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STABILITY OF THE LAMLNeR BOUNDARY WE8 

By Neal Tetemin 

Langley Aeronautical Laboratory 

This paper t rea t s  the s tab i l i ty  theory for  the 1- boundary 
layer and its applications. Fi rs t ,  a short history of the theom similar 
t o  that  in a paper by Pillow (reference l), which contains a comprehensive 
list of references, i s  given; then, an outline of the theory for  
incoqressible flow (reference 2 )  is presented. This i s  followed by a 
summary of the recent applications of the theory for  incompressible flow, 
Finally, the results  of investigations concerning the effect of corn- 
pressibil i ty and the effect of curvature on the s tab i l i ty  of the laminar 
boundary layer is mmmrized. 

Ln Prasdtlt s paper of 1904 (reference 3), which founded bomdary- 
layer theory, the region of flow around a body was divided into tvo parts. 
One region includes almost the entire flow f i e ld  and has the property 
that  the viscosity of the f lu id  in t h i s  region has no effect on i t s  
motion. The other region is a narrow one next t o  the body where the 
f lu id  velocity r i ses  rapidly from zero at the surface t o  a value which 
then changes slowly or not a t  all with *her increase in di-stance from 
the BurPace. The nar row region in which the velocity changes so rapidly 
that  the viscous forces are not negligible even Fn f lu ids  of sraall 
viscosity is called the boundary layer. To t h i s  boundary layer can be 
traced the origin of the differences between the behavior of bodies in 
real  asd i n  nonviscous fluids. 

Boundary layers are generally classified as  ei ther laminar OF 

turbulen-t. ikmimw flow is defined as  one in which almost all of the 
interchange of momentum between adjacent layers of flowing f lu id  takes 
place by molecular dff fusion (reference 4). A t  the stagnation point of 
a body and usually for  some distance downstream, the flow in the bomdqy 
layer is lamlnar. Far enough fromthe stagpation point, however, the 
flow i n  the boundmy layer chasges fromthe ~mooth laminar flow t o  a 
violently fluctuating one - the turbulent flow. A s  shown in figure I, 
the turbulent flow is associated with a different manner of increase of 
the average velocity with distance from the Burface and with a hi&er 
skin friction. The skin fr ict ion for  turbulent flow is usually several 
times the skin f r ic t ion for  laminar flow. 

In normal f l igh t  attitudes the profile drag of wings and fuselages 
i s  almost directly proportio.mil t o  thei r  skin fr ict ion.  It is  thus 
possible t o  reduce greatly the drag of a i rcraf t  'by so constructing them 
that  extensive regions of 1- flow can exist.  One method is t o  
desi- shapes that are favorable for  long lengths of laminar flow; 
another is  t o  act directly upon the 1a.minR.r b o u n d q  layer. The f i r s t  
msthod has led t o  the MCA 6-eeries a i r foi l6  (reference 5 ) ;  the second 
which includes various types of suction and blowing i s  s t i l l  in the 
relatively early stages of developmnt (reference 6).  The close connec- 
t ion between a i rcraf t  drag and the type of flow in  the boundary layer 
thus makes it important t o  understand how the change from laminar t o  



turbulent flow occurs. Such an understanding may eventually lead to 
aircraft with considerably lower drag (reference 7). 

The change from laminar to turbulent Plow is known as transition. 
Several. causes of transition are (1) disturbances that originate in the 
outer strean such as those that occur when the free stream is turbulent, 
(2 ) disturbances introduced into the laminar boundasy layer itself, for 
example, by surface roughness, a d  (3) a rising static pressure in the 
direction of flow that causes a oomplete reversal of the flow and eddies 
n e w  the surface. Hi~~torically the subject first attracted attention 
because an apparently smooth flow would mddedly become turbulent. 

It is interesting to note that the problem of the stability of 
laminar flow drew the attention of investigators years before modern 
aeronautics a d  boundary-layer theory began. The first recorded 
suggestion that the HavierStokes equation of motion might have unstable 
solutions was made by Stokes in 1843 (reference 8). Twenty-f ive years 
later Helmholtz (see reference ll of reference 1) showed that, in a 
nonviscous fluid, surfaces across which mere was a discontinuity in 
the velocity were inherently unstable. Rayleigh (reference 9) was the 
first to really attack the problem. He published his first paper on 
the sub3ect of stability in 1879 and his last on the same subject 
thirty-f live years later (references 10 and 11). Rayleigh investigated 
the stability of various hypothetical velocity distributions with the 
effect of viscosity. on the disturbed motion neglected. 

