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ABSTRACT
¥ A differential equation for the scale tensor in turbulent flow v w
: is developed from basic considerations and applied to the flow of’ '
. a constant-density fluid in the boundary layer on a flat plate.
' Results from preliminary runs of a computer implementation are
discussed. :
;
;
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1.~ INTRODUCTION

The method of analysis of turbulent flows known as full second-order
closure modeling has been applied with great success to a variety.
of flows by A.R.A.P. and others. However, one weak point has
remained in this method; that is, the determination of the scale
which is an important factor in many of the models. Much of the
work has used an empirical function to determine the scale.
Although this has worked well in many cases, it requires reevalua-

- tion whenever a novel situation is considered.

Another approach has been to use a differential equation to follow
the evolution of the scale. This too has been reasonably successful
in many cases, but it requires considerably more modeling (and
evaluation of modeling parameters) and the results achieved have no
been such that umiversal validity is indicated. :

‘One way of arriving at such a differential equation starts by

considering a two-point velocity correlation. This leads naturally
to the consideration of a scale tensor, measuring the correlation
length for the various pairs of fluctuations of velocity components.
It is the contraction (or trdce) of this tensor that serves as a

"measure of the scale in the modeling.

It is evident that much of the information contained in the tensor
is lost in the contivacticn process. iring the past year, a
computer program to solve the differemtial equations for the whole
scale tensor has been developed at A.R.A.P. for Ames Research Center
of NASA under Contract NAS2-8014, as an extension of an effort to
develop and understand turbulence modeling, especially as applied to
compressible boundary layers. It is hoped that an analysis of the
results of this program will lead to a better understanding of the
concept of scale in turbulence modeling and of the turbulence
itself. 1In order to keep this first effort in the area at a
reasonable level, .the project has been restricted to the flow of a

" constant-density fluid in the boundary layer on'a’ flat plate. This;“fo~ﬁ§ﬁ
* of course, has the advantage that such flows are well understood
. experimentally. - - , , - ‘ : c

.Much of the theory upon which the program is based was developed"
with the support of the Air Force Office of Scientific Research

“under Contract F&4620-76-C-0048.

This papér presents a derivation of the equations that are integrated
< by the program, with a description of the modeling entailed, and '

inecludes a description of the results of some preliminary runs. A

 companion paper, reference 1, serves as a program manual with

descriptions of the numerical methods, operating instructiouns, and
so forth. In an attempt to make each paper self-contained, a
certain amount of material appears in-both.
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General tensor nciation is used in much of the analysis. This is
done to emphasize that the modeling is intended to apply in any
; +  (constant-density) flow situation using any coordinate system. It
) -~ 1is valid to think of the equations as Cartesian, with no distinc- :
- tion between subscripts and superscripts, with all derivatives ' 3
. » interpreted as simple partial derivatives, and with the metric
. tensor, 8ij interpreted as the Kronecker delta, 6:5 - (Note

- ’ that 52% = 3 , by the swmation convention.) The subscript ¢t
AR denotes a derivative with respect to time. '

The next section describes the modeling used in the equation for
the Reynolds stress, and the following section treats the derivation :
of the scale equation. In section 4, the reduction of these equa- : P
y ‘tions to the case of the boundary layer on a flat plate is ' -
presented. Finally, section 5 discusses the evaluation of the
modeling parameters and the results of the computer calculations
- made so far. ' : '

S

It is a pleasure to acknowledge the help of Morris Rubesin of NASA
Ames Research Center. His encouragement and support over the course
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2.- THE BASIC MODELS - AT N
4 For a fluid of constant density, the equations of motion are
Continuity ' ’ '
L g ‘_ . ’ | '
u'y 0 - : ‘ . =
Momentum
, L __ P 2
u; +vu ui’z = - -t—~+ vuy 2 - (2) .
t . , , R
" In this instance, it is convenient to rewrite equation (2) as
£ .=; .)2 ‘- . ’ )
. uit + (u ui),g : P,i + vuy ) (3),
where equation (1) has been invoked to modify the second term and
P has been substituted for p/p . P, sometimes called the
"kinematic pressure;" is leoosely called just the "pressure" in what
follows. The vaxmables are written as sums of means, denoted by '
bars, and fluctuations, denoted by primes:
.= - N . . . . .
up = Uk ug | | (4)
P=F+p , - (5)
”f of® @?wThé”fluctuationS'thén are the deviations from the meaﬁs,vahd*bywv!ci Y A

definition the mean of a fluctuation is zero. It is assumed that

the operation of taking the mean or averaging is 1nterchangeable ;
“with. dlfferentlatlon. ; , .'%
. The subatltutlon of equatlons (4) and (5) into equatlons (1) and :
(3) glves t : . , »g,
: i _ »2”, S G e ’ o g
oW F u'ly = 0 - S el f _(6>y, L,j.
3-,

vt o e S .  v ) - 5‘!:/"




) : - RpeS TN 5 o= S e ,3‘
‘~3 vgit.+ uit + (u ui)’zﬂ+ (u ui),ﬁ f (u ui),a + (u “i),z %
5 - 2 e | ) :
-~ - : - t » L ¥ . '
. = P,i P,i + vu, ’z+ vu; e | - _(7) i
. §
o ’ Taking the mean of these twolequations results in
-9 o L g i
o W e=0 S ) .
Y =T . .3 - .2 -
it + (u ui),z + (u ‘ui)’z P,i + vug 2 %
} ‘ : _
- Equation (8) is identical in form to equation (1), but equation (9)
has a term with no counterpart in equation (3). This term, involv- b
ing the correlation of fluctuations, is often called the turbulent Co
stress or Reynolds stress. ;
For éngineering purposes, the main interest lies in determining the ;
mean flow; to do so involves determining the Reynolds stress.
Until about ten years ago, the only practical approach was to model
the extra term in equation (9) in terms of the mean flow (using
Prandtl's "mixing length' concept, or "eddy viscosity"). This
technique, which is still very useful in many circumstances, is
cdlled first-order closure. However, it is recognized that in some
. circumstances this is not, indeed, cannot be, sufficient. The next
step then is to derive the equation that determines the evolution
of the Reynolds stress. : ' - ‘ ; o
. I C:l’) n 0‘ o = = A o (3 K U’L‘ AR 4(:: ((( 5 Y‘\‘,:'_ ol v e B ‘I-:" 0;:"'"0 C{{ ~ Q)D ‘t\':lﬁ;: .(‘ cr

nyﬁshbt;éz%igé:eAﬁ;ﬁiéﬁé (é} éﬁ&f(é) frdm.edﬁaﬁions k65 and t?)kgiveé

B0 . an

' %y A R A ' - v R -
uit + {u ui),z + (u ui);l + (u ui),l | (u ui),l_

= - P', + '
I”:L vu

i aLn-

gt




, Rewrite equation (11) with j substituted for i and multiply by
~uf{ . Add the result to the original equation (11) multiplied by

} uj- Making use of. equatlons (8) and (10) and averaging, the
R ‘result is
| G o Wy oy o= L 'L
. S (uiuj)t +u (“iuj),z + u'tug 5.0 +u'Tu Ui + (u u )
*u H X X . .
= e u'P' - tDe + v(u'ul ’2' + uiul )2' ) (12)
it,3 35,1 7 T\L3 e AR T 4

Using the rule for the derivative of a product, the right-hand side
of this equation can be rearranged to give .

