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GEOPHYSICAL APPROACKES TO INVERSE PROBLEMS:
A METHODOLOGICAL COMPARISON
PART | — A POSTERIORI APPROACH
Thomas I. Seidman
Dept, of Math., Univ. of Md,, Baltimore Co,
Baltimure, Md, 21228
Marie-Jeanne Munteanu
Goddard Space Flight Center/NASA Code 921
Greenbelt, Md. 20771
ABSTRACT
There cxists a variety of general computational methods (and variances) for

ill-posed problems such as geophysical inverse problems. These have sig-

nificant differences in approach and interpretation based on varying assump-

tions as to, e.g., the nature of measurement uncertainties, This paper addresses

the following points: How are the various approaches related? What consider-
ations should be kept in mind in selecting an approach? To what extent can

one confidently rely on the results of such computation?
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GEOPHYSICAL APPROACHES TO INVERSE PROBLEMS:
A METHODOLOGICAL COMPARISON
PART 1 — A POSTERIORI APPROACH

l. INTRODUCTION

Most scientific activity can be categorized under the three haads; model construction, inference,
prediction,'  Most models, as constructed, involve parameters which must then be experimentally
determined; the clements of the relevant parameter space (required to specify the presumed physical
reality within the general stru.ctura! framework) consist of a finite or infinite set of numbers andfor -
functions, In geophysical problems these parameters typically do include specification of functions?
so that the parameter space is inﬁnite_ dimensional® .

Given a specification of the model parameters, the so-called “direct problem” is that of predict-
ing the results of certuin observations or measurements, The “inverse problem,” with which this
paper is concerned, is that of making inferences (about the parameter values) from available observa-
tional data. This consists in delineating® the set of those parameter values for which the predicted
results are consistent with the given data. Much of our present discussion relates to the possible
interpretations of this notion of “consistency with the data” and the methcdological implications of
these possibilities for study of the inverse prablem.

We also make a fundamental distinction between a priori and a posteriori approaches. An a priori
approach, here, is one which promises an arbitrarily good approximation to the solution if it can be

- furnished “sufficiently adequate and accurate data’ while an g posteriori approach is one which

- furnishes an interpretation of a set of data already obtained, Perhaps the most widely acknowledged
general approach to geophysical inverse problems is that of Backus and Gilbert ([3]-[9] ; see also,
e.g., [18]1-[21]) which, in terms of this distinction, is to be classified as primarily an a'posters'ori
approach. In view of the nature of the organization and funding of geophysical investigation, it will
necessarily be approaches of this sort which can typically be of direct practical rc]cvdnce. On the

other hand, we shall argue that the viewpoint of the a priori approaches is of fundamental importance'



in understanding the underlying nature of ill-posedness and so in understanding any approach to
dealing with it, Most of the relevant mathematical literature is of this nature; see, for example, Payne
[22] and Tikhonov/Arsenin [29] and the further references cited in their bibliographies (T/A[1977)

especially, has an excellent bibliographic coverage of the recent Soviet work in this area).

2, AN ABSTRACT VIEW OF INVERSE PROBLEMS: A POSTERIOR]I CONSIDERATIONS

Consider a well-posed direct problem for which the data x can be taken ina space X with the
corresponding solution y in e space Y. The assumed well-posedness of this direct problem means
that there is a well-defined continuous map® A:x = y. The range R={y : y = A x for some x in X}

is then the set of v in Y for which the equation

L Ax =y (2.1)

has a solution,

The inverse problem, then, is to “solve” (2.1) for x, What do we mean by this? From ana
posteriori viewpoint one assumes that what may actually be available is an “observation of y.”

Such an observation consists of the results of a (finite) set of measurements. In general, these will
be neither adequate nor exact.

The inadequacy of the available observation means only that even if there were no measure-
ment error, the set of measurements made would not suffice to sp_ccify y exactly. This considera-
tion does not materially affect the present analysis of the implications of inexact measurement
and need not be treated separately.

