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ABSTRACT

There exists a variety of general computational methods (and variances) for

ill-posed problems such as geophysical inverse problems. These have sig-

nificant differences in approach and interpretation based on varying assump-

tions as to, e.g., the nature of measurement uncertainties. This paper addresses

the following points: /loin are the va rious approaches related? What consider-

ations should he kept in mind in selecting an approach? To what extent can

one confidently rely on the results of such computation?
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GEOPHYSICAL APPROACHES TO INVERSE PROBLEMS:
A METHODOLOGICAL COMPARISON
PART 1 —A POSTERIORI APPROACH

1. fNTRODUCTION

Most scientific activity call 	 categorized under the three 1wads: model construction, inference,

prediction.' Most models, as constructed, involve parameters which must then be experimentally

determined; the elements of the relevant parameterspace (required to specify the presumed physical

reality within the general structural framework) consist of a finite or infinite set of numbers and/or

functions. Ili geophysical problems these parameters typically do include specification of functions?

so that the parameter space is infinite dimensional ? .

Given a specification of the model parameters, the so-called "direct problem" is that of predict-

ing the results of certain observations or measurements, The "inverse problem," with which this

paper is concerned, is that of making inferences (about the parameter values) from available observa-

tional data. This consists in delineating' the set of those parameter values for which the predicted

results are consistent with tine given data. Much of our present discussion relates to the possible

interpretations of this notion of "consistency with the data" and the methodological implications of

these possibilities for study of the inverse problem.

We also make a fundamental distinction between a priori and a posteriori approaches. An a priori

approach, here, is one which promises all 	 good approximation to the solution if it call

furnished "sufficiently adequate and accurate data" while an a posteriori approach is one which

furnishes an interpretation of a set of data already obtained. Perhaps the most widely acknowledged

general approach to geophysical inverse problems is that of Backus and Gilbert ([3] -[9] ; see also,

e.g., [ 181 -[211 ) which, in terms of this distinction, is to be classified as primarily an a posteriori

approach. In view of the nature of the organization and funding of geophysical investigation, it will

necessarily be approaches of this sort wlnicftn can typically be of direct practical relevance. On the

other hand, we shall argue that the viewpoint of the a priori approaches is of fundamental importance
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in understanding the underlying nature of ill-posedness and so in understanding any approach to	 +

!	 dealing with it. Most of the relevant mathematical literature is of this nature; see, for example, Payne

[221 andTikhonovfArsenin[291 and the further references cited in their bibliographies (T/A [ 19771

especially, has an excellent bibliographic coverage of the recent Soviet work in this area).

2. AN ABSTRACT VIEW OF INVERSE PROBLEMS: A POSTERIORI CONSIDERATIONS

Consider a well-posed direct problem for which the data x can be taken ina space X with the

corresponding solution y in. a space Y. The assumed well-posedness of this direct problem means

that there is a well-defined continuous map s A:x -> y. The range R = { y : y = A x for some x in X)

is then the set of y in Y for which the equation

Ax=y
	

(2.1)

has a solution.

The inverse problem, then, is to "solve" (2.1) for x. What do we mean by this? From an a

posteriori viewpoint one assumes that what may actually be available is an "observation of y."

Such an observation consists of the results of a (finite) set of measurements, hi general, these will

be neither adequate nor exact.

The inadequacy of the available observation means only that even if there were no measure-

meat error, the set of measurements made would not suffice to specify y exactly. This considera-

tion does not materially affect the present analysis of the implications of inexact measurement

and need not be treated separately.

The inexactitude or measurement uncertainty reflects the limitations of the physical measuring

and recording instruments used. in the observation. Thus, the nature of the assumptions made about

it cannot be viewed as entirely subject to mathematical convenience but should properly be the

result of a suitable analysis' of the measuring process. At this point one can distinguish two quite

different assumptions as to the nature of the inexactitude: either'

1)
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The measurements come with specifiable error bounds. 	 (2.2a)

or

A statistical distribution (i.e., a joint probability distribution for the measurement 	
(2.2b)

components) is available for the errors.

These -types lead to different modes of analysis and rather different interpretations' of the results;

we will proceed to sketch both types of analysis.

