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1.0 SUMMARY

The acoustic 228 zerody namic charactenistics of several exhaust sy stems suitable for duct
buming turbotan (DBTE! eneines were established in this program. Scale models represent-
ing unsuppressed and suppressed coannular exhaust svstems were evaluated statically under
vanving exhaust conditions. Ejectors with both hardwall 2nd acoustically treated inserts
were also evalualed 2 the program.

The unsuppressed coannular contigurations were found to be as rauch as 11 PNdB quieter
than current predictions when scaled to 1.27m (50 in.) 2quivalent diameter size. At condi-
tions tvpical of engines being considered under the Advanced Supersonic Technology (AST)
progzram. reductions of approximately 8 PNdB were observed. The reductions for a specific
engine are a function of the exact combination of stream temperatures and velocities. The
noise power levels 1nd perceived noise levels. scaled to full size, were found to collapse to
single lines when correlated with fan stream velocity and temperature, fan to primary velocity
ratio (Vg \'p) area ratio ¢ Ay A,). Spectral characteristics and velocity profile measurements
in the jet plume indicate that the noise suppression (when \'f'\'p >1) is due to more rapid
muxing of the coannular jet compared to standard circular jets.

The mechanicaily suppressed configurations produced as much as 18 PNdB reduction teiow
current predictions for an unsuppressed nozzle (4 PNdB of this is due to a treated ejector).

At typical AST engine conditions. reductions of approximately 15 PNdB were observed.
Relative to the unsuppressed configurations, the suppressed nozzles provided noise reductions
over a wider range of conditions.

Additional correlations ot the data from both suppressed and unsuppressed contigurations
showed that the noise was a tunction of exhaust system geometry and also that it was related
to the maximum velocities existing in tiie jet plume downstream of the nozzle exit.

The measured torce data indicated that the basic suppressor configurations yielding the most
noise suppression had the highest thrust losses. The impact of adding an ejector was.highly
dependent on the suppressor design sinze the match between the suppressor and ejector is
critical. Similarly. the impact of adding acoustical treatment in the cjector was also very de-
pendent on the size of the suppressor.

The overall impact of these results on recent AST studies has been significant in terms of
engine sizing and vehicle characteristics.

The suppressed configzurations consisted of muiti-clement suppressor units applied to the fan
stream only. since the DBTF fan stream is the dominant noise source. Thiree concepts were
evaluated : a multi-tube unit having 44 tubes, an 18 lobe convoluted design and a finger type
emploving 32 seements. The total jet arca of the models was equivalent to a 0.127 m (5 in.)
diameter convergent nozzle, or approximately one-tenth of the full scale size being studied
under AST programs. The area ratio between the fan and primary stream was varied from
0.75 to 1.2 in some configurations, with the total area maintained constant.

A total of 417 test conditions were evaluated. The tan stream pressure ratio was varied from
1.3 to 4.1 and the primary stream pressure ratio from 1.53 to 2.5, The tempeiature in both
streams was varied independently from 395°K to 1090°K. The resultant data is presented
in the Comprehensive Lata Report, CR 134910,



2.0 INTRODUCTION
2.1 BACKGROUND

Prior to this program, extensive propulsion system studies, conducted as part of the NASA
sponsorad Advancad Supersonic Technology (AST) effort. identified the duct burning tur-
bofan (DBTF) as a promising cycle in terms of both system economics and low noise genera-
tion. The DBTF engine cycle can be matched to provide a high velocity duct {fan) stream
surrounding a low velocity core {primary) stream. 1his type of cycle requires that only the
fan stream be suppressed to provide reduction in jet noise. However, very little experimen-
tal substantiation existed for this type of exhaust system.

The noise characteristics of conventional coannular exhaust systems, whereby the fan ex-
haust is of lower velocity than the primary stream exhaust. have been extensively investi-
gated during the past few years. The work of Williams (Ref. 1) first pointed out that the
noise of a coannular jet was related to fan to primary stream velocity ratio and showed that
the noise of a coannular jet was less than the noise of the primary jet under isolated condi-
tions for a lar e range of fan to primary velocity ratios less than one. The basic results of
Williams were extended by Eldred (Ref. 2) to include cuannular jets having a heated stream
and include ti citects of fan *~ primary stream exhaust area ratic. Analytica: mod s dev-
eloped in References 1 and 2 showed that the gross results of the coannular jet couta ve 1c
lated to the aerodynawic characteristics of the jet exhaust plume. For example, high fre-
quencies were shown to be reduced due to the relative velocity effect of the fan exhaust sur-
rounding the primary str>am, and low frequency characteristics were ascribed to the-presence
of a merged jet restilu. 1:vm the mixing of the fan and primary jets downstream of the noz-
zle. The experimental in.. 'igations of Olsen (Ref. 3) and Bielak (Ref. 4) confirmed the re-
sults of Williams and Eldred, and the SAE Subcommittee on Jet Noise has developed a co-
annular jet noise prediction procedure drawing upon some of the results from References

1 - 4, and additional coannular jet noise d~ta produced during recent experimental testing.
Predictions from the SAE procedure have shown very reasonable agreement with model and
full-scale engine noise data, but is limited to subsorn.:. flow conditions where the fan exit
velocity is less than the primary velocity. The recentiy published prediction procedure of
Stone (Ref. 5) includes the offects of supersonic jets, but is limited to Vf/V ratios less than
1.0. The work of Dosanjh (Ref. 6) focused on the noise of coaxial and triaxial cold super-
sonic jets. Results from his investigation have shown that the jet noise could be minimized
for certain combinations of pressure ratios between the coaxial and triaxial jets, including
cases where the inner stream velocity was less than the velocity of the outer stream. How-
ever, due to the cold jets, Dosanjh’s results relate to the shock noise compenent of jet noise,
and are not directiy applicable to the noise of the hot jet exhausts existing on a duct burning
turbofan engine.

Thus, a large effort has been expended on investigations of coannular jet noise, but the re-
sults of these studies cannot be used to assess the noise generated by the hot coannular jet
exhaust of a DBTF engine having a fan to primary velocity ratio greater than one.



2.2 PROGRAM DESCRIPTION

The program described herein was conducted to establish the aero-acoustic performance
characteristics of unsuppressed and tan stream suppressed coannular nozeles over a large
range of operating conditions. in particilar at conditions where the fan to primary stream
velooity ratio was greater than one.

During the design phase of the program. two basic coannular nozzles were designed to simu-
late nozzles that could exist on a full size DBTF engine. These nozzles were designed to
achieve tan to primary area ratios of 0.75 and 1.2 in order to investigate the acro-ucoustic
eftects of area ratio over a range considered practical for DBTF operation in a supersonic
transport.

Three multi-element nozzle suppressors were designed 1o produce various amounts of noise
suppression in the fan jet of the 0.75 area ratio nozzle. These configurations, in order of in-
creasing predicted suppression. were convoluted. finger and multi-tube. Hardwall and acous-
tically treated flicht type ejector shrouds were designed to investigate the effects of an

(_ctor on the noise of the basic nozzle configurations. In addition. a convoluted suppres-

sor co T oation, with and without ejectors. was designed at an area ratio of 1.2 to deter-
mine thc ~vvo . 0f area ratio on a typical suppressor configuration. All nozzle models had the
same equivalent exit diameter (0.127m), which was one-tenth of the full size diameter (1.27m).
The studies leading to the design of all the configurations are documented in Reference 7.

All of the configurations were fabricated and tested statically at the Pratt & Whitney Aircraft
Outdoor Jei Noise Test Facility located in West Palm Beach. Florida. This test facility pro-
duces two independently controlted flows with properties tvpical of the primary and fan
flow streams of a DBTF. A towal of 417 test points were run on 17 separate nozzle configu-
rations, including a single stream convergent nozzle used to provide reference noise levels.
The pressure ratio in the fan stream was varied from 1.3 to 4.1 and in the primary stream from
1.53 to 2.5. Total temperature was varied from 395°K to 1090°K in both streams. Far field
noise signals were measured at 9 angles, ranging from 60° to 165° relative to the upstream
Jet axis. Pressure, temperature, weight flows, and thrust were measured for all test points.
Exit pressure and temperature profiles were measured for selected test points. Section 3.0
contains deta’l~d descriptions of the test facility and models tested. All data obtained during
the testine s contained in the Comprehensive Data Report (Ref. 8), while the major results
of the program are contained in this report.



3.0 APPARATUS

The experimental apparatus used in this program is described herein. This includes the test
facility, along with supplementary hardware a.d instrumentation, as well as the model nozzle
configuration evaluated in the program.

3.1 TEST FACILITY

The facility used in this program (shown in Figure 3-1) is the P&WA Jet Noise Test Facility
located in West Palm Beach. Florida. The details of the test facility are shown schematically
in Figure 3-2.

Figure 3-1 Pratr & Whimey Aircraft (P&WA ) Outdoor Jet Noise Test Facility

The airflow to the test model is supplied by bleed flow from a JT3C *slave™ engine and
passes through a 0.25m (10 in) diameter underground pipe surfacing near the test stand. The
flow enters the test rig at the pivot point. where teflon seals prevent leakage while allowing
the rig to pivot freely in the vertical plane. The flow is then divided into two 0.20m (8 in)
diameter pipes. The flow in each pipe is independently controlled by motor-operated wafer
valves in each line. Flow rates are measured independently in cach pipe by flow-measuring
venturies which have been accurately calibrated at the Colorado Enginecring Experimentation
Station, Inc. Temperatures are set by separate heater/burner systems in each line. The bur-
ners are JP-fueled, and are capable of temperatures up to 1922°K (3000°F). The fuel flow



into the system is established by calibrated digital fuel meters. Both flow lines are then
tarned 90° through water cooled sections, and formed to provide coannular flows to the test
model. The tflow then passes through a transition section into the instrumentation section
and test model. The assembly is suspended from two cables, on opposite sides of the vertical
centerline, which are in series with load cells and connected to the rigid supporting frame-
work. The load cell axes are coplarar with the vertical flow axis. An array of microphones

is positioned at a 4.57m (15 ft) radial distance from the nozzle exit, in the plane of the nozzle
centerline.
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Figure 3-2 Schematic of P&WA outdoor Jet Noise Test Facility

This facility allows free field jet noise measurements since the nozzle is situated 4.2m (14 ft)
above the ground in a vertical orientation and thus essentially eliminates spectral distortion
from ground reflections. The possibility of small amounts of signal enhancement at high
frequencies, at the mcre forward-angle microphones, was eliminated by the use of acoustic-
ally absorbing fiberglass matting 0.1m (4 in) thick, positioned on the ground underneath the
microphones. Figure 3-3 shows the model test rig assembly installed on an 0.7 Im (28-in)
diameter flange near the top of the test stand. The assembly was made long enough to insure
that no obstruction existed between the nozzle exit and the microphone array, whose lowest
point lies 30° below the plane of the nozzle exit.
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Figure 3-3  Details of Test Model Installation

The components of the test rig assembly are shown in detail in Figure 3-4 and described in
the following sections. All of the hardware was made from AMS 5512 material. The relative
position of the various components are indicated by station numbers which equal the distance
from the reference mounting flange (STA 0).
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3.1.1 Transition Ducting

The transition ducting mates the model test hardware to the existing rig and serves as a muf-
fler. It consists of a set of conical approach ducts, The duct walls are lined with acoustic
blankets made of “Cerafelt” to damp out any extraneous noise from within the basic test
stand. Cerafelt is a lightweight, refractory-fiber insulation notable for its excellent thermal
and chemical stability. Made predominately of alumina and silica, it combines lightness, heat
resistance, low conductivity, and high sound-absorption qualitics. Available in various densi-
ties and thicknesses, the particular typc selected in the muffler is 0.0727m (¥ in) thick and
has a density of 64.07 kg/m3 (4 1bs. /ft ). These values were chosen to provide sound atten-
vation over a wide frequency range for the operating conditions encountered during the tests.
The attenuation (or transmission loss) thrcugh the muffler was on the order of 20 dB. The
sound treatment material is contained by a perforated facing sheet having 30 percent porosity,
with 0.00t4m (0.056 inch) diameter holes, which does not interfere with the sound absorb-
ing capabilities of the absorber material. Thermal expansion of the facing sheet is allowed for
by the provxsxon of sliding Jomts at the upstream end of each sheet

The outer duct forms the main support for the model test rig, It is boited to the instrumen-
tation assembly section and takes the blow-off load at the large flange which interfaces with
the test facility. Leakage is prevented between the stieams by means of a slip jcint with pis-
ton rings. The joint takes no axial load but is instead. permitted to slide, allowing for axial
growth due to temperature variation.

3.1.2 Instrumentation and Support Section

Tliis section of the test rig serves a dual purpose. It maintains the concentricity of the as-

sembly and contains all of the necessary instrumentation to define the pruperties of the flow
entering the nozzles.

The major portions of the instrumentation duct are shown in Figure 3-5. A single strut, hav-
ing an 18 percent NACA series 400 airfoil cross-section, passes through the primary duct and
is welded in place at the primary duct walls. The same strut passes freely through the fan
duct walls where clearance is provided to allow for relative growth due to temperature ditfer-
entials in the two strear.,. Two short struts, welded to the outer diameter of the primary
tube and positioned 9C” to the primary strut, a. o pass freely through the fan duct wall.
Wi.en operating with a thermal gradient, the fan _uct is allowed to change in diameter rela-
tive to the primary duct without distorting the duct shape and without any significant varia-
tion in concentricity. Ou.er seal housings were built around the floating struts to prevent
ieakage from the fan stream.

Instrumentation for the measurement of total pressure and total temperature were installed
within the struts., The probes are made up of removable rakes which are held in place at the
ends of the struts. The rakes may therefore be installed or removed after rig assembly with-
out having direct access to the primary or secondary flow passages.
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Two diametricaily opposed rakes are used in each stream to establish the total pressures and
temperatures. The probes (P; and T;) are arranged radially in each duct such that the orobes
represent equal areas. An arithmetic average of the probe readings is then egual 10 the area-
averaged value. The pressure and temperature probes are both in¢’zézd in ¢ach rake se {hat
the flow is sampled across the entire duct to determine an average of each property.

Static pressure taps were installed on the wails of the instrumentation section to define the
endpoints of the total pressure profiles across the passages. A total of ! 2 static taps were in-
stalled; 4 on cach wall at 90° intervals (4 primary taps, 8 {an tans). The taps were posiiioned
upstreain and to the side of the struts to insure thar the pressure rezdings are not influenced
by the blockage of struts or rakes.

In addition to supplementing the tcial pressure profile data, the static pressure readings pro-
vide an alternate means of determining the total pressure; the continuify averaging process.
In this process, the total pressure is calculated on the basis of the static pressure, the duct
area and the measured flow rate.

3.1.3 Exit Plane Instrumentation/Traverse Rig

The mech. sm used to traverse the ejector exit plane for flow properties is shown in Figurc
3-6. The purpose of the traverse rig is to establish the static pressure, total pressure, and total
temperature of the flow along a radial line at the exit plane of the ejector.

During selected nozzle tests, the exit plane traverse was accomplished immediately after
thrust and acoustic data were taken. This procedure calls for a traversing system that is not
in view of the microphone array while acoustic data are taken. A vertical travcrse unit is

used to move the horizontal (i.e., exit plane) probe traverse system into its operating position,
where the probe is driven along a radial line at the exit of the ¢jector. When exit plane data
are not being taken, the traversing system is stowed in a position upstream of (he nozzle exit,
on the side of the nozzle opposiie the microphone array.

10
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Figure 37  Details of Traverse Probe

3.1.4 Acoustic Instrumentation

Laboratory calibrated Bruell and Kjaer 0.006m (0.25 in) (No. 4135) microphones were em-
ployed without protective grids or wind screens. They were positioned in a polar array con-
taining nine microphones at 60°_ 75°, 90°_ 105°. 120°, 130°, 140°, 150°, and 165° relative
to the upstream jet axis at a distance of 4.6m (15 ft) from the exit of the nozzle. The signals
from cach microphone were recorded by a Honeywell 7600 series FM tape recorder, in a
double extended bandwidth mode operating at 3.05 m/sec (120 in/sec). The frequency res-
ponse in this operating moJe was 80 kHaz.

32 NOZZLE CONFIGURATIONS

A total of seventeen different configurations were evaluated during this program. All were
fabncated from AMS 5512 material. The pertinent geometric variables of the basic configu-
rations (without ejectors) are presented in Table 3-i. These variables include fan stream exit
area (Ag). primary stream exit area (A), total exit area (A,), equivalent diameter (D, ) based
on total exit area, and the diameter encompassing the fan nozzle and primary nozzle assembly
(Dpﬂ,:. which represents the outer penmeter of the total basic nozzle unit.



