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SUMMARY

A hybridized method for computing the flow about blunt bodies is presented.
In this method, the flow field is split into its viscid and inviscid parts.

The forebody flow field about a parabolic body is computed. For the vis-
cous solution, the Navier-Stokes equations are solved on orthogonal parabolic
coordinates using explicit finite differencing. The inviscid flow is determined
by using a "Moretti type" scheme in which the Euler equations are solved, using
explicit finite differences, on a nonorthogonal coordinate system which uses the
bow shock as an outer boundary. The two solutions are coupled along a common
data line and are marched together in time until a converged solution is
obtained.

Computed results, when compared with experimental and analytical results,
indicate the method works well over a wide range of Reynolds numbers and Mach
numbers.

INTRODUCTION

Over a number of years, highly refined techniques have been developed for
obtaining flow-field solutions about blunt entry bodies at supersonic and hyper-
sonic speeds. Early techniques included the inviscid shock-layer method of
Moretti and Salas (ref. 1) and the viscous shock-layer method of Davis (ref. 2)
and others. The more recent work of Kumar (ref. 3) has extended viscous blunt-
body calculations to include solutions for small angles of attack and for the
plane of symmetry. In one way or another, all of these methods use a coordinate
system tied to the body shape along with a transformation of the physical space
into a uniform rectangular mesh in the computational plane. The dependence of
the transformations on body shape necessarily limits these techniques to flow
over smooth shapes, since any attempt to carry the solutions past a sharp
forebody/afterbody juncture will result in a singularity in the coordinate
transformation.

The ability to compute the complete flow field about a finite entry body
has always been a desirable but, until recently, unrealized goal due largely to
inadequate computer resources. Recently, Peyret and Viviand (ref. 4) and Gnoffo
(ref. 5) have solved the complete flow about finite analytical bodies at an
angle of attack of zero degrees. 1In both papers, Navier-Stokes sclutions were
obtained on a physical mesh which is tied to the body shape. The solution of
Peyret and Viviand is for a body having a sharp forebody/afterbody juncture,
while Gnoffo uses a smooth, analytical body shape. Both methods also use shock
capturing to handle the bow shock. The shock capturing technique works well for
flows at low Reynolds numbers. However, at high Reynolds numbers, the number of
mesh points required to adequately resolve the shock are prohibitive. Gnoffo,
in unpublished work at NASA Langley Research Center (LaRC), has floated a




discrete shock in his mesh to handle these conditions at high Reynolds numbers
while solving the full Navier-Stokes equations everywhere in the flow field.

In this paper, we will demonstrate a technique which simultaneously solves
for the flow in the inner, viscid region and the outer, inviscid region about
the forebody of an axisymmetric parabola at 0° angle of attack. This tech-
nique, which is directly applicable to the finite body problem, will minimize
the number of grid points required in the computational domain. Solutions for
the outer, inviscid region are found using a "Moretti type" method which is
tied to an arbitrary line through the flow field rather than to the body sur-
face. The inner, viscous solution is found by solving the full Navier—-Stokes
equations over a region bounded by the body surface and the lower bound of the
inviscid solution. The solution technique has been structured for the Control
Data STAR-100 computer at Langley Research Center (ref. 6), thus, the method
will be explicit in nature.

SYMBOLS
a local speed of sound, g/ﬁm
A constant in equation (2)
Ep specific heat at constant pressure
Gv specific heat at constant volume
cy = a2 e 1
Cy = Gfo/evt?w
e internal energy, 8/(8V'?300)
g,g,ﬁ,g,% vectors defined in equations (A7)
h G e
T static enthalpy, E/(gp%m)
K thermal conductivity, ﬁ/ﬁw
L reference length
M Mach number
NProo free-stream Prandtl number, ﬁwép ﬁm
NReoo free-stream Reynolds number, 5mﬁw£ ﬁw
P pressure, 5/%6mai)
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wall heat transfer, =
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nose radius
body surface length
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time, tU_ /L

(e o]

temperature, T/Tw
velocity, G/Ule/z (eq.
x-component of velocity
n-component of velocity
velocity, G/Ule/2 (eqg.
y—-component of velocity

£-component of velocity

>
w

(A3))

(A3))

Cartesian coordinate direction

Cartesian coordinate direction

ratio of specific heats

increment of length

= Tmax ~ "o

parabolic coordinate
computational step size,
viscosity, ﬁ/ﬁm
parabolic coordinate
density, 6/6w

transformed coordinate

Subscripts:

C

n

common

normal to shock

At/A



o reference to body surface

s reference to post-shock conditions
t = 9( )/ot

w wall

n =293( )/on

g = 9()/9¢

o reference to free-stream conditions

Other notations:
.+
Arrow over symbol (e.g., F) denotes vector.
Bar over symbol (e.g., E) denotes coordinate in inviscid flow field.

Circumflex over symbol (e.g., ﬁ) denotes dimensional variable.

ANALYSIS

Several factors were taken into account while determining the appropriate
coordinate system to be used with the computational technique described in this
paper. The shock capturing technique was not considered because of the large
number of grid points required to adequately resolve the bow shock at the high
Reynolds numbers of interest. Also, the shock floating technique was not con-
sidered because it requires a surplus of mesh points in the computational field
as illustrated in the following sketch and because the logic required to float
the bow shock in the grid would nullify the computational advantages of vector
processing. Thus, it was determined that the physical plane to be covered
should be an envelope bounded by the bow shock, the body, the outflow boundary,
and the stagnation line as shown:
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The global coordinate system consists of two distinct but interdependent
local coordinate systems. Both systems are constructed so that, through a
coordinate transformation, the numerical computations are carried out on a uni-
form rectangular mesh.

