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MULTIVARIATE APPROXIMATION METHODS AND

APPLICATIONS IN GEOPHYSICS AND GEODESY

Marie-Jeanne Munteanu

PREFACE

This is the first report in a series which is intended to be written by the

author with the purpose of treating a class of approximation methods of func-

tions in one and several variables and ways of applying them to Geophysics and

Geodesy.

The first report is divided in three parts and is devoted to the presentation

of the mathematical theory and formulas. Some of my unpublished results are

being summarized, together with my recent communications and well known re-

sults of other authors In the field.

We try to give a unified feeling about the topics presented not always insist-

ing about certain details which can be found easily in the other author's papers.

We discuss various optimal ways of representing functions in one and sev-

eral variables and the associated error when we have information about the

function such as satellite data of different kinds.

The framework chosen is Hilbert spaces, which are very important for

their simplicity in obtaining optimal solutions, for their links with the statistical

interpretations and inverse theory.

Experinlents have been performed on satellite altimeter data and on satellite to satellite

tracking data. In both cases the results are very satisfactory and they are going to be

presented in the next report.
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MULTIVARIATE APPROXIMATION METHODS AND

APPLICATIONS IN GEOPHYSICS AND GEODESY

Marie-Jeanne Munteanu

INTRODUCTION

The purpose of the present survey is to make the reader aware of the existence

of the various representations of a function of several variables and a common

source of their derivation.

I will discuss the numerical experience obtained with them in the satellite

data analysis in a second report.

The main theme of the class of methods is the representation of a function

in a Hilbert space as a solution of a boundary value problem for a differential

equation using Green's function. One part of the solution can be viewed as an ap-

proximation of the function and the second part as the corresponding remainder.

The choice of the differential equation is very important and should be re-

lated to the specific application.

In the next report we will discuss such a choice in connection with the sta-

tistical interpretation and with the links between different methods such as col-

location, kernel functions, spline functions and finite elements.

There is a wealth of connections between different approaches which should

give a perspective on the choice of the appropriate method for the specific problem

and also to lead us to the desired interpretations.

The importance of the representations derived in this report is that:

1. They furnish an approximation of a given function. and the corresponding

remainder.

1
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2. Air inner product for the construction of a I lilbert space with reproducing

kernel is provided.

3. Hilbert spaces with reproducing kernels generated in this manner are very

interesting in optilnization theory, namely numerically efficient optimal solutions

are obtained via projection on different subspaces.

3. Computationally very efficient optimal numerical formulas for interpola-

tion, fiihoring, differentiation, integration etc. together with their error representa-

tions are obtained very elegantly.

5. Error estimates for the optimal formulas in Hilbert spaces are given by

the hypercycle inequality.

G. The reproducing kernel of a Hilbert space provides us with a covariance

function anal therefore leads us to statistical interpr tation.

7. Hilbert space treatment seems to be an alternative to the statistical

approach.

8. Generalized inverse problems which are so vitally important in geophysics

have many tinncs as a framework the Hilbert spaces approaches. (See Bachus and

Gilbert papers.) All these ideas will be discussed in detail in future reports.

Concerning the numerical experience with these methods, together with Carl

Siefring I have experimented with the tensor product representation and more

specifically with the tensor product of univariate l3-splint functions.

In the application of the tensor products one needs a first stage, namely gen-

crating the values of the unknown function on the rectangular grid with, for ex-

ample, least squares and orthogonal polynomials.

We are applying this scheme to sea surface topography.

1)



On (lie test data the tensor product of splines works outstandingly well, the

error associated with the method is extremely small. what is extremely inter-

esting about the tensor product of B-splines is that the univariate B-splines are

functions with support of small size ami outstanding numerical properties so that

the above two dimensional scheme can be viewed as a vary efficient finite element

formula. This finite element scheme can be used not only in the best approxima-

tion context such as optimal filtering or interpolation but also in optimally solving

partial differential equations as well as optimization problems of all kinds. In geo-

physical problems such as for example modelling the SAN ANDREAS fault or in the

variational approach of whole-earth dynamics, etc, we call 	 these functions as

trial functions. Our numerical experimentation with satellite data such as altimeter

data is going to be included in the next report and hopefully be presented at the ACU

meeting this spring. Of course the nature of for example altimeter data also calls for

the application of other schemes such as blending spline functions. This is the next

step in sequence. The reason is that tensor product iapline functions interpolate data

on a rectangular grid, while blending splice functions interpolate data along curves

in space which in our case are the satellite tracks.

1n addition if we use B-spline and least squares in the blending schemes one can

compress data significantly. we have experimented very succesfully with satellite to

satellite tracking data. compressing around 300 data to 32 coefficients.

The FORTRAN subroutines used and the graphs obtained are available and

will be included in a note together with all the other experiments.

_z
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PART I

The first part is concerned with the presentation of a general method in order 	
a

to obtain representations of functionI2 in several variables. This uses, essentially,

the form of the solution of a boundary value problem for an ordinary differentiai

equation and the isomorphism between the lattice of a collection of linear projec-

tion operators and the lattice of corresponding image spaces. New representa-

tions, well known formulas such as the Taylorian representation of D.D. Stancu

(29] and Sard [26] as well as the very interesting and elegant results concerning

multivariate functions obtained by Gordon [19], Gordon and Birkhoff [7] are ob-

tained using intuitive diagrams. The reproducing kernel for a Hilbert space of

bivariate functions which have Taylor representations can then be constructed

(see Nielson [24], Mansfield [21] , and Ritter [251).