TABLE 3-1

PERTINENT GEOMETRIC VARIABLES OF THE
BASIC NOZZLE CONFIGURATIONS

Configuration Ar Al} Af/ /\p Ag ch Dpct
m? m m* m m
(in?) (in?) (in?) (in)  (in)
Reference Convergent Nozzle —_ — - 0126 A2 A2y
(19.6) (.00 5.0)
Unsuppressed Coannular Nezzle .0054 0072 0.75 0126 Bl2% =135
(8.40) (11.20) (19.6) (5.0) 5.32)
Unsuppressed Coannular Nozzle .0069 0057 1.2 0126 Jd27 135
(10.69) (8.91) (19.6) (5.00) (5.3))
Multi-Tube Suppressor Nozzle 0054 0072 0.75 0126 ) .7 S
(8.40) (11.20) (19.6) (5.0) (7.00)
Convoluted Suppressor Nozzle 0054 0072 0.75 0126 127 el
(8.40) (11.20) (19.6) (5.0) (6.34)
Convoluted Suppressor Nozzle .0069 0057 1.2 0126 27 165
(10.69) (8.91) (19.6) (5.0) (6.49)
Finger Suppressor Nozzle 0054 .0072 0.75 0126 A27 169
(8.40) (11.20) (19.6) (5.0) (6.66)

Detailed descriptions of all of the test models are presented in the following sections.

3.2.1 Reference Convergent Nozzle

The single stream reference nozzle is a low angle conical convergent nozzle shown in Figure
3-8. In order to adapt this nozzle to the coainular ducting of the test rig, a primary duct
fairing was made to blend the two streams, maintaining a constant fan/engine area ratio to
the mixing plane. The end piece is tapered to a minimum thickness to prevent an undesir-
able wake. When testing this nozzle, the same flow properties were established in both scg-
ments, therefore, the flow at the nozzle exit is uniform.
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Derails of Reference Convergent Nozzle

3.2.2 Unsuppressed Coannular Nozzles

Two unsuppressed coannular nozzles were built. The first with a fan to primary area ratio

of 0.75 is illustrated in Figure 3-9, while the second configuration, having an area ratio of

1.2 is illustrated in Figure 3-10. The primary nozzle for both configurations is a convergent-
divergent design (with an exit to throat area ratio of 1.1). This type of nozzle design has been
employed during many of the SCAR studies where high Mach number operation is the key
design point. The axial spacing between the primary and fan stream exits is also consistent

with these requirements.

| . [
0098 0135 0100
o 0146 13.776) 153200 (3972)
5.000 1N} (5.750) DIA 0106 DIA DIA
DIA DIA PRIMARY NOZZLE (4.185)
0209 0165 -
B250) | 1650)
0I1A DIA R
o / 'Iﬂ;”‘_
| ne
77777 ,// / 77777/ 0.068
‘ 12.66) STA
| £ UNSUPPHESSED RAD. g7a | 449
STA L FAN NOZZLE e (5707
¥.113m 1238 STA 155.28) | 116
46 20 IN ) (a8 76) 1327 (55 75)
15225
Figure 3-9 Details of Unsuppressed Coannular Nozzle, 0.75 Area Ratio
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Figure 3-10  Details of Unsuppressed Coannular Nozzle, 1.2 Area Ratio

3.2.3 Multi-Tube Suppressor Nozzle

This configuration consists of 44 identical tubes arranged in two circumferential rows which
form the throat of the fan nozzle (See Figure 3-11). Each tube is a convergent nozzle having
a 15 percent diameter convergence (area convergence ratio of 1.32), with a convergence half-
angle of 15°. The primary nozzle is the same as that used with the corresponding unsuppressed

coannular nozzle.
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| 25 Q01 124 CIRCUMF ERENTIALLY
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0229m
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( l TUBE SUPPRESSOR ‘ A b e ;:;l 10 49a)
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Figure 3-11  Details of Multi-Tube Suppressor Nozzle, 0.75 Area Ratio
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The tubes are fixed in a conical ring which is an integral part of the fan nozzle body. The
external lines of this conical ring are identical to those of the coannular unsuppressed noz-
zle. The upstream ends of the tubes are blended with the internal surface of the conical ring.
The downstream ends are at the same axial station, upstream of the primary nozzle exit.

The conical ring, to which the tubes are attached, comes into near-contact with the external
surface of the primary nozzle. A radial clearance of about 0.0006m (0.025 inch) is provided
to allow for differential thermal expansion.

Six static pressure taps were placed on the external surface of the suppressor to monitor the
external flow characteristics and to aid in analyzing performance and acoustic data. The tap
locations are referenced to station 55.5 which corresponds to the position of the ejector lead-
ing edge when an ejector is employed. The taps are aligned axially, in the space between the
radial segments of tubes; three at the base of the tube assembly and three along the approach
to the tubes.

3.2.4 Convoluted Suppressor Nozzles

The first convoluted suppressor consists of 18 equally spaced lobes which form the fan stream
throat area (see Figure 3-12). This configuration has a fan to primary area ratio of 0.75.

Each of the internal lobes were machined to a constant width, continuing upstream from

the exit (along the inner slope shown in the side view in Figure 3-12) blending with the cy-
lindrical duct upstream of the convergence. The external lobes were likewise machined along
their inner slope, blending with the external surface of the fan duct. The result is a three-
dimensional convoluted approach to the fan exit by which the fan flow and ambient air (or
external flow) are mixed.
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END VIEW A A

Figure 3-12  Details of Convoluted Suppressor Nozzle, (.75 Area Ratio



The axial positions of the taps on this convoluted suppressor are the same as those of the
tubular suppressor arranged along the inner slope of an external flow convolute (see Figure
3-:1),

A second convoluted suppressor, of similar design to the first, but with a fan to primary area
ratio of 1.2 is illustrated in Figure 3-13.

The primary nozzles used with the convoluied suppressors are the same as those used with
the unsuppressed coannular nozzles of the same fan to primary area ratio.

FATIC PHESSIHU 1AP ,\‘
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Figure 3-13  Details of Convoluted Suppressor Nozzle, 1.2 Area Ratio
3.2.5 Finger Suppressor Nozzle
The finger suppressor is composed of 32 equally spaced radial projections which subdivide
the fan nozzle exit into an equal number of individual rectangular nozzles (Figure 3-14). As

in the other suppressor designs, the external lines approaching the plane of the fingers are
identical to those of the unsuppressed coannular nozzle.

~

)

STATIC PRESSURE TAP
LOCATIONS ~
REF TOSTA 555

X (mi X {m)
J - ——
00050 0 200
00087 022%
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15228 1IN

Figure 3-14  Details of Finger Suppressor Nozzle, (.75 Area Ratio
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The fingers have a triangular cross-section (as shown in Figure 3-14, Section B-B); the apex
being at the upstream side to smooth the approach to the exit planc. The downstream side
is flat, representing the portion of the finger that would be flush with the inner wall of the

fan duct when the suppressor is stowed. The primary nozzle was the same as that used for the
0.7S area ratio unsuppressed coannular nozzle.

As with the other suppressors, pressure taps were placed on the downstream surface of the
fingers and on other portions of the suppressor where non-ambient pressure levels were ex-
pected in order to monitor the flow characteristics and to aid in interpreting the data.

3.2.6 Ejectors

The ejector gecometry is based on the configurations used for recent SCAR studies and. as
such, represents a flight-type, high Mach number design. The same ejector length/diameter
ratios are maintained. The relation between the ejector and the primary/fan nozzie system
was established on the basis of supersonic cruise requirements. The ejector inlet and exit
areas however, were sized to produce high performance at static conditions for the 0.75 area

ratio unsuppressed coannular nozzle. However, the same ejectors were used with all configu-
rations.

Two ejector configurations were tested: a hardwall version and one with internal sound treat-
ment. A basic cjector shell could accept a hardwall or an acoustically treated insert. Each

of the two ejectors were interchangeable with the suppressor configurations. The hardwall
ejector is shov'n in Figure 3-15, mated with the convoluted suppressor. The treated cjector
is shown in Figure 3-16, mated with the tubular suppressor. In all configurations, the leading
edge of the ¢jector is at station 55.5.
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Figure 3-15  Details of Hardwall Ljector Mounted to the 0.75 Area Ratio Convoluted Suppressor
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Figure 3-16  Details of Acoustically Treated Ejector Mounted to the 0.75 Area Ratio Multi-Tube
Suppressor

The hardwall ejector contained the instrumentation required to establish the internal axial
static pressure gradient along the full length of the ejector wall. The instrumentation in the
cylindrical portion of the ejector was contained within the hardwall insert. This instrumen-
tation was eliminated when the hardwall insert was replaced with the acoustically treated in-
sert. However, the upstream static taps remained in place for both configurations. The pres-
sure taps were placed in two axial rows at circumferential positions that correspond to the
extremes of the suppressor. For example, when the ejector is assembled with the convoluted
suppressor, one of the rows of taps 1s aligned with an internal (fan stream) lobe and the other
is aligned with an external lobe. When the c)... 'ris combined with the tubular suppressor,
one row of taps is aligned with the tubes; the other with the spaces between the tubes. The
two rows of pressure taps are placed 9° apart circumferentially. This relative location accom-
modates all suppressor installations. The taps were located circumferentially about mid-way
between the ejector struts to avoid the local flow interference in the vicinity of the struts.

The internal wall of the treated ejector is fitted with an insert containing a 0.0064m (% in)
thickness of compressed ‘““Cerafelt”, used to absorb flow-generated sound. The insert has a
face sheet porosity of 30 percent made with holes of 0.0004m (0.016 in) diameter.

The relation of the ejector to the unsuppressed and suppressed coannular configurations is
illustrated in Figure 3-17. The axial spacing (AX) between the fan nozzle exit and the lead-
ing edge of the ejector is indicated along with the ratio of the ejector diameter to the dia-
meter of the circle enclosing the basic nozzle/suppressor exit (Dejec/Dper)'
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Figure 3-17
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4.0 DATA

The types of data produced from the experimental testing are described in this section,

along with the test procedure and a matrix showing the conditions at which each of the
model configurations was tested. Various acoustic and aerodynamic parameters were ob-
tained from the testing of the 17 different configurations over a matrix at pressure ratios and
temperatures. Data coverad a total of 417 operating points. Acoustic data from this program
is documented in model size as well as scaled to represent a full size AST powerplant.

The model scale data is based on the 0.127m (5in) equivalent diameter size models tested.
The acoustic parameters are:

One-third octave band sound pressure level spectra at 4.6m (i5 ft) radius from

60° to 165° relative to the upstream jet axis, corrected to theoretical day condi-
tions. “‘Theoretical day” is a hypothetical day with atmospheric conditions pro-
ducing zero atmospheric attenuation of noise. The noise levels thus were corrected
for the full amount of atmospheric absorbtion occuring during each test point
acquisition time period.

Overall sound pressure level at 4.6m (15 ft) for the same angles as spectra.
One-third octave band power spectra for 0.127m (5 in) equivalent diameter models.

Overall sound power level.

The following acoustic parameters are scaled 10X to a 1.27m (50 in) size to represent a full
size AST powerplant:

One-third octave band sound pressure level spectra at 45.7m (150 ft) radius from
60° to 165° relative to the upstream jet axis.

Overall sound pressure level at 45.7m (150 ft) radius from 60° to 165° relative to
the upstream jet axis.

One-third octave band power spectra.
Overall sound power level.

Perceived noise levels calculated at various sideline distances including 648.6m
sideline at zero altitude from 6C° to 165° relative to the upstream jet axis.

The aerodynamic parameters are:

Nozzle thrust coefficient.

Nozzle flow coefficient for each st-cam.



®  Static presstire distribution along the internal surface of the ejector and the ex-
ternal surface of the suppressed nozzle.

e  Temperature and velocity profiles in the plane of the ejector exit, whether or not
the ejector was in place.

The actual test procedure used to obtain data was as follows:

1) The slave J57 engine used to provide the model airflow was started and allowed
to run for ' hr. in order to warm the ductwork and expell any foreign matter in
the piping.

2) The acoustic and thrust measuring systems were checked an calibrated.

3)  Wind velocities were monitorec. Normally, acoustic measu. :ments were made
with wind velocities under 8 mps; however, on occasion, si._htly higher wind
velocities were allowed, but only if all microphones exhibited normal behavior.

4) Pressures and temperatures were set in each stream and allowed to stabilize.

S)  Pressure, temperature and thrust levels were read under steady state operating
conditions and entered on computer coding sheets for subsequent computerized
data reduction.

6) Acoustic data was recorded simultaneously for all @ channels on a 14 channel
tape recorder for subsequent processing.

7)  On-line one-third octave band analysis was performed on signals from selected
microphones (i.c., angles) to ensure satisfactory operation.

The above test procedure was followed in the testing of all configurations ensuring consis-
tency in the results obtained during the program.

Samples of all of the full scale acoustic and aerodynamic parameters are presented in this
report for each configuration, illustrating the major findings of the program. In addition, a
tabulation of acoustic power level and perceived noise levels, at all measurement angles, for
all test points, is included in Appendix I.

Due to the large amount of data involved. the complete results of the testing have been com-
piled separately in the Comprehensive Data Report (CDR), NASA CR-134910 (Ref 8). This
report includes both the model scale and full size data.

Table 4-] lists the nozzle operating conditions for each test point. In this table, nominal
values of the stream temperatures and pressures are listed

The detailed data reduction procedures and sample data outputs are presented in Sections 4.1
and 4.2. A discussion of data validity based on the acoustic measurements taken with a con-
vergent nozzle is presented in Section 4.3. The method used to synthesize the jet noise of a
coannular nozzle is presented in Section 4.4 for reference purposes.
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TABLE 4-1

TEST MATRIX

P /P, T, CK) T, (°K) P,/P,
1.3 1.8 2.5
0.75 Area Ratio Unsuppressed Coannular
1.53 305 395 X" X X
700 X X X
895 X X X
1089 X X
700 305 X X X
700 X X X
805 X X X
1089 X X
811 395 X X X
700 X X X
895 X X X
1089 X X
1089 395 X X X
700 X X X
895 X X X
i089 X X
2.0 811 700 X X
2.0 811 1089 X X
2.5 811 700 X X
25 811 1089 X X
0.75 Area Ratio Unsuppressed Coannular With Hardwall Ejector
1.53 811 700 y, X
1089 X X
0.75 Area Ratio Unsuppressed Coannular With Ticated Ejector
1.53 811 700 X X
1089 X X
1.2 Area Ratio Unsuppressed Coannular
.83 395 700 X X X
1089 X X
81! 700 X X X
1089 X X

(n Pllf/l‘.n s J.15

HKHHAXAKAX

KKK AKAK KA AKX

-~

X

> XX



Pip/Ps

T, CK)

Multitube Suppressor

1.53

395

811

811
811
811
811

TABLE 4-I (Cont’d)

T

i K)

1.3 1.8

395
700
895
1089
395
700
895
1689
700 X
1089
700 X
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Multitube Suppressor With Hardwall Ejector

1.53

1.53

395
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700
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1089
395
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P
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Multitube Suppressor With Treated Fjector

1.53
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TABLE 4-1 (Concludeld)

PP, T, CK) I, °K) P/P,
1.3 1.8 2.5 3.2
0.75 Area Ratio Convoluted Suppressor With Treated Fjector

1.53 395 395 X X X
700 X X X X
895 X X X X
1089 X X
S1l 395 X X X
700 X X X X
895 \ X X X
1089 X X
1.2 Area Ratio Convoluted Suppressor
1.53 395 700 X X X X
1089 X X
811 700 X X X X
1089 N X
1.2 Arca Ratio Convoluied Suppressor With Hardware Ejector
1.53 395 700 X X X X
1089 N\ X
811 700 \ X X X
1089 X X
i.2 Area Ratio Convoluted Suppressor With Treated Ejector
1.53 395 700 X X X X
1089 X X
Sl 700 \ X X X
1089 X X
Convergent Nozzle
10K PP,
1S 1.3 1.53 1.8 2.0 Y. 265
395 X X X X X X
700 X X X X
811 X X \
895 \ X X X X
1039 X X X X
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4.1 AERODYNAMIC DATA REDUCTICON
The measured acrodynamic properties are divided into three categories:

(a)  Thrust Coefficients and Flow Coefficients
(b) Surface Static Pressures
(¢)  Exit Profiles

The basic aerodynamic performance characteristics are presented in category (a) along with
the flow properties in each stream. The static pressures (b) provide the axial pressure
distributions useful in diagnosing the performance of the nozzles. The exit profiles (¢)
include the temperature and velocity surveys measured in the nozzle plume.

