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COMPARATIVE ANALYSIS OF VARIOUS APPROACHES

| FOR EVALUATION OF PARAMETERS\
OF MULTIDIMENSIONAL MODELS

L. S. Gurin

I. TFormulation of the Problem

Let us examine the problem of evaluating parameters of a
mult1d1mens1ona1 model according to measurement results: Let
-(xn‘";xﬂ") -- vector of independent variables, and

6 (9;,..,0&) -- vector of evaluated parameters. Further,

the measured value .3 may be presented in the form

y(x)- (X 9)+% (1)
where the form of‘function. Q (X 9) , Which represents the
model studied, may be elther ‘given or selected on the basis of
measurement results and certain assumptions may be made about
random error % We w111 suppose that measurements are con-
ducted at points ixi , 1 N , determined by the plan of the
experiment. It is necessary to -find the best evaluation of the
unknown vecter of parameters}.e’ . . The possible approaches to

solution of this problem depend on the following conditions:

Is the model given or is it selected?

2. If the model is given, is the experiment plan also
glven9 If the plan is not given, it becomes neces-
sary to select the best plan (the problem of planning
the experiment). )

3. Is the law of error distribution i%ﬁgiven?

¥ :
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4. Whatlare the criteria for selecting the best
evaluation?

5. What is the purpose of conducting the research?

The last point is the most important, since it determines
the dependence between the rémaining points. Therefore, we
shall formulate’thé goai of the investigation conducted in
this work.

Due to the complexity of multidimensional dependences,
many researchers consider it more expedient to produée decom-
position of a model, ie., to study the dependence of the final
value Qn‘eaCh of thé unknown variables JCL;individually, fix-
ing whenever possible the values of the remaining independent
variables. If such decomposition is performed before the be-
ginning of the experiment, it is expressed in the appropriate
selection of experiment plan. 'This approach 1s severely
~criticized in [1] from the standpoint of planning the experi-
mént. If the éXperimént has already been conducted and its
plan did not correspond to the idea of decomposition, it is
possible to perform approximate decomposition during process-
ing of the results of the experiment (so-called plotting seg-
ments, séef[Z]).

On the other hand, when the experiment has been planned
according to the scheme of decomposition, during processing
we may perform reverse composition, returning to the model (1)

in its overall multidimensional form.

Our goal is to clarify the dependence of the feasibility

of decomposition on the circumstances formulated above.
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2. Some General Considerations

Returning to [1], let us stress that here the authors
examine only the case where the model is given. If the model
is to be selected, then decomposition is necessary at the
planning stage of the experiment or at least at the process-
ing stage in order to defihe the problem and to at least out-
line a certain number of competitive models for subsequent

study.

However, let us examine more closely the case where the. /5
experiment has already been conducted according to the method
of decomposition and we are speaking only of selecting the

method of ‘processing.
We will begin with the question of criteria (question 4).

We will utilize the concept of conditionally effective
evaluation .introduced in [3], i.e., evaluation which has better
precision’charactéristiCS“with consideration of limitations

- according to other criteria (labor intensiveness of the algo-
rithm, stability in relation to change in the -law of "error dis-
tribﬁtion). In each individual situation (except the most
simplé);'the SOlﬁtion‘may‘be obtained only with application
of the statistical modeling method on an electronic computer
with‘cthidération'for'machine'time expenditure. The methodology
of sﬁch”an.invéstigation'in our case is analogous to that used
in [37. HowéVer? the compared evaluation algorithms will also
bé distinguished by whether or:not composition was eémployed in

them. \ It is clear that the result of such'an‘investigation in

its overall form cannot be predicted. In the simplest case,
‘conclusions may be obtained analytically and speak ‘in favor of.

composition.



