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SUMMARY 

A  hybridized  method  for  computing  the  flow  about  blunt  bodies  is  presented. 
In  this  method,  the  flow  field  is  split  into  its  viscid  and  inviscid  parts. 

The  forebody  flow  field  about  a  parabolic  body  is  computed.  For  the  vis- 
cous  solution,  the  Navier-Stokes  equations  are  solved on orthogonal  parabolic 
coordinates  using  explicit  finite  differencing.  The  inviscid  flow  is  determined 
by  using  a  "Moretti  type"  scheme  in  which  the  Euler  equations  are  solved,  using 
explicit  finite  differences, on  a  nonorthogonal  coordinate  system  which  uses  the 
bow  shock  as  an  outer  boundary.  The  two  solutions  are  coupled  along  a  common 
data  line  and  are  marched  together  in  time  until  a  converged  solution is 
obtained. 

Computed  results,  when  compared  with  experimental  and  analytical  results, 
indicate  the  method  works  well  over  a  wide  range  of  Reynolds  numbers  and  Mach 
numbers. 

INTRODUCTION 

Over  a  number  of  years,  highly  refined  techniques  have  been  developed  for 
obtaining  flow-field  solutions  about  blunt  entry  bodies  at  supersonic  and  hyper- 
sonic  speeds.  Early  techniques  included  the  inviscid  shock-layer  method  of 
Moretti  and  Salas  (ref. 1) and  the  viscous  shock-layer  method  of  Davis  (ref. 2)  
and  others.  The  more  recent  work  of  Kumar  (ref. 3 )  has  extended  viscous  blunt- 
body  calculations  to  include  solutions  for  small  angles  of  attack  and  for  the 
plane  of  symmetry.  In  one  way  or  another,  all  of  these  methods  use  a  coordinate 
system  tied  to  the  body  shape  along  with  a  transformation  of  the  physical  space 
into  a  uniform  rectangular  mesh  in  the  computational  plane.  The  dependence  of 
the  transformations on body  shape  necessarily  limits  these  techniques  to  flow 
over  smooth  shapes,  since  any  attempt  to  carry  the  solutions  past  a  sharp 
forebody/afterbody  juncture  will  result  in  a  singularity  in  the  coordinate 
transformation. 

The  ability  to  compute  the  complete  flow  field  about  a  finite  entry  body 
has  always  been  a  desirable  but,  until  recently,  unrealized  goal  due  largely  to 
inadequate  computer  resources.  Recently,  Peyret  and  Viviand  (ref. 4) and  Gnoffo 
(ref. 5) have  solved  the  complete  flow  about  finite  analytical  bodies  at  an 
angle  of  attack  of  zero  degrees.  In  both  papers,  Navier-Stokes  solutions  were 
obtained  on  a  physical  mesh  which  is  tied  to  the  body  shape.  The  solution  of 
Peyret  and  Viviand  is  for  a  body  having  a  sharp  forebody/afterbody  juncture, 
while  Gnoffo  uses  a  smooth,  analytical  body  shape.  Both  methods  also  use  shock 
capturing  to  handle  the  bow  shock.  The  shock  capturing  technique  works  well  for 
flows  at  low  Reynolds  numbers.  However,  at  high  Reynolds  numbers,  the  number  of 
mesh  points  required  to  adequately  resolve  the  shock  are  prohibitive.  Gnoffo, 
in  unpublished  work at NASA  Langley  Research  Center  (LaRC),  has  floated  a 



d i s c r e t e  shock i n   h i s  mesh t o   h a n d l e   t h e s e   c o n d i t i o n s  a t  high  Reynolds  numbers 
while   solving  the  ful l   Navier-Stokes  equat ions  everywhere  in   the  f low  f ie ld .  

I n   t h i s   p a p e r ,  w e  w i l l  demonstrate a technique  which  s imultaneously  solves  
fo r   t he   f l ow  in   t he   i nne r ,   v i sc id   r eg ion   and   t he   ou te r ,   i nv i sc id   r eg ion   abou t  
the  forebody  of  an  axisymmetric  parabola a t  Oo ang le   o f   a t t ack .   Th i s   t ech -  
nique,  which i s  d i r e c t l y   a p p l i c a b l e   t o   t h e   f i n i t e  body  problem, w i l l  minimize 
t h e  number of gr id   po in t s   r equ i r ed   i n   t he   computa t iona l  domain. S o l u t i o n s   f o r  
t h e   o u t e r ,   i n v i s c i d   r e g i o n  are found  using a "Moret t i   type" method  which is 
t i e d   t o   a n   a r b i t r a r y   l i n e   t h r o u g h   t h e   f l o w   f i e l d   r a t h e r   t h a n   t o   t h e  body sur -  
face .  The inne r ,   v i scous   so lu t ion  i s  found  by  solving  the  full   Navier-Stokes 
equat ions  over  a reg ion  bounded  by t h e  body s u r f a c e  and the  lower bound of t h e  
inv i sc id   so lu t ion .  The so lu t ion   technique   has   been   s t ruc tured   for   the   Cont ro l  
Data STAR-100 computer a t  Langley  Research  Center  (ref.  6 ) ,  t hus ,   t he  method 
w i l l  b e   e x p l i c i t   i n   n a t u r e .  