These data are based on pressure. temperature and thrust measurements made while main-
taining steady-state model flow conditions during cach test point. The pressure daty were
established by means of U-tube manometers, Heise gauges and a pressure transducer system.
The temperatures were measured with the use of Brown potentiometers. The thrust mea-
surements were based on the output of two Baldwin-Lima-Hamilton load cells (5000 1b.
capacity).whose accuracy was rated at £0.027% of full rated load.

The reduction of the basic data to the final aerodynamic parameters is described in detail
in following sections.

4.1.1 Thrust Coefficients and Flow Coefficients
The thrust coefficient of a nozzle 1s a function of the thrust produced by the nozzle (F)

and the ideal thrust which is available (F) based on the properties of the flow entering the
nozzle. The nozzle thrust coefficient., C, . is defined as:

The nozzle thrust is measured with two load cells positioned between the floating thrust
bed and the stationary platform. The Nozzle thrust (F) is established as follows:

‘o Fo+ AF| +AF1 + AF; (N, Ibs)

z
—
=
~
-
(27
—_—
|}

Total load cell output

.

]

5 “No-lTow™ load cell output: the initial load cell readings

taken after the stand is brought up to operating temperature.
AF,. AF, = Stand tare forces associated with variations due to thermal
growth of the metric components.
ARy = Corrections for variations in the air weight within the met-

ric portion of the stand. The volume of the metric portion
of the flow system is large enough to experience some vari-
ations in air weight within the operating range of tempera-
ture and pressure.



The total ideal thrust (Fit) is defined as:

F: =F. + F.
't "Primary  'Fan

Tlhie ideal thrust (F;) of each stream is calculated by the equation:

(N, 1bf)

/ Y+ xt
Yoy d el p
s =Y 2 . a Y
l‘i = Pt A* v - § . R

I \r+1 P(
where:

. . . .
P, = Total pressure at instrumentation station (N/m-, psia)

. ' 7 | -
Pa = ambient pressure (N/m=, psia)

£ 1
A*=£t Tté’? l+7-l Jm._”
Pt gy 2
and W, =  Total Mass Flow =W+ Wg, ., (kg/sec, Ibm/sec)

W - Air flow rate, measured at the upstream venturis (kg/sec, Ibm/sec)
Wiiel =  Fuel flow, measured by digital fuel meters (kg/sec, lbm/sec)

Tt = Total temperature at instrumentation station CE.°R)

Y = Specific heat ratio

R = Gas constant = (88.51 Nm/kg °K, 53.3 Ibf ft/lbm °R)

8¢ = Conversion factor = (1.0 kg m/N scc:. 32.174 1bm ft/Ibf secz)

The nozzle flow coefficient for cach stream is calculated by the equation:

Wt
Cq4 = —
d = W
i
(y+1)
, PR 7 & -1 »\T SaD
where: W; = — 1+ — — M- 2(y-1)

\/Tt R 2 ‘M<10

(kg/sec, Ibm/sec)



. . R
A = Nozzle exit area in each stream (m=, in~)

The exit areas were determined by measurement at ambient
temperature and corrected for the effect of the elevated
testing temperature.

v-1
2 Y
M .= Fully Expanded Mach Number =} —— (Py/P)

-1

The thrust coerticients and tlow coefticients tor all the test configurations are included in
Section B of Volume 11 of the CDR. A sample of the data available in the CDR is presented
in Figure 4.1-ta for Configuration (3) which is the multi-tube suppressor nozzle. The thrust
and tlow coetficient are tabulated along with the tlow properties of each stream (Pressure
ratio, Pt ,/'l’u. temperature Tt* and ideal jet velocity V).

4.1.2 Surface Static Pressures

Static pressures (P) were measured along the external surface of the suppressors and along
the internal surface of the ejectors. The pressures are ratioed to ambient pressure (P,) and
tabulated in the CDR where thiey are ideatified by vressure orifice number (TAP) and axial
location, X/L, where:

X = position of pressure oritices relative to station 35.5
{which corresponds to leading edge of the gjector)

L = Ejector iength =0.295M (11.63 in.)

All of the static pressure data is presented in Section B, Volume I of the CDR. A sample of
the data is presented in Figure 4.1-1b for Configuration (4) which is the multi-tube suppressor
with the hardwall ejector.

4.1.3 Exit Profiies

Temperature and velocity protiles were obtained in the plane of the ¢jector exit. All
configurations (with or without an cjector) were traversed alang a radial line in the same
plane. The suppressor nozzles were oricitted circumferentially such that the probe was mid-
way between extreme points of the suppressor geometry. When an cjector was used, it was
oriented circumterentially such that the traverse probe was midway between the support
struts. The probe readings therefore reflect an average of the circumferential distribution.



The probe simultaneously measured a static pressure (Py), a total pressure (P¢) and a total

temperature (T) at a given radial position (R). The velocxty (V) was then calculated by
the following equation:

2
8. RT; M
V= et \ (m/sec, ft/sec)
y-1 '
+ —— M? :
1 3 .
where:
Y-
_ 2 04 \
M= 7_—1 (Pt /PS) - 1)

All of the resultant traverse data is included in Section B, Volume II of the CDR. A sample
of the data is illustrated in Figure 4.1-Ic. It is presented at each radial position (R), non-
dimensionalized to the exit radius of the ejector ( Rexit)'

"a) Thnust coefficients and Flow Cocflicients

QONFIG NO. TESTPT. PTP/PA TIP (DFGF) VP (FPS) PTF/PA TIF(DEGF) VI(FPS) cv (a0 4 CDF
30 205.03 2,00 952 1755. 178 1483, 1809, 093 0988 09D
30 206.01 248 999. 2015. 32 824, 2103, 0958 0985 0941
0 206.02 251 987. 2018. 1.80 813. 1543, 0544 099 0921
30 206.03 249 990. 213. 1.29 807. 1031. 0938 1.000 0.906
30 207.0) 249 995. 2016. 408 1509. 284). 09549 0995 0951
30 207.02 2.53 984. 2021. 255 1501, 274, 0.948 0.986 0918
30 207.03 2.50 984. 2014. 1.79 1491, 1904. 0953 0997 0.908

:b) Surface Static Pressures

CONFIG. (4) MULTI-TUBE W/HARD EJECTOR TEST POINT NO. = 60.010

TAP 2 3 4 5 6 7 8 9 10 1 12 13
7. ma 093 157 m 308 416 545 574 803 932 08 093 157
PPA 0.826 0.826 0.864 0.854 0.888 0957 0990 0993 09%4 0990 0810 0530 0870
TAP 14 15 16 17 18 19 20 21 n 23 % 25 26
XL 2 308 416 545 £74 803 932 050 026 -004 - 034 -107 -

P/PA 0.850 0.881 0920 0991 1.000 0.9% 1.000 0.783 0866  0.841 0931 0.991 0998

¢)  Exit Profiles

CONFIGURATION (3) MULTI.-TUBE TEST POINT NO. = 55010

R/REXIT 00 0.139 0.278 0417 0556 0.6% 0833 0972 11 1250
TTEXIT 931, 930. 939. 9. 890. 753. 569. 402. 270. 190.
VEXIT | 909. 953, 974. 957. 1017. 990. 7. 413. 188, 73.

Figure 4.1-1 Sample of the Aerodynamic Data Contained in the Comprehensive Data Report NASA CR134910
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42  ACOUSTIC DATA REDUCTION

The measured acoustic signals recorded by the nine microphone array at 4.6m (15 ft) radius
were correcied, analyzed and converted to full size engine data (10X model size) by the
procedure illustrated in Figure 4.2-1. This figure also indicates the data outputs available

for both the 0.127m (5 in) equivalent diameter model size and the 1.27m (50 in.) full size
scaled engine data. All of the data is available in the companion Comprehensive Data Report,
NASA CR-134910 (Ref. 8).

Far Field Acoustic Signals Recorded and
Storr-d on Magnetic Tape: Nine Microphones
at4.6m (15 ft) Radius

&

Acoustic Signals Analyzed to Produce
One-Third Octave Band Spectra From
100 Hz to 80,000 Hz

A

® Spectra Corrected for Cable and
Microphone Calibrations

® Spectra converted to “Theoretical
Day'’ by correcting to ‘“Zero’ Atmospheric
Absorbtion

. Output
@ Calculation of overall sound pressure —_—

leve!, sound power level spectra and

Data for 0.127m (5 in} Equivalent Diameter
overall sound power level

Models Converted to Theoretical Day’’
{Zero Atmospheric Absorbtion)

@ SPL Spectra for all Angles at 4.6m

. ) (15 ft) Radius
@® “'Theoretical Day" Spectra Scaled 10X ® OASPL at Each Angle

Size to Produce Acoustic Parameters ® PWL (f) and OAPWL
for 1.27m (50 in) equivalent Diameter
Full Size Engine at 45.7m (150 ft)
radius measuring distance

@ Scaled Spectra Corrected to Standard
Day by Subtracting Standard day
Atmospheric Absorbtion from Output
“Theoretical Day” SPL Values

Data for 1.27m (50in) Equivalent Diameter Full

® OASPL Calculated Scale AST Engine Converted to Standard Day
® PNL Calculated for Different Sideline ® SPL Spectra and OASPL for ail Angles
Distances at45,7m (150 ft) Radius
® PWLI(f) and OAPWL
L ® PNL at 45.7m (150 f1) Radius and 61m
—p- (200 ft), 112.8m (370 ft),243.8m

{800 ft) and 648.6m (2128 f1)
Sidelines

Figure 4.2-1 Acoustic Data Reduction Procedure
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The tape recorded far field signals from the nine microphones were reduced to one-third oc-
tave band sound pressure levels by analog/digital analysis equipment. This analysis was per-
formed on a General Radio No. 1921 Analyzer.

The one-third octave band as-measured model size sound pressure levels, analyzed in the

GR 1921 Spectrum Analyzer from 100 Hz to 80,000 Hz, were corrected for calibrated

cable and microphone response. The data were then transformed into “theoretical day”
data by applying the values of atmospheric absorption defined in reference 9. This procedure
entails adding a ASPL as a function of frequency, relative humidity, and ambient tempera-
ture to the measured SPL levels. The ASPL corrections represent an estimate of the absolute
sound absorption for noise in each of the one-third octave bands. The resulting ““theoretical
day” data represents the noise that would be measured at the microphone if no noise were
lost through atmospheric absorption. Typical values of atmospheric absorption calculated
by the method of reference 9 for the 15 ft measuring distance used in this program are illus-
trated in Table 4-IL.

TABLE 4-11
ATMOSPHERIC ABSORBTION ESTIMATES
FOR A TYPICAL DATA POINT

4.57m (15 ft) Radius
Temperature —~307°K (93°F)
Relative Humidity —49%

Freq Freq Freq

(KHz) A SPL (KHz) A SPL (KHz) A SPL
0.050 0.0 0.80 0.0 12.5 0.5
0.063 0.0 1.00 0.0 16.0 0.6
0.080 0.0 1.25 0.0 20.0 0.9
0.100 0.0 1.60 0.1 25.0 14
0.125 0.0 2.00 0.1 31.5 1.9
0.160 0.0 2.50 0.1 40.0 2.8
0.200 0.0 3.15 0.1 50.0 4.4
0.250 0.0 4.00 0.1 63.0 6.4
0.315 0.0 5.00 0.2 80.0 9.6
0.400 0.0 6.30 0.2 100.0 14.4
0.500 0.0 8.00 03

0.630° 0.0 10.00 0.3

The corrections at the very high frequencies, i.e., above 40K Hz, become quite large. At
80K Hz, the correction of 9.6 dB represents a loss of nearly 90% of the noise that would
have radiated to the microphone if no atmospheric absorption were present. The formulae
used in Reference 9 have been verified as accurate only for sound frequencies below 10,000
Hz. However, since a more accurate method of estimating atmospheric absorption is not pre-
sently available, the formulae of Reference 9 were used directly to calculate the values of
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atmospheric absorption for frequencies up to 80,000 Hz required for the scale model data.
The “theoretical day” SPL’s were integrated over the measured frequency range to obtain
overall sound pressure levels (OASPL).

The theoretical day model scale data from all test points are compiled on computer output
sheets in the Comprehensive Data Report (Ref, 8). Table 4-I11 is a sample data page. At the
top of the page are listed the pertinent ambient and nozzle operating parameters in both U.S.
customary units as well as the International System of Units (S.L.).

The left hand column lists the ambient temperature (TEMP), pressure (PRES), and relative
humidity (REL H). Wind direction (WIND D) and wind velocity (WIND V) were also moni-
tored but not included in the data sheets. A tabulation of wind velocities is included in the
Comprehensive Data Report.

The center columns list the full scale primary and fan stream exhaust nozzle arcas (AREA)
as equal to zero to indicate that the noise data are in model scale form. In the same columns
are found the stream total to ambient pressure ratio (P.R.), stream temperature (TEMP), and
stream density (RHO), and the ideally expanded velocity (VEL).

The right hand columns list the full scale mass flow (MASS FLOW) as equal to zero to indicate
that the noise data are in scale model form. Also listed in this column are the model size ideal
thrusts (THRUST, IDL), exhaust nozzle areas (AREA MOD), and mass flows (W MODEL).

Below the parameter listing are the tabulated, model scale one-third octave band sound pres-
sure levels at a 4.57 m (15 ft.) polar distance under free field measurement conditions dur-
ing a “theoretical day.” The center frequencies of the 30 measured one-third octave bands
from 100 Hz to 80 K Hz are listed in the left hand column. The one-third octave band sound
pressure levels for each microphone measuring angle, 60°, 75°, 90°, 105°, 120°, 130°, 140°.
150°, and 165°. at each one-third octave band are listed in the appropriate columns.

-12

- The one-third octave band power levels (referenced to 1071 watts) are listed at the extreme

right hand side of the page.

Below the one-third octave band sound pressure and sound power levels are listed the 4.57 m
(15 ft.) radius overall sound pressure level (OSPL) for each angle and the overall sound power
level (OAPWL).

The theoretical day noise data were also scaled to represent a full size SCAR engine having
linear dimensions corresponding to a 1.27 m (50 in.) equivalent nozzle diameter (ten times the
model size). Thus, the measured SPL levels were increased by 20 log 10 or 20 dB and mea-
sured frequencies were reduced by a factor of 10 to produce full scale engine noise character-
istics.

The fuil scale SPL levels were extrapolated to 45.7 m radius for a standard FAA day by ap-
plying the spherical divergence law, A dB = 20 log r,/ry and the atmospheric attenuation
corrections of SAE ARP 866. Ovciall sound pressure levels (OASPL) were determined by
integrating the SPL values from 50 Hz to 8000 Hz.
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Perceived noise levels (PNd”:: « ‘re computed according to SAE ARP 865 from the SPL
spectra and extrapolated t¢ ... wous sideline distances at zero altitude.

Sound power level spectra and overall power level were determined individually 1or the model
data and data scaled to full size by spatial integration over the nine microphone positions from
the listed SPL and OASPL values assuming symmetry about the jet axis of the noise generation.
Since the theoretical day model scale data represents the noise that would be measured if no
atmospheric absorption were present, the power levels represent noise generation at the source.
The full scale data, however, represents noise that would be measured on a standard FAA day.
Thus the full scale power levels represent an integration of the far field noise levels on a
standard FAA day, reflecting the common method for comparing full scale data. The actual
power level calculations employed were:

w
PWL = 10log ( ——) = sound power level, in decibels
ref

n p.?
)
where: W = X A4, = the acoustic power, in watts
i=1  p C
- -12
W = 10" watts = the reference power level
SPL
P2 = 10 ' P2 = meansquare sound pressure
P = 20X 107 N/M? = reference acoustic pressure
o, = atmospheric density
C = atmospheric speed of sound
n = number of microphones
AA; =  surface area of spherical segment associated with i*® microphone
o for the first microphone
0, +0,
AA, = 2mr? [cos 8, — cos ( ———— )]
2
e for intermediate microphones
2 0, +90, 0,+6,.,
AA; = 2nr [cos(~-—2---- ) - cos ( -:-«~—)]
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e for the last microphone

ou-l + 0“
AA, = 2mr? [cos( —— - —) - cosO ]
2
where: = distance of microphone from nozzle

As the characteristics of the test facility insure far ficld acoustic signals free from ground
reflections, all acoustic values calculated from the measured data are also far ficld. The ¢x-
trapolated values do not include cxtra ground attenuation. The acoustic data from all test
points is compiled on computer output sheets in the Comprehensive Data Report (Ref. 8).
Table 4-1V is a sample data page. At the top of the page arc listed the pertinent ambient
and nozzle operating parameters in U.S. customary units as well as the International System
of Units (S.1.).