Local Coordinate System for the Viscous Region

The physical coordinate system used in the viscous computations is the
orthogonal parabolic system used by Peyret and Viviand (ref. 4) and is formed by
the intersection of curves belonging to two cofocal parabolas as shown in fig-
ure l(a). The parametric equations for the Cartesian coordinates in this system
are

x = 2(E% - n?)
(1)
vy = &n

As seen in figure 1(b), the axisymmetric body surface is formed by rotating one
of the coordinate lines, specified by a constant value of n = Ngr about the
x-axis.

The computational technique, to be described in the section "Viscous
Solution," requires a mesh ratio of one in the computational plane. Shown in
figure 1(c) is the physical plane transformed to the uniform computational plane
which is divided into equal increments of & and n (i.e., AE = An). The
mesh in the physical plane expands naturally in both the &£- and n-directions
and provides the greatest spatial resolution in the region of the nose in both
the &- and nN-directions and along the wall in the nN-direction. Since the size
of the viscous region for any given conditions is fixed, the spatial resolution
can be controlled by either increasing or decreasing the incremental size of &
and TN which either decreases or increases the number of grid points. Con-
trolling the resolution in this manner is sufficient when working at low
Reynolds numbers, but it is inadequate at high Reynolds numbers because of the
large number of grid points needed when very small values of An are needed
near the wall. The problem was overcome by applying a Blottner (ref. 7) type
transformation to the nN-coordinate in the form

AX/BX
bX
Ry

n = An + N (2)

1

Now, computations are performed in the ¥X,f£ grid where AX = AZ. This allows
reasonable values of Af to be chosen while the proper distribution of points

in the n-direction is controlled by Xmax' Aﬁ, and the choice of the con-

stant A. The stretched £&,n grid is shown in figure 1(d).



Local Coordinate System for Inviscid Region

The coordinate system used for the inviscid computation is similar to that
used by Moretti and Salas (ref. 1) except that here the lower boundary of the
grid system is tied to a line of constant n (the common line TN, in
fig. 1(b)) rather than to the body surface. A new set of transformed coordi-
nates (z,ﬁ,E) is defined by the transformation equations

E=ct )
_ n - N

= 3
NN (E 0 - N (3)
E = t )

which transform the region between the common line 1. and the shock wave,

Ng = ns(E,t), into a rectangular region with the shock forming the outer bound-
ary. (See fig. 2.) The grid spacing in the £-direction and the time t are the
same for the inviscid and viscous regions. However, the coordinate system in

the inviscid region is nonorthogonal because of the transformation used for ﬁ,
and since the shock location varies with time (until steady state is reached),
the coordinate system also varies with time.

The Global Coordinate System

As illustrated in figure 3, the two meshes in the physical plane are joined
along a constant grid line, n = Ne- Information along this line is computed by
the viscous portion of the code and serves as a boundary condition for the
inviscid portion of the code. Data on the outer boundary of the viscous solu-
tion, n = ninterpolated’ are found by interpolating along lines of constant §

in the inviscid solution. The way in which the flow field is divided into an
inner and outer solution will be discussed in a later section.

Computations are carried out using velocities in the parabolic rather
than Cartesian system as shown in figure 4. The physical velocities along
& = constant and 1N = constant are as follows:

u = —nU; gv (4)
Vo= ELE_Q\L (5)

1/2
Now, set h 2) / and define a set of coinvariant velocities
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u=hU and v = hV (6)



The use of these coinvariant velocities in the governing equations eliminates
errors caused by the differencing of nonlinear metric coefficients.

Viscous Solution

The solution in the viscous portion of the flow is obtained by integrating
the full, compressible, time-dependent Navier-Stokes equations on the orthogonal
parabolic grid described in the previous section. The integration is carried
out by applying a modified version of the two-step Richtmeyer differencing
algorithm described by Thommen in reference 8 to the appropriate system of
equations.

The governing equations are written in the conservative form

> SF (W) oG W) >
Wy = - 3E - I ) + H(W) + S (W) (7)

where the terms in equation (7) are the conserved guantities %, the convective
terms F and G the geometry terms H arising from a non- CarEesian coordinate
system, and the viscous dissipation and heat conduction terms S. The specific
form of the Navier-Stokes equations used for this two-dimensional, axisymmetric
flow in an orthogonal parabolic coordinate system is developed in appendix A.

The difference algorithm in equations (8) and (9) is used to integrate
equation (7) on a nine point computational module for any W. The variable W
is defined in the time plane t at the grid points represented by circles and
in the plane t + At/2 at the points marked by crosses in this sketch:




The two-step differencing scheme is written as follows:

>t+At/2 1(—>t >t At/ \t 2\t
= — + —_—
Wi1/2,0 = 2\"1,0 Wo,o) > e e1/2,0 * (Crdirsa,0

1 />t >t 1(>t >t
- =8 + - = +
2( +1,0 Ho,o) 2(S¢1,o So,o)] (8a)

>t+At/2 1 (—>t >t > Al /> & >\t
W = —\W + W - =—={F +/¢
0,*1/2 2\ 0,*1 0,0 2 < €>O,il/2 < n>0,il/2
1[zt ot 1zt >t
- =g + - =
2< 1,%1 Ho,o) 2<So,i1 + So,oﬂ (8b)
gttdt _ ot > \t+At/2 > \t+At/2 >t >t
W =W - At( F + - -
0,0 0,0 < £/0,0 <Gn>o,o HO,O SO,O (9)

