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STABILITY OF THE LAMINAR BOUNDARY LAYER
By Neal Tetervin

Langley Asronautical Iaboratory

This paper treats the stability theory for the laminsr boundary
layer and its applications. First, a short history of the theory similar
to that in a paper by Pillow (reference 1), which contains a comprehensive
1ist of references, is given; then, an outline of the theory for :
incompressible flow (reference 2) is presented. This is followed by a
summary of the recent applications of the theory for incompressible flow.
Finally, the results of investigations concerming the effect of com—
presgibllity and the effect of curvature on the stability of the laminar
boundary layer is summarized.

In Prandtl®s paper of 1904 (reference 3), which founded boundary—
layer theory, the region of flow around a body was divided into two parts.
One region includes almost the entire flow field and has the property
that the viscosity of the fluid in this reglon has no effect on its
motion. The other region is a narrow one next to the body where the
fluid velocity rises rapidly from zero at the surface to a value which
then changes slowly or not at all with further increase in distance from
the surface. The narrow reglon in which the velocity changes so rapidly
that the viscous forces are not negligible even in fluids of small
viscosity is called the boundary layer. To this boundary layer can be
traced the origin of the differences between the behavior of bodies in
real and in nonviscous fluids.

Boundary layers are generally classified as either laminar or
turbulent. ILaminar flow is defined as one in which almost all of the
interchange of momentum between adjacent layers of flowing fluid takes
place by molecular diffusion (reference 4). At the stagnation point of
a body and usually for some distance downstream, the flow in the boundary
layer is laminar. Far enough from the stagnation point, however, the
flow in the boundary layer changes from the smooth laminar flow to a
violently fluctuating one — the turbulent flow. As shown in figure 1,
the turbulent flow is associated with a different manner of increase of
the average velocity with distance from the surface and with a higher
gkin friction. The skin friction for turbulent flow is usually several
times the skin friction for laminsr flow.

In normal flight attitudes the profile drag of wings and fuselages
is almost directly proportional to their skin friction. It is thus
possible to reduce greatly the drag of aircraft by so comstructing them
that extensive regions of laminar flow can exist. One method is to
design shapes that are favorable for long lengths of laminar flow;
another is to act directly upon the laminar boundary layer. The first

method has led to the NACA 6—series airfoils (reference 5); the second
which includes various types of suction and blowing is still in the
relatively early stages of development (reference 6). The close connec—
tion between aircraft drag and the type of flow in the boundary layer
thus makes it important to understand how the change from laminar to



" turbulent flow occurs. Such an understanding may eventually lead to
aircraft with considerably lower drag (reference T).

The change from laminar to turbulent flow is known as transition.
Several causes of transition are (1) disturbances that originate in the
outer stream such as those that occur when the free stream is turbulent,
(2) disturbances introduced into the laminar boundary layer itself, For
example, by surface roughness, and (3) a rising static pressure in the
direction of flow that causes a complete reversal of the flow and eddies
near the surface. Historically the subJject first attracted attention
because an apparently smooth flow would suddenly become turbulent.

It is interesting to note that the problem of the stabllity of
laminar flow drew the attention of investligators years before modern
aercnautics and boundary—layer theory began. The first recorded
suggestion that the Navier-Stokes equation of motion might have unstable
gsolutions was made by Stokes in 1843 (reference 8). Twenty—five years
later Helmholtz (see reference 11 of reference 1) showed that, in a
nonviscous fluid, surfaces across which shere was & discontinuity in
the velocity were inherently unstable. Rayleigh (reference 9) was the
Tirst to really attack the problem. He published his first paper on
the subject of stability in 1879 and his last on thé same subject
thirty-five years later (references 10 and 11). Rayleigh investigated
the stability of various hypothetical velocity distributions with the
effect of viscosity on the disturbed motion neglected.

