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-FOREWORD

The report was prepared by the Thermophysics Group of the

Aerospace Sciences Laboratory, Lockheed Missiles and Space Company,

for the Experiment Engineering Branch of NASA Goddard Space Flight

Center under Contract NAS 5-10̂ 57, for the time period July l̂ , 1967

to December 15, 1969.

The study was carried out under the direction of R. E. Rolling

with G. C. Vliet as the Project Manager. T. C. Nast and G. B. Cline

were primarily responsible for the thermal and structural analyses

respectively, and T. C. Nast also supervised the assembly and testing.

R. E. Barrow did the assembly and conducted the thermal testing.

G. Bell made the gold emittance measurements and provided support In

the development of the detector mount technique.
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ABSTRACT

Lockheed Missiles and Space Company contracted with Goddard Space Flight

Center under Contract HAS 5-10̂ 57 to design, construct, test, and deliver an

engineering model of a dual solid cryogen refrigerator for a 75 K infrared

detector. Argon and carbon dioxide were specified as the primary and secondary

refrigerants respectively, and among the more important requirements were: one-

year of space operation, 35 niw of total detector cooling, maximum of 35 lb.

weight, 75-80°K detector temperature, 300 K outer boundary temperature, and

capability of surviving a TIROS launch. This report describes in detail the

solid cryogen refrigerator thermal and mechanical design, as well as the thermal

and structural performance of the refrigerator engineering models which were de-

signed, built and tested to the required specifications. •:

The refrigerator utilizes solid argon and carbon dioxide as the primary

and secondary refrigerants respectively, which are contained in toroidal

aluminum containers and supported by a folded glass-reinforced epoxy tubular

structure. A shroud attached to the COg container surrounds the argon and one

floating radiation shield is located between this shroud and the argon con-

tainer. All surfaces viewing each other (support tubes, tanks, radiation shield

and shroud) are gold coated for low radiation transfer. The refrigerator is

insulated with 2 inches of double aluminized mylar-Tissuglas multilayer insula-

tion. The solid cryogens are formed by passing LN2 through a single coolant

line attached to the containers. For each cryogen container there is one fill-

vent tube which is grounded to a conductive shield in the insulation to provide

vapor cooling of the insulation. Considerable effort was made to meet all of

the thermal and mechanical requirements of the engineering model. ;.tThe major

structural requirements were'met,"however,"the design did not satisfy all.of

ix
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the"thermal goals. The actual lifetime of the thermal model was three

monthr This degraded performance vas determined to result primarily from in-

crenoea thermal absorbtance of the gold coated surfaces due to cryodeposition

of water vapor. The system weight of the refrigerator was UO pounds, which

included 26.8 pounds of cryogen.

Tests of the thermal model (purged fill, evacuated fill, hold, thermal

lifetime, temperature regulation and warmup) were performed. The refrigerat-

or can be filled satisfactorily under either the purged or evacuated con-

dition.
*

The refrigerator thermal model is also applicable for operation with

solid methane and ethylene as primary and secondary refrigerants, respective-

ly. The model was tested with these cryogens and improvements in thermal

performance and weight reductions were substantiated.

A structural model of the refrigerator was also built and tested.-; The

structural model was similar to the thermal model except that it was tested at

room temperature using a wax to simulate the solid cryogens, and certain

features (i.e. gold coated surfaces) pertinent only to the thermal model were

eliminated. The structural testing included acceleration tests in three axes •

at 10 and IT.6 g's, low level resonant survey tests (5 to 2000 cps) in three

axes, sinusoidal vibration tests (5 to 2000 cps) in two axes (lateral and

axial) •• at 5 and 8 8 zero to peak; and random vibration tests (20 to 2000 cps)
P * *'• P

in two axes (lateral and axial) at 10 g rms (0.05 g /cps) and 16 rms (0.13/g /cps).

The model survived all of these structural tests which are equivalent to

"TIROS"̂ I/Improved TOS" flight and prototype level acceleration and vibration

specifications.
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SOLID CRYOGEN REFRIGERATOR FOR 75°K
INFRARED DETECTOR COOLING AND ONE

YEAR LIFETIME

1.0 INTRODUCTION

This is the final report for Contract No. NAS 5-10̂ 57, "Subliming

Refrigerator Unit." It describes the design, construction and testing of

an engineering model of a solid cryogen refrigerator for 75 K infrared de-

tector cooling and one year lifetime.
*

1.1 Background

To efficiently detect long wavelength infrared radiation, cooled Impurity

semiconductors rather than intrinsic semiconductors are required. In an in-

trinsic semiconductor the band gaps between valence and conduction electrons

correspond to maximum detectable wavelengths in the 5 to 7 micron range

Doped or impurity semiconductors, on the other hand, have energy'jpeaks asso-

ciated with the impurity atoms between the valence and conduction bands of the

parent material. Thus certain doped semiconductors have much longer wavelength

detector limits than intrinsic semiconductors and are applicable to long wave-

length infrared, However, extrinsic semiconductors require cooling to prevent

the thermal excitation of the impurity electrons. For extrinsic semiconductors

having long wavelength limits in the 8 to 1̂  micron range, the detector should

be operated at or below 80 K to prevent thermal saturation.

For infrared detectors requiring operation at or below 80°K aboard a . .

spacecraft, the problem of supplying the refrigeration is very difficult in

view of the requirements of low system weight, volume, power, and high system

lifetime and reliability. Conventional means (active refrigeration) are

currently inapplicable except for short term missions; although important im-

provements are being made in this area. However, systems using solid cryogens

are presently capable of providing the required infrared detector cooling for

long periods in space and with high reliability.
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An engineering model of an argon-carbon dioxide dual cryogen cooler for

50°K operation was designed, "built and tested by IMSC under HAS 5-95̂ 9 (March

1967) to prove the feasibility of the dual cryogen concept for efficient long

term operation. The resulting system weighed 3^-1 lb, and had a thermal life-

time of 1 year for 17.6 mw allowable detector heat load, compared to design

goals of 30 lb> 1 year and 25 mw, respectively. The detector and carbon dioxide

operating temperatures were 52 K and 129 K, respectively. This model did not

undergo extensive structural testing and no attempt was made to couple the

argon to a detector mount similar to that required of an operational system.

The engineering model described herein goes beyond the feasibility model

developed under HAS 5-95̂ 9 and includes extensive thermal and structural test-

ing, and a detector mount concept is part of the system. The model which was

developed is shown in Fig. 1-1.

1.2 Technical Objectives

The general objectives of this program were to design, build and test

both thermally and structurally an engineering model of a solid cryogen refri-

gerator capable of withstanding launch environment and thereafter providing long

term infrared detector cooling in space.

The refrigerator should be capable of providing 35 mw of infrared detector

cooling at 75 to 80°K for one year in space, with a total system weight,ex-

cluding the outer vacuum container,of approximately 35 lb, a minimum physical •

size and a nominal environmental temperature of 300 K. A detector mounting

surface not less than 6 mm diam. and 10 mm long; two electrical leads to the

sensor of not more than 15 ohms, and an infrared window transparent in the 8-ih

micron range with a 60 acceptance angle were to be provided. A dual cryogen

refrigerator concept using solid argon and solid carbon dioxide as the primary

and secondary refrigerants respectively were specified, and liquid nitrogen

could be used for the initial solid cryogen formation and for standby. The

refrigerator should be capable of being filled and held at temperature low

enough to prevent loss of 00̂  or argon for 2k hours, with external pressure of

one atmosphere and external temperature of 300 K. Liquid nitrogen may be used
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in the cooling coils during this time, and a vacuum in the insulation space is

not required, but there is to be no condensation or freezing of gases in the

insulation. The system must be capable of being warmed to 300 K in k hours

without impairing the insulation. Each cryogen container shall have one fill-

vent line to the outside of the vacuum container. Only one Insulation

penetration is permitted. The vacuum container in which the thermal testing is

performed should be capable of attaining 10 Torr, and should include two
.•a _3 _7

vacuum gages, one in the range 1 atm to 10 torr and the other 10 to 10

torr.

The thermal model was to undergo fill, lifetime, temperature regulation

and warmup tests, to determine its thermal performance.

The contract originally did not require that the model be tested to the

complete launch environment outlined in "GSFC Specification TIROS M/Improved

TOS" dated January 31, 1967; howeveij, "the design was to meet the specified

acceleration and vibrational environments. The contract was subsequently

amended to include testing of a structural model to the equivalent qualifica-

tion and acceptance levels of acceleration and vibration described in the

above "specification." The structural model was to be similar to the thermal

model except for features not affecting the structural performance. Testing

would be performed in the warm (room temperature) condition with the model

loaded with solid ballast to simulate the respective solid cryogens.
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2.0 SOLID CRYOGEN REFRIGERATOR DESIGN

As part of the contract a detailed design report, "Thermal and Mechanical

Design of Solid Cryogen Refrigerator for 75 K Infrared Detector Cooling," dated

Sept. 22, 1967, was submitted for approval to NASA GODDARD SPACE FLIGHT UKNTKH

prior to construction of the refrigerator. The important design information in

the above report relevant to the eventual model, as well as additional design

changes made during the construction and testing of the refrigerator are

presented "below.

*

2.1 Thermal Design Considerations

The thermal design of the refrigerator was extremely critical as a result

of the 35 Ib weight goal. The design point of 30 g's side loading established

the structural criteria for the cryogen tank supports, and this requirement led ,

to substantially greater support member requirements than the refrigerator

developed under the prior contract (NAS 5-95̂ -9 )> for which the design side loads

were 10 g's. The resulting relatively thick wall support tubing leads to

potentially high support heat leaks. A concentrated design effort was focused

on various support configurations for both argon and carbon-dioxide containers.

Other major efforts were directed at the geometrical arrangement of the COg and

argon containers in combination with the various support configurations.

Special emphasis was placed on ease of fabrication, simplicity and vacuum

integrity of the cryogen containers and ease of access in the event of

vacuum leakage.

The basic requirements and assumptions which relate to the thermal design

are outlined in Section 1.2.

A summary of the various heat leaks that were included in the calculations

and their magnitude is presented in Table 2-1. A consistent set of design

parameters was obtained only after several iterations. For example, the re-

quired tank volume is affected by the heat leak which in turn is coupled to the
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TABLE 2-1

SUMMARY OF PREDICTED HEAT RATES
TO REFRIGERATOR AS FABRICATED

Heat Leak (mW) Argon (Primary) C00(Secondary)

Supports (including gold conduction)

Radiation to Container

Insulation (2 in.)

Plumbing Lines

Conduction and Radiation to Detector

IK Heat Dissipation

Vent Gas Cooling

Heat Loss to Argon

NET HEAT LOAD

19-5

2.0

8.1

10

28

113

16.5

- 18

- 2k
•̂̂ B -̂ ^̂ m

115
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tank dimensions. Additional items are also coupled, so that iteration is

necessary to obtain consistent parameters. The techniques and methods used

to obtain the various heat rates to the refrigerator are discussed in the follow-

ing sections.

Support Analysis

Argon Support - The investigation of argon support configurations included the

following :

*-

o Dacron or Titanium taut filaments

o Foam support pads

o Stacked washers, including foam, phenolic, and stainless steel.

o An annular space filled with solid argon which would sublimate after

boost and leave the argon container suspended on minimum supports.

6 Fiberglas tubes and cones, both concentric and re-entrant.

These design studies indicated the latter concept to be preferable. Studies

of various fiberglas tube supports included various geometrical configurations.

Tube supports which supported the argon can directly from the carbon dioxide

container led to prohibitive heat leaks and these were immediately discarded.

Re-entrant configurations, which allowed the support tube to pass through a

hole in the argon container before attachment was made (similar to the previous

refrigerator design} were substantially better although they still fell short •

of their design goal.

The design which was finally selected is shown in Fig. 2-1 (which also

shows the carbon dioxide support) and consists of two concentric fiberglas

tubes which result in a long path length and a resultant minimum heat leak.

The solid conduction heat leak is given by the following expression.

Q =
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Figure 2-1 Fiberglas Support System
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The parameters of the support tubes which determine the heat flow are :

r_ s 1.35 in. r^ = 1.55 in.

6 = O.OU2 in. 6k .- 0.035 in.6 ^

L- « 9.1 in. L̂  « 7.7 in.

(Tco - TA) = 225°R - 135°R - 90°R

k = 0.06 Btu/Pt Hr°R

The data on thermal conductivity was obtained from Ref . 1 and is presented in

Fig. 2-2. The average value for the various materials was used. The result-

ing heat leak with this configuration is 3«2 mw. in addition, the gold coat

ing resulted in 0.8 mw due to conduction.

Main COp Support

Investigations of the main support system for the refrigerator were essen-

tially concentrated on fiberglas epoxy reinforced material. Various configura-

tions both with and without re-entrant systems were analyzed. Again, it was

found that to withstand the specified loading conditions, it was necessary to

utilize a concentric tube design to increase heat conduction path length.

This configuration is also shown in Fig. 2-1. In determining the support con-

figuration, the variation in mechanical properties along the tube length due to

increased strength with reduced temperature and reduced moments away from the

attachment point were included. In this manner, the cross sectional area for

heat flow was minimized. Both the wall thickness and diameter of the two sup-

port tubes were partially tailored to local stress. The resulting support con-

sisted of a cone -cylinder support within a second conical support.

The heat leak for the COp support system was calculated from the following

equation:

2n L L 6r

9
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The following parameters were used for the heat leak determination. The

data on thermal conductivity was obtained from Figure 2-2 and the average value

of conductivity for the various materials was used.

Parameters for COp support heat leak.

R - 225°R = 315°R

k = 0.25 Btu/hr Ft°R

For the top cone of tube No. 1

L 3.^ x 12 638.0
g- " 0.077 x 0.83

Cylindrical section of tube No. 1

L 12.k x 12
^ = 0.068 x 0.80 '

Tube No. 2 (conical)

_£ _ 9.8 x 12 _ i 78o
- " 0.060 x 1.10 ~ •"•'rouor

The resulting heat leak due to solid conduction was .096 Btu/hr or 28 mW.

Radiation down the central support tube was retarded by placing annular

disks of multilayer Insulation inside the tube, with the central hole'

for passage of the thermal link. Without such insulation radiation transfer

would be excessive.

