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SOME CONSIDERATIONS OF AERODYNAMIC HEATING
By Coleman duP. Donaldson

Langley Aeronautical Laboratory

With the contemplation in recent years of flight at ever-increasing
Mach numbers, the problem of aerodynemic heating has become increasingly
important to the aeronautical engineer. Unfortunately, much of the work
on this subJect has not been done from the point of view of the aero-
dynamicist but has been based on the conventions of the varled branches
of speclalized fields of heat exchange. From considerations, therefore,
of this difficulty and of the increasing importance of this subject to
the aerodynamicist, a brief review of boundary-layer heating phenomena
appears to be desirable at this time.

If alr is brought to rest near the surface of an insulated plate
and no energy is assumed to be transferred to or from any element of mass,
then from the equation for the conservation of energy
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where T 1s the local temperature, U 1s the local veloclity, cp is

specific heat at constant pressure, and Ts is the stagnation temperature.
Then, the temperature rise from the free stream to the surface AT 1s
found to be

s

AT = ATgg = —
2cP-

This temperature rise is called the adiabatic temperature recovery

and 1s used as a reference temperature rise in most heat-transfer
discussions.

The importance of this temperature rise at high Mach numbers is clear
if the equation for the stagnation temperature is written

/ 2
/ M
Ts = T(l + ?;

vhich is the equation relating this adiabatic gtagnation temperature ~Ts

to the free-stream temperature T, where M 18 the stream Mach number.
At a Mach number of 5.0°the surface temperature is six times the free-

Streem temperature, so that the problem of aerodynamic heating requires
serious attention.

Consider now the energy per unit area transferred into an element of
height dy while the air 1s brought to rest first by the temperature
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gradient set up and secondly by the friction work done. The energy
transferred into the element by heat conduction per second is, then,

g
oy

and that by frictional work is
o 2
K <§é\ +u Su dy
oy, dy2

where k 1s thermal conductivity, u 1s viscosity, and u 1is the
velocity component in the x-direction..

These two effects are of opposite sign and if they are =zqual in
magnitude the energy per element remains constent and the energy equation
holds through the boundary layer. If the two effects are assumed equal,
then

| k éfg = K <§E>2 +u aEu

dy° oy dy2
Now, from the energy equation B
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The quantity _EE is called the Prandtl number ¢ and is a measure

of the relative magnitude of the friction and heat-conduction effects in
an insulated flow. This parameter is very important in all heat-transfer
Phenomena. If the Prandtl number is 1.0, the temperature recovery on an
insulated body 1is equal to the adiabatic recovery ATgg; thus,
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The value of the Prandtl number for air has been variously measured
and placed at between 0.72 and 0.76 and hence the temperature recovery on
an insulated body should be lower than the adiabatic recovery. - The ratio
of the actual recovery to the adiabatic recovery AT/ATad is called the
temperaturs-recovery factor.
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If the Prandtl number is not equal to 1.0 or if there exists a hesat
transfer in or out through the surface at which the velocity is zerc,
then, in order to solve for the temperatures that exist for a particular
velocity profile, three differential equations may be set up. The first
two are the well-known continulty and momentum equations.

d(pu) + d(pv) _ 0 (1)
ox oy
and

where p 1is density.

The third equatlon is an expression of the fact that all the energy
transferred into an element by frictional work, conduction, and convectim
muist be carried away by these same processes so that the temperature of
the element does not increase with time. For simplification, variations
of v 1in the x- and y-directions are neglected as well as variations
of u in the x-direction, with the result that

k--—+u(> _pcp{.._w__} 3)

In order to solve these three equations Eckert and Drewitz (referencz 1)
assumed that the continuity equation could be satisfied by the use of a
stream function and then, use can be made of the new variables

l uo
¢ = FRART

and

t = ¥

VVuox

where u, is free-stream velocity, Vv 1s kinematic viscosity, and V¥

1s the stream function. Egquations (2) and (3) can be put into convenient
form by use of these variables and the solution can then be obtained. The
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result for the heat transfer per unit area h +through the surface, when
0.5 <0 <2, was ‘

R 2
~ l'u. 3___ u -
h~o.332k\/};§ Vo (TW-TO> -E‘cl}; i

where T, 1s the wall temperature and TO is free-stream temperature.

