ou'(x)u:(_) _u'_(x)u!(x)u:(o
+ l " ,1 -

_ .._._ +

2_ATC"R
"" + 7 k ij - Nij)

-'" [fl(Rij-N..)+!3B (R££- N£ )] (45)+ 2BTC _ [ " zj gij £

15
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(Hereand in what follows, q and A and otherfunctionsof a
singlevectorvariableare to be evaluatedat _ if not otherwise

O indicated.) Thus, it Is hypothesized that these terms have a
" diffusive effect and also a pseudo-dissipative effect - "pseudo"

: since the last terms tend to drive Rij toward Nij ,or away,
depending on the signs of the constants, instead of toward 0.

_. _ Turning to the terms involving pressure fluctuations, note that

_P'(Oui(x) = _P'(6) , = _P'(6) ui(x) (46)
_J _J ui(x) _j

cJ by equation (37). But

'x ui(x)_P'(_)ui( ) _P'(_)

_j _j ui(x)+ P'(_)_ (47)

so, using equation (47) with (46) and making similar manipulations
with the other P' term,

_P' (_)ui(x) _P' (x)u i (_)
_}x1

au"(z) _u_(0
_P' (_)ui(x) _P'(x)ui(_) P' (_) P (x) --4-----. + . --- _ . ,

(48)
:.........-o_o_,_,..o_The....first,pair•is,.modeled:_.__io,: _.. _,-_o ...._ ....._._,_.:_,_

3P'(_)u](x) 8P'(x)u_(_)

16
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: - Poc_A _^ (R _ Nij) (49)

Here, in addition to the two types of diffusion terms found in
equation (28), another term is included. Again, this termuends to

drive Rij toward (or away from) Nij but only where there is a
gradient in A It is known (ref. 9) that P'(_)ui(x) is zero in

isotropic turbulence. Therefore, all the terms on the right-hand
side in equation (49) must be zero in that situation; in the last
term that is assured by the factor (_^/_£) " (_A/_) •

The other pair of terms on the rlght-hand side of equation (48) is
modeled:

p,(_) . ...+P'(x) • -= °.i

= GUA _n R. + - Rn.z _n 3

- gijt   n

> i

_3 n .

"" - " ! •

for isotropic turbulence sincethe
These too must all go to zero !

- - left-hand side of equation (48) is zero in that case. That is the ,
reason for the introduction of Sij in the last term (according _o ii

17



Property II). The other terms satisfy the requirement by virtue of
the fact that homogeneous turbulence will not exist in the presence !i
of gradients of the mean velocity. I_

For the final terms in equation (29), observe that
,,=,

_2u_(x)uJ(O _2u_'(x), + 2 _ui(x)_u'.(o_, _2u_(_)_
-. _ _¢_¢_ -_ uj(O _ _ +ui(x)_

or. using equations (36) and (37)

_2u_(x)u_._'(__ _2u._(x)ui(_) _u._(x)_ _2u_(x)u_(_) ,+2 +

-_ Thus, the last two terms of equation (29) can be written

_ _x£_x £ ) _ 2_ (51) ,.

One more model is needed:

_ul (x) _u"(i_) a b__q(B --_--- gij )" " _ _% = A_2- Rij + Au Rij + i ] 8 R£ (52)

ring tog t e th ts eq ions (43) ou
9) be two-point corre_at'o q tion:_ equation (2 comes the modeled

+ Ri [_ + R*.i_ _ _" jj

2_ATC A_[_(Rij _ Nij) + _ gij(_- NE_)]• _ + _ (Rij .°Nij) +2BTC =

18



[A2(
: - --_. + -,- ,

"_j(O Rn _i (x) gn.+ GUA • +
_n i _n 3

- _gij _n _

+ GUB - + Rnj

+ GUC .--4----+ _ Rn + GU2
B_.- B_3 n i -Sij _ qij

_2Ri" va ( -- £)(53)+ _ _- 2 A-_ Rij - 2b _ 8Rij + ! 3- $ gfj R£

It is easy to show _hat equation (53) reduces _o equation (28) as

............... r goes _o zero The terms containing Ni. drop out by equation

(41) d'i'Si_ dropsout by e uation(39). The term u (_)_ '....._......
proa

- _'(x_(_Rij/_r £) becomes zero since _ and x bo_h ap ch _.
The rest reduces term by term to equation (28). -:

The scale tensor, Aij , is defined through the quantity

"'" f_Rij (_'r) drI dr2 dr3 (54)

°.jjj
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(It is seen that _ij is symmetrical in i and j .) Then. i

Aij = (55)q

: Actually, most of the analysis is done in terms of _ . Accord-
ingly, equation (53) is divided through by 4rlri2 integrated
over all r space. Many of the terms are expressible immediately

_- in terms of _ij For example,

UW _ qA drldr2dr3

= PLR__ A --_jjj 4=ir12 =

(= PUW _3 qA _-_-'/

since _ and r are independent and q and A are, by the J_
convention adopted above, functions of _ only. It is seen by
equation (40) that .Sij drops out and by equation (42) that Nij
drops out. .Thisis in contrast with the limit as r goes to
zero where the whole terms containing Nij dropped out.

Terms containing factors evaluated at x or _ need an additional
assumption before the integration can be completed. Roughly
speaking, the assumption is that the variation of Rij with
is smoother than the variation with r , that is, the flow is
locally homogeneous. More formally, the ass_nption is that it is
sufficient to use the leading term in a moment expansion.

_ _<_":_Explicitly, it is_assumed that ,_ _....... ._ o _ ....

Rij(¢,r)= Mij(_)4_Irl2 6(r) (56) i

where _(r) is the three-dimensional Dirac delta function defined i'
by

f_;$(r) 6(r) drI dr2 dr3 = $(0) (57)

for any continuous function

20
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Substitution of equation (56) into (54) shows, with the help of
(57) that

so that equation (56) can be rewritten

o Rij= _ij4_Irl2 _(r)

With this substitution, the rest of the integrals can be performed.
This has the effect, with one exception, of changing the point of
evaluation of the coefficients £rom x or _ to _ , by equation

3 (57). The exception is the term

3

This turns out to be zero, but it takes a few steps to show that.

Consider more generally,

°-fff
Assume _ can be expanded in Taylor's series. Then

= +1_ - _ rt = r -- _

} (If more terms were carried, their contribution would easily be
• -:: shown to ,be zero,) Now, _"

SO

. = fr:___:2rnr_(r) + rnlr,2 +6(r)_ drldr2dr 3
jj,j _rn \ ;_-/ Irl 2_ .-

I
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..-+............•..................... , ............. + •................................

ar"JJJ _, "_ +c_+r_ _r_ /

: . _rff(,+=°=_ ,)ar jjd \ _ +(r) - ar £arn +(r dr 1 dr 2 dr 3
0

"- the last step being the result of integration by parus of thesecond term. Let

fff rnr_ drI© _n£= 2 -_- 6(r) dr2 dr3

By thesymmetriesinvolved,_n£ mustbe proportionalto the
+,_ Kronecker delta, 6n£ On contraction,

=JdJ2PPP__rl_irl2 +(r) drI dr2 dr3 --2

using equation (57)+ Therefore,

2

since _££ = 3 Also,

3rn
_ _ = 6n£

so % can be written

(+ ) -_+°
Finally, then, +

Qij - 3 Or---_mij
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or, by equations (8) and (35)

qij= 0

"_ The equation for _ij can now be written. Since the r depen-
dence has been eliminated by the integration, only one point is
involved in the equation so general coordinate notation is employed

-- _ once more. The contraction (trace) of _ij is written

n = n (58)£

_" To take advantage of combinations of terms that occur, write

AOM = a + ATC
(59)

BOM = b + BTC

The equation is

OiJt + _£ Oij,£ + R£i 5,£ + _£j _i,
£

- VD_J qA nij + i,j ,i ,£

= - PMU [A2(_ _£,n nn'l,.%+ I _i,n n£n)].£,j

,p_j [A212I_-£ n _ _jf......_,.=o..... - . U ,n-n j _£ +_., ;n ,i - ,_o,............