In 1883, Reynolds (see reference 48 of reference 1) published the
resulte of his classic experiments on the transition from laminar to
turbulent flow in pipes. Iater, in 1895 (reference 12), he investigated
the transition problem theoretically by seeking to determine the smallest
Reynolds number sbove which an arbitrary disturbance would increase
initially. The work was criticized by Sharpe in 1905 (see reference 46
of reference 1) and by Lorentz (see reference 29 of reference 1) in 1907
on the ground that the critical Reynolds number depended strongly on
the form of the disturbance. Between 1907 and 1909, Orr (reference 13)
improved Reynolds?! method by using the calculus of variations to find
the largest Reynolds number below which all disturbances decrease. Orrts
work, however, has in turn been criticized because it allows all
disturbances and, therefore, gives critical Reynolds numbers that are
much smaller than those observed for quiset flows.

In 1908, .a short time after Orr's work was published, Sommerfeld

(see reference 26 of reference 1) independently set up the problem for
the two-dimensional flow in which the wvelocity 1s parallel to the wall
and is dependent only on the distance from the wall. Sommerfeldls

and Orr's investigations formed the basls of the work leading up to the
present theory of boundary-layer instebility. During the following
years, Von Mises (see references 27 and 28 of reference 1) and Hopf
(reference 14), by meking use of the work of Orr and Sommerfeld, found



plane Couette flow, the flow which exists when two parallel planes
gseparated by fluid slide past one another, to be stable for all the
Reynolds numbers that were investigated. For the plane Couette flow
the velocity varies directly with the distance from the wall.

Taylor, in 1923, (reference 15) investigated the Couette motion
between rotating cylinders theoretically and checked the results
experiméntally. In contrast to most of the work on plane flows where
the disturbances were assumed to be two dimensional, Taylor!s theory
was based on three—dimensional disturbances. For a number of years
Taylor's work waeg a high—water mark in the understanding of the break—
down of laminar flow.

In 1924, Heisenberg (reference 16) successfully studied the stability
of a variable continuocus vorticity distribution by making use of the
work of Orr and Sommerfeld. As an example he showed that plane
Poiseuille flow, the flow under a uniform pressure gradient between
fixed parallel planes, is unstable for sufficiently large Reynolds
. numbers. This flow has a parabolic velocity distribution. Heisenbergts
- theory was not generally accepted, perhaps, because his computations
were incomplete and rough.

The first to investigate the stablility of the boundary laysr was
Tietjens (reference 17) in 1925. He replaced the velocity profile by
line segments and applied Rayleigh's theory, taking account of viscosity
near the wall. TietJjens did not obtain a critical Reynolds number for
the flat plate. The use of line segments to replace a velocity profile
had already been shown to be invalid by Heisenberg. The next to investigate
the stability of the boundary layer were Tollmien in 1929 (reference 18)
and Schlichting in 1932 (reference 19). Both uged what was essentially
Heisenberg's theory and during the 1930%s developed it sufficiently for
use as a research tool (references 20 and 21). In 1945, Lin published
his comprehensive work on the stability of two—dimensional parallel flows.
(See reference 2.) This work made the theory more rigorous mathematically,
provided a rapid approximate means of determining the minimum critical
Reynolds number of a flow, and improved the physical picture of the
instability. In addition it provided stability limits for the flow over
a flat plate that agree better with experimental results than do the
calculations of Tollmien and Schlichting.

The following is an outline of Lin's stability theory (reference 2).
The purpose of the theory is to determine whether a particular flow is
unstable for sufficiently large Reynolds numbers, to determine the
minimum critical Reynolds number at which instability begins, and to
understand the physical mechanism of the growth or decay of dlsturbances.
The basic assumptions of the theory are that (1) the disturbances are
small, (2) two—dimensional disturbances alone are considered, (3) the
flow is essentially parallel to one direction (thus, the boundary—layer
approximation that the derivative parallel to the surface of any
quantity connected with the main flow is negligible compared with the



derivative normal to the surface of the same quantity is applicable),
(4) the velocity distribution normal to the surface is everywhere the
same, and (5) the boundary conditions are everywhere the same.

The development of the theory is begun by writing the Navier—Stokes
equation of motion for two—dimensional incompressible flow in a form
that uses the vorticity § and thereby eliminates the pressure. The
equation of motion then appears as: '

Doy + Wy = VY = VA : (1)

vhere x 1is the coordinate along the surface, y is the coordinate
normal to the surface,

oy

U=y =X

Y dy

1s the velocity parallel to the surface,

o
v:—qrx:—é—x—

is the velocity normal to the surface,

and V 1is the kinematic viscosity.