The inexactitisde or measurement uncertainty reflects the limit_ations of the physical measuring
and recording instruments used. in the observation, Thus, the nature of the assumptions made about
it cannot be viewed as entirely subject to mathematical convenience but should properly be the
result of a suitable analysis® of the measuring process, At this point one can distinguish two quite

- different assumptions as to the nature of the inexactitude: either” -

%]



The measurements come with specifiable error bounds. (2.2a)

or

A statistical distribution (i.e., a joint probability distribution for the measurement

2.2b
components) is available for the errors, (_ )

These iypes lead to different modes of analysis and rather different interpretations® of the results;
we will proceed to sketch both types of analysis,

For annlysié, we assume first that thu available data set is finite? — the results of K scalar
measurcments so an “observation of y™ is a vector w in4iX, We write x " for the true (desired)
solution soy o AX N is the true (observabie) state. 1f the taking of exact, error-free measurements
is denoted .byﬂ (this is thus an operator 2 ;: Y = &X), then w . ly « is the (friee observation or
ideal data set; thé (vector) error is E = w-w  in /K,

Our problem, then, is to estimate x " (or make inferences about it) on the basis of knowledge
of «w and analysis of the operators!® A and £2. Actually, even though the nominal domain D of A
may be all of X (see note®), one typically has additional qualitative information about X, on
“physical grounds™ x , may be known, e.g., to be everywhere non-negative or to be a strictly
increasing function or to be “smoother™ (as a function) than an arbitrary element of X need be.
Such additional information can often be taken into consideration by suitable modification
(restricﬂon) of the domain'' —say, rcplacihg D by D as the effective domain,

We now discuss—bricﬂy-sonﬁe approaches available for inverse inference under each of the
“uncertainty assumptions’ (2.2a,b). For simplicity we conéentratc our attention on ;.)robl.ems in
which X isa (Hilbert space and A; sz (hence, also ihe comhosed map Ayp =8 -A:X %) ar.e

linear'?.

Case(2.2a): We take the assumption (2.2a) to mean that a (smail) set B in &% is specified!3 in
which the error E is known to lie. In the absence of other informaton, all one can then conclude is

- that x_ lies in the set of “potential solutions™

 S(w):={xe X :[w-Agx] €B). - (2.3)



We emphasize that alf elements of S(w) are (equally consistent with the observation «w and that
only the introduction of additional considerations can in any way suggest the selection of any one

clement of S(w) as being a “better” solution than any other, One might liope to select Xy in S(w)

for which the error bound
Mx, -xg B < sup {Ix-x.1:xeS(w)} (2.4)

would give useful information—but, for the problems under consideration, S(w) will always be
unbounded so the right hand side of (2.4) would, uselessly, be infinite.
On the other hand, given auxiliary information determining an effective domain D the sct of

potential solutions becomes
§(w) = {xe D:{w-Ayp x] eB} =5w)N D (2.3
(for the case: S(w) embty, see note® ). One may now wish to select X, so (2.4) becomes
Hx, -xg < sup {Ix-xg I:xe8(ew)} | 2.4)

with the hope that the right huﬁd side of (2.4") might be usefully small.!?

Since w, as given, Is a poinf of the K-dimensional space!® &K | it is plausible to expect to be
able to _usé this obscrvation to determine K scﬁlar parameters specifying a “nominal solution” x;
to be selected from a suitably chosen K-dimensional subspace X of X, i.e., to seek Xy s an estimate

(approximation) forx_. We first consider the selection method:
X X, Ap Xg =w : - {2.5)
(any reasonable choice of X makes the restriction A of A, = £ A to X invertible). Equivalently,

xg = K'w, | (2.5



Note that this selection of xy, need not be in §(w). Nowlet 0 be the angle! between X and

n(AK ), let P be the orthogonal projection on X and

vi= A =il (IQAxG:x e X 1}, (2.6)

An casy geometric argument then shows that
Ix, -xg B < lIx, -Px, I® + (Upx, Ko, B+ 1A' o, -x, 112 2.7)

<hx, -X1 + {lix, -Xlcotd + v lEN],

Similarly, we may follow Backus-Gilbert {1968] in considering not the approximate determination
of X, by x but the approximate determination of & * X, by £ * xy (where £ is a linear
functional,!” normalized so 1§ i=1). Letting v be the angle between & and the null space of

Ay, an argument much like the derivation of (2.7) gives the error bound
| I x, - &' xe 1< Ix,-X HescOcosyp + v BN, (2-3)

We note that control of the factor cosp in (2.8) is independent of the choice of X and is precisely
the effect of the “criterion of §-ness” applicd to A in Backus-Gilbert [ 19681,