One can generalize their method for more general cases than bivariate spaces

of functions possesing Taylor expansions and their variations. Once the reproduc-

ing kernels are at hand the question of optimal approximation of linear functionals

in Hilbert spaces is reduced to requiring that the approximation be exact for the

representers of approximating functionals.



PART II

In the second part approximation formulas and the corresponding remainders

are characterized as solutions of certain partial differential problems. These

formulas furnish representations of functions belonging to a, certain space of bi-

variate functions and provide in some cases an inner product. The space can be

completed in the sense of this inner product, reproducing kernels kernels can be

constructed and consequently optimal approximations of linear functionals and

other very useful quantities in numerical analysis can be derived. One can de-

rive an entire variety of differential problems giving intermediate approxima-

tions and the corresponding remainders, maximal and minimal approximations

being the two extreme cases.

The isomorphism between the lattice of a class of differential problems and

the corresponding lattice of linear projection operators which are solutions of

the differential problems is used in the main. If, in addition, the isomorphism

to the corresponding lattice generated by the projectors is used the theory of

approximation of multivariate functions can be unified in a beautiful manner.

At the end of the second part of the report the tensor product splines of

Ahlberg, Nilson and Walsh, Gordon's blending splines interpolating a network of

curves and generally splines in several variables interpolating hypersurfaces

and corresponding remainders are introduced. It is well known that blending

' i	splines in two variables have been used with great success in problems of

computer-aided design, airplane fuselages, autoanobile exteriors, etc. Gener-

ally speaking these multivariate splines can be used in the problem of modeling

smooth surfaces.

5
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The major role in the construction of these multivariate spline functions is

played by univariate spline functions. Using Gordon's language the univariate

spline functions generate a distributive lattice of projectors which has a "maxi-

mal" projector and a "minimal" proje^9tor. For the bivariate case the "minimal"

projector is the tensor product spline and the "maximal" projector is the blend-

ing spline mentioned above.

The lattice of correspnnd:NK remainders gives the errors associated with

the maximal, minimal rind generall .v all intermediate approximations.

The above mentioned isomorphism betv-en lattices suggests the Euler-

Lagrange differential equations satisfi )d by these splines. Consequently, the

minimization properties i)f these functions can be derived.

In a later report several approaches to defining multivariate splines will be

presented. Of course, one important approach will be the variational one, start-

ing with the minimization property of spline functions, deducing the Euter-Lagrange

differential equations and finally obtaining the analytical fr-m of certain types of

multivariate splines.

1. REPRESENTATIONS OF FUNCTIONS IN SEVERAL VARIABLES

1.1 The Bivariate Case

1.1.1 W. J. Gordon's Maximal and Minimal Approximations

Consider the space C P [I'] , the set of real-valued functions, defined and con-

tinuous on the interval I' _ [0,1] z such that all derivatives of order less than or

equal to p are continuous or_ I'. Similarly we define the space C q [I"] where

P' _ [0,1] Y . Consider also the spacz CP.q [R„] of bivariate functions, defined

on R U _ 'x I", real-valued, and having derivatives

0

i
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(i,l?
Dr(x, y)eC°{R^^) 0 5 i <_ P, 0 <— j ; d, where

D(1,)) = P1
ax lay l

Let D X and D. be the linear differential operators

P
D x =n P (x)	 +...+ni(x) d+a,(x),

dxP	 dx

d4
D  = b , (Y) 

dyq
 q + ... + b, (y) dy + b, (y) ,

defined on C P [I' ll , C`1 [1'] resneeti ely. We assume a i (x), b l (y) are real and

continuous on their domains of definition, and a P (x) j 0, bn (y) ^ 0.

Denote by NX and N 1, the respective cull spaces of the operators D X and Dy.

Whose are obviously subspaces of dimension p and q respectively.

Let V, , i = O,p-1 11nd m f , j = O,q-1 be continuous linear functionals on

CP [1 1 3, C'(Pl, respectively, which form the bases for the dual null spaces. The

functionals V,, i = O,p-1; n11, j = O,p-1 are of the following form:

P-1 Hk-1	
(k)	 P-1	 (k)	 e

C'( f) =^	 Akt f (x.f) +^ J )3kCX ) f (x ) dx, fE C P [I ),

k:0 .{--0	 k=Q	 I'

4- 1 I'4k ,-1	 ,1-1.	
k

III,III,
(g) —	

(k')	 r	 (')- ^ 
ŷ	 lIk',Q, gCx,[r ) + L 

fl"
°'k , (Y) g (Y) d Y,t; eC9 [I"j,

k'-0 .0	 0.0 

where A  t , B k ,,C are constants, the functions ^3k (x) and a k,(y) are piecewise

continuous on I' and I" respectively, x 	 y t , are points in P and I" respectively.

Denote by X 1 , i = O,p-1-1 and m l , j = O,p-1 the respective restrictions of the

functionals Vi , i= O,p-1 and in ,!, j = O—,q1 to the subspaces N. and N.. We know

that there exists a unique base 0, (x), i = O,p-1 for N X and a unique base wl (y),

j = O,q-1 for N  such that

7
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^i(`Pk)=sik' 1, k=0,p-1,

In  ( q 'k ) = 8h11 k, 7 = 0, q -1.