-Pb_ [(qA _£i.£).j + (qh _£j,£ ) i].

+ POC _ A'£A,£flij

( _n. + ui _n. 2 -£ _n£) ++ GUA Uj,n z ,n 3 - _ gij u ,n
o

23
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O

: I gij_)

+ v_i3'£ - 2 vAOM• -
From this equation an equation for Ai, canbe derived, as
follows. The contraction of equation 3(z8) (displayed in the next

, i_i section) is an equation for q2 . If it is multiplied by Aij and

subtractedfromequation(60),with q2Aij writtenfor _ij ' the
i result, after dividing through by qZ , is an equation for Aij -

It is considerably longer than (60) and not worth writing out. To

,__ determine Aij , it is simpler to solve for Rij and divide the
result by qZ

Thus, it is equation (60) that has been programmed for solution,
along with equations (8), (9), and (28). Actually, for the model-
ing parameters tha_ appear in both (28) and (60), the program
version of (60) uses different names, in addition, the program
version has two extra terms to allow direct comparison with earlier
versions of the scale equation. Details are given in reference I.
In all the runs made so far, the renamed parameters have been
given Lhe same values as their prototypes, and the coefficients of
the extra terms have been set to zero.

°
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4.- _ B0_Y LAYER ASSUMPTIONS

In this initial attempt to study the behavior of the system
consisting of equations (8), (9), (28), and (60), two-dimensional

"- steady flow over a smooth flat plate is chosen. A Cartesian coordi-
nate system, with _1 _2 _ denoted by x, y, z is used, taking
the free stream parallel to the plate in the x direction and the

_ y axis perpendicular to the plate so that the flow is envisioned
J in the x-y plane. Derivatives with respect to z , as well as to

time t are zero. The velocity components u., u2, u3 are• • . • •

denoted u, v, w . By the two-dmmenslonal assumptlon, W = 0 ,
but this doesn't apply to w' .

Using x and y as subscripts to denote partial derivatives with
' respect to x and y , equation (8) becomes

+ =o (61)

Equation (9), for i = I , becomes

aax+ + + =- + +%? (62>- °x y

and for i = 2 ,

UVx + % + (u'v----7)x+ (v'V')y = - Py + _(Vxx + Vyy) (63)

Since the flow is two-dimensional, i = 3 in equation (9) is not
relevant. At this point, the boundary layer assumptions are

-° invoked.

At a high enough Re)molds number and in the absence of extremes in
; the pressure gradient, it is generally recognized that the

influence of a flat plate on the flow along it is confined to a !
narrow boundary layer with the following characteristics. Deriva-
tives with respect to y are large compared with derivatives with
respectto x , v is smallcomparedto u , and the two effects i_ .....
balance each other so that the two terms in the cont_uity equation
(61) are equa! in magnitude.

-'- In equation (62) then, Uxx is negligible compared to Uyy and, i

if it is assumed that the various components of hi_iare of the same

- order of magnitude (u'u'_ is negligible compared to (u'v')v .i JX

- _ On the other hand, the first two terms are comparable. _eref6re,
equation (62) can be approximated by
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= -Px- (u'V')y+Vyy (64)
Q

where (u'v')v has been put on the other side of the equation
since it is i_terpreted as representing a stress contributing to

" the rate of change of u along a streamline; that is, the left side.

The process of arriving at equation (64) from (62) can be formalized.
., _ Interpret the equations as being in terms of nondimensional variables

so that 9 stands for the recip=ocal of the Reynolds number, let
6 be the nondimensional measure of a nominal boundary layer thick-
ness, assumed small. Then u and v are taken to be of order 6o
and 6' respectively; the operation of differentiation with
respect to x and y is taken to be of order 6o and 6 "_

_i_ respectively; _ is taken to be of order 6z. All this is standard
in the theory of laminar boundary layers. The components of

U l

iuj are taken to be of order 61 The terms that were dropped
from equation (62) are, by these criteria, of order 6* or 62
and hence small compared to those found to be of order 6o ; that

_ is, small compared to the rest of the terms except, perhaps, _x
which is considered in the next paragraph.