The left hand column lists the ambient temperature (TEMP), pressure (PRES). and relative
humidity (REL H). Wind direction (WIND D) and wind vclocity (WIND V) were also moni-
tored but ot included in the data sheets. A tabulation of wind velocitics is included in the
Comprehensive Data Report.

The center columns list the full scale primary and fan stream exhaust nozzle arcas (AREA)
as well as stream total to ambient pressure ratio, (P.R.), stream temperature (TEMP), and
stream density (RHO). The ideally expanded velocity (VEL) is also presented.

The right hand columns list the full scale mass flow (MASS FLOW) and the full scale ideal

thrusts (THRUST, IDL), model size exhaust nozzle areas (AREA MOD), and mass flow (W
MODEL) of the scale models used in the test.

Below the parameter listing are the tabulated, tull scale one-third octave band sound pres-

- sure levels at a 45.7 m (150 ft.) polar distance under tree ficld measurement conditions dur-

ing a standard FAA day. The center frequencies of the 24 measured one-third octave bands
from SO Hz to 8000 Hz are listed in the left hand column. The one-third octave band sound
pressure levels for cach microphone measuring angle, 60°, 75°,90°, 105°, 120°, 130°, 140°.
150°, and 165°, at cach one-third octave band are listed in the appropriate columns.

The one-thitd octave band power levels  erenced to 10712 watts) are listed at the extreme
right hand side of the page.

Below the sound pressure level and sound power level spectra are listed the 45.7 m (150 ft.)
radius overall sound pressure level (OSPL) for cach angle and the overall sound power level
(OAPWL). Perceived noise levels (PNL) are listed for cach measuring angle at 45.7 m (150
ft.) radius, and at 60 m (200 ), 111 (370 1), 244 m (800 {1.), and 648.6 m (2128 {t.)
sideline distances at the bottom ot the data sheet.
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4.3 ACOUSTIC DATA VALIDITY/REFERENCE CONVERGENT NO2ZLE

In this section, the validity of the testing, measurement, recording, and data reduction tech-
niques used during the program is established. This was accomplished by comparing the jet
noise characteristics measured for the reference convergent nozzle with valucs predicted
using two new prediction methods. One method, described in Reference 10, is based on the
work of the SAE Subcommittee on Jet Noise and is intended to replace the criginal SAE Jet
Noise Procedures of Reference 11. Predictions using this method have shown reasonable
agrcement with measured full scale engine data, especially at the angle of peak sideline noise
which is normally located at 130 - 135°. The second method, described in Reference S, is
part of a new procedure developed by J. Stone at NASA Lewis Research Center. Neither
prediction mecthod has, as of yet, been accepted as a standard. Therefore, hoth methods
were used to predict the levels of the jet noise of the convergent reference nozzle. A com-
parison of the measured OASPL data and the two prediction procedures is shown in Figure
4.3-1 for the 90° angle. The measured results agree well “vith the two prediction methods. A
comparison of the OA.SFL directivities is shown in Figure 4.3-2. At the lower of the two jet
velocities, the data and values predicted by both methods agree over all angles. At the higher
jet velocity, the measured noise agrees well with the Stone method at all angles, while the
SAE procedure underpredicts the levels at angles aft of 130°. Comparisons of the one-third
octave band SPL spectra at 90°, 130°, and 150° are shown in Figure 4.3-3 for the two values
of velocity. At the lower velocity (Figure 4.3-3a), the data agrees well with the SAE pre-
dictions at all angles. The agreement with the Stone method is almost as good at 90° and
130°. At 150°, the Stone method overpredicts the levels at the high frequencies, but agrees
with the data in terms of peak SPL. At the higher jet velocity (Figure 4.3-3b), the data agrees
well with both prediction methods at 90° and 130°. At 150°, the data agrees much better
with the Stone method than with the SAE method. Similar results were obtained at other
high velocity, high temperature conditions. The results of these tests indicate that the Stone
method appears to predict the noise of high velocity, high temperature jets more accurately
than does the SAE procedure. Based on these comparisons, the noise data for the reference
convergent nozzle at subsonic operating conditions is considered valid.

The measured data for the reference convergent nozzle scaled to a nozzle diameter of 1.27
meter (i.c., 10 X model size) is shown in Figure 4.3-4 for all conditions tested. In this figure,
the overa'l noise power level (PWL) is shown as a function of ideally expandzd jet velocity,
along fines of constant total tempcrature. Subsonic nozzle conditions (P,/'Pa < 1.89) are
shown as open symbols, and supersonic nozzle conditions (P,/P, > 1.89) are shown as solid
symbols. At the present time, no reliable method to predict supersonic jet noise is avzilable
so the noise levels are not compared with predicted values. However, the consistent data
trend at both subsonic and supersonic conditions suggest that equally valid data were obtained
for all operating conditions. Since the same testing and aata reduction procedures were used
for the entire program, all the data obtained are considered valid.
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44 COANNULAR NOISE SYNTHESIS

At the onset of the SCAR studics, ne procedure was available that would provide accurate
estimates of jet noise from turbofan exhausts having jet velocities in the fan stream higher
than in the primary stream. Existing jet prediction methods are applicable onlv to single
jets and conventional turbofan exhausts (ie., V, < VP ).

In order to support the SCAR cycle studies. a simple prediction procedure was developed to
provide estimates of jet noise from turbofan exhausts having fan jet velocities higher than the
primary stream. This procedure therefore provided a base to which the reference coannular
nozzle noise data could be compared.

This procedure, based in part on the original SAE ARP 876 (Ref. 11) and NASA TMX 71618
(Ref. 5) predicts the sound power level from a coannular nozzle to be equal to the sum of
the sound power levels from two independent, single jets whose areas are the same as the

fan and primary nozzle creas, as shown in Figure 4.4-1. The operating conditions of the indi-
vidual jets are taken to be equal tc the fan and primary conditions of the coannular nozzle.
To allow accurate prediction on this basis, the reference convergent nozzle was tested at all
of the primary and fan conditions of the coannular nozzle test matrix. The convergent noz-
zle test data was scaled in level to the appropriate exhaust areas, and scaled for frequency to
the equivalent circular diameters of the pnmary and fan nozzle areas, respectively. The scaled
data was then added loganthmically as shown in Figure 4.4-1. Typical power level predic-
tions based on this synthesized model are shown in Figure 4.4-2 for the 0.75 area ratio model.
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The predicted values of perceived noise levels (PNL) were synthesized in a similar manner

(see Fig. 4.4.1), i.e., the PNL’s of the scaled convergent nozzle data were added logarithmically
to obtain a synthesized PNL. The PNL values obtained in this manner are very close to the
values that would be determined by summing the one-third octave band noise spectra of the
convergent nozzle scaled to the fan and primary nozzle sizes and then computing PNL from
the resulting summed spectra because the primary and fan streams were close in exit arez and
in equivalent circular diameter. Power level and perceived noise level predictions based on this
synthesis procedure can be obtained for both the 0.75 an:d !.2 area ratio coannular nozzles

at any of the nozzle operating conditions by applying the method illustrated in Figure 4 4-1
to the convergent nozzle data contained in Appendix A.



5.0 RESULTS AND DISCUSSION

The acoustic and aerodynamic results obtained during the program are presented in this sec-
tion, along with a discussion of the potential impact these results have on AST engine cycle
studies. The results are generally presented over a partial range of conditions which illustrate
the important characteristics and conclusions. The complete acoustic and aerodynamic data
(model size and scaled 10X to engine size) are contained in the Comprehensive Data Report,
NASA CR-134910.

5.1 ACOUSTIC RESUL.TS

The tests of the various suppressed and unsuppressed nozzle configurations produced a large
amount of acoustic data which characterizes the noise emission of the models over a wide
range of operating conditions. In the following sections, a description of the important noise
features of the various configurations is presented. The noise characteristics of the models
tested are presented in terms of peak perceived noise level, perceived noise level directivity,
one-third octave band sound pressure and power spectra, and overall power level; as neces-
sary o describe and document the noise of the various nozzle configurations both on an ab-
solute basis and relative to each other and to the reference configurations. Appendix | con-
tains a complete listing of acoustic power and perceived noise level directivity for all testing
conditions. The following topics are discussed: unsuppressed coannular nozzles, fan stream
suppressors, effect of ejectors and data correlations. All of the noise data are scaled to a
1.27 m equivalent nozzle diameter (10 times the model linear size) and extrapolated to
648.6 m sideline distance to typify an AST propulsion system at a sideline take-off condi-
tion.

5.1.1 Unsuppressed Coannular Nozzles

The measured acoustic data from the 0.75 and 1.2 area ratio unsuppressed coannular noz-
zles serve a duai purpose. First, it provides a base of new information characterizing the
basic noise emission of a DBTF exhaust system. Secondly, it provides reference noise charac-
teristics with which to compare the results obtained from the various fan stream suppressor
configurations.

5.1.1.1 Measured Characteristics

Since the fan stream jet tends to control the total measured jet noise for most of the test
range, ideally expanded fan jet velocity was selected as the main parameter for presentation
of fllc acoustic data. The perceived noise level (PNL) av the angle of peak noise level is
shown in Figure 5.1-1 as a function of ideally expanded fan jet velocity, for fixed values of
fan stream total temperature, and fixed primary jet total temperature and velocity. This is
typical of the data obtained at the various primary operating conditions, showing the influ-
ence of the fan jet velocity and temperature on the measured noise. The data 2re well be-
behaved. as evidenced by the smooth shape of the curves fit through the data points. It
should be noted that the curves tend to converge to a single curve as the fan jet velocity de-
creases to levels below that of the primary jet velocity. This behavior indicates that the
controlling noise mechanism transfers from the fan jet to the primary jet. Figure 5.1-2
shows the effect of primary stream velocity on the peak PNL for three values of fan velocity.



At the lowest fan velocity, an increase in primary velocity causes a rapid increase in noise,
indicating little influence of the fan strcam on the noise. At the two higher fan velocities,
the effect of increasing primary velocity is less significant, especially at primary velocities be-
low 400 mps. A peint of interest in this figure is that the noise at the highest fan velocity
(853 mps) is affected by primary velocity in the range of 400 - 550 mps. Since the noise at
Vi = 314 mps is completely dominated by the primary jet, it could be considered a floor
level primary stream jet noise. As this primary stream noise is 10 dB or more below the
noise levels at V¢ = 853 mps for V,, below 550 mps, the primary jet noise would not be ex-
pected to cause changes in the noise at the high fan velocity if the streams generated noise
independently as assumed in the synthesis. A conceptual model of noise generation for co-
annular jets having V¢ > V. shows that this behavior is related to the unique mixing of the
primary and fan jets associated with the inverted velocity profile jet exhaust. A detailed
description of the conceptual model is presented in Section 5.1.1.2.
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Figure 5.1-1  Effect of Fan Stream Velocity on Perceived Noise Levels — Coannular Unsuppressed Nozzle,
(.75 Area Ratio, Scaled to 1.27m (50 in.) Equivalent Diameter

The directivity characteristics of the data are illustrated in Figure 5.1-3, which shows PNL
as a function of measuring angle for a series of fan jet velocities. The noise level varies con-
tinuously with angle at all velocities, and the directivity shapes are the same for all velocities
at angles aft of 90°. The slight change in directivity shape at angles forward of 90° at the
two higher velocities compared to the two lower velocities is due to the presence of shock
noise at the supersonic pressure ratios (Pt/Pa > 1.89).
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One-third octave band spectra at the 140° angle (the angle at which jet noise normally is a
maximum) are shown in Figure 5.1-4 for six different combinations of primary and fan velo-
cities. These spectra show some of the unique noise characteristics of coannular nozzles
operating with velocity ratios (Vf/Vp) less than 1.0 and greater than 1.0. Curves A, B, and C
show the effect of increasing primary velocity for a relatively low fan velocity. The spectra
are similar to those generated by standard turbofan exhaust jets (Vg <V,), and the noise
level increases with increases in primary velocity. Curves D, E, and F show the effect of in-
creasing primary velocity for a high fan velocity. First, comparing Curve D to Curve A (con-
stant primary velocity), it is seen that the noise spectrum undergoes a radical change as the
fan velocity increases. The spectrum in D is much higher in level, and more significantly,
has a shape differing considerably from the spectrum in A. The “‘spike” in the spectrum is a
shock screech tone possibly due to the underexpanded supersonic fan flow. Such tones are
normally present in model tests at these conditions but not present in full scale engine noise
spectra because of the physical non-uniformities that exist in full scale engines. By fairing a
smooth curve through the spectrum to edit out the extraneous shock tone, the peak fre-
quency of the broadband noise is seen to occur at 500-600 Hz. This peak frequency is cha-
racteristic of a jet with a smaller diameter than that of a circular nozzle having either the

fan or primary nozzle area. This feature is true of all operating conditions where the fan jet
velocity is much larger than the primary jet velocity. Its presence can be explained by the
annular shape of the fan exhaust which produces a jet with a much smaller characteristic
dimension than an equivalent circular jet (i.e., annular height rather than equivalent diame-
ter). Further, this implies that the noise of the annular fan jet is dominated by the mixing
process occurring in the nozzle flow field where the fan jet is still annular rather than after
it mixes with the primary stream to form a single jet further downstream. Asshown by
comparing curves D and E, an increase in primary jet velocity caused an increase in the low
frequency end of the spectrum with little change at the higher frequencies. This implies that
the annular fan jet noise generation is relatively unchanged, but the contribution from the
downstream jet resulting from mixing of the fan and primary jets is increased because of an
increase in the mixed velocity.

At a still higher primary velocity (Curve F), the spectrum remained similar to a single jet at
high velocity. The noise at high frequencies from the annular fan jet is no longer present as
a specific peak since it has now merged with the primary flow to produce a spectrum cha-
racteristic of a single jet.

The spectral characteristics of the data, when the fan to primary area ratio is increased to
1.2, is shown in Figure 5.1-5. These spectra follow the same basic trends observed with the
lower area ratio nozzle. A direct speciral comparison of the two area ratios is shown in
Figure 5.1-6. This comparison shows two effects. First, the 1.2 area ratio produces slightly
higher broad-band noise levels due to the larger fan arca. Secondly, a shock screech tone
present in the 0.75 area ratio model is not present in the larger area ratio spectra. This dif-
ference in shock tone behavior is typical of the intermittent nature of shock screech tones.
It should again be noted that shock screech tones are not normally present in full scale en-
gine noise spectra. The spectral characteristics of the noise from the unsuppressed coannular
nozzle, for conditions where the fan jet is of much higher velocity than the primary jet, be-
come extremely important for understanding large differences between measured and pre-
dicted jet noise levels for the duct burning turbofan (DBTF) type of nozzle.
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The unsuppressed coannular nozzle was also tested to investigate the possibility of tempera-
ture shielding on the jet noise of a DBTF exhaust. The temperature shielding concept em-
ploys a low velocity hot annulus of flow surrounding a higher velocity cooler central jet. To
accomplish this, nozzle operating conditions were selected to produce a cold supersonic pri-
mary stream and a hot subsonic fan stream for a controlled experiment in which the fan jet
noise would be substantially lower than the noise from the primary (or central) jet.

Results of the temperature shielding tests are presented in Figure 5.1-7a illustrating the
OASPL directivity at a constant primary jet velocity (593 mps) and fan velocity (366 mps)
for a range of fan temperatures (395°K to 1090°K). If a temperature-shielding effect were
present, the noise at the aft angles should decrease with increasing fan temperature. However,
the reverse is seen to be true. The hotter fan temperatures result in slightly higher noise
levels than observed with cooler fan stream conditions over the range of surveyed angles.
The spectral comparison presented in Figure 5.1-7b further illustrates this magnification ef-
fect. While the broadband portion of the spectra is essentially unchanged, indicating that a
temperature shielding effect is not present, the shock tone from the primary jet is seen to
vary considerably with fan temperature and is the basic cause of the OASPL increasing with
temperature. These test results indicate that the temperature of the secondary stream has
an important effect on the shock noise of the primary stream, but is ineffective in reducing
the jet mixing noise generated by a central jet.
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5.1.1.2 Measured Versus Synthesis

In order to assess the effects of the interaction of the coannular flows on noise generation,

the measured noise characteristics are compared to those obtained by the synthesis described
in Section 4.4. A comparison of the measured and synthesized power levels for the 0.75 area
ratio unsuppressed coannular nozzle is presented in Figure 5.1-8a. The differc.
the measured and synthesized power levels is shown as a function of fan jet velocity and tem-
perature. A most important feature of DBTF type unsuppressed coannular nozzle jet noise

is illustrated in this plot; the measured levels are substantially lower (up to 8 dB) than the

predictions based on the synthesized model. Suppression was observed to exist at all primary

stream conditions with the level of suppression decreasing at the higher values of primary

velocity. Appendix I contains the data necessary to compare measured and synthesized levels

at other operating conditions. This suppression effect enhances the potential of the DBTF
cycle for SST application, since actual noise levels are substantially lower than those based
on earlier prediction methods.