Lemma 1: Every function f(x) E C P (I'] can be represented in the following form:

P-t

f (x)	 t(f)A,(X)+f
j 

C't(x,t)D t( f ) dt	 (1)
1.0	 '

where G (x,t) is the Green's function of the differential problem

Dxf =e

	

	D=_eEL2[I'J.where f E C P ( V]

(see (41, [101). Similarly all gQ)e Cq (I"] can be written as

q-1

g (Y) = L M  (g) 01 (Y) + f O 2 (Y, u) D u (S) d u 	 (2)

i•o	
1„

G 2 (y,u) is the 

r

Green's function of the differential problem

j DYg_h	 gECq[I"] D1 —I,EL2 [I„]
ni l (g) c 0 j = 0, q-1

Define the "partial” operators L i , i = O,p-1 and M i , j = 0,q-1 on the space

C P,q [R U ] such that

Li(F)=.QI[F(x,Y*)] foraIty*I°

M i (", =m ) [F(x*,y)] for all x* I'.

Denote by D X and D 

P
19X - a P (a) DO ... + a I (x) - 

h + 
a . W

q
19y = Uq(Y) ayq + ... + b 1 (y) ay} b , (Y),

the extensions of the operators D. and D Y to the space C P ' q [R U ] .

8



Theorem: Every F(x,y) e C p ' q [ R U ] can be written in ills form

P-1

	

f0
1F(x,y)=ELi(F)O,(x)+	 (x,t)Dt[F(t,y)]dt=P1(F)+RI(F)	 (3)

and	
i,o	 1'

q-1

	
f

l

F (x . y ) = L M 1 ( F )Oj (y) + 	 G2(y,u) Du [F (x , u )] du = P 2 ( F ) + R 2 ( F )	 (4)
i • 0	 "

(see Gordon [17], p. 17).

It is obvious that all functions F(x,y) eNxn NY can be written as

p-1 q-

1

-1

F (x ,Y) = F, E L i M j ( F ) q5 j(x)O j (Y) =P1 P2 ( F )•	 (5)
i.o j.o

Using the results given in [17] , [ 71, [19] were able to assert that all F(x,y)

eN., nNY can be represented as

r(x,Y)=^J G :C x,t)G 2 (y,u)D t D.F(t,u)dtdu	 (5)
Ru

where N% and NI', are the complementary spaces of N x and NY , respectively.

Suppose now we wish to obtain our function in the form

F.= P(F) + R(F)

where P(F) is the component of the function belonging to the subspace N xi1NY and

satisfying the interpolation conditions:

Li(F)= Li(P), i=0.p-I,

Mj(F)=Mj(P), j =0.q-I,

and R(F) if the corresponding error, i.e. the component of the function belonging

to the complementary subspace of N x U NY

Let us first make two remarks about the n 11 order. These notes will be

used constantly in this chapter.

9



Nx fl N . , = (N x U Ny)'

1. Usin g. Dieudonne's theorem (in [131 ,p. 123) we can obtain F as the sum

(f two components, one in the subspace and the other the corresponding error.

2. There exists .1n isomorphism between the lattice of the subspaces and

the lattice of the corresponding representations. (a,e Gordon ,191).

Theorem 1: Every function F(x,y)E C°' Q (R„1 admits the following development:

F (x . y ) = p (F) + R(F).

where

	

P-1	 4-1	 P-g 4-1

cF) = ^ L i (F)O i (x)+L Mj(F)%Pj(y)-L 1,,' L,M3(F)Oi(x)4Gi(y)

	

=o 	 i.o	 i.o ,.o

= P, (F)+ P2 (F)- PIP2(F),

R(F) = ff 3,(x.t)G2(y.u) D t D . F(t,u)(It du.
Ru

By using the following; diagram, remarks 1 and 2, and formulas (3), (4), (5) a

and (6), we arrive at formula (7).

We can easily verify that P(F) satisfies all the necessary interpolation

conditions.

This diagram suggests that we compose PI (F) and P2 (F) to obtain P(F).

10
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Denote this operation by m, thou

Pff)= (Pi (DP2)(1')=P,(F)+P2(F)-P,P2-(F).

In the terminology introduced by Gordon ([10] p. 234) P(F) is c Bled the numlnutl

approxhnation.

We now look for F in the form

F (N . y) = p ( F ) + r ( 1' ),

where p (P) is the component of P in the subspace N x (1 NY satisfying the inter-

polation conditions

	

L I hi i (F	 L I hi 1 [1)(F)], i=0 . p - I . J=0,q-1.

and p (P) is the corresponding error, i.e. the component of P in the comple ilia ntai;y

subspace of N, n NY.

Theorem 2: Any P(s,y) c C"' `1 (11, 11 emi be written in the form

F = 1)( 1') + r(r).

where

LIml(F)$j(R)q!i(y) P,P2(F).
1.

(

o i_n

r ( 1')	 J	 GI(x,t)Dt1'(t,y)dt i. J G2(y,u)Dj(,u)CILl

fJ

	

I r

(	

^u

R G I (x,t)G2 (y,u)D t D F(t,u)dtdu m
J

=RI( F ) + 1Z 2 (F )- R 1 R 2( F ) (Ri(oR2)(F)•

An immediate justification of the formula is suggested by the following

diagram:

(3)



V;' fl NY

N x n NY

1)

Remarks:

1. Theorem 2 can be considered as a generalization of a development of
Stancu (see (29)),

In fact, if one particularizes as follows,

J9 = D(P,0) J9 = D (O ' q )x	 x	 y	 r	 I=(0,1],I'= (0,17,
LiM; (FN = DF(0,0), i=O,P-1,	 -0

one obtains the taylorian development of Stancu:

P-1 q-1	 ,

F (x,Y) - 	
xi	 J	 ( i ,J)	 1y

_DF(0,0	 1	 f
i.o 1,0 1	 i !	 )+ (P - 1)! J	

(x - t)P-1 DP(t,y) dt +
0

1	 1

(^ _ 1) i J (Y - u)+ -1  D10,a) r(x,u)du +
0

f

1 1 (x - 
t)+ 1 (Y- U)q -1

D	 F(t,u)dtduO	 (P-1)!	 (g-1)!	
( p a) dtdu

2. Obviously p(r) satisfies the necessary interpolation conditions. Gordon
calls p(f) the minimal approximation.

The diagram in this case gives us the errors R, (F)and R 2 (r) of the opera-
tion of composition, then r(r),

r(F) = (R I m R2)(F) =R 1( F ) +R 2 (F)- RIR,(F).
We can obtain another expression for r(r) by making another diagram.

