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SUMMARY

This tutorial reviews the Optimal Control Model of the human operator.
First, underlying motivation and concepts are presented, along with a
review of the development and application of the model. Then, the
structure of the model is described. Finally, results validating the
model are presented.

INTRODUCTION

This paper reviews the Optimal Control Model (OCM) of the human
operator developed principally by Kleinman, Levison, and the author
(refs. 1 and 2, for example) at Bolt Beranek and Newman Inc. The OCM
was originally developed for describing and predicting total system
performance in continuous, manual control tasks. However, the model (or
portions of it) has proven to be useful in a broader range of problems.
Moreover, though not intended to be a structural analog of the human
operator, many features of the model have interesting interpretations
from an information processing view of human performance (ref. 3). The
aim of this paper is to provide the reader with an overview of the OCM
and a guide to the literature for more detailed information. Accordingly,
it begins with a discussion of underlying motivation and a review of the
development and application of the model. This is followed by a
discussion of the important structural features of the model, some basic
validation results and brief concluding remarks.

MOTIVATION AND REVIEW

The human controller is self-adaptive and, if motivated and given
information about his performance, will attempt to change characteristics
so as to perform better. On the other hand, human performance is limited
by certain inherent constraints or limitations and by the extent to which
the human understands the objectives of the task. These observations
serve as the basis for the fundamental assumption underlying the 0OCM,
namely, that the well-motivated, well-trained human operator will act in
a near optimal manner subject to the operator's internal limitations and
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understanding of the task. This assumption is not new in manual control
(e.g., (ref. 4)) or in traditional human engineering (e.g., Simon (ref. 5)
calls it the Principle of Bounded Rationality). What is novel are the
methods used to represent human limitations, the inclusion in the model of
elements that compensate optimally for these limitations, and the extensive
use of state-space concepts and the techniques of modern control theory.

Clearly, if the basic optimality assumption is to yield good results,
it is necessary to have reliable, accurate, and meaningful models for
human limitations. Insofar as possible, these models (or their
parameters) should reflect intrinsic human limitations or should depend
primarily on the interaction of the operator with the environment and not
on the specifics of the control task. It is also desirable that the
description of human limitations involves as few parameters as possible
and that it be commensurate with the modern control system framework that
is being employed. These principles have guided the development of the
models for human limitations that will be described below.

There were several reasons for employing a modern control approach
to analyzing manual control tasks, even though methods based on classical
control techniques had been fairly successful. Initially, the principal
motivation was provided by the basic logic of the optimality assumption
and by the belief that state~space techniques provided a systematic
approach to multi-input, multi-output systems that avoided some of the
difficulties associated with the application of multi-loop analysis to
man—in-the-loop problems. The powerful computational schemes associated
with these techniques also were attractive in light of the complex monitoring
and control problems that were becoming of interest. The basic approach
to human limitations and the optimality assumption appeared to suggest a
model that might adapt to task specifications and requirements
"automatically" and not through a subsidiary set of adjustment rules.
Finally, it was expected that the use of a normative modell and time-domain
analysis would facilitate "modular" and "graceful" development of the model
as new facets of human behavior were considered and understood.

A review of the progress and evolution of the OCM will provide some
feel for the extent that the above-mentioned objectives and expectations
have been fulfilled. Further insights will be provided by the
discussions of the model and the validation results.

1The model is normative in that it predicts what the human should do,
given his limitations and the task. Thus, for a new situation, one need
only determine the operative limitations and what should be done. The
fact that this assumption works well is testimony to the adaptability and
capability of the trained human operator.
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The first large-scale attempt at using the machinery of optimal
control theory to model the human controller was initiated by Elkind et al.
(ref. 6). Their study demomstrated the feasibility of predicting control
characteristics and display requirements by systems analysis techniques
based on optimal control theory. However, extremely simple versions of
the human's limitations, information processing behavior, and compensation
were used, leading to gaps and deficiencies in the results. What is
essentially the current structure of the OCM was first proposed by Baron
and Kleinman (ref. 1). They also proposed a visual scanning model that
could be included in the optimization framework. Levison, Baron, and
Kleinman (ref. 7) established the connection between observation noise and
controller remnant, thus relating a measurable human limitation to
parameters of the OCM and providing a mechanism for predicting remnant.
Baron, Kleinman, et al. (ref. 8) used the remnant results and the structure
developed previously to predict human performance in a complex, multi-loop
VIOL hover task. These results demonstrated that one could proceed from
relatively simple calibration experiments on single displays to prediction
and explanation of human behavior in more realistic tasks involving two
displays. This study also revealed the importance of including bandwidth
limitations and randomness (motor-noise) at the controller s output as
part of representation of human limitatiomns.