For analysis, we assume first that thu available data set is finite' — the results of K scalar

measurements so an "observation of y" is a vector w in !L 	 We write x * for the true (desired)

solution so y * : = Ax * is the true (observable) state. If the taking of exact, error-free measurements

is denoted by, St (this is thus an operator n : Y - a'), then w * := SZy * is the (trite observation or

ideal data set; the (vector) error is E := w-w * in 61K.

Our problem, then, is to estimate x * (or make inferences about it) on the basis of knowledge

of w and analysis of the operators' ° A and S2. Actually, even though the nominal domain D of A

may be all of X (see note s ), one typically has additional qualitative information about x * : on

"physical grounds" x * may be known, e.g., to be everywhere non-negative or to be a strictly

increasing function or to be "smoother" (as a function) than an arbitrary element of X need be.

Such additional information can often be taken into consideration by suitable modification

(restriction) of the domain" —say, replacing D by 15 as the effective domain.

We now discuss—briefly—some approaches available for inverse inference under each of the

"uncertainty assumptions" (2.2a,b). For simplicity we concentrate our attention on problems in

which X is a (Hilbert space and A, 12 (lience, also the composed map AK : = 12 A:X -> a  ) are

linear'.

Case (2,2a): We take the assumption (2.2a) to mean that a (small) set B in R K is specified 
13

in

which the error E is known to lie. In the absence of other informaton, all one can then conclude is

that x * lies in the set of "potential solutions"

S(ca) :_ { xe X : [w -A K xl e B }	 (2.3)

`	 3
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We emphasize that all elements of S(w) are (equally consistent with the observation co and that

only the introduction of additional considerations can in any way suggest the selection of any one

element of S(w) as being a "better" solution than any other. One might hope to select x K in S(w)

for which the error bound

Ilx - x K ll 6 sup (gx-x K ll:x6S(w)}	 (2.4)

would give useful information—but, for lice problems under consideration, S(w) will always be

unbounded so the right hand side of (2.4) would, uselessly, be infinite.

Oil 	 other hand, given auxiliary information determining all
	 domain 15 the set of

potential solutions becomes

S(w) := (xe 15 : [w- AK x1 eB f = S(w) n 15	 (23')

(for the case: S(w) empty, see note" ). One may now wish to select x K so (2.4) becomes

Ilx * - x K I1E sup (11X-x K II:x6S(W)1	 (2.4')

with the hope that the right hand side of (2.4') might be usefully small. 14

Since w, as given, is a point of the K-dimensional space' s 6t K , it is plausible to expect to be

able to use this observation to determine K scalar parameters specifying a "nominal solution" xK

to be selected from a suitably chosen K-dimensional subspace X of X, i.e., to seek x K as an estimate

(approximation) for x * . We first consider the selection method:

X K in A, AK XK = W	 -	 (2.$)

(any reasonable choice of X makes the restriction A of A K := S2 A to X invertible). Equivalently,

XK := A' W.
	 (2.5')

4
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Note that this selection of x K need not be in S (w). Now let 0 be the angle' 6 between X and

n(AK ), let P be the orthogonal projection on X and

u:=11A''11 = IJinf111nAx [i :x c 	 II}.	 (2.6)

An easy geometric argument then shows that

Ilx * - x K 112 G 11x * -Px * 11 2 + [ IIPx * -A'w * II + IIA'	 w * - xK 111 2 	(2.7)

<Ilx* -X112 +[11x * -Xll cot 0+o11G1112.