12
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Theorem 3: Every function F(x,) ,) F CP'4 [R„J can be written in the following

form:

F(x.y) - P 1 P2 (F) + P 1 R 2 (F) 4 P2 R t (F) i R 1 ? 2 (F) -

P-1	 4-1	 P-1

L L L,Mi(F),P,(x)w, ( y )+L	 f G 2 (y,t1)D ,, [L i (F)) du
+,o ,=o	 i.o	 1

4-1

	

+ ^^!' i (Y) I G1(x.t)i2t lM ) ( F ) ) dt 4 .	 G1(x,t)G2(Y•u)l)tD„(F)dtdu (10)
JR,,

We justifyy this fornit11:t in a mamwr identk-al to the preceding one but we

begin with the following diagram:

x	 Y

N n N'
x	 y.

for example, for the sha{ied part we have the following conditions: F(x,),)

N x and F(x,y) e NI . Than we have the representations

P-1

F(x,Y) _ L L ; (F) (f, (x )	 (11)
i n O

F( xc y)	 f G 2 (Y.u)D F(x.u)du	 (12)
^J t

By substittltifIg (11) into (12) we see that all functions F(x,)') t N x n Ny can

be written in thr form

P-1

F(x,y)	 It, (x) fG 2 (y,	 Li (F)) du.
is t

-- --„!1

13



Similarly all F(x,y) e N y f1 Nx can be written as

q-1	
f

F(x,y) q 
L Oj (Y) I
i.o	 r'

G 1 (x,t) D t W j (F)1 dt.

In particular since we have already proposed Theorem 2 we obtain it taylor-

laii development whose expression is different from the rest.

Formulas (7) and (10) were deduced by Gordon in a different way (see (131

p. 039, [17) p. 23, 2.5).

We have demonstrated a method ill the very simple case of bivarinte fune-

Lions and presented for them the niminnal and minimal approximations. This

discussion is an introduction to the case of several variables and to the subse-

quently more complicated representations.

The above formula gives us a very interesting way of introducing a scalax.,

product for the bivariato function spaces. For a particular simple choice of the

operators and the functionuls we obtain one of the Sard spaces (20) which is very

Often used in numerical analysis.

1.1.2 Generalizations of. the Development of A. Sard

Let R, = I' x I", (a,b) c R,. and p, q are non-nogative integers such that

p+q=n. A. Sard in [201 introduces the space B N s = B 1 s (a,b) = Bn,q (RU ' a,b)

as the collection of real-valued functions f(x,y) defined on R U and having derivatives

(r. ci)
ll (x ,Y) (x ,Y) e R q

q -j.j)
D (x, b) x e I' j< 9,

(3.n-j)
Df (n,y) Y e I i < P,

which are continuous. Assume p + q - 2m, a - 0, b - 0.

14
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Theorem 4: Every function f(x,y) t 
Bp . ,I can be written in the farm:

f = A + 0 + C + D	 (13)

where

^

A	 "—
^	 1 	 ,l	 ^

)- Uf (0, 0), li =	 "
I	 2m--1	

. 2m - 1)
(Y- u) 	 Di (o,u)clu.

fi	 ! (2m-i-1)!
♦ JC2m i<m 0

J

C
1 	 (X-t)2m-J-1	 m-1	 m-1	 m-1♦ 	 ii sm-	 1)

	 ff
(X_t(X-t (y

Dt,)dt	 -
	

D^t.u)dtdu..Dy!
(2m-j-

I)! (m-1)!	 (m-1)!	 (m_I),
J<m	 0 R u

To begin we will write out in detail the first sum.

m-I m-1

A - A I + L A2',	 + L A.I.,
i.0 ,.o

m -1	 m-1
►► • hare Al cc

%.11	 ).0

M-1	 m-1

L A
l..  ^,	 D^(0,0).

t.0	 two ,.m

m

^
-I	 m-1

^-^	 A '.1	 -

2m-1-j

x1 ^, Dfc0.0(	 )
i

J .0	 1.o ,.m

Construct the following diagram-

(Ker 1)^ )' (Kc•r 1Vz-)
:m- 1

(Ker 1) m ) o

y m 	 (Kvr y ♦ I).

y 	 (Ker NY
^i0 + ... r A 2.1— i

i

',	 I

I x	 x M-1 x 	 X 2m- 1

Y	

)r

A 3o +...	 +	 A11 11 -1

15



Denote by

i
Dl, 131= a—.x

3x1	 r Jyt

Also deno:-1 by S[xj , S[ym, .	 , y2m-1 l , the subspaces generated by x and ym,

... , y2m -1 , respectively.

It is clear that all f(x,y) e Ker DX n Ker Dm admits the representation A lp

all f(x,y) E S[y i l n S[xm , ... , x 2m-1- i l , j - O,m-1 the representation A,1,.,,

j = O,nn-1 and all functions f(x,y) E Sfx l l n Sly,,,, ... , y2m- 1 -1] the representa-

tion A, , I, i rA O,m-11

Search the subspaces now for the one which has the B representation, Fol-

lowing the same diagram we prove that all f(x,y) which are elements of the sub-

space {Sill (1 (Ker Dym ) ` } U(S[x) n (Ker D 2m-1 )') U ... U {S[x'n]	 (Ker Dn'+1)'}

can he written in the B form.