~n 1883, ~epolds (see reference 48 of reference 1) published the 
results of 'his classic experiments on the t~ansition from laminar to 
turbulent flaw in pipes. Later, in 1895 (reference 12), he investigated 
the transition problem theoretically by seeking to determine the smallest 
Reynolds nuDliber above which an arbitrasy disturbance would increase 
initially. The work was criticized by Sharpe in 1905 (see reference 46 
of reference 1) and by Lorentz (see reference 29 of reference 1) in 1907 . 
on the pound that the critical Reynolds number depended strongly on 
the form of the disturbance. Between 1907 and 1909, Orr (reference 13) 
improved Reyno1ds"thod by using the calculus of variations to find 
the largest Reynolds nunber below which all disturbances decrease. Orrts 
work, however, has in turn been criticized because it allows all 
disturbances and, therefore, gives critical Reynolds numbers that are 
m c h  mailer than those observed for quiet flows. 

In 1908,.a short time after Orrts work was published, Sommerfeld 
(see reference 26 of reference 1) independently set up the problem for 
the two-dimensional flow in which the velocity is parallel to the w a l l  
and is dependent only on the distance from the wall. Somrfeldts 
and Grrus investigations formed the basis of the work leading up to the 
present theory of boundary-layer instability. During the following 
years, Von Mises (see references 27 and 28 of reference 1) arnd Hopf 
(reference 14), by making use of the work of Orr and Somerfeld, found 



plane Couette flow, the flow which exists when two parallel planes 
separated by fluid slide past one another, to be stable for all tlne 
Reynolds numbers that were investigated. For the plane Couette flow 
the velocity varies directly with the distance from the wall. 

Taylor, in 1923, (reference 15) investigated the Couette motion 
between rotating cylinders theoretically asd checked the results 
experimentally. In contrgst to most of the work on plane flows where 
the disturbances were assumed to be two dimensional, Taylor" theory 
was based on three-dimensional. disturbances. For a number of years 
Ta.ylorts work was a high-water mark in the understanding of the break- 
down of laminar flow. 

Ln 1924, Heisenberg (reference 16) successfully studied the stability 
of a variable continuous vorticity distribution by making use of the 
work of Orr and Sommerfeld. As an example he showed that plane 
Pofseuille flow, the flow under a uniform pressure gradient between 
fixed parallel planes, is unstable for sufficiently large Reynolds 
numbers. This flow has a parabolic velocity distribution. Eeisenberg8s 
theory was not generally accepted, perhaps, because his computations 
were incomplete and rough. 

The first to investigate the stability of the boundary layer was 
Tletjens (reference 17) in 1925. He replaced the velocity profile by 
line segments and applied Rayleights theory, taking account of viscosity 
near the wall. Tietjens did not obtain a critical Reynolds nwnber for 
the flat plate. The use of line segments to replace a velocity profile 
had already been shown to be invalid by Heisenberg. The next to investigate 
the stability of the boundary layer were Tollmien in 1929 (reference 18) 
and Schlichting in 1932 (reference 19). Both used what was essentially 
Heisenberg" theory and during the 1930% developed it sufficiently for 
use as a research tool (references 20 and 21). Ln 1945, Lin published 
hfs comprehensive work on the stability of two-dimensional pmallel flows, 
(see reference 2.) This work made the theory more rigorous mathematically, 
provided a rapid approximate means of determining the minimum critical 
Reynolds number of a flow, and Fmproved the physical picture of the 
instability. Ln addition it provided stability limits for the flow over 
a flat plate that agree better with experimental results than do the 
calculations of Tollmien and Schlichting. 

The following is an outline of Lints stability theory (reference 2 ) . 
The purpose of the theory is to determine whether a particulajr flow is 
unstable for sufficiently large Reynolds numbers, to determine the 
m i n i m  critical Reynolds number at yhich instability begins, and to 
understand the physical mechanim of the growth or decay of disturbances, 
The basic assumptions of the theory are that (1) the disturbances a r e  
small, (2) two4imensional disturbances alone are considered, (3) the 
flow is essentially parallel to one direction (thus, the boundary-layer 
approximation that the derivative parallel to the surface of a y  
quantity connected with the main flow is negligible compared with the 



derivative norma,l to the surface of the same quantity is applicable), 
(4) the velocfty distribution normal to the surface is everywhere the 
sane, md (5) the boundary conditions are everywhere the sane. 