The stream function ¥ is assumed to be the sum of the stream:
function of the steady flow ¥ and of the stream function of the
disturbance V8% The introduction of the stream functions mskes both
the mean and the disturbance velocities satisfy the equation of
continuity. Thus, let

¥ o= 'Q('X,Y) + \V'(X:Y:t)
and substitute into equation (1). Then, because the disturbance is

small, terms quadratic in V¥' and its derivatives can be neglected.
Equation (1) then becomes

sty TyAbty = Tty + VAL, - W'xdyy = VAAY* (2)



The flow is now assumed to be essentially parallel to the x—axis, thus
making the boundary-layer approximations applicable. Therefore, it is
permissible to neglect the x~derivative of any quantity connected with

the main flow compared with the y-derivative of the same quantity. TFor

the disturbance, however, the quantities %, and W’x’ which are the
disturbance velocities u' and —*® along the x— and y-exes, respectively,
are of the same order of magnitude. After making the boundary-layer
approximation, equation (2) becomes

3 .
Bty + Tty = ¥y gy“% = voay! (3)

The approximation that the velocity distribution normal to the wall is
independent of x now makes it permissible to use the local values at a

2. ~
given value of x for U = of _ ¥_ and for od _ O3g. Equation (3)
oy 7 dy3
then becomes - ,
d%u(y) -
Byt + BT = T vty = vyt (1)
v

A main flow with an arbitrary distribution of velocity u(y) is now
agsumed to exist between two parallel planes y =y; and y = Yo. Then
the disturbance stream function ¥*(x,y,t) must be made to satisfy

both equation (4) and the conditions u! =v® = 0 at y=y; and y=7yp

where u' and v! are the disturbance velocities. The disturbance
stream function is now assumed to be given by

ot = g(y)elalz—ct)

where § disturbance amplitude function

' 2n
Qq =
Wave length of disturbance

x coordinate along the plate
t time

and c¢ 1is complex; the real part of c, that is, C,n, is the velocity
with which the disturbance moves downstream; and the imaginary part of
c, that is, c;, determines whether the disturbance dies out (c; < 0),

does not change with time (ci = 0), or increases in amplitude with
time (c; > 0)



After all the wvelocities have been referred to a reference veloc1ty U
and all lengths, to a reference length 1, a Reynolds number R = 0

has been defined, and the equation for V¥? has been used, equation ()
becomes the 11nearized differential equation for ¢(Y) whlch is known
as the Orr-Sommerfeld equation.

a__¢>@__ {aﬁ 3% h>

Equation (5) is a homogoneous, linear, ordinary differential
equation of the fourth order. Its solution is

¢ = C1fy + Coffy + Coffs + Oy, (6)

where the @'s are particular solutions and the C%s are constants of
integration.

The four boundary conditions which are independent of x and which -
migt be satisfied are

-
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¢(Yl)
¢(Y2)

that is, v' =0 at y=y; and y=y,, and
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€

that is, ut* =0 at y = y; and y = yo.
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When these boundary conditions are used wilth equation (6) , the result
is the determinant .

$(1) AGi) A1) AG)

¢1(Y2) A¢2(Y2) ¢3(Y2) ¢1+(;Y2)

ay ay dy dy =0 (8)
] 71 Ty

%) _¢__> (3 (&)
dy dy dy dy
yo oo Yo Vo T2

which involves the solution of equation (5). After the functions @,
@ ¢3,~ end @, which contain the paramsters «, R, and c have

been determined with sufficient precision, which is a very involved
process, the determinant (8) 1s written out and the real and imaginary
parts equated to zero. The result is two real equations inyvolving the

perameters a, R, ¢, and cy. If cy is made zero and c, 1s

eliminated between the two real equations, the result is a relation
between o and R. This relation between o, &a gquantity inversely
proportional to the wave length of the disturbance, and R, +the Reynolds
number, defines the neutral curve along which the disturbances are
nelther damped nor aemplified. The curve divides the a,R—plane into