Actually for all f(x,y) E S[x 1 l n (Ker DYn'-i )', i - O,m-1, we have that

I	 2m-1-1

f (x Y) = 
x' f (Y- L1 )+	 Dti.2m-Q f(O, u)du, i = O,m-1.
! J	 (2m-i-1) l

0

Similarly we easily see the C representation corresponds to the subspace

(s [I) fl (Ker D^'")'} U {S[yl n (Ker DXm-1 )'} U .... U (sly, ] n (Ker Dm"),)

rinally we know that all f(x,y) E (Ker Da)' n (Ker DY)' admit the D repre-

sentation and formula (13) is thus proved.

Remarks

1. rorniula (13) of Theorem 4 constitutes the taylorian development of Sard.

The author has obtained this representation in a completely different manner.

(See [261).

10
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2. The method, the one by Which we have just constructed the formula of

Sard, permits us to obtain more general representations possessing similar

characteristics. We have presented the method in the trivial case. We are able

to obtain in an analogous manner more complex representations of the form

(notation is obvious)

f (x .Y) _ 	 0, (x)'N (Y) L M ( f ) +	 G
2m-

1(x ) S 1	
ttn.m)

1	 ^ 1	 ^	 (y,u)Af(t,u) (Li(f)jdu+
ttJ<2m	 I<m	 0

1+ E'PJ(Y) J 
G 2m-J (x,tt)D 2m-J.o) (M1(f)7dt+

J<m	 0

PP1 1	 < m)I J G n,(x,t)G n,(Y,u)Df(t,u)dtdu	 (14)
0 0

We have replaced the taylorian functionals by the continuous linear functionals

L i m ] ,i+j<2m.

This representation is considered as a generalization of the taylorian de-

velopment of Sard.

4-
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2. Decomposition of Linear Differential Problems

In the second part of the report we will obtain representations of multi-

variable functions starting With appropriate decomposition of certain linear dif-

ferential problems, We also find again certain developments obtained in the

preceding part of the report. We organize the material in the following way.

Two differential problems, for the bivariate case, are treated in the first

section and we obtain the maximal and minimal approximations and the corre-

spending errors. One ease in particular permits its to concretely illustrate a

result given by G. Birldiol'f and W. S. Gordon [7] .

In the second section we study live differential problems for the four variable

case whose solutions can be interpreted as defining an interpolating function for

a system of given curves and for a system of given surfaces, respectively. We

also study the corresponding errors. As one last example, for the four variable

case, we intend to illustrate a partial symmetric intermediate approximation.

Finally we consider the general case of n variables as providing the fnter-

polating function of certain hypersurfaees in j variables, j = 1,n-1-1 and the cor-

responding errors as solutions of certain differential problems. For the n

variable case we are able to obtain all the total symmetric intermediate approx-

imations and the corresponding errors.

From the point or view of the theory of differential equations we obtained

the solution to a certain class of differential problems by systematically using

[lie same method based on the appropriate diagrams, suggesting the mentioned

isomorphism between corresponding distributive lattices.

18



2.1 Bivariate Case

We adopt the same framework as found in part one.

Let the non-homogeneous differential problem be

^

IQx Jy F(x,y) = e(x,y),

	L i (F) = f l (y) ,	 i = 0, p-1,

	

`Mi(F)=gl(x),	 j =0,q-1,

the symbolism is the same as in part one, e(x,y) a C°(R.), f i (y) a C9 [I"],

g i (x) a CP [I'] , i - Fp-1-1, j - 0, q-1.

Suppose that the compatibility conditions

LI(gj)=hii (fl ), 1=0,P- 1 , j =0,q-1,

are satisfied. We can then assume a solution of the form

F(x , y) Fl (x ,y ) + F2 (x, y ) , F e 
CO , q [RU]

where F l (x,y) is the solution to the differential problem

0. J9y Fl (x, y) = 0

L i( Fi) =fi(y ) , i=0.P-1,

Mi (Fl
 ) =g

i(x), j=0,q-1.

and F2 (x,y) is the solution of the problem

"xDYr2 (x , y ) = e(x,Y)

L i (F2 )=0, i=O,p-1,

M i ( F2 ) =0 , j =0,9-1,

We then have from the first part that F2 is

F2 (x,y) = ff G 1 (x,t) G 2 (y,u) e(t,u) dtdu.
R^

, , >,

(17)

(18)

(19)

(20)

(%"1)

(22)

19



Following the diagram corresponding to Theorem 1, part one, and t1.-

relation

PKer:9Ivy ` PKer19x q. PKcr151i — PKi09x Hcr19yI	
(23)

where by Ph4rl,xY we mean the operator corresponding to all F(x,y) a C P.q [RJ ,

the component in tho subspace Ker ;) dy . We decompose the second problem into

three differential problems:

'9X.11= 0,

Li(I'll) =fi(Y), i=0,P-1,

y f1 2 = 0

M 1 ( F12 ) = 9 1 (x )	 J = 0, q-1

I)X P13 = 0,

x9  F13 = 0'

L l hi i ( 1°13 ) =L ;((; 1 ) =a i1 , i= 6,P-1. J =0,q-1

for which the solutions are:

p -1

1'11 	 ft(Y)`A1 (^)^

9-1

1'12 = T, 01 (x) `P1 (Y)
1=0

r13 -	 all f 1 (Y) 91 (x)
i=o 1=0

rrom (23) we conclude

rl = r11 + F12 — r13,

from which it follows that

F = r11 +F 12'—  F1 A + )cz .	 (24)

20
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This is the result proposed by Theorem 1, part one. The uniqueness of the oolu-

tion to problem (17) Is due to the hypothesis made on the operators L i and Al, ,

(see part one).