The development of the theory is begun by writing the Navier-Stokes 
equation of motion for two-dimensional incompressible flow in a f o m  
that uses the vorticity I: and thereby eliminates the pressure. The 
equation of motion then appears as: 

where x is the coordinate along the surface, y is the coordinate 
L 

normal to the surface, 

is the velocity parallel to the kurface, 

is the velocity normal to the surface, 

and V is the kinemtic viscosity. 

The stream function $ is assumed to be the sum of the stream 
function of the steady flow 3 and of the stream function of the 
disturbance . The introduction of the stream functions makes both 
thb mean asd the disturbance velocities satisfy the equation of 
continuity. Thus, let 

and substitute into equation (1). Then, because the disturbance is 
1, tern quadratic in q t  and its derivatives can be neglected. 

Equation (1) then becows 



The flow is now assumed to be essentially parallel to the x-axis, thus 
making the boundary-layer approximations applicable. Therefore, it is 
permissible to neglect the x-derivative of any quantity connected with 
the main flow compared with the y-derivative of the same quantity. For 
the disturbance, however, the quantities 9: and q8,, which m e  the 
disturbance velocities u ' m d  -vt along I he x- and y-axes, respec%ivelY", 
are of the sams order of magnitude. After making the boundary-layer 
approximation, equation (2) becomes 

The approximation that the velocity distribution normal to the w a l l  is 
independent of x now makes it permissible to use the local values at a 

given value of x for = 3 = Sy a22 3% _ -  and for - - Equation (3) 
as ap ay3' 

then becomes * t 

A main flow with an arbitrary distribution of velocity G(y) I s  now 
assumed to exist between two pmallel planes y = yl and y = y2. Then 
the disturbance stream function qqx, y,t ) must be made to satisfy 
both equation (4) and the conditions ut = v' = 0 at y = yl and y = y2 

where uP and vu m e  the disturbance velocities. The disturbance 
stream function is now assumed to be given by 

where $ disturbance amplitude function 

a = 2n 

Wave length of disturbance 

x coordinate along the plate 

t time 

and c is complex; the real part of c, that is, cry is the velocity 
with which the disturbance moves downstream; and the imaginary part of 
c, that is, ci, determines whether the disturbance dies out (ci < o ) ,  
does not change w-ith t- (ci = 0), or increases in amplitude with 

time (ci > 0) 



After d l  the velocities have been referred to a reference velocity U 
and all lengths, to a ref erence length 1, a Reynolds number R '= 

has been defined, and the equation for \J/ has been used, equation (4) 
becolnes the linearized differential equation for 9(y) which is known 
as the OrrSomrf el& equation. 

Equation (5 ) is a homogeneous , linear, ordinary differential 
equation of the fourth order. Its solution is 

where the tPs s e  particular solutions and the C% s e  constants of 
integration. 

must 

that 

The four boundary conditims which are 
be satisfied are 

pl(Y1) = 0 

$(y2) = 0 

is, vv = 0 at y = yl and y = y2, 

independent and which - 



When these boundary conditions are used with equation (6 ) ,  the result  
is  the determinant 

which involves the ~ o l u t i o n  of equation ( 5 ) .  After the functions 

$, g3, and $4 which contain the paramstera a, R, and c have 

been determined with sufficient precision, which is a very involved 
process, the determinant (8) i s  written out and %he rea l  and imaginary 
parts equated t o  zero. The result  is two rea l  equations inyolving the 
parameters a, R, cr, and ci. Lf c i  is made zero and cr i s  
eliminated between the two rea l  equations, the result  i s  a relation 
between a and R. This relation between a, a quantity inversely 
proportional t o  the wave length of the disturbance, and R, the  Reynolds 
number, defines the neutral curve along which the disturbances are 
neither ed nor amplified. The curve divides the a,R-plane into 
a stable region and an unstable region. The exaalAe8-t value of the 
Reynolds number for  which amplification can occur i s  called the m i n i m  
c r i t i ca l  Reynolds number. Above the minimum c r i t i ca l  Reynolds nurnber, 
disturbances in the correct frequency range are amplified and, i f  they 
grow large enough, cause transition t o  turbulent flow. Lin has found 
that  a l l  velocity distributions of the symmetrical type and of the 
boundary-layer type are unstable fo r  sufficigntly large, but f in i te ,  
Reynolds nunibers. B his  paper, Lin has given a useful approximate rule 



for the determination of the minimum critical Reynolds number; the 
rule is 

where 

and where c is equd to the value of ii for which 

Us is the velocity at the edge of the boundary layer, 6 is the thick- 
ness of the bound- layer, and subscript 1 denotes "at surface." The 
velocities are referred to the velocity at the boundary-layer edge and - 
the lengths, to the distance from the wall to where u = 1. 