Radiation to Argon

The argon is partially protected by the COp cooled gold coated shroud and

is further protected from radiative transfer by a gold coated radiation shield

between the argon and the COp shroud. The heat transferred by radiation from

11
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the C02 container and the COp cooled shield is given by the following expression

which is applicable for concentric cylinders or spheres:

Qr

where the subscript 2 denotes the outer surface and 1 denotes the inner surface.

Calculations were performed using this expression for the gold surfaces *

with one radiation shield separating the argon tank from the CO. temperature

environment.

The following values were utilized for the calculations:

P
boundary temperature) = k.f Ft ;

.

Radiation shield area: 3.17 Ft

A_( Argon area exposed to C0p) = 2.7 Ft

2

The emittance as a function of temperature for "Lockspray" and of an

electrodeposited gold as measured in the Lockheed Research Laboratory are given

in Figure 3-1 • The "Lockspray" was selected because of its lower emittance

and its utility in coating fiberglas parts. .The emittance value used in the •

calculation were 6̂ 75*̂ ) = 0.011; and eg (l25°K)= 0.015.

It was also assumed that 1$ of the surface area of the argon tank was

black resulting in an effective emittance of 0.021 for the argon tank.

Solution of the equation assuming these parameters yielded the following

heat flux value from the C0_ boundary to the argon container:

j.
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Q = 19 mW (gold coated)

The assumption of no black areas would reduce this value to 11 mW. The

shield was supported at the Junction of the No. 3 and k support tubes which

approximates the ideal temperature of the radiation shield, 112 & (201 R).

Heat transfer between the shield and the connecting support was minimized by

constructing the shield from a low conductivity material (fiberglas-epoxy).

Insulation Configuration and Heat Leak

+•

The insulation system used for the refrigerator was similar to that used

on the previous refrigerator developed under Contract NAS 5-95̂ 9- Extensive

testing of various insulation systems has shown the selected system of

double alumlnized mylar-Tissuglas to have the best thermal performance.

The insulation support shell (CCU tank and shroud)was constructed so that

the top and bottom ends were rounded to avoid local compressions of the

insulation which will seriously degrade insulation performance. At the junc-

tion of the insulation and the support tube a layer of Dexiglas was provided to

uncouple the insulation from the support tube. A numerical computer analysis

was made of the optimum Dexiglas thickness to minimize the net heat transfer to

the COp. The optimum was approximately 5/8 inch, but was quite flat, and a

Dexiglas thickness of approximately 1/2 inches was used.

An effective thermal conductivity of 3 x 10~5 Btu/hr Ft°R (5.2 x 10"̂

W/c °K) was assumed for the insulation system. This value was obtained with

the insulation system used on the previous refrigerator. Recent data on this

insulation type has been obtained at the Lockheed Research Laboratory and is

presented in Fig. 2-3. It should be pointed out that the boundary temperatures

of 300 R. and 125 K appropriate to the refrigerator design would yield somewhat

"jiigher values than shown on the figure. ' _--._
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The insulation thickness which led to the minimum weight system was ob-

tained from a typical optimization. The optimum insulation thickness was

found by summing the cryogen and insulation weights, taking the derivative

of total weight with respect to insulation thickness and setting it equal to

zero. Solving for 6,.. _̂ _op \> • " - ~ - - •

5opt. = /H^

Solution for 6 4. resulted in a value of k.O inches, however, the weightopt •
savings becomes quite small when insulation thicknesses greater than about 3

inches are exceeded. Consideration of the weight trade-off and the practical

problems involving fabricating large insulation thicknesses together with the

available envelope of the existing vacuum chamber of the service console led to

selection of 3 inches as the design thickness. In wrapping the refrigerator

the insulation layer density was approximately 115 layers/inch which was some-

what higher than the anticipated 100 layers/inch. The final insulation blanket

contained 230 layers and had a thickness of 2.05 inches, which was used in these
2

calculations. The average insulation area was 7 ft and the temperature differ-

ence is 1T5°K (315°R). The resulting heat leak was 113 mW.

Instrumentation, Service Line and Vent Tube Heat Leak

The heat conduction down the service tubes such as the fill lines, and

vent lines was included in the calculations. These lines were constructed from

either Mylar or convoluted Teflon and the computed heat rates due to conduction

are included in the table below:

Tube

C02 vent line

C02 LN service line

Argon vent line

Argon LNp service line

Diameter in.

0.5

0.25

0.1

0.25

Length in.

1

8
k

10

Heat Leak mW

15.8

0.7

1.0

1.0
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These heat leaks could be reduced by providing longer path lengths. The

thermocouple instrumentation wires consisted of 5 mil Chromel-Constantan and

the calculated conduction due to this source was negligible.

Heat Transfer to Thermal Link and Detector Mount

The configuration of the detector and detector mount is shown below with

the assumed emissivity values and temperature distribution. The configuration

consisted of the detector mount supported by six taut wires and connected to

the argon by a flexible length of gold wires and the gold thermal link. The

detector mount and taut wires were "Lockspray" coated.

vacuum

chamber

T = 300 K

Transparent Window "• 7

T = 300°K ;
/

Taut Wires (6) ;;

Detector Mount

Flexible Link

Thermal Link„•

The detector mount dimensions were: 8 mm diameter by 12 mm long.

The radiation flux to the top and sides of the detector mount was based

on the assumption that the surrounding surfaces formed a 300°K "Hohlraum" so that

16
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Qv = a e

A = h.O cm2 , e (for 300°K radiation) =0.03

The resulting radiation flux was 5.14- mW. The top aperture which provided

access to the interior of the mount provided a "black body heat rate of 1.7 mW.

The support system for the detector mount consisted of 6 stainless steel

wires* which supported the mount in tension. The wires had a diameter of

approximately 3-1 roil and a length of 0.7 in. In determining the heat leak due

to the detector support wires, it is necessary to consider the effect of

coupled radiation and conduction loads. A simple expression which gives the

heat loads to the mount assuming combined radiation and conduction is
_ O C Ji C 1/P

krr i? D (T — SI' T + *4-T *
Q = TT [— C

1Q
 h ° £-]

The assumptions in this equation are: (a) the rod is infinite in length,

(b) the wire has constant thermal conductivity and surface emissivity, and

(c) mount temperature is T and surroundings are at T,.

Utilizing this expression to calculate the coupled radiation and con- '

duction heat leak to the detector results in a value of 1 mW. :•

In addition to the above heat leaks there is a required cooling load of

10 mW which was assumed to originate by IT* heat generation within the detect-

or.

Thermal Link between Detector Mount and Argon:

It is desirable to minimize the temperature gradient between the detect-

or mount and the argon. Calculations of the required size of a thermal link

to give a temperature gradient of 1 K resulted in a diameter of approximately

1/3 inch. This diameter led to a large surface area for radiation, and

jt

The original design called for Ti: 6A1, 1*V wires for the taut wire supports.

This material was used in the first thermal model constructed which was later

damaged during testing. Stainless steel wire was used in the second thermal

model as none of the Ti alloy was available. The stainless wire is only

slightly less efficient than the Ti alloy.
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resulted in excessive radiant flux to the link. A permissible temperature

gradient of 10 K was assumed resulting in a diameter of approximately 0.10

inch. The final link design consisted of a 0.110 inch gold link approximately

16 inches long, with a bundle of 20, 10 mil diameter gold wires connecting the

link to the detector holder. The gold link passed down the center of the

main support tube where it was connected near the bottom of the tube to a

horizontal length of 1/U inch diameter copper rod which was attached to the

bottom of the argon container.

In the final design a carbon dioxide cooled shield was placed around the

link to provide a COp temperature shield, and this shield was in turn surrounded

by a gold coated mylar radiation shield. The radiation to the link from the

125°K source is calculated to be approximately 1 mW. The heat leak correspond-

ing to an unshielded link is 20 mW.

Vent Tube Design

Each cryogen container had a single entry line used for both filling and

venting, and the line was sized according to the venting requirements. The

sizing was such that with the normal heat load Q on the solid, a pressure drop

corresponding to the desired solid cryogen operating temperature permits the

proper vapor mass venting rate m = Q/H . Both the C0_ and argon vent lines
— 6 ^

iwere grounded to the insulation mid-plane shield.

For the venting system considered, the vapor flow is normally laminar be-

cause of the low Reynolds number, and m to good approximation is given by

Poiseulles1 equation as . _

128TJL °

where D and L are the vent line diameter and length respectively.

Since the venting is to vacuum, P =0, and the effective average vapor

density p in the venting line is approximated by

18
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FM 1 IM
P = T~ ~ 2 ~~~^

R T R T
g g

where P and T are the effective mean pressure and temps rature of the vapor

along the line. Therefore to good approximation:

Q = H m = H
8 B 256 R T T) L

o

In reality, the available pressure drop fl? = P-P is less than P since sonic

flow will exist near the exit, and the effective mean pressure P is greater

than P/2 for the same reason. These effects are thus partially compensating.

If the venting is adiabatic, the mean temperature drops along the line due to

the vapor expansion. However, adiabatic conditions do not normally exist, and

in particular, when the thermal capacity of the vapor is used for insulation

vapor cooling, the effective mean vapor temperature lies between the insulation

warm and cold boundary temperatures.

For the argon

m = 2A6 x 10~ gms/sec

M i 39-9

~\L = lk2 x 10~ gm/cm sec (estimated)

T = 188°K

R = 8. Sill- x 10' ergs/gin-male °K

and the vapor-pressure temperature relation is

' P = 6 x

Substitution of these figures gives

D _ 6.2 x 10

where P., is in Torr. For PI = 30 Torr (T = 67°K)
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£- = 70 x 10"7
Ls

For L = 10 cm D = 0.029 cms.
8

For the carbon dioxide container

m = 1.27 x 10" gm/sec

M =Wf

= 177 x 10" gm/cm sec (estimated)

T = 212°K

and the vapor pressure temperature relation is

P = 9.5 x 10? e-

Substitution of these figures gives

14. . _lj.
D 4.07 x 10

For P-L = 0.09 Torr (l25°K)
)i

N-2

For L = 10 cm
o

=5.0xlO
Ls

D = 0.84 cm

Previous experience showed that the carbon dioxide can ran at 129 K

rather than at 125 K with a vent tube sized according to the above equations.

This temperature variation implies a pressure of twic« the design value.

Since pressure is inversely proportioned to diameter aquared for a given

system, it is desirable that the vent tubes be sized at least 1/2 times

larger, since the conductance can be reduced externally, if necessary.
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The design vent line diameters were therefore

Argon can 0.38 cm. (0.15 in.)

Carbon dioxide can l.U cm. (0.552 in.)

The carbon dioxide vent line was dictated soleby Toy vent conductance

considerations. The argon line was dictated in part by fill time considerations,

i.e. the line was significantly oversized. To provide the correct vent con-

ductance during operation a needle throttling valve was installed in the argon

vent "ine external to the chamber.

Temperature Regulation

The detector temperature regulation is a function of the variation in the

heat loads on the primary cryogen and the primary cryogen and thermal link

properties. The detector temperature regulation is a result of two factors: •

(a) The variation in primary cryogen temperature as a function of primary ;.'

cryogen heat load and (b) the variation in thermal link temperature drop as a

function of thermal link heat load. The desired control equation is of the

form

*TL

"
where the subscripts P, L and D refer to primary cryogen, thermal link and

detector, respectively.

Using the solid cryogen vapor-pressure versus temperature relation .and

Poiseullee1 equation describing vent line flow, a relation for the cryogen

temperature regulation of the following form is obtained:

0-2 _ JB.

where p is the coefficient in the vapor pressure — temperature relation

P — ~< e~P/™= Of e .
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Similarly, the detector temperature regulation based only on thermal

link temperature variation is derived:

L
Tp - KA T

Therefore:

V P

For argon and carbon dioxide the respective p coefficients are 9^9 K

and 3l80°K and the respective nominal operating temperatures are 65 and 125°K;

thus, for heat load variations of 100 percent the respective cryogen tempera-

ture variations are about 3 and 2.5 K, respectively. For the detector, assum-

ing a 100 percent variation in primary cryogen load from ̂ 3-7 nW to 87.̂  mW,

assumed to all result from increased heat load borne by the gold thermal link,

the detector temperature variation is 17°K (3 K increase for the cryogen and

lM°K increase for the link).

2.2 Mechanical Design Considerations

2.2.1 Support Tube Design

The critical portions of the refrigerator design from the stress/deflec-

tion viewpoint are the thin walled support tubes. These tubes must transmit-

the inertia loads arising from the launch acceleration-vibration environment

acting on the refrigerator masses.

The launch environment which is critical to the structural design of the

support tubes is the "transverse acceleration" resulting from the vibration,

both random and sinusoidal. The random vibration environment specified for

the flight model is an essentially flat spectral density distribution over

the 20 to 2000 cps frequency range, at 10 grms acceleration in both the

thrust and transverse axes. Taking a normal distribution of acceleration̂  .
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and a "three standard deviation" acceleration level as the peak acceleration

to be experienced in service, then the design level of input acceleration is

30 g.

The support tubes are constructed from ene of the glass fiber/epoxy laminate

materials which are considered to be superior for optimization of high strength-

low thermal conductivity. The mechanical properties (allowable compressive and
|shear stress) for S-glass-158l cloth/E-787 epoxy from Ref. (l). is shown in . -

Fig. 2-k. These mechanical properties of the fiberglas/epoxy laminate have --• ~-~

been taken as conservative values (reported value less 10$ from the data of

Ref. 1 and Ref. 2). Since the wall of the support tube will undergo both

tension and compression the smaller of the ultimate strengths in tension or

compression (normally compression) is chosen as the allowable stress a ,,•

The average of the tensile and compressive moduli for the S glass-158l

cloth/E 787 epoxy is only weakly temperature dependent, and a constant value

of E = 3.6 x 10 psi is assumed for design purposes. Also

G = E E

Each support tube is a cantilevered thin walled beam subject to a shear

load Q, axial load P, and moment M = Qd at the free end, due to the inertial7 o
load Q acting at a distance d from the free end, as in the sketch below, where

the loads Q and F are the products of the supported masses and the accelera-

tions . 1 •— 1
X

JL —

L

4

f

V

R

*,

*- t

t
d

•^ ** M•>'• •» - «t

= Ma

MQ = Qd

> » Ma
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The stress OL(X) at distance x from the free end due to the bending moment M
i D O!is

M + Q(L-x)

' = *2<x) tU)

vhere L Is the tube length, R(x) the tube radius and t(x) la the tube wall

thickness. The axial stress due to the load P IB:

2nR(x)t(x)

and the maximum shear stress T due to the transverse shear load Q Is:

•Kx) =

The local buckling stress a is taken from Ref (9) as; cr

V3(l-v)

vhere v = 1/3 Is the Polsson's ratio, and k Is an empirically determined factor
R(x)/•which for the rrrf range and material used Is taken as 0.5. For homogeneous
«\*/ .

materials the value of k is approximately 2/3; however, the value Is reduced

for laminates, and the tests reported In Ref. (10) indicate that the value of

0.5 is more realistic.