SYMBOLS 

a local   speed  of   sound,  :/6, 
A cons tan t   i n   equa t ion  ( 2 )  

A 

C 
P s p e c i f i c   h e a t  a t  cons tan t   p ressure  

A 

cV 

C 1  

c2 

s p e c i f i c   h e a t  a t  cons tan t  volume 

e in t e rna l   ene rgy ,  

+ - + - + + - +  
F , G , H , S , W  vec to r s   de f ined   i n   equa t ions  ( A 7 )  

h 

I s t a t i c   e n t h a l p y ,  

K thermal   conduct ivi ty ,  

L r e fe rence   l eng th  

M Mach number 

f ree-s t ream  Prandt l  number, p,cp/Km 
A A  A 

NRe, free-stream  Reynolds number, pmU,L/cm 
A A A  

P p res su re ,  G/(c ,G: )  
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wall heat  transfer, - an 
A ^3 
P,", 

nose  radius 

body  surface  length 

time, G 03 /E 
temperature, %/%, 

velocity, 

x-component of velocity 

rpcomponent of velocity 

velocity, OD (eq. ( A 3 ) )  

y-component of velocity 

5-component  of  velocity 

Cartesian  coordinate  direction 

Cartesian  coordinate  direction 

ratio of specific  heats 

increment of length 

- - nmax - no 

parabolic  coordinate 

computational  step  size,  At/A 

viscosity , GIG, 
parabolic  coordinate 

density, 6/cm 
transformed  coordinate 

Subscripts: 

C common 

n  normal  to  shock 

~- . ." ." . . ..... - . -. 
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0 r e f e r e n c e   t o  body su r face  

S r e fe rence  t o  post-shock  condi t ions 

W w a l l  

03 r e fe rence   t o   f r ee - s t r eam  cond i t ions  

Other   no ta t ions :  

Arrow over  symbol (e .g . ,  F )  denotes   vec tor .  

B a r  over  symbol ( e .g . ,  t) deno tes   coo rd ina te   i n   i nv i sc id   f l ow  f i e ld .  

Circumflex  over symbol (e.g.  , 6)  denotes   d imens iona l   var iab le .  

-t 

- 

ANALYSIS 

S e v e r a l   f a c t o r s  were taken   in to   account   whi le   de te rmining   the   appropr ia te  
coord ina te   sys tem  to   be   used   wi th   the   computa t iona l   t echnique   descr ibed   in   th i s  
paper.  The shock  capturing  technique w a s  no t   cons idered   because   o f   the   l a rge  
number of g r i d   p o i n t s   r e q u i r e d   t o   a d e q u a t e l y   r e s o l v e   t h e  bow shock a t  the   h igh  
Reynolds  numbers  of i n t e re s t .   A l so ,   t he   shock   f l oa t ing   t echn ique  was no t  con- 
s idered  because it r e q u i r e s  a surp lus   o f  mesh p o i n t s   i n   t h e   c o m p u t a t i o n a l   f i e l d  
as i l l u s t r a t e d   i n   t h e   f o l l o w i n g   s k e t c h  and   because   t he   l og ic   r equ i r ed   t o   f l oa t  
t he  bow shock i n   t h e   g r i d  would nul l i fy   the   computa t iona l   advantages   o f   vec tor  
processing.  Thus, it w a s  de t e rmined   t ha t   t he   phys i ca l   p l ane   t o  be  covered 
should  be  an  envelope  bounded by t h e  bow shock,  the  body,  the  outflow  boundary, 
and t h e   s t a g n a t i o n   l i n e  as shown: 

STAGNATION 
LINE INFLOW BOUNDARY 

Rectangular  Computational  Plane 

OUTFLOW 
BOUNDARY 
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The  global  coordinate  system  consists  of  two  distinct  but  interdependent 
local  coordinate  systems.  Both  systems  are  constructed so that,  through  a 
coordinate  transformation,  the  numerical  computations  are  carried  out  on  a  uni- 
form  rectangular  mesh. 

Local  Coordinate  System  €or  the  Viscous  Region 

The  physical  coordinate  system  used  in  the  viscous  computations  is  the 
orthogonal  parabolic  system  used  by  Peyret  and  Viviand  (ref. 4) and  is  formed  by 
the  intersection  of  curves  belonging  to  two  cofocal  parabolas as shown  in  fig- 
ure l(a).  The  parametric  equations  for  the  Cartesian  coordinates  in  this  system 
are 

As seen  in  figure  l(b),  the  axisymmetric  body  surface is  formed  by  rotating  one 
of  the  coordinate  lines,  specified  by  a  constant  value of q = qo, about  the 
x-axis. 

The  computational  technique,  to  be  described  in  the  section  "Viscous 
Solution,"  requires  a  mesh  ratio  of  one  in  the  computational  plane.  Shown  in 
figure  l(c) is  the  physical  plane  transformed  to  the  uniform  computational  plane 
which  is  divided  into  equal  increments  of 5 and q (i.e., A< = Aq). The 
mesh  in  the  physical  plane  expands  naturally  in  both  the 5- and  q-directions 
and  provides  the  greatest  spatial  resolution  in  the  region  of  the  nose  in  both 
the 5- and  q-directions  and  along  the  wall  in  the  q-direction.  Since  the  size 
of  the  viscous  region  for  any  given  conditions  is  fixed,  the  spatial  resolution 
can  be  controlled  by  either  increasing  or  decreasing  the  incremental  size  of 5 
and q which  either  decreases  or  increases  the  number of grid  points.  Con- 
trolling  the  resolution  in  this  manner  is  sufficient  when  working  at  low 
Reynolds  numbers,  but  it  is  inadequate  at  high  Reynolds  numbers  because  of  the 
large  number  of  grid  points  needed  when  very  small  values  of  are  needed 
near  the  wall.  The  problem  was  overcome  by  applying  a  Blottner  (ref. 7) type 
transformation  to  the  q-coordinate  in  the  form 

Now,  computations  are  performed  in  the X,C grid  where AX = A < .  This  allows 
reasonable  values  of A< to be  chosen  while  the  proper  distribution  of  points 
in  the  q-direction  is  controlled  by  Xmax, A e ,  and  the  choice  of  the  con- 
stant A. The  stretched s,n grid  is  shown  in  figure 1 (d) . 
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Local  Coordinate  System  for  Inviscid  Region 

used 
g r i d  
f i g .  