The physical interpretation of the instability process (references 2 
and 22) is that the viscosity shifts the phase between the x- and 
y-oqonents of the disturbance in such a way that energy is drawn from 
the mab flow and builds up the amplitude of the disturbance, 

The validity of the asswnption that for a parallel flow it is 
necessary to investigate only two-dimensional, disturbances was confirmed 
by Squire (reference 23). In 1933 he showed that a two-dimensional 
disturbance produces instability at a malLer Repolds number than a 
corresponding three-dimensional disturbance. 

Ln 1941, Pretsch (reference 24) showed that the relations between 
the parameters a> R, and c are the same whether both the m a n  and 
the disturbance velocities in the boundary layer are functions of x and 
y or of y done as assumed in the development of the theory. This 
important result means that the stability of the boundary la$er at any 
value of x is dependent only on the local velocity distribution. The 
present theory can therefore be used when both the velocity distribution 
in the boundary layer and its thickness change along the surface. 



It should be kept in mind %hat the theory is a smal14.iatmbance 
theory. Therefore, conclusionu drawn from it should not be applied to 
cases where finite di st-wbmces are introduced into the bountlwy l&y-er . 
such disturbances we of ten introduced by roughness particles, which 
although small, may easily produce distiu;bances much greater than the 
vanishingly small disturbances allowed by the theory. It should also 
be nokd that the theory merely predicts when infinitesimal disturbances 
will begin to grow. The disturbance cannot be traced by the th.cory to 
the stage where the disturbance has grown large enough to produc:e 
turbulent flow. The growth of the infinitesimal disturbance takes t2n.e; 
and, therefore, when tramsition develops fron the growth of ini'initesiml 
dist-ibances, the transition point lies scme distance domstrem of the 
instability point. The magnitude of the distance depends on thi; ?ate of 
amplification of the disturbance and therefore on the flo-J con~it-ions. 

Because of the mny assumptions amd because of the c:om~lexity of 
the aathematical development, the thebry and its pred.ictions were not 
taken seriously by many until fairly recently. In 1'343 the results of 
the outstanding ex-perimatal wcrk of Schubauer and Skranstad appeared 
(reference 25 ) . The results showed that the laminar bomdary-layer 
oscillations predicted by the stability theory of Tollmien and Schlichting 
not only were present but that the theory correctly predicted their 
characteristics. Figure 2 shows the neutral curve calculated by Lin, 
probably the most accurate calculation to date, and the experimental 
points obtained by Schubauer and Skrwtad for flow over a flat plate. 
The circle spibols should lie on branch I; the cross symbols, on branch 11, 

Ih Germany during the war, the theory was used to calculate stability 
limits for flows in which there were small velocities through the surface, 
For these suction or blowing flows, the same stability theory was used 
as for impemious walls. This use is permissible because both the 
equations describing the motion and the boundary conditions that have to 
be satisfied by the disturbances are unchanged by -11 flows through 
the W&U. The stability limits were computed for four exact solutions 
of the Prandtl boundary-layer equations. A boundary-layer velocity 
distribution must be known precisely before its stability limits san 
be determined accurately. The following results were taken from a 
paper by Ulrich (reference 26). The first case is the "Asymptotic Case, " 
It applies to flow over a flat plate with a constant flow velocity into 
the plate and concerns only the region that is so far from the leading 
edge that no boUIId&rj-layer characteristic changes with a further increase 
in distance from the leading edge. For this case, the surface friction 
coefficient is independent of the viscosity and, for equal boundary-layer 
Reynolds numbers, is 1-73 times greater than the surface friction on the 