[ I | s T__0 121“ I£| |£| t . =
(uiu.j)t + 1 (“i“j),z +u ug 58 + u'™u U + (u uluj)’z =
- [ . . - LI I.l -_’l ¥
| (p ui),j (r uj).i + P u]._,_j + P uj,l
" v,k qas
+ v(u u ) z Zy ui'zuj ‘ {13)

An attempt to find an equation for uiuf has introduced several

. more unknowns, a triple correlation, correlations involving P’
and a correlation of derivatives of the velocity fluctuations.
‘Second-order closure consists of devising mcdels for these teims

in such a way that the new equatlon and equat ons (8) and (9) form

gt e L e "a closed set. -

In order to ensure appllcablllty over a w1de range of c1rcumstances

- the models used are invariant under Galilean transformations and
under coordinate transformations, they respect symmetry and, of
~course, they are dimensionally consistent. The "reallzablllty
conditions recently pointed out by Schumann (ref. 2) have not been

. .checked for these models except partially and incidentally. It

"~ appears from Schumann's results that a detailed check might prov1de
some useful constraints on the values of the parameters .

Two quantities, & and q , appear in most of the models. The

determination of the first of these, & , the scale, is the motiva-
Ll tion for this whole study. The square of the other, q , is

defined by




U

' (16), had been tried and found to lead to negative values of autocor-

so it is a measure of the energy of the turbulence.

Most of the modeling constants are designated by rather cumbersome
three-or four-letter names suitable for direct use in FORTRAN.

The particular names used here were arrived at through an attempt
to systematize the naming of the much larger set of constants
needed in the compressible case (xef. 3). ’ : o

The model for triple correlations is practically the same as that
given in reference 4:. : : -

wjurn, = - VOU qA.((uiu__'.')"k OV ACTH 1) (1’4;

Note that the three terms are needed for symmetry.

The model for the dissipation term given in réference'(é) is

Y . o .
ujgupt T | (13

where A 1is another scale given by

W2 . X
T, i 9h
a+b 3
v
& &% (“a‘and” b being constants):@“Thus;iequatibn*(lS)”canube“written~o_gguV*«§} S

arel o ae

=3
-

L e
=
<
P -

As was mentioned in reference 4, an isotropic dissipation model in
which gi.q2/3_ is substituted for uiu& in equations (15) and

relations in some circumstances. (That is, we had violated one of

" the realizability conditions.) Eventually it was realized that the

arguments favoring isotropic dissipation apply only at high values
of ' .

gl




N Ry = 4 | Soan
R - 'and that the problems had occurred only at low values, 8o gijq2/3
i :  was substituted for wuju; in the second term on the right in
- . equation (16) but not in the first. Actually, the formula in use
. o allows a choice through another parameter, 8 :
- | _‘_.’ "2 _ a’. ‘ i b& »' : 1 _ B | 2 | B . . |
/ : RPN .‘_‘i,‘z“j . 1-2- giu + o (B uj_uj + 3 gijq | o (18’)".

R ‘Thus,'kB =1 correéfonds to équation‘(IS) or (16) and B8 =0 to
. isotropic dissipation in the high Reynolds number term only. :

The models involving the pressure fluctuation have been expanded
_ considerably from those given in reference 4. They have been
© . suggested by the following considerations. If the divergence of
L . equation (11) is taken, many terms drop out by virtue of equation
7 (10). Solving the resulting expression for the Laplacian of P'
and using equation (8) gives : ' B

|Q'l
[+

we 0L 2{19. u.n = 11'2' u.n (19)

. n
R s LR ,av e v(u ),,2.11

Regarding this as Poisson's equation for P' , the solution can be .
represented,in the absence of wall effects, as an integral

6 ol i - >
T LRy e e ¢ 87O [ o - & a - . X .
B et ngoe $ET G880 L e [x el g I [ SRt BEy apst ce? & e B 0 T

" where §' represents the right-hand side of equation (19). The
- correlation of P' with another fluctuation, say ¢' , can thus be

oo writtens o

e '. : S 1 . d), (;) S'(g) ST T
P ¢ Pt o= - TR dEj . L

. o Recognizing that the two-point correlation under the integral can
- Ll be expected to be negligible outside a region of characteristic
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oo

~+ ‘must’hold.” On the other hand, if j and k' are contracted, '

SOV R SRR

size A , and that the value of S’ at & = X can be assumed to
be representative, this expression is written

N -2 v . T
OB = afesT - o (28 L T e ety )

where C is a dimensionless quantity of order one. The P°
correlations needed for equation (13) are, therefore, written

P = 2%(mm0 & uju', + ez gt w?)) - (20)

] ’

why +Pe02 up uttwm ) @

IS R A | i,j°7 " ,8

The four constants introduced here should, by the arguments just
given, be all equal to C or 2C . They have been given separate

- names in the interest of flexibility and in particular to allow
studies of the effect of separate terms.

It appears that not much progress lias been made; in modeling two
correlations, four new ones that need modeling have been introduced.
However, the nature of some of the mew ones is such that the model-

ing is quite constrained. ' This is particularly true of U ul k -
H

When i and j are equal )
uiul . = l-(GTET) (not summed)
iYL,k T 7 Wit x

) o
[ ) =
u;u % 0

; By equation (10). ‘Putting these conditions together practically
forces _ ‘ , S ' :

ujul ,k." 3 (uiu) o - % [gjk(”',zui),z - gik“'z“j),z] (22)

a model remarkable for having no adjustable constants.




Similar considerations lead to

——— _ Weu/ ; Sl oo, v
Y,3%.m -_IT(gmjuiu gn,m“1 T3 8i3%n%n § gljgnm )
WGUB
+ 5 (&mln o] )-
WGUC 1 2\ o
*“p"(gmi&nj T " 3 8i58m 9 ) @

~ The next has just one free index, so it is modeled by

uiu'vznu' g = WWUl g(u g'u;._) P ‘ (28)

Finally , the model

a! Lu't w?, = wicu %

113 )n > A

" is governed by the requlrement that it bc zero when 1 and j are
contracted.

Substitution of equas.lons (22) through (25) mto (20) and (21) with
the use of equatlon (8) gives ,

I P L SR f foq ey f 0"‘ W e e e 9 e g e o &l LY e s €
+ Puw qA u*u ‘ - (26)
uy L o e B T

DY - ~‘l|tn__1_-l"2; 1 o)
Pui,j _GUA(uj,n u;u "3 gi4Y u,u )

"||n_.’2' 1,0 _. =
+ GUB( J a YW u i ujuz)-%vGUC ug

%—GLZ g(u '_-%'gi qz) | | ' 27)

ol
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R

i O
R

where PUW = PMU2 . WWUL-

GUA = PGU - WGU
GUB = PGU - WGUB
GUC = PGU - WGUC
GU2 =2

2 - PGU2 - WWGU

Equations (26) and (27) are taken to be models. The steps leading
to them are considered to be merely suggestive. The last term in
each is essentially the corresponding model in reference 4. The
GUA, GUB, and GUC terms in equation (27) are equivalent to terms
arrived at by a different route by Naot, Shavit, and Wolfshtein
(ref. 5). Their parameters, a , B , and Y are related to

these by
o - CUA + GUB‘
B = GUB
vy =3 - G6UC

‘(It should be pointed out that the relationship between « ; g,

and y which is given in reference 5 is rescinded in reference 6.)