The deflections for these cantilevered tubes are calculated, including deflec-

tion due to shear strains, from the momentum-curvature and shear-slope relations

as given in Ref. (10). The transverse deflection 6t in the direction of the

transverse load Q is

/ v P6 (x) = |
*

Mo * Q(L " e) rx o-£— - dO dl) + \ - =* - dT)
t(0) J

' and the axial deflection is:

6(x)VA/ " £ 2r*3R(T)) til)) . ''

• ' The overall assembly of the support tubes, including dimensions and location

.! and magnitudes of the transverse loads is shown in Figure 2-1. In the support

iV^tube stress results which follow, the first and second tubes support essentially

•' - -"•••• 2U -T ' ' "
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Figure 2-U. Allowable Stresses for Support Tube
Material
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the entire system mass (38 Ib) and the third and fourth tubes support only

the argon and its associated tankage (̂ 23 Ib). The first and second tubes

are partially tailored to optimize the stress distribution. The computed

maximum existing compressive stress is considered to be the sum of OD + ov.

acting simultaneously. The computed compressive (a) and shear (T) stresses

in each of the support tubes are shown in Table 2-2 and also included are the

allowable compressive (aall) and shear ( T •.,) stresses, as well as the

critical buckling stress (a )• It is seen that for the assumed 30 g load-

ing all stresses are well below the allowables.

Using the beam deflection expressions, the deflection of the support tube,

system resulting from a transverse acceleration of 30 g was computed, to

observe the nature of the interference. The deflection calculations were made

assuming the tubes were free to deflect (i.e. no interference). The deflec-

tion pattern for the series of tubes is shown in Figure 2-5. The displacements

are mainly a result of the large deflections of the main support tube. There ,

is considerably less deflection of the other tubes, the deflections of the

third and fourth tubes being sufficiently small to result in no possibility of

interference between them. This shows that the carbon dioxide and argon

masses act essentially at a single rigid mass. However, there is interference

of the second tube with the main support tube, as indicated in the figure.

The lateral displacement of the junction of the first and second tubes (lower

end) is approximately 0.95 inches. Interference between the top of the second

support tube and the main support tube would occur approximately 0.1 inch before

maximum deflection. Calculations of the stresses developed in the tube wall

as a result of interference, indicate that they would not cause failure of the

material.

2.2.2 Support Flange

Modifications to the support flange area were required as a result of

two test failures during qualification level acceleration and random vibration

tests. The resulting modified support flange is shown in Figured-ID. Eight

3/8 inch HAS bolts on k inch centers are used to mount the flange, and the main

s upport tube is epoxy bonded to both inner and outer aluminum collars, each

1-1/2 inches long.
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TABLE 2-2

SUPPORT TUBE STRESS DISTRIBUTIONS

Location (in)
[inches from support)

Tube Diam (in.)
(inside)

Cube Thickness (in.)
[minimum)

Temperature ( 1C)
[approx)

en

s
X
•H
<n
ft

CTall

CT

°cr

Tall

T

1.9
(top)

1-73

0.086

300

5^

*T

110

7.2

M

No

3-3

1.66

0.077

290

56

U7-5

102.

7-5

5-7

. 1 (Central)

M

1.60

0.068

280

58

l*9A

9*.

7-7

6.7

1^-5

1.60

0.072

220

68

ho.2

99.

9.0

6.3

15.5

1.60

0.081

210

70

U2.8

111.

9.2

5.6

16.8
(bot)

1.60

0.090

200

72

U6.7

12U.

9-3

5.0

No.

0
(bot)

1.76

0.07C

200

72

^9-9

87.5

9-3

5-9

2

1.8

1.90

0.061

L80

75

37 A

71.0

9-8

6.3

,9-9
[top)

2. ia

0.061

130

8U

1 .̂3

56.0

10.8

1.9

No. 3

0
(top)

2.65

0.0^5

130

81*

17.1

37. ̂

10.8

3-7

9-6
bot)

2.65

0.0^5

100

89
.V

13.2

37 A

ilA

3-7

No. h (outer)

0
(bot)

3-03

0.038

100

89

12.2

27.6

11 A

3-7

8.2
(top)

3.03

0.038

65

9^

12.2

27.6

11-7

3-7

Notes: o 30 g assumed loading

o #1 and #2 tubes support 38 lb.

o #3 and #!*• tubes support 23 lb.

0 C T = < • « •



Figure 2-5 Deflection Pattern for Support Tube Configuration
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Assuming only two of the support bolts provide the restoring moment for a

30 g transverse acceleration at any instant, the stress in the bolts is

12,7000 psi which is well below minimum tensile strength.

For the modified support with the restoring moment transmitted from the

support flange to the main support tube through epoxy bonds on both inside and

outside of the tubes, the maximum shear stress in the bond due to a 30 g

transverse acceleration is approximately 1200 psi. This is well below allowable

shear stresses for epoxy materials.

»

2.2.3 Detector Mount Analysis

Although there were no specifications regarding the detector alignment to

be maintained, a support concept was selected which would result in a minimum

misalignment due to vibration or thermal expansion effects, yet result in a

small thermal load on the argon. The concept consists of a system of three

pairs of taut wires aligned at U5 . This arrangement provides optimum axial

and lateral.stiffness, and the symmetry reduces the possibility of misalignment

due to thermal expansion effects.

For this configuration the tension in each wire of an "n" wire system sub-

ject to a vertical load P is:

P
T — T ± — sec a

where y is the wire angle to the horizontal and T is the no load tension in

each wire. If the force P is horizontal and aligned with one set of wires,

the tension in those wires would be:

2PT = T + — sec ao — n

Thus, the change in tension due to the horizontal loading is twice that for the

vertical loading. The horizontal displacement Is:
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2PL
(L = 2

nEA COB y

where E is the wire elastic modulus, A is the wire cross-sectional area and

L the wire length. The lowest natural frequency of vibration, u>> of this

system is in the horizontal mode and is

r nEA 2 -
COB

where M is the mass of the detector and mount, (in the vertical mode the

natural frequency is 2̂ higher.)

The material used for the support wires was Tir^Al, 6V for which E = 16 x 10

psi, and cr ,d = 110,000 psi. The mass of the detector-detector mount combina-

tion is taken as 1.6 gnus or approx. O.OOU lb (assumes solid aluminum plug 0.8 cm

long), the maximum acceleration is 30 g, and the wire lengths are 1.0 in.

To maintain a natural frequency well above the 2000 cps upper limit (i.e.
— R p

to = 1*000 cps) the required wire cross-sectional area is A £ 0.87 * 10 in (i.e.

d s 3A mils). The increased stress in the wire due to a horizontal load of

P = 0.0014- x 30 = 0.12 lb is
2P
nA
2P
—r sec a = 6500 psi

Therefore, since this is well below the yield stress, the wires can be

placed in static tension corresponding to a large fraction of the yield stress.

*
The system consisted of six Ti: 1*A1, 6V wires of IK 3 mil diam. and 1.0 in.

long, arranged as shown in Figures k-8 and k~9. For this system the lowest

natural frequency (horizontal mode) is J>800 cps, and the stress resulting from

the load P = 0.12 lb is &a = 3900 psi. The wires were placed in static tension

of approximately 20,000 psi.
JL

The Ti alloy was used in the structural mode; however, in the final thermal model
3.1 mil stainless steel wire was used because the Ti alloy was not available.
The resultant performance is only slightly degraded in terms of heat flow.
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2.2.U Cryogen Tank Design

In order to be compatible with the re-entrant tubular support concept,

toroidal cryogen containers were used. The tanks were constructed of 6061-T6

aluminum to permit them to be spun formed, and to take advantage of the high

thermal conductivity of aluminum so as to minimize thermal gradients across

each tank. The tanks were designed for a collapse pressure of at least 20.5

psi (l.k factor of safety over atmospheres). The tank brackets were designed

to withstand 30 g's in any direction and were fabricated from 6061-T6 aluminum.

The configurations of each of the COp and argon tanks as well as other per;

tinent information are shown in Figures k-1 and k-2.
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3-0 SUPPORTING TESTS

During the design and construction phases of the refrigerator, testing

was done on certain components in support of the proposed refrigerator design.

These supporting tests are described below.

3.1 Initial Fill Tests

In the initially proposed solidification technique the cooling is provided

by LNp passing through cooling coils welded to the outside of the toroidal con-

tainer walls. Energy released during direct solidification (for COp) and direct

solidification or first condensation (for argon) depending on the pressure, is

transferred through the solid (or liquid) to the aluminum container walls where

it is conducted to the cooling coils. To determine if the solidification process

for carbon dioxide could be achieved in a reasonable time, preliminary

fill tests were performed using a configuration similar to that proposed for the

thermal model. The tests were conducted in a horizontal U inch diameter by

12 inches long cylindrical aluminum container with the LNp coolant line soldered

(low temperature aluminum) along the lower side of the cylinder and with the fill

port at the upper mid-point of the cylinder. Plexiglas windows epoxied to the

ends of the cylinder permitted visual observation of the solidification process

and the density of the solid. The cylinder was mounted in an evacuated bell

Jar and surrounded except for the ends by a LNp cooled shield.

The preliminary tests using this apparatus for C02 solidification were very

successful and fill times of U to 5 hours were achieved. The tank fill pressure

was found to be of minor importance. Direct solidification of the COp from the

vapor resulted in an effective density which appeared to approach 100 percent of

theoretical solid density. The rapidity of the fill process indicated that

internal heat exchangers were unnecessary. Plugging of the fill line by solid

C0_ near the tank entrance due to the high conductivity of the aluminum tank
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vails was not found to "be a problem, apparently as a result of the warm COg

vapor at that point. However, it was felt advisable to locate the LNp coolant

line remote from the inlet.

Observation of the filling process through the plexiglas window revealed

the solid CO,, formed was extremely clear and transparent indicating a high

solid density. The formation of relatively low density frosty or porous solid

was not seen at any time or under any condition of testing. Observation of the

build-up of the solid indicated that initial solid began forming on the wall

nearest the LN_ coolant tube, then grew to cover the walls, except near the

inlet tube, and then gradually built-up until only a "bubble" remained around

the inlet tube. The warm gas entering through the inlet prevents freezing of

the inlet region until last, and prevents plugging in that area.

3,2 Detector Support Tests

To maintain a low heat load on the argon an efficient detector support :

concept is required and the one proposed was a taut wire suspension system.

The proposed method of attaching the wires to the detector mount and the support

ring was epoxy bonding. Tests were conducted in which a small diameter chromel

wire was epoxy bonded to a 70 mil thick aluminum plate and loaded to failure.

Five mil wires were used and Epon 123 and Hysol epoxies were evaluated. Tests

were conducted at both room temperature and LNp temperature. The results were

as follows:

Epoxy Type

Hysol

Hysol

Hysol

Epon 123

Epon 123

Epon 123

Temperature °K

300

300

300

300

300

77

Lap Shear at Failure psi

1320

1320

1100

i860 (no failure)

3160 (wire failed)

3160 (no failure)
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The tests indicated that the Epon 123 is superior to the Hysol and that

shear stresses of 3160 psi can "be sustained without bond failure. Calculated

shear stresses on the bond for the configuration used in the refrigerator were

of the order of 500 psia. The Epon 123 epoxy was used in construction of the

refrigerator detector mount.

3.3 Structural Tests

The concentric tube bundle which makes up the low heat leak support system

for the refrigerator is the critical structural component of the system. In

order to gain further information about the mechanical properties of the material

and to evaluate the manufacturers lay up technique, some Rmall cylinders were

made up for testing. These cylinders were made from S glass-158l cloth by U. S.

Polymeric Chemicals, Inc. and £-787 epoxy. The diameter was nominally 1.6 inches

and various lengths were utilized. The tests consisted of subjecting these

samples to various loading conditions at room temperature until failure occurred.

The results of the tests are presented in Table 3-1. The results of the tests

were quite encouraging, the stress at failure being approximately the design

values. The failure stresses exceeded those found for similar cylindrical models

tested in Ref. 1. The buckling stress at failure did not reach the predicted

value; however, a review of the structural model used for refrigerator design

showed that sufficient margin was available to withstand the structural tests to

which the refrigerator was subjected.

3.14- Emittance Tests

Prior to the selection of the gold coating which was to be used to control

the thermal absorbtance of critical surfaces, representative samples were

evaluated. Three basic types of coatings were evaluated over a range of temper-

ature down to 60 K. These were "Lock-sprayed" gold, a sprayed on process

(Ref. 3), electrodet>osited gold and a vacuum deposited gold. These coatincs

were applied to 2" disks of varying materials and evaluated in an emifcance

calorimeter at the Lockheed Research Laboratory. The calorimeter and its
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TABLE 3-1

STRUCTURAL TESTS ON FIBERGLAS-EPOXY TUBE SAMPLES

Compression Tests

Tension Tests

Buckling Tests'3'

LMSC Cylinder
Test

Load at Failure

6,250 Ibs.C1)
6,050

11, 650, ( *>
10,850U'

M50

k,OhO

LMSC Cylinder Test
Stress at Failure

1*4,300 psi

5 ,600

> 71,000
> 77,000

27,800

28,000

Refrigerator
Design Values

53,000 psi

not critical
to design

Predicted Buckling
W,000

32,800

Ref JL Cylinder Test
Stress at Failure

3l*, 820 psi

66,633

-

Ref 1 Coupon Tests
Stresses at Failure

62,587 psi

92,506

-

(2)

(3)

Tube samples consisted of nominal 1.6 inch diameter, and nominal 1/2 inch length. The first sample had a 0.0278
inch mean thickness while the second had a 0.0256 inch mean thickness.