A similar comparison of synthesized and measured power levels was made for the 1.2 area
ratio unsuppressed coannular nozzle as illustrated in Figure 5.1.8b. Comparisons of mea-
sured and sythesized spectra produced results similar to the 0.75 area ratio case, although

the larger area ratio nozzle produced slightly less suppression relative to the synthesis. In a

later section of this report (5.1.4), the noise power level data trom all operating conditions

at which both the unsuppressed coannular nozzles were tested are seen to correlate well after
applying normalizing factors related to fan stream temperature, fan to primary velocity ratio

and exhaust nozzle area ratio.
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Noise power level represents the total noise generated, but for evaluating its impact on air-
craft mission studies, the perceived noise level (PNL) is the widely accepted unit. Therefore,
the difference in measured and synthesized coannular noise levels for both area ratio nozzles
is presented as a APNL at the respective angles for peak noise on a 648.6m sideline in Figure
5.1-9. Altheugh some change in curve shape is seen relative to the previous PWL comparisons
(Figure 5.1-8), the major trends remain the same. Measured PNL reductions of up to 9

PNdB occur compared to the coannular synthesis. Similar comparisons for other operating
conditions can be obtained from the data contained in Appendix L.
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The synthesized and measured PNL directivities are shown in Figure 5.1-10 for supersonic
and subsonic fan jet velocities. In both cases, the actual measurements are less than the pre-
dicted value for all angles, although in the subsonic fan velocity case, the reductions are much
larger in the aft angles. This observation is true for all cases tested. The data contained in the
appendix can be used to construct the comparisons at any operating conditions tested. The
reason for the different bchavior at subsonic and supersonic fan stream conditions can be ex-
plained with the aide of the spectral comparisons of Figure 5.1-11. The subsonic case (Vg=
457 mps) shows large reductions in the measured low frequency noise of the coannular noz-
zle relative to the synthesis at 140°; while at 90° and 60°, the measured spectra show small
reductions at low frequencies, with the higher frequencies at about the same level. Since the
PNL's at 90° and 60° are controlled by the high frequencies, the resulting PNL differences
are slight. However, at the supersonic fan velocities (Vi =564 and 625 mps), the results are
substantially different. At 90° and 60°, the measured low frequency noise is significantly
lower than the synthesis. This result is due to a reduction in the shock noise which dominates
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at the side and forward angles. At 140°, large reductions in low frequency noise similar to

the subsonic case are present. Since at this angle, mixing noise dominates over shock noise,
the agreement between the subsonic and supersonic cases is not unexpected. The spectral

results shown here were repeated at the other operating points where Vi > Vp.
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5.1.2.1 Muiti-Tube Suppresor Nozzle

The reductions in the perceived noise level produced by the multi-tube suppressor relative (o
the measured unsuppressed coannular nozzle noise levels and to the synthesized levels are
shown in Figure 5.1-16 for the full range of fan jet conditions 2nd a representative primary
velocity. Data for other primary velocities are contained in the appendix. The following
trends can be derived from this data:

®  Suppression increases with fan velocity at coustant fan temperature
®  Suppression decreases with increasing fan temperature at constant veloaty
® Maximum suppression obtained for a hot fan stream temperature was 7 PNdB

relative 1o the reference coannular nozzle, and up to 14 PNdB relative to the
sy ared levels.
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The effect of fan to primary nozzle area ratio on the noise charzoteristics of the convoluted
suppressor is shown in Figures 5.1-19, 5.1-20 and 5.1-21. The peak PNL suppression of the
two convoluted suppressors is presented in Figure 5.1-19, relative to their respective unsup-
pressed nozzles and also to the synthesis. As shown, the suppression of the two configura-
tions is essentially the same over the range of test conditions. Thus, the suppression with the
convoluted suppressor is insensitive to area ratio between 0.75 and 1.2. PNL directivities for
one condition are shown in Figure 5.1-20. The directivity shapes follow the same general
trend with the 1.2 area ratio levels being slightly higher because of the larger fan jet area.
Spectral comparisons are shown in Figure 5.1-21 for two angles. At 140°, a slight shift of
the high frequency peuk (around 1000 Hz) to lower frequencies can be associated with the
larger characteristic dimensions of the 1.2 area ratio convolute (i.e., the 1.2 fan exhaust is
larger and contains the same number of convolutes). At 90°, this trend (around 1000 Hz) is
also present. The spectra were not normalized to correct for the effect of different fan and
primary areas existing on the 0.75 and 1.2 area ratio configurations as the conceptual model
of noise generation presented earlier suggests that different corrections would be necessary
to correct the noise at different frequencies.
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5.1.2.4 Suppressor Comparisons

A direct comparison of the suppression obtained from the three suppressor configurations
is shown in Figure 5.1-22 as a function of fan velocity for two fan temperatures. As
illustrated, the three concepts represent different levels of suppression which must be
weighed against the mechanical complexity of those designs.
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The directivity patterns for the three suppressors are shown in Figure 5.1-23 for two
different fan temperatures. The trend of increasing suppression from convoluted to finger
to multi-tube, is seen to be reasonably consistent at all angles for both operating conditions,
with the highest suppiession occurring from 140 to 150° on a sideline basis.
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The SPL spectral characteristics of the suppressors at angles of 90° and 140° at the two

fan temperatures are shown in Figure 5.1-24. The prevjously observed trend of increasing
suppression in going from convoluted to finger to multi-tube suppressors can now be
interpreted in terms of measured spectral changes. The spectra at the 140° angle, in Figure
5.1-24b and d is used for the interpretation, since the low and high frequency components
of the noise are separated in frequency. At mid frequencies, between 500 and 2000 Hz, the
noise reductions are due to the improved mixing rates of the three suppressors causing more
rapid velocity decay of the annular fan jet. The smaller reductions at lower frequencies re-
sult from the lower veloc.ly annulus mixing with the low velocity primary jet and producing
smaller reductions in the effective velocity of the downstream mixed single jet compared to
the reductions in the aniulus velocity. The small changes in peak frequency (near 1000 Hz)
are related to the different characteristic dimensions of the suppressor elements (i.e., 18 con-
volutes, 32 fingers, 44 multi-tubes). The greater the number of elements, the smaller the
characteristic dimension, and thus the higher the characteristic or peak frequency. The pre-
sence of double humps in the spectra at 140° compared to the broad simple spectra at 90°
1s similar to the results from turbojet suppressors, as in references 12 and 13.
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Examining the effect of primary velocity on the absolute PNL noise levels and the A PNL
suppression provides a better understanding of the relative importance of fan and primary
velocities. Figure 5.1-25 shows the PNL level in terms of primary velocity for the multi-
tube and finger suppressors. It is clearly shown that the noise level is essentially constant
when V is low relative to Vg, and increases with increasing V , as V , approaches Vi
Similar characteristics are seen for the convoluted suppressor with both the 0.75 and 1.2
area ratio nozzles, as illustrated in Figure 5.1-26.

An interesting feature is noted in the noise characteristics of the 0.75 area ratio convoluted
suppressor in Figure 5.1-26. The noise at V¢ = 853 mps shows approximately a 2 PNdB
increase when V increases from 425 to 520 mps, even though V¢ is appreciably greater
than V. The explanation for the higher observed noise levels is that the jet noise for co-
annular nozzles having V¢ > Vp is composed of high frequency noise generated by the con-
voluted annular fan jet plus low frequency noise generated by the downstream merged jet.
At Vg = 853 mps, the annular jet noise dominates at the lower V., as evidenced by the con-
stant noise level at the two lower values of primary velocity. The increase in noise caused
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by the still higher values of primary velocity is due to the merged jet noise becoming domi-
nant over the annular jet noise. The increases in noise level can then be explained by the
fact that the merged jet noise is dependent upon the merged jet velocity, which is higher
than the primary jet velocity.
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5.1.3 Effect of Ejectors

Turbofan engines that power supersonic aircraft may incorporate ejectors in the exhaust sys-
tem to provide high performance at all operating conditions. Thus, an important aspect of
this program was to determine the effect of both hardwall and acoustically treated ejectors
on the noise and performance characteristics of the various nozzle configurations. In this
section, the effect of the ejectors on the noise characteristics is described.

5.1.3.1 Unsuppressed Coannular Nozzle With Ejectors

The eifect of the hardwall and treated ejectors on the peak PNL of the 0.75 area ratio un-
suppressed coannular nozzle is shown in Figure 5.1-27. A slight (< 1 dB) reduction was ob-
tained by adding the hardwall ejector. The presence of acoustical treatment in the ejector
produced a small amount of additional suppression. Across the test range, 2 PNdB or less
total suppression was obtained. Since the unsuppressed coannular nozzle results described
earlier indicated that the high frequency noise was generated in the fan annular exhaust

near the nozzle exit and the low frequencies in the mixed jet downstream, some shielding
suppression of the high frequency noise was expected by addition of the ejector, and further
reduction is consistent with the addition of acoustic treatment. The effect of the ejectors
on PNL directivity is shown in Figure 5.1-28. Little difference exists in the directivity shapes,
although a slight reduction at 140-150° is seen for the ejectors cases. The spectral compari-
sons in Figure 5.1-29 show an interesting effect of the hardwall ejector. At 140°, a large
reduction in the SPL at high frequencies is seen, while at 90°, the high frequency levels show
a slight increase. The treated ejector provides a moderate reduction in high frequency at all
angles. The power spectra comparison shown in Figure 5.1-30 illustrates that the hardwall
gjector causes only minor changes to the noise generation while the addition of treatment re-
duces the noise at high frequencies.
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5.1.3.2 Multi-Tube Suppressor With Ejectors

The peak PNL of the multi-tube suppressor with and without an ejector is presented in
Figure 5.1-31. The hardwall ¢jector provides a small reduction in peak PNL at most of the
operating conditions while the addition of acoustic treatment causes more significant re-
ductions (1.e., 4 PNdB at the lower tan velocities and 3 PNAB at lugher fan velocities).
Figure S.1-32 displays the PNL directivity for two fan stream velocities. At the lower fan
velocity (Fig. 5.1-324), the hardwall ciector causes large reductions at aft angles and little
change at the side and front angles. The treated ejector provides only slightly more re-
duction at aft angles, but more significant reductions at side and front angles. At the higher
fan velocity (Fig. 5-1-32b) the nowse reduection due to the ejectors s approximately the same
at both front, side, and aft angles.

o8



lﬂp—
Vp ¢ A27 W5 11000 FRs)
Tep * 812 000°R)
Top = 1000w c1500'F)
s o o
3
-
L
“ NO BJECTOR
=
-
-‘:
f: yook— WITH HARDWALL EJECTOR
x
<3
=
a
3
-
<
=
z Wp—
WiTw TREATED EJECTOR
80l 1 1 1 1 | ey = B R0 0 ) - b el Nl
S0 L) 1000 1500 2000 000 Frs
L1 | 1 1 1 | 1 1 1 |
o >0 X0 »e 00 500 w00 00 Ly 200 wws

FANJIT VELOCOITY

Figure 5.1-31 Ejffect of Hardwall and Treated Ejectors on Peak PNL of Multi-Tube Suppressor, 0.75
Area Ratio, Scaled to 1.27m (50 in.) Equivalent Diameter

al U = 707 MRS (2320 FPS)

°r
E NO R CTOR
a8
=
8
-
=
3
s
~
S
.
-
£
z
a
Z
a
| S IO e 3 1 1
T 77— =
WO % 90 108 Y20 1D 14 150 18
\ | 7/ o -
} ‘1. f /7 ‘,/ - —
WA / 5"

Figure 5.1-32 Effect of Hardwall and Treated Ejectors on PNL Directivity of Multi-Tube Suppressor,
0.75 Area Ratio, Scaled 10 1.27m (50 ir | Equivalen: Diameter

69



NV, - EBOWS 2800 S

1o
[- NO EJECTOR

WITH HARDWALL EXCTOR

WITH TREATED EJECTO

£ %
T I

S
I

PNL ~PNAB AT 648 6M (2178 FT ) SIDELINE

Figure 5.1-32 Effect of Hardwall and Treated Ejectors on PNL Dire- tivity of Multi-Tube Suppressor,
0.75 Area Ratio, Scaled to 1.27m (50 in.) Equivalent Diameter (Concluded)

The corresponding spectral comparisons shown in Figures 5.1-33 are used to explain this be-
havior. One-third octave band SPL spectra at 90° and 140° and power spectra for the multi-
tube nozzies are shown in Figure 5.1-33 for the lower fan velocity. At 90° (Figure 5.1-33a)
the hardwall ejector causes a 2 dB reduction in the low and mid frequency range, and a2 1 dB
reduction at high frequencies. At 140° (Figure 5.1-33b), however, a large reduction in high
frequency noise can be seen. The addition of treatment causes further reductions at high
frequency at both angles, but no additional reductions at low frequency. The large angular
variation in hardwall ejector attenuation is believed to be caused by refraction of the high
frequency noise generated within the ejector and reflected from the ejector walls as it passes
through the shear layer emanating from the 2jector lip. This phenomenon is similar to the
shear layer refraction present during open jet wind tunnel tests (Ref. 14). Similar directivity
effects have also been observed in recent tests by the Boeing Company (Ref. 15). The low
frequencies are unaffected since they are generated downstream of the ejector. To define the
chinges in radiated acoustic power caused by the ejector, the noise spectrum was integrated
across all measuring angles to obtain the noise power spectrum shown in Figure 5.1-33¢. The
power spectra remove the cefraction phenomenon, which is a directivity effect. This com-
parison clearly shows two effects. First, the hardwall ejector produces from 2 to 5 dB reduc-
tion across the spectra, which can be explainec by source strength reduction due to the re-
duced relative velocity betweern the jet and the ejector induced flow. Secondly, the presence
of the acoustical treatment causes no further reduction in the low frequency portion of the
spectrum up to 400 Hz, but increasing amounts of suppression from 400 Hz to 100C0 Hz.
This is eonsistent with the design goal of the treatment, which was selected to provide broad
band attenuation down to scaled frequencies of about 400 Hz.
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Comparisons of the SPL spectra at 90° and 140°, and the power spectra, are shown for a fan
velocity of 850 mps in Figure 5.1-34. The effect of the ejectors is similar to the effect in the
previous case at the lower fan velocity. However, at the higher fan velocity, more noise exists
in the low and mid frequency range (<500 Hz) relative to the noise at high frequencies. The
ejector treatment (which attenuates only the high frequency noise generated by the annular
fan jet close to the nozzle exit), therefore, is less efficient in reducing the noise.
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5.1.3.3 Finger Suppressor With Ejectors

The effect of the ejectors on the noise reduction characteristics of the finger suppressors is
essentially the same as for the multi-tube suppressor. The effect on peak PNL, shown in
Figure 5.1-35, indicates a slight reduction due to the hardwall ejector (1 PNdB) while the
addition of acoustical treatment produces a varying reduction ranging from 3 PNdB at low
fan velocities to nearly zero at the higher velocities. The PNL directivity, as illustrated in
Figure 5.1-36a, for a fan velocity of 707 mps shows reductions at aft angles for the hardwall
ejector, and small additional suppressions at all angles due to the treatment. At Vg =850
mps, Figure 5.1-36b, the hardwall ejector shows noise reductions similar to those at the lower
fan velocity, but the treated ejector produces no further noise reduction.