Similarly, we may follow Backus-Gilbert [ 19681 in considering not the approximate determination

of x . by xK but the approximate determination of t • x * by i • xK (where t is a linear

functional," normalized so II ^ 11 = 1). Letting 'P be the angle between P and the null space of

Ax , an argument much like the derivation of (2.7) gives the error bound

li; • x * -g-xK 14 IIx* - A 11csc0 cos p+ul1E11. 	 (2.8)

We note that control of the factor cos p in (2.8) is independent of the choice of X and is precisely

the effect of the "criterion of S-ness" applied to A K in Backus-Gilbert [ 19681,

Minimization of the factors cot 0 in (2.7) and csc 0 in (2.8) is achieved by choosing )Z to be

6i(A K ), the range of A K, as is done in Seidman [ 1975].  There, this choice of X appeared as the

result of a varialional foci mulation, choosing x K so as to minimize 11 x 11 subject to the constraint

AK x = w. More generally (compare, e .g., Seidman [ 1978a] ), one might replace (2.5) by the

constrained variational method:

xK giving min (II x - x II x c S(w) }
	

(2.9)

where x is some plausibly guessed approximation to x * . If one temporarily ignores any restriction

to 15 and if B is the bail' 8 in 6Z K of radius 9, then (for (i small enough) it is easy to see that (2.9) is

5



equivalent to the unconstrained variational method:

x K girDigmill {,zllx -z 11 2 + Ilw-A K x III :xcXl	 (2.9')

for sonic suitable choice" of the parameter a. 'Jlic method (2.9') is, of course, the well-known

77khonov regularization approach to ill-posed problems", I i, Note that (2.9') gives (x K _,K) in

, == R(A,* ) and so can be handled K-dimensionally. In the case of a Euclidean norm for R V , (2.9')

is equivalent to a linear system in X (the regularized normal equations; cf., e.g., Nashed [ 19711):

(a+Q)(rK -z) = Ah (w - AK z)	 (2.10)

where Q := A *A.  This leads to the error bound 22 :

Ilx*_XK 112 = 11(a+Qr' [aP(x * -z) +A*F]II'+II(4P)(x*-x)112

(2.11)
\2

611(x * - x) -R (A*)112
+z f	}	 [aIIPx * -PZ ll+IIA* Ell]'.

av + 1

Case (2.2b),- The probabilistic enalysls assumes a probability distribution P. over 6{ K for the

measurement error" 6 = w - w * ; for simplicity we adopt the usual normalit y assumption s" —that

Pr is a multivariate normal distribution with mean O and covariance matrix a 2 I (corresponding to

the assumption that the means in the individual measurements are independent with common

variance a 2 , perhaps after scaling). One can then proceed in either of two ways, corresponding to

the standard statistical procedures of hypothesis testing (establishing "confidence intervals") and

of parameter estimation. We consider only the latter.

The construction of x K given above by (2.9') may be viewed as defining an estimator with the

choices of x and a now corresponding to all 	 Bayesian attitude toward prior

information7 5 . Note that choice of a large means a small variance for the estimator but its mean,

which depends on tiro variance for the estimator but its mean, which depends oil earlier estimate

x , reflects less of the effect of the new observation co. Comparably to (2. 1 1), Zoasfder the expecta-

tion' I of 11x * - x  lls based on this P t :

6



Expllx*-xxll'=9(x*-x) -X 11'+II(a+QriaP(x*-x)h'+a'tr[Q(a+Q) "2]

p
611(x - x) - X 111+( no) 2 11 p x -Px III + -L

(2.1^)
Exp11EV.

a	 av' + I /
	 X .
	 4a

3, DISCUSSION

Summarizing the above we see that the data set w can provide dht;ct information only of the

projection of x * along ri(A.) onto R(A*). Any inference beyond this must involve the restriction

to a "small" set D by virtue of a priori auxiliary inf or ation. The real value of such an a posteriori

analysis is often just the possibility alluded to in vote° of rejecting a hypothetical z (or a suggested

value for a functional) as "inconsistent with the observation" w if x is not in S(w). In the proba-

bilistic case, the normality assumption implies that, regardless of what x * maybe, no w is entirely

impossible. Given w, one cannot, the ' i, wcth absolute certainty rule out any is but can only reject

the hypothesis that this 9 is, indeed, x * on the grounds that this would require belief in the occur-

rence of an event so unlikely (i.e., fl E fl so large) as to constitute a "miracle."

In cithe=• deterministic or probabilistic settings, the method (2.9') is a useful procedure for

estimating x * on the basis of an earlier estimate z together with a new set of observational data W.