One reason for not taking literally the process leading to equations
(26) and (27) is that equation (23) does not agree with (18) when

'j and m are contracted. The fact that the latter is used in a =

term multiplied by the viscosity serves as one justification for

‘the discrepancy. The use of equation (23) only as a suggestion for

arriving at (27) is another.

The substitution cf the model given by equations (14), (18), (26),
and (27) into (13) yields the modeled equation for .uiug TR '

| I 5 "2‘—1' '2.." 121"'
Suiuj)t +u (uiuj),g +}u ug uj,g +.u uj u,

- Vo [qA((uiué)’l + @t g+ wten )].ﬁ -

3 . J

. = - PMU[AZ(%- ﬁg:n,(uiu'n‘)yg + % G‘s .(uil u'n) z)]’j +

10




-ZbQ(Bou+l i.q) : <2 8)-

leen a method for determining A , equat:mns (8), (9), and (28)
form a closed set. : »

11




' 3.- THE SCALE TENSOR

Understanding of A is sought through the scale tensor, and the
scale tensor is defined in terms of the two-point velocity . -
correlation. Consideration of two points a finite distance apart
is cumbersome in general coordinates. Therefore, Cartesian
coordinates are employed for most of this section.

Consider two points in the same flow: x = (x!, 2, x%) and

§ = (E', £%, E®). Proceeding much as in the development of ,
equation (12), rewrite equation (11) with J substituted for i ,
interpret it as applying at £ , and multiply by ui(x) . Add the
result to the original equation (11) interpreted as applying at x
and multiplied by wui(£). Note that a function of x behaves as
a constant in differ%ntiation with respect to & and vice versa.
Using equations (8) and (10) and averaging, the result is '

dui (x)u;(8) - _ du; (¥)ui(E) _,  dul(x)ul(E)

34:_1__.]___ + u"(g),-a—%'——-—-]—_ + uz(x) —%:_._._l___

£ X

. du, (£) — 31, (%)

+uymwhagﬁ—-+w%mg@);%~
X

2t ur©)  wteou ule)_

352 ' ax> '
T (B)ui () I mul (D)

aE axt

[ ETOEIE) T T L o s

LA B § J + st J - <
aetagt S axtat .

It is not obvious that this equation is equivalent to equation
- ..{12) in the limit as x and ¢ approach the same point. The.
-~ demonstration can be accomplished using techniques that are

employed here for a different purpose.

- Sandri introduced the concept of modeling at this stage (ref. 7). .

One advantage is that the modeled equation should reduce to equa-
tion (28) as x and y approach each other. This helps estab-
lish the form of the models and also determines some of the
constants. Thus, part of the arbitrariness in other approaches
(see, for example, ref. 8) is avoided.

12
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Another advantage is that it is possible to relate the properties
: of the modeled equation to the spectrel properties of the turbu-
, lence of which so much is known. This aspect is not, however,
: pursued in this paper except to note that it has influenced the N E
models. A third advantage is that the terms to be modeled have A

. known properties that can be exploited in the constructlon of the b
: model. ;
oy Some technical apparatus is needed for what follows. New indepen-

dent variables, r = (z!, z?, t?), the centroid, and
r = {r!, r?, r’) the relative separation, are defined by

L=g (x+8) | 30)
r=§f -x : S (31)
Note that
| ? 13 3 ' RS
- = R . , ((32)
ax- 2 agt art ' :
3 1a .93 .
oo G (33
agl 2 acl, arl :
AN R I o . (34)

£ o g co & q ¢ 6O g &b S o b 0, PRt 3G ¢ ¢
: : 9" 13 13 :
S = F9 29
art 2 axt 7 gl

A consequeace of equatlon (34) is that for a function of x only, -

say 6 . , o S ' : R e it
| BB ecem . GE).
- Ix g : ‘ *
‘and for a function of § only, say
' B B = x@® @n
3E™ . 9 »
13
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Another new symbol is

Ryy " Ryy(em) = wi0ul®) L (38)

Note that
Rij (C :r) = Rji(C, 'r)

but in general it has neither the i - j symmetry nor the r
symmetry separately. A new tensor, S, j(c r) , a functional of RIJ,

is introduced. Its exact definition is not needed for this paper;

. it is enough to record the following two properties:

I. -sij.‘ls isotropic as a function of r (ref. 9).
‘II.  If Rij itself is isotropic, then Sij =-Rij-.
It can be shown from Property I that

1

533(.0) = 3 g Js“ (z,0). (39)
and . . B '
_ L '
S..(z,r) 1 S Q(C»r) 1.2.3 _
—J—-Td ar dr” = ‘s dr-dr“d (40)
ﬁf orl] Fode - S ayy ﬁ Gaper 0 ’

Another auxlllary tensor, Nlj , is requlred to have the following

. .4” tWO Propertles o GEa,. @ 0 a«“l,v Oy g ow i e f AL } 'b;{“‘ * 0' EN 7’0_:(}" o

B X (co>-u;L (41)

1L dartartad =0 (42)
| ‘”‘M S

‘Otherw1se, for tha purposes of this paper Nij is arbltrarj.anu

can be different in the different places it appears in the models

below. An example is

BT
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.[ s | : R SR, ;z R, .
i} o o B IR o or

The terms of equation (29) are now considered in groups. Tae first
three, in terms of Rij , are

o 3R, . 8R,.  _,  OR,.
t 2 2
: 13 dx
3R, . ' aR,, aR,,
| sty (F +Pw) S+ (3@ - s*e) 31
w - 0 ) 14 : L . ar” ) -
(43)
by equations (32) and (33). On the right-hand side of (43) and in
similar circumstances below, ¢ and r are the independent
. variables; x and £ are merely abbreviations for r - %r and
- t + %r , respectively. The next two terms, the "production terms,"
are : : v
am, (&) 33, (x) 3. (5) 3, (x) ,
R+ rt A gt —= + rY, 1 (4t)
3 I ax 14 It |
by equations (356) and 37N.
The triple correlation terms are modeled:
12 ] 14 '2 ]
du'T(g)u; (Rui(g) - ' T(X)ul (xyul ()
b uﬁﬁﬁ‘ﬁﬂd?~ﬁ©@ . :aﬁh»aﬁzcmki'vk,«?wue o éxg'“s‘“°g**’““:& R R mpw‘?i LR A
. ' 3 % ‘
3R, . 3R 9R™,
= - vou 2 qn( e il)]
A;ag 14 - a;J, ez
2VATC :
. + v (‘iJ NlJ)
S qf i 1-g ( [ 2)
+ 2BTC 7 {8 (Rij Nij)-+——§—— gij R . N . | (45)
15 -




(Hlere and in what follows, q and A and other functions of a
S single vector variable are to be evaluated at § if not otherwise
¥ indicated.) Thus, it is hypothesized that these terms have a
S diffusive effect and also a pseudo-dissipative effect - "pseudo"”
i ' since the last terms tend to drive Rij toward Nij , Or away,

depending on the signs of the constants, instead of toward 0.