Kleinman, Baron, and Levison (ref. 2) showed that the model could be
used with a relatively invariant set of parameters quantifying human
limitations to predict performance in three basic tracking tasks involving
a range of control strategies. Excellent agreement between experimental
data and model predictions of describing functions, remnant spectra, and
state and control variances was obtained. This provided the most detailed
validation of the model and demonstrated its capability for adapting to
different control situations without resorting to auxiliary adjustment
rules.

Baron and Kleinman (ref. 9) applied the model to study the human's
precision control of a hovering VTOL-type vehicle. The effects of
changes in aircraft stability derivatives on rms hovering performance
were computed using the model. The results were compared with
experimental simulator data and showed excellent correlation (within + 1 ©
in the data) in most cases. 1In this study, parameters characterizing the
pilot were essentially the same as for the basic tracking tasks mentioned
above.

Kleinman and Baron (ref. 10) analyzed a piloted approach-to-landing
task to evaluate pictorial display requirements. This problem involved
a time-varying information base for the pilot. The effects of different
display formats and display symbology were predicted in cases where the
aircraft was subjected to turbulence and/or constant updrafts. The
ability of the pilot to estimate these external disturbances and take the
appropriate corrective action to minimize glide path errors was analyzed.
Predictions of system performance were compared with data obtained in
independent experimental investigations. The model-data agreements were
excellent and demonstrated the model's ability to predict the time-varying
adaptability of a pilot to updraft disturbances. 1In addition, the
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agreement between model results and data for cases in which there was no
turbulence disturbing the aircraft provided further evidence of the valid-
ity of the model for human randomness (remnant).

Theoretical and empirical work proceeded to extend the model to more
realistic situations and more complex systems. Levison et al. (ref. 11)
developed and tested a mechanism for predicting task-interference in
multi-task environments (not involving scanning). In addition, a method
for estimating the relative attentional workload associated with a given
task was devised. Levison (ref. 12) also investigated the relationship
between observation noise and certain display characteristics. This
provided direct empirical evidence for the scaling observation noise model
and also showed how an equivalent observation noise could be used to
account for perceptual thresholds. Levison and Kleinman (ref. 13) modeled
a carrier-approach task that involved varying display gains, sudden changes
in information base, and a more complex time-varying disturbance. Baron
and Levison (ref. 14) used the model as a basis for a display analysis
methodology and applied it to the analysis of vertical situation displays
for STOL. The response to wind shears and the design of flight directors
were also considered. These latter two studies were analytic in nature
and did not involve any experimental verificationm.

Kleinman and Killingsworth (ref. 15) used the OCM to predict pilot
performance during the flare and touchdown phase of STOL aircraft landing.
This was an ambitious modelling effort since the vehicle dynamics were
highly complex, ground effects and turbulence affected the motion of the
aircraft, and the pilot was required to land within a short touchdown
area. To analyze this situation, the model was extended to include the
generation of open-loop commands by the human operator. In this study,
model predictions were made first; subsequent comparison of these results
with the test data showed very good agreement.

Kleinman and Perkins (ref. 16) used the OCM in an antiaircraft
tracking task. The operator's task was to track an aircraft target in
both azimuth and elevation using a visual gunsight. The dynamics of the
sight and associated gun mount varied with time, making the tracking
task very difficult. 1In addition, the target motion could be quite
arbitrary (although not stochastic) and was unknown a priori by the gunner.
Comparison of model vs. human ensemble statistics for the several typical
aircraft trajectories showed good qualitative and quantitative agreement.
Baron and Levison (ref. 17) also applied the OCM to data obtained from a
simulated antiaircraft tracking task. This application demonstrated the
model's utility in analysis and interpretation of experimental data. 1In
particular, it showed that parameters of the perceptual portion of the
OCM were affected in consistent ways by manipulation of experimental
variables related to visual processing.

Harvey and Dillow (ref. 18) applied the OCM to predict pilot perfor-
mance in air-to-air combat. They reported that "The major conclusion
is that the model worked!" and that it was "reasonably simple to develop."
Significantly, they used model parameters which, with the exception of
motor noise, corresponded to those used in previous applications of the OCM.
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The model was also being used to develop systematic design procedures
for systems involving closed-loop control. As noted above, Baron and
Levison (ref. 14) proposed a display design methodology based on the OCM.
This methodology utilized performance/workload tradeoffs generated by the
OCM to arrive at information requirements and certain display requirements
to meet system specifications. Similar ideas were utilized to analyze
both display and control characteristics for an aircraft with an advanced
avionics configuration (ref. 19). Hess (ref. 20) proposed a more formal
display design procedure using the OCM and included predictions of pilot
rating as part of the process. Hoffman, Curry, et al. (ref. 21) developed
a methodology aimed at display design for highly automated aircraft.