The terms of equation (63) are seen to be all of order 6* or

alsoSmallerbeexcePtoforder(V'V'!Y Thus,Whichis of order 6o and Py which must

(v-r V,)y= _Py

which can be integrated to give

V_V I (VtV _ =- )e - P+=e

where the subscript stands for free stream conditions (i.e. the,Go P o

edge of the boundary layer). Solving for P and differentiating
with respect to x gives

Px = Pe " (v-_Tv')x + (v--_Tv')e
x x

for use in equation (64). However, the last two terms are of order
6_ and so are dropped. From now on, Px will be taken to mean

Pex , the external pressure gradient.

_'nelimitation on the pressure gradient needed to justify the
boundary layer assu_-ptionscan now be made less vague by stating

,- that Px must be at most of order 60 . It may, of course, be
- smaller, in which case it won't contribute appreciably to equation

(64).
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Similarly, it should not be assumed that the other terms in (64) are
always of the order assigned to them. Indeed i_ is well known that I

in the main part of a turbulent boundary layer the term _yy is I+

negligible compared -(u'V')y but that the reverse is true in the _
sublayer next to the wall.

The same technique is applied to equation (28). The modeling
constants are assumed to be of order 6o The •definition of q_

•_ _ can be rewritten

q2 = u,u----T+ v,v----T+ w,w----T

so q is of order 6%.. To estimatethe orderof A , consider
the contractionof equation(28):

//

(q2)t + _E(q2),[ + 2n'Eu'n _,£ - VUU[qT_((q2)'E + 2(u'£u 'n) 1],n ,£

+ ,m

- 2Pb_ qA(u'_u 'n),_ ,n + ._(q2),_,_- 2 A__2_qua 2 _ 2b _ q2
(65)

Among the unmodeled terms, the dominant one, after making the

boundary01ayer assumptions, is a "production term," 2u_-vruv , of
order 6 . It is generally recognized that this term (whiCh is

ordinarily negative, since u_-v_ and Uy are usually of opposite
sign) is principally balanced by "dissipation," that is, theylast

_ two ,terms in equation (65). If A is assigned the order 6 with
y to be determined, the first of the dissipation terms 2(ua/A2)q2

has order 63"2¥ and the second 2b(q/A)q2 has order 63/z-Y .
For either of these to balance the production term of order 60 ,
¥ = 3/2 . The conclusion then is that taking A to be of order
63_2 gives the proper ordering. +_

-o The order of all the terms in equation (65) can now be determined.
Keeping only the largest gives

= va 2 2

2_-_- Uy - 2 A--_-q - 2b A_ q (66)

This is a useful approximation for many purposes and is exploited

27
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in the next section. (As is the case with (u'V')v and vuw in
equation (64), the two terms on the right of (66)'are not i_ortant
in the same part of the flow. Indeed, their ratio is

bqA=b ReAa _ a

which varies from zero at the wall to values large compared to one.)

However, equation (66) is too crude an approximation for a study of
the evolution of the boundary layer, so terms of order 6 _ are
retained. Equation (65) becomes

.. _a(q2)x + _.(q2)y + 2u,u---"_ Ux + 2u'v-'"7 U'y + 2v'v"'--T_"y

- VUU[qA((q2)y + 2(v'v')-y)]3,

va 2 q2

The changes in the modeling that have been introduced since refer-
ence 4 all drop out in the contraction of equation (28). _b_erefore,
equation (67) is es_entially the same as we would ha_-e_itten it
then, with the exception of the terms 2ur_r uX and 2v_v r Vy
which we would have dropped, as do other workers in the field. The
justification, if anything is said about it at all, it usually
something like: "They are production terms; they are small compared
to the other production term (2uVv-ruv) ; therefore they are
negligible." But if they are negligible, so are other terms in
equation (67); the result is (66) again.