Remark:

ror the parlUcular case: 9X =D t2p, 0)  , D n D (o ' 2P) ,

.M (F)=F (` ,i)L	 i=0	 1i	 i,Yi),	 P-	 1 =' P- 1 , X ;. Y i	 0 or 1,

G. Birldioff and W. J. Gordo obtained the same result using an Induction method

(see (7j).

Particular Case

We are going to consider a particular case which appears in [7) . The solu-

tion given by the author on p. 204, formula (10) is inexact and will be corrected

Ill what follows:

a,
F x,y

a
^ = 0, 0:5 x,y 5 1,

F(x,0) = 0, F(O,y) = 0

I

F(x,1) = 0, F(l,y) = 0

FY (:<, 0 ) = ho(' ), IF, (0,Y) = fo(Y),

FY (x , 1 ) 	g i (x ), FX (1,Y) = fi(Y),

where fi (y), q u (x) e C'u [0,1) , i,j = 0,1, and we have

FXY ( i ,i) = d,- fj M = a-9 1 (j), i,j=0, 1.

21
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Then the unique solution in C 4,4 [Rd is of the form

r (x•Y° to(Y) fp (x)+ kI (Y)ft(x)+ po(x) go(Y)+'pt(x)BI(Y)—

—ko(Y) t-o(X) r(0.0)—ko(^)$o Cx) I(Y)r(0,1)—^t(x)$o(Y)r(1,O;—
(1.1)	 C1,O)	 (1,0

— k I (X)4 I (Y) r ( 1 . 1 ) — 4' 2 (x ) `P o (Y) r ( 0 , 0) — $ 2 (x) 1 (Y) r ( 1 , 0) —

(r.ot	 (t.o)	 o.i >
- , (x)to(Y)r(o.l) -43Cx)$I(Y)F(1, 1; -q5 2 (Y) 4'o (x) rR: 10 -

(o,t)	 (o. t))	 ((o.I))

(Y)P (x)r(0,0) - 43(Y)00(x)r(1,0)-43(Y)4^I(x)r(1,1).

where

'AQ (x ) = x(1 - x) 2,

k' I (X) = x2 ( 1 - x).

S 2 (x) = (1 + 2x) (1 - X)2,

4` 3 (x) = ( 3 - 2x)x2,

are the cardinal functions for the polynomial interpolation problem in the sense

of Marmite (see Davis [12) p. 45).

The case where the four initial boundary conditions are non-zero has been

cons:,dema :I by Gordon in [17) p. 38.

Let is'. .iow consider the following differential problem:

i9j f,(x,Y),

1)Y F= 1`2(X,Y),

L i m, ( F ) =a ll , 1 = 0, p -1.	 0,	 q-1,

where f 1 (x,Y) e C o [IV ] x C" [I") , f2 (X,y) a C" [I 1 ] x C o [P') . The following

condition

19% f 2 (X ,Y) _ J9Y f I (x,Y)	 (26)
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is assumed to be satisfied, then every solution r(x,y) is necessarily a sum

F(x,y) = F, (x,y) + F2 (x,y)

where Fl (x,y) is the solution of the problem

9x FI = 0

9YF1 =0

LL i M i ( Ft) =a ij . 1=Q i p - 1 , 1=0,q-1,	 (27)

and r2 (x,y) is the solution of the problem

9„F2 = fl(x.Y),

j9Y F2 = f2 NY) .

L i m, ( F2 ) =0 , 1=0 , p - 1 , ]=0,q-1.
	

(28)

The solution rl (x,y) is obviously given by

P-1 q-1

FI (x,Y) = E E al j O i (x)'uj (y ) .	 (29)
iso j=o

Looking for the expression of r2 we return to the diagram corresponding to

Theorem 2, part one. Let T be the operator considered in the problem. Then

we deduce that

l	 P	 , = P	 , + P	 , - P	 ,	 (30)(Ker T)	 ( Ker9x)	 ( Ker 9Y )	 ( Kcr9x) n(Ker9Y )	 A

by (KerT)' we mean the complementary subspace of the null space of the opera-

tor T.

23
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Then to find the expression for P2 (x,y) the decompose the differential problem

(28) into three differential problems:

P, F., f , (x•Y),

LL,(r21 )=0, i=01P-1-1,

I ^y F22 = f2(x,Y)

Sl nli (r22 ) = 0 , i = 0, q-1

rod, r,. = J9x f2(x,Y)

tm

1(Fz3)-0,i=01P-1,

i( F23) =0, J =0,9-1.

For the reasons given in part one, we then have

1

F21 	 G,(x,t) f,(t,Y)dt,

f1/

0

F22	
G ,(Y,u) f2(x,u)du,

J 10
1	 1

F23 -	 G,(x,t)G2(Y,u)J)tkf2(t,u)dtdu.
0 0

T '• ing calculated the relation in (30) we obtain

F2 = F21 + F22 — F23 .	 (31)

Consider the same differential problem and work this time for the expres-

sion of F., _`rom the diagram corresponding to Theorem 3, part one. Thus

F2 ° rz +F + F3	 (32)
z

where

(1) F 1
2

	 the differential problem

^. r2 = f I(x,Y),

L(r2) = 0, i = Cl' p-1.

24
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i

and corresponds to the null spaco of tho operator 0.