The first-order functions in equations (8) and (9) can be written for

. > ->
either F or G as

N
>\t 1 />t >t
F = —|(F - F
< €>i1/2,0 AE( +1,0 0,0)
>\t 1 />t >t >t >t
F = -——|F + F - -
( n>irl/2,0 4An< 0,41 " Fr1,41 " Fo,1 Fil,—l) (10)
<§ t+At/2 i(:r:twLAt/Z _ §t+At/2)
£/0,0 AEN +1/2,0 -1/2,0 J
. > \t > A\t > \t+At/2
Their counterparts <G€>b,il/2' <Gn>0,il/2' and <Gn 0,0 are found by
permuting indices in equations (10). The second derivatives used in the viscous

term S are defined below for the general variable U:
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wag)£>§,o B ;éi{%:1/2,0<¢31,0 B wg,o) h b—1/2,o<w§,o B wEl,Oﬂ

t 1 t t t t t
wag)n>o,o = 4AEAn[%o,+1/2<w+1,o TV, V1,0 " ll’—1,+1>
(11)

t t t t t
B bo,-1/2(4’+1,o ¥, " Y0 w—l,—l)]

+1/2,0 2 70,0 +1,0

Thommen first recommended that the ﬁ and g vectors be reevaluated at

t + At/2. He later found this was unnecessary for %. Because of the large
variation of the metric coefficients near the stagnation line for this particu-
lar coordinate system, we have obtained better results in the stagnation region

>
by not reevaluating H.

Inviscid Solution

The solution in the inviscid portion of the flow is obtained by integrating
the compressible, time-dependent Euler equations in the transformed coordinate
system described in a preceding section. The integration is carried out using
the two-step MacCormack finite-difference algorithm (ref. 9) which is modified
by using one-sided differences at the shock boundary.

The conservative, vector form of the Euler equations written in orthogonal
parabolic coordinates (&,n,t) is

> > > >
We = ~Fg (W) = Gy(W) + H(W) (12)

- > > >
where W, F, G, and H are the same vector quantities defined in appendix A.

By using the transformation equations (egs. (3)), the system of equations
(eq. (12)) can be transformed from parabolic coordinates (&,n,t) to a set of

coordinates in the computational space (E,H,E). Thus, equation (12) becomes
> 8ﬁ—> > aﬁ——> aﬁ—r >
- = = — W= - Fzx - — F=- - -— G= + H {13)
t ot N € 9% n 9n
L . dan = .
Since only the steady-state solution is of interest, the term 5% Wﬁ is

neglected and equation (13) becomes



-> > on > Bﬁ > -
- = -Ff - — F- - G- + H 14)
W FE 3 °n _an n (

The details of this transformation are given in appendix B.

The difference algorithm in equations (15) and (16) is used to integrate
equation (14) on the computational module illustrated below:

[ I ——— 0——-—-- o T
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|
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-1,-1 0p-1 +1[-1
a AE f AE |

-5
The variable W 1is defined in the plane t = 0 at the points represented by
the circles in the sketch above. The two-step MacCormack difference scheme is

3
then written as follows for the solution of W at the time plane t + At:

Predictor step -

Sirdt | ot o7 \ on\" [oF\°
0,0 = o,0 ~ At\5E ), o " \3E )y o\an
' g 0,0
=\t >\t
+ (%ﬂ) 9—?) - 5, (15)
n 0,0 an 0,0 '

Corrector step -

gerdt _ Lot oerAt At (8§)t+At N <§ﬁ>t+At<aF>t+At

"5,0 = 23\%,0 F Yo,0 oF 32 0,0 \an
an)t+At )t+At - Tiht
+ (0 - (®) (16)
anjo,0 \an/o,o0 0,0

10



At the interior points on the computational grid, two—goint backward differ-
ences are used to replace the derivatives of F and G in the predictor step
and two-point forward differences are used in the corrector step. For the grid
points along the bow shock, three-point backward differences are used in both
the predictor and corrector steps. The procedure used to track the movement of
the bow shock wave will be described in the next section.

Solution for Shock Wave

A method similar to that used by Tannehill, Holst, and Rakich (ref. 10) has
been used to track the movement of the shock wave during the transient portion
of the solution. The method can be summarized as follows (details are given in
appendix C). First, the pressure is computed on the downstream side of the
shock wave using the two-step difference scheme described in Ehe+preceding sgc—
tion with three-point backward differences used to compute JF/9n and 29G/9dn
at the shock wave. With the pressure at the shock wave P

s known, the density
is computed using the equation

YI, 4
N B
= T (17)
Ps ) 1
Pg Yy -1)" S(Pg ~ Pg)

Then, the shock velocity is computed using the equation

Ve = (18)

where Vg and (Vp) are defined in sketches (c) and (b) in appendix C.
[s o]

Next, the movement of the shock wave (see fig. 5) is computed using the follow-
ing two-step difference method:

Predictor step -

t+At t v ¢
s
Mg) = (ng) A E_EO—S—C; (19)
Corrector step -
t t+At
t+At t At Vs Vs
Mg) = Mg) - 7?-<h cos Cs) * (h cos Cs> (20)

11



where

on )
a1 (s
CS = tan <8£ (21)

The derivative 0ng/df in equation (21) is approximated by central differences
in both the predictor and corrector steps. After the new location of the shock
wave has been determined, the properties (except pressure) on the downstream
side of the shock are computed using a transient shock-wave analysis.

As the solution approaches convergence, the shock velocity approaches zero
and the shock wave remains essentially fixed in space. This usually occurs
before the remaining properties in the flow field converge. The shock veloci-
ties at convergence are generally less than 104 in magnitude.

BOUNDARY AND INITIAL CONDITIONS
Boundary Conditions

Viscous region.- Along the body surface, the usual no-slip boundary condi-
tions, u =0 and v = 0, are imposed. Wall pressure is found by setting the
normal pressure gradient 9dP/dn equal to zero while the wall temperature is
held constant at some predetermined value. Thus, the wall density is found
from the equation of state.

Symmetry conditions

p(n,-A8) = p(M,AE) )

u(n,-4A%) = u(n,Af)

v(n,-Ag) = -v(n,A8) (22)
e(n,-Ag) = e(n,Af)

P(n,-AE) = P(n,AL) )

are imposed along the stagnation line & = 0. At the outflow boundary, a
second-order extrapolation of the conserved variables

-> - -> >
W(E = (., - AEM) - 3W(EL, . - 20E,m) + W(E, . - 30E,M) (23)

max’M

is used.