Minimization of the factors cot 0 in (2.7) and csc @ in (2.8) is achieved by choosing X to be
R(El . .), the range of A, as is done in Seidman [1975]. There, this choice of X appeared as the
result of a variational for; rulanon choosmg Xy SO as to minimize I x 1l subject to the constramt
Ap Xx=w. More g,cncrally (compdrt. e.g., Seidman [1978a] ), one mlght replace (2.5) by the

constramed varigtional method:
Xy giving min {Ix-X I xe S(w)} ) 2.9

where X is some plausibly guessed approximation to X, . If onc temporarily ignores any restriction

to D and if B is the ball'® in ®F of radius B, then (forﬁ small enough) it is e'lsy to see that (2.9) is



equivitlent to the unconstrained variational method:
Xg givigmin { 2 Ix-X I + Jw-Ap x P ixeX]) (2.9

for some suitable choice!? of the parameter a. The method (2,9') is, of course, the well-known
Tikhonor regularization approach to ill-posed problems*® 2!, Note that (2.9') gives (x,, =X) in
X= d'i(A,:‘) and so can be handied K-dimensionally. In the case of a Euclidean norm for &%, (2.9")

is equivalent to a linear system in X (the regularized normal equations; cf , e.g., Nashed [1971]):
(a+Q) (x -X) = A,”‘{ (w-Ap X) 2.10)

where Q = A* A, This leads to the error bound??:

Ix - x P =l(a+Qr* [aP(x -%) +A Bl I +1(P)(x, -X) IF

(2.11)

5

2
qu(x*-i‘)-amﬁ)uw( L ) alPx, -PX I+ 1A% EI]2

avt +1

Case (2,.2b): The probabilistic 2uatysis assumes a probability distribution I’E ovér R for the
‘measurement error?® E 1= w -w o for simplicity we adopt the usual normalitv assumption?® —that
P, is & multivariate normal distribution with mean O and covariance matrix 0 I (corresponding to
the assumption that the means in the individual measurements are independeri with common
variance ¢, perhaps after scaling). One can then proceed in either of fwo ways, corresponding to
the standard statistical procedures of hypothesis testing (establishing “confidence ntervals™) and
of parameter estimation. We consider anly the lafter.

The construction of Xy given above by (2.9") may be viewed as defining an estimator with the
choices of X and a now corresponding to un essentially Bayesian atti'tude toward prior
information®®, Note that choice of d large means a small variance for the estimator but its meah,
which depends on the variance for the estimator but its mean, which depends on the earlier estiniatc
X, reflects less of the effect of the new observation w. Comparably to {2.1), consider the expecta-

tion2¢ of ﬂx$ - X I?* based on this P



Bxp Ix, -x; IP = Il(x*-?c’)-)'( 1+ Il (a+QYy! al’(x*-’i‘) I +a* tr [Qla+Q)?]

2.1

a? + | 4q

~ % / avz 2 o ‘
<Il(xa-x)-)( i +(-—--—»——-) fpx, -PX 2 4 ~— BxplER,

3. DISCUSSION

Summarizing the above we see that the data set w can provide divset information only of the
projection qf X, along n(A) onto a’{(A:,\'). Any inference beyond this must involve the restriction
to a “small” set D by virtue of a priori auxiliary infarmation, The real value of such an a posteriori
analysis is often just the possibility alluded to in vote* of rejecting a hypothetical k (or a suggested
value for a functional) as “inconsistent with the observation™ w if & is not in Kw). In the proba-
bilistic case, the normality assumption implies that, regardless of what X . may be, o w is entirely
impossihle. Given w, one cannot, thes, with absolute certainty rule out any & but can only reject
the hypothesis that this % is, indeed, x 5 Of the grounds that this would require belief in the occur-
rence of an event 5o uniikely (i.e., 1 E § so large) as to constitute a “miracie,”