UO6* plate without suction. The minimum critical Reynolds number - 
v '  

where 6* is thf: &isplacement thickness, is given by Pretsch as 55,200 
(reference 27 )  in contrast to 575 obtained by Schlichting for the flat 



pla te  without suction. Other Gemnan investigators have obtained the  
value 70,000 f o r  Rg* (reference 28) instead of 55,200 so t h a t  there 
seems t o  be some differences causedby d i f fe rent  calculating procedures. 
Ln order t o  keep the  boundary-layer Reynolds number always l e s s  than the 
minimum c r i t i c a l  Remolds number, and thus t o  keep the  boundary layer  

s table ,  making the suction r a t i o  - 5 ,  1 . 8 ' ~  1 0 3  is suff ic ient  when 
uo 

55,200 i s  used f o r  the  value of %*cr; vo is  the  suction veloci ty  and 

is negative when i t s  direct ion is  in to  the  p la te  and Uo i s  the  free- 
stream velocity.  

T.e second case i s  the  "Constant Suction" f law.  Here also, there  
is  a constant suction veloci ty  through the  surface of the  plate,  but 
the  en t i r e  p la te  i s  t rea ted  and the veloci ty  prof i les  a re  not similar t o  
one another. Near the  leading edge of' t he  plate ,  t he  p ro f i l e  is the 
Blasius flat-plate prof i le  (reference 29); but as the  distance from the  
leading edge increases, t he  p ro f i l e  becomes more convex and f i n a l l y  
approaches the  asymptotic prof i le  at large distances f romthe  leading 

-To edge. When the suct5on r a t i o  - > 1.2 X lo4, the  flow is s tab le  
uo 

over the  en t i r e  plate .  This suction ra t io ,  1.2 X lo4 i s  about seven 
times the  r a t i o  necessary f o r  s t a b i l i t y  with the  a s p p t o t i c  profi le .  
The greater suction i s  necessary because the  veloci ty  prof i les  near the  
leading edge of the  p la te  axe not as s tab le  as the  more convex asymptotic 
profi le .  Note, however, t h a t  the  required suction r a t i o  is still very 
small.. The flow veloci ty  through the  p la te  is about 0.001 of the  free- 
stream velocity. 

Another case f o r  which the s t a b i l i t y  computations based on exact 
solutions of the  boundary-layer equations were made is the  one in which 
the  suction veloci ty  var ies  inversely as fi from the  leading edge of 
a f l a t  plate .  The r e s u l t s  a r e  shown i n  f igure  3. For t h i s  flow all 
the  velocity p ro f i l e s  a re  similar t o  one another and change t h e i r  form 
only when the  suction coeff ic ient  CQ is chmged. The suction 
coeff ic ient  i s  defined by 

where 

2 

b 

Q 

length of p la te  

width of p la te  

free-stream veloci ty  

t o t a l  suction quantity 



The value 575 f o r  RE* corresponds t o  the  value 1.1 x 105 f o r  R,; 
4 the value 10 f o r  R *  correspondsto the  value 8.3 x 107 f o r  sJ 

an Increase in % of about 750 times. Figure 3 c lear ly  shows tha t  

sucking, posi t ive CQ, increases the  s t a b i l i t y  of the  flow over t h a t  

on an impervious f l a t  p la te  and t h a t  blming,  negative CQ, decreases 
the  s t ab i l i t y .  In general, suction increases the  s t a b i l i t y  of a boundary 
layer  both because the  boundary layer  is  kept t h i n  a d  because the 
velocity prof i le  i s  made more convex. 

The fourth case f o r  which s t a b i l i t y  computations based on exact 
solutions of the  boundary-layer equation ex i s t  is t h a t  f o r  the  flow near 
the  stagnation point of a two-dimensional body which has a constant 
suction or blowing veloci ty  through i t s  surface. The region considered 
is  t h a t  region where the veloci ty  at the  edge of t h e  boundary layer  
var ies  d i r ec t ly  a s  the  distance from the  s tagxi t ion point. The r e s u l t s  
a re  shown in f igure  4. In t h i s  region U = ulx, where U i s  the 
veloci ty  at  the  edge of the  boun* layer,  u l  is a constant, and x i s  
the  distance from the  stagnation point measured along the  surface. Here 
again, all the  veloci ty  p ro f i l e s  a re  similar t o  one another and change i n  
shape only when Co, the  suction coefficient,  is changed. The boundary- 

layer  thickness is independent of x. It should be noticed that the flow 
near the stagnation point has a f a l l i n g  pressure in the  direct ion of the  
flow; the  previously mentioned flows were all f o r  zero pressure gradient. 
The increased s t a b i l i t y  caused by the  f a l l i n g  pressure i s  shown i n  
f igure 4. A n  amount of blowing corresponding t o  Co < -3, where 