This result is all that is needed for comparison with the results of
experimental measurements on an insulated flat plate, for when h = O,

uo2
Ty To == o
°p
and the temperature-recovery factor is
AT =5

ATggq

For alr with a Prandtl number o = 0.72 the theoretical temperature-
recovery factor is 0.85.

Figures 1 and 2 show the full solution by Eckert and Drewitz (refer-
ence 1) for the local temperature rise and stagnation temperature for the
laminar-boundary-layer profile. It may be seen from figure 2 that, since
the air near the surface of thz plate has a stagnation pressure less than
free stream, conservation of energy requires the air in the outer portion

of the boundary layer to have a stagnation temperature greater than free
stream. :

The temperature recoveries measured experimentally on an insulated
flat plate are shown in figure 3 as a function of local Reynolds number R.
The theoretically determined recovery factor = 0.85 agrees well

with the experimental values in the laminar regi%%, but as the Reynolds
numbser increases along the plate, transition occurs and the temperature-
recovery factor increases from the laminar value to a value at the begzin-
ning of the turbulent layer of 0.90.

Before further discussion is made of the results of this laminar
analysis to predict the temperature recoveries about bodies other than
flat plates, some discussion should be given to one of the methods of

analyzing the heat-transfer characteristics of the turbulent boundary
layer.

Figure 4 is an illustration of the type of velocity profile that
will be assumed. The method of solution is as follows (reference 3):
The laminar sublayer will be assumed to have a linear velocity profile and
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& parabolic temperature profile T = A + By + Cyg. The local heat and
momentum transfers of this layer are determined and, when made to agree
with the local heat and momentum transfers of the turbulent layer at
the outer edge of the laminar sublayer, a unique solution for the heat
transfer through the combined layers results.

For the analysis of the turbulent layer the following equations are
at our disposal. They are the continuity equation

3 (pu) + d(pv) =0 (4)
Ax oy
the momentum equation
du __ Or
and the energy equation
AT+ i) D) -2 (6)
at \ P 2 dy oy
where
¥ Bu
T = PV 1 e
J dy
A
oy
- h = GP pV'Zyg%
AT
3y

The transfer term pv'Zy is assumed to be equal in both the transfer of

heat and momentum; that is, the mixing length Zy in the two cases is

the same so that
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The momentum and energy equations (equations (5) and (6)) then become

du ; 9 [, du
P dy A dy,

2 ' 2\
a usy _ 9|, o u
P Eé(cPT * ‘2’) - ay[p‘ ay@T * ’é‘)J

and the total energy and the velocity satisfy the same linear differential
equation, a significant fact first pointed out by Crooco. (See refer-
ence 3.) All boundary conditions may be satisfied if

T u? b
CP +-—2-—&u+

where a and b are constants independent of J.

Frankel used the foregeoing procedure to obtain the following result
for the heat transfer through a turbulent boundary layer:

2 2
, u ul .
0
ny oo~ T) v+ 5le - 1)
Ty u, + uy(o - 1)

Again, 1f the case of an insulated plate is consildered, the temperature
recovery is

uo2 (1 - c)ul2
2c

AT
D 2cp

2
u
U R G
ATad Uq
From the work done on the turbulent boundary layer at low speeds the

value of the square of the ratio ul/u is found to be proportional to
the friction stress at the wall divideg by twice the dynamic pressure

——> = 135 ¥
Yo 2q

or
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The temperature-rscovery factor for alr becomes

AT

- 37.8 W
1-37-87

Figure 5 is a plot of this relationship for values of T./2q
usually encountered. The results are found to be of the right order of
magnitude for the temperature-recovery factors of turbulent layers.
Experimental measurements on turbulent layers have given temperature-
recovery factors ranging from 0.89 to 0.93 but no such linear dependence
as 1s indicated by the equation has been shown experimentally. Research

is needed to determine the proper relationship between uy end u, at

high speeds as the use of the low-speed relationship at high Mach numbers
is not at all logical.