3. Investigation of the Simplest Case

As the simplest case, let us examine a linear model with
normal law of error'distribution. As is known [4], evalua-
tions of the method of | least . ' squares are the best in this
case by their prececision characteristies. Due to the fact
that there are simple analytical expressions for these evalua-
tions, the criterion of algorithm labor intensiveness may be
considered insignificant. Thus, we have only to compare al-
gorithms using and not using decomposiftion by their precision /6
characteristics. For greater clarity (although this is not
necessary), we will limit ourselves to the case m = 2, k = 2,

i.e., we will examine model

Y EeEebTg -
where error:éi-- independent normally distributed random values
with zero mathematical expectation and dispersion ;52 .
We will take the overall number of measurements equal to N = n2

and we assume that plan matrix X has the form

:w_ O',,' O.'* o
o L ’ . '
R SR P
i ; " Ve ill. - J
Ix = lln=l 0 ° (3)
f ol L -] _ 3
‘ O " |
! - A i
: 1 n o .‘.‘n:
cnal mateix VY g
Here informational matrix X ><Lr}S_EgE§1 to
- T - - N . A
T T gen@n-g o (-1
XX“' ¢ S D) 9
f - (n-t)2~ B An-1){2n-1) ()
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and error matrix
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(XT)()‘l (-0 (Fnkan-s) 0 Feieass
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_,ﬁr._,,,;:;pg-.:.n-;-' :,”12;‘1,,;2;‘- 5_ (n_ |) ( :1 n I.r Zh - 5) 1 :l

Thus, in proce351ng w1thout decomp031t10n the covarlatlonal

elv:imluatlon matrlx(g‘ GZ) is equal to,ez()( X) b, 1.e. LQ' and
‘Gi separately are determined with dlspersion
' _ 2(2n- 1) L
’6 —6 746 ( _ .
@ (h t)(?‘h +2n 5) !

In the case of processing utilizing decomposition instead

of model (2), we first obtain n of individual models

’..: x +C- -'.‘ - . s =_.-‘ .
e.' i C;} "% > Cd ngd d d { - (7)
with the same plan matrlx 7
: o O f |
x = = B
[ J - o i
S R | R | (8)
- at 4l
; ! "17{' 1 “ ]

In this case the error matrix appears as

2n b |
i T, "‘ . nl"1 -ﬂfl !
'(X X) = . - ' : e (9)
/. d 47 | 6 2€2n-1) |
5 T el n(n+t)
By n we have obtained evaluation {Gi and'e Y with dispersions

From heré for resultlng evaluation

determined by Kj; and (9).
we will ob-

A .
{Qid: ((d -= index marking the use of decomposition),

tain dispersion

o, g-42 T | - -
} rfv"-'-‘ s ‘ (10)

1“5«1 n*- 4



For evaluation'@zvf, we have problem
.(. -

A el :
¢, = L L+ 8¢ (11)

~ with plan matrix.

0 : :
L ; T ;! én, '

n-1 -

: ‘ 29 4] v .
and dispersiondgh , equal tO‘éEilEf:il.j (see (9)).
¢ o n(n+d)! .

From here we quickly obtain

2 25t(en)_6n 4287
'6623" nntd)” (n r)<&n~«) T on%A /’ (13)

Comparing formulas (10) and (13) with formula (6), we ob-

tain increase 1n dispersion due to decompos1t10n (we omit in-

dexes 1, 2 and: 6 ):

5T . B ) i
! ) . '
. -

’ 654;_;.A?n;+2nr5 L (14)
)\ = G/\ - 2(“"‘)(2”’4)

n.,w

To explain reasons for reduced precision with decomposi-
tion,iwe will note that in both cases the evaluations are linear
functions of measurements{Ji, but with decomposition the co-
efficients during 1nd1v1dua1 measurements are not optimal, since
they have the form Cl @ ( b_/ n J-—{fﬁ] correspond[to values

i ( )
[.1?,71 ,1&- ) instead of . C’V Concrete expre351ons for



a;'; 6, and-Cg‘ (which for brevity we do not write out)

show that C ;ta‘é. .

We will note in conclusion that an analogous calculation
may be performed for more complex linear models as well as for
nonuniform distances between measurement points according to

individual variables.