Tube samples consisted of nominal 1.6 inch diameter and nominal k inch length. The first sample had a 0.0322 in.
mean wall thickness and the second a 0.028 in. mean thickness. In both tests the epoxy bond in the end fixture failed
before the ultimate tensile strength of the tube was reached.

Tube samples consisted of nominal 1.6 inch diameter and nominal k inch length. The first sample had a 0.0287 in*
mean wall thickness and a 0.026 in. minimum wall thickness while the second smple had a 0.028̂  in. mean wall thickness
and a 0.018 in. minimum wall thickness.



operation are described in Ref. k. The results of these measurements are

presented in Figure 3-1• The total hemispherical emittance for Locksprayed

gold was determined for both aluminum and fiberglas substrates and for 200 A

and 1000 £ for the fiberglas sample. The tests with fiberglas were required

to determine the suitability of the gold coating on the fiberglas support

tubes and the radiation shield. The results show the "Lockspray" technique

to be comparable to the vacuum deposited coating at low temperature and some-

what better than the electrodeposited coating a-t room temperature. The

Locksprayed technique was selected for gold coating because of its good per-

formance and its adaptability to the fiberglas components.
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k.O SOLID CRYOGEN REFRIGERATOR FABRICATION

U.I Thermal Model

The refrigerator was constructed primarily of aluminum and epoxy reinforced

fiberglas. Aluminum was chosen in preference to steel for construction of the

cryogen tanks because of the lighter resultant weight and the high thermal con-

duct! vity, which results in more uniform temperature throughout the cryogen, and

improves the fill efficiency. Fiberglas was the obvious choice for the support

tubes because of its high strength and low thermal conductivity.

The cryogen tanks were constructed from 6o6l aluminum, and were toroidal in

shape. The tank configurations, are shown in Figures U-l and k-2. The carbon

dioxide and argon tanks had an external diameter of 9 3A" and 8 3A"> respective-

ly. The spun domes used in the construction were formed from 0.050" thick 6o6l-0

aluminum, which resulted in minimum wall thickness at any point of 0.0̂ 0". The'

inner and outer cylinders of the argon tank were roll formed from O.OUO" stock

and butt welded at the Joint. The argon tank also had an internal heat exchanger

(Figure l»-3) constructed of eighteen 0.010" thick aluminum fins which were spi-

dered to the internal LNp cooling coils. The vent/fill connections to the tank

were made by welding a length of 1/2" diameter aluminum tubing into a hole in

the COp tank;and by welding a 0.15 in- diameter tube into the argon tank. These

short sections provided the attachment for the non-metallic vent line.

Various configurations of the weld Joint design of the tanks were tried, in

order to get the best structural and vacuum tight joint. The final configuration

utilized a rolled lip design for the CO tank and a lap joint for the argon tank.

The tank components were tungsten inert gas welded together to form the toroidal

tanks shown in Figures k-h and k-$. The CO,, tank had an external LN coolant

line added by epoxy bonding a 1/4" 6o6l aluminum tube around the tank circumfer-

ence near the bottom. The LNp inlet was located the maximum distance away from

the fill inlet to minimize the possibility of forming solid CX>2 near the inlet.
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Volume
Capacity
Material
Min. Wall Thickness
W ight
Max. Burst Pressure
Collapse Pressure
Configuration

in
7.6 Ibs

6o6l-T6 Aluminum
0.030 in.
0.86 Ibs.

132 psi
torus (above)

Figure Carbon Dioxide Container
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<h
1.63".

6.00"

Volume
Capacity
Material
Min.Wall Thickness
Weight (5 = 0.035")
Max. Burst (Avg.Pressure)
Collapse Pressure (max.)
Configuration

380 in3

19.9 Ibs
6061-T6 Aluminum

0.030 in.
2.1 Ib.
6k psi
26 psi
Toroid (above)

Figure U-2 Argon Container



Fig. 4-3 Argon Tank Upper Dome With Internal Heat Exchanger

Fig. 4-4 Carbon Dioxide Container



Fig. 4-5 Argon Container

Fig. 4-6 Fiberglas Support Tube System



A mounting bracket was epoxy bonded to the C02 tank to provide a means of

attaching the tank to the fiberglas support tubes. This mounting bracket

was constructed of 0.060" 6o6l aluminum. In addition, an aluminum fairing

was epoxy bonded to the top of the COg tank to provide an attachment for the

COg cooled shroud and to provide a smooth contour for the multilayer insula-

tion which is added to the exterior of the CO cooled shroud. The fairing

was constructed of 0.050" thick 6o6l aluminum and was spun formed into a

10.9 inch diameter by 2.75 inch deep shape.

The completion of the argon tank required a similar mounting bracket to

be epoxy bonded in place. In addition, an aluminum rod 1/V in diameter was

welded to the tank bottom to provide a means for attaching the thermal link
to the argon tank.

The completed tanks were subjected to leak checking and several small leaks

were detected in the weld regions. Subsequent attempts to obtain vacuum tight

tanks by re-welding were only partially successful. The tanks were eventually

made vacuum tight by coating the weld regions with epoxy adhesive. Once the

epoxy coating was applied, no further leaks were encountered during the program.

The cryogen tanks were then gold coated to provide a low emissivity. The

tanks as well as the other gold plated parts were coated with a Lockheed dev-

eloped spray deposition technique. Emittance versus temperature data for the

coating is presented in Section 3-^« The "Lockspray" technique consists of

first coating the structure with epoxy paint, then plating with gold by a spray

chemical reduction method at ambient temperature. Two aqueous solutions are

sprayed simultaneously; one contains complex gold salts and the other contains

chemical reducing agents. The resulting metal deposit is high purity gold and

requires no curing or post treatment. Further descriptions of this process are

contained in Ref. 3- After completion of the tanks,they were again subjected

to vacuum leakage testing both at room temperature and at LNg temperature and

found to be vacuum tight. The LNp test was also used to verify that no peeling

or deterioration of the gold coating would occur at reduced temperature.
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The structural support system for the cryogen tanks required extensive

design and development to meet the severe combined requirement of high

strength and minimum heat leak. The selected support system consisted of

four concentric fiberglas tubes which were epoxy bonded together into a

single support structure. The material used in the construction of these

tubes was S glass-158l cloth by U.S. Polymeric Chemicals, Inc., and £-787

epoxy resin. This material selection was based upon a study of the literature,

.primarily Ref. 1, which contains extensive structural and thermal test data at

cryogenic temperature. The fiberglas reinforced tubes were supplied by an
*

outside vendor. In order to evaluate the fabrication technique and the

resulting structural integrity of the tubes, some small size sample tubes

were constructed and tested prior to the manufacture of the actual support tubes.

The results of these tests are described in Section 3-3- The results of the

sample structural tests were excellent and fabrication of the main support tubes

was initiated. The dimensions and configuration of the four tubes are shown in

Figure 2-1. In order to reduce the radiant transmission between the adjoining

tubes, which were at different temperatures, the tubes were coated with gold

usin? the "Lockspray" technique. The tubes were coated on both inner and outer

surfaces (except in the regions to be bonded which were masked off). The deposi-

tion of the gold coating had to be carefully controlled so that the thickness

was sufficiently thick to obtain the low emissivity desired, but thin enough to

minimize the solid conduction down the high conductivity gold film. Various

spray times and reactant concentrations were tried on sample fiberelas tubes to

achieve the desired thickness of approximately 500 A. The main support tubes

were then gold-coated using the optimum procedure for the Lock-Spraying. The

resulting thickness measurements as determined by electrical conductivity values

ranged from 3^5 to 530 A on all surfaces except the outer surface of Tube No. 3

which had 2^5 A. After being gold coated the tubes were epoxy bonded together

using Epibond 123 epoxy. After some experimentation on samples, it was found

that the strongest bond was obtained by a procedure utilizing a combination of

MEK cleaning and sand-blasting. Since a silicone release agent was used in

making the tubes, the cleaning procedure was found to be quite important. Fig-

ure !*•-6 shows the four individual tubes used to make up the support system and

.

Thunderbird Plastics, A Division of Aquanautics, Sunnyvale, Calif.
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the resulting assembled support system. The assembled support was the one

used for the structural tests and as such does not have the gold coating ap-

plied. The integral mounting flange at the top of Tube No. 1 was utilized

for mounting the thermal model to the vacuum chamber flange, however, this

was found to be unsatisfactory for the structural tests and a different con-

figuration was used. The resulting concentric tube support system was found

to be highly satisfactory during the fabrication and testing. The next opera-

tion was the assembly of the cryogen tanks to the support tube which was ac-

complished again by epoxy bonding.

The radiation shield between the argon tank and C0_ shroud is designed to

be attached at the junction of the number 3 and k- tubes. The temperature at

this Junction is near the equilibrium temperature of the radiation shield.

The efficiency of the radiation shield is improved by minimizing the tempera-

ture gradient along the radiation shield to the support point. To further

reduce conduction between the radiation shield and the support point the

radiation shield was constructed from fiberglas. This shield was formed on a

mandrel using three layers of fiberglas cloth laminate. The shield was formed

in two halves, separated in the axial direction. The resulting shield was

flow coated with several coats of epoxy to provide a smooth surface and was

then Locksprayed on both surfaces to a gold thickness of approximately 800A.

Holes were cut in the shield to provide access for the required plumbing and

the thermal link. The finished shield was then attached to the 3-̂  tube junc-

tion with screws,and the two halves were held together with aluminized mylar -

tape. In this manner the radiation shield could be removed for access to the

tank and plumbing, if necessary.

The final plumbing configuration utilized sections of mylar tubing and

stainless steel for the two vent/fill lines and convoluted teflon for the cool-

ant lines which transferred the IJfp. Initial thermal testing was conducted

using convoluted teflon for both the vent lines and the Op coolant lines.

During the thermal testing the teflon lines were replaced with the present Mylar-

stainless steel assembly in order to determine if the vent lines might be leak-

ing gas into the interior of the refrigerator. No leakage was found in the

teflon vent lines and both materials have been found suitable for low heat leak

*5-
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vent tubes. Both the carbon dioxide and the argon vent lines were constructed

to utilize the refrigeration capacity of the vent gas. This was done by pass-

ing the vent lines around the outside of support tube No. 1 below the flange to

form a manifold which was thermally shorted to a copper shield placed approxi-

mately at the mid-plane of the insulation. The arrangement of this manifold-

cooled shield arrangement is shown in Figure 1-1.

The carbon dioxide cooled shroud was constructed of 6o6l aluminum. The

cylindrical portion was made from 6 mil material and the bottom of the shroud

was spun formed from 0.020 mil aluminum. The bottom of the shroud was

attached to the cylindrical section with silver epoxy. This assembly was

bolted to the upper fairing which had been previously welded to the carbon

dioxide tank. The inside surface of this shroud was gold coated (Lock-sprayed)

to provide the required low emittance surface. The temperature of this shroud

ran within! to 2 degrees of the CO tank temperature. This shroud is shown in

Figure U-7 which shows a stage of construction of the structural model.

The detector mount was constructed of aluminum and was supported bv a taut

vire suspension system \itllizine six 3.1 nrll diameter stainless steel wires,

which were attached to an aluminum collar. A Jig was made to assure proper

alignment of the detector holder in the collar and to control the tension on

the support wires. The detector holder assembly (Fig. l)-8 and IH?) is shown

in the Jig during the construction. Epibond 123 epoxy was utilized for the

bonding of the wires to the components, and the results of tests to determine

the strength of the bond are described in Section 3«2. After assembly, the

detector holder/collar assembly was gold coated ̂ Lockspray).

The thermal link between the holder and the argon tank was made from 99'99$

pure gold, to achieve a lower emissivity and minimize the temperature drop along

the length of the link. The link diameter was 0.11 inches. A flexible attach-

ment was made between the detector support and the link by utilizing 20, 10 mil

diameter gold wires. In this manner loads which could be introduced into the

link itself were uncoupled from the detector holders. The bottom of the thermal

link was attached to the argon tank boss by threading the gold rod into a copper
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Fig. 4-7 Exterior of Refrigerator Before Insulation (Structural Model)



Fig. 4-8 Top View of Detector Mount in Jig

Fig. 4-9 Side View of Jig and Collar

U6



rod which was flattened on the end and tapped to receive the gold link. This

copper rod provided the connection between the aluminum boss on the tank and

the gold link. Vacuum grease loaded with aluminum powder was used at the

Joints to insure good thermal contact in the vacuum environment.

Several techniques were tried in order to minimize the radiant and con-

ductive heat load to the link. Initial testing utilized gold coated mylar tubes

around the link to act as radiation shields. The final configuration utilized

a polished aluminum tube placed around the gold link which was thermally grounded

to the carbon dioxide tank at the bottom. This device was used in an attempt to

provide a C02 temperature environment for radiation to the link. Around this -

aluminum tube was placed a gold coated mylar tube which served to prevent con-

tact between the aluminum tube and the insulation inside the number one support

tube which would have resulted in high conductive heat transfer. The tubes

were centered with respect to each other by supporting them with 2 mil nylon

thread, tied between the tubes. Rings of "Dimplar" were used as insulation in-

side the number one support tube, and essentially filled the space between the

fiberglas support tube and the mylar shield tube for the entire length of the

support tube. The arrangement of these tubes is shown in Figure 1-1. An

aluminum tube was also placed between support tubes No. 2 and 3, BO that it was

grounded to the COp temperature by contact at the junction of tubes 2 and 3

where the C0p tank is attached. The bottom of this tube was closed off by

attaching an aluminum disk to its bottom so that the argon tank and its radiation

shield were not exposed to temperatures in excess of the C02 tank temperature.

The bottom plate of this tube provided the COp temperature support point for the

aluminum tube that surrounded the thermal link. This arrangement is also shown

in Figure 1-1.

The outside of the COp shroud was insulated with 2 Inches of double-alum-

inized mylar-Tissuglas which resulted in a layer density of 115 layers/inch.

The outer region of the No. 1 support tube was insulated with 1/2 inch of dexi-

glas to provide the intermediary between the multilayer insulation and the

"Dimplar" is a trade name for aluminized mylar which has permanent "dimples"

formed in it to reduce contact between layers.
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fiberglas support tube. A computer study indicated this to be the optimum

thickness of intermediary.