1'^	 ^nti(1'i)'^i(Y)•
J.0

(2) F 2 satisfies the problem

^^. 1's = f 2 (.*, A

NI l (F2) ^ 0, J = 0, q-1

and corresponds to tho null spaco of tho oporator D. $

n^-^1

1'1 °L,Lt(17z)01(x)

(3) 10, , like ribove, is 1,140 solt,hun to tho problem

rd^^9y rF nDxf2:.:.

ll L l (l2 a 0, i = 0, p-1

3Ki(1'2) =0, J=0.q-1.

It is a olcar result that

q-1	 i

(Y)JC,(X,t)nijti',(t,3')] d t,
iwo	 0

2
1'2	 L,'h i (s )	 ^2(a'^u) L i (fl (x,u)] du,

i.o	 0

1
 = J

t, i (.,t) C s (Y,u) Pt fl(t,u)citciu.
0 •0

'.Phis is the result givoa by Theorom 3, pat ono.

In an analogous mann0i wo oan tront the case of three and more than throe

variables.

25



2.2 Splillo I imettaub s in Soverai th riablos

This suction is meant in briefly present Ill unified nuuulor certain types

of spline functions Sri sovoral variables. The ninjor role ill consti-llction of

the+sc spline flulctions i; played by univariate spline functions.

Tliv reasons behind placing this s(Iction'it the and of this report are:

1. 1Vc use the nu'thmis of part Ono, soctiois one and two ill order to derive

tho :ulalyi.ic e\prot si gn of the spline function and the corresponding remainder.

t)., The flifferontia. problems studied ht part two of tho report suggest to as

tho Ellier-l'agrangc clluatiolls of the iiiillimizatioll properties s atisfied by the

spline functions under consideration.

26
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2.2.1 Recollections

Let n
o
: O= X O < Y 1 < . . . < x P , - 1., ^.r": 0 e yO < yl < . .. < yQ , : 1 and

77: 0 = z o < z n < ... < z r , = 1 be three partitions of tine intervals I I R [0,1],,,

I' 1 = L 0 . 11 y ,and I" 1 = L0,11 ^ .

Let E'21; [I'] be the collection of functions f defined oil which are of class

C 21' inside each subinterval Lx,, %,+n] of 
It 

and which have simple julep discon-

UDUMes ht the (2111-2) t1i derivative across the joints x l , 1 < i < P - 1. Similarly

doftie the space E 211	 E1, [I' l l and	 n;; [I' 1 '] .

Define En x2",' rr
2 "„[1 1 x 1 11] as the space of funotions f(x,y) defined on i 1 x I” and

whose normal derivatives satisfy the conditions

	

SSµ.0)	
1( I- ) f ix * ,Y) c E77" [I "A r V x* c V, 0 <_ a 5 Zia — 2,

(0rv)
(2°) f(x,y*)E E,1;L I'l r 11y* e I": 0<v 2In-

Per the trivariate case we introduce, in an analogous fashion, the space
E21). 213.21' [11 ] , when R = I t x P  I"'. The partition7r' x 7t" x»'" of It yields

I I x i"X 1 0'	 u	 to	 u

parallelpipeds denoted R I 
j k ' 

i = p ,P 1 , j = 0,, It = O,R',

Let the partial operators be

Li(f)='Ct[f(x,Y*,z*)l. for 1111 Y^c *CJ."x I"'
2	 ,

^f(xrYrz)
c1'1,,2,,,2p

1 $x Ox t ar Ll,,i)i 
hi, 

( f ) =111 1 Lr(x * rYr z *)lr foI'11i.1 Xi Z*C I'X lmr

N ot M =n k[ f (x*rY * r7)]. for nllx*,y*sI1XI/.

i = 1., P, j = 1, Q, It = 1, R.

The functionals C 1 , 1 < 1 < P are linear, continuous, defined oil E 2j; [ I 1 ] , and

of tine following form:
f (x ,c) ,	 = 0, P'

f(a) 
r 'c 0 , p ' r a

C)	
= l r P- 1.

r 

Similarly oil 	 spaces ETn [I''] , U 211 [I t "] we define the functionals m j 11Q

and it , It - .1,R.
27



We introduce as in sections 1,2 and part one differential operators 0 x , 9Y,

ht of degree p, where P, Q, It > p.

Donote by S X the collection of spline functions related to the differential

operator 1, turd the functionals f, it 15 i e P. The dimension of S x is P. Let

IQ i (.X)} H'1 be, the cardinal baso of Sx.

A spline function a(',) c S. for the ease of the differential operator :D", has

the following Properties

(1) s(x) is a polynomial of degree less than or equal to 2p-1 in each interval

(H) the first 21)-2 derivatives of s(x) tire continuous at the joints x j , i

Starting with this unified definition we have for the trivarlato case, we can

generate the spline functions of Gordon and Ahlberg-Nilson-\i'.tlsll.

2.2.2 W. J. Gordon's Spline Fanctions

Suppose we Nish to obtain an intorpolation formula

f (x ,Y, z ) "' S(s,^,,7) .ti 1,(x,Y,z), 	 (49)
such that

taiV^14v l9Y t^z"1^; S(N,Y,z)	 0	 (50)

in tite interior of the parallelpipcds RI i k , i = O,P' , j = 0,(^°°, I: O,R', and that

the following interpolation conditions are satisfied:

L ; (f) - L i (S), i ° 17P,

M I (f)	 A13 ( S ), )	 1,2,

N k (f)	 N,, (S 	 1:x 1, T.	 (G1)

We donote by Q* the tldjrint furor of the oporator D.