The coordinate   system  used  for   the  inviscid  computat ion i s  similar t o   t h a t  
by More t t i   and   Sa las   ( re f .  1) except   that   here   the  lower  boundary of t h e  
system is t i e d   t o  a l i n e   o f   c o n s t a n t  ' ( t h e  common l i n e  '1, i n  
l ( b ) )  r a t h e r   t h a n   t o   t h e  body sur face .  A new set of  transformed  coordi- 

n a t e s  (<,',t) is  defined by the   t ransformat ion   equat ions  
" -  

- 
t = t  

which t ransform  the  region  between  the common l i n e  nC and  the  shock wave, ', = Os (Elf)  , i n t o  a rectangular  region  with  the  shock  forming  the  outer bound- 
ary.   (See  f ig .  2 .  ) The g r id   spac ing   i n   t he   E -d i r ec t ion  and t h e  time : a r e   t h e  
same f o r   t h e   i n v i s c i d  and  viscous  regions.  However, the   coord ina te   sys tem  in  
the   i nv i sc id   r eg ion  i s  nonorthogonal  because of t he   t r ans fo rma t ion   u sed   fo r  q, 
and s ince   t he   shock   l oca t ion   va r i e s   w i th  t i m e  ( u n t i l   s t e a d y  s t a t e  i s  reached) ,  
the   coord ina te   sys tem  a l so   var ies   wi th   t ime.  

- 

The Global  Coordinate  System 

A s  i l l u s t r a t e d   i n   f i g u r e  3,  t h e  two  meshes i n   t h e   p h y s i c a l   p l a n e  are jo ined  
along a c o n s t a n t   g r i d   l i n e ,  ' = qc .   Informat ion   a long   th i s   l ine  is  computed by 
the  viscous  portion  of  the  code  and  serves as a boundary  condi t ion  for   the 
inv isc id   por t ion   o f   the   code .  Data on the  outer   boundary  of   the  viscous solu- 

tion' ' = ' i n te rpola ted '  
i n   t h e   i n v i s c i d   s o l u t i o n .  The  way i n  which   the   f low  f ie ld  i s  d i v i d e d   i n t o  an 
inner   and   ou ter   so lu t ion  w i l l  be   d i scussed   i n  a l a t e r  sec t ion .  

a r e  found  by i n t e r p o l a t i n g   a l o n g   l i n e s   o f   c o n s t a n t  5 

Computa t ions   a re   car r ied   ou t   us ing   ve loc i t ies   in   the   parabol ic   ra ther  
than  Cartesian  system as shown i n   f i g u r e  4 .  The p h y s i c a l   v e l o c i t i e s   a l o n g  
5 = constant  and q = cons tan t  are as fol lows:  

u =  -'U + Ev 

NOW, s e t  h = hl = h2 = (C2 + '2)1'2 and  define a set  o f   c o i n v a r i a n t   v e l o c i t i e s  

u = hU and v = hV (6) 
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The  use of these  coinvariant  velocities in the  governing  equations  eliminates 
errors  caused  by  the  differencing of nonlinear  metric  coefficients. 

Viscous  Solution 

The  solution  in  the  viscous  portion  of  the flow is obtained  by  integrating 
the  full,  compressible,  time-dependent  Navier-Stokes  equations on the  orthogonal 
parabolic  grid  described  in  the  previous  section.  The  integration is carried 
out by  applying  a  modified  version of the  two-step  Richtmeyer  differencing 
algorithm  described  by  Thommen in reference 8 to  the  appropriate  system of 
equations. 

The  governing  equations  are  written  in  the  conservative  form 

where  the  terms  in  equation (7) are  the  conserved  quantities W, the  convective 
terms F and G, the  geometry  terms H arising  from  a  non-Cartesian  coordinate 
system,  and  the  viscous  dissipation  and  heat  conduction  terms S. The  specific 
form of  the  Navier-Stokes  equations  used  €or  this  two-dimensional,  axisymmetric 
flow  in  an  orthogonal  parabolic  coordinate  system  is  developed  in  appendix A. 

+ 
+ -f -+ 

-+ 

The  difference  algorithm  in  equations (8) and (9) is used  to  integrate 
equation (7) on  a nine  point  computational  module  for  any  W.  The  variable  W 
is  defined  in  the  time  plane  t at the  grid  points  represented  by  circles  and 
in  the  plane  t + At/;! at  the  points  marked  by  crosses  in  this  sketch: 

0""- 

-I,, +1 I 

I 
I 
I 
I 
0"- H 

- 11, 0 
I 

" 0 -  

0 ;+1 
" 

*- 
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The two-s tep   d i f fe renc ing  scheme is  w r i t t e n  as fo l lows:  

The f i r s t - o r d e r   f u n c t i o n s   i n   e q u a t i o n s  (8) and (9)  can   be   wr i t t en   fo r  
+ 

e i t h e r  F o r  G as 
-+ 

t + A t / 2  Thei r   counterpar t s  are found by 

permut ing   ind ices   in   equa t ions   (10) .  The second  der iva t ives   used   in   the   v i scous  
term S are def ined   be low  for   the   genera l   var iab le  $: 

-+ 
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t = - b  1 t  t 
b+l/2,0  2 0 , o  + b*l,O 

Thommen  first  recommended  that  the H and S vectors  be  reevaluated at 
t + nt/2.  He  later  found  this  was  unnecessary  for 3.  Because  of  the  large 
variation  of  the  metric  coefficients  near  the  stagnation  line  for  this  particu- 
lar  coordinate  system,  we  have  obtained  better  results  in  the  stagnation  region 
by  not  reevaluating H. 

" -+ 

-+ 

Inviscid  Solution 

The  solution  in  the  inviscid  portion  of  the  flow  is  obtained  by  integrating 
the  compressible,  time-dependent  Euler  equations  in  the  transformed  coordinate 
system  described  in  a  preceding  section.  The  integration is carried  out  using 
the  two-step  MacCormack  finite-difference  algorithm  (ref. 9) which  is  modified 
by  using  one-sided  differences at the  shock  boundary. 