Turning to the terms involving pressure fluctuations, note that

%
aP' (B)uy(x) 3P'(E) - AP (E)
. = X ui(x) = 3 ui(x)_ - (46)
| et agd az |
R by equation (37). But |
3P' (B)uj(x) . 3P'(§) du; (x)
. & — ui'_(x) + P'(E) b (47)
ag? agd 14 |
so, using equétion (47) with (46) and making similar manipulations
with the other P' term, v o
AP’ (&)uy (x) 3P’(X)u5(£)
v - - 4 . =
agJ axT '
aP' (§)ul (x)  OP (x)u.(E) ul (%) 3G CE)
= ) S - P ——
agd agt agd agt .
i e » S e ws
g;om&gowmwu;ﬂihglﬁ;rst pair is modeled: | . o. oL e, o Ted el T g e w0

L RNBN (D 3R (X)u}(8)
. > + -

L | Sy
#00) aR,» 3T, (%) 3R
= o 2o 22 % aun(x Tt % = )
SR TS U R TN T S O 1 <R 1

o . p, . RR, 90, (E) .ont\ ]
R e it eyl | B
. ag™ | T 14 14 3™ /|

16
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e

v oo
3R aR
+row| 2 {qa —5 + 2 A-—-i]
[ agd (q 14 ) at (q a;?

3A 3A

- POC (Re, - N, (49)
v e S TR 1 ©

Here, in addition to the two types of diffusion terms found in
equation (28), another term is included. Again, this term tends to
drive R; tqward (or away from) N, but only where there is a

gradient in A . It is known (ref. 9) that P'(§)uj(x) 1is zero in

isotropic turbulence. Therefore, all the terms on the right-hand
side in equation (49) must be zero in thaE_situaticn; in the last
term that is assured by the factor (aA/3r%) - (3Af3z%) .

The other pair of terms on the right-hénd side of equation (48) is |
modeled: ‘ : S -

su! (x) ul (§) -
P*(E) —s— + P'(x) —— =
agd o _
- T 3u. () au,
= GUA[——EL(—?- R+ ul.m R,
) a;n i ,vacn 3
_ : .
, _ : 3 P\ " 14 2J
R R i cie [ au, (8) ’?ut}(a) 04 duy (x) ; 3§1t}(x), Rn]“ . '
| | [ \eg® el * s et R e
(e A () FE A
+ GUC | ——+ i Rnn
S \egt o agd o |
+ Gu2 %{Rij - S35 3 B (Rn - s n)} O

These too must all go to zero for isotropic turbulence since the
left-hand side of equation (48) is zero in that case. That is the
reason for the introduction of Sij in the last term (according to = =

e e s S A B 8
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S ‘ Pfoperty I11). ' The other terms satisfy the requirement by virtue of
the fact that homogeneous turbulence will not exist in the presence
of gradients of the mean velocity. '

§ : .
e ‘ _For t:he‘ final terms in equation (29), observe that
T U (D) 8%ul (%) 3u (1) au. (£) 32ul(E) ’5
O = o (0 T2 = ™ — -
s ar e ag~ag”  J BTl 1+ 1381 | -l
or, using equations (36) and (37)
s LoD amu® e w® e S
: = + 2 + 13 i
agtag® ax*ax” N agtor
2 Thus, the last two terms of equation (29) can be written
PR (g)u'(g) ‘azu'(x)u'(g) aZR 3u! (x) aul(g)
i (%)Y A R W ij i ; ﬁ
v TR + % -1 = v T 2v 7 T (51) ;
3ETIE IXTIX LA 14 T
One more madél is needed:
aul (x) dul(g) o
i i) _ a bg 1-28 ) \
2t K Ris T (B Rig 53 Big Ry - (62

P "'Putting‘togéthe“r the" fesults fc;fo eqﬁ;l;:ioizs | (43’) through (52) .
- equation (29) becomes the ’modeled two-point correlation equation:

AR g N Ry L\ 9Ry,
e i (Fe +Ew) ;%l-+(u”<g) - i) —
T T IS e S s 4 ar*
G 8T 30, (%) - r* f3R,. B8R, ARV.\]
B el F R.R"—-%,-—— + rY, 5 - v @ Qi‘q!\ Gt + L iJ:‘
L e EAN e J et 8T \OL T ag? k24
SR 2VATC ’ q Ny al-8 RN
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PSR

o oy 2 T.2f1 sz 13“1(") R\T
oy [ S e )|

) ‘ AR 14 ag” 3:" ta ot 359' ) |
S —.Puu’:"-.—[zFlag“) BRJ+1a“(F’) aan]_ &
a 3;1 Z 31; a 4 3; v . : ' ;
) 3R, % aRv. o
3 i 3 i O
- PW| 2= {qA + 2 {qgA ] :
| [MJ ( 2z ) a* ( T ) | i
aA  3A
+ POC (R;5 - N..)
et Gt My
. 1 us(E) au, (x)
+GUA[ ;‘1 R™ + —— no
R 35> () R + aut (x) R? ]
3 13 ar? atn | I3
. GUB 3u €) Bun(E) RP 4 du, (x) 3 3un(X) -Rn
3 i i . 1 b
L 14 3z
U (s) , 1 ' |
+GUC( o )R“ +GU2 [R.,.‘-S..—-—q..(Rn— s“] -
lI : 32;3 /= % 1‘,. ij 3 %Hitn r?J
a?R 1-8 )
1 va
4»\;5%-;3-.2}?1{1 -Zb%(BR 5 g]_JRQ) (53)

It is easy to show that equation (53) reducea to equation (28) as
Tr. goes to zero. The terms com.ainmg N drop out by equatlon

BN \'(41) and S, J‘ drops out by equatlon (39) The term >(u &y Tt Bed
- u (x))(aR ./a3r ) becomes zero since £ ‘and x both approach C
‘ "I‘he rest reduces term by term to equatlon (28).

The scaIe tenéor, Aij ‘, 1 is defined thr'bulgh, the quantity

' - - : fff rl_ dr2 dr3 . - (54)
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. sufficient to use the leading term in a moment expansion.
'Explicitly,fit’is’assumed that .. S T A I

(It is seen that Qij_'is symmetrical in i and j .) Then,

C Qes . - |
S .\
M=t | (55)
Actually, most of the analysis is done in terms of £js Accord-

~ ingly, equation (53) is divided through by 4ur}? andl integrated

over all r space. Many of the terms are expressible immediately
in terms of Qij . For example, ’ -

‘g“g pow 2— [qA ; dr dr gr =
JJ ad \ et ) bnm(x|T

= puw 2~ | qr
agd |

L :
9 i ’ '
BCJ( ag* ) ,

since 7z and r are independent and q and A are, by the
convention adopted above, functions of r only. It is seen by
equation (40) that S;; drops ocut and by equation (42) that Njj
drops out. This is in”contrast with the limit as 7t goes to

zero where the whole terms containing N;.. dropped ocut.

J

" Terms containing factors evaluated at x or & need an additiomal

assumption before the integration can be completed. Roughly
speaking, the assumption is that the variation of Rij with ¢
is smoother than the variation with r , that is, the flow is
locally homogenecus. More formally, the assumption is that it is

e @

| Rij(c:r) = MlJ(C)'{V“IrI 5(1‘)‘ | L (56)

e whéfe>>6(r). is the three-dimensional Dirac delta function defined

,-ff‘f(r(r) s(r) drt ar? dr® = 0(0) .G

for any continuous function ¢ .
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Stbstitution of equation (56) into (54) éhowé, with the hélp of
(57) that , - =

- $] REIPU e -0
so that equation (56) can be rewritten

o | e 212 sry
' ‘ N Rij Q..‘4ﬂ1r| ,G(r)

With thls substitution, the rest of the integrals can be performed.