a stable region and an unstable region. The smallest value of the
Reynolds number for which amplification can occur is called the minimm
critical Reynolds number. Above the minimum critical Reynolds number,
disturbances in the correct frequency range are amplified and, if they
grow large enough, cause transition to turbulent flow. ILin has found
that all velocity distributions of the symmetrical type and of the
boundary-layer type are unstable for sufficiently large, but finite,
Reynolds numbers. In his paper, Lin has given a useful approximate rule
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for the determination of the minimum critical Reynolds number; the

rule is
25(6)

where

and where c¢ 1is equal to the value of U for which

-8 b EQ e

US is the velocity at the edge of the boundary layer, .5 is the thick—

ness of the boundary layer, and subscript 1 denotes "at surface." The
velocities are referred to the velocity at the boundary—layer edge and
the lengths, to the distance from the wall to where u = 1.

The physical interpretation of the instability process (references 2
and 22) is that the viscosity shifts the phase between the x— and
y—components of the disturbance iIn such a way that energy is drawn from
the main flow and builds up the amplitude of the disturbance.

The validity of the assumption that for a parallel flow it is
necessary to invesgtigate only two—dimensional disturbances was confirmed
by Squire (reference 23). In 1933 he showed that a two—dimensional
digturbance produces instability at a smaller Reynolds number than a
corresponding three—dimensional disturbance.

In 1941, Pretsch (reference 24) showed that the relations between
the parameters o, R, and c are the same whether both the mean and
the disturbance velocities in the boundary layer are functions of x and
y or of y alone as assumed in the development of the theory. This
important result means that the stability of the boundary layer at any
value of x 1is dependent only on the local velocity distribution. The
present theory can therefore be used when both the velocity distribution
in the boundary layer and its thickness change along the surface.



It should be kept in mind that ths theory is a small-disturbance
theory. Thersfore, conclusions drawn from it should not be applied to
cases where finite disturbances are infroduced into the boundary layer.
Such disturbances are often introduced by roughness particles, which
although small, may easily produce disturbances much greater than the
vanishingly small disturbances allowed by the theory. It should also
be noted that the theory merely predicts when infinitesimal disturbances
will begin to grow. The disturbance cannot be traced by ths thsory to
the stage where the disturbance haes grown large enough to produce
turbulent flow. The growth of the infinitesimal disturbance takes time;
and, therefore, when transition develops from the growth of infinitesimal
disturbances, the transition point lies scme distance downstream of the
instability point. The magnitude of the distance depends on the rate of
amplification of the disturbance and therefore on the flow conditions.

Because of the many assumptions and because of the complexity of
the mathematical development, the theory and its predictions were not
taken seriously by many until fairly recently. In 1943 the results of
the outstanding experimental work of Schubauer and Skramstad appeared
(reference 25). The results showed that the laminar boundary—layer
oscillations predicted by the stability theory of Tollmien and Schlichting
not only were present but that the theory correctly predicted their
characteristics. Figure 2 shows the neutral curve calculated by Lin,
probably the most accurate calculation to date, and the experimental
points obtained by Schubauer and Skramstad for flow over a flat plate.
The circle symbols should lie on branch I; the cross symbols, on branch IT.

In Germany during the war, the theory was used to calculate stablility
1limits for flows in which there were small velocities through the surface.
For these suction or blowing flows, the same gtablility theory was used
as for impervious walls. This use 18 permissible becauss both the
equations describing the motion and the boundary conditions that have to
be satisfied by the disturbances are unchanged by small flows through
the wall. The steblility limits were computed for four exact solutions
of the Prandtl boundary-layer equations. A boundary-layer velocity
distribution must be known precisely before its stability limits can
be determined accurately. The following results were taken from a
paper by Ulrich (reference 26). The first case is the "Asymptotic Case.”
It applies to flow over a flat plate with a constant flow velocity into
the plate and concerms only the region that is so far from the leading
edge that no boundary-layer characteristic changes with a further increase
in distance from the leading edge. For this case, the surface friction
coefficient is independent of the viscosity and, for equal boundary—layer
Reynolds numbers, is 1.75 times greater than the surface friction on the
Upd*

plate without suction. The minimun critical Reynolds number y

where &* 1s the displacement thickness, is given by Pretsch as 55,200
(reference 27) in contrast to 575 obtained by Schlichting for the flat
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plate without suction. Other German Investigators have obtained the
value 70,000 for Rg* (reference 28) instead of 55,200 so that there
seems to be some differences caused by different calculating procedures.
In order to keep the boundary—layer Reynolds number slways less than the
minimm critical Reynolds number, and thus to keep the boundary layer

v -
stable, making the suction ratio —-69-> 1.8 x 102 is sufficient when
o

55,200 is used for the value of Ra*cri vy

is negative when its direction is into the plate and U, is the free—
gtream velocity.