Note that insofar as these consideratiousapply to a comparison of
°" the "small" production terms (which are a!soknown as the stream-

tube stretching terms) with the convection terms, uCq2)x and
v(q2)v , the reasoning is independent of the order of magnitude
assigfied to A , or for that matter to _" . In fact, it is hard
to conceive of a systematic ordering that would drop those produc-
tion terms but retain the convection terms.

The boundary layer approximations can now be a_p_p_lliedto eq__tion
(28) without contraction. It is found that _ and _ foz-m

•". an independent set and do not appear in the other equations; _here-
fore they are ±gncred. So far, the equations have been writte_ with
the production ten,ms and the triple correlation terms on the left
with the convection terms, to emphasize their common origin in the

term (u_ui) _ of equation (3). Henceforth, as is cusuomary, only
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the convec=ion terms are written on the left, in parallel with
equation (64).

_ In the boundary layer approximation, the terms multiplied by PUW
: appear in the same combinations as certain of the terms multiplied

by VUU. Therefore it is convenient to introduce a new parameter:

._ VPW = VUU - PUW

The final version of equation (28), then, consists of four equations:

_(u-r_U,)x+ _(u-qru,)y= -2u-rgu'_ - 2u-_J'_y+ _u A(uu ) y

_(V'V')x + V(V'V')y = -2v'v' Vy + VUU[qA(v v )y]y_-TlT___+

2 -- -- -

o -_GUA(u'u' Ux + u'v' Uy - 2v'v' Vy)-2 GUB _ Uy ,_

: ? +2 GUC q2 _y + Girl_(v--_-_)+ v(v'V')yy

_a

J _
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+ = VUU qA(_)
a(w-V_W')x _(w-V_w')y _ Y]Y

' 4)
a

@a

+,,(,,,'.').- __,.',,'- 2b_(,;_.,+_-__) (,o)

+G'r..,.A_'..,,.'uy-G_.,BCu_u'-_')_y)

+ GUC q2 _y + GU2 _ u'v' + _Lu )yy

, _ 2 7:_vau'v' - 2b _ql3u'v' (71)

Applying the smme approximations to equation (60) for flij involves
no new concepts or problems. Tne smallest terms retained are again
of the order of the convection telnnsand, hence, of flij itself,

namely, 6s/2 • As is the case for u'w' and v'w' , _1_ and
_23 do not impinge on the other components and are ignored.

Some new notation is introduced, _largely for convenience in
- programming:

EE = nil

FF = fl22

GG = fl33,)

EF = n12

where each letter pair is taken to be a single symbol; also

•[ VOW = VOM - POW

3O
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"!he final version of equation (60L then, consists of these
equations:

, I

- 2 vAOM EE - 2BOM ~ (e EE + 1 - B Q\7 A . 3. ')

\iFF + vFF = -2FF v + VUU(qAFF) + 2VPW(qilFF )x Y y yy yy

- 2GVB EF ii .. + 2GUC n v + GU2 'l (FF _.Q.).. . y . . Y X 3

(72)

~

,"' ..

+ v FFyy - 2 V~~H FF - 2nOJ1 t(S FF + 1; B n)(73)

+ v GGyy - 2 .\)~~ GG- 2BOH t(BGG + 1 3B n)<74)
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·'1,,

- GUB(EE- FF)Uy + Gue 0 Uy + GU2t EF

i ~
jY

(75),
l-

+ v EF - 2 vA~M EF - 2BOM t a EF
YY A

~'.

. '.

..' ...
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5.1 TheProgram /"

A6computer program to solve theset consisting of equations (61),
• (4), and (68)through (75) oy _inite-differencemethods is

describedin reference I. A preliminary series of runs has been
, made to explore the nature of the scale tensor insofar as equation

O (60) expresses it. The descriptionof the progTam in this paper is
"" limited to those features actually used in the runs discussed.