12



As shown in figure 3, the inflow boundary for the viscous solution is
determined by linearly interpolating along lines of constant & on information
in the inviscid solution to get values along n = ninterpolated'

Inviscid solution.- As shown in figure 3, the lower boundary of the invis-
cid solution is fixed by making it coincident with the line 1n = ng, the last
line of computed information in the viscous solution. Along the stagnation
line, the symmetry conditions are the same as those used in the viscous
solution.

Values along the outflow boundary are determined by a second-order extrapo-
lation of values at the interior points, while the values on the inflow boundary
are determined by the unsteady shock relations discussed in the inviscid flow
section.

manner. The wall surface temperature is fixed and velocities at the wall are
set equal to zero while a Newtonian pressure distribution is determined for the
given body shape. An initial shock shape, which is usually a line of con-
stant 7N, is picked. Steady shock relations are then used to determine flow
conditions behind the shock. The pressure and velocities are then linearly
interpolated between the shock and body along lines of constant £. Finally,
the temperature along each line of constant £ is set equal to the shock tem-
perature up to, but not including, the wall. The density distribution is then
found using the equation of state.

Numerical Stability

The inviscid numerical stability limit for the two methods being used is
the well-known CFL condition

Cnh/C!
At = ol IO (24)
U \ fl 1
+ —— + — + —
Ax Ay Yax Ay
where C' =1 for the MacCormack scheme and C' = 2 for the Richtmeyer scheme.

For both methods, the Courant number C;g 1is taken to be 0.95. When equa-
tion (24) is applied to the present coordinate system and u and v are used
as defined in appendix A, the equation becomes

(CO/C')h2
= (25)
A Iu[ + !VI + J2 ha

At

13



and, when the Blottner coordinate transformation is applied to the viscous
equations,

(CO/C')h2
o (26)
3
(lal + [v] + 2 na)gy

At
A

The viscous stability limit for the Richtmeyer scheme is

Global Operational Characteristics

The preceding procedure has been programed and run on the Control Data
STAR-100 computer at Langley Research Center. The computational mesh size used
depends on the flow Reynolds number and on the need to adjust the relative posi-
tion of points in the two meshes. Inviscid mesh size varied from 6 X 21 to
12 x 21, and the viscous mesh varied from 14 X 21 to 25 X 21. Normal mesh
spacing in the viscous region was determined by requiring that the stagnation-
point cell Reynolds number equal two.

Initially, solutions were obtained using a single value of At which was
determined by finding the minimum of all local values of At. However, the
combination of a high Reynolds number with the restriction on cell Reynolds
number led to extremely small values of At near the wall. This led us to try
using the local minimum At at each point, as reported by Kumar (ref. 3). This
procedure yielded good results and gave us a reduction of approximately 50 per-
cent in the number of iterations required to reach convergence for the highest

Reynolds number runs.

The actual running of a computer code as described always raises a number
of operational problems which cannot be quantified. In particular, a number of
problems have appeared at the juncture of the inviscid and viscid flow meshes.
Each problem has been resolved, but for most, there is a lack of a definitive
cause-and-effect relationship.

The first and most obvious problem is determining whether the flow field is
properly split into its viscous and inviscid components. We quickly found that

14



the code simply would not run if the inviscid region extended into the viscous
region. We surmounted this problem by being very conservative in our estimate
of the extent of the viscous region.

We also found that, in order to maintain a stable computation, the inter-
polated row of data in the viscous solution must be coincident with, or have a
value of 1N greater than, that of the second row of data in the inviscid
solution.

The flow-field solution was considered to be converged when the relative
convergence criterion

t+At t
p -

pt

was satisfied at every point in the flow field.

RESULTS AND DISCUSSION

The preferred method of validating numerical techniques is comparison with
experimental data. Experimental data for flow over parabolic bodies are scarce
and basically limited to drag coefficients. We have used the data of Little
(ref. 11) and information generated in the Langley continuous-flow hypersonic
tunnel (CFHT) for drag data. Shock shapes were obtained from tests run in the
Mach 6 high Reynolds number tunnel at the Langley Research Center. Also, com-
parisons are made with established numerical methods to determine the accuracy
of pressure and heat-transfer distributions. All computations have been made
using the Sutherland viscosity formula and a perfect gas with a ratio of
specific heats of 1.4.

Our first concern was determining the effect of splitting the flow field on
the overall accuracy of the solution (specifically, determine whether the physi-
cal joining of two different computational meshes would distort the solution in
the vicinity of the juncture). To check this, we compared the complete inviscid
solution with the coupled solution for two different sets of free-stream flow
conditions. For the first condition, shown in figure 6, NReoo =2 x 10® and

M, = 5.87. Here, temperature profiles are plotted for the stagnation line

(£ = 0) and a point approximately halfway around the body. Both curves indicate
a smooth transition from one mesh to the other at the point marked "mesh
juncture" which is the last computed point in the viscous solution. Also, the
two solutions agree very well down to the point where boundary-layer effects
dominate the flow. However, there is, as expected, some difference between the
two curves due to the effect of boundary-layer growth on effective body shape.
The plot presented in figure 7 is similar except that the NRe°° has been

reduced to 3 X 10> and M_ = 9.92. Again, good results were obtained, but the
difference between the two curves at the downstream location is more pronounced
due to the more rapid boundary-layer growth.