is the suction velocity and

The second case is the "Constant Suction" flow. Here also, there
is a constant suction velocity through the surface of the plate, but
the entire plate is treated and the velocity profiles are not similar to
one snother. Near the leading edge of the plate, the profile is the
Blagius flat-plate profile (reference 29); but asg the distance from the
leading edge increases, the profile becomes more convex and finally
approacheg the asymptotic profile at large distances from the leading
edge. When the suction ratio ﬁzg >1.2X 10_#, the flow is stable
over the entire plate. This suc%ion ratio, 1.2 X lO‘h is about seven
times the ratio necessary for stebility with the asymptotic profile.
The greater suction is necessary because the velocity profiles near the
leading edge of the plate are not as stable as the more convex asymptotic
profile. Note, however, that the required suction ratio 1s still very
small.. The flow velocity through the plate ig about 0.001 of the free—
gtream velocity.

Another case for which the stability computations based on exact
golutions of the boundary—layer equations were made is the one in which
the suction velocity varies inversely as VX from the leading edge of
a flat plate. The results are shown in figure 3. For this flow all
the velocity profiles are similar to one another and change their form
only when the suction coefficient CQ is changed. The suction
coefficient is defined by

% = _'Z;;
o
where
1 length of plate
b width of plate
U, free—stream velocity

Q total suction quantity
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The value 575 for RS* corresponds to the value 1.1 X 102 for Rys
the value th for RS* corresponds to the value 8.3 X 107 for Ry

an increase in R, of about 750 times. Figure 3 clearly shows that
sucking, positive CQ, increases the stability of the flow over that

on an impervious flat plate and that blowing, negative Cgq, decreases

the gtability. In general, suction increases the stability of a boundary
layer both because the boundary layer is kept thin and because the
velocity profile is made more convex.

The fourth case for which stability computations based on exact
solutions of the boundary—layer equation exigt is that for the flow near
the stagnation point of a two-dimengional body which has a constant
suction or blowing velocity through its surface. The region consldered
is that region where the velocity at the edge of the boundary layer
varies directly as the distance from the stagnation point. The results
are shown in figure 4. In this region U = ujx, where U is the
velocity at the edge of the boundary layer, u; 1s a consgtant, and x is
the distance from the stagnation point measured along the surface. Here
again, all the velocity profiles are similar to one another and change in
shape only when C,, the suction coefficient, is changed. The boundary—

layer thickness is independent of =x. It should be noticed that the flow

near the stagnation point has a falling pressure in the direction of the

flow; the previously mentiocned flows were all for zero pressure gradient.

The increased stability caused by the falling pressure is shown in

figure 4. An amount of blowlng corresponding to C, < —3, where

Co = ;ZQ—3 is necessary before stability is reduced from that for no
Vuiv

flow through the surface to that for the impervious flat plate. When

there is no flow through the surface, the boundary layer near a stagne—

tion point has a critical Reynolds number of 12,300 in contrast to the

value of 575 for the flat plate; the increase of about 20 times is

caused by the falling pressure along the surface.

In figure 5 is shown the theoretically predicted drag reduction for
two types of flow over flat plates with Just enough suction to maintain
gtability; one is the "Constant Suction" case and the other is the case
for which the suction velocity is inversely proportional to ¢x. The
drag reduction is a large percentage of the drag of & plate with a
completely turbulent boundary layer and, for R, less than 10°, a
constant suctlon velocity is better than a suction velocity inversely
proportional to VX. )

The skin-friction values upon which the comparison in figure 5
is based are obtained from the velocity derivative at the surface. The
sucked—in fluid remains at rest in the plate and the power required to
guck the fluid into the plate is not considered. If, however, it is
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assumed that the sucked—in fluid is ejected with free—stream total head
and that, in order to do this, total head ig added to the fluid with an
efficiency of unity, then the drag reduction shown is the true drag
reduction if the total-head loss through the surface is equal to the
free—stream dynamic pressure., If the total-head loss through the surfacs
is greater than the free—stream dynamic pressure, then the drag reduction
will be less than shown and vice versa. Because only small quantities

of suction air are requirsd to maintain laminar flow, the percentage drag
redurtion changes falrly slowly with a change of total-head loss through
the plate.