The  conservative,  vector  form  of  the  Euler  equations  written  in  orthogonal 
parabolic  coordinates (<,q,t)  is 

-+  -+  -+  -+ 
Wt = -Fc (W) - Gq (W) + H ( W )  

+ " - +  
where W, F, G, and H are  the  same  vector  quantities  defined  in  appendix A. 
By  using  the  transformation  equations  (eqs. ( 3 ) ) ,  the  system  of  equations 
(eq.  (12))  can  be  transformed  from  parabolic  coordinates  (<,q,t)  to  a  set  of 
coordinates  in  the  computational  space  (c,q,t).  Thus,  equation  (12)  becomes 

-+ 

" -  

- 
Since  only  the  steady-state  solution is of interest,  the  term - 
neglected  and  equation  (13)  becomes 

an w- is 
at q 
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The d e t a i l s   o f   t h i s   t r a n s f o r m a t i o n  are g iven   in   appendix  B. 

The d i f f e rence   a lgo r i thm  in   equa t ions  (15) and (16) i s  u s e d   t o   i n t e g r a t e  
equat ion (14) on the  computat ional  module i l l u s t r a t e d  below: 

0""- 

-I;, +1 

I 
I 
I 
I 
0"" 

-u,o 
I 

""D "-" 
0 ;+1 

The v a r i a b l e  W i s  d e f i n e d   i n   t h e   p l a n e  t = 0 a t  the   po in t s   r ep resen ted  by 
the   c i r c l e s   i n   t he   ske t ch   above .  The two-step MacCormack d i f f e r e n c e  scheme i s  
then   wr i t ten  as follows f o r   t h e   s o l u t i o n   o f  W a t  t h e  t i m e  p lane  t + A t :  

+ 

3 

P r e d i c t o r   s t e p  - 

Cor rec to r   s t ep  - 

f [(E)- + t + A t  + (%)-(E)- t + A t  + t + A t  
aE 0 , o  arl 0 ,o  
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I 

A t  the   inter ior   points   on  the  computat ional   gr id ,   two-point   backward  differ-  
ences are used t o   r e p l a c e   t h e   d e r i v a t i v e s   o f  F and G i n   t h e   p r e d i c t o r   s t e p  
and  two-point  forward  differences are used   i n   t he   co r rec to r   s t ep .   Fo r   t he   g r id  
poin ts   a long   the  bow. shock,  three-point  backward  differences are used   i n   bo th  
the   p red ic to r   and   co r rec to r   s t eps .  The p rocedure   u sed   t o   t r ack   t he  movement of  
t he  bow shock wave w i l l  be descr ibed  i n  t he   nex t   s ec t ion .  

-+  -+ 

S o l u t i o n   f o r  Shock Wave 

A method similar t o   t h a t   u s e d  by Tannehill ,   Holst ,   and  Rakich ( ref .  10) has 
been  used t o  t r a c k   t h e  movement of  the  shock wave d u r i n g   t h e   t r a n s i e n t   p o r t i o n  
o f   t he   so lu t ion .  The method can be  summarized as f o l l o w s   ( d e t a i l s  are g i v e n   i n  
appendix C ) .  First, t h e   p r e s s u r e  i s  computed  on t h e  downstream s ide   o f   t he  
shock wave us ing   the   two-s tep   d i f fe rence  scheme desc r ibed   i n   t he   p reced ing  sec- 
t i on   w i th   t h ree -po in t  backward d i f f e r e n c e s   u s e d   t o  compute  and az/aG 
a t  t he  shock wave. With the   p re s su re  a t  t h e  shock wave Ps known, t h e   d e n s i t y  
is computed us ing   the   equat ion  

1 
" 

PS 
- 

Then, the   shock   ve loc i ty  i s  computed us ing   the   equat ion  

v, = (Vn), /T 
1" 

PS 

where V, and (Vn), a r e   d e f i n e d   i n   s k e t c h e s  (c )  and  (b) i n   append ix  C.  

Next,  the movement of   the  shock wave (see f i s .  5 )  is  computed using  the  fol low- - 
ing  two-step  difference method: 

P r e d i c t o r   s t e p  - 

t+*t 
t 

(r),) 

Cor rec to r   s t ep  - 

(rl,) t+*t t A t [ (  vs + ( ' s  ): 
= - 2 h cos 5, h cos 5, 
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where 

The d e r i v a t i v e  aQs/ac i n   e q u a t i o n  ( 2 1 )  is  approximated by c e n t r a l   d i f f e r e n c e s  
i n   b o t h   t h e   p r e d i c t o r   a n d   c o r r e c t o r   s t e p s .   A f t e r   t h e  new locat ion  of   the  shock 
wave has  been  determined,  the  properties  (except  pressure)  on  the  downstream 
side  of  the  shock are computed us ing  a t r a n s i e n t  shock-wave a n a l y s i s .  

A s  the   solut ion  approaches  convergence,   the   shock  veloci ty   approaches  zero 
and the  shock wave r ema ins   e s sen t i a l ly   f i xed   i n   space .   Th i s   u sua l ly   occu r s  
be fo re   t he   r ema in ing   p rope r t i e s   i n   t he   f l ow  f i e ld   conve rge .  The shock  veloci- 
t i es  a t  convergence are gene ra l ly   l e s s   t han   i n   magn i tude .  

BOUNDARY AND I N I T I A L  CONDITIONS 

Boundary Condit ions 

Viscous  regio2.-  Along the  body surface,   the   usual   no-sl ip   boundary  condi-  
t i o n s ,  u = 0 and v = O r  are imposed. Wall p re s su re  is  found  by s e t t i n g   t h e  
normal p r e s s u r e   g r a d i e n t  aP/aQ equa l   t o   ze ro   wh i l e   t he  w a l l  temperature i s  
he ld   cons tan t  a t  some predetermined  value.   Thus,   the w a l l  dens i ty  is found 
from the   equat ion  of s ta te .  