15



Next, a comparison is made with experimental drag coefficients. 1In fig-
ure 8, numerical results are compared with the data of Little (ref. 11). The
present method can be used only for body configurations which have supersonic
outflow boundary conditions outside of the boundary layer. There is, however,
good agreement with experimental data over the range of conditions which can be
duplicated by the present program. It is also interesting to note the viscous
effect on the drag coefficient, even at these relatively large Reynolds numbers,
as indicated by the divergence of the viscid and inviscid curves as body length
increases.

The second comparison is made with experimental drag coefficients based on
data taken in the Langley CFHT and is shown in figure 9. Here, the comparison
of variations in the drag coefficient is made for a range of Reynolds numbers
on a 30° paraboloid.

Our last comparison is made with experimental data for the shock shape
shown in figure 10. The experimental shock shape was obtained from schlieren
photographs taken in the Mach 6 high Reynolds number tunnel at the Langley
Research Center for the conditions M, = 5.8725 and NRe, = 2 x 106. Again,

there is excellent agreement between experimental and numerical results.

There is no experimental heat-transfer data available for comparison with
results generated by our present method. Therefore, we have chosen to make our
comparisons with the results generated by several proven computer codes. For
M, = 10.34 and NReoo = 5 X 105, results are shown in figure 11. The results

(oo}

from the present method are compared with computations using the Navier-Stokes
solution of Graves (ref. 12), the viscous shock-layer solution of Kumar

(ref. 3), and the boundary-layer solution of Anderson (ref. 13) which uses the

inviscid edge conditions from Marconi (ref. 14). As can be seen in figure 11,
there is extremely good agreement among all methods. In figure 12, similar
results are shown for the free-stream conditions M, = 5.8725 and

Npe = 2 % 10°.

CONCLUDING REMARKS

In the previous sections, we have investigated the viability of a hybrid
viscous/inviscid solution technique for determining the flow about an axisym-
metric parabola. In this investigation, we have found that it is possible for
a flow-field computation to be marched in time to convergence, where the field
is split into an inviscid region governed by the Euler equations and a viscous
region governed by the Navier-Stokes equations. Furthermore, we have experi-
enced no problems at the juncture of the two flow regimes when the flow field
has been properly split into its viscous and inviscid parts. By comparison
with both analytical and experimental results, we have demonstrated that the
technique works well over a wide range of Reynolds numbers and Mach numbers.

16



As presented, this technique reduces the number of grid points required
in the computational field, and by its explicit nature, the method is well
suited to take advantage of the high computational speed of vector processing
computers.

Although presented for forebody flows only, there are no conceptual prob-
lems to extending this technique to the flow about finite, sharp-cornered
bodies.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

July 6, 1979
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APPENDIX A

AXTISYMMETRIC NAVIER-STOKES EQUATIONS IN
ORTHOGONAL PARABOLIC COORDINATES
General Equations
The dimensional Navier-Stokes equations,l written in conservation form for
a general, curvilinear coordinate system, may be stated in terms of the system

metric coefficients, hl’ h2, and h3, as follows:

Continuity -

3 d 0

Xl—momentum -

d d 2 0 d
Bt(hlh2h3pul) ™ 1E12h3<P + pulﬂ + 5%y (hyhypuqu,) + 3x3(hlh2pulu3)

2 8h2 Bhl Bhl 3h3
- (P + pu2>h3 'g{— + pulu2h3 a + pulu3h2 a - (P + pu3)h2 ‘é;q

3 d d
= Txg h2P3Tin) g (hihsTar) + g o (hyhoTsy)

ahl Bhl 3h2 ah3

t by gt Taihe g 7 Te2ls g 7 Tashe g (A1b)

lFor convenience, the superscript denoting dimensionality ~ has been
omitted from these equations.
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x2—momentum -

) 0 9 2 3
—B_E(hlh2h3pu2) + 'é-x—]:(h2h30u1u2) + -3—x‘2—|ihlh3 (pu2 + P):l + K_(hlthuZUB)

3
oh oh oh oh
2 3 2 2 ( 2 ) 1
- + — — + —_— - + =
(pu3 P)hl 3x2 pu2u3hl 3x3 pulu2h3 Bxl puy P h3 3x2
= _8__ h-h ——3— hyh ——Q—- h,h
= 3X1( 2h3Tyo) + 3x2( 3b1Tpp) * ax3( 1h2T32)
doh, oh, oh, dhq
+ 123h1 —8x3 + T12h3 —,axl - T33h1 ——axz - T11h3 —8x2 (Alc)

X3-momentum -

3 ) ) 3 2
B_t(hlh2h3pu3) + E(h2h3pulu3) + &;(hlh3pu2u3) + S;Z[hlhz (pu3 + P)]

oh 5h 3h 3h
2 1 3 3 2 2
- (pul + P) h2 —-—ax3 + pulu3h2 ——Bxl + pu21:13hl _axz - (pu2 + P) hl —8x3
- —9—1h h )+ —9—(h h ) + —g“%h h )
%y 2 3713 dx, 371723 x5 1 2133
dh, dhs n, dnh,
*Taihe 5t TasM 5 T Tt B T T2eh1 5y (A1d)

Energy equation -

9 3 3 3
Sg(h hyhsE) + —a—x—l—[h2h3ul(E + P):' + a—x—2—E'1lh3u2 (E + P):I + 5;—;[}11}12% (E + p):]