All of the runs had a number of features in co_uon. These include
the followingboundary conditions: all the dependentvariables are

,) zero at _thewall, y = 0 , and all go to zero in the free stream
except u which is set to a constant, u_ , there and v which
takes whatever values are needed to satisfy continuity. The
pressure gradient Px Is set to zero.

The program computes two versions of A for use in the models at
each point, Ar and A.. (The subscriptsare mnemonics for

.... "ratio" and "empirical."_ The first is defined by

r
i

_': that is, _r is the contractionof Aij _ne other is theftu_ction

Ae = min 699
Y

where c and d are constantsand _99 is the value of y for
which u = .99 ue . The values used for the constantsare

c = .17

d = .65

which, in conjunctionwith the modeling parameters given below, are
known to give good results for a flat plate boundary layer when Ae
is used for A . Either Ar .or Ae was used throughoutanyone run.

5.2 Evaluation of the Parameters

....'_' The modeling parameters appearing in the boundary layer equations

for uluj , equations (68) through (71), were given the following
. values:
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v_ _ .3 ii

3
Pl_flJ- 0 t_

GUB_0

,, _ GUC= 0
GU2 " -1.

a _ 3.25

b = .125

6"0

(Hence, the extra parameters of reference i, referred to at the end
of section 3, were given the values: VOM = .3 , VOW = POM = GOA =
GOB = GOC = 0 , G02 = -I. , SAM = TAL = 0 .) These parameters gave

, good results when used with Ae for A for the mean flow and for

uiuj as they had in earlier programs. One exception to that state-
ment is that the calculated maximum values of u'u' , v'v', and w'w'
are found to be approximately in the ratios

u'u':v'v':w'w' = 2:1:1

which is not in agreement with experiment. This defect can easily
be remedied by changing the values of GUA, G_B, and GUC, but that
was not deemed necessary for this preliminary study, especially
since various experiments do not agree on what the ratios should be.

There remains a group of three parameters, AOH, BOM, and POC, for
which v§lues are needed. Consider equation (67) in the free stream
where u is constant and derivatives with respect to y are
negligible:

_a 2 2

u(q2)x -- -2 - 2b _A q (76)

The corresponding equation for _ is obtained from the sum of
equations (72), (73), and (74) (since fl= EE + FF + GG) with _he
same assumptions, it is

= 2_AOH _,

fix - A_ _ - 2 BOM _ _ (77)

,l

34



Forth_sdiscussion,A isidentifiedwith Ar , sosubstituting i
q_A for _ gives _,

, uA (q2)x+ _2Ax = - --7- q2A - 2BOM } q2A

2vAOM

Subtractequation(76)multipliedthroughby A from thisand then
divide the result through by q_ :

Ax = 2_(AOMA2-a) A _ 2_ATCA2BTCq (78)- 2(BOM-b) _ A = --

D For high Reynolds numbers, ReA = qA/_ , the terms invol_ng v
can be neglected. Then,

_(q2)x - -2b _ (79)

Ax = "2BTC q (80)

It is known (ref. 10) that in these circumstances q_ decays like

x_n where n is probably around 1.25. For this to be compatible
with equat_.o._s(79)and (80),the relation

musthold. Thus,

BOM=b+BTC
For n = 1.25 •and b = .125 , these relations give BTC = -.0375
and BOM = .0875 . As expected, Ax is positive so that A grows
as q2 decays.

While it is possible to approach _he evaluation of AOM by
considering equations (76) and (77) in the limit of low Reynolds
numbers, a different flow situation is used here. It is easy to
see that in the limit as y goes to zero, the dominan_ terms of

equation (67) are v(q_)yy- 2(_a/A_)q _ so

2
R_ (Sl)

(q2)yy = 2a A2
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very near the wall. The corresponding equation for _ is

t_

" With A (stillidentifiedwith Ar) givenby _/q2 , this_air of
.... equations can be s_Ived by assuming that q2 varies like yP and

_ varies like y_ . It is easily established that q = p + i ;
_ that is, A is linear with y , a result in good agreement with

views of the subject since Prandtl. If the slope of A as a
function of y , for small y , is designated d (as it is for Ae)
"it is found further that p(p- i) = (2a/d2) or, taking the posi- '
rive root,

>

Also,

) AOMa= _)- l)=p_L_

For a = 3.25 and d = .65 , p = 4.454 and AOM = 5.132 ,
approximately.