The multilayer insulation was applied by spiral wrapping 10 layers of

insulation around the cylinder, and then goring the ends and fastening the gores

together with aluminized mylar tape. The procedure was then repeated with

another 10 layers. The gores were displaced so that there was not a direct

path or opening through the seams, which could increase the radiation load.

A vapor cooled shield was located mid-way through the insulation thickness.

The shield was grounded to the vent gas manifold with silver loaded epoxy

cement. The shield was constructed from 5 mil copper shim and was made in four

sections each of which was six inches wide. Each section was attached to the

manifold at the top and was Joined at the bottom by overlapping and taping.

During the refrigeration construction temperature instrumentation was

placed at key locations. Platinum resistance thermometers (PRT) were placed on

the argon tank at the bottom near the attachment point of the thermal link, on

the upper half of the COg tank and inside the detector mount. These PRT's

were applied with epoxy and covered over with aluminized mylar to provide a

low emittance surface. In addition to these, chromel constantan thermocouples

were utilized at the bottom of the Junction of support tubes 1 and 2, the

bottom Junction of tubes 3 and b, the bottom of the CO- shroud, and at three

locations on the radiation shield.
*'.!*

The resulting empty weight of the system is 13.2 pounds and component

weights which made up this total are listed in Table U-l.

4.2 Structural Model

The structural model was similar to the thermal test model except that

certain features of the thermal model which would not compromise its struc-

tural performance were omitted or simulated to reduce time and cost.

LOCKHEED PALO ALTO RESEARCH LABORATORY
l O C K N I E O M I S S I I E S I S P A C E C O M P A N Y
A oiour D I V I S I O N or IOCKMI ID A I I C I A F T C O I P O I A T I O M



TABLE

SUMMARY OF COMPONENT WEIGHTS FOR REFRIGERATOR

Item Weight (ibs)

Argon Tank

CO- Tank

Fiberglas Radiation Shield

Flberglas Support Tube Assembly

C02 Shroud

Top Flange Support

Insulation

Miscellaneous

TOTAL EMPTY WEIGHT

Argon Weight (Design Value)

C02 Weight (Design Value)

TOTAL LOADED WEIGHT

2.1

0.6

0.6

1.7

1.3

1.3
k.k
1.2

13.2

19-9

7-0

ko.o
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The structural model was tested in the warm (room temperature) condition

and the containers were loaded with a solid ballast to simulate the masses

of solid argon and carbon dioxide. A wax-like tooling compound (Rigidax) was

used to simulate solid argon and carbon dioxide which have densities of

approximately 1.65 and 1.69 gm/cm , respectively. Although the tooling com-

pound is slightly more dense (i.e., 1.80 gm/cm ) the containers were loaded to

the correct masses, which resulted in approximately the correct mass distribu-

tion. Tests at temperature with the tanks loaded with their respective

cryogen would have made the costs prohibitively high for the scope of the con-

tract.

The aluminum containers, folded fiberglas-epoxy tubular supports, radia-

tion shield, C02 shroud, thermal link and coolant and fill-vent lines were

similar to the thermal model. However, the portions of these components which

were gold plated in the thermal model were not gold plated in the structural

model. A mock-up of the detector and holder supported by a taut wire (Ti:UAl-6v)

suspension system was Included. The multilayer insulation used on the structur-

al model was double aluminized Mylar-Dexiglas rather than double aluminized

Mylar-Tissuglas because of the expense of Tissuglas, and a copper foil vapor

cooled shield at the insulation mid-plane connected to the argon and COp vent

lines was also included. The structural model was tested with both the insula-

tion and the interior at atmospheric pressure (i.e., no vacuum chamber).

The structural model was instrumented with piezoelectric transducers

(Endevco, Model 2213) at each of three locations: lower end of central support

tube, carbon dioxide container and bottom of argon container. Three of the

piezoelectric transducers were located at each location to monitor three axis

vibration. The electrical wires for the support tube and argon transducers

were led out around the radiation shield where all electrical wires then left

the system along the outside of the main support tube so as not to interfere

with the mounting fixture. In addition, the mounting fixture was instrumented

with three transducers to monitor vibration in three axes. The nine transducers

on the refrigerator itself and their wiring were installed prior to wrapping

the model with multilayer insulation.
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The results of the structural tests are discussed subsequently; however,

it is appropriate at this point to describe modifications made to the model as

a result of two structural test failures. During the acceleration qualification

tests under lateral loading the bolts supporting the model to the test fixture

failed, and subsequent calculations indicated the support bolts were over-

stressed under the lateral loading condition. The support structure (support

bolts as well as support tube flange) was modified; however, a subsequent failure

In the support flange area occurred during the transverse random vibration

qualification test. A further modification to the support flange was made re-

sulting in the final configuration shown in Figure k-lO. The final modified

configuration included:

o eight 3/8 inch diameter HAS bolts in place of the original six 1/k inch

standard steel bolts.

o an aluminum adapter ring to hold the support flange to the test fixture

o 1-1/2 inch long aluminum collars epoxied to both the inner and outer

diameters of the support tube.

o addition of two layers of fiberglas (k and 3 inches long) to the upper
*

end of the support tube.

These structural modifications have a minor affect on the support tube

thermal conductance. This final configuration is not the optimum for a flight

configuration since it was adapted to the original support flange configuration.

In particular, for a flight model the aluminum adapter ring would be combined

with the outer aluminum collar resulting in a slightly smaller overall' mass.

Otherwise the support flange configuration for a flight model would be as shown

in Figure k-iO. Various stages of the construction of the structural model are

shown in Figures 4-11 through 14-13.

In addition, since the entire structural model had to be rebuilt following

the first failure, two layers of fiberglas (approximately k inches long) were

added to the bottom of the central support tube and one layer was added at the

bottom of the second support tube.
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Test Fixture (to Shaker Head)

10-15 Mil
Gap

V Aluminum
Detector
Support
Ring

Aluminum
Adapter Ring

Outer Aluminum

Collar (Split)

Inner Aluminum
Collar

Epoxy Joints

3/8" Bolts (8) NAS Type

to Attach to
Mounting Fixture

Central Fiberglas

Epoxy Support Tube

Figure U-10 Modified Sunport Flange Configuration



Fig. 4-11 Structural Model Showing

Argon Tank and Shroud Fairing

Fig. 4-12 Structural Model

Showing Radiation Shield in Place
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Fig. 4-13 Completed Structural Model After Multilayer Insulation



5.0 SOLID CRYOGEN REFRIGERATOR PERFORMANCE

5.1 Thermal Performance with Argon-Carbon Dioxide

a) Fill and Ground Hold Tests

The fill operation of the refrigerator was performed many times in a

variety of ways, to determine the most favorable condition. The majority of

the fill operations were performed with the vacuum chamber evacuated. T«?sts

were also conducted with helium, argon and nitrogen gas present in the

chamber during the fill operation. Although the heat which must be removed
*

by the LNp coolant was greater with a gas filled insulation, only a small dif-

ference in fill rate was noted during the various fill conditions. The heat

leak through the gas filled multilayer insulation was of the same order as

the heat removal rate fron the CO- solidification process, however, only a small

additional heat input into the argon tank resulted due to the small temperature

gradient between the argon and C0? tanks during fill. The LNp coolant heat

capacity was more than sufficient to remove the heat input, for either the gas

filled or evacuated condition.

The filling operation consisted of the following operations:

1) The condensible gases were removed from the vacuum chamber by pumping on

the chamber for the evacuated chamber condition or by sequential pumping and

backfilling for cases where the chamber was to be gas filled.

2) The cryogen tanks were evacuated and each filled with the fill gas at the

room temperature conditions.(Three such cycles for each tank.)

3) The tanks were left filled with the fill gas and the supply lines were

left opened to the tanks at a pressure near one atmosphere.

!»•) The LN2 coolant flow was started through the system.

5) As the fill gas began to cryopump into the container, the throttling valves

in the lines were adjusted to the desired flow rate.
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The fill gas was bubbled through a water flask to saturate it with water,

then passed through a precision wet test meter to meter the flow, then through

columns of Ca CO. deesicant to dry the gas before entrance into the tank. This

fill procedure resulted in direct formation of solid C0? from the gas and the

formation of liquid argon from the gas. Subsequent formation of solid argon was

obtained by further cooling of the argon with subcooled LNp. The subcooled LN?
was obtained by depressuricing the LNp supply, which is normally at approxi-

mately 20 psig, then repressurizing with helium gas. The resulting LNp tempera-

ture is sufficiently cold to freeze the argon.

The results of some preliminary fill tests on a cylindrical aluminum con-

tainer are discussed in Section 3«1« The results of these tests indicated

approximately a 3-1/2 hour C02 fill time for a tank the size of the thermal

model. In addition, high C02 solid density was achieved.

Initial fill tests of the thermal model resulted in a complete fill of the

C02 tank (2080 liters at NTP) in 3-1/2 hours with the chamber filled with argon :•'

gas at « 20 torr pressure, and also a complete C0_ fill test requiring 3-1/2

hours for an evacuated chamber. The solid CO- density inferred from the mea-

sured tank volume and the total mass of gas is 1-59 gm/cc + U$ compared with

the accepted maximum density of C0? at IN* temperature of 1.70 gm/cc. A com-

plete fill of the argon tank was not made until the final qualification tests.

During these tests the argon tank was filled to 5030 liters at NTP which is

80$ of the total capacity of the tank. The resulting mass of argon was i&.k

Ibs. compared with the design value of 19.8 Ibs. Therefore, the fill resulted

in 7$ less mass than the design value. The time to fill the argon tank was

2U hours. During the qualification fill of the tanks, LNp at 20 psig was used.

The saturation temperature corresponding to this pressure is 85.5°*̂  which is

above the triple point of argon (83.8 K). It is, therefore, likely that liquid

argon was formed initially. Since the density of liquid argon is l.UO gm/cc

which is Approximately 82# of the solid density, it appears that the container

was filled with liquid argon initially. After the liquid argon fill had been

completed, subcooled LNp was used to freeze the argon followed by unsuccessful

attempts to fill more argon into the container. It appears that, after the
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fill with liquid argon, subsequent freezing did not cause the resulting voids

to be formed near the inlet, so that no further argon could be added. It is

felt that an improved fill procedure would result if subcooled LN2 were used,

resulting in direct formation of the solid argon from the gas.

The results of the fill tests are summarized in Table 5-1. The results of

these fill tests indicate that a flight system could utilize either an

evacuated vacuum container or a purge bag purged with a non-condensible gas

such as helium to exclude condensible gases. In the case where a purge

bag was used the gas would bleed out during ascent of the vehicle.
*

Tests were also run which indicate that the refrigerator can be maintained

in a non-vented condition for an indefinite time by circulating LN through

the heat exchanger. Once the LNp coolant is discontinued, the argon will begin

to vent relatively soon depending on the temperature to which it is cooled with

the LNg, since the normal boiling point of the argon is relatively near the

LNg coolant temperature. For a system in an evacuated container several days

would be required before the CO temperature increased to the point where the

COg vapor pressure is significant.

After filling of the refrigerator, pumping is commenced on the C02 and argon

tanks un til equilibrium conditions are obtained. In the qualification tests

approximately three days were required for the argon to reach its equilibrium

temperature and approximately 6 days were required for the CO- tank to reach-

its equilibrium condition. Tne detector holder requires approxinately the

same time to reach equilibrium as does the argon, since there is a small thermal

lag down the copper link. Figure 5-1 shows the temperature response of the -com-

ponents during and after the qualification fill tests.

b) Lifetime Tests

Lifetime tests of the system were conducted with two loadings, the first

approximately 20$ full and the second at maximum capacity.
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In the maximum capacity test the refrigerator was filled with 1835 liters

of C02 at NTP (l.bQ Ibs) and 5,030 liters of argon at NTP (l8.4 Ibs). . These

capacities re-nresent 80$ of the total arson tank capacity and 85$ r>* the carbon

dioxide capacity, and were the total amounts that the tanks would accept. Other

fill tests have yielded greater percent fills as described in Section 5«1»

part a. With this capacity the system lifetime was determined by metering the

sublimation rate from the two tanks for a period of seventeen days, which was

sufficient time for steady state conditions to be established.

For the maximum fill tests, the sublimation rates were measured with

precision wet test meters. The resulting rates were 0.95 L/hr for the COp tank

and 2.2 L/hr for the argon, corresponding to heat rates of 292 mW and 20U,

respectively, to the two cryogens. The lifetime for the system using these vent

rates and the total amount loaded into the tanks is 3.1 months for the argon and

2.7 months for the COp.

In a previous test the tanks were loaded with U20 liters of COp and 1000

liters of argon which resulted in approximately a 20$ loading. The resulting

lifetime determined from these tests was 2.8 months for the argon and 8.6 months

for the COp. The heat rates and resulting lifetime for the argon tank were

approximately the same, however the COp lifetime was approximately three times

longer for the 20$ fill test than for the maximum fill test. Only one explana-

tion has been postulated for the difference in the COp heat rates. It was noted

by looking through the transparent window on the top of the vacuum container,

that the C02 cooled aluminum tube surrounding the thermal link was off-center

during the maximum capacity test. If sufficiently off-center to thermally short

to the surrounding ambient temperature insulation, a large heat input would

result. This is suspected as the cause of the different COg lifetimes for the

two tests. Confirmation would require removal of the insulation and COg shroud

and examination of the location of this tube, which was not possible within the

time schedule. Table 5-2 summarizes these results.

These results were the culmination of an extensive thermal test program

which consisted of numerous diagnostic tests for various configurations. These

tests were run in an effort to reduce the heat leak in the argon tank to obtain

the desired one year lifetime. The characteristics of the refrigerator and the
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TABLE 5-2

MEASURED OPERATING PARAMETERS OF SOLID CRYOGM
REFRIGERATOR

With & 20ft Cryogen Load
Detector Operating Temperature

Argon Temperature

CO. Temperature

Net Heat Load to (X>2
Total Heat Load to Argon

Argon Lifetime

COp Lifetime

105 K

6l K

133°K

92 mW

230 mW

2.8 months

8.6 months

With Maximum Cryogen Load

Detector Operating Temperature

Argon Temperature
£.

COp Temperature

Net Heat Load to (X>2
Total Heat Load to Argon

Argon Lifetime

C02 Lifetime

110°K

?2°K

292 mW

20k mW

3.1 months

2.7 months

Determined from Vapor Pressure Measurement of COp in Tank
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major reason for the excessive heat rate has "become quite clear as a result

of the test program.