They examined problems of simultaneous monitoring and control and explored
different metrics for monitoring performance and workload with the aim

of developing techniques for investigating tradeoffs between control and
display sophistication.

Although display problems have received the most attention, other
aspects of the system design problem have not been neglected completely.
Levison (ref. 22) has explored the use of the model in analyzing control
stick design problems in a vibration environment. Stengel and Broussard
(ref. 23) have used the basic structure of the 0CM, along with some
assumptions concerning suboptimal adaptation, to determine stability
boundaries in high-g maneuvering flight. And, recently, Schmidt (ref. 24)
has proposed a design procedure for stability augmentation systems based
on closed-loop analysis with the OCM.

The increased interest in flight simulators has spurred some
additional extensions and applications of the meodel. Grunwald and Merhav
(ref. 25) and Wewerinke (ref. 26) have incorporated mechanisms for
describing the utilization of external visual cues in the OCM and have
obtained preliminary experimental validation of their approaches. Although
the subtleties and complexities associated with human perception of a
complex scene are by no means resolved, these studies do suggest that the
OCM could be useful for analyzing closed-loop control behavior based on
external visual cues. The OCM has also been used to model continuous
control performance in a multi-cue environment. Levison and Junker (ref. 27)
studied roll-axis tracking in disturbance-regulation and target-following
tasks and compared performance when only visual cues were available with
performance when the visual cues were augmented with confirming motion
cues. They found that the OCM could provide a task-independent framework
for explaining performance under all possible experimental conditions.
The availability of motion cues was modelled by augmenting the set of
perceptual variables to include position, rate, acceleration, and
acceleration rate of the motion simulator. This straightforward
informational model allowed accurate model predictions of the effects of
motion cues on a variety of response measures, for both the target-
following and disturbance-regulation tasks.
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In a somewhat different vein, Baron, Muralidharan, and Kleinman
(ref. 28) used the OCM to develop a closed-loop model for analyzing
engineering requirements for flight simulators. They predicted the effects
on performance of certain simulation design parameters, such as an inte-
gration scheme and a sample rate. Model predictions were later verified
in an empirical study by Ashworth et al. (ref. 29).

The above studies all focused on the operator in continuous control
tasks. But the structure of the OCM, particularly the information
processing submodel, also lends itself to modelling tasks in which
monitoring and decision-making are the major concerns of the operator. The
first attempt to exploit this aspect of the OCM was by Levison and Tanner
(ref. 30) who studied the problem of how well subjects could determine
whether a signal, embedded in added noise, was within specified tolerances.
Their experiments were a visual analog of classical signal detection
experiments except that "'signal-present" corresponded to the situation of
the signal being within tolerance. They retained the estimator/predictor
and the equivalent perceptual models of the OCM and replaced the control
law with an optimal (Bayesian) decision rule just as has been used in
some popular behavioral decision-theory models. Model predictions compared
favorably with experimental data for a variety of conditions involving
different signal/noise ratios and different noise bandwidths.

Phatak and Kleinman (ref. 31) examined the application of the OCM
information processing structure to failure detection and suggested
several possible theoretical approaches to the problem. Gai and Curry
(refs. 32 and 33) used the OCM information processing structure to
analyze failure detection in a simple laboratory task and in an experiment
simulating pilot monitoring of an automatic approach. They reported good
agreement between predicted and observed detection times for both the
simple and more realistic situations. 1In the latter case, the model was
used in a multi-instrument monitoring task and accounted for attention
sharing in the usual OCM fashion.

Finally, as indicative of future directions for OCM research, a
recent study of Muralidharan and Baron (ref. 34) should be mentioned.
In this work, the information processing structure of the OCM was used
in conjunction with control and decision theoretic ideas to model
ground-based operator control of a number of remotely piloted vehicles.
Though the results have not been subjected to experimental validation, they
demonstrate that these techniques are suited to the analysis of systems in
which operators make decisions at discrete times and exercise direct
control infrequently. 1In other words, the techniques appear suitable
for supervisory control problems.

MODEL DESCRIPTION

In this section, the detailed structure of the OCM is reviewed. The
discussion will be conceptual and verbal; the reader is referred to the
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previous references, particularly references 2 and 8, for mathematical
details. Also, some relations to more traditional human performance
theories will be mentioned.