To obtaina valuefoe P0C , considerequations(68)through(71)
keeping only the highest-order terms (as in eq. (76)) with the
additionalassumptionthat ReA is large. The resultingset is
equivalent, inso f_r as the modeling is the same, to the "superequi-
librium" equations of reference II. It is
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(86)

" These are regarded as a set determining the correlations as a
function of A -Uy , and the modeling consta1_ts. Although the set
is nonlinear,'due to the way q appears, the solution is readily
obtained. Add equations (83), (84), and (85) :

2u'v''-'V_y = -2b _ q2 (87)

66 Substituting this result back into equationsCo are eq. ( )-) • or _T_ ,( mp an easzl be solved f
f83)- (84) and (85), the[ c _ -- -Y----- _ is easy to see from
arid w'w" In t.=_ uJ. -_ -

equations (84) and _85) as they stand that it is Gb3 that controls
whether or not _ = _ in this approximation. If these
values of the autocorrelations and the value of _ from
equation (87) are substituted into (86), the result can be written

I. I [GU2 + 2b(l - 8)]
b(GU2 - 2b_)2q2 = _ (I - GUA)

+ 2b[(l - GUA)(_ GUA +2 GUB)-2 GUB21
-%

+ (GU2 - 2bB)GUC 1
A2

_y2
(88)

For the values of the parameters given above, this becomes simply

2 (89)

"- Substitution of the value of q _hus determined back into the
earlier equations allows the determination of the individual corre-
lations.
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, It is known (refs. 8 and Ii) that this approximation represents the
situation in the law-of-the-wall region of a turbulent boundary
layer. For example, equation (88) is in agreement with the known
properties of that region in that the level of turbulence is

, roughly constant, A is proportional to y , _nd the velocity

profile is logarithmic so that Uy is .proportional to y'*

A similar analysis can be carried out on equations (72) through (.75)
_ but, in view of the variation of A in the law-of-the-wall region,
._ are retained, and it is assumed that

terms involving Ay or _ij y

each component of _ij y Is proportional to Ay For the values
of the parameters already mentioned, the equation corresponding to
equation (89), to skip a few details, as

3

> or, using equation (89)

(.175 - z)(l - z)2 = .275

where z = (.3 + POC)Ay2 The rea! root of
this cubic is approxi-

mately z = -.0666g . if Av is assumed to have the value it has
for A =-Ae , nar_ly, Ay = :65 , it is found that P0C = -.4578 .

To summarize, the following values have been found for the new
parameters :

AOM = 5.132

BOM = .0875

POC = -.4578

These, of course, are to be considered just first guesses with
• adjustments to be made after trial runs.
:' i

5.3 The Runs

•_ A preliminary run was made to establish initia! conditions for the i
other runs. The _litial conditions for the preliminary run were
those of a laminar boundary layer with a spot of low-level turbu-

lence. R_.einitial conditions for _i_ and the values of AOM,__ BOM, and POC were arbitrary° The rLm u_ed A = Ae ; it wa= stopped

at a Reynoldsnumberbasedon x , Rex = (UeX/V),of 5 million."
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After verifying that the profiles of u , v , and uiuj were
representative of a fully developed turbulent boundary layer at that
Reynolds number, they were used as initial conditions for the rest

_ of the runs. Initial values of _ij were set according to the r,
formula

= A o. u_u----[,+ Ae(l - Ul)6ij _ i,"'_ _ij e L i j

where aI was either .9 or 1 . For any value of oI , this
formula guarantees that the Ar computed for these inztial condi-
tions is equal to Ae .