These results are the sum total of the known stability computations
based on exact sclutions of the laminar boundary—layer equations. The
only case directly applicable to flow about an airfoill is the stagnation—
point flow.

Before the stabllity boundaries for an airfoil can be computed, the
velocity digtributions through the boundary layer must be known. During
the war, Schlichiting developed an approximate method for the computation
of the leminar boundary layer over an arbitrary two-dimensional body
with an arbitrery distribution of suction along the surface (reference 30).
The method i1s rslated to the Pohlhausen method which treats flows without
suction. Schlichting's method uses the boundary—layer momentum equation
for thse case where there is flow through the surface and assumes a one-—
varamster femily of curves for the boundary—layer velocity distributions.
The parameter for the veloclty distribution depends on the pressure
distributicn over the body and on the suction flow through the surface.

The critical Reynolds number of a veloclty profile is sensitive to
ita chape. Therefore, the accuracy of an approximate method, such as
chlichting®s, when the results are to be used for stability computations,
can be tested only by comparing the critical Reynolds numbers with those
from an accurate computation of the boundary layer.

)+
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The foregoing discussion was restricted to incompressible flow.

The problem of the stability of the laminar boundary layer in a com—
presgsible gas has, however, not been neglected. The increase in flight
speeds hag given the problem practical, as well as purely scientific,
importance. .

The stability theory for compressibie flow has been developed by
ces and Lin (references 31 and 32) to about the same state as the thecry
or incompressible flow. The development of the theory for compressible
flow ig gimilar 1o that for incompressible flow. In the theory for
compressible flow, however, in contrast to the theory for incompressible
flow, the heat snergy is important and the physical properties of the gas
are not fixed. Nevertheless, the main physical mechanism is not changed.
The stability of a velocity distribution depends on the distribution of
the product of density and vorticity and on the effect of the viscous

i

>
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forces but not directly on the heat conductivity. The exprsssicn <i :>
for compreséible flow tekes the place of the expression 9—- gu> Ior
Y

incompressible flow as an important factor in determining the stability.
It is noted, however, that as yet for compressible flow there is no
rigorous proof that the two-dimensional disturbsnces upon which the
theory is based are more unstable than three—dimensional disturbances.

The main results of Iees® and Lins' work can be surmed up in the
following statements:

(1) When the free—stream velocity is subsonic, every laminar
boundary—layer flow is unstabls at sufficiently large Reynolds numbers.

(2) At all free—stream Mach nuwbers the flow is unstable at
du

sufficiently large Reynolds numbers if the y derivative cf p 5; is
1

zero for a value of u>1 — —.

(3) An approximate expression for the minimum critical Reynolds
number is obtained, similar to the expression cbtainéd by Lin for
incompressible flow.

(4) As shown in figure 6 the stability of the laminar boundary
layer on an insulated surface decreases with increase in Mach number.

At My =1, Rxory. g ig less than half its value at M, =

(5) As shown in figure 7, the ratioc of the surface temperature to
the free—stream temperature has a large effect on the boundary-layer
stability. Thus, at a Mach number of 0.7 the value of the boundary—
layer Reynolds number Re, based on the momentum thickness as the

length, at which the boundary layer first becomes unstable increases
about 40 times when the surface temperature iz changed fram 110 percent
of the free—stream temperature, the stagnation—tempersture ratio for a
Mach number of 0.7, to 70 percent of the free-stream temperature. On
the other hand, an increase of surface temperature frcm 110 percent of
the free—stream temperature to 125 percent of the frec—stream temperature
halves the Reynoclds number at which the flow becomes unsteble.