The :zpli'nt', function s(x,y , ,z) was defined in a different way by Gordon 0181.

To obtain the analytic expression of s(x,y,z) and r{x,y,z) the construct the

following diagram:

28



Via analegous, reasons as those of sections 1,2 and Bart 1 we can write the

following formulas:

1 . 	V	 R

S(x.y.z) -	 L,(f) ; ^(x) + L tii l ( f )Y'i ( y ) ti ^l N k (f) X k (z) -

i-1	 ,=I	 k=1

1,	 Q	 P	 R

-	 LiMI ( f J,(x),pi(Y)- }	 LINk(f) t'I( x ) X k ( Z ) -	 (52)
i-1	 dal	 =1	 k=1

Q	 R	 1'	 Q	 R

L	 %i,N,(f)y'1(Y)Xk(z)+	
n	

1.,MINk(f)ri(x)4i(Y)Xk(z)
1-1	 k-I	 1-1	 k=1

I(x,y.z) - 
fj. G

1 (x,t)GZ(Y,u)G3(z,v)N^ ^1^N^ 9 . iQ v f (t,u.v)dtc'. -jdv	 (53)
,J 	 R

where G"(x,t) is the function Much appears in the error formula for a univariate

Spi ine

f (x) - S(x) + r (x)
	

(54)

P'-I

S(x ) _ L v , ( f ) ob i ( x )	 (J5)
i-1

P'-I

r(x)	 I {G l (x,t) -	 yi(x) f i [G(x.t )]} IQ IQ f(t)dt =
I	 .J	 "

V	 i-1

f
Go(x,t)D^* D1 f(t)dt.

	

	 (56)
0
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G n (x,t) is the corresponding Green's function of the boundary value problem

D K D x f (x ) = e(x)
(_)

f (0) = 0.
I^,	

f(1) = 0, a= 0,p-1,

DAD
f(x)eC'"[I']	 -^(N)ee,[I']

(57)

In the sum which appears in the integral, we consider all the functionals't, ,

i = 1,15 ,with the exception of those in the boundary value problem (57). (See

Birl.hoff and de Boor [G]).

The functions G2(y,u) and G3(z,u) are similarly defined.

The analytic expressions of the spline function s(x,y,z) and the error r(x,y,z)

were obtained in a different way than Gordon's, in [181, for the bivariate case.

Minimization Property

Gordon's spline function minimizes the pseudo-norm

JJ J 	
[J4x 1^1y J9z f(N,Y,z)] ? dxdydz,	 (58)

Ri,

with respect to all functions which are in the space C P ' p ' r [R ] , and which satisfy

the interpolation conditions (51). (See [18] , for the example).

2.2.3 Multi-variable Spline Functions Introduced by
Alnlberg, Nilson and Walsh

We are looking for an interpolation formula

f (N ,Y, z ) = S i(N,Y,z ) + '• (x ,Y, z )	 (59)

such that S 1 (x,y,z) satisfies the equations

lOx	 S 1(N ,Y, z) = 0,

IQy.y S ,(x ,Y, z ) = 0,

D*s S 1 (N,Y,z) = 0,	 (G0)

30
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in each of the parallelpipeds R I J k, with Coo follow;ng interpolation conditions

L i NIA(S I )=L i NI I N k (f),= i=1.,P, j = 1,Q,k=1,R	 (61)

This definition is given in [1]. The authors have not studied the corresponding

error (see also [91). The diagram resembes that of part one section two but we

replace Nx , Ny , NZ by Sx , Sy , Sz . We have the formulas:

P ^r 

L

Q 
rr

R

LS I(X ,Y, z ) = E 	 Lim j N k M PI ( X)OJ(Y) Xk (z),	 (62)
1.1 J.1 k.1

r (X ,Y, z ) =
L ^t(X 0,(Y) 

J 
G3 (z,v)9^9v [LIMJ(f)]dv+

Q	 R

	E 	 f

R

+ EE Oj (Y)Xk(z) 
	

G I (X,t) 9r 91 [ M j N k (f)ldt + E F1 01(X)Xk(z).

	

j.1 k.1	 I^	 i.1 k.1

P	
(rGz(Y,II)P*L [LINk ( f)]du- Zg5,(X) lJ	

G2(Y,u)Ga(z,v) O*D„6*Dv[L; ( f)] dudv-
1 11	 i.1	 r I „x I”,

Q
_Tijj(y)
 ff1

,G(x,t)G3(z,v)D J91J9*9v[MJ(f)]dtdv
j.1 	Ix IP

R

EX- k(z) ffi

	Gi(X,t)Gs(Y,u)9*JD *J9^[Nk(f)ldtdu
k.1	 Ix I'll

+fffR G
I (x,t)G2(Y,u)G3(z,v)9*J 9 *J9 D*f 1v [f(t,u,v)] dtdudv.	 (63)

U
Minimization Property

The spline function s 1 (x,y,z) minimizes the pseudo-norm of (58) with respect

to all the functions in the space C P,P,P [R ] which satisfy the interpolation con-

ditions (61). (See [11).

REMARKS

We can similarly introduce spline functions in n variables interpolating

hypersulfaces in j variables j - 1,n-1-1. Using univariate spline -functions we can
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generate a lattice of projectors whose "minimal" projector will be the tensor

product splines and whose "maximal" projector will be a spline function in n

variables, interpolating a network of hypersurfaces in n - 1 variables. Of course

of great interest will be all the spectrum of intermediate splines interpolating

hypersurfaces in any number of variables from one to n - 1. It is unnecessary

to mention the groat importance to have at hand the lattice of corresponding re-

mainders for numerous problems in numerical analysis.
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