In order to apply the OCM, the following features of the environment
must be given: 1) a linearized state variable representation or model of
the system being controlled; 2) a stochastic or deterministic represen-
tation of the driving function or environmental disturbances over which
the operator must exert control; 3) a linearized "display vector"
summarizing the sensory information utilized by the operator (including
visual, vestibular, and other sources as appropriate); and 4) a
quantitative statement of the criterion or performance index for
assessing operator/machine performance. Criteria such as minimizing rms
tracking error and control effort are typical. The specific assumptions
concerning this description that are necessary to apply the theory are
given in reference 2.

Given this environmental description, the model of the operator's
behavior incorporates the elements shown in Figure 1. The figure
illustrates only a single dimensional control task but the variables
illustrated should be regarded as multi-dimensional vectors. First, the
displayed variables are assumed to be corrupted by "observational noise"
introduced by the human operator.2 This noise is analogous to the internal
noise level postulated in signal detection theory and provides one means
by which the model can mimic human limitations in processing and
attentional capacity. Different noise levels may be assumed for different
displayed variables, and, if several visual displays are providing useful
information, the noise level associated with each may be adjusted to
account for the distribution of attention assigned by the operator.
Alternatively, a model of attentional scanning (ref. 11) may be introduced
to predict the noise level associated with each variable in order to
produce optimal performance with respect to the criterion variable. This
attention sharing model is crucial for predicting performance in complex,
multivariable tasks. It can also serve as a basis for developing a
variety of operator monitoring models (ref. 35).

At this point the model is dealing with a noisy representation of
the displayed quantities. That representation is then delayed by an
amount, T, representing internal human processing delays. It is possible
to assume differential delays for different sensory channels, but this
additional complication has not been found necessary in past model
applications to mariual control data.

2If visual or indifference thresholds are important, such as with
nonideal displays or external visual cues, these can be introduced in
the model at this point (ref. 10). The method employed involves a
statistical threshold that results in a rapid increase in observation
noise when the signal is below the assumed threshold value. This is
directly analogous to the threshold notions of signal detection theory.
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The central elements of the model are represented in the blocks
described as the Kalman estimator and predictor. Their purpose is to
generate the best estimate of the current state of the displayed variables,
based on the noisy, delayed perceptual information available. These
blocks compute the estimate of this state so as to minimize the residual
estimation uncertainty. What is being captured is a representation of
the operator's ability to comstruct, from his understanding of the system
and his incomplete knowledge of the moment-by-moment state of the system,

a set of expectancies concerning the system behavior at the next moment

in time. It is in these blocks that it is assumed that the operator has
both an internal model of the dynamics of the system being controlled and
a representation of the statistics of the disturbances driving the system.
This representation is analogous to the schema of current human performance
theories, and it is interesting to note that, in this formulation, the
schema must incorporate knowledge of both the expected signals and the
system dynamics being controlled.

Given the best estimate of the current system state, the next block
assigns a set of control gains or weighting factors to the elements of
the estimated state in order to produce control actions that will minimize
the defined performance criterion. As might be expected, the particular
choice of the performance criterion determines the weighting factors and
thus the effective control law gains.

Just as an observation noise is postulated to account for input
processing inadequacies, a motor noise is introduced to account for an
inability to generate noise-free output control actions. In many
applications this noise level is insignificant in comparison to the
observation noise, but where very precise control is important to the
conditions being analyzed, motor noise can assume greater significance in
the model. Finally, the noisy output is assumed to be filtered or smoothed
by a filter that accounts for an operator bandwidth constraint. In the
model, this constraint arises directly as a result of a penalty on
excessive control rates introduced intc the performance criterion. The
constraint may mimic actual physiological constraints of the neuromotor
system or it may reflect subjective limitations imposed by the operator.

As the previous discussion shows, control strategy and motor
response are separated from information processing in the OCM. This
structure allows the OCM to be modified so as to treat decision-making
problems. The estimator/predictor portion of the model generates all
the statistical information necessary for optimal decision-making, given
the assumptions that have been made concerning the system. Thus, by
simply replacing the controcl law with an appropriate decision rule, one
has a theoretical model for human decision making. For a normative
model, the decision rule must be determined from optimization of an
appropriate decision criterion (such as expected utility).
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This, then, provides a conceptual description of the elements of the
Optimal Control Model of the human operator. It should be emphasized
that the parameter values that must be provided by the investigator
correspond to the human limitations that constrain behavior. With these
limitations as the constraints within which performance is produced, the
model predicts the best that the operator can do. A large backlog of
empirical research provides the data necessary to make realistic estimates
of the appropriate parameter settings in the manual control context. This
research has shown that these parameters are relatively invariant with
respect to changes in task environment, thus enhancing the model's
predictive capacity.

