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1.4 SUMMARY

Th: jcottz t:^:	 cat -,evcral exhaust s%. ,tems suitable for duct
burnin_ turbofan t DB t1 = ! :mines were estahNshed in this program. Scale models represent-
ing unsuppressed and suppressed coannular exl?aust sy sterns were e^al^kted staticalI% under
%ary ing exhaust conditions. Ejectors with both hardwall :md acoustically treated inserts
were aLso e ysivated in the program.

T:e unsuppressed coannular configurations were found to be as much as 11 PNdB quieter
than current predictions when scaled to 1."m (50 in.) ;quivalent diameter size. At condi-
tions typical of engines being considered under the Advanced Supersonic Technolo gy (AST