The next step 1s to determine whether 1t is possible to apply the
results Just obtained for insulated flat plates to the prediction of
temperatures in insulated bodles of other shapes.

If the velocity distribution about a body is known, the local
temperature distribution outside the boundary layer can be found; each
element of the body 1s then assumed to have the flat-plate recovery factar
based on its own local conditions. The temperature rise above local ’
temperature for a laminar boundary layer is then

| L2 @
AT, = 0.85 L

1
2cp

and the local recovery factor will be 0.85. The recovery factor based

on free-stream temperature and the adlabatic recovery of the fres-stream
velocity 1is

AT

U4 \2
° -1 . o.15<_£

Figure 6 shows this last recovery factor ATO/ATad as measured
O

around & circular cylinder at a‘Mach number of 0.526 and a Reynolds

number of 1.81 x 105. The only part of these data that can be compared
with our analysis are those obtained at stations less than 80° from the
leading edge, because at larger angles the vortex street shed by the body
completely alters the phenomsna with the result that surface temperatures
are much lower. When these data are converted into the form ATZ/ATad

(the dashed line) the agreement with the flat-plate results is good except
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in the region near the stagnation point. This result seems to indicate
that it is permissible to use flat-plate rzsults to predict temperature
distributions over insulated bodies of different shape.

Finally, the measurements on this cylinder over a large range of
Mach number indicate that the theoretical prediction - namely, that the
local temperature-recovery factor is independent of Mach number - is
correct for all moderate Mach numbers. This result is shown in figure T,
which 1s a plot of the local temperature-recovery factor at a station T0°
from the leading edge of the cylinder for a range of free-stream Mach
numbers. Since the local Mach numbers are well in excess of unity, these
data indlcate that the local recovery factor is independent of Mach number
up to leccal Mach numbers approaching 2.0.

These results indicate that the theoretical analysis of the laminar
boundary layer on a flat plate presented is an adequate tool for predicting
the temperature recoveries on the surfaces of insulated bodies moving at
high speeds. It may also be used for calculating moderate heat transfers,
but the theory fails if the heat transfer is of a magnitude large enough
to change appreclably the common laminar-boundary-layer profile of
figures 1 and 2.

The analysis of the turbulent boundary layer indicates that the
temperature-recovery factor of an Insulated flat plate depends upon the
friction stress at the wall and that experimentally it is desirable to
measure this quantity simultaneously with the temperature-recovery factor.
Certainly further researth is needed on the nature and extent of the
laminar sublayer of the turbulent boundary layer at high speeds.

Finally, 1t must be pointed out that the methods of analysis presented
herein are not the most refined available to the specialist In the field
of heat transfer today (see references 4 to 6) but are presented because
they represent the basic methods of approach and serve as an introduction
to the problems of aerodynamic heating.
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Figure 1.- Local temperature-recovery factor and velocity profile for
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laminar boundary layer.
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Figure 2,- Stagnation-temperature ratio and velocity profile for laminar

boundary layer.
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Figure 3.- Temperature recoveries on a flat plate.

U,
T
./
)
./
y 7
./
7 TURBULENT
. ui / l
0 : LAMINAR SUBLAYER
7277/7’@7//;77//7777/4?
u

Figure 4.- Assumed turbulent-velocity profile.
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Figure 5.- Theoretical temperature recovery for turbulent boundary layer.
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Figure 6.- Temperature recovery on circular cylinder,
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Figure 7.- Temperature recovery at 70° station on circular cylinder at
various free-stream Mach numbers.