This has the effect, with one exception, of changing the point of .
2o evaluation of the coeff1c1ents from x or & to ; , by eguation
o i (57) _ The exceptxon is the term e

o [ff - e

This turns out to be zero, but it takes a few steps to show that

Consider more generally,

jjf (w;) - ¢(x)) 2. (sr[ G(r)_)gi%;dﬁ

| Assume ¢ can be expanded in Taylor s serles Then"

2
F

¢(E)-¢(x) .(«:4-2- )~¢(;~ r)—‘“3¢(£l+.;‘.y

31.3 R o,:'.\»rb\;)cﬂ:;‘u o Tl TG LA e

6 ’.‘gj;o ol [ R LS

L (If more terms were carried, their contrlbutlon,would eaSLIy be vg>,¢5“,;,, _
«ushown to be: zero. ) Mow, - ol TR R e T e T

,gg{'§l£l_;=,2r£ i
x,harg SR e e )

2 38(x) ) dr dr dr :
G(r) +r|r
fﬂ ( Hary‘)_lrlz'-
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L ’ éu&j‘“ﬁwj<2rr8(r)+rn-—g-a)dr drzdr3

, ﬁ_ _ ar

B D = “’ G(r) - -E?- §(r)) drl ar? ge3
o rx r* |

G

Py s

the last step being the result of integration by parts of the
second term. Let : '

6 g fffz-—-za(r)drldrzdr‘?'

By the symmetries involved, Y,y must be proportional to the
Kronecker delta, an . On contraction,

wz£=fff2-:—r—}76(r) drl dr2 dr-3=2
, . ir )

using equation (57). Therefore,

=2,
“ne T 3 ng
since 62'2 =3 Also
n
g_’: = $ne .
. so ¢ can be written
3¢ (2 ) = .13
$=22_ (%5 -5 = - 2 9%
ar® \ 3 ng nf 34
: . Finally, then, e
vi. ‘- . ; -2’
| - Loagt
Qij ) 5% 913
22 .
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or, By equations (8) and (35)

Q

Y57
The equation for Q. can now be written. Since the r depen-
dence has been eliminated by the integration, only one point is

involved in the equation so general coordinate notation is employe
once more. The contraction (trace) of Qij is written :

a=aq% » ' (58)

To take ‘advantagé of combinations of termé that occur, write

AOM = a + ATC
; o (59)
BOM = b + BTC o
The equation is
) L - .8 -
5, T Mg, T i Ve T
, 2 % 2 _
- VUU [q!‘x(ﬂi. +of j+0 3,1)],1
.. 2/1-% n 1= Ln )]
- PMU{A (fu,ngi,£+4ul,n9,£ 23
. 271 -¢ n - 1 - n "
N -—(“Pzﬂ}‘[l\,, (2 1 f AR t‘,z‘:"pj"‘,i‘l"g ,9-":)]‘.:2.‘ e o
3 o B |
- PO [("‘“ 0 2)g * (ar 2y ) ,i]
+poc @At 0.,
YA L2 71]
v oyl '3 - n -4 "2/’ n *
+GUA( j,ngi+.ui,ngj 3»vgiju.,n9_2)‘+
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+ GUﬁ[(ﬁj - %fj) 2" (“1 n Y% 1) ] :

+ GUC (uj.i + ui’j) Q + Gu2 %(QiJ 3 85 )

2 o VAOM - qfa ¢ 1-8 -
+ et --f— oy - 280M (895 + 258 5, 0)  (60)
From this equation an equation for A can be derived, as

follows. The contraction of equatlonil(¢8) (displayed in the next

section) is an equation for q* . If it is multiplied by Ay and

ij
subtracted from equation (60), with q’A written for gij , the
result, after dividing through by q? , 1s an equation for Aij .
It is considerably longer than (60) and not worth writing out. To
determine Aij , 1t is simpler to solve for nij- and divide the

result by q2.

Thus, it is equation (60) that has been programmed for solution,
along with equations (8), (9), and (28). Actually, for the model-
ing parameters that appear in beth (28) and (60), the program .
version of (60) uses different names. In addition, the program
version has two extra terms to allow direct comparls‘n with earlier
versions of the scale equation. Details are given in reference 1.
In all the runs made so far, the renamed parameters have been
given the same values as their prototypes, and the coeff1¢1ent° of
the extra terms have been set to zero.
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& .- THE BOUNDARY LAYER ASSUMPTIONS

In this initial attempt to study the behavior of the’system

consisting of equations (8), (9), (28), and (60), two-dimensional

steady flow over a smooth flat plate is chosen. A Cartesian coordi-
nate system, with !, z?, ¢® denoted by =x, y, 2z is used, taking

- the free stream parallel to the plate in the x direction and the

y axis perpendicular to the plate so that the flow is envisioned
in the x-y plane. Derivatives with respect to 2z , as well as to
time t , are zero. The velocity components wu,, u,, us_ are
denoted u, v, w . By the two ~-dimensional assumptlon w=0,
but this doesn't apply to w' . '

Using x and y as sﬁbscripts to denote partial derivatives with

~ respect to x and y , equation (8) becomes

G + 7, = 0 | S (61)
Equation (9), for i =1 , becomes

uu, f vuy + (u'u )i,+ (u'v )y = - Px + v(uxx + uyy) (62)

>

and for =2,
so st L (TTTTYy 4 (TTOTy o - y = Cea
uv, + vvy + (u'v )x + (v'v )y P+ vwv.  +v.) (63)

Since the flow is two-dimensional, = 3 in equatlon (9) is not

‘relevant. At this point, the boundary layer assumptions are
invoked

At ‘a hlgh enough Reynolds number andlln the absence of extremes in
the pressure gradient, it is generally recognized that the

:v»1nf1uence of a flat plate on the flow along it is confined toc a
. narrow boundary layer with the following characteristics. Deriva-

tives with respect to y are large compared with derivatives with

. respect to x , v 1is small compared to u , and the two effects
- balance each other so that the two termu in the contlnulty equatlon

(61) are equal in magnitude.

. In equatlon (62) then, uxxz is negllglble compared to ny va“d

if it is assumed that the varlous components of uluy u;u; are of the same

order of magnitude, (u'u'), is negllglble compared to (u'v')
On the other hand, the flrsf two terms are comparable. Therefgre
equation (62) can be approximated by
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’ where.‘(u’v‘)

uu fvuy = - P - (u'v )y + vy B (64)
has been put on the other side of the équation

since it is i%terpreted_as representing a stress contributing to
the rate of change of u along a streamline; that is, the left side.

The process of arriving at equation (64) from (62) can be formalized.
Interpret the equations as being in terms of nondimensional variables
so that v stands for the reciprocal of the Reynolds number. let

§ be the nondimensional measure of a nominal boundary layer thick-
ness, assumed small. Then u and Vv are taken to be of order  &°
and &!, respectively; the cperation of differentiation with
respect to x and y is taken to be of order 6° and 677 ,
respectively; v is taken to be of order §2. All this is standard
in the theory of laminar boundary layers. The components of o
uiuj are taken to be of order 3! . The terms that were dropped -
from equation (62) :re, by these criteria, of order &! or &2

and hence small compared to those found to be of order &8° ; that
is, small compared to the rest of the terms except, perhaps, Py
which is considered in the next paragraph.