-77 

Co = A, i s  necessary before s t a b i l i t y  is reduced f r o m t h a t  f o r  no 
I q F  

flow through the  surface t o  t h a t  f o r  the  impervious f l a t  p la te .  When 
there i s  no flow through the  surface, t he  boundmy layer  near a stagna- 
t i o n  point has a c r i t i c a l  Reynolds number of 12,300 in contrast  t o  the  
value of 575 f o r  the  f l a t  plate;  the increase of about 20 times i s  
caused by the  f a l l i n g  pressure along the  surface. 

Ln f igure 5 i s  shown the  theore t ica l ly  predicted drag reduction f o r  
two t m e s  of flow over f l a t  p la tes  with just  enough suction t o  maintain 
s t ab i l i t y ;  one is the "Constant Suction" case and the  other i s  the case 
f o r  which the  suction velocity is  inversely proportional t o  6. The 
drag reduction i s  a large percentage of the  drag of a p la te  wi 'h  a 8 completely turbulent boundary layer  a d ,  f o r  R, l e s s  than 10 , a 
constant suction veloci ty  is  be t t e r  than a suction velocity inversely 
proportional t o  6. 

The skin-friction values upon which the comparison in f igure  5 
is  based a re  obtained from the  veloci ty  derivative a t  the  surface. The 
sucked-in f l u i d  remains a t  r e s t  i n  the  p la te  and the power required t o  
suck the  f l u i d  in to  the p la te  is  not considered. Lf, however, it i s  



assumed that the sucked-in fluid is ejected with free-streaxn total heaci 
mil that, in orde? to do this, total head is added to the fluid with 
efficiency of unity, then the drag reduction shown is the true drag 
reduction if the total-head loss through the surface is equal to the 
free-stream d.ynamic pressure. If the total-head loss through the sl~ri'aca 
is greater than the free-strem dynamic pressure, then the drag red-action 
 ill be less than S~O~T* pad vice versa, Because only small quantities 
of suction air are requirad to maintain laminar flow, the percentage b a g  
r.eci~:*ti,cr changes fairly slowly with a change of total-head loss through 
tht: 131zte. 

These results are the sum total of the known stability computations 
based on exact solutions of t.ile Ict;aina,r boundary-layer equations. The 
only case directly applicable to flow about an airfoil is the stagnation- 
point fipw. 

Before the stability boundaries for an airfoil can be computed, the 
velocity r',.-isi;r.ibutions th3"ough. the bounda~y layer m s t  be known. IWin$ 
the war, Sclllichting developed an approximate method for the computation 
of the l r n i ~ ~  boundary layer over an arbitrary two-dimensional body 
with an arbitrary distribution of suction along the surface (reference 30). 
The method is related to the Pohlhausen method which treats flows without 
suction. Schlichtingfs method uses the boundary-layer momentum equation 
for thc;; case there is flow through the surface and assmes a one- 
paran~tsr I'm~Lly of curves for the boundary-layer velocity distributions, 
Tce parmeter for the velocity distribution depends on the pressure 
diatributSon over the body and on the suction flow through the surface. 

The critical Reynolds number of a velocity profile is sensitive to 
I t s  shape. Therefore, the accuracy of an approximate method, such as 
SckGichi,inggs, when the results are to be used for stability computations, 
can be tested only by coqaring the critical Reynolds numbers with those 
Prcm en accurate computation of the boundary layer, 

?Tie foregoing discussion -ms restricted to incompressible flow. 
?lie p~o'olem of the stability of the laminar boundary layer in a com- 
'.-fa+ li..,,,ible O C gas has, however, not been neglected. The increase in flight 
speeds has given the problem practical, a& well as purely scientific, 
impori;mce. .. 