The primary source of the high heat rates is believed to "be due to the

cryodeposition of water vapor on the detector mount and possibly portions of

the thermal link and tank. This cryodeposition was visually observed during

latter parts of the test program. This ice deposit could be clearly seen on

the top region of the detector mount and also on the instrumentation and

support wires which held the detector mount in place. This deposit was noted

shortly after the fill was initiated and gradually built up with time. It

is felt that the source of the water vapor which formed the cryodeposit is

the multilayer insulation which outgasses water vapor as the major constituent.

Investigations have been conducted regarding the outgassing of multilayer in-

sulation and the results are described in Ref. 5. Data obtained from these

tests are presented in Figures 5-2 and 5-3 for both Tissuglas and double-

aluminized Mylar. In these tests it was determined that water vapor was the

only significant off gassing constituent. The figures also show the effect of •:'

various pre-conditioning techniques which reduced the offgassing. These test

data also showed that insulation outgassing was virtually eliminated at

temperatures of 2l*O°K and lower.

The free molecular flow paths for the water vapor which comes from the

insulation and can enter the refrigerator interior is through a region of the

top support flange which attaches the system to the vacuum chamber and down

the interior of the number one support tube. As a result, the first cold

surface which the water vapor contacts is the detector mount, and the major

accumulation of ice is no doubt in this region, and diminishes as it moves .

down the link. The expected change in the heat rate accompanying this ice

formation can be calculated as follows for the refrigerator configuration.

The surface area of the detector mount for the sides, bottom and top area
p

excluding the aperture at the detector top is k cm . The absorbtivity of ice is

0.9 for thicknesses of 0.025 cm and greater for 300°K radiation1(Ref. 6). The

heat input assuming 300 K! Hohlraum surroundings ±e 162 mW. The calculated heat
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rate corresponding to the same area, which is gold coated, without ice is 5-^ mW.

In addition, experimental measurements of the heat rate for a configuration

which had the detector mount and the thermal link removed resulted in a reduc-

tion of the heat rate by ikj mW. If the difference in the actual heat rate for

the link and detector assembly (it? mW) and the predicted heat input to the

assembly (22 mW) is subtracted from the total heat input measured during the

qualification tests (230 mW), then the total heat load would be 105 mW. With

this heat rate the argon lifetime would be increased from 2.8 months to 6 months.

Therefore, elimination of the cryodeposits would be expected to yield an argon

lifetime of six months.

Another test of interest concerning the cryodeposits was one in which a

configuration was tested which had only the thermal link with the detector mount

removed. Removal of the detector mount resulted in a reduction of the heat

rates by 120 mW. It is likely that the effects of the cryodeposition on the

link and detector mount are not mutually independent since the detector mount

would cryotrap water vapor and reduce the amount of water vapor which would

collect on the link if the mount were not present. This consideration must be

made when comparing the tests of the various configurations. In addition, some

areas of the argon tank and/or radiation shield could be ice coated to a lesser

degree, and some additional reduction in heat rates may take place if the HgO

vapor was eliminated from the system. Limited attempts were made to eliminate

the cryodeposits. These consisted of pre-conditioning the insulation by

simultaneous.heating and vacuum pumping, and also by cryotrapping the water

vapor with a LN^ shroud near the refrigerator top.

The pre-conditioning was done by applying an electrical heater to the

outside of the vacuum chamber and heating the empty refrigerator for a period

of 9 days and simultaneously pumping on the system using the diffusion pump.

This test did not eliminate the water vapor, and the resulting heat leak was

only slightly reduced. The cryotrapping test was done by placing a LNg

cooled copper disk at the top of the refrigerator. The "collar" covered al-

most the entire top of the refrigerator, and was external to the insulation.

A comparison of the heat leak with and without this collar revealed a reduc-
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cion of heat leak from 232 mW to 167 mW, as shown "by comparing tests 5 and

6 in Table 5-3-

Solution of this problem will require further investigation to confirm

that water vapor comes from the insulation and to determine what methods

are required to eliminate this water vapor from the system. Possible solu-

tions may require either a different type of insulation and/or a successful

pre-conditioning technique. An alternate solution may be to provide for

isolation of the cold detector from the water vapor.

During the thermal testing, various diagnostic tests were conducted which

reveal the heat le.ak from various components. A summary of the more significant

of these tests is presented in Table 5-3. These tests were conducted with a •

preliminary multilayer insulation wrap of one-half inch, which facilitated inter-

nal modifications to the refrigerator. For this reason the C0_ heat rates are

excessive and do not represent the condition realized with the full insulation

wrap, which was added later. Comparison 6f the test results can only be made

for consecutive tests since additional modifications were made between test

series. The inferences made from these tests are that the heat leak to the ar-.

gon tank from all sources except the thermal link is « 83 mW and that the thermal

link alone (i.e. no detector mount) increases the heat load by Ml mW. The heat

leak contribution of the detector mount and link is 166 mW as previously dis-

cussed. The tests also show that the presence of the radiation shield reduces

bhe argon heat leak from 111 mW to Oh mW (27 mW).

rp
he effect of the LNg cooled collar at the top of the refrigerator in re-

ducing the amount of cryopumped water vapor is also shown by comparison, and

for the configuration tested resulted in a reduction of 65 mW.

c) Temperature Regulation Tests

During operation, the detector temperature should be relatively insensitive
to changes in the environmental conditions. For example, it is desirable to

minimize changes in detector operating temperature resulting from changing bound-

ary temperature during orbital operation. The temperature regulation

utilized here is completely passive, and the temperature regulation of the

argon heat sink is accomplished by appropriate sizing of the argon vent line.
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The derivation of the control equations for "both the argon and carbon

dioxide refrigerants is described in Section 2.1. The resulting equations are;

For Carbon Dioxide

and for Argon

f =0.21 dQ
Q

(at 13U°K)

dT = 0.039 § (at 72°K)
T ' **

Therefore, changes in the heat rates of 100$ should lead to changes of 2$

and 1$, respectively, in the carbon dioxide and argon temperatures according

to prediction.

In determining the change in the detector temperature subject to changing

environmental conditions, the temperature drop down the thermal link between

the detector and the argon tank must be superimposed on the argon temperature

change.

In order to determine the sensitivity of the refrigerator to environmental

changes and to test the validity of the derived equations, three types of

tests were run. The first series of tests consisted of dissipating In heat in

the detector mount by means of a small resistor placed there. In addition to

the lifetime test where there was no IK dissipation, two levels of heat dissipa-

tion were used: 50 mW and 100 mW. The results of these tests compared with

the no heat dissipation condition are summarized in Table 5-1*-.

A comparison of the actual and predicted changes in the argon tank tempera-

ture is shown below for the full tank test.

Heat Dissipation
mW

0

50
100

Argon Temp. °K

72

73-5

7̂ .5

Measured
t$ °̂K

0

1.5

2.5

Predicted
AT °K

0

0.6t

1.19
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The actual temperature change as measured by the PRT at the bottom of the

argon can was approximately twice the predicted value. It is felt that the

difference between the predicted and measured values is due to the temperature

gradient between the top and the bottom of the argon tank. Since the control

equation utilized to predict the temperature is based on an isothermal tank

assumption, it does not account for temperature gradients in the tank which

would be a maximum for a full, tank. During later tests the vapor pressure in

the argon tank was measured with an alphatron gage and the temperature corres-

ponding to this pressure was compared with the PRT measurement at the tank

bottom. The temperature gradient from the top of the tank to the bottom de-

termined in this manner was approximately 2.5 K for the condition of no

detector heat dissipation and an 80$ full tank. These measurements tend to

support the contention that the difference between the measured temperature

rise due to heat dissipation and the predicted rice is caused by temperature

gradients in the tank.

The control equation for the detector temperature subject to heat dissipa-

tion was determined by a curve fit of the experimental results and yields a /

value of

{«}•<« 5- '{ "-i *{"«»*

This value consists of both temperature changes due to the link and the argon

as shown above. Approximately 90$ of this change is due to the thermal resis-

tance of the link itself. The thermal resistance of the link agrees with the

predicted value; however, the temperature drop is greater than predicted due to

the high, concentrated heat load at the top, resulting from the cryodepositlon

of ice.

A second test was conducted to determine the temperature regulation due to

the variation in outer boundary temperature by applying heating blankets to the

external surface of the vacuum chamber and measuring the change in heat rates,

argon temperature and detector mount temperature. The resulting outer boundary
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temperature distribution varied from 110° to 115 F °n tne "top and from 105 to

F on the sides. The heat rates and the temperature resulting from this

condition are included in Table 5-^« The steady state heat rate and tempera-

ture of the carbon dioxide container were not attained in the duration of this

test, which was six days. This was due to the very slow transient response of

the 2.05" thick insulation blanket when subjected to temperature changes. The

argon heat rate increased from 2Oh to 2̂ 9 mW and the detector temperature

increased from 110 K to 125 K during this period and this was a result of the

increased radiation load on the detector holder. These changes were a result

of an increase in the radiation load on the detector holder due to a variation

of the external boundary temperature from 29U°K to an average of 318̂  or 8$.

The relatively large increase in the detector temperature can be attributed to

the high thermal absorbtivity of the ice covered detector mount and the corres-

ponding high heat rates.

The third test which was conducted to determine the temperature regulation

characteristics was one in which the tank was filled to approximately 20$ of

its capacity. The results of this test were quite surprising inasmuch as the

argon temperature at the tank bottom was 6lTC. This value was 11 iC lower than

measured for the full tank condition. The difference in temperature for the two

tank loading conditions can be explained only in part by the presence of a

temperature gradient through the tank from top to bottom as previously des-

cribed. The only other possibility which might explain this result is that

there was a partial constriction in the argon vent line which would cause the

argon to reach a higher equilibrium temperature condition.

In summary, the test results did not yield the desired value of 75°K for

the detector holder, due primarily to the large temperature gradient in the link

caused by the excessive heat loads at the top. For the present model, the argon

vent tube could be enlarged without a singificant increase in heat leak to allow

an argon temperature of approximately 50 K. Superimposing the 38 K temperature

drop of the link would reduce the detector temperature to 88 1C. The detector

temperature could be further reduced by increasing the diameter of the thermal

link, however, this would lead to an increase in the heat leak to the thermal

link.
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5-2 Thermal Performance with Methane-Ethylene

The use of methane and ethylene respectively as the primary and secondary

cryogens in place of argon and carbon dioxide would lead to a substantial

reduction in system weight, or conversely an increased life-time.̂  Consideration

of system advantages must weigh the flammabilitv of both methane and ethylene

arid the handling required,against thermal gains. The thermal gain of

the system is due to the higher heats of sublimation and the reduced

guard temperature which the ethylene provides, as shown in the table below:

Cryogen

Argon

Methane

co2
Ethylene

Solid Temp.
Range* °K

U7.8 •- 83.9

59.8 - 90.7

125 - 217.5
95 - 101*

Latent Heat of
Sublimation
J/cm3 J/gm

3Wt- 202

308 615

1060 607

515 708

Density
g/cm3

1.7

0.5 ;

1.7

0.73

* Minimum temperature taken at 0.1 torr vapor pressure.

Tests of the refrigeration system were conducted with methane and ethylene

substituted for the argon and carbon dioxide. The tests were made without the

thermal link or detector mount installed during diagnostic thermal tests. The

results of these tests as compared to the results with argon and carbon dioxide

are summarized in Table 5-5« The temperature for ethylene shown in the table

was a result of throttling the vent line outlet to achieve these temperatures for

comparative purposes with other tests. The minimum temperature obtained with the

ethylene as the secondary was 10k- K for the vent line configuration used. A

comparison of the primary cryogen heat rates shows a reduction of 38 mW or approxi-

mately 50$ without the thermal link. This reduction is due to the lower ethylene

guard temperature which reduces the radiant and conductive heat rates from this

source .
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TABLE 5-5

COMPARISON OF THERMAL PERFORMANCE TESTS
FOR TWO DUAL CRYOGEN SYSTEMS

"\

Configuration

Argon and COg
used; no

_̂  thermal link (#23)

Methane and
Ethylene used;
no thermal link (#25)

A/CĤ

Temp
o
K

60

8U

Heat
Rate
mW

73

35

ft rt I /"I TT
\J\J f^ 1 t-< — TT*O* or f i

Temp
o
K

136.5

120

Heat
Rate
mW

771

800

Temperature Dist *- K

Tube
1-2

166

169

Tube
3-1*.

1014-

101

COg/CpH^

Shroud

137

121

Radiation Shield
Top

Ufc

107

Middle

115

108

Bottom

111.5

106.5

Comments

,

38 mW reduction in primary
cryogen heat rate

* /Preliminary 1/2 inch insulation wrap was used in "both of these tests.



These tests with methane-ethylene indicated there were no unusual servic-

ing problems associated with the formation of either solid methane or solid

ethylene in the respective tanks. A vent stack was Installed to vent the

ethylene ana me-cnane to the outside.

Since the latent heats of methane and argon are approximately the same per

unit volume, but methane is only 30 percent as dense as argon, the use of

methane in place of argon represents a 70$ primary cryogen weight savings or

similarly a large gain in lifetime for the same weight. The comparative lifetime

gain for the same weight, although substantial, is more difficult to assess

since a redesign of the primary cryogen container is necessary to contain the less

dense methane.

/ Since the latent heat of sublimation/unit volume of ethylene is approximate-
;.
, ly one-half that for carbon dioxide, substitution of ethylene for CO- would de-

crease the secondary cryogen lifetime to one-half with the existing tank config-

uration. However, since the per unit mass heat of sublimation for ethylene is

, approximately 15 percent greater than for COg a redesign of the secondary

cryogen system for ethylene would result in approximately the same secondary

cryogen system weight (cryogen, tank etc.) yet would present the advantage of

providing the lower boundary temperature for the primary cryogen.

Unfortunately, complete systems tests (thermal link and detector mount in-

stalled plus full insulation wrap) were not performed with methane-ethylene

due to time limitations; however, the tests that were performed did show the

superiority of this combination of cryogen over argon - C0_ in terms of thermal

performance-system weight considerations.

5«3 Structural Performance

5•3•1 Introduction

The contract originally called for only a low level resonant survey test

of a structural model of the refrigerator. However, under a contract modi-
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fication extensive acceleration and vibration testing of the structural model

was conducted. These tests were conducted at the equivalent of the accelera-

tion and vibration specifications outlined in "GSFC Specification TIROS M/

Improved TOS", January 31> 1967.