In eithe deterministic or probabilistic settings, the method (2.9') is a useful procedure for
estimating x, on the basis of an carlier estimate X together with a new set of observational data w.
. Fromi the bounds (2.11), (2.12) we conclude that increase in K will presumably decrease the first
term (as X = GI(A;E ) increases) but 1| Px o PX Hand p will incrcase”.so a must decrease if the second
term is to decrease whence, finally, one must require greater accuracy of measurement®® to make
the last term decrease as wel_l. Note that while the Eounds (2.1 lj, (2.12) arz correct, they are
strongly dependent for their precise f_’orm on .thc specific hypotheses made and have been presented
here only as suggestive. Along the lines of e.g., Backus/Gilbert [7-9.] or Parker [18-20], one could at
this point claborate on the expectation that intrinsically nenlinear problems would qualitatively
exhibit essentially the same behavior with ;hc linear operafor Aof t_he analyses above now obtained

via linearization—e.g., the derivative?® at X of the actual nonlinear map.
| map

The paragraph above, of course, initiates consideration of (asymptotic) a priori analysis:

viewing the procedure described in the preceding section as mercly one a sequence of increasingly



more accurate (one hepest) approximations 1t shiould be clear from the above that, unless con-
siderable care is taken in matching one’s expectations and procedures to the increasingly poor
conditioning of the computation, thi upproximation could actually get worse®® rather than better.

[t is worth noting that the usual proced urcwadoptcd above—_of using the data to construct an
approximant (estinmte).xx is one which makes sense only in this asymptotic context, While we
were able to obtain bounds (2,11), (2.12), the first term § (x,, - X) -ﬂ(A:)  will (unless one can
someliow make cffective use of a restriction®! to a “small” D) decrease arbitrarily slowly and, in
uny case, depends on the unknown x,, 5o one cannot really know how good an approximation any
particular computed x,, may be. Asymptotically, however, one can ensure convergence to X, of
the sequence of approximants by employing davg which “in the limit”is both adequate and

accurate®® (A, )~ {0 } and | E = o sufficiendly rapidly as K ~» o),

4. SUMMARY

The principal use of experiment lies in the possibility of rejecting a model, To the extent that
the predicted observations are comparalively insensitive to (certain aspects of) the model, one finds
it difficult to make useful distinctions without imposing unrealistic requirements on the extent and
accuracy of the observations, The role of “inverse theory® must lic primarily in making efficient
use of what data may be available and in evaluating the range of models consistent with these rather
than in selecting a single model. Nevertheless it is possiblé to .construct' estimates of model param-
- eters (functions) from observations, The flexibility in choosing norms for measuring errors leads to
considerable arbitrariness in constructing ulgorith'r_ - the primary criteria are. that norms for
measurement ¢rrors reasonably reflect the propcrtiés 6[‘ the physical instruments and that norms for
parameter functions reflect the combination of theoretical assumptions and the uses to which t.hc.
results will be put, In general only stronga pﬂolr:i assumplions (permitting advance réstriction toa
“small™ sb.t) will make possible useful explicit error estimates but, instead, procedures can be |
compared on the basis of the asymptotic propertics of approximation schemes in whicﬁ they can

- be embedded®®. Other than that, procedurcs can appear quite different (e.g., the explicit pseudo-



solution (2.5) und the variational formulation (2,9')) yet (=f., note?!) be quite closely related, In
general, the relative computational convenience of procedures will strongly depend on the availa-

bility of bases for X which make the matrix representations of Q (as of A and A*) relatively sparse,

NOTES

'To these one may add (e.g., in engineering contexts) a fourth category design—to the exten*:
wat some parameters or structural elements are at our disposal, select these so that the predicted
results are as desired (perhaps, also, optimizing the selection with respect to some specified

criterion),

2 As e.g., the density distribution of the earth or the form of the nonlinearity in 4 problem of

flow through a porous medium,

* With a suitable choice of metrie, this may often be conveniently represented as (a subset of)

some Hilberf - gspc,

* Note that this includes the notion of verification or validation of a theory or model: if the

“consistent parameters set” were void, one would have disproved the theory!

$The map A need not be defined for every x in X and we let D be the set of x for which Ax
is defined (as A is continuous we always take D to be closed in X). Thus, it is really D which is the
set of “admissible data™ x and the true domain of A but we abuse notation slightly by continuing
to write A; X-»Y,

8 The complexities of such an analysis lead us to sacrifice some potential accuracy to permit
~estimating the meaéufcmcnt uncertaintics in a ““more standardized,” simplified form. Considerable
mathematical “ork remains to be done fo justify this procedure in terms of some notion of “robust-

ness.”