'The stability theory for conprt.sssibie flow has been developed by 
Lees md Lj.n (references 31 and 32 ) to about the same state as the theory 
f o r  inc:ou~pressible flow. The deveiopment of the theory for compressible 
f l o w  is similar to that for incompressible flow. Ln the theory for 
co~~pl.essible flow, nowe~rer, in ccjntrast to the theory for incompressible 
flaw, t.Ilt? heait. anergy is 'important and the physical properties of the gas 
are not f iued. Nemri;heless, the m i n  physical mechanism is not changed. 
Tlzt? sta-~iiity cf a v.eloc:lty distribution depends on the distribution of 
the prociuct cf density and vorticity and on the effect of the viscous 



forces but not d i rec t ly  on the heat condustivity. Tkie e,qrsssicn 

f o r  compres$file flow takes the place of the expression hp) as as - . -  
incompressible flow a s  ul important fac tor  i n  d e t e m i ~ i n g  the s t a b i l i t y .  
It is  notsd, ?mwever, t ha t  a s  yet f o r  compressible f l0 . r~  there is  no 
rigorous proof t h a t  the  two-dimensional d is tubances  upon which the 
theory i s  based are  more unstable than three-dinensiond. disturbances. 

The main r e s u l t s  of Leest and Linst work can be s m e d  up i n  the  
f ollcwing statements : 

(1) When the free--stream veloci ty  i s  subsonic, every ldriar 
bounday-layer flow i s  unstable a t  suff ic ient ly  large Remolds numbers. 

(2 )  A t  a l l  free-stream Mach numbers the flow i s  mstable a t  

suf f ic ien t ly  large Reynolds numbers i f  the y derivative of p - is  
1 

zero f o r  a value of u > 1 - - 
;ss 

%' 
(3)  An approximate expresnion f o r  the minimum c r i t i c a l  Reynolds 

number i s  obtained, similar t o  the expression dbtain60 by Ein Icy 
incompressible flow. 

( 4 )  A s  sho-m i n  f igure  6 the s tab i . l i ty  of t t -~e  l~aminar boundssy 
layer  on an insulated surface decreases with increase i n  Mach number. 
A t  M, = 1, Rx i s  l e s s  than half i t a  value a t  M, = 0. 

crmin 

( 5 )  A s  shown i n  f igure  7, the  r a t i o  of the  surface temperature t o  
the free-stream temperature has a large ef fec t  on the boundary-layer 
s t ab i l i t y .  Thus, at a Mach nwxber of 0.7 the value of the boundary- 
'layer Repolds number RQ, based on the mo~dntwn,thickness as  the 

length, a t  which the  boundary layer  T i r s t  be(-ones unatable increases 
about 40 times when the surface temperature i s  changed ?ram 110 percent 
of the free-stream temperature, the  stagpation--leriperature r a t i o  f o r  a 
Mach number of 0.7, t o  70 percent of the free-stream temperature, On 
the other hand, an increase of surface temperacTm* frcn 110 percent of 
the free-stream temperature tb 125 percent of the i'r.;.-.+tream temperature 
halves the Reynolds number a t  which the flow becomes -a ; ta~ie .  

(6)  A t  supersonic free-etream vel.ocities, the bouncxary layer  can 
be made s table  a t  all Reynolds numbers by maintaining the s:urface 
temperature at a s m a l l  enough f rac t ion  of the free-stream temperatwe. 
For Mo > 3 a t  50,000 f e e t  a l t i t ude  m d  f o r  Mo > 2 a t  100,c7CO f e e t  

a l t i tude ,  the radiat ion of heat fram a surface cm make the r e t t o  of 
the surface temperstme t o  the free-stream tem$erature small enough t o  
enswe a s tab le  boun3arg layer  a t  a l l  Reynolds numbers, i n  the absence 
of an actvers5 presmr gradient. 



The stability theories for both the incompressible and the compressible 
lamine boundary layer, which have just been discussed, were developed far 
flows in which the effects of surface curvature were negligible. Because 
most aircraft components are cumred, it was not clear whether the stability 
theory for flat surfaces was directly applicable. The effect of curvature 
on the stability of the incompressible boundary layer was investigated 
theoretically by Girtler about 1940 (references 33 to 35) and experimentally 
by Liepmann (references 36 and 37) in the following years. 

Grtl6r found that the two-dimensional wavelike disturbances were 
hardly affected by w a l l  curvature. When, however, the stability of the 
boundary layer on curved walls was considered by investigating the behavior 
of vortices with their axis parallel to the main flow, analogous to the 
Taylor vortices in flow between concentric rotating cylinders, an 
instability caused by these vortices was found to be possible only on 
concave walls. The effect was so large that the effect of the usual two- 
dimensional. disturbances was completely overshadowed. Gbrtler" theory 
is, like the two-dimensional disturbance theory, a small-disturbance 
theory that assumes the main boundary-layer flow to be the sane over the 
entire surface. Also, the boundary-layer thichess is assumed to be 
small cam;?ared with the radius r of the wall. It was found, as shown 

in figure 8, that the wall curvature and the Remolds number occur in 

the combination Re and that instability occurs above a value of Re 

that depends on af3, where a is inswrsely proportional to the wave 
length and 8 is the boundary-layer momentum thickness. The neutral 
curve shown is for the Blasius velocity distribution. Gb;rtler found that 
the instability region was only slightly affected by the shape of the 
velocity distribution through the boundaq layer when the momentum 
thickness 8 was used as the measure of the boundary-layer thickness. 