The terms of equation (63) are seen to be all of order &' or
smaller except (v'v‘)y which is of order 8% and ?y which must

also be of order ¢&° .° Thus,
v'v'), = - P
| 'y = - By
which can be integrated to give.
LI t,t ,_____
v'v | (v'v )e = - P + ?e

. where the subscript stands for free stream conditions (i.e., the

— 3

" edge of the boundary layer). Solving for P and differentiating

with respect to x gives

Px P P SRR (vlvl)x+ (v‘v')e

ey %

for use in equation (64). However, the last two terms are of order

6} and so are dropped. From now on, Py will be taken to mean .

Pex , the external pressure gradient.

The limitation on the pressure gradient needed to justify the
boundary layer assumptions can now be made less vague by stating
that P, must be at most of order &° . It may, of course, be
smaller, in which case it won't contribute appreciably tc equation
(64). ,
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negligible compared ~(u v ) but that the reverse is true in the. : i
sublayer next to the wall. . :

- 80 q' is of order 6% . To estimate the order of A , comsider

“has order 63" 2Y and the second. 2b(q/A)q?  has order 632°Y | ' L
. For either of these to balance the production term of order &° , :

| Y3513/2 . The conclusion then is that taklng A to be of order
o R

.(>The order of all the terms in equation (65) can. now be determined.
Keeplng only the 1argest glves

&
—IATIER

Similarly, it should not be assumed that the other terms in (64) are
always of the order assigned to them. Indeed iy is well known that
in the main part of a turbulent boundary layer’ the term vuyy is

- The same technique is applied to equatlon (28) The modeling

constants are assumed to be of order &° . The definition of q?
can be rewritten

q2 = u|un + V'V' + wlwl
the contractlon of equation (28)
(qz)t +»u2(q2)’z + 2u'*u'? Uy g T YUU[éA((qz) o 2(u' o' .n)},k

-l T, ).

- 2PUwi_qn(u u'n) l} ot o(qz"z -2 i% qz _,Zb % qz
' ' (65)

Among the unmodeled terms, the domlnant one, after mak_Tg_the
boundaxy layer assumptlons, is a productlon term," , of
order &° . It is generally recognlzed that this term (wh1 h is
ordlnarlly negative, since u'v’ and u, are usually of opposite
sign) is principally balanced by "dissipation," that is, the last

« . two terms in equation (65).. If A is assigned the order &' with

Y to be determined, the flrst of the dlsSLpatlon terms 2(va/A2)q

gives the proper ordering. . SRR 3

2TV G

VO, = -2 i% -2 %q | e

This is a useful approximation for many purposes and is exploited
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_in the next section. (As is the case with (u'v‘)y' and vﬁyy in 'i’
 equation (64), the two terms on the right of (66)” are not important A
in the same part of the flow. Indeed, their ratio is

. obah_b o .
- ES\T a ke

which varies from zero at the‘wall to values large compared to one.)

However, equation‘(66) is too‘crude an approximation for a study of
the evolution of the boundary layer, so terms of order 6! are
retained. Equation (63) becomes . B

ﬁ(qz)* +‘§(q2)y + 2u'u’ ﬁx.+ 2u'v' ﬁy + 2v'vy! y

- wefo 6y + 267,
- ZPW[qA(W)y ]y +9(@? -2 2 < -2 92 S

The changes in the modeling that have been introduced since refer-
ence &4 all drop ocut in the contraction of equation (28). Therefore,
equation (67) is essentially the same as we would have written it
then, with the exception of the terms 2W'u’ uy and 2V'V' ¥
which we would have dropped, as do other workers in the field.” The
justification, if anything is said about it at all, it usually
something like: "They are production_terms; they are small compared
to the other production term (20°Vv" uy); therefore they are
negligible." But if they are negligible, so are other terms in
equation (67); the result is (66) again. _ -

Note that insofar as these considerationsapply to a comparison of
the "small" production terms (which are also known gs the stream- -
tube stretching terms) with the convection terms, u(q?)yx and
”v(qz)v ., the reasoning is independent of the order of magnitude

assigned to A , or for that matter to uiuf . In fact, it is hard

to conceive of a systematic ordering that would drop those produc-
- tion terms but retain the convection terms. ' .

The boundary layer approximations can now be agglied to eguation
(28) without contraction. It is found that uw' and v'w' form -
an independent set and do not appear in the other equations; there-
fore they are igncred. So far, the equations have been written with
the production terms and the triple correlation terms on the left
with the convection terms, to emphasize their common origin in the

term (uzui) 3 of equation (3). ‘Henceforth, as is customary, only
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. the convection térms are written on the left, in parallél with
equation (64). '

In the boundary layer approximation, the terms'multipli’ed_by PUW

M appear in the same combinations as certain of the terms multiplied
: by VUU. Therefore it is convenient to introduce a new parameter:

R VPW = VUU - PUW

€3

The final version of equat:ion (28), then, consists of four equations:

ar———

ﬁ(u'u')x + :r(u'u,')-y = -2u'u’ ﬁx - 2u'v' ﬁy + VUU[qA(ub‘u')y]y ‘

2 vt et v = wlv! [ T
+3‘GUA(2uu ux+2uv ug - V'Y vy)+2 GUBuy ug

+2 GUC 42ax + G2 %(G’T - S;)+ v(IF'&")yy

-2 ‘Aig u'n' - 2b %(sﬁ—; +158 qz) - (68) |

t'i(v'v‘)X + \.;r(v'v')y = «2v'v' ;’y + VUU[qA(mr)y]y +

+2 VPW[qA(W}y]Y

L RGN B uyT Ry - 2V ) 2ol Yy
3 L  +2 cﬁc 23 +.GU2 %(v'v' - 9;:)+ v(;r'v‘)v | |
. A T Vy T | R vy
 vamer o afeser,lo802y |
.vzp-vvv 2b %(va +—f§——Q) | (69)
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- e v AR ey s SRR S e 3
:‘ u(w_ w )x + v(e'w )y VUU[qA(w W )y]y :

b » o S -2 GUA(u'u' u, +u'v' u, + v'v' v.) +GU2 El(w'w' - 332-) |
e | : L +vw'w').. -2 yw - 2b %(Bw'w' +1 -8 q2> (‘70)
. . | o Yy 2 3 |

(oY 4+ eV = - v G ,H,[ 'T'"T]
”u‘(u.v ,)x, v(}x v )y » vv uy UUjgA(u'v )y v
+.VvPW[qA(u'v')y] -1 PMU[AZﬁ (v'v‘)i] | !
b iy & y vy
: + oy TV . Tnyn ‘
5 GUA vivh ug GUB(u'u v'v )uy :
2 - ' k
- Iy =Ty
: + GUC q uy "%-“GUZ % u'v' + v(u'v )yy ,
-2 ¥y - 2 syt - - (71) |
v R | _ '
.'Applying the same approkimatidns to equation (60) for Q43 involves
' no new concepts or problems. The smallest terms retaineé are again
of the order of the convection terms and, hence, of Qi3 itself, v
namely, 6%% . As is the case for u'w' and v'w' , Qi and
“Qs do not impinge on the other components and are ignored.
Some new notation is introduced, dargely for convenience in -
programming: ' } - - '
L - : ' o L .66 = 933  
where each letter pair is takén to be a single syrfxbol; also
S o VOW = VOM - POW
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equations:
& _ R
« ‘ ‘ uEE - -I-v_vEEy
. ts
L
\'
uI"Fx‘ + vFF v
| uC'fGx + vGGy