4. Example of a More Complex Problem.

We will limit ourselves once again to the case of two

independent variables, which may be more conveniently expressed

aslx-' and fj Moreover [.I".-' yd U (b,J-. n) ]

the dependent variable will be expressed as Z. Further, let /9

o |
"'.ZLJ ‘f(xbagd)e)+ %vd ) | (16)

[ e —

where .%“Jl are again independent normally distributed random
values with zero mathematlcal expectation and dispersion (;.,
and'f x'y Q)mas the form

-~ F T -
J A e (x-a.) Zp.brr)(y €) (9-€)}
z,,6) = s e [ - +
( J )= 2% Gz, Gyt -p? 1200 GE " G Gw  O% Ly
4-d aod= L 1(1 .0 Zfawg@@ J
\J
2% 6, By \t-§F 2(- 9;) Gd;,  Gm O v
Thus, 1in our example
19"—:‘—(—;( CL“-g_——G;._Gy.,'?—.‘)_C‘z,@21011 G92r92) > (18)

I

that isJ}?Q{f?\



Solution of the problem without decomposition using the
method of [ least ' squares is reduced to minimalization of the

expréssion : . - ot
‘ Lo n n :
‘f 7 e - !" . 2_‘
:'S =L 2.. {.2‘4 B {(.xi,yj: 9)] ,’ (19)
‘ Ay d:l _ K
N LA
according to 6, with which we obtain evaluation ;9'3 . We will

note that the problem of minimalization of S may turn out to be
multiextremal. Let us examine a series of algorlthms } M|

of minimalization. (Also included in the algorithm is the

given rule of the end of computation, for example —--|number of

FQEraans ) Correspondlng to each algorithm will be a certaln

computation tlme[;ﬂ and a set of precision evaluation charac-

teristics §%\ for example, displacement vector '/\Q“W and co-
variational matrix ‘£36;~. The problem of selecting p becomes

the problem of vect&?"oﬁtimallzatlon.' Putting aside the ques-
tion of selecting p for the time being, let us examine the

variant of applying decomposition.

With fixed 'y 3& we obtain, instead of (17), an indivi-
dual model (we will note that decomp031t10n is not simple by /10

parameters):

f (I 9) a exp{ E(oc a)vc(x-u,)ul} f?exPl {"(x (1,}+P(111,) ‘1,}

(20)

in which there are ten parameters:

6.= (0.0 L ddlp ﬂ

and



o= oL = i;qT;:%i,,{fj(';__;',; ‘!
v 2"6-30'691\1‘{—5-‘_1 . | 2 (6xebyz N i-02
@ - 2(!-@7‘-‘)-6'3}._ ' €=2(l~?z‘) .”}2 - \. :
eonpb | pontet) | o
‘ (x- bx,o?, - kz. €?)f;-t 032 )'
d = 2'(‘(':y j ;y- M’CL: ('(?S;z)zg.vz J!

To evaluate 61 , 1t is necessary to minimize expression
(n times|with respect to J)‘

PN - )
N - .

I ’ )
S'J =-'  : {(x : : (22)

We are examining a series of algorlthmslA)ﬂk. At the next
stage, considering each value of \Gh) as a measurement of.

initial vector of parameters 6, we obtain a system which looks
like S

atj = G+ é‘J ...’. ‘ ~
L I .‘_..._.._‘. - ,
/ aza\'_= ‘al*fofzj;, S d ',4’n, p | .: (23)
l' CLJ 2(7621691 u ‘?; §d | )

a0

From this system 10 measurements are requlred to evaluate 8.
The difficulty here 11es in the fact that errors §x_ (X“‘ 10

have already been correlaued and, generally speaking, do not have
zero mathematical expectatlon.