In agreement with Gbrtlergs theoretical work, Liepmann found experi- 

msntally that Rg was the parameter defining the stability of the 

boundary layer on concave surfaces. Liepma.nn concluded that transition 

can be expected when the value of Re & reaches about 9.0. It may be 
observed that fitler found the minimum critical value of Re to 

be 0.58. It should be noted, however, that Liepmannqs criterion concerns 
transition, whereas G&tlerqs concerns the stability'of the boundary 
layer. Liepmann also found, in agreement with Wrtlerqs work, that in 
contrast to flow over convex or plane surfaces, a prassure gradient 
along the wall had a negligible effect on the stability of the flow over 
concave walls. Thus, on convex and plane surfaces instability of the 
boundary layer is caused by the Tollmien-Schlichting waves; whereas the 
instability on concave walls is caused by three-dimensional disturbances. 
En figure 9 is shown the dependence of Reynolds number for transition Retr 
on the effective curvature 8/r. The value of Retr is practically 



independent of c m t u r e  f o r  convex walls and i s  about equal t o  the value 
f o r  the  f l a t  plate .  The value of R 

Qtr 
f o r  concave walls, however, 

decreases rapidly a s  the  effect ive curvature increases. The data in 
f igure 10  show t h a t  the  experimentally determined s t a b i l i t y  limits f o r  
the  boundary layer  on a convex wall and the  calculated s t a b i l i t y  limits 
f o r  the  boundaq layer  on a f la t  p la te  a re  about the same except at 
the  lowest Repolds numbers. The upright t r iangles  should l i e  on the  
upper branch of the  neut ra l  curve; the  inverted triangles,  on the lower 
branch. The neutral  curve f o r  the  experimental points fo r  r = 20 f e e t  

and a l so  the  curve f o r  the  points f o r  r = 2r$ f ee t ,  not shown i n  the fig- 

ure, have a s l igh t ly  higher minimum c r i t i c a l  Remolds number than the 
neutral  curve f o r  the f l a t  plate .  The reason f o r  the  difference i s  not 
def in i te ly  known. 

This paper has attempted t o  present a short  h is tory  of the  theory of 
the  s t a b i l i t y  of laminar flow, an out l ine of the  theory f o r  incompressible 
plane flow, a summary of the  applications of the  theory i n  combination 
with suction flows, a re&& of the  r e s u l t s  of the  theory f o r  compressible 
plane flow, and a summasy of the theoretical. and experimental. r e s u l t s  f o r  
curved flows. The s t a b i l i t y  theory based on inf ini tesimal  disturbaslces 
may be regarded a s  expkrimentally ver i f ied  f o r  incompressi'ple flow over 
plane surfaces asd, probably, a l so  f o r  c m e d  surfaces. Ekqerimental work 
remains t o  be done i n  verifying the  s t a b i l i t y  theory f o r  compressible 
flows. An extension of the  s t a b i l i t y  theory t o  the  realm of f i n i t e  
disturbances f o r  the  purpose of calculating t r ans i t ion  points i s  
desirable. 
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Figure 1. - Flat-plate drag coefficients for turbulent and laminar flow, 
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Figure 2. - Curve of neutral stability for Blasius profile, 
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Figure 3.- Flaw over a flat plate to -&) . 
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Figure 4. - Flow near a stagnation point. 



1 Figure 5.- Relative drag reduction for Vo = Constant and V, a - E" 
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Figure 6. - Critical Reynolds number against Mach number. 
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Figure 7. - Critical Reynolds number against surfaci: temperature ratio. 
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Figure 8. - Neutral curve for boundary layer on concave wall. 



Figure 9. - Curvature effect on transition Reynolds number. 
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Figure 10. - Stability data for convex plate (r  = 20 f t )  . P , is the frequency 

of the oscillation. 