Symmetry cond i t ions  

are imposed a long   t he   s t agna t ion   l i ne  5 = 0.  A t  the  outflow  boundary, a 
second-order   ex t rapola t ion  of the   conserved   var iab les  

is used. 
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A s  shown  in  figure 3, the  inflow  boundary  for  the  viscous  solution is 
determined  by  linearly  interpolating  along  lines of constant 5 on information 
in  the  inviscid  solution  to get values  along ' = 'interpolated' 

Inviscid  solution.- A s  shown  in  figure 3 ,  the  lower  boundary of the  invis- 
cid  solution is fixed  by  making it coincident  with  the  line q = qc, the  last 
line  of  computed  information  in  the  viscous  solution.  Along  the  stagnation 
line,  the  symmetry  conditions  are  the  same  as  those  used in  the  viscous 
solution. 

Values  along  the  outflow  boundary  are  determined  by  a  second-order  extrapo- 
lation  of  values at the  interior  points,  while  the  values on the  inflow  boundary 
are  determined  by  the  unsteady  shock  relations  discussed  in  the  inviscid  flow 
section. 

Initial  conditions.-  Initial  conditions  are  imposed  in  the  following 
. . ~ "  

manner.  The  wall  surface  temperature is fixed  and  velocities  at  the  wall  are 
set  equal  to  zero  while  a  Newtonian  pressure  distribution is determined  for  the 
given  body  shape.  An  initial  shock  shape,  which  is  usually  a  line  of  con- 
stant ', is picked.  Steady  shock  relations  are  then  used  to  determine  flow 
conditions  behind  the  shock. The pressure  and  velocities  are  then  linearly 
interpolated  between  the  shock  and  body  along  lines of constant 5. Finally, 
the  temperature  along  each  line of constant 5 is set  equal  to  the  shock  tem- 
perature  up  to,  but not including,  the  wall.  The  density  distribution  is  then 
found  using  the  equation  of  state. 

Numerical  Stability 

The  inviscid  numerical  stability  limit  for  the  two  methods  being  used  is 
the  well-known  CFL  condition 

where C '  = 1 €or  the  MacCormack  scheme  and C '  = 2  for  the  Richtmeyer  scheme. 
For  both  methods,  the  Courant  number CO is  taken  to  be 0.95. When  equa- 
tion  (24) is applied  to  the  present  coordinate  system  and  u  and  v  are  used 
as defined  in  appendix A, the  equation  becomes 
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and,  when  the  Blottner  coordinate  transformation is applied  to  the  viscous 
equations, 

The  viscous  stability  limit  for  the  Richtmeyer  scheme is 

and  for  the  Blottner  transformation is 

Global  Operational  Characteristics 

The  preceding  procedure  has  been  programed  and  run on the  Control  Data 
STAR-100  computer at Langley  Research  Center.  The  computational  mesh  size  used 
depends  on  the flow Reynolds  number  and on the  need  to  adjust  the  relative  posi- 
tion of points  in  the  two  meshes.  Inviscid  mesh  size  varied  from 6 X 21 to 
12 X 21, and  the  viscous  mesh  varied  from 14 X 21 to  25 X 21.  Normal mesh 
spacing  in  the  viscous  region was determined  by  requiring  that  the  stagnation- 
point  cell  Reynolds  number  equal  two. 

Initially,  solutions  were  obtained  using  a  single  value  of  At  which  was 
determined  by  finding  the  minimum of all  local  values of At.  However,  the 
combination  of  a  high  Reynolds  number  with  the  restriction on cell  Reynolds 
number  led  to  extremely  small  values of At  near  the  wall.  This  led  us  to  try 
using  the  local  minimum  At at  each  point,  as  reported  by  Kumar  (ref. 3 ) .  This 
procedure  yielded  good  results  and  gave  us  a  reduction of approximately 50 per- 
cent  in  the  number of iterations  required to reach  convergence  for  the  highest 
Reynolds  number  runs. 

The  actual  running of  a  computer  code  as  described  always  raises  a  number 
of  operational  problems  which  cannot  be  quantified. In particular,  a  number  of 
problems  have  appeared at the  juncture of the  inviscid  and  viscid  flow  meshes. 
Each  problem  has  been  resolved,  but  for  most,  there  is  a  lack  of  a  definitive 
cause-and-effect  relationship. 

The  first  and  most  obvious  problem  is  determining  whether  the  flow  field is 
properly  split  into its viscous  and  inviscid  components.  We  quickly  found  that 
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the  code  simply  would  not  run  if  the  inviscid  region  extended  into  the  viscous 
region.  We  surmounted  this  problem  by  being  very  conservative  in  our  estimate 
of  the  extent  of  the  viscous  region. 

We  also  found  that,  in  order  to  maintain  a  stable  computation,  the  inter- 
polated  row  of  data  in  the  viscous  solution  must  be  coincident  with,  or  have  a 
value  of T) greater  than,  that  of  the  second  row  of  data  in  the  inviscid 
solution. 

The  flow-field  solution  was  considered  to  be  converged  when  the  relative 
convergence  criterion 

was  satisfied  at  every  point  in  the  flow  field. 