- In studying the problem by the method of statistical exami- /11

nation, we know the characteristics of errors and may continue



evaluation of © by minimalizétion of the corresponding overall
square form. However, in solving a real problem we have no
such opportunity.' Therefore, for comparative evaluation of
the variant of decomposition, we will use ordinary sums of

squares (here it becomes possible to achieve partial |separation.

of parameters) n : oy - 5 ;
' \ E— A I
Sd ] . ( T aa} Tt Z_\ (az 3 -Q,) PERTE |
.:S e {27 - y g R ) Z{ \

N i, = (e ~ — \+(F.- I FRE
Sase 3[4 s (- mima)” |
o ' oo 27 reh
: +( ey €) ) ( L w:!'f‘) 1) ;‘ \('1
’ o d 6':»:: 6'9;(‘ 9}) d ("91)635 ] 1
i n ' P
1 9 A=l 2. ek
I ’ . e —m et R PR
a3 (- mm) ]

Expressions of 1tems not written oagyfer d are ev1dent

i
i J—

from (21) by analogy with deg

-

From expressions for C>a,]and E;JZJ: we promptly obtain

A TR e T A T (25)
| t'=:% E: U . Z=:7%
’ J . :l h )

LnY

For mlnlmallzatlon of‘é;d3 and équ , Wwe use a set of al-
gorithms IAV ’ Ay . We w111 de31gnate as PAV the overall
algorlthm for solving the problem in case of decomp051t10n,
i.e. ,,v (v )N'y"3" . For each AV we will again obtain the
overall time for solv1ng the problmnrty and a set of precision

characteristics; A B ..

Now the question of feasibility of decomposition may be
answered.

10



First, it is necessary to select an approach to the problem
of vector optimalization. For example; let the computation time /12

be given by 1imitation
t(e) 3
--—~~—-* - (26)

and the vector of precision characteristics|convoluted in scalar

-~ criteria -- average quadratic deviation of a certainilinear form

from components {g;!, i.e.,

/|

(@ -Mpe-Br

(27)
There remains the difficulty that both t and e depend on the

value of the -evaluated parameter 6. Let 6 change.ih a certain
domain'Q ', Then the minimaxal approach may be used and (26)
and (27) be replaced by

Ctesu (o) st ;
9€ oo (28)

(29)

£ = st ' e{(e) N
| BE:; S

Now t and € depend only on selected algorithms Aﬁ and A,
Leav1ng only those Aﬁ and A, for which (28) is being ful-
filled and selecting one of the remaining algorithms from. the
condition of minimum e, we solve the problem to its end. Let

AO be the algorithm selected. If AO = Aﬁo’ i.e., one of the al-
gorithms is without decomposition, not only is the nonfeasibil-
ity of decomposition.demonstrated, but the best algorithm for
solving the problem is found. If AO ='Avo, i.e}, one of the al-
gorithms has decomposition, then decomposition is feasible and .
again the best algorithm is found. We will note that we were
able :to include 1in this comparison also various realizations of
decomposition itself (i.e., not only of type (20), ‘but also

others).

11



Realization of the described procedure with the aid of
statistical modeling on an electronic computer is possible /13
with a small number of values of u and v. A number of views
on such a realization, particularly on multiextremal and vec-

tor optimalization, is given in [5].

5. ~Conclusions

Thus, in evaluating parameters of multidimensional models,

three cases are possible.

1. If the problem consists of selecting the best model,
then it is expedient to perform decomposition either at the
stage of ‘planning the experiment or, if this is impossible, at

the processing stage.
The latter may be done by constructing segments {2].

2., For linear models ﬁnder conditions of utilizing the
method of [ Ieast squares (for example, with normal law of
error distribution), decomposition is not'feasibie; ‘If the
experiment has already beén conducted according to a scheme
of decomposition, processing of results should be done agcord—

ing to the general model.

3. In all intermediate cases, the solution to the question
of feasibility of decomposition depends on the concrete problem
and may be obtained on the bases of a special-investigation
utilizing the method of statistical modeling, with'cénsidera—
tion of all significant criteria, including labor intensive-
ness of the"evaluation algorithm. The methodology of such an

investigation is given above (section 4).

12
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