120 =
Trp« 8127 (1090°F)
Vp * 427 MPS 11400 FPS |
Top * 1090 (1500°F )
110 =
~
=
- NO EJECTOR )
=]
@
- WITH HARDWALL
Yo CIECTOR
g 100}—
-
~
=
= wiT
z B "
® TREATED
E EJECTOR
{
ot
z
[
E
g | | |
1000 1500 2000 3000 FPS
300 400 s00 600 700 800 800 mPs

FAN JET VELOCITY

Figure 5.1-35 Effect of Hardwall and Treated Ejectors on Peak PNL of Finger Suppressor, 0.75 Area
Ratio, Scaled to 1.27m (50 in.) Equivalent Diameter

73



74

al Vg < 707 MPS (2320 FPS)

10 =

g
T

NO EJECTOR
WITH HARDWALL tJECTOR

WITH TREATED
EJECTOR

-]
T

-]
-T—

Tip = 812K 11000 F)
n 427 MPS (1400 FPS)
'T' 1090 K (1500 F)

PNL ~ PNdB AT 648 6M( 2128 FT ) SIDELINE

0 p=
60 ( TN T b1 L 1 1
Y ) A e
60 75 S0 105 120 130 0 150 165
g g /
I\

gioo-

8

£

8wl

o

3

3

% s

2

K

z

& o

) A VN 1 A O D {1 )

S VLA I -
D 5 9% '(W/‘.‘ﬂ}/lf»ﬂ

L ;

(212877151

Figure 5.1-36 Effect of Hardwall and Treated Ejectors on PNL Directivity of Finger Suppressor, 0.75
Area Ratio, Scaled to 1.27m (50 in.) Equivalent Diameter



The SPL and power spectra comparisons at the lower fan velocity presented in Figure 5.1-3 7
show the same general characteristics as those exhibited by the multi-tube suppressor. In
particular, a large reduction in the SPL at high frequencies at rear angles, caused by addition
of the hardwall ejector, and consistent high frequency reductions at all angles due to the
treatment. Comparisons of the SPL spectra at 90° and 140°, and the power spectra for

V[ = 850 mps are presented in Figure 5.1-28. As was the case with the multi-tube suppressor.
at this high fan velocity, the noise generated by the merged jet is much higher than for the
lower fan velocity case and dominates the entire spectra. Thus, u( the high fan velocity, the
ejectors have negligible effect on the total noise. It is noted that the addition of treatment
to the ejector provides no attenuation even at high frequencies. This result is different from
the effect of the treated ejector on the noise of the multitube suppressor shown previously
in Figure 5.1-34. The explanation for this different behavior lies in the amount of merged
jet noise compared to the noise generated in the annular fan exhaust close to the nozzle exit
illustrated in Figure 5.1-39.

The PWL spectra for the finger and multi-tube suppressors with hardwall ejectors at 707 mps,
illustrated in Figure 5.1-39a, shows the merged jet noise spectra extrapolated to higher fre-
quencies assuming a typical jet noise spectrum shape. The spectrum is therefore consistent
with the noise that would be generated by a single jet exiting a circular nozzle at the merged
jet condition. This “floor level” noise is below the SPL level of the high frequency noise ac-
tually generated by both suppressors. As the multi-tube case has a much lower merged jet
noise, and therefore a lower “floor level” noise, the ejector treatment should provide more
attenuation than for the finger suppressors as can be seen by comparing Fig 'res 5.1-33 and
5.1-37. The effect of increasing the fan jet velocity to 850 mps is illustrated in Figure 5.1-39b.
In this case, the merged jet spectrum extrapolation for the finger suppressor falls very close
to the measured spectra, indicating that the merged jet noise dominates the noise over the
entire frequency range. However, the same extrapolation of the merged jet noise of the mul-
ti-tube suppressor falls below the level of the suppressor generated noise. Thus, the applica-
tion of the treatment would be expected to provide attenuation at the high frequencies for
the multi-tube suppressor, but not for the finger st spressor.
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5.1.3.4 Convoluted Suppressors With Ejectors

The comparison of peak PNL for the 0.75 area ratio convoluted suppressor, with and without
ejectors, is shown in Figure 5.1-40. As illustrated, the hardwall ejector provides approximately
| PNdB reduction. The presence of the acoustically treated ejector provides an additional

4 PNdB reduction at low fan velocities and no reduction at the higher fan velocities. The
PNL directivities at two fan velocities, shown in Figure 5.1-41, indicate a larger ejector im-
pact at @ = 165° compared to the other suppressor configurations. However, at the peak
PNL angle, the effect is comparable to that of the finger suppressor, but not as large as the
multi-tube design. The PNL reduction due to the ejectors is negligible at side and forward
angles at the fan velocity of 850 mps, similar to the results from t* “ti-tube and finger
suppressors. SPL and power spectra coraparisons are shown in Fig. .-42 for a fan velo-
city of 707 mps. The hardwall ejector provides a large amount of suppression at high freq-
uencies at = 140°, but has little effect at 6 = 90°. The treated ejector provides high freq-
uency suppression at both angles. The sound power spectra comparison in Figure 5.1-42¢
indicates a 1-3 dB reduction due to the hardwall ejector. The treated ejector provides up to
6 dB reduction at the higher frequencies. Comparisons of SPL spectra at 90° and 140° and
power spectra for the higher fan velocity of 850 mps are shown in Figure 5.1-43. As was
seen for the multi-tube and finger suppressors, the high levels of noise generated by the merged
jet dominates the noise spectra at this high fan velocity, and the ejectors are ineffective in
reducing the noise genera‘ed in the merged jet region. It is noted that no high frequency at-
tenuation is present due to the treatment in the ejector for the 850 mps case. The explana-
tion for this behavior is the same as for the finger suppressor discussed previously, i.e., the
merged jet noise is dominant over the entire frequency spectrum.
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The impact on peak PNL suppression of increasing the fan to primary area ratio cf the con-
voluted suppressor from 0.75 to 1.2 is shown in Figure 5.1-44 for both the hardwall and
treated ejectors. The suppression was essentially the same for the two different area ratios.
The impact of the ejectors on the noise power spectra of the 1.2 area ratio convoluted sup-
pressors is presented in Figure 5.145. The effect of the ejectors is seen to be similar to that
oi the 0.75 area ratio configuration illustrated in Figure 5.142. The hardwall ejector re-
duces the noise by varying amounts across the entire frequency range while the treated ejec-
tor results in additional suppression only at the higher frequencies. The reduction in noise
power spectra. due to the ejectors relative to the convoluted suppressor noise with no ejec-
tor, is presented in Figure 5.1-46 for both area ratios. Except at the very high frequencies
{zhove 4,000 H{z), the suppression spectra are quiie similar for both the 0.75 and 1.2 area
ratio models. Since the suppression spectra are approximately the same, it can inferred that
the effect of ejectors on the suppression provided by the convoluted suppressor is essentially
insensitive to nozzle area ratio charges from 0.75 to 1.2,
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5.1.4 Data Correlations

Three special correlations developed using the jet noise power level data obtained during
this program are presented in this section.

The correlations quantify the noise trends produced by the DBTF exhaust systems and
focus on three topics:

®  Acoustic power levels and perceived noise levels of the unsuppressed coannular nozzles
defined in terms of fan to primary velocity and area ratios.

e  Acoustic power level of all configurations in terms of sunpressor geometric parameters.

®  Acoustic power level of all configurations in terms of jet plume velocity profile mea-
surements.

5.1.4.1 Correlation of Unsuppressed Coannular Nozzle Noise

Since the unsuppressed coannular nozzle produced significant noise reductions relative to
the synthesis, it is desirable to correlate the results in a general manner that adequately
describes the overall noise characteristics of the nozzle system. A general correlation of the
unsuppressed coannular nozzle noise data is presented in this section. The results show that
for Vg/Vy = 1, the noise power level, when corrected for fan strezm temperature. can be
represen de as 4 function of fan stream velocity along a tamily of nearly straieht lines of
constant Vr/V . The effect of V,-/Vp and Af/Ap are then accounted for by empirically
derved normalizing factors.
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The power level normalization factors were also used to coliapse the peak PNL data, the
results being generally similar to those of the PWL correlation.

Figure 5.1-47 illustrates the power level along lines of constant fan stream temperature for
all the values of pnmary stream velocity run during the tests of the unsuppressed coannular
nozzle having Ag/A, = 0.75 including V of 305,402,427, 500, 539 and 610 mps. The
power levels stratify along constant fan stream temperature lines, especially at the higher
values of fan velocity. This indicates that at the higher fan velocities, the fan flow is
responsible for the dominant portion of the overall jet noise. Under these conditions. the use
of a fan stream temperature (or density ) normalizing parameter proved useful in collapsing
the noise levels along a single line (i.c., removing the effect of fan temperature). The para-
meter used for this purpose is the fully expanded ratio of fan stream density to ambient den-
sity raised to an exponent which varies with jet velocity, where APWL = 10 logy g (pflpa)“’

is added to the noise level of a jet at elevated temperature to equal the noise level of an ambi-
ent temperature jet. Application of this parameter has been shown to provide an excellent col-
lapse of subsonic jet mixing noise Yevels in Ref. 10. The expon:nt varies from -1 at low velo-
cities to a value of +2 at high jet velocity as shown in Figure S 1-48. This normalization ap-
plied to the convergent reference nozzle data produced an excellent collapse of the power
level as shown in Figure 5.1-49. The curve shape closely simulates the results in Ref. 10 when
the referenced data are converted to a power level basis. At low velocities the slope is approx-
imately 3. then increases to ! 1.5 between 308 and 610 mps, and decreases at velocities above
610 mps. The 11.5 slope arises from the effects of convective amplification which becomes
increasingly important above 305 mps. The only data points that do not collapse are for low
temperature, supersonic velocity fan operating conditions that contain large amounts of shock
screech energy. The otherwise excellent data collapse indicates that. on a power level basis,
the jet noise is dominated by mixing noise rather than shock related noise sources. Applying
the same normalizing factor based on fan jet density and velocity to the unsuppressed coan-
nular nozzle noise ievels results in the collapsed noise power curves in Figure 5.1-50. cach
curve representing a constant pnimary velocity. At V., = 305 mps, the data collapses well
over the entire velocity range. except for the two low temperature supersonic velocity fan
points which contain shocks similar to those in the convergent nozzle data. Above 305 mps,
the shape of the curve is similar to that of the convergent nozzle data (i.e., a reasonably
straight line at velocities between 305 and 610 mps, and decreasing slope between 305 and
above 620 mps). The slope of 8.5 in the mid-velocity range is less than that of the conver-
gent nozzle data and is due to the jet noise from the pnmary stream becoming increasingly
important at decreasing fan velocities. At \'p = 402 mps. the slope is 7, indicating a further
contribution of the primary jet to the total jet noise. At V= 427 mps, the slope is 6.3, and
it 1s seen that the nosmmalization does not work at V<<V due to the high contribution of
the primary jet to the total jet noise. At a velocity of 506 mps, the influence of the primary
stream on the nois: tends to obscure the slope in the 305-610 mps V, range, and at V; = 539
and 610 mps, the density normalization, for the limited data region tested, does not collapse
the data due to the high contribution of primary jet noise. However, extrapolation of the
data curves to higher fan velocity in<icates a collapse at large V. Figure 5.1-50 shows the
normalized power level curves for all arimary velocities where the shaded regions represent
the uncertainty in the densitv normihzed cuives due to non-collapse of the data. The cor-
relation was established to represent the data at vaiues of \'l-»'\' , > 1.0. The uncertainty
exists for only a limited region of the correlation where the primary velocity is over 500 mps.
The large uncertainty is + 1.5 dB.
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Figure 5.1-51 Composite Map of Density Normalized PWL of Coannular Unsuppressed Nozzle at All
Tested Primary Velocities, 0.75 Area Ratio, Scaled to 1.27m (50 in.) Equivalent Diameter

To further enhance the data correlation, the effect of velocity ratio, Vf/V , was established.
This was accomplished by locating points on each constant primary velocity line (on

Figure 5.1-51) corresponding to V¢/V_ of 1.0, 1.2 ... .2.8. The lines best fitting these
points are shown as dashed lines in Figure 5.1-50 and by themselves in Figure 5.1-52 for
more clarity.

Also shown on Figure 5.1-51 is the normalized power level curve from the convergent
nozzle data. This line represents the ideal noise power level of a coannular nozzle having
equal fan and primary velocities. Note that it lies from 2 to 5 dB above the coannular nozzle
line having V¢/V_ = 1.0, thus indicating that the coannular nozzle under the conditions of
equal primary and fan velocities produces less noise than a single jet. Two major factors
may contribute to this result. The first factor is the differences in geometry. The presence
of the primary stream tailpipe that separates the fan and primary streams can produce
significant differences in the exit velocity profile compared to the convergent nozzle. In
particular, an intermediate shear layer caused by the boundary layer growth inside of the
primary nozzle and the fan nozzle inner diameter surface is present and could affect the
actual mixing process. In addition the two streams exhaust to ambient at different axial
locations, and this will also affect the mixing process relative to a single jet. The second fac-
tor is that the normalization for density was based strictly on the fan stream conditions. Nc
adjustments could be made to correct for different primary stream densities as data were not
obtained that would allow definition of the effect of this parameter.

91



In any event, the correlation of the coannular nozzle noise levels clearly shows that at all
fan velocities, an increase of V /V causes substantial noise reductions up to Vf/V =2.0.
Increases of Vf/V above 2.0 causes only smali additional noise reductions.

Using the results in this form enables determination of the noise reduction due to the inver-
ted profile effect (i.e., Vg > V), knowing only the fan velocity and the fan to primary velo-
city ratio {for a configuration having Ag/A, = 0.75). Since the Vf/V lines of Figure 5.1-52
are well behaved, the data correlation has geen extended one additional step, which is the de-
termination of the normalizing factor necessary to collapse all of the data to a single line. It
was postulated that a data collapse could be accomplished by using only V¢/V_ as a parame-
ter. Figure 5.1-53 shows plots of APWL vs 10 log Vf/V for four different fan velocities, in
order to determine the behavior over a wide range of fan velocity. These APWL were deter-
mined by subtracting the PWL at each value of V¢/V  from the PWL value at Vg/V, = 1.0.
Thecse data collapsed reasonably well. The correlating parameter of APWL based on the mean
line through the points is 10 log (Vf/Vp)m as shown in Figure 5.1-54, where

A PWL (Rel. to Vf/Vp =1) 1 1/5
= -3.75 (

10 log (V¢/Vp) 1+0.0127 X3
Application of this parameter results in the final normalized power level curves shown in
Figure 5.1-55. The maximum deviation of + 1 dB from a mean line representing the curves
indicates that the normalizing parameter adequately describes the effect of the fan to pri-
mary velocity ratio for this configuration having Af/ =0.75. An important observation
that can be made from this correlation, and in particular from the expression for m shown
above, is that negligible additional suppression (<!2 dB) is gained for Vf/V greater than 2.0.
This indicates that if the primary stream were turned off, i.e., Vi/V = oo, the suppression
would be approximately the same as for Vg/V = 2.0. In other words, a single jet exiting

as an annulus surrounding a zero length plug centerbody would be expected to produce ap-
proximately the same suppression as a coannular flow of V¢/V, = 2.0 if the annulus in each
case is similar, and if the single jet were provided with a small amount of leakage flow to pre-
vent a severe overexpansion shock system and its associated shock noise.

The same formula for m determined for the 0.75 area ratio nozzle was applied to the data
produced by the second unsuppressed coannular nozzle, having Af/A = 1.2. The normal-
ized power level curves showed reasonable collapse as shown in Figure 5.1-56. A compari-
son of the normalized curves for the 0.75 and 1.2 area ratio unsuppressed coannular nozzle
«on ‘gurations shows that the noise of the 1.2 configuration is 2-3 dB higher. It also shows
that the normalization tends to over-compensate the noise of the 1.2 area ratio nozzle at

the higher ratio~ of V /V implying that the inverted profile effect is less as Af//i\.p increases
from 0.75 to 1.2

The apparent effect of A¢/A, was determined by using A PWL = 10 log (Af/A )", where
for simplicity and due to the limited data, the area ratio and velocity raiiy are consndered
to act independently. The value of n required to collapse the two sets of data was found to
be equal to 1.0. The fina! data normalization using mean lines for both sets of data is
illustrated in Figure 5.1-57.
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Figure 5.1-58 shows all the measured PWL data for the Vf/Vp operating conditions normalized
by the resulting procedure.
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Figure 5.1-58 Comparison of normalized PWL Test Data and Correlation Curves for Coannular
Unsuppressed Nozzles, Scaled to 1.27m (50 in.) Equivalent Diameter

The same numerical values of correlating parameters used to correlate the power level data
were used to normalize the perceived noise level data results shown in Figure 5.1-59. The
data spread is similar to that of the power level normalization.