RESULTS  AND  DISCUSSION 

The  preferred  method  of  validating  numerical  techniques  is  comparison  with 
experimental  data.  Experimental  data  for  flow  over  parabolic  bodies  are  scarce 
and  basically  limited  to  drag  coefficients.  We  have  used  the  data  of  Little 
(ref.  11)  and  information  generated  in  the  Langley  continuous-flow  hypersonic 
tunnel  (CFHT)  for  drag  data.  Shock  shapes  were  obtained  from  tests  run  in  the 
Mach 6 high  Reynolds  number  tunnel  at  the  Langley  Research  Center. Also, com- 
parisons  are  made  with  established  numerical  methods  to  determine  the  accuracy 
of  pressure  and  heat-transfer  distributions.  All  computations  have  been  made 
using  the  Sutherland  viscosity  formula  and  a  perfect  gas  with  a  ratio  of 
specific  heats  of 1.4. 

Our  first  concern  was  determining  the  effect  of  splitting  the  flow  field on 
the  overall  accuracy  of  the  solution  (specifically,  determine  whether  the  physi- 
cal  joining  of  two  different  computational  meshes  would  distort  the  solution  in 
the  vicinity  of  the  juncture). To  check  this,  we  compared  the  complete  inviscid 
solution  with  the  coupled  solution  for  two  different  sets  of  free-stream  flow 
conditions.  For  the  first  condition,  shown  in  figure 6, NRe, - - 2 X lo6  and 

M, = 5.87. Here,  temperature  profiles  are  plotted  for  the  stagnation  line 
(5 = 0 )  and a  point  approximately  halfway  around  the  body.  Both  curves  indicate 
a  smooth  transition  from  one  mesh  to  the  other  at  the  point  marked  "mesh 
juncture''  which  is  the  last  computed  point  in  the  viscous  solution.  Also,  the 
two  solutions  agree  very  well  down  to  the  point  where  boundary-layer  effects 
dominate  the  flow.  However,  there  is,  as  expected,  some  difference  between  the 
two  curves  due  to  the  effect  of  boundary-layer  growth  on  effective  body  shape. 
The  plot  presented  in  figure 7 is  similar  except  that  the NR~, has  been 

reduced  to 3 X lo5  and  Moo = 9.92. Again,  good  results  were  obtained,  but  the 
difference  between  the  two  curves  at  the  downstream  location  is  more  pronounced 
due  to  the  more  rapid  boundary-layer  growth. 
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Next,  a  comparison  is  made  with  experimental  drag  coefficients.  In  fig- 
ure 8, numerical  results  are  compared  with  the  data  of  Little  (ref. 11). The 
present  method  can  be  used  only  for  body  configurations  which  have  supersonic 
outflow  boundary  conditions  outside  of  the  boundary  layer.  There  is,  however, 
good  agreement  with  experimental  data  over  the  range  of  conditions  which  can  be 
duplicated  by  the  present  program. It is  also  interesting  to  note  the  viscous 
effect on the  drag  coefficient,  even  at  these  relatively  large  Reynolds  numbers, 
as  indicated  by  the  divergence  of  the  viscid  and  inviscid  curves as body  length 
increases. 

The  second  comparison  is  made  with  experimental  drag  coefficients  based on 
data  taken  in  the  Langley  CFHT  and  is  shown  in  figure 9. Here,  the  comparison 
of  variations  in  the  drag  coefficient  is  made  for  a  range  of  Reynolds  numbers 
on  a 30° paraboloid. 

Our  last  comparison  is  made  with  experimental  data  for  the  shock  shape 
shown  in  figure 10. The  experimental  shock  shape  was  obtained  from  schlieren 
photographs  taken  in  the  Mach 6 high  Reynolds  number  tunnel  at  the  Langley 
Research  Center  for  the  conditions M, = 5  -8725 and  NRe, = 2 X lo6.  Again, 
there  is  excellent  agreement  between  experimental  and  numerical  results. 

There  is  no  experimental  heat-transfer  data  available  €or  comparison  with 
results  generated  by  our  present  method.  Therefore,  we  have  chosen  to  make  our 
comparisons  with  the  results  generated  by  several  proven  computer  codes.  For 
M, = 10.34  and  NRe, = 5 X lo5,  results  are  shown  in  figure  11.  The  results 
from  the  present  method  are  compared  with  computations  using  the  Navier-Stokes 
solution  of  Graves  (ref.  12),  the  viscous  shock-layer  solution  of  Kumar 
(ref.  3),  and  the  boundary-layer  solution  of  Anderson  (ref. 13)  which  uses  the 
inviscid  edge  conditions  from  Marconi  (ref. 14). As  can  be  seen  in  figure 11, 
there  is  extremely  good  agreement  among  all  methods.  In  figure  12,  similar 
results  are  shown  for  the  free-stream  conditions M, = 5.8725  and 
N = 2 x 106. Re, 

CONCLUDING REMARKS 

In  the  previous  sections,  we  have  investigated  the  viability of a hybrid 
viscous/inviscid  solution  technique  for  determining  the  flow  about  an  axisym- 
metric  parabola.  In  this  investigation,  we  have  found  that  it  is  possible  for 
a  €low-field  computation  to  be  marched  in  time  to  convergence,  where  the  field 
is  split  into  an  inviscid  region  governed  by  the  Euler  equations  and  a  viscous 
region  governed  by  the  Navier-Stokes  equations.  Furthermore,  we  have  experi- 
enced  no  problems  at  the  juncture  of  the  two  flow  regimes  when  the  flow  field 
has  been  properly  split  into  its  viscous  and  inviscid  parts. By comparison 
with  both  analytical  and  experimental  results,  we  have  demonstrated  that  the 
technique  works  well  over  a  wide  range  of  Reynolds  numbers  and  Mach  numbers. 
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A s  p resented ,   th i s   t echnique   reduces   the  number o f   g r id   po in t s   r equ i r ed  
in   t he   computa t iona l   f i e ld ,   and  by i t s  e x p l i c i t   n a t u r e ,   t h e  method is wel l  
su i ted   to   t ake   advantage   o f   the   h igh   computa t iona l   speed  of vector   processing 
computers. 