7 This typology is simplifying but not complete: it would certainly be possible, for example,

to consider mixed types.



& Neither treatment of errors can be considered superior—c.g., in the simplest (scalar) setting it
must clearly be a matter of “personal taste” to have a preference between a Gaussian error distri-

bution with the standard deviation o = 107 as against an absolutely certain error bound of 1072,

? Some measurement modes do give a continuous record (e.g., a seismographis track) but
information theoretic considerations (recording resolution, pen width, ete.) can be used to show

equivalence of these with discrete (sampled data) observations.

1%What is actually under consideration in this section (i.e., for @ posteriori data interpretation)
is just the composed map QA : X = &%, In this centext, from this viewpoint, any concern for the
operator A as such (rather than as part of the analysis of A} is irrelevait, Similarly, any direct
involvement of the intermediate space Y—say, in first using w to construct an estimate y of the
state y preparatory to attempting to invert A to approximate x by A~" —would be essentially

misplaced,

1 Making elfective use of such information is ofien the most significant problem in treating
such situations. One special form of this is of particular importance. It can happen that the set D
(taken as the effective domain of A through the use of auxiliary information) is a compact subset of
X. In this case, assuming A would be one-to-one (uniqueness in D of solutions of (1.1)), a standard
theorem in Topology assures us that after restricting its domain to D the operator A is actually
continuously invertible so in this case the inverse problem is no longer ill-posed—provided computa-.
tionally « ffective use can be made of the compactness of D. The composed map QA is unlikely to
be one-to-ane, of course, so the above does not apply dircctly; nevertheless, this compactness is
exactly the consideration needed to obtain useful error estimates, This compactness typically
follows from smoothness assumptions on x, via the Relich-Kondrachov Theorems (ef,, e.g.,

Adams).

12 For example: the Uirect problem relating the gravitational field in the observable regions to

the internal density distribution of the earth is linear. However, the typically measurement process

10



here obtains only the field strength so 2 would not be linear, Indeed, the linearity assumption
secems to exclude almost all problems of dircct geophysical interest. Nevertheless, the discussion
here is of more than merely tutorial significance but may also be relevant to consideration of intrin-

sicallv nonlinicar problems through linearization; compare the penultimate section of Parker

119771,

'3 A more general formulation would permit B to depend on x,, e.g., if it would be the
reletive magnitude of errors which could be controlled or estimated. In particular, this would be
the case if a significant source of uncertainty in the result would be uncertainty in specification of
the model: if (2,1) is used when the *“truc” operator is A, then—cven in the absence of any further
error—one would have observed A ,x, while compuiting on the assumption that w, - Ax, so
E=[A, - A] x,. The nature of the modifications needed for the analysis in the more general case
are conceptually clear but inordinately more complex computationally. Compare, e.g., Theorem

4.5 of Seidman [ 197831 .

14 The substitution of (2.4") for 2.4) will not help if S(w) is still unbounded or is bounded but
too large. A fuller understanding of the reason depends on more detailed consideration of the
asymptotic analysis (cf., Seidman [1978a]) but we see that if D is compact (see note! !} and B

small enough then useful estimates imnay be available.

5 In practice one may well use measurements embodying some redundancy (linear depend-
ence, in the present co.n.text) so that the range bf A, .is actually a proper subspace R in dtK. In this
case our first step might be to repiace the observation w (wh.ich, due to measu:rement efrof, might
not actually be in the subspace R) by, say, (3 —the nearest point in R to w. In some sense, what we

| wish to do is .to rep.lace the set .[w + B] By the set .[w + B] NR, which fypically has the form
[& + E] , and replace &K by R. Note that the use ofE instead of B may correspond to a substan-
tial decrease in the aqt_ual'uncertaintsr: this wou_'ld be the “pa.yof ’_" for fhe recﬂm_c_lanéy. Faving

replaéed /¥ by 'R, we refurn to the'origin'al notation with the aSsumptidn that Ay is “on+n,”

11



16 The angle a between two subspaces U, V is defined by cos a := sup { u,v:uel, veV,
Hull=1=lv I }. Thus, this definition of 0 is equivalent to (m /2 0) being the angle bet;’:een the
two K-dimgnsional subspuées, X and the range of AI: Note that the mhﬁmum value of 8, taken
over all possible n-dimensional subspaces Xy, is catled the n-width of the set B ; this notion has been
extcnsi__'}cl;‘ studicd in certain contexts (cf., e.g., Jerome {1967]).