From the bounds (2.11), (2.12) we conclude that increase in K will presumably decrease the first

term (as X = 61(A * ) increases) but 11 Px * - P 3 II and v will increase" so a must decrease if the second

term is to decrease whence, finally, one must require greater accuracy of measurement 28 to make

the last tern decrease as well. Note that while the bounds (2.11), (2,12) ari correct, they are

strongly dependent for their precise form on the specific hypotheses made and have been presented

here only as suggestive. Along the lines of e.g., Backus/Gilbert ['7-9] or Parker [18-201, one could at

this point elaborate on the expectation that 'intrinsically nonlinear problems would qualitativeiy

exhibit essentially the same behavior with the linear operator A of the analyses above now obtained

via linearization—e,g„ the derivative29 at x of the actual nonlinear map. 	 l

The paragraph above, of course, initiates consideration of (asymptotic) a priori analysis:

viewing the procedure described in the preceding section as merely one a sequence of increasingly

i
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more accurate (one hopes:) approximations It should be clear from the above that, unless con-

siderable care is taken in matching one's expectations and procedures to the increasingly poor

conditioning of the computation, Out approximation could actually get worse" rather than better.

it is worth noting that the usual procedure-adopted above-of using the data to construct an

approxinnant (estimate) x  is one which makes sense only in this asymptotic context. While we

were able to obtain bounds (2.11), (2.12), the first tern II (x * - x) -a(A * ) II will (unless one can

somehow make effective use of a restriction" to a "small" 15) decrease arbitrarily slowly and, in

tiny case, depends on the unknown x * so one cannot really know how good an approximation any

particular computed xx may be. Asymptotically, however, one can ensure convergence to x * of

the sequence of approxiniants by employing dais which "in the limit"is both adequate and

accurate32 n(AK ) -+ { o } and U 11 11 -> o sufficiently rapidly as K -> -),

4. SUMMARY

The principal use of experiment lies in the possibility of rejecting a model, To the extent that

the predicted observations are comparatively insensitive to (certain aspects of) the model, one finds

it difficult to make useful distinctions without imposing unrealistic requirements on the extent and

accuracy of the observations. The role of "inverse theory" must lie primarily in making efficient

nse of what data may be available and in evaluating the range of models consistent with these rather

than in selecting a single model. Nevertheless it is possible to construct estimates of model param-

eters (functions) from observations. The flexibility in choosing norms for measuring errors leads to

considerable arbitrariness in constructing algorithr, 	 the primary criteria are that norms for

measurement errors reasonably reflect the properties of the physical instruments and that norms for

parameter functions reflect the combination of theoretical assumptions and the uses to which the

results will be pert, In general only strong  priori assumptions (permitting advance restriction to a

"small"set) will make possible useful explicit error estimates but, instead, procedures can be

compared on the basis of the asymptotic properties of approximation schemes in which they can

be embedded". Other than that, procedures can appear quite different (e.g., the explicit pseudo-
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solution (2.5) and the variational formulation (2.9')) yet (ef., note'') be quite closely related. In

general, the relative computational convenience of procedures will strongly depend on the availa-

bility of bases for X which make the matrix representations of Q (as of A and A*) relatively sparse,

NOTES

To these one may add (e.g., in engineering contexts) a fourth category design—to the exten'

tSat sonic parameters or structural elements are at our disposal, select these so that the predicted

results are as desired (perhaps, also, optimizing the selection with respect to sonic specified

criterion),

Q As e.g., the density distribution of the earth or the form of the nonlincarily in a problem of

flow through a porous medium.

' With a suitable choice of metric, this may often be conveniently represented as (a subset of)

some 1-filbert , -j ,. `.

Note that this includes the notion of verification or validation of a theory or model: if the

"consistent parameters set" were void, one would have disproved the theory!

6 The map A need not be defined for emery x in X and we let D be the set of x for which Ax

is defined (as A is continuous we always take D to be closed in X). Thus, it is really D which is the

set of "admissible data" X and the true domain of A but we abuse notation slightly by continuing

to write A:X•+Y.

6 The complexities of such all 	 lead us to sacrifice sonic potential accuracy to permit

estimating the measurement uncertainties in a "more standardized," simplified form. Considerable

mathematical work remains to be done to justify this procedure in terms of sonic notion of "robust-

ness."