Although  presented  for  forebody  flows  only,   there  are no conceptual  prob- 
l e m s  t o   e x t e n d i n g   t h i s   t e c h n i q u e   t o   t h e   f l o w   a b o u t   f i n i t e ,   s h a r p - c o r n e r e d  
bodies.  

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA 23665 
July 6,  1979 
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APPENDIX A 

AXISYMMETFUC  NAVIER-STOKES  EQUATIONS I N  

ORTHOGONAL PARABOLIC  COORDINATES 

General  Equations 

The dimensional  Navier-Stokes  equations,’ w r i t t e n  i n  conserva t ion   form  for  
a genera l ,   curv i l inear   coord ina te   sys tem,  may be s t a t e d  i n  terms of   the  system 
metric c o e f f i c i e n t s ,   h l ,   h 2 ,  and  h3, as follows: 

Cont inui ty  - 

XI-momentum - 

lFor   convenience ,   the   superscr ip t   denot ing   d imens iona l i ty  has  been * 

omit ted  f rom  these  equat ions.  
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x2-momentum - 

x3-momentum - 

a a 
a t  1 2 3  ax, 2 3 1 3 ax, (h 1 h 3 pu 2 u 3 ) + a[hlh2 ax, (pus + P] -(h h  h pu3) + - ( h h p u u )  + -  a 

Energy  equation - 

- a h2h3 a T  a hlh3 aT  a hlh2 a T  "- axl( hl 
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2 2 

where E is  defined  as p 2 
. The  viscous  stress  terms  are 

defined  as  follows: 

aUl u2 ahl U, ahl + 
(hl  ax, hlh2 ax, +") h3h1 ax, + xv * v Tl1 = 21.1" +-- 

where 

aU2 u3 ah,  u1  ahl -f 

T22 = 2 y - -  +--  

+ ") + xv v 
(h2 h2h3 ax, hlh2 ax, 

Equations  in  Parabolic  Coordinates 

For the  orthogonal  parabolic  coordinate  system,  the  following  substitutions 
are  made  in  equations (Al) : 

20 
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x1 = E 

APPENDIX A 

x2 = n x3 = @ 

u1 = v u2 = u u3 = w 

Furthermore, W and a/a$ are set equal  to  zero  for  axisymmetric  f low.  These 
s u b s t i t u t i o n s   a n d   r e s t r i c t i o n s ,  when a p p l i e d   t o   t h e   g e n e r a l   e q u a t i o n s ,   l e a d   t o  
the   fo l lowing   se t   o f   equa t ions :  

Cont inui ty   equat ion - 

E-momentum equat ion - 

n-momentum equat ion - 

2 1  
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Energy  equation - 

" ( h h h E )  
a 
a t  1 2 3  

St ress   t e rms  - 

and 

When t h e   c o i n v a r i a n t   v e l o c i t i e s  

u = hU 

and 

v = hV 

are   in t roduced   in to   the   equat ions  ( A 2 ) ,  t he  resu l t  i s  as follows: 
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Cont inui ty   equat ion  - 

<-momentum equat ion  - 

rl-momentum equat ion  - 

a a 
a t  a <  arl a + h 2 P )  + [2h2P + p(u2  + v 2 g  3 -(h2Pu) = - “(PUV) - “(pu 

Energy  equation - 

+ --(VT12 1 + + -(vTll a + UTl2) + -(vT12 a + 
a t  arl ( A 4 d )  
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S t r e s s  terms - 

and 

=-(  ;) 21-11+- + X V . v  
‘33 h2 < 

-+ 

‘23 = o  

T13 = 0 

(A4e) 

E x p l i c i t   d i f f e r e n t i a t i o n  of product terms invo lv ing   t he  metric h3  has  been 
avoided   th rough  d i f fe ren t ia t ion  by parts,  t h a t  is, 

For  any  function @ where  h3 = h3(w) ,   the  term ah3/aw i s  eva lua ted  
a n a l y t i c a l l y .  

Equations ( A 4 )  are s i n g u l a r   a l o n g   t h e   l i n e s  5 = 0 and ll = 0 and  have 
cor responding   ve loc i t ies  v = 0 and u = 0. To o b t a i n   t h e   e q u a t i o n s   v a l i d  
a long   these  two l i n e s ,  it i s  n e c e s s a r y   t o   d i f f e r e n t i a t e   e q u a t i o n s  ( A 4 )  wi th  
r e s p e c t   t o   e a c h  of the   s ingu la r   coo rd ina te s ,   and   t hen   t ake   t he  limits, < -f 0 and T) -+ 0, as appropr i a t e .  The r e s u l t i n g   e q u a t i o n s  are l i s t e d  below: 

Limit ing  form  of   equat ion  a long = 0.-  

Cont inui ty   equat ion  - 
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E-momentum equation - 

v = o  ( A 5 b )  

q-momentum equation - 

x ( h 2 p u )  = -2  “(puv) - -(pu2 + h2P) + (2h2P + pu2) - - a a a 
a t  arl h2 

( A 5 c )  

E n e r g y  equation - 

z ( h 2 E )  a = -2  -[V(E a + P)] - -[u(E a + P)) - (E + PI(:) a <  an  

d + -(vT12 + + “(VT 
1 

an  rl 1 2  + u=22) 

Stress  terms - 
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Limiting  form of equations-  -along ~-~ 0 = 9.- 

Continuity  equation - 

-(h2p) = - “(PV) - 2 “(PU) - p 
a  a  a 
at aE a0 

<-momentum  equation - 

n-momentum  equation - 

u = o  

Energy  equation - 

a(h2E) = - z[v(E + Pd - 2 -[u(E + pg 
a a 

at an 
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Stress  terms - 

The previous  dimensional  equations  are  nondimensionalized as f o l l o w s :  

h h 

u = -~ U V v =  

“mL 
h 1 / 2  

“mL 
Al/2 

A 

The  components of the  vector  expression 

K 
A 

K = -  
A 

K, 
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can now be w r i t t e n  as fol lows:  