OCM VALIDATION STUDIES

The Optimal Control Model has been validated against experimental
data for a variety of tasks, and detailed results may be found in the
previously cited references. Here, a few of these results are presented
in order to provide the reader with more of the background and with some
feeling for the modelling accuracy attainable with the OCM.

Figures 2 and 3 (from ref. 2) illustrate the model's validity for
two simple, but important systems: rate (K/s) and acceleration (K/sz)
command systems. In the figures, measured and theoretical human
controller describing functions (hg) and remnant spectra (®,,) are
compared. The describing function gain and phase may be thought of as
measures of control strategy, whereas the remnant may be considered a
measure of operator randomness. As can be seen, the model reproduces the
characteristics of the subjects with remarkable fidelity. Moreover, the
parameters of the model that quantify pilot limitations are virtually
constant for the two situations. Table 1 compares measured and theoretical
scores for the above cases. Results for a position command (X) system
and for two tasks involving attitude regulation of a high performance
aircraft are also shown. It is important to note that these results were
obtained with a highly constant, though not identical, set of parameter
values. (See ref. 36.)

These early single-—input single-output studies served as the basic
means of validating the model, but the OCM was principally directed at
modelling human performance in more complicated situations. As we have
discussed, an important part of this modelling is accounting for
attention-sharing on the part of the operator. The basic empirical
validation for the attention-sharing model was obtained in a four-axis
tracking task (ref. 11). 1In this task, subjects had to control four
independent rate-control systems with the errors in each system presented
on separated displays. The subjects were required to fixate one display
and use peripheral vision for tracking the other axes throughout the
experiment (i.e., scanning was not allowed). The results for each axis
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performed alone and for all four together are presented in Table 2. Again,
theoretical and measured results are in close agreement. Note that the
effect of interference on total score is predicted better than its effect
on individual scores. This appears to be true in other tests of the
interference model, too. Analytic investigations of the tasks show that,
for these experiments, tradeoffs in performance between subtasks do not
effect overall performance substantially. When this is the case, the
subjects are not motivated to seek the "absolute'" optimal allocation (and
they may not obtain the necessary feedback in training). Then,
idiosynchratic behavior becomes more acceptable. The effects of attention
sharing on the operator's describing function and remnant are given in
reference 16. The result of adding a task is an increase in remmant, a
decrease in operator gain, and an increase in high frequency phase lag.
All these effects are predicted quite accurately by the OCM and the
attention-sharing model.

CONCLUDING REMARKS

To summarize, the OCM has proven capable of predicting or matching
human performance with considerable fidelity in a variety of tasks. Model
parameters that account for basic human limitations have been isolated
and shown to be essentially independent of system dynamics and forcing
function characteristics; this enhances the model's predictive capability.
Furthermore, submodels and parameters that reflect changes in display
characteristics (such as thresholds, multiple displays, etc.) have been
developed. An advantage of the OCM is that it contains an explicit model
for information processing that also allows it to be used for analyzing
monitoring and decision-making behavior.

There are, of course, limitations and problems associated with the
model and its application. A major problem is the selection of an
appropriate performance index in complex, realistic tasks. Though fairly
systematic methods exist for making this selection, there is no guarantee
that human operators will optimize the criterion selected by the theorist
rather than some other, subjective one. Another limitation is the
assumption of a perfect internal model. While this works quite well for
trained operators, it can cause problems in modeling the performance of
naive subjects (such as those in training) and can increase computational
complexity beyond that which is necessary.
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TABLE 1.- MEASURED AND THEORETICAL

HUMAN PERFORMANCE

MS Error MS Control

System Meas. Theor. Meas. Theor.
Position Control .13 .14 .53 .54
Rate Control .13 .12 4.2 3.83
Acceleration
Control .014 .014 1.43 1.28
High Performance
Aircraft (Pitch) .026 .026 .0032 .0034
High Performance
Aircraft (Roll) .03 .026 .080 .086

TABLE 2.- COMPARISON OF MEASURED AND PREDICTED ERROR VARIANCE

SCORES FOR 4-AXIS EXPERIMENT

Viewing Condition
16° Peripn | 16° Periph | 22° Periph|Total
Measurement Foveal Ref Ext. No Ref Ext| No Ref Ext| Score
{a) Measured l-axis L1l .25 .42 .96 1.7
4-axis .27 .94 1.3 1.6 4.1
(b) Predicted: l-axis .11 .25 .39 .98
ngimal Behavior 4-axis .49 .82 1.1 1.8
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Figure 1.- Structure of OCM operator model.
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Figure 2.- Operator response - K/s dynamics.
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