This correlation procedure produced a reasonable collapse of the noise levels of the inverted
velocity profile coannular nozzles. However, for airplane mission studies, a prediction pro-
cedure is required which includes the estimation of SPL spectral characteristics at all angles.
This more sophisticated prediction requirement is needed in order to allow EPNL calcula-
tions for flyover conditions. In order to develop a prediction procedure of this type, con-
sideration of the noise generation process is necessary. The total noise spectrum is com-
prised of low frequency noise related to the properties of a downstream merged jet, and
high frequency noise related to the properties of the annular fan stream close to the nozzle.
The use of simple parameters based on ideally expanded properties of each stream at the
nozzle exit to correlate a noise level representing the sum of th. noise from the two sources
is considered to be too simple a basis for providing an accurate method to normalize the
data. Preliminary correlations based on dividing the measured SPL spectra into separate
high and low frequency noise components indicate that a satisfactory prediction procedure
could be developed by correlating the low frequency and high frequency noise individually
agains! parameters better representing the noise generation in the two separate regions.
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5.1.4.2 Suppressor Geometry Correlation

This correlation is shown in Figure 5.1-60 for a variety of flow combinations. The geometric
parameter selected is the projected area ratio, defined as the total area enclosed by a circle
surrounding the outermost perimeter of the fan nozzle (Suppressor Projected Area), divided
by the actual fan exhaust flow area (Flow Area). When the fan velocity is substantially
higher than the primary velocity, this parameter represents a rough measure of the cross
sectional area available for the high velocity fan flow to mix with both the ambient and low
velocity primary exhaust flows and thus to decay to lower velocities downstream. This
parameter is analogous to the suppressor area ratio parameter used to correlate noise suppres-
sion of turbojet suppressors (Ref. 16). The noise ievels for the projected area ratio of 1.0, (ie
the single jet) was obtained by scaling the reference convergent nozzle noise levels to a
single jet having the same area as the fan area of the coannular nozzle. The correlation
between noise power and the area ratio parameter suggests that the suppressor-like behavior
of the unsuppressed coannular nczzle, when compared to a convergent nozzle, is related to
the ratio of the fan area to total area, and that this is the parameter which controls the sub-
sequent mixing with both the lower velocity primary exhaust and the ambient air.
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Based on this limited correiation, an inference could be made relating to the possibility of
obtaining the inherent coannular nozzle noise reductions for V¢/V, > 1 exhaust profiles
through the use of a large centerbody plug in place of a low velocipy primary stream. Data
contained in Ref. 12 indicates that a single stream annular nozzle with no centerbody
generally produces noise reduction consistent with the coannular nozzle having large
V;/V,. However, results of Ref. 13 showed that a single stream annular nozzle surrounding
a large, long plug centerbody produced only a moderate amount of suppression compared
to the coannular noise reductions obtained during this program. Consideration of the flow
aerodynamics would explain these results. Whereas the coannular jet provides for mixing
of the high velocity fan flow jet with the ambient air on the jet outer diameter and with
low velocity primary flow on the jet inner diameter, the presence of a large centerbody plug
in place of the low velocity inner flow would severely reduce the mixing on the jet inner
diameter. Thus, the coannular noise/geometry correlation presented in this section would
be optimistic if used to predict the suppression of an annular jet surrounding a large, long
plug centerbody.

5.1.4.3 Velocity Profile Correlation

The third correlation was developed to relate the noise to the jet plume characteristics of
the various configurations. The measurements of velocity profiles at the axial position of
the ejector exit plane (whether or not an ejector was used), shown in Figure 5.1-61 for a
typical operating point, were used in conjunction with the measured noise power levels to
derive a correlation between the noise and the flowfield characteristics of the various con-
figurations. The basis for this correlation is the work of Chen (Ref. 17) in which he demon-
strated that jet noise can be approximated by a spatial integration across the jet volume of
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" large number of radiating noise elements (or turbuilent eddies). Each of the elements gen-
erates noise approximately as the eighth power of the local mean velocity. The approach
uised in this program was to determine the maximum velocity behind both the primary and |
fan stream nozzle at the ejector exit plane station, and add these values logarithmically with
an appropriate area weighting factor relating to the fan to primary stream area ratio. The |
velocity profiles were highly dependent upon the nozzle configuration at each operating eod-
dmon as would be expected due to the large influence of nozzle suppressor geometry upon
the mixing and subsequent velocity decay of the jet exhausts. This is illustrated by the pro-'
files presented in Figure 5.1-61. The correlation of noise level with the velocity parameter
for all points at which profile measurements were made is shown in Figure 5.1-62. The max-
imum deviation from the mean line was 3 dB; however, 2/3 of the data falls within 1 dB.

Extended studies in this area may prove useful in supplementing the understanding of sup-
~ pressor nozzle behavior.
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52 AERODYNAMIC PERFORMANCE

The aerodynamic performance characteristics were obtained simultaneously with the acous-
tic measurements at each pressure ratio and temperature for all the configurations tested.
The aerodynamic performance is defined by the nozzle thrust coefficient, Cy, which is the
ratio of actual total thrust generated by the complete exhaust system to the total ideal
thrust available. In addition, an array of static pressures on the suppressor configurations
was used to aid in diagnosing the flow through the system.

The performance of the various nozzle/suppressor configurations is presented relative to the
appropriate unsuppressed coannular nozzle, operating at the same flow conditions. The un-
suppressed coannular nozzle is used as a reference configuration since the aerodynamic per-
formance characteristics of a coannular system cannot be directly synthesized from the per-
formance characteristics of a simple convergent nozzle.

The resulting differences between a given test configuration and the unsuppressed coannular
nozzle were then compited, point by point, primarily in terms of fan stream pressure ratio
and a smooth mean line carefully established through the data. In some cases, this mean
performance level was tempered by cross-correlating with the pressure integrals in the nozzle
as well as established differences between other configurations. The large quantity of data
on many of the configurations provided a good statistical sampling of the performance levels.
All of the data is presented in Volume II of the CDR (Ref. 8). The performance data is used
as measured rnd not adjusted for any full scale effects since the physical full scale exhaust
system characteristics have not been established.

The discussion of performance characteristics will cover the following items. The perform-
ance of the reference nozzles will be presented first, for both the convergent nozzle which
provides a check on the basic facility, and the unsuppressed coannular nozzles which serve
as the baselines for all of the suppressor configurations. The characteristics of all the sup-
pressor configurations are then discussed, with the low arca ratio (Ar/A =0.75) presented
first, followed by the larger area ratio (Af/A = 1.2) evaluations.

The performance aspects of the ejectors are included in the discussion of the basic nozzle/
suppressor rather than in a separate discussion, as in the Acoustic Results (Section 5.1). A
brief summary of the flow coefficients for all the models is also included. A special correla-
tion presenting the impact of acoustical treatment is then discussed, prior to a complete
summary of the aerodynamic performance relating all the test configurations.

5.2.1 Convergent Nozzle

The convergent nozzle thrust coefficients are shown in Figure 5.2-1 for all the measured
points, at temperatures from 395°K to 1090°K. These data do not indicate any discernible
trend with variation in temperature, and therefore, a single mean line representing the per-
formance level was established. The level shown is consistent with that generally accepted

for a convergent nozzle, when the installation is considered. The installation in this test had

a relatively long distance and large amount of internal surface area between the instrument-
ation station and the nozzle exit, The internal friction losses, therefore, become significant,
particularly at the low pressure ratios. This is reflected in the high lapse rate at the low pres-
sure ratios. The losses diminish in importance at the high pressure ratios, where they are small
compared to the nozzle thrust.
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5.2.2 Unsuppressed Coannular Nozzles

The performance levels of the unsuppressed coannular nozzles are presented in Figure 5.2-2
for all the measured points. As indicated, there was a large amount of data generated with

these nozzles, since they were baseline configurations. All of the test conditions simulated

with the suppressor configurations were duplicated with the baseline units, plus additional

points to ensure a thorough and complete understanding of the baseline configurations. As
with the convergent reference nozzle, no significant trend consistent with stream tempera-

tuzre was observed, and therefore, a single smooth mean line was used to represent the base-
line performance levels.
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Figure 5.2-2  Aerodynamic Performance of Coannular Unsuppressed Nozzles at a Primary Pressure
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101



The performance of the two unsuppressed coannular nozzles is compared to that of the
convergent nozzle in Figure 5.2-3, where the average performance levels of the configura-
tions are illustrated. The performance is presented in terms of mass averaged total pressure
ratio so thai all the reference nozzles can be meaningfully compared. The difference bet-
weer the convergent nozzle and the unsuppressed coannular nozzle with an Ag/A, = 0.75

is due to the presence of a convergent-divergent nozzle in the primary stream of the coannu-
lar configuration, as well as the increased frictional drag associated with the coannular noz-
zle. The primary nozzle was selected to reflect requirements of higher design flight speeds
associated with a supersonic cruise vehicle. The C-D nozzle (A/Ath = 1.1) is overexpanded
at the low primary pressure ratio (1.53) simulated in this series of tests. The frictional
losses are due to the additional wetted areas of the coannular nozzle, downstream of the in-
strumentation station. As illustrated, when these calculated differences between configura-
tions are accounted for, the performance levels are consistent and acceptable.

Also presented in Figure 5.2-3 is the performance of the higher area ratio (Af/ =1.2) un-
suppressed coannular nozzle. As illustrated, it is approximately 0.5% below the 0.75 coannular
nozzle. This loss reflects the increased internal duct Mach number associated with increasing
the fan stream discharge area with a fixed upstream duct size. The primary stream has an
opposite trend, but it is not enough to offset the fan stream losses.
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Figure 5.2-3  Comparison of Aerodynamic Performance of Convergent Reference Nozzle, and Coannular
Unsuppressed Nozzles at a Primary Pressure Ratio of 1.53

One of the unsuppressed coannular nozzles (Af/Ap =(.75) was also tested at higher primary
pressure ratios to supplement similar tests with suppressor configurations. The performance
levels are presented in Figure 5.2-4. The over-all performance level increases slightly when
the primary pressure ratio is increased because the primary over-xpansion losses, discussed
earlier, are reduced. Since the primary overexpansion losses are changing, the data was not
included in the comparison of Figure 5.2-3. However, since the data shifts at the higher
primary pressure ratios can be entirely attributed to the changes in the overexpansion losses,
the data is believed to be consistent with the previous baseline data.
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Since the coannular unsuppressed nozzle demonstrated noise levels well below that which
would be predicted using normal methods, the thrust characteristics of this system are of
special interest. Mating an ejector to this nozzle would constitute a flight-type exhaust sys-
tem. The impact of an ejector on the performance characteristics of the unsuppressed co-
annular nozzle is shown in Figure 5.2-5. At a nomina! fan pressure ratio of 2.5 the hardwall
ejector provided approximately 1% thrust augmentation to the baseline nozzle. Adding
acoustic treatment to the ejector produced a loss of about 0.5%, due primarily to the in-
creased frictional drag. It should be noted that these increments could be improved by slightly
altering the relative size and/or position of the ejector. The performance characteristics of
both the hardwall and treated ejectors are presented in terms of fan stream jet velocity in
Figure 5.2-6. The latter is 2 transformation from pressure ratio and temperature to jet ve-
locity, and is presented as a convenience to expedite correlation with the corresponding acoustic
data.
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5.2.3 Fan Stream Suppressors
5.2.3.1 Multi-Tube Suppressor

The performance characteristics of the multi-tube suppressor configurations are presented

in Figure 5.2-7, relative to the unsuppressed coannular reference nozzle for a typical set of
flow conditions. Since fan stream temperature does not appear 10 significantly affect the
performance characteristics, a single line through all of the data establishes the performance
change to be a functinr ~f the fan stream pressure ratio. The performance loss increases
with increasing pressure ratio because the static pressure acting on the base regions of the
tube array is decreasing, causing additional drag. At a nominal pressure ratio of 2.5, the
basic multi-tube suppressor exhibited a lcss of 3.5%. Adding the hardwall ejector reduced
the net loss to 2%, reflecting the augmentation gains of the ejector. Adding acoustical treat-
ment to the ejector increases the loss to about 6.5%. This additional loss is due to the
increased friction on the internal surface of the ejector, along with an associated change in
the ejector pumping characteristics. Since the outer perimeter of the tube array is very
close to the inner surface of the ejector (see Figure 3-17, Section 3.2.6), the treatment is
being washed by the high velocity discharge from the tubes. The normal frictional loss is
magnified by the following factors: the facing sheet of the treatment has a moderately

high porosity (30%); and the backing material (*‘Cerafelt™) is penetrable and when subjected
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“to an axial static pressure gradient, as observed in the ejector, recirculation losses are created
in the treated walls of the ejector, The observed overall loss associated with the acoustic
treatment could be reduced by: increasing the clearance between the ejector and the tube
array, reducing the porosity of the facing sheet, if acceptable from a noise suppressor and
exhaust system viewpoint; and compartmentalizing the space behind the facing sheet or
adopting a honeycomb backing material tuned to a specific design point. Asa convenience,
the same performance characteristics are presented in terms of ideal jet velocity in Figure 5.2.8.
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§.2.3.2 Convoluted Suppressor

The performance characteristics of the convoluted suppressor configurations are illustrated

in Figure 5.2\ relative to the unsuppressed coannular nozzle operating at the same condi-
tions. At a cypical fan pressure ratio of 2.5, the basic convoluted suppressor exhibits a loss

of almost 195 The loss is a combination of the internal total pressure losses, associated with

a multi-element nozzle, and the base pressure drag generated on the external surface of the
convolutions, primarily near the nozzle exit. When the ejector was added, a performance

gain of neaily 2% over the unsuppressed nozzle was obiained. This is 3% over the basic con-
voluted suppressor, representing the ejector augmentation. This augmentation is slightly more
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than observed with the multi-tube suppressor. The shift in augmentation between the two sup-
pressor configurations is the result of the changing match between the suppressors and the
ejector, which was the same unit in each case. The impact of the ejector on a given suppres-
sor could be altered if the ejector geometry is varied. Adding acoustic treatment to the ejec-
tor lowered the performance by approximately 1%, but the resultant convoluted suppressor
configuration will stiil 1% higher than the unsuppressed nozzle. This loss is due to the increased
scrubting drag as well as changes in the ejector pumping characteristics. As illustrated for
these three configurations, fan temperature does not appreciably change the performance
comparisons; however, increasing fan pressure ratio does cause a slight decay in the perforra-
ance levels. The same performance characteristics are presented as a function of fan jet velo-
city in Figure 5.2-10.
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Several of the preceeding suppressor configurations were evaluated at higher primary stream
pressure ratios, ranging up to 2.5. These configurations were the basic convoluted suppressor
and the multi-tube suppressor, with and without an acoustically treated ejector. The resultant
perfurmance trends are summarized in Figure 5.2-11, illustrating the decrease in performance
ioss, relative to the unsuppressed coannular nozzle, when the primary pressure ratio is increased.
‘This is due ro the increasing percentage of the tctal mass flow passing through the relatively
loss-free primary nozzle, while the fan stream thrust contribution remains unchanged. The
losses in the fan stream suppression device become a smaller percentage of the total thrust
produced by the complete nozzle configuration.

108



00e MULTHTURE SUPPRESSOR TREATED CECTOR —

sey-oy-Cy

o8- —— — _——— - e —— s ———

PRIMARY STREAM FRESSUKE RATIO, l"h‘.