5 [hoh3  3r > L0 <h1h3 5T > , 3 (mh2  or >

T\ by U8k ) T B\ hy S 3x,) T Bxg\ hy o 8xg

3 3
+ 5;1{?2h3(“1T11 + upTyy + u3T13):| + axz[?1h3(u1T12 + uyTyy + u3T23):|

)
* ax3[§lh2(“lTl3 + upTyy + u3Tss)) (ale)
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2
ul + u2 + u3
where E 1is defined as p\e + 5 . The viscous stress terms are

defined as follows:

ou u, oh u, oh N
T11 = Zu(ﬁL'a - h i 3 =+ h i 3 l) AV -V
1 9%1 12 9% 301 9%3

where
- 2u ) d )
AW - vV = - =2 |-—"—(h,hyu;) + ==—(h,hyu,) + s=—(h h, u,)
ou u oh u oh
Tyy = 2 ﬁL'a Z h i 3 2+ h i 3 l) + AV -V
2 9%2 2fl3 X3 1%y °Xjp
du u oh u oh
33 = 2“(ﬁL'a T et Eal 3 3) # AV Y
3 9%3 31 %31 283 9%
e = 1 by 5 fus\ B2 9 (%
23 = W3 s\ — Al T
.PQ 9%, \hy h; Ox, h2_
S o N e A O u_3>
13 ©
_F3 3x3 hl hl le h3—
hy 5 [u2 hy § (a1
T12 = W 5% \n, | ¥ 1, Sx,\he
1 9%31\2 2 °¥2\"1)]
To1 = T12
T31 = T13
T3z = 123

Equations in Parabolic Coordinates

For the orthogonal parabolic coordinate system, the following substitutions
are made in equations (Al):
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Xy = g Xy =N x3 = ¢
ul=U 1.12=U u3=W
2 1/2
hy = (2 + n2)Y/ hy = (£2 + n2)/ hy = &n

Furthermore, W and J/3¢ are set equal to zero for axisymmetric flow. These
substitutions and restrictions, when applied to the general equations, lead to
the following set of equations:

Continuity equation -
g—(h hyh,p) + é~—(h hpV) + é—{h h,pl} = 0 (a2a)
t 1723P) F g thahal an M1

E-momentum equation -

9 3 2 3_
Sr(hyhphgol) + ag[§2h3(pv + P{] + g (hyhgpliV)

oh oh 3h3

- (QUZ + P)h3 a—g—z + pUVh3 a—nl‘ - Ph2 gg—'

d 3
= 5z (hah3Tyy) + F7(hyhsTyy)
dhy dh, dhy
+ T21h3 W— - T22h3 x— - T33h2 'a'g" (A2b)

N-momentum equation -

%E(hlh2h3pU) +-%g(h2h3pUV) + %ﬁ{}lh3(pu2 + p)]

dh dh oh
- Phy §T1—3 + pUVhs 5;;—2— - (pV2 + P)hy é—n_l
_2 >
= 3g(hohaTyp) + Fp(hshyThy)
dh, dhj dh;
+ T12h3 gg— - '1'331'11 a—n-— - Tllh3 5?]-— (A2c)
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Energy equation -

] ) 9
Se(hihohsE) + 5§{h2h3v(E + )] + grlhyhgl(e + P)]
_ 3 (h2h3z T 3 [hih3  aT
“'55(7§f— K 55) * an<‘ﬂg"K an
) )

Stress terms -

_ 1 9V u 9np L
Ty1 = ZU(HE + Blﬁ;ﬁ_ + AV -V

and
Y- _ 2w |3 3
AV ¢V o= 3h1h2h3[a£(h2h3v) + an(hlhBUi]
~ 13U y ohy >
Toy = 2U<?1;_371_ + hlh2 ‘a—g— + AV v ?
y dhj u 9h3) >
T = 2U + + AV - v
33 (h3hl Y3 hohy 3N
T13 =0
_ P23 Uy P13 [V
Ti2 = H hl & h2 h2 an hl J

When the coinvariant velocities

u = hu
and

v = hv

are introduced into the equations (A2), the result is as follows:

22
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Continuity equation -

9 12,y - u v
"a‘g(h p) = -(pv)g - (Du)n - D(ﬁ + E)

£-momentum equation -

3

9 12 - _ 9 .2 2 3 2 2 27 £
Teh209) = - 5r(pv2 + n2R) - T(puv) + [2h P+pu2 +v ﬂ >

h 9 ]
- pV(% + ‘—é') + a"[h(a_g‘ Tll + a—n_ Tzl)

£2 + n2 hZ + 2n2 g h
L =l LS N T21 — 3 T22 ~ F T33
Eh nh h g

Nn-momentum equation -

a—(thu) -

3t omn

"“(n ¥ a) enf\og " en ) T\ En )12

n2+n’)  h_ 1
nh 22 77 "33 TR Tl

+

Energy equation -
S _(n2g) = - §—{}(E +p)] - é—-[u(E +P)] - =+ BT+ F
ot og an n

g
) oT ) aT 1 9T 1 9T
+ag< 53)*%(%‘5)”

1 ] )
+ ﬁ-(vwr12 + uT22) + §-§(le1 + urlz) + éﬁ(VTn + u’l.'22)

o _9 .2 2 2 2 27]
ag(puv) (pu® + h<4P) + [?h P+ pus + v ﬂ )

1
(—E- a—g + h— ﬁ) + }—:(VTll + ule)

(Ada)

(A4dDb)

(Adc)

(nr44d)
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Stress terms -

N
21U 23V ) >
= =|h* = - + + AV - v
Tll h4< ag VE un
and
> 2u fov v Jdu u)
AV - V= e b =+ —
3h2(8€ & 9n n
_ 2uf,2 du _
T22—h4(h an un+v£)+)\v v
> (Ade)
- 2H(v _u
T33—h2<€+n)+)\\7 \Y
T23 =0
T3 =0
_ M| 2fou  dv)
le“h4[h<ag+an) 2‘5‘1*”"J
J

Explicit differentiation of product terms involving the metric h3 has been
avoided through differentiation by parts, that is,

oW = hy dw * ow

For any function ¢ where hy = h3(w), the term 3h3/8w is evaluated
analytically.