'This typology is simplifying but not complete: it would cerminly be possible, for example,

to consider mixed types.
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8 Neither treatment of errors can be considered superior—e.g., in the simplest (scalar) setting it

must clearly be a matter of "personal taste" to have a preference between a Gaussian error distri-

bution with the standard deviation a = 10 -3 as against an absolutely certain error bound of 10'

9 Some measurement modes do give a continuous record (e.g., a seismographic track) but

information theoretic considerations (recording resolution, pen width, etc.) can be used to show

equivalence of these with discrete (sampled data) observations.

' 
0 1Ylrat is actually under consideration in this section (i,e„ fora posteriori data interpretation)

is just the composed map SZA ; X -> 61'. In this context, from this viewpoint, any concern for the

operator A as such (rather than as part of the analysis of 52A) is irreleval2t. Similarly, any direct

involvement of the intermediate space Y—say, in first using w to construct an estimate y of the

state y preparatory to attempting to invert A to approximate x by A-' —would be essentially

misplaced.

"Making effective use of such information is often the most significant problem in treating

such situations. One special form of this is of particular impor`cance. It can happen that the set D

(taken as the effective domain of A through the use of auxiliary information) is a compact subset of

X. In this ease, assuming A would be one-to-one (uniqueness in 15 of solutions of (1.1)), a standard

theorem in Topology assures us that after restricting its domain to D the operator A is actually

continuously invertible so in this case the inverse problem is no longer ill-posed—provided computa-

tionally effective use can be made of the compactness of 15. The composed map 52A is unlikely to

be one-to-one, of course, so the above does not apply directly; nevertheless, this compactness is

exactly the consideration needed to obtain useful error estimates. This compactness typically

follows from smoothness assumptions on x,, via the Relich-Kondrachov Theorems (cf., e.g.,

Adams),

"For example: thetlirect problem relating the gravitational field in the observable regions to

the internal density distribution of the earth is linear. However, the typically measurement process

10



here obtains only the field strength so S2 would not be linear. Indeed, the linearity assumption

seems to exclude almost all problems of direct geophysical interest. Nevertheless, the discussion

here is of more than merely tutorial significance but may also be relevant to consideration of intrin-

sically nn„linear problems through linearization; compare the penultimate section of Parker

[1977].

13 A more general formulation would permit B to depend on x * , e.g,, if it would be the

relative magnitude of errors which could be controlled or estimated. In particular, this would be

the case if a significant source of uncertainty in the result would be uncertainty in specification of

the model: if (2.1) is used when the "true” operator is A * , then—even in the absence of any further

error—one would have observed A *x * while complAing on the assumption that co,, - Ax * so

6 = [A * - A] x * . The nature of the modifications needed for the analysis in the more general case

are conceptually clear but inordinately more complex computationally. Compare, e.g., Theorem

4.5 of Seidman [ 1978a] .

14 The substitution of (2.4') for 2.4) will not help if S(w) is still unbounded or is bounded but

too large. A fuller understanding of the reason depends on more detailed consideration of the

asymptotic analysis (cf., Seidman [ 1978a] ) but we see that if 15 is compact (see note'') and B

small enough then useful estimates may be available.

Is In practice one may well use measurements embodying sonic redundancy (linear depend-

ence, in the present context) so that the range of A x is actually a proper subspace R in 6I K. In this

case our first step might be to replace the observation co (which, due to measurement error, might

not actually be in the subspace R) by, say, w—the nearest point in R to Co. In some sense, what we

wish to do is to replace the set [w + B] by the set [w + B] f1R, which typically has the form

[ai + B ] , and replace (gK by R. Note that the use of B instead of B may correspond to a substan-

tial decrease in the actual uncertainty: this would be the "payoff" for the redundancy. Having

replaced 6t k by R, we return to the original notation with the assumption that A K is "011'0."



16 The angle a between two subspaces U, V is defined by cos a := sup { u . v : ueU, veV,

II u 3 = I= II v 11 ). Thus, this-definition of 0 is equivalent to (rr/2 -0) being the angle between the

two K-dimensional subspaces, X and the range of A*. Note that the minimum value of S II , taken

over all possible n-dimensional subspaces X lh , is called the n-width of the set 15; this notion has been

extensively studied in certain contexts (cf., e.g., Jerome [ 19671).