The structural tests were conducted with the model at room temperature,

and with the cryogen tanks loaded with sealing wax to simulate the respective

cryogen masses. Since the fiberglas-epoxy material used in the construction of

the folded support tube configuration exhibits an increased ultimate strength of

approximately 20$ in the cold condition, and the support tubes are designed for

the cold condition, the "qualification level" g loadings were accordingly scaled

down by 20$ to represent "equivalent" test conditions. In the "acceptance level"

tests the g loadings were not scaled down, however. Table 5-6 summarizes the

details of the acceleration and vibration tests conducted on the structural model.

They correspond to the specifications outlined in "GSFC Specification TIROS M/

Improved TOS," January 31, 196?> with a 20$ reduction in the g loadings for

the 'qualification level" tests.

Three accelerometers were mounted at each of three locations on the model:

bottom of argon tank, on COg tank and lower end of main support tube. In each

set one was oriented axially and the other two were oriented laterally and ortho-

gonal to each other.

The acceleration tests were performed on a 60K capacity centrifruge, and-

the vibration tests were performed on a 7.5 K capacity shaker system.

5.3.2 Test Results

The test plan consisted of performing the specific tests in the sequence

given in Table 5•'̂  1. e. starting with the tests considered least severe and pro-

gressing through the more severe tests. The vibration tests were considered to

be more severe because of the system resonant frequencies. The goal was to

maximize the amount of information which could be gained prior to a possible

structural failure of the system. The test results are summarized below:
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TABLE 5-6

ACCELERATION & VIBRATION TEST SUMMARY

A. Acceleration Tests:

B. Vibration Tests:
(Resonant Survey)

(Acceptance Level)

(Qualification Level)

1. 10 g (accept, level),3 axes, 5 min. each

2. 17.6 g (qual. level), 3 axes, 5 min. each

3. Low Level Resonant Survey (sinusoidal)
; in each of three perpendicular planes
14-. Sinusoidal (acceptance level) 5 to 2000 cps

at 5 g zero to peak at h oct./min. and 0.17
inch displacement single amplitude below
17 cpsj in each of 3 perpendicular planes.

5. Random (acceptance level) 20 to 2000 cps with
sharp roll-off above 2000 cps and at 10 g rms
at 0.05 g2/cps for 2 min. in each of 3
perpendicular planes

6. Sinusoidal (qualification level) 5 to 2000
cps at 8 g zero to peak at 2 oct./min., and
0.25 inch displacement single amplitude
below 18 cps; in each of 3 perpendicular
planes.

7. Random (qualification level) 20 to 2000 cps
with sharp roll-off above 2000 cps and at
16 g rms at 0.13 g2/cps for k min. in each
of 3 perpendicular planes.

Notes:

The TIROS specifications allow for a 0.17 in* minimum single amplitude displacement;

thus, this displacement is used below 17 cps.

The 0.25 in. single amplitude displacement below 18 cps due to equipment limiata-
tions corresponds to the minimum allowed in the TIROS specifications. • •
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o The system satisfactorily survived the acceptance level acceleration

tests in three axes: axial compression, axial tension and lateral.

(The lateral test Is considerably more severe).

o The system survived the qualification level acceleration test in axial

tension; however, in the lateral orientation a few seconds after the

centrifuge had levelled out at 17.6 g's, the support flange failed,

resulting in complete destruction of the structural model and all ac-

celerometers. Following analysis of the flange area it was concluded

that the failure was precipitated by the supporting bolts, however,

additional reinforcement of the flange area itself was also felt

warranted.

o A second structural model was fabricated with the flange area modified

accordingly. (Similar to Figure 2-6) Two additional layers (k and 3

inches long) of glass-epoxy were added to the top and one additional

layer (2-1/2 inches long) was added at the bottom of the main support •

tube. In addition, an aluminum collar 3A inch long was epoxy bonded

to the outside of the main support tube at the support end to transmit

the restoring moment from the flange to the support tube by shear. An

aluminum adapter ring and eight 3/8 inch HAS bolts in place of the

original six 1/U inch standard steel bolts were used to mount the flange

to the test fixture.

o With the revised model, low level ('-I g) resonant survey (sinusoidal)

tests were conducted in three axes: axial, and two orthogonal trans-

verse axes. There was no significant difference in the two transverse

surveys. Specific resonant frequencies were observed in these tests.

o Acceptance level sinusoidal and random vibration tests were satisfactor -

ily conducted in both the axial and lateral orientations.

o Qualification level sinusoidal and random vibration tests were satis-

factorily conducted in the axial orientation.
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o During the qualification level random vibration test in the lateral

orientation, a failure occurred in the support flange. This failure

which resulted in no other damage to the model, indicated there was

insufficient shear area between the aluminum collar and glass-epoxy

tube. This was substantiated by subsequent analysis using possible

loadings present in the vibration tests.

o The support flange area was further modified by epoxy bonding aluminum

collars (each 1-1/2 inches long) to both the inside and outside of the

main support tube (see Figure 2-6) to essentially quadruple the

shear area. All subsequent tests were conducted with this configura- -

tlon.

o Qualification level acceleration tests were satisfactorily conducted

in both the axial (compression) and lateral orientations.

o Qualification level sinusoidal and random vibration tests in the

lateral orientation were conducted with the basic structural configura-

tion satisfactorily surviving these environments

o Following these tests examination of the system revealed some abrasion

of; though no apparent structural damage to, the main support tube

adjacent to the top of second tube, indicating sufficient displacement

of the support tubes to cause contact at this location. This is con-

sistent with the analysis of the deformation of the support system under

30 g's lateral loading. No evidence of contact was apparaent at any

other location.

o On completion of the vibration testing the taut wire support system for

the detector mount had failed. At what point in the vibration tests the

failure occurrred was undetermined. This is felt to be a result of the

wire supports being subjected to excessive stress from the thermal link

assembly. This cannot be fully substantiated; and further effort is

required in this area.
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0 As a general conclusion, the basic structural design of the support '

system was found to satisfactorily withstand all required acceleration

environments.

Figure 5-k shows the control (input) acceleration for the axially oriented

resonant survey test. There was significant feedback near 120 Hz which re-

sults in the behavior observed near that frequency. Figures 5-5 > 5-6 and 5-7

show the axial response accelerations for the argon and COg tanks and support

tube, respectively. At all three locations an amplification is observed near

120 cps. Based on an input acceleration of S3 !•35 g (Figure 5-̂  ) the

q factors for the argon, COp and tube are 16, 12 and J, respectively. It is

noted that the amplification factors attenuate toward (along the distributed

spring) the support. Although these q factors are high, the resultant stresses

are purely axial, and the support tubes as well as the brackets, tanks and epoxy

joints were designed to withstand the resultant stresses in the axial qualificar

tion level tests. There is also observed to be a second, though less important:

resonance near 350 cps which is distinct except in the case of the argon tank.

Analysis confirms the presence of these two resonant frequencies. The lower

frequency corresponds to the combined argon and 00̂  masses simply oscillating

axially in phase on the first two support tubes in a one-degree-of-freedom

fashion. The higher frequency is due to the 00̂  mass oscillating axially on two

springs between the support and argon mass, with the argon mass essentially

fixed at this frequency (note the small amplification of the argon at 350 cps).

Although not observed for the CO' or argon tanks, the support tube exhibits

significant amplification (Fig. 5-7) at higher frequencies. This is appar-

ently a result of some asymmetry in the model which induces lateral vibrations,

of the support tube with axial input. These accelerations are relatively unim-

portant in terms of resultant stresses because of the small mass of the support

tubes.

Two lateral resonance survey runs (orthogonal to each other) were made;

however, there was no significant difference in the results, which indicates

the model was essentially axisymmetric. Thus, only one of these (designated

simply as lateral orientation) is discusced. The control acceleration for
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this run (not shown) was held at 1.05 (+ 10$) g. Figures 5-8, 5-9 and 5-10

show the responses of the argon, (X>2 and tube, respectively. The significant

lateral resonances of the two major masses (COp and argon) were found to occur

at approximately 13 and 20 cps. At the lower frequency the resultant magnifica-

tion factors were 6 for the argon and 8 for the CO (Figures 5-8 and 5-9). For

the higher frequency, the magnification factors are 3 for the argon and 4 for the

COp. The two observed frequencies are predicted very well by a two degree-of-

freedom dynamic model which consists of the argon mass being essentially rigidly

connected to the C0p mass with the combined mass free to translate and rotate as

a rigid body attached to the first two folded support tubes which act as a spring.

Based on this dynamic model, the computed maximum stresses for the qualification

and acceptance level Inputs were considered to be within the allowables. However,

for these higher input acceleration levels the actual response of the COp mass

and attached argon mass would be limited by the interference of the upper end of

the second support tube and the main support tube. Although this interference

creates high local stresses estimates of these local stresses showed them to

remain within the allowables.

above observations and considerations were verified by the results of

the qualification and acceptance level sinusoidal and random vibration tests

which were conducted in both the axial and lateral orientations. The basic

structure of the model, after the modification to the flange area described above,

satisfactorily survived all of these tests. Figure 5-11 shows the control (input)

acceleration for the acceptance level, axial, sinusoidal vibration test. Figures

5-12 and 5-13 show the responses of the argon, and C0_ tanks respectively for

this test. As for the resonance survey test the system exhibits resonances near

350 cps and in the region 80 to 100 cps. The .amplification factors near 100 cps

for the argon and CO- tanks are approximately 5 and 3> respectively (compared to

16 and 12 for the similar resonance survey test). Thus, there was considerably

greater damping for the higher input test. The amplification factor near 350

cps is only significant for the COg tank where it is 6, which is approximately

twice as high as it was for the resonance survey test.
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Figure 5-1̂  shows the input acceleration for the acceptance level, lateral,

sinusoidal vibration test. The response accelerations for the argon and COp

tanks are shown in Figures 5-15 and 5-l6 fOT this test. Again, the two reson-

ant frequencies 13 and 20 cps, are similar to the resonant survey test. At the

higher resonant frequency (<\̂ 20 cps) the magnification factors are 3«2 and k.k

for the argon and 00̂ , respectively (compared to 3 and k respectively for the

resonant survey test), while for the lower resonance ( rJ 13 cps) the magnifica-

tion factors are 9«2 and 4.5 for the argon and C0?, respectively (compared to

6 and 8, respectively for the resonant survey test). At the lower resonant

frequency the limitation of the amplitude of the C0p container due to contact

with the main support tube reduces the C0_ amplification factor; however, this

has also resulted in a greater amplification factor for the argon mass.

Similar results were obtained for the qualification level sinusoidal tests.

Figures 5-17 and 5-18 show the response for the argon and CO- for axial excita-

tion. .The input acceleration was approx. 8.5 g's. At the lower resonant

frequency ( ~ 100 cps) the amplification factors were 5-1 and 2.7 for the argon

and COg, respectively, while at the higher frequency (350 cps) the COp ampli-

fication factor was 2.7- Output data for the qualification level, lateral,

sinusoidal test are not available. A summary of the sinusoidal vibration data,

including the resonant survey tests, is presented in Table 5-7 •

TABLE 5-7 SINUSOIDAL VIBRATION TESTS

Test _^_^*VP

Resonant Survey

Acceptance
Level

Qualification
Level

J" Argon
Ico2
f Argon

S Argon

Orientation
Axial

70 - 100 cps

16
12

5
3

5-1
2.7

350 cps

(neg).
2.7

(neg)
6

(neg)
2.7

Lateral

13 cps 20 cps

6
8

9.2

-

3
k

3-2
k.k

-
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The structural model also satisfactorily withstood the random vibration

tests (Table 5-6) except that the tests were conducted in only two axes, axial

and one lateral, due to time constraints. The accelerometer output data for

these tests was poor and thus is not presented.

'me one portion of the system which did not satisfactorily survive the

structural testing was the detector mount and its taut wire support. After

the conclusion of the random vibration tests three of the taut wires on the

mount were broken. Since the detector mount was not examined until the con-

clusion of the vibration testing, it was undetermined as to when the failures

occurred. It is suspected that the failure was a result of excessive stresses'

imposed on the wires due to vibrations of the thermal link; however, this

cannot be fully substantiated and further effort will be required to deter-

mine the mode of failure and to make the necessary modifications to the

detector mount.
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6.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The ground rules for the design of the solid argon-carbon dioxide subliming

refrigerator were one year lifetime, a system weight of 35 lb (exclusive of

vacuum container) detector dissipation of 10 mW and detector operating tempera-

ture of 75 to 80 K, when exposed to a 300 K space vacuum environment. In addi-

tion, the refrigerator was to withstand the acceleration and vibration environ-

ment of a TIROS launch. The thermal mechanical design of the refrigerator

resulted in a design which would meet the above requirements except for the

weight limitation, the design weight being approximately 38 Ib. The selected

refrigerator configuration consisted of toroidal aluminum containers for the

argon and carbon dioxide, with the support system being a central fiberglas

epoxy tubular structure. The system was insulated with a multilayer insulation

and the insulation load was borne by the COg since a CO^ cooled shroud, on

which the insulation was laid, surrounded the argon and thus provided a low temp-

perature environment for the argon. In addition, there was one radiation

shield between the C0g and argon and all internal surfaces were gold coated to

reduce radiative exchange. The detector holder was supported on a taut wire

system and connected to the argon through a gold link passing down the central

support tube. The argon and C0_ containers each had a single plumbing line

used both for fill and vent. A liquid nitrogen coolant line routed first

through the argon container and then along the CO container was used to form

the solid cryogens from (their respective vapors.

Separate models of the refrigerator were constructed for the thermal and

mechanical tests. The thermal model was constructed to meet both thermal and

structural requirements. In the construction of the structural test model

certain features, which were considered essential only for (unique to) thermal

performance, were eliminated, i.e. gold coatings, etc. In the course of the

testing of the thermal model, it was rebuilt twice as a result of damage due

to overpressurization caused by vent line blockage. In the course of the

structural testing, the model was rebuilt once as a result of a structural

failure during the centrifuge tests, and a further modification of the support

flange was later required to withstand stresses resulting from vibration tests.
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The refrigerator thermal performance was substantially below the design

goal and numerous diagnostic tests were conducted in an attempt to determine

the source of the abnormally high thermal loads. Lifetime tests were con-

ducted both under partially loaded (-~»20 percent) and fully loaded conditions,

and both with and without the thermal link and detector mount installed. The

thermal lifetime was determined to be different for the two cryogens: for

the fully loaded condition the lifetimes for the argon and COp were 3.1 and

2.7 months, respectively, whereas for the partially loaded tests conducted

earlier the argon and C0? lifetimes were 2.8 and 8.6 months, respectively.