(6) At supersonic free—gtream velocities, the bounaary layer can
be made stable at all Reynolds numbers by maintaining the surface
temperature at a small enough fraction of the free—sgtrezm temperature.
For Mb > 3 at 50,000 feet altitude and for M > 2 at 100,000 feet

altitude, the radiation of heat from a surface can mske the retio of

the surface temperature to the free—stream temperature small enough to
engure a stable boundary layer at all Reynolds numbers, in the absence

of an adverss pressurs gradient.
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The gtability theories for both the incompressible and the compressible
laminar boundary layer, which have Jjust been discussed, were developed far
flows in which the effects of surface curvature were negligible. Because
most alrcraft components are curved, it was not clear whether the stability
theory for flat surfaces was directly applicable. The effect of curvature
on the stability of the incompressible boundary layer was investigated
theoretically by Gortler about 1940 (references 33 to 35) and experimentally
by Liepmann (references 36 and 37) in the following years.

GOrtlér found that the two—dimensionsal wavelike disturbances were
hardly affected by wall curvature. When, however, the stability of the
boundary layer on curved walls was considered by investigating the behavior
of vortices with their axis parallel to the main flow, analogous to the
Taylor vortices in flow between concentric rotating cylinders, an
instability caused by these vortices was found to be possible only on
concave walls., The effect was so large that the effect of the usual two—
dimensional disturbances was completely overshadowed. Gortler?s theory
ig, like the two-dimensional disturbance theory, a small-disturbance
theory that assumes the main boundary-layer flow to be the same over the
entire surface. Also, the boundery—layer thickness is assumed to be
small compared with the radius r of the wall. It was found, as shown

in figure 8, that the wall curvature and the Reynolds number occur in
the combination Re‘/g and that instability occurs above a value of Ry l/g

that depends on «f, where o 1is inversely proporticnal to the wave
length and 6 ig the boundary—layer momentum thickness. The neutral
curve shown is for the Blasius velocity distribution. Gortler found that
the instability region was only slightly affected by the shape of the
veloclty distribution through the boundary layer when the momentum
thickness 6 was used as the measure of the boundary-—layer thickness.

In agreement with Gortler®s theoretical work, Liepmamn found experi—

mentelly that RQV@? was the parameter defining the stability of the
boundary layer on concave surfaces. Liepmann concluded that transition

can be expected when the value of Reyég reaches about 9.0. It may be

observed that Gortler found the minimum critical value of RG g- to

be 0.58. Tt should be noted, however, that ILiepmannts criterion concerns
transition, whereas Gortler's concerns the stability of the boundary

layer. ILiepmann also found, in agreement with Gortler's work, that in
contrast to flow over convex or plane surfaces, a pressure gradient

along the wall had a negligible effect on the stability of the flow over
concave walls. Thus, on convex and plane gurfaces instability of the
boundary layer is caused by the Tollmien-Schlichting waves; whereas the
ingtability on concave walls is caused by three—dimensional disturbances.
In figure 9 is shown the dependence of Reynolds number for transition Retr

on the effective curvature 9/r. The value of Retr is practically
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independent of curvature for convex walls and is about equal to the value
for the flat plate. The value of Retr for concave walls, however,

decreases rapidly as the effective curvature increases. The data in
figure 10 show that the experimentally determined stability limits for
the boundary layer on a convex wall and the calculated stability limits
for the boundary layer on a flat plate are about the same except at

the lowest Reynolds numbers. The upright triangles should lie on the
upper branch of the neutral curve; the inverted triangles, on the lower
branch. The neutral curve for the experimental points for r = 20 feet

and also the curve for the points for r = 2%—feet, not shown in the fig—

ure, have a slightly higher minimm critical Reynolds number than the
neutral curve for the flat plate. The reason for the difference is not
definitely known.

This paper has attempted to present a ghort history of the theory of
the stability of laminar flow, an outline of the theory for incompressible
plane flow, a summary of the applications of the theory in combination
with suction flows, a resims of the results of the theory for compressible
plane flow, and a summary of the theoretical and experimental results for
curved flows. The stability theory based on infinitesimal disturbances
may be regarded as experimentally verified for incompressible flow over
plane surfaces and, probably, also for curved surfaces. Experimental work
remaing to be done in verifying the stability theory for compressible
flows. An extension of the stability theory to the realm of finite
disturbances for the purpose of calculating transition points is
desirable.
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