19 Aciiially taking i tr, be point evaluation, as Backus and Gilbert do, is, of course, possible

only if X consists of smooth enough functions for such functionals to be continuous. III 	 case

X will be a reproducing kernel Hilbert space (cf., e.g., Aronszajn [ 19501) and it may be convenient to

express sonic of our formulas a bit differently in terms of the reproducing kernel. Typical cases

least to the use of spline spaces; see, e.g., Schoenberg [ 19461, Schumaker [ 19801 , Greville [ 19691.

18 This is actually the most reasonable possibility for B if one uses an appropriate norm in 6? l`,

related to the nature of the measurement uncertainties. This appropriate norm will not, in general,

be the usual euclidean norm for 61 K but is more likely to take the form

II co 11 1t := max t I w(k)1/ak : k = 1, ... k)

where ak measures the (relative) uncertainty of measurement of tine k-th scalar component.

"Clearly tike choice of a depends on the radius a of B (with a-+ o as a-> o) but, except

asymptotically (compum the considerations of our next section), the appropriate choice is hard to

determine; cf., e.g., Morozov [ 19671, Craven & Walnba [ 19771 we choose this point at which to

note that the norm for X is also somewhat arbitrary (for example, it can always be chosen to make

a fairly arbitrary X orthogonal to the nullspace of X  without changing the topology of X) and

some study has been given to optimal choice of the X-norm for (2.9'); cf., Cullum [ 19791.

20 See Tikhonov [ 19631 and, for a more complete treatment and anextensive bibliography

(especially of the more recent Soviet literature-including over 20 specifically geophysical applica-

tions, especially by Glasko and by Priiepko) see Tildhonov-Arsenin [ 1977] .

12
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_' In the limiting case e = 0 + (cor responding to assumed error-free measurement : w = w*)

l

one would theoretically be solving (2,S), corresponding to (2,9') with a = o. However, it is charac-

teristic of such "inverse problems that A, although invertible, is quite badly conditioned even for

moderate values of K. We note that regularization is a recommended approach (cf., e.g., 	 )

to solution of such badly conditioned systems in the finite-dimensional case—so computationally

(2.5) and 2.9') are not really very distinct.

22 The bound (2.11) reduces to (2.7) with cot 0 = o on taking a = o. In general, (2.11) offers

no improvement over (2.7)—the advAOage of (2.9') is the greater computational stability provided

by regularization for the ill-conditioned system (2.5).

27 As in case (2.2a), our assumption is essentially that the uncertainty is wholly due to

measurement uncertainty which is additive and uniform. Modifications of uniformity would also be

possible here along the lines of note" , Note that if P E were to have (small) bounded support E.

then all the considerations would apply as well.

24 See any elementary statistical text on hypothesis testing, especially for the multivariate case

(e.g., Morrison [ 19761), for the implications and justification (in terms of the Central Limit

Theorem) of this assumption.

2s Here z represents an estimate based on earlier observations and a will be large or small

depending on one's degree of confidence in the accuracy of z (actually, in the relative accuracies of

PR and of A' co). In some contexts one could simply include the earlier observations with the new

in a single step but (2.9') is a far simpler "updating procedure." Further, the format of the earlier

measurements might be quite different—e.g., x might correspond to an earlier estimate of an interior

density distribution for the Earth based on seismic data whereas the new observations may be

gravimetric—and with a different type of error statistics; indeed, the old measurements may no

longer be available at all.

1'
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26 One can carry this analysis a step further by viewing a as itself a random variable (e.g., its

s randomness might derive from measurement errors in the earlier observations from which it had

been obtained); assume z, L independent with P(x * -3) having mean o and covariance matrix a 2 I

(in X). Then the expectation in (2.12) must be modified by considering the distribution of z. It

can be shown that this is minimized by taking a := o' / a 2 in (2.9') which gives, altogether,

Gxp 11 X * x. 112 = fix II x	 2	
-20

a2 V2 + Q 2

Similar analyses have been used (e.g., Franklin 1970) to estimate the optimal a with z := o but

viewing the Unknown x * , itself, as a random variable, rather than as strictly determinate.