The first such run used the values of the new constants, AOM, BOM ,
and POC found above, had aI = I and used A = Ar . As the
solution'proceeded downstream, A became quite small through most
of the boundary layer. This emphasized the dissipation terms so
that the leve! of turbulence, and with it the skin friction, dropped
off veryrapidly. A few trials Kith modified values of the new
parameters showed similar behavior or the opposite, with the scale
and turbulence levels growing much too large. It was quickly
apparent that it would not be easy to find suitable values.

A seriesof runs was made with A = Ae so that the turbulencelevel /
would remain normal while the effect of a variation of the new I
parameters on _ and on Ar could be monitored. A set of values
that gave good r_ults in this mode was \

AOM = 5.65 1

BOM = .0875

POC = -.27

However, with A = A_ , the solution again showed rapidly increasing
A and turbulence l_vels. Systematic changes in the parameters
were tried to no avail. The results were unstable in the sense that
a small change in one of the parameters could produce a large change
in the solution. This indicates that even if one satisfactory run
were obtained, it would no doubt be sensitive to initial conditions
and other factors that should be extraneousto a useful calculation
procedure.

These results are discouraging but not disastrous. For one thing,
only the new parameters were varied. It is not necessarily true
that values of the other parameters good for A = Ae remain good

_ for A = Ar . For another thing, the new modeling is deficient in
a way that seems obvious in retrospect. A look at equation (53)
suggests that the "POC" term couldbe expanded in the pattern of the
"ATC" and "BTC" terms. That is, the "POC" term could be replaced by
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_ _ It is expected that the presence of 6 would have a minor effect,
,_ but the first term might turn out to be more important.

In the discussion above, the possibility of using the low Reynolds
number limit of equations (76) and (78) for the decay of turbulence

....... in the free stream to determine ATC (and hence AOM) was glossed
O over. It turns out that if that is done, and it is noted that q_

should decay like x-S/2 in that limit (ref. 9), the value
1 AOM/a = .8 is found. This value would not work near the wall

since it leads to a singularity at Y = _ But when the proposednew term is included in the model, then OM will be replaced by

i AOM -APC A_ in the calculation near the wall, but the calculationo for the fre_ stream will remain unchanged. Thus the conflict in the
two ways of determining AOM will be removed.

l

From the numerical results obtained so far, it appears that this
change will definitely improve the outcome. Whether it will be

.... sufficient to overcome the difficulties remains to be seen.

_: Unfortunately, this seemingly obvious improvement was not thought
of until this paper was in preparation, too late to include it in, the program under this contract.

\
5.4 _he Nature of the Tensor

......' As stated in the introduction, a main purpose in developing the
program was to elucidate the structure of turbulence, at least as
modeled, through an examination of the scale tensor. One particu-
lar aspect was studied in these preliminary runs. It has beenproposed (ref. 7) that the " " " • ,,

quasl-lso_roplcassumptionis a useful
approximation That assumption is

--½ -
.where SL , a length, is a function of position but independent of

1,j . ±Z equation(90)is v_lid,ethenutnSteadof solvingfor all
the relevant components of ij "e _o determining Ar , it ,
is sufficient to solve for the two quantities, _ and SL .

Equation (90) was tested by forming _he ratio
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SLij " (not summed)
- J 3

- at each point for each pair i,j . If the various SLij at a
r- given point are equal, the hypothesis is verified. It was found

that the diagonal elements (i = j) were very close to each other,
_ _ generally within one part in a thousand, but the off-diagonal value

tended to be about ten percent higher.

A further hypothesis is that

= fl= oArSL o -_
q

where a is a constant. This too was tested, using the value

found on the diagonal of SLi_ for SL . It was found that o
b was almost always in the range from .85 to .95, and most often

bet_een .88 and .92. Except for some transients dependent on the
initia! conditions, these results concerning SL and o were
remarkably constant across the runs, independen_ of whether A = Ar
or A = Re was used and independeat of the choice of parameters.
Too •much shouldn't be made of these observations tn_ti!the hypo-
theses _re tested in other flow situarLJ.ons. Yf they bold up, how-
ever, it •appears that if the accuracy of the first is acceptable,
then setting _ = .9 is equally valid and only one differentia!
equation need be solved to determine Ar ....
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