-f w =  

-+ 
G =  

PU 

PUV 

pu2 + h2P 

u ( E  + C2P)  

PV 

pv2 + h2P 

PUV 

v ( E  + C2P)  

- - 

[2h2P + p (u2  + v2,] 5 - pv - + - 
h2 (; t )  

[2h2P + p (u2 + v2)] 
h2 

r 
where E = p k  + C 1  (u2 + v2)] and 

0 
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The W ,  F, and G terms remain  unchanged  along  the  lines 5 = 0 and 
+ +  + 

+ n = 0. However, t h e  H and S terms are redef ined  as fol lows:  
-+ 

+ 
H =  

-+ 
H =  

(2h2P + pv2)s - 
h2 

0 

- ( E  + C2P)( z) - a u(E + C2P) 
L 

* 

for 6 = O 

- 

for rl = 0 

0 

0 
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0 

0 

+ UTl2)  + +Tll 1 + UTl2)  

5 

for ?-I = 0 

30 



APPENDIX  B 

TRANSFORMATION  OF INVISCID EQUATIONS 

The  conservative,  vector  form  of  the  Euler  equations,  written  in  orthogonal 
parabolic  coordinates  (<,q,t),  was  given  by  equation  (12)  as 

+ + + -+ 
Wt = - F g ( W )  - G,, (W) + H(W)  

+ + +  
where W, F, G I  and H are  vector  quantities  defined  in  appendix A.  By  using 
the  transformation  equations  (3) 

+ 

equation  (12)  can  be  transformed  from  parabolic  coordinates  (c,Q,t)  to  a  set  of 
coordinates  in  computational  space (E,f i , t ) .  To  carry  out  this  transformation, 
the  following  transformation  operators  are  defined: 

- 

By  using  the  transformation  equations  (eqs.  (3)),  equations  (Bl)  to (B3) can  be 
written  as  follows: 
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where 

With  the  transformation  operators  defined  by  equations ( B 4 )  through ( B 6 ) ,  the 
vector  form  of Euler’s equation  (eq.  (12)), can be  transformed  to  computational 
space  and  written  as  follows: 

Since  only  steady-state  solutions  are  of  interest,  the  term  at/at  can  be 
neglected  since  it  approaches  zero  as  the  steady  state  is  approached.  Thus, 
the  previous  equation  can  be  written  as 

where a:/ac and a;/an are  defined  by  equations ( B 7 )  and ( B 8 ) ,  respectively. 
This  is  the  same  as  equation  (14)  presented  in  the  main  text. 
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CALCULATION OF PROPERTIES AT  SHOCK WAVE 

rl 

6 = constant 

= constant 

Sketch  (a)  

The shock-wave angle  Bs can be expressed as 

where t h e  slope 8 of t h e   c o o r d i n a t e   l i n e  = cons tan t   and   t he   dev ia t ion  C s  
of the  shock wave from t h e   c o o r d i n a t e   l i n e  q = c o n s t a n t  are given by t h e  
fol lowing  equat ions:  

The derivative aqs/a< is  computed n u m e r i c a l l y   u s i n g   c e n t r a l   d i f f e r e n c e s  a t  
each time step except  a t  t h e  downstream  boundary  where  three-point  backward 
d i f f e r e n c e s  are used. 
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Now, c o n s i d e r   t h e   v e l o c i t i e s  on the  upstream side of the  shock wave 
i l l u s t r a t e d   i n   s k e t c h  (b) : 

Sketch  (b)  

The t a n g e n t i a l  component of v e l o c i t y  (Vt)m i s  given by the   equat ion  

and the  normal  component  of v e l o c i t y  (Vn)m is given by the   equat ion  

( v , ) ~  = urn s i n  Bs (C5 1 

Changes across   the  shock wave can   be   re la ted   to   the   normal  component,  and 
the  shock v e l o c i t y   i l l u s t r a t e d  by ske tch  (c )  : 

Sketch (c)  

Conditions  across  the  shock wave can  be related by the  following  normal  shock- 
wave equat ions:  
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or, since p, = 1, 

2  2 
P, + [Wn) m - vs] = ps + P, pv.1 - vs] 

Now,  rearranging  equation  (C10)  the  following  expression  can  be  obtained: 

2 
Combining  this  equation  with  equation  (C9)  and  solving  for [(Vn)_ - Vs] , the 
following  is  obtained: 

1 1" 
PS 

Similarly,  equation  (C11)  becomes 

Equations  (C13)  and ( C 1 4 )  can  be  combined  with  the  ideal  gas  equation of 

state P = p ( y  - 1)- to  yield  the  following  result: I 
c 2  



APPENDIX C 

If  the  pressure  on  the  downstream  side  of  the  shock  wave  is  known,  the  density 
can  be  calculated  from  equation (C15) and  the  shock  velocity  can  be  calculated 
from  the  following  equation: 

The  velocity  components  in  the  parabolic  coordinate  system  can  now  be  related 
to  the  velocity  components  normal  and  tangent to the  shock  wave  by  the  following 
equations.  (See  sketch  (d) . )  

U = -(vn) cos 5, + (v,)~ sin C S  
S 

rlS 

r l =  

Sketch  (dl 
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(b) Physical  plane;  viscous solution. 

Figure 1.- Physical  and  computational  planes for viscous solution. 
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Figure 1.- Concluded. 
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Figure  2.-  P h y s i c a l   p l a n e ;   i n v i s c i d   s o l u t i o n .  

Figure 3 . -  Merged inner   and outer s o l u t i o n   g r i d s .  
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Figure 4.-  V e l o c i t y   f i e l d .  

Figure 5.- Movement of shock wave. 
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Figure 12.- Comparison of computed wall heat transfer. 
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