+ v0C % Ay

-The final version of equation (60), Lhen consists of these

= -2EE i, - 26F Gy + VUU(QAEE,),
2 pE

2

+-GUA(2EEu +2EFuy FFV)+2GUBEFuy

3

a +zcucnu +GU23(EE- )‘+vEEyy

vAOM '1-8 '
-2 VA EE - 2B0u %(BEE + 13t sz) (72)

-2FF v + + W(qAFF
2 vy VUU(qAFFy)y 2VPUH(q4 y)y

q -2 - 2FF ¥
+ POC A AY FF 3 GUA(EE u + EF uy 2FF vy)

- ' - } _a
2GUB EF & + 26UC 8 3, + o2 4 (FF 3)

+v FF__ -~ 2 YAOM o

yy = 2 %3 ¥F - 2nou F(eFF + 52 a) o9

| g . 2 '
+ 4 :
vUU(qAGGy)y POC 1 !\y. GG

2

P - . _a
5 CUACEE G, + BF & + FF ) + Gw2 q (GG )
4y GG, - zg\.gg - 2B0M ﬁ(scc + sz) )

| 2= |
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1 I S
“?M“(A_% F_Fy) y+Po¢%Ay

- FF u,_ + VUI +
Flﬁ“vuy . VUU(qAIf‘Fy}Y VPW(?AFFy)y

4

| 2EF+GUAFFﬁy

GUB(EE - FF)&, + GUC @ & + GU2 § EF

v Eryy-z‘—’égﬁar

A
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‘each point, A, and A

5. - RESULTS

.. 9.1 The Program

A computer program to sclve the set consisting of equations (61),

(64), and (68) through (75) by finite-difference methods is
described in reference 1. A preliminary series of runs has been
made to explore the nature of the scale tensor insofar as equation
(60) expresses it. The description of the program in this paper is
limited to those features actually used in the runs discussed.

All of the runs had a number of features in commnon. These include
the following boundary conditions: all the dependent variables are
zero at the wall, y = 0 , and all go to zero in the free stream
except u which is set to a constant, » there and v which
takes whatever values are needed to satisfy continuity. The
pressure gradient Py 1is set to zero. :

The program computes two vérsions,of A  for use in the models at
. (The subscripts are mnemonics for
"ratio" and "empirical."? The first is defined by

2
A“—z-
that is, A, is the contraction of Ajj - The other is the
function : -
c 6,
Ae = min { 99
dy
- where ¢ and d are constants and 8gg 1is the value of y for
which u ='.99 u, . The values used for the constants are
| ¢ =.17
d= .65

which, in conjunction with the modéling parameters given below, are
known to give good results for a flat plate boundary layer when Ao
is uysed for A . Either A, .or A, was used throughout any

one rum. ’ '

5.2 Evaluation of the Parameters

The modeling parameters’appearing in the boundéry.layer equations
for u!uj » equations (68) through (71), were given the following

i
values:
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VP =
PMU =
GUA =

 GUB =

- GUC =
GU2 = -1.
 a=3.25
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(Hence, the extra parameters of reference 1, referred to at the end
of section 3, were given the values: VOM = .3 , VOW = POM = GOA ="

GOB =GOC =0, GO2 = -1. , SAM = TAL = 0 .) These parameters gave

good results when used with A, for A for the mean flow and for

'“i“j as they had in earlier programs. One exception tc that state-

ment is that the calculated maximum values of u'u' , v'v', and w'w' -j

are found to be approximately in the ratios

u'u'iviviiw'w' o= 2 1:1

‘which is not in agreement with experiment. This defect can easily

be remedied by changing the values of GUA, GUB, and GUC, but that
was not deemed necessary for this prelxmxnary study, cspeclally
since various experiments do not agree on what the ratios should be.

There remains a group of three parameters, AOM, BOM,'and P0C, for
which values are needed. Consider equation (67) in the free stream
where u is constant and derlvatlves with respect to y are

‘bnegllglble

ﬁ(qz)x = -2 i%q‘?' -2 3 ¢ | - (76)

~The corresponding equation for @ is obtained from the sum of

equations (72), (73), and (74) (since @ = EE + FF + GG) with the

same assumptlons lt is

- o _ 2vAOM _ < o AR
ulﬂx T a 2‘ BOlM i Q | (77)
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must hold. Thus,

- as. qf

For this dlscussion A is identified with Ay . sc substituting ‘
q A for a gives » , - o L el

2UACM 2, .. q 2.
AxngqA-zmM%gg

| ﬁA (qz)x + ﬁqz

"Subtract equation (76) multxplied through by A from this and then

divide the result through by q ‘ , » ‘
e 2u(AoM-a =_zws:rc oy
Eay _17—)- A - 2(BOM b) % Ae-2gEomc g (78)

For high Reynolds numbers, RéA = qA/v'. the terms involvxng ” v N
can be neglected. Then, . ; R , S

"“%‘%%-'13 ¢:wm:q

’»ﬁ'A =-2BTCq (80)‘

',;‘It is known (ref 10) that in these circumstances q? decays llke

- where n is probably around 1.25. For this to be eompatlb;e -
with equations (79) and (80), the rcl*tlo“

BIC =(2- - IT)b |

BOM==b+BTC (2 )b

 For m=1.25 and b= .125 . these relations give BTC = -.0375
-and BOM = .0875% . As expected Ax is posxtlve 80 that A grows
2 ~decays. S S » ol

‘While it is poss1b1e to approach the evaluatlon of AOM by
- considering equations (76) and (77) in the limit of low Reynolds
numbers, a different flow situation is used here. It is easy to
o see that in the limit as y goes to zero, the dominant terms of
v-equatlon (67) are: v(q )yy - 2(vaIA2)q s0

2 ~ , :
(g7, = 2a L : (81
35v 
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. With A (still identified with A.) given by @/q® , this gair of

1 varies like vy

it is found further that p(p-1) = (2a/d?) or, taking the posi-

very near the"wall.‘_ The corresﬁcnding equation for § is

0 =AM
ny | 2A0M Z S ‘(82)

equations can be sglved by assuming that q? varies like yP and
. It is easily established that q=p + 1 ;
that is, A is linear with Yy ,» a result in good agreement with
views of the subject since Prandtl. If the slope of A as a
function of 'y , for small y , is designated d (as it is for A.)

e’ s

tive root, o :

= 1 / 8a

d .

~ Also,

vAOH;__ qg - D _p +1
a pip-D p-1

"For a=3.25 and d= .65 , p = 4.454 and AOM = 5.132 ,
- approximately. _ _

- To obtain a value for POC , consider eqﬁations (68) through (71)

keeping only the highest-order terms (as in eq. (76)) with the
additional assumption that Rej is large. The resulting set is
equivalent, inso far as the modeling is the same, to the "superequi-
librium" equations of reference 11. It is .