Figure 5.2-11 Effect of Primary Pressure Ratio on Aerodyramic Performance of Several Suppressors
Relative ‘o Coannular Unsuppressed Nozzle Without Ejector, 0.75 Area Ratio

The performance charecteristics of a convoluted suppressor with an area ratio of 1.2 are shown
in Figure 5.2-12, relative to the performance of the comparable unsuppressed coannular nozzle
(Af/Ap = 1.2). The basic convoluted suppressor exhibited a loss of about 1% (ACy at a fan
pressure ratio of 2.5) relative to the unsuppressed coannular nozzle. Adding the hardwall
ejector produced about 3% gain over the basic convoluted suppressor performance level. How-
ever, when acoustic treatment was added to the ejector, a loss of about 2% relative to hardwall
ejector was noted. Tle resultant performance of the treated ejector was therefore 1% higher
than the basic convoluted suppressor. These performance trends are presented in terms of fan
stream jet velocity in Figure 5.2-12.
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These results are quiie similar to those obtained with the lower area ratio convoluted nozzie.
The performance characteristics for the two configurations are compared in Figure 5.2-14.
When the basic suppressor, as well as the suppressor with a hardwall ejector, are considered,
the higher area ratio nozzle is only slightly lower in performance level. A higner percentage

of the total configuration flow is passing through the loss producing portion (i.e. ccnvolutions)
of the nozzle system and therefore total performance is decreasing. When an acous:ically
treated ejector is added to the suppressor, the impact of nozzle area ratio is magnified and

a difference of approximately 1.5% between the configurations is noted,
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5.2.3.3 Finger Suppressor

The thrust characteristics of the finger-type suppressor are iliustrated in Figure 5.2-15 relative
to the unsuppressed coannular nozzle. The finger suppressor by itself, exhibited a performance
loss of 2.7% (A Cv @ P:f,/P‘ = 2.5) due primarily to the low pressures created on the down-
stream side of the fingers. When the hardwall ejector was added, the performance loss in-
creased to approximately 4.3%. This performance decay is due to the severe reduction in
static pressure on the suppressor as illustrated in Figure 5.2-16. As shown, the average

pressure acting on the fingers drops from 95% of ambient to 81%. This is offset somewhat

by the low pressure acting on the lip of the ejector, but the dominant foice is that acting

on the suppressor. This reduction in internal pressures is associaied with the induced airfiow
produced by the ejector.
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Adding acoustic treatment to the ejector increased the thrust penalty of the system to 5.0%,
relative to the unsuppressed coannular nozzle (Figure 5.2-15). Integration of the static pres-
sures, illustrated in Figure 5.2-16, showed that the net force acting on the suppressor and
ejector lip was equal to that with the hardwall ejector. The additional performance loss of
0.7% (5.0-4.3) is therefore attributed to the frictional drag of the acoustic treatment. These
performance characteristics are presented in terms of fan jet velocity in Figure 5.2-17.
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LOCAL STATIC PRESSURE

A comparison of the internal pressures for the various suppressor configurations is shown in
Figure 5.2-18 for a typical flow condition. The convoluted suppressor, which showed the
largest amount of ejector augmentation, had relatively high pressures on the suppressor as a
result of proper ventilation. The corresponding pressures in the ejector indicated a moderate
amount of lip suction for the conveluted suppressor. Since the ejector is cylindrical for the
last 75% of its length, the pressure distribution in this region does not contribute significantly
to the overall force. The multi-tube suppressor and the finger-type suppressor both exhibit
low pressures on the suppressor, however, the lip suction on the ejector is better for the multi-
tube configuration. The integrated force, therefore confirm that the multi-tube suppressor
exhibited much more ejector augmentation than did the finger design, but not as much as the
convoluted configuration. ;
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Ejector, 0.75 Area Ratio

5.2.4 Flow Coefficients ‘

The flow coefficients of the primary nozzle for Ag/A, = 0.75 are presented in Figure 5.2-19
for a range of flow conditions. The primary nozzle ﬂ%w coefficient at a P /P, = 1.53 is
shown on Figure 5.2-19a. As illustrated, it is not appreciably changed by the type of fan
stream nozzle employed (i.e., unsuppressed or suppressed). The thermal growth of the
model hardware has been analytically accounted for in the flow calculation and therefore,
there is no significant stream temp<rature effect. A single curve is therefore drawn through
all the points. The level is significantly above unity over the range of fan nozzle pressure
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ratios. These high values of flow coefficient occur because the primary nozzle is a convergent-
divergent design, being aspirated by the surrounding fan stream. The ideal flow of this noz-
zle is calculated for an indicated pressure ratio of 1.53 (relative to ambient pressure); how-
ever, this nozzle is operating with an exit pressure that is lower than ambient and is conse-
quently passing more airflow than defined as ideal. This phenomenon does not occur when
the indicated primary pressure ratio exceeds approximately 1.9 since the nozzle becomes
choked. The primary flow coefficient at a pressure ratio of 2.5 is illustrated in Figure 5.2-19b
where the level is below unity. The general trend of the primary flow coefficient (for both
primary nozzle pressure ratios) is to decrease with increasing fan nozzle pressure ratio, due to
the suppressive effect of increasing fan pressure ratio. This tends to counteract the high levels
of aspiration which the primary nozzle experiences at the lower fan pressure ratios.
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Figure 5.2-19 Typical Primary Flow Coefficients for Several Coannular Nozzles, 0.75 Area Ratio

The flow coefficient of the fan stream for Af/A =0.75 (shown on Figure 5.2-20) has a
more conventional trend, with the peak level varying from 0.95 to 0.98 depending on the
configuration. The unsuppressed nozzle and the convoluted suppressor are on the upper end
of the band, reflecting the gradual convergence of the fan stream passage. The flow coeffi-
cients of the multi-tube and finger suppressors are on the lower end of the band because

of the increase in wetted perimeter at the nozzle exit and a more abrupt convergence. Since
there is no significant effect of stream temperature on the flow coefficients, single curves
represent each of the configurations. The variations in fan flow coefficients are not large
enough to create any significant differences in either the relative thrust characteristics or

the relative acoustic properties used in the configurational comparisons.
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Figure 5.2-20 Typical Fan Flow Coefficients for Several Coannular Nozzles, 0.75 Area Ratio

The configurations having an area ratio, Ag/A , of 1.2 are geometrically similar to those
having a 0.75 area ratio. The flow coefficients are, therefore, similar, but have slightly dif-
ferent absolute levels. The fan nozzle (Ag/A, = 1.2) is lower in flow coefficient, as shown

in Figure 5.2-21, where the fan flow coefficients of both the unsuppressed nozzies are com-
pared. All of the data taken for each configuration is presented with a mean line indicating
the level of flow coefficient for each area ratio. The 1.2 area ratio fan nozzle flow coeffi-
cient is lower because the increased fan exit area is associated with a higher fan duct pres-
sure loss due to an increased internal Mach number. This increased loss is equivalent to about
1% decrease in fan nozzle flow coefficient (above the choked pressure ratio) which is the
difference between the mean levels of flow coefficient for the two configurations.

The primary stream undergoes the reverse trend when the area ratio is increased from 0.75
to 1.2. However, the resulting change in primary flow coefficient is negligible because the
Mach numbers in the primary passage are so low. In other words, the primary flow coeffi-
cients presented in Figure 5.2-19 apply to both the 0.75 and 1.2 area ratio nozzles.
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Figure 5.2-21 Effect of Area Ratio on Fan Flow Coefficient of Coannular Unsuppressed Nozzle
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5.2.5 Acoustical Treatment

The addition of acoustical treatment to the ejector had a significant impact on the perform-
ance of all the suppressor configurations because of the scrubbing drag on the perforated wall
liner. The severity of this drag is dependent on the geometry of the suppressor, which will
dictate the outer bounds of the fan stream plume. The ratio of the ejector area to the pro-
jected area of the suppressor then furnishes a convenient parameter to describe this effect,

as illustrated in Figure 5.2-22. Each of the suppressor configuratii-ns tested with a treated
ejector has been compared to the corresponding hardwall version to establish the thrust de-
crement. Asshown, a distinct trend prevails without regard to the type of suppressor system.
As the area ratio is descreased (i.e., when the clearance between the suppressor and the ejector
is reduced), the losses increase, especially if the area ratio is below approximately 1.3.
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Figure 5.2-22 Correlation of Loss in Aerodynamic Performance Due to Acoustical Treatment With Nozzle
Suppressor/Ejector Selection, Relative to Corresponding Nozzle Suppressor with Hardwall
Ejector

5.3 IMPLICATIONS FOR CYCLF STUDIES

A cross section of the measured characteristics is presented in Figure 5.3-1, at a typical set
of primary and fan stream conditions, representing the current family of engine cycles being
evaluated in the Advanced Supersonic Propulsion Study. The amount of noise suppression
(relative to noise levels synthesized using modifications to the proposed revision of the SAE
jet noise prediction procedures) produced by the various configurations is compared to the
associated thrust change, thus providing a measure of the overall system effectiveness. The
coannular unsuppressed nozzle, representing a DBTY exhaust system, is 6 PNdB quieter
than predicted. Since this is the baseline configuration for the thrust measurements, the
thrust change is zero. Adding an ¢jector to the baseline produced 1 PNdB more suppression
and 1% thrust augmentation. Incorporating acoustical treatment in the ejector produced
another 1 PNdB suppression, at the expense of 0.5% thrust loss. The net result is that an
unsuppressed flight type exhaust system, consisting of a basic nozzle system and a treated
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ejector, is 8 PNdB quieter than previously estimated. The characteristics of convoluted,
finger and multi-tube suppressors are also shown in Figure 5.3-1. The multi-tube suppressor
nearly doubled the coannular baseline noise reduction (up to 15 PNdB), with the other sup-
pressors in between. The hardwall ejector did not appreciably change the noise level (< 1
PNdB) but its thrust impact varied from a gain of 3% to a loss of 1.5%, illustrating the sensi-
tive interaction between the basic suppressor design and the ejector. The introduction of
acoustical treatment in the ejector produced from 1.0 to 3.5 PNdB additional reduction but
at thrust losses from 0.5 to 4%, These losses indicate that acoustic treatment is a potentially
critical factor, requiring careful consideration.
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Figure 5.3-1  Exhaust System Effectiveness, 0.75 Area Ratio

Within the range of area ratios considered (0.75 to 1.2), the relative size between the pri-
mary and fan streams Af/Ap, did not appreciably change the .iet results.

The results of this program have had a strong influence on the Advanced Supersonic Propui-
sion Studies being conducted in support of the SCAR program (as summarized in Ref. 18). -
The inherent suppression characteristics of the coannular exhaust system provide several sys-
tem advantages. As illustrated in Figure 5.3-2, for a band of study engines, a reduction in
vehicle take-off gross weight of approximately 100,000 Ibs can be achieved at a given jet
noise level by incorporating these new coannular benefits into the previously used prediction
techniques. In terms of the noise “footprint™ at constant TOGW, the impact is even more
dramatic, as shown in Figure §.3-3. A reduction in footprint size, down to 25% of its origi-
nal size, is possible hecause of the coannular ben - fits. The projected range improvement due
to these test results is illustrated in Figure 5.3-4. applied to the evolutionary trend in the
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newer variable stream control engines. The range improvements reflect the reduced power-
plant weight on a given aircraft, allowing more fuel to be carried, providing increased range.
The newly defined exhaust system characteristics intensify the normal engine improvement
rate and greatly improve the range pay-offs for the advanced technology engines projected
for the future.
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Figure 5.32  Impact of Coannular Nozzle Noise Benefit on Aircraft Weight
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6.0 SUMMARY OF RESULTS

Siatic acoustic and acrodynamic performance characteristics of typical duct-burning turbo-
fan nozzles were measured during this program using 0.127 m equivalent diameter scale
models, approximately 1/10 size. Coniigurations with and without fan stream jet noise
suppressors were evaluated, and the effects of hardwall and treated ejector shrouds were de-

termined.

The nozzles were tested over a large range of opera ing conditions. Primary stream velocity
ranged from 3035 raps to 610 neps at temperatures of 395°K to 1090°K. Fan stream

velocity varied from 235 mps to 853 mps at temperatures of 395°F to 1090°K. A total of
417 operating points were tested. Radial pressure and temperature profiles were measured

at the position of the eicctor exit plane at selected conditions. A data bank comprising all

of the results obtained during the program has been established and documented in the Com-
prehensive Data Report, NASA CR-134910. The aerodynamic performance data is presented
in terms of non-dimensional coefiicients and thus can be applied to any size engine. The
acoustic data has been scaled 10X model size to represent the noise characteristics of a 1.27m
equivalent diameter rozzle.

6.1  ACOUSTICS RESULTS

The more significant results from the acoustic tests are summarized in this section. First,
the coannular unsuppressed nozzle results are presented, followed by the fan stream
suppressor nozzle results.

6.1.1 Coannular Unsuppressed Nozzles

®  Coannular unsuppressed nozzles were significantly quieter (up to 11 PNdB)
than predictions based on a coannular noise synthesis of two unmixed streams.
The 0.75 area ratio nozzle produced slightly more noise reduction than did the
1.2 area ratio nozzle. The coannular unsuppressed nozzles were also significantly
quieter (up to 7 PNdB) than single stream jets having the same thrust and flow.

® A model of the noise generation process for a coannular jet, based on the
measured acoustic spectra and velocity profile data, indicates that the beneficial
noise characteristics of the coannular unsuppreassed nozzles are due to 1apid
mixing and velocity decay inherent in an inverted velocity profile jet (i.e.,
ViV, > 1). According to this analytical model, the lowest possible noise level
of an inverted profile jet would be the level generated by e primary stream
alone.

®  The addition of a hardwall ejector to the coannular unsuppressed nozzle pro-
duced up to 1 PNdB additional noise reduction. Incomorating acoustical treat-
ment on the inner surface of the ¢jector produced an additional noise reduction
of up to | PNdB beyond that obtained with the hardwall ejector.

®  The sound powcr und perceived noise levels produced at all operating conditions

where V/V > | were noimalized for fun stream temperature, fan to primary
velocity ratio, and area ratios, and then correlated as a function of fan velocity.
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6.1.2

Fan stream Suppressor Nozzles

The use of three different types of fan stream suppressors with and without hard-
wall and treated ejectors produced various amounts of noise suppression, up to
a maximum of 18 PNdB relative to the synthesized prediction.

vne convoluted suppressor with 2 1.2 area ratio produced approximately the same
suppression as did the 0.75 area ratio. The noise levels of the various fan
suppressor nozzles were shown to correlate with factors relating to beth geometry
and velocity profile measurements.

A summary of the noise suppression obtained by each of the suppressors with

and without hardwall and treated ejectors is presented in Figure 6-1 for one set

of operating conditions representing a typical duct-burning turbofan cycle.

(These conditions do not necessarily provide the maximuri suppression demon-
strated in the test program.) The suppression is defined relative to the synthesized

. coannular unsuppressed nozzle noise levels and also relative to the measured co-

annular nozzle noise levels. The multi-tube suppressor clearly provided the most
suppression, with and without the hardwall and treated ejectors. The finger and
convoluted suppressors provided more modest reductions. For each configuration,
the hardwall ejector provided only slight reductions relative to the same configura-
tions without ejectors. The treated ejector provided a significant reduction relative
to the hardwall gjector.
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6.2 AERODYNAMIC PERFORMANCE

The relative aerodynamic performance of all the 0.75 area ratio coannular nozzles is
summarized in Figure 6.2, This comparison is based on the sume Liow conditions used for
the acoustic summary presented in Figure 6.1, It serves to illustrate the basic performance
characteristics established in the program. Similar trends were observed with the 1.2 area
ratio configurations, and at other operating conditions. The more significant results are:

®  The more intricate suppressors, such as the multi-tube and finger types, with
blunt regions between the elements exhibit significant performance losses of
as much as 37 relative to the unsuppressed baseline. The convoluted design,
which provides a well ventilated multilement fan stream exit, is clearly better
from an aerodynamic point of view.

®  The hardwall ejector used in this program improved the performance of the unsup-
pressed baseline, the multi-tube suppressor and the convoluted suppressor, in vary-
ing degrees up to 3% (ACY). It was, however, detrimental to the finger suppressor,
creating an additional performance loss of 1.5% {ACV). Ejector augmentation is a
complex interaction of many factors. The flow characteristics of the suppressor
itself, along with the size, location and particular contours of the ejector, influence
system performance. This points out the need for matching the ejector to the par-
ticular nozzle for best performance.

®  Adding acoustical treatment to the ¢jector resulted in a performance loss
ranging from 0.5% (ACv) with the unsuppressed baseline to 4.5% (ACv) with
the malti-tube suppressor. These losses may be reduced somewhat by modifying
the design ef the acoustical treatment. In general, the more elaborate suppressors,
providing high fevels of jet noise suppression, result in a closely packaged exhaust
system, tending to aggravate this problem. The optimization of the exhaust
system characteristics will require careful tailoring of the major components to
achieve maximum benefits,
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APPENGIX |

ACOUSTIC POWER AND
PERCEIVED NOISE LEVEL
DIRECTIVITY DATA

Scaled (10£) to 1.27 m (50 in.)
Equivalent Diameter Size, Represantative
of a Full Size AST Powerplant
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LIST OF ABBREVIATIONS

NOMENCLATURE (The following symbols are used throughout the report unless otherwise defined in the text.)

A —  Area

5 ~  Speed of Sound

C[; = Flow CoefTicient (Actual Weight Flow;Ide. Weir '+ Flow)
Cy ~  Thrust Coeflicient (Actual Thrust/Ideal T 151, "
D —  Diameter

F ~  Thrust

B¢ ~  Gravitational Constant

L —  Length

M —~  Mach Number

OASPL ~  Overall Sound Pressure Level - dB re 20 x 1079 Newtoas/M?
. —  Pressure

PNL ~  Perceived Noise Level

PWL ~  Power Level — dB re 10712 watts

R - Gas Constant

R - Radius

Ref. - Reference

SL - Sideline

SPL ~ Sound Pressure Level - dB re 20 x 1070 Newions/M”
Synthesis - Synthesized Noise Levels of Coatinular Referenc. Nozzie (As Described in Text)
U —  Velerity Measured in Plume Traverse

A" - Jet Velocity (!deally Expanded to Ambient Cenditions)
X Distance

w - Mass Flow

y - Specific Heat Ratio

A —  Deita {Difference) in Noise or Thrust Levels

i} —  Angle From inlet Centerline

P - Density

SUBSCRIPTS (The subscripts are used in either lower case or upper <ase iorm.
a Ambient

avg - Average

ejec - Ljector

eq - Equivalent

f - Fan

i - Ideal

in - fnlet Condition

m - Mixed

max - Maximum

o - Iratial Conditions

p Pritcary

Per - Perimeter

ref Rerurence

s Static

t Total

th Throat Conditiy

uns - Unsuppressed
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