17 Actually taking £ te be point evaluation, as Backus and Gilbert do, is, of course, possible
only if X consists of smooth enough functions for such functionals to be continuous. In that case
X will be a reproducing kernel Hilbert space (¢l ¢.8., Aronszajn [1950]) and it may be ccavenient to
express some of our formuilas a bit differently in terms of the reproducing kernel, Typical cases

lead to» the use of splinc spuces; see, e, Schoenberg [1946], Schumaker [ 1980] , Greville [1969].

18This is actually the most reasonable possibility for B if one uses an appropriate norm in ax,
related to the nature of the measurement uncertainties, This appropriate norm will no¢, in general,

be the usual ecuclidean norm for ®F but is more likely to take the form
ey =max {lw® /g, tk=1,...,k}
vhere a,_ m=asures the (relative) uncertainty of measurement of the k-th scalar component,

9 Clearly the choice of a depends on the radius ¢ of B (with a = o as a— 0) but, except
.a.symptotically (compsure the considerations of our next section), the appropriate choice is hard to
determine; cf., e.g., Morozov [1967] , Craven & Wﬁhba f19771 we choose this ﬁoint at which to
note that the noﬂn for X is also Somcwhat arbitrary (for examl.ale., it can always Be choseﬁ to make
a faifly ﬁrbitrary X orthogonal fo the nullspace of X, withont changing the topology of X) and

some study has been givch to optimal choice of the X-norm for (2.9'); cf., Cullum [1979].

~ 208ee Tikhonov [1963] and, for a more coniplete treatment and an extensive bibliography.
(especially of the more recent Soviet ljterature~including over 20 specifically geophysical applica-

tions, especially by Glasko and by Prilepko) see Tikhonov-Arsenin [1977].

12
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2! In the limiting case € = 0 + (corresponding to assumed error-free measurement ! w = ()
one would theoretically be solving (2.5), corresponding to (2,9') with a = 0. However, it is charac-
teristic of such “inverse problems that A, although invertible, is quite badly conditioned even for
moderate values of K, We note that regularization is a recommended approach (cf., e.g., _ )
to solution of stich badly conditioned systems in the finite<limensional case—so computationally

(2.5) and 2.9} are not really very distinct,

22 The bound (2.11) reduces to (2.7) with cot 0 = o on taking @ = o. In general, (2.11) offers
no improvement over (2.7)~the :1dva:n?agc of (2.9} is the greater comput:itional stability provided

by regularization for the ill-conditioned system (2.5),

23 As in case (2.2a), our assumption is essentially that the uncertainty is wholly due to
measurement uncertainty which is additive and uniform. Modifications of uniformity weuld also be
possible here along the lines of notef?, Note that if P, were to have (small) bounded support B.

then all the considerations would apply as well, ' : :

24 Sce any clementary statistical text on hypothesis testing, especially for the multivariate case
(e.g., Morrison [1976]), for the implications and justification (in terms of the Central Limit

Theorem) of thiz assumption.

25 Here X represents an estimate based on earlier observations and a will be large or small
dépending on one’s degree of confidence in the accuracy of X (actually, in the relative accuracies of
PX and 6f A" w). Insome contexts one could sixﬁply include the earlier observations with the new
in a single step b.ut' (2..9'). n a far simpler “ﬁpdatfng procedure;.” Further, the format of the ¢arlier
_ measurements might be quité .d.if ferent—c.g., X might coirespond to an earlier estimate of an interior
B dcnsity distribution .t‘or the Earth based on seismic data whereas the new observations may Be }'
gra_vimctric;-aﬁd with .a different type of error s_tatistics; ihdeéd, the old measurémcnts may no g |

longer be availa.blc at all.



6 One can carry this analysis a step further by viewing X as {tself a random variable {c.g., its
randomness might derive from measurement errors in the earlier observations from which it had
been obtained); assume X, E independent with P(x,, - X) having mean o and covariance matrix A
(in X). Then the expectation in (2.12) must be modified by considering the distribution of X, It
can be shown that this is minimized by taking @ := ¢/ G2 in (2,9') which gives, altogether,

o

a?p? +92

Exp Ix, -xg B = Exp I (x,-%)-XI? + K

‘ (2.12")

Similar analyses have been used (e.g., Franklin 1970) to estimate the optimal a with X :=o but

viewing the unknown X, itself, as a random variable, rather than as strictly determinate.