27 This is an inescapable consequence of the ill-posedness of the problem: from (2.6), v 2 ;^: X1

where X. is the K-th eigenvalue (T l > X2 > ...> o) of P. *A. Fora priori analysis an asymptotic

knowledge of X, .... can be useful in asymptotically making an appropriate choice of a in (2.9').

This increase in v, often rapid with K, snakes the computation ill-conditioned even though A is

invertible (see note21 ) which dominates the computational aspects of the problem.

28 For the probabilistic case it is instructive to "fudge" the interpretation slightly and suppose

the measurement operator were really SE : y-) . (R K' with K' a multiple of K corresponding to repeti-

tion of a "basic" measurement operator. If o 2 I were the covariance matrix in a K 'for measure-

mant errors, then defining SZ by averaging the values of repeated measurements in H gives

(K/K')c 2 I as the covariance matrix in R K for the errors in a. More complicated analyses cover

situations in which the actual observational data is "highly redundant" although not just repeti-

tive but the general strategy remains that one makes a "K-dimensional estimate x h " based on data

reduction from an originally K'-dimensional observation (K' > K), using the variance-reducing

property of averaging independent errors to produce a statistically more accurate "pseudo-

observation."

14
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"Note that A, the weak Oatcaux derivative at 3 of E : X -+ Y is defined by t - A It =

d[t • h (X + tit)] /dt I t.. provided this determines A: x -+ y as a linear map. This is effectively

what one obtains (implicitly) if, e.g., (2.9') is employed (approximately) for nonlinear problem—

provided z is already a good estimate for x*.

30 A case in point is the analysis in Seidman [(I 978b)] (noncovergence) of the method of

least squares. Consider selection of x K by xK gtring min II y - A x II subject to xK e X

(dim X = K) (here it is assumed that y ^ A x * is observable in Y but one might also be considering

this with 11 y - A x II replaced by II co -A x II if the actual observation Xw were in 6j W with

K' 9 K; compare note" ). Even with entirely error-free observation and calculation, it can be

shown that if X is viewed as one of a sequen: c expanding to "till" X, then the correspondingly

computed sequence x K of "approxintants" need not coverage to x * (one need not even have

{ II xK II } bounded as K -+-) if "bad" choices of X may be made corresponding to permitting v

to increase faster than necessary.

" Even with b compact, the estimates available are typically asymptotic—as for the n-widths

mentioned in note' 6 . Of course, even for well-posed problems in numerical analysis the error

estimates typically involve constants (e.g., bounds on higher derivatives) which are not known so

one's degree of confidence in the results in "asymptotic"—although "extrapolation" may permit

some direct estimation: use partial information and compare the results to estimate accuracy (this

also is the crux of Wahba's "cross-validation" analysis of regularization when, in the probablistic

case, the variance a x for measurement errors is assumed not to be known in advance).

34 The vagueness of this assertion is respect to explicit estimates of the errors is, in part,

closely related to the considerable arbitrariness involved in the choice of norms. Even restricting

oneself as above to quadratic (Hilbert space) norms as measures of approximation, one is free to

adopt any of  wide variety of equivalent or inequivalent norms (e.g., 11 x 112 could be J x 2 (s) ds

IS

4	

_

h

^l

,tsp

!^1

F{
^i

,r

`I

i



x

r
or f x= (s) co (s) ds with weighting function w > o or, inequivalently, f [x' (s) + I grad x (s) I' ] ds

,.	 or ... ). The choice made will certainly affect both the interpretation and the computational

convenience of the method. Particularly convenient are settings for which there are well-studied

computational algorithms with the matrices (associated, e.g., with (2.10) taken with respect to an

appropriately chosen basis) sparse and not too ill-conditioned; typically this might be the case of

spline representations are used in connection with Sobolev norms. Compare note" .

"Presumably one would avoid a method for which the scheme would not be convergent

(to x * ) at all. Compare note 10.
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