The discrepancy between the C0p lifetimes measured for the fully loaded •

and partially loaded tests is felt to be a result of a thermal short which

developed between the times these two tests were conducted, and was not unique

to the fraction of loading; however, this was not fully resolved because of

contract time limiations. Considering the 8.6 month measured COp lifetime,

this can be largely explained by the 2 inch thickness of insulation used

rather than the 3 inch design value. In addition, the support tube heat leak ';.

is larger than originally computed in the design study.

Of particular importance is the reason for the poor argon performance.

The design thermal load on the argon was computed to be Wt- mW whereas the

thermal load determined by boiloff measurements was 230 mW, resulting in

approximately a 2.8 month lifetime. Tests run with and without the thermal

link and detector assembly indicated that approximately 1̂ 7 mW was load on the

link assembly and the remainder (83 mW) was radiative and conductive load on

the argon tank itself. Observation of the detector holder during the test

indicated a significant ice film, which from computation and published emit-,

tance values for ice films explains the abnormally high load on this link.

This water vapor is believed to come from outgassing of adsorbed water vapor

in the insulation and this icing problem was not significantly improved by

"conditioning" the insulation. The interior cold regions of the refrigerator

may possibly also have been contaminated by condensed water vapor, thus explain-

ing the larger than expected thermal load on the argon container itself. It
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would "be expected that this contamination would be significantly less severe

than on the detector holder and link which are directly exposed to the water

vapor in the vacuum chamber and also because the detector is exposed to a

300 K environment. It was of particular consternation to us that the thermal

performance of the current refrigerator was below that of the refrigerator

developed under Contract NAS 5-95̂ 9• However, in discussing the tests and

configuration with personnel associated with that contract, it was discovered

that during their thermal lifetime tests, an aluminized mylar cover was

placed across the support flange above the thermal link. It is agreed that

this fortuituous choice of geometry unintentionally provided a barrier to

water vapor in the chamber from migrating to the cold thermal link area. In

our configuration the IRTRAN window is located above the detector on the flange

of the vacuum chamber. If this were to be located on the top of the support

flange, it would provide a similar vapor barrier to. the geometry in MS 5-95̂ 9,

and would not otherwise affect the optical qualities of the system. Unfortun-

ately, this was not done during the contract because the "icing" problem was

not detected until late in the program,and further comparative tests and cor-

rective steps as described above were not possible within the time permitted.

However, such tests would be desirable and it is suspected that they would re-

sult in significant performance improvement.

As a result of the large thermal load on the link and detector holder the

detector operating temperature was approximately 105 K rather than the 75-QfjK.

design goal. This would be corrected by elimination of the water condensation

problem. Temperature regulation tests gave results quite consistent with pre-

dicted values.

The refrigerator was filled both with and without the chamber evacuated,

the evacuated fill requiring approximately 2k and 3-1/2 hours for the argon

and COp, respectively, and was somewhat faster than the purged fill condition.

However, the tests demonstrated that the purged fill test is entirely feasible.

Specific warmup tests including measurement of the emptying times and time

to reach room temperature were not conducted; however, several warmups of the
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system were conducted. One of the problems experienced was "blockage of the

fill lines. In one case this was caused "by the LN2 coolant line being too

near the fill line resulting in freezing of -the cryogen at that point in the

line resulting in temporary blockage. This was subsequently corrected. On

other occasions it was suspected that there was gradual accumulation of ice

in the fill line due to minute quantitites of water vapor passing through the

drying columns. This was corrected by cycling warm GHe several times into

the vent line until it unblocked.

In addition to the argon-C00 tests, fill and lifetime tests with methane-
d *

ethylene were conducted. No unusual problems were experienced with these

flammable gases during the fill operation and no problems were experienced

with their solidification. The lifetime tests indicated that a substantial

improvement of lifetime (or reduction in system weight) would result from use

of these cryogens. This is a result of the methane being only 30$ as dense as

the argon yet having a sublimation heat/unit volume similar to that of argon.

In addition the ethylene provides a lower boundary temperature for the

primary cryogen than does C02, and though its volumetric heat of sublimation

is only U0$ of that of CO*, its sublimation heat/unit mass is slightly superior

to C0?. The methane-ethylene is therefore superior to the argon-C0g system

based on thermal lifetime or overall system weight.

The structural tests were conducted with the model warm and loaded

with a tooling compound to simulate the cryogen masses. Acceleration, as well

as both sinusoidal and random vibration tests, were conducted at both qualifica-

tion and acceptance levels (TIROS launch),and with the refrigerator in both the

axial and lateral orientation. Low level resonant survey tests in both orienta-

tions were also conducted. The taut wire support system for the detector mount

was found to be broken on inspection following the final tests. This is sus-

pected to be a result of excessive stresses placed on the mount by the thermal

link, and further work is required on this part of the model. The basic struc-

tural portions of the system (flange mount, support tubes, tank brackets and

cryogen tanks) passed all the structural tests satisfactorily and can be con-

sidered essentially qualified for a launch environment.
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It is recommended that further testing, "both thermal and structural be

conducted to improve and further qualify this refrigerator model.

In particular, an attempt should be made to eliminate condensation of

water vapor on the exposed detector holder as it significantly degrades the

thermal performance and also vould probably result in the detector being in-

operable. Ways of eliminating this problem include: use of an insulation

system which does not include a spacer material (the primary source of out-

gassing) , and placement of the IRTRAW -window immediately above the detector

holder to have it form part of a barrier to the migration of water vapor to the
*

exposed, cold detector holder. The latter step in particular seems advisable.

Elimination of the spacer material or thorough conditioning of the insulation,

vould further reduce the migration of water vapor into the inner region of the

refrigerator, where condensation also degrades the system thermal performance.

Further structural testing should also be conducted, even though the basic

structure satisfactorily survived all structural tests. These tests should in-

clude qualification of the taut wire detector support concept, and complete

structural tests of the refrigerator thermal model loaded with solid cryogens.

The detector support tests should be preceded with additional analysis of the

dynamic coupling between the thermal link, the flexible link and the detector

holder before further structural tests are conducted. The basic structural

design has survived the required launch environment; however, ultimate qualifica-

tion of the system must include structural tests of the thermal model loaded •

with solid cryogens, followed by thermal performance tests to validate that the

thermal performance is not seriously affected by the launch environment.
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7.0 NEW TECHNOLOGY

The design, fabrication and testing of the argon-carbon dioxide subliming

refrigerator resulted in the development of some specific items which are con-

sidered to be reportable under the contract's "New Technology Clause."

A. Item A

1. Title

Concentric Support Tube - Cryogenic Tank Design

2. Abstract

The basic configuration for the refrigerator consists of separate toroidal

COp and argon containers supported on a tubular support structure consisting of

four fiberglas-epoxy concentric tubes arranged in a folded manner. The fiber-

glas-epoxy material is ideal for cryogenic supports because of its high strength

and low thermal conductivity and the concentric configuration is advantageous

for a dynamic system and permits ease of assembly. This configuration satis-

factorily underwent acceleration and vibration tests typical of qualification for

a TIROS launch and was also used in the refrigerator thermal model.

3« Detailed Description

a. General Purpose - The configuration was used in the refrigerator system to

provide a structurally reliable, low heat leak support system for efficient

storage of cryogenic refrigerants.

b. Improvements and Advantages - During the refrigerator design this concept

was chosen over several other concepts evaluated. This concept represents a

significant improvement over a support configuration used for a similar re-

quirement under Contract HAS 5-95̂ 9 in that it was qualified during extensive

structural testing during the current contract and that it greatly facilitates

the refrigerator assembly.
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c. Principle of Operation and Construction - The configuration is shown in

Figure 1-1. The cryogen containers were constructed, from spun sections of

6o6l-T6 aluminum and welded together at the seams. Mounting brackets attached

to each tank and made of the same material were epoxy "bonded to the support tube

structure at the two mounting locations. The four glass-epoxy tubes were custom

fabricated from S glass-158l cloth/E-787 epoxy (U.S. Polomeric, Inc.). Each

tube was fabricated by spiral wrapping the required number of layers (̂  10 mil/

layer) to produce the required tube thickness. The tube thicknesses were

partially tailored to meet the local stresses. The outer two support tubes were

of uniform diameter, whereas the central tube was tapered at the top due to

stress considerations, and the second tube was tapered throughout its length to.

simplify construction and assembly. The tubes were assembled in a "folded" con-

figuration, the joining technique utilized epoxy adhesive with an area sufficient

to limit shear stresses below allowables. The tubes were designed to withstand

stresses resulting from axial and transverse loading. Ultimate shear, ultimate

compressive and critical local buckling stresses were used as the criteria.

The design, construction and testing, both thermal and structural, are given

in greater detail in the body of this report.

d. New Features - It is believed that this basic configuration is new in its

application to the storage of cryogenic fluids under a severe vibration environ-

ment.

e. Additional Information - N/A

U. Applications

This basic configuration would find possible application in systems requir-

ing support structures which exhibit efficient thermal insulation (hot or cold)

and high strength.
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5. Possible Extension

The basic configuration vould be applicable to a system requiring support

of one or several masses at different temperpture levels. The support tubes

could be tailored both in thickness and diameter for optimum performance.

Furthermore, since local buckling becomes critical for the larger diameter -

thinner vail tubes, these tubes could be given additional strength with little

effect on thermal performance by spacing circumferential stiffening ring along

the tube.

6. Degree of Development^

Development is completed and prototype thermal and structural models have

been constructed. Each model has been tested: the thermal model for a thermal

lifetime test and the structural model has satisfactorily undergone accelera-

tion and vibration tests equivalent to qualification tests for a TIROS launch.

7. Technological Significance

This "new technology item" is considered to be a substantial design improve-

ment.

8. Innovators' Mames

T. C. Nast, G. C. Vliet and G. B. Cline

9- Previous Publication or Disclosure

There has been no previous specific disclosure of this item. However, the

item was very briefly described in the context of a paper by G. C. Vliet and

D. 0. Murray dealing with solid cryogen refrigerators which was published in

the 1968 Proceedings of the Infrared Information Symposium (IRIS).

10. Technical Supervisor of Innovators

Hot identified.
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B. Item B.

1. Title

Taut Wire Infrared Detector Support

2. Abstract

The taut wire infrared detector support concept consists of the suspension

of the detector mount on a series of symmetrically arranged wires placed in

tension. Tais configuration provides a low heat leak support and because of

the symmetrical arrangement minimizes detector misalignment due to thermal ef-

fects .

3. Detailed Description

a. General Purpose - The taut wire support concept was used in the subliming

refrigerator to support and accurately position the cold infrared detector with

respect to the ambient temperature surroundings.

b. Improvements and Advantages - The taut wire support has advantages over the

pedestal type of support in that it passively maintains detector position

(alignment) relative to its surroundings in the presence of temperature dif-

ferences between detector and surroundings.

c. Principle of Operation and Construction. The taut wire support concept

consists of supporting the cold detector on a number (six) of symmetrically

arranged wires placed in tension. The configuration shown in Figure 1-1 is

that used in the refrigerator developed under NAS 5-10̂ -57» an<3- consists of the

minimum number of support wires which will provide reasonable axial, lateral

and torsional stability to the supported mass (detector). Three pairs of wires

120 degrees apart, with each pair themselves at right angles provide the nec-

essary support. Each wire is oriented b$ degrees to the axis to optimize both

the axial and lateral stiffness. The upper set and lower set of wires are

located so that their force vectors do not intersect the centerline at the

same location, thus providing torsional stability about axes perpendicular to

the centerline. The wires are designed such that their combined spring con-
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stant and the supported mass (detector) will not resonate within the anti-

cipated range of exciting frequencies experienced by the system. They are

attached at the ends by epoxy-adhesive and are placed in tension. The selec-

tion of wire material is based primarily on maximizing strength/thermal con-

ductivity. The candidate material used was Ti: 6 Al, Uv. The system was de-

signed for a TIROS launch environment and for a resonant frequency well above

200 Hz.

Further details of the taut wire support system are included in the body

of this report.

d. New Features - It is believed that this is the first attempt at using the

taut wire support concept to provide a low heat leak support for a cryogeni-

cally cooled infrared detector sensing element.

e. Additional Information - H/A

k. Application

This basic configuration would find use in systems requiring simultaneous

thermal isolation and structural support, primarily where alignment is critical.

5. Possible Extension

The taut wire support system can be applied when as few as two wires are

used. However, the two wire system provides stiffness only in the line of dir-

ection of the wires. To provide stiffness in three orthogonal axes a minimum

of four wires are required. The four wire system does not provide much torsional

stiffness since all four wires have the same point of action. The six wire sys-

tem described above provides stiffness in all axes except torsional about the

centerline. A further improvement would be to use an eight wire system such

that the upper and lower sets do not act through the same point (similar to 6

wire system) but also such that opposing wires in the same set do not have the

same point of action. Such an eight wire system would provide transverse stiff-
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ness in three orthogonal axes as well as torsional stiffness in three orthogonal

axes.

6. Degree of Development

Development is partially completed. The taut wire system was used in both

the thermal refrigerator model and also the structural model. In the structural

model some of the taut wires were found to have failed at the conclusion of

the vibration tests; however, this is attributed to result from insufficient

support of the thermal link which was connected to the detector mount. The

thermal link and its flexible connection to the detector mount require further

improvement followed by additional testing of the taut wire supported detector

mount connected to a thermal link of improved design.

7« Technological Significance

This item is considered to be a design improvement.

8. Innovators' Names

G. C, Vliet, T. C. Hast, and G. Bell.

9« Previous Publication or Disclosures

There has been no previous specific disclosure of this item. However, the

item was briefly described in the context of a paper by G. C. Vliet and

D. 0. Murray dealing with solid cryogen refrigerators which was published in the

1968 Proceedings of the Infrared Information Symposium.

10. Technical Supervisor of Innovators.

Not identified.
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