'”This is an inescapable consequence of the ill-posedness of the problem: from (2.6),v? = ?\'}:
where 7\}; is the K-th eigenvalue Ay 2 X, 2 .. .>_o)'of AgA. Fora priori analysis an asymptotic
l’x‘nowledgﬁ of Ay, ... can be useful in asymptotically making an appropriate choice of a in (2.9').
'I'his"inérease in v, often rapid with K, mzikes the computation ill-conditioned even though A is

invertible (see note*! ) which dominates the computational aspects of the problem,

28 [For the probabilistic case it is instructive to *‘fudge” the interpretation slightly and suppose
the measurement operator were really Q vy~ &% with K’ a multiple of K corresponding to repeti-
tion of a “basic” measurement operator, If &~ T were the covariance matrix in &%’ for measure-
mant errors, then defining £ by avéraging the values of repeated measurements in ﬁ gives
(K/ K')'E."'2 Ias the covariance matrix in &* for the errorsin £, More complicated analyses cover
situntidns in which the actual observational data is “h.ighly redundant” although not just repeti-
tive but the general strategy remains that one makes a “K-dimensional estimate X, ” based on data

reduction from an originally K'-dimensional observation (K’ » K), using the variance-reducing

propcrty of averaging independent errors to produce a statistically more accurate “pseudo-

observation,”

14



39 Note that A, the weak Gateaux derivative at X of F; X Y isdefined by A h=
d{¢ F & + th)l/dt Itg,0 provided this determines A ; x =» y as a linear map. This i§ effectively
what one obtains (implicitly) if, ¢.g., (2.9 ') is employed (approximately) for nonlinear problem—

provided ¥ is already a good estimate for x,,.

3% A case in poin't is the analysis in Seidman [(1978b)] (noncovergence) of the method of
least squares, Consider selection of x, by x. giving min Iy - A x Ul subject to %, € X
(dim X = K) (here it is assumed that y = A x, is observable in 'Y but one might also be considering
this with lly -IA x I replaced by. l'ew -Ax Ilif the actual observation Aw were in &% with
K "% K; compare note*®* ). Even with entirely error-free observation and calculation, it can be
shown that if X is viewed as one of a sequenze expanding to “fill” X, thén the corrcspohdingly
computed sequence X, of “approximants” need not coverige to X, (one need not even have
{ Ixy, ||} bounded as K—> =) if “bad’ choices of X may be made correspondi’ﬁg to peymitting v

to increase faster than necessary,

31 Even with D compact, the estimates available are typically asymptotic—as for the n-widths
mentioned in note?®. Of course, even for well-posed probiems in numerical analysis the error
estimates typically involve constants (e.g., bounds on higher derivatives) which are not known so
one’s degree of confidence in the results in *asymptotic”—although *“‘extrapolation’ may permit
some direct estimation: use partial information and compare the results to estimate accuracy (this
also is the crux of Wahba’s “cross-validation” analysis of regularization when, in the probablistic

case, the variance ¢® for measurement crrors is assumed not to be known in advance).

32 The vagueness of this assertion is respect to explicit estimates of the errors is, in part,
closely related to the considerable arbitrariness involved in the choice of norms. Even restricting
oneself as above to quadratic (Hilbert space) norms as measures of approximation, one is free to

adopt any of a wide variety of equivalent or inequivalent norms (e.g., § x [1* could be f x? (s) ds

13



or f xt (s) w (s) ds with weighting function w > o or, inequivalently, f [x* (s)+ Igrad x (s} P 1 ds

or,..). The choice made will certainly affect both the interpretation and the computational

convenience of the method, Particularly convenient are settings for which there are well-studied

computadtional algorithms with the matrices (associated, c.g., with (2.10) taken with respect to an

-appropriately chosen basis) sparse and not too ill-conditioned; typically this might be the case of

spline representations are used in connection with Sobolev norms, Compare note'?.

33 Presumably one would avoid a method for which the scheme would not be convergent

(to x,.) at all, Compare note 2°,
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