(2 Q»%,GUA - 2GUB) v Gy -
- cw ;}.(u'u- %) 24Tt d) e
(% GUA + ZGUB) v i, =

]

T T 4
Gu2 %(v‘v' - 33-) - 2b %(Bv'v' +l—3—8- qz) (84)
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%‘ GUA uvvn. ﬁy = QU2 %(W'w’ - 33__) - zb '%(BW'W' +}_§£_ q2) (85)

L | (I-GUA-.GFJB)VV 3 =
. Lem oo g 2- g == o Qe oo
, GUB u'u uy-l-GUCq_uy*i-GUZAuv Zb_%suv |

(86)

_ These are regarded as a set determining the correlations as a
function of A, Uy , and the modeling constants. Although the set
is nonlinear, due to the way g appears, the solution is readily

obtained. Add equations (83), (84), and (85): ,

2u'v' B = -2b $a | RN CHN

(Compare eq. (66).) Substituting this result back into equations
(83), (84) and €85), theg can easily be solved for w'u., Vv
and ww' in terms of g§° . Incidentally, it is easy to see from

equations (84) aném$85) as they stand that it is GUB that controls

o
whether or not: v = ww in this approximation. if these
values of the autocorrelations and the value of uw'v' from _
equation (87) are substituted into (86), the result can be written
‘ 2 2 1 :
B(GU2 - 2bB)7QT = 4" 3 (1 - Gua)[cu2 + 2b(X - B)]
+'2b[(1 - Gua)(3 GUA +2 cu) - 2@032] |
+ (GU2 - 2bB)GUC A Yy (88)
' : For the.values of thé parameters given above, this becomes simpiy
. - R -2 ‘ )
: , Uy _ ,

ined back into the

Substitution of the value of q thus detern
f the individual corre-

earlier equations allows the determination O
lations. ' : SR
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It'is'known_(refs. 8 and 11) that_this approximation represents the
situation in the law-of-the-wall region of a turbulent boimdary ,
layer. For example, equation (88) is in agreement with the known

 properties of that region in that the level of turbulence is

roughly constant, A is proportional to y , and the velocity
profile is logarithmic so that u.y is proportional to y~! .

‘A:similar analysis can be carried out on equations (72) through (75)

but, in view of the variation of A in the law-of-the-wall region,

- terms involving Ay or nij)' are retained, and it is assumed that

each component of ﬂij},» is proportional to Ay . For the values
of the parameters already mentioned, the equation corresponding to

equation (89), to skip a few details, is

| Q¢ | '.55
A

Fay” [”57“3+”9@1D'<4+PWM5Y1 ;

“or, using equation (89)

(175 - 21 - % = 275

where z = (.3 + POC)A 2_. The real root of this cubic iS'approxif o

mately z = -.06669 . "If A, is assumed to have the value it has

for A =4, ; namely, &y = 165 , it is found that POC = -.4578 .

To summarize, the following values have been found for the new
parameters: ' ' '

AOM = 5.132
BOM = .0875
POC = -.4578

These, of course, are to be considered just first guesses with

- adjustments to be made after trial rums.

5.3 The Rnné

A preliminary run was made to establish initial conditions for the

other runs. The initial conditions for the preliminary run were
those of a laminar boundary layer with a spot of low-level turbu-
lence. The initial conditions for Qi3 and the values cf AOM,
BOM, and POC were arbitrary. The run uge

at a Reynolds number based on x , Rex = (uex/v), of 5 million. -
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After verifying that the profiles of u, v, and uiug vere ‘
representative of a fully developed turbulent boundary layer at that
Reynolds number, they were used as initial conditions for the rest
of the runs. Initial values of Qjj were set according to the
formula N , . '
e RPNV L
nij = A0y ujul + A (1 - ?I’ﬁij A

where o1 was either .9 or 1. For any value of 67 , this
formula guarantees that the A, computed for these initial condi-
tions is equal to A, . ‘ : ' _

The first such run used the values of the new constants, AOM , BOM ,
and POC , found above, had o3 =1 and used A = Ay . As the
solution proceeded downstream, A became quite small through most
of the boundary layer. This emphasized the dissipation terms so
that the level of turbulence, and with it the skin friction, dropped
off very rapidly. A few trials with modified values of the new _
parameters showed similar behavior or the opposite, with the scale

‘and turbulence levels growing much too large. It was quickly

apparent that it would not be easy to find suitable values.

A series of runs was made with A = Ay so that the turbulence level
would remain normal while the effect of a variation of the new
parameters on Q:3; and on Ay could be monitored. A set of values

‘that gave good réSults in this mode was

 AOM = 5.65
BOM = .0875
POC = -.27
“However, with A=A, , the solution again showed rapidly increasing

A and turbulence lévels. Systematic changes in the parameters

were tried to no avail. The results were unstable in the sense that

a small change in one of the parameters could produce a large change
in the solution. This indicates that even if one satisfactory run
were obtained, it would no doubt be sensitive to initial conditions
and other factors that should be extraneous to a useful calculation
procedure. ' . : T '

These results are discouraging but not disastrous. For one thing,
only the new parameters were varied. It is not necessarily true
that values of the other parameters good for A = Ao remain good - -,
for A = Ay . For another thing, the new modeling is deficient in

a way that seems obvious in retrospect. A look at equation (53)
suggests that the 'POCY term could be expanded in the pattern of the
"ATC" and "BTC" terms. That is, the "POC" term could be replaced by

-39
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It is expected that the presence of B would have a minor effect,

but the first term might turn out to be more. important.

| over. It turns out that if that is done, and it is noted that : q?

should decay like x~%2 in that limit (ref. 9), the value

AOM/a = .8 is found. This value would not work near the wall
since it leads to a singularity at y = 0 . But when the proposed
new term is included in the model, then AOM will be replaced by

AOM - APC A® in the calculation mear the wall, but the calculation.

"_fbr the freg stream will remain unchanged. Thus the conflict in the
- two ways of determining AOM will be removed. =

From the numerical results obtained so far, it appears that this
change will definitely improve the outcome. Whether it will be

'sufficient to overcome the difficulties remains to be seen.

Unfortunately, this seemingly obvious improvement was not thought
of until this paper was in preparation, too late to include it in
the program under this contract. . S ' :

5.4 The Nature of the Tensor

- As stated in the introduction, a main purpose in developing the

program was to elucidate the structure of turbulence, at least as
madelad, through an examination of the scale tensor. One particu~

. lar aspect was studied in these preliminary runs. It has been
- Proposed (ref. 7) that the "quasi-isotropic" assumption is a useful
- approximation. That assumption is S : :

.1 B e _1 2 e
%5 = 3 egy0 SL<uiuj -58;9 ) o (90)

- where S% ; é length, is a function of position but independent of
i3 If eq

uation (90) is valid, then instead of solving for all
the relevant components of Qi3 en route to determining Ay, it
is sufficient to solve for thé> two quantities, Q and S, .

'Equation (90) was testedvby forming che ratio

hS
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s m a3 71 (not summed)
: Iij wul - % g..qz

iy 3 eijt ‘

- at each point fof'each‘pair i,j . If the various ‘SLij' at a
_given point are equal, the hypothesis is verified. It was found

that the diagonal elements (i = j) were very close to each other,

~generally within one part in a thousand, but the off-diagonal value
" tended to be about ten percent higher. ' '

:»A'further'hypothesis is that

SL 0';2- OAr

r»'ﬁhere 'a‘ is a constant. ' This too was tested, using‘the value
. found on the diagonal of SLij for S; . It was found that o
. "was almost always in the range from .85 to .95, and most often

between .88 and .92. Except for some transients dependent on the
initial conditions, these results concerning Sp and o were

'E,Aremarkably.constant across the runs, independent of whether A = Ap

or A = A, was used and independeat of the choice of parameters.

_ Too much shouldn't be made of these cbservations wntil the hypo-

~ theses are tesfed in other flow situations. Tf they hold up, how-

ever, it appears that if the accuracy of the first is acceptable,
then setting o = .9 is equally valid and only one differential

. ~equation need be solved to determine A, .
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