Equations (A4) are singular along the lines & = 0 and n = 0 and have
corresponding velocities v = 0 and u = 0. To obtain the equations wvalid
along these two lines, it is necessary to differentiate equations (A4) with
respect to each of the singular coordinates, and then take the limits,

& >0 and n = 0, as appropriate. The resulting equations are listed below:

Limiting form of equation along & = 0.-

Continuity equation -

9
ot

20y = _5 9 _ 9 _ bu
(h™p) 2 BE(DV) an(pu) n (a5a)
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E-momentum equation -

v=20 (A5Db)

N-momentum equation -

3 .2 _ 5 9 _ 9 a2 2 2 2y N _ u
oT oT
+ h2|: 3?12 + 2 322 + %(122 - T33{| + N(Tyy - Tyq) + 38Ty,
(A5c¢c)
Energy equation -
S _(n2p) = -2 g—[v(E +P)] - a——[u(E +P)] - (E+ P)(P—)
at & an n
) aT ) oT K 9T 9
) 1
+ Sﬁ(le2 + uT22) + a{lez + uT22) (A54d)
Stress terms -
32 o0& on n
2uf o dov -
111 = ;i(h 'a_g - EV + nu) + AV \Y
_ 2uf;2 du .Y
T22—-h—4<h 8n—nu+v£)+)\v v
_ 2uf,2(9v . u .3
T33—h4|:h (85+n)_2vg:| + AV - v B (A5e)
Ti3 =0
_u|.2(3u iz) _
T12 = h4[h (ag * 25“] J
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Limiting form of equations along n = 0.~

Continuity equation -

3

at(th) = - gE(OV) -2 ~E;—ﬁ(pu) - p(%) (a6a)

£-momentum equation -

3 . _ 3,2 25y _ 5 O 2 278 _ (¥
at(h pv) = Bg(pv + h®P) 2 an(puV) + (2h“P + pv )h2 pv g)
9Ty 9Tp1 1
h2[ 3E + 2 o + E(Tll = Ta3)| + E(Ty] - Tyy) + 3Ty
(A6b)
N-momentum equation -
u=20 (A6c)
Energy equation -
d(m%E) 3 3
¢ = —ggEME~+Pﬂ - ZBnEME-+Pﬂ
v ] T
S n(f) 5 )
o o
+ 2 ’g‘r_]‘(K ‘5%) + E(v’fll + ule)
1 3
+ E(VTll + uTy,) + 2 ﬁ(le2 + uty,) (A64d)
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Stress terms -

APPENDIX A

T11 = i%<h2 %%'- Ev + nu> + AV -V

T22=f§-(h2g%—nu+gv)+w.v

T33=;21-E[h2<g—§ ig’-) 2un] + AV -V
Toz3 =0

T13 =0

u 0

h

v
gﬁ) - ZH%]

The previous dimensional equations are nondimensionalized as follows:

p =L
Poo
p = 2L
A A2
meO
_ N
n=21/2

u__a
q /2
[o.o]
e

e = T A
chloo
u

W= =
Hoo

The components of the vector expression

oW JF(W)

)

-> -
+ H(W) + S (W)

ot o

on

¢
£Y2
co
3
~1/2
= _—_

(A6e)
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can now be written as follows:

r pu

puv

QY
I

pu2 + h2p

U(E + C2P)

— —/

y

== 02

pv
ovZ + h2P

puv

v(E + CZP{J

_(E

where E = p[e + Cp(u? + vz)] and

nh| (9T11 | 8 <g2 + hZ)
e:—n_h(aa Yan 21 Y\
h h<3T12 aT22) .\ <2g2 + hZ)
. En\ 93¢ on Eh
S =
NRe,, CoY .§_< §3> . __<K
Ny, |3E\C 3E) T an

28
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1
+ E(lel + ule) + ﬁ

[thP + p(u2 + vzﬂ-j%-- pv(
h

[2n2p + p(u? + v2)] L - DU<
12

+

=

™| <
N———”

+

S

| <
SN

u v
+ C2P)<n + E)

h2 + 2n2 £ h
+ —_—_— [— —_
111 < nh T21 = § 22 7 ¢ 133

2 2
n“ + h h n
Tiz * <“ﬁﬁ“>T22 T 33T q TlJ

) _Q_ +
+ géxvrll + ule) + an(le2 uT22)

(A7)




n =

>

-5
The W, F,
0. However,

and
the

3 (pv)

o

oy QY

APPENDIX A

terms remain unchanged along the lines

—)
and S

_ b
n

terms are redefined as follows:

0

2 2y N _ uy _
(2h4P + pu )h2 pu(n)

my
1t

3 (puv)
og

9 u
- T)EEV(E + CP)] - (B + czp)(ﬁ—>

—

2 2,8 _ v _ 9_
(2h4P + pv )h2 pv(g) an(puv)

fuelld
i

v 3
-(E + c2p)<g) - 37 W(E + CoP)

8T22 3T12
h2 —== + 2
[ on 13

N
Ree C2Y a__K_a_ +3<Kﬂ)+£ﬂ
NPr 9E on on n an

+ 2 g(VTll + ule)

(T22 - T33):| + Ty = Tyg) + 38Ty,

) 1
+ §H(VT12 + uT22) + ﬁ{lez + uT22)
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Qo

1
g

3
+ 2 ﬁ(Vle + uTy,)

o ek 3+ 2 ke )

+ ——(lel + urlz) + E(VT1

1+ uTlZ)

for n
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TRANSFORMATION OF INVISCID EQUATIONS

The conservative, vector form of the Euler equations, written in orthogonal
parabolic coordinates (&,n,t), was given by equation (12) as

> > > >
We = =Fg(W) - Gp(W) + H(W)

> > > >
where W, F, G, and H are vector quantities defined in appendix A. By using
the transformation equations (3)

- n - nNg
- ng(g,8) - ng

t=t

equation (12) can be transformed from parabolic coordinates (&,n,t) to a set of

coordinates in computational space (£,7,€). To carry out this transformation,
the following transformation operators are defined:

) 3E D 37 3 3%t 3

e =2 =+ =t = Bl
3€ T 3 pf T € a7 ' OF ot (1)
3 3E 9 an 9 3t 9

g _ S5 2 g1z = 2 B2
BN~ 9N 5 ' 9N a7 | AN ot .
3 _ 233,33, 3Ed

ot ~ 9t BE * ot 35 + ot 3% (B3)

By using the transformation equations (egs. (3)), equations (Bl) to (B3) can be
written as follows:

9 ] an 9

3E ~ 3 © 3E an (54)
) on 3

= A B5
an 9N 3R (B5)

31



APPENDIX B

8 _3nd .3

3t 9t a7 MY (B6)
where

- - an

an n s

on_ {1 \''s B7

14 (ns - nc>3E (7)

i =9)

n Ng - N

on _ _(_n_\’'s

ot (ns B nc>8t (59)

With the transformation operators defined by equations (B4) through (B6), the
vector form of Euler's equation (eq. (12)), can be transformed to computational

space and written as follows:

LI LTy S (B10)

=
]
I
|
Qi
ﬂf:l
=4

Since only steady-state solutions are of interest, the term Bﬁ/at can be
neglected since it approaches zero as the steady state is approached. Thus,
the previous equation can be written as

> > aﬁ > aﬁ ->

>
F F- - G H
z R VAR T T

where SH/BE and 9n/dn are defined by equations (B7) and (B8), respectively.
This is the same as equation (14) presented in the main text.
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CALCULATION OF PROPERTIES AT SHOCK WAVE
A method similar to that presented in reference 10 was the known pressure
to calculate the shock velocity and other thermodynamic properties at the shock

wave. Consider the shock wave illustrated in sketch (a) which can be expressed
as nNg = Ng(&,t):

nS(E,t)

n = constant

£ = constant
Sketch (a)

The shock-wave angle g can be expressed as
Bg = 6 + g (c1)

where the slope 6 of the coordinate line N = constant and the deviation Cs
of the shock wave from the coordinate line n = constant are given by the
following equations:

8 = tan L (D) (C2)
£/s
an
-1 s
g = tan <BE ) ‘ (c3)

The derivative dng/d9¢ is computed numerically using central differences at
each time step except at the downstream boundary where three-point backward
differences are used.
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Now, consider the velocities on the upstream side of the shock wave
illustrated in sketch (b):

w,)

t ™

Sketch (b)

The tangential component of velocity (Vt)oo is given by the equation
(Vt)oo = U, cos Bg (c4)
and the normal component of velocity (Vn)oo is given by the equation

(C5)

Changes across the shock wave can be related to the normal component, and
the shock velocity illustrated by sketch (c):

F—— VS
(V) _ (Vo) _
_— Em— 4
Poo PS
poo pS
Ioo IS

Sketch (c)

Conditions across the shock wave can be related by the following normal shock-
wave equations:

Poy [(vn>°° - Vs] = og [‘Vn’s - g (C6)
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2 2
P+ D [:(vn)00 - vs] = P + Pg [(vn)S - VS] (C7)
YI, 1 2 YIg 1 2
Cy * _Z_BVn)oo - VS] T Cy " EEVn’s - Vs:l (ca
or, since p_ = 1,
l:(vn)oo - VS:I = Ps [(Vn)s - Vs] (c9)
2 2
P + [V = V] =By o+ o [V - vyl (Cc10)
YIOO 1 2 _ YIS 1 2
o —2—|:(vn)°° - VSJ =3, + 5[(Vn)s - VS:I (C11)
Now, rearranging equation (Cl0) the following expression can be obtained:
2
(Vn)g - Vs
[— 2 ] (c12)

2
P -P = [(Vn)oo - VS] 1- pg an)m B Vs:|2

S [oe]

2
Combining this equation with equation (C9) and solving for [GGQ Vé] , the
o0

following is obtained:

2 PS - Py
[:(vn)00 - VSJ = = (C13)
l -— ——
Ps

Similarly, equation (Cll) becomes

YIS YIoo 1 2 1 2

==+ =y - VSJ 1 - (——) (C14)
c, c, 2 o Pq
of

Equations (C13) and (Cl4) can be combined with the ideal gas equation

I . .
ply - l)E—- to yield the following result:
2

state P =
I 1
L Y c, + EWPS - P)
= o (C15)
s 2 1
PS<Y—_—1) - 2PFs ~ P
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If the pressure on the downstream side of the shock wave is known, the density
can be calculated from eguation (C15) and the shock velocity can be calculated

from the following equation:

(Cl16)

The velocity components in the parabolic coordinate system can now be related
to the velocity components normal and tangent to the shock wave by the following

equations. (See sketch (d).)

U= —(vn)S cos g + (vt)oo sin g (Cc17)
V = (Vn)S sin g4 + (Vi) cos Cg (C18)
£ = constant n

N = constant

Sketch (4)
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€ = constant n = constant
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(a) Physical plane.

€ = constant

Flow n

m

€=0—>

(b) Physical plane; viscous solution.
Figure 1.- Physical and computational planes for viscous solution.
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A Inflow boundary

n
i n=n
Stagnation —1— —T 1T ' - - c
line—»1—¢ : - —> Qutflow
— boundary
Body
-
(c) Computational plane; viscous solution.
A Inflow boundary
" Y
>n=nc
Stagnation
line = (Qutflow
boundary
Body
€

(d) Physical plane with stretched viscous solution.

Figure 1.~ Concluded.
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Figure 3.- Merged inner and outer solution grids.
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€ = constant

Figure 4.- Velocity field.

€ = constant

Figure 5.- Movement of shock wave.
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at high Reynolds numbers.
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Figure 11.- Comparison of wall heat transfer determined

by several different computational techniques.
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Figure 12.- Comparison of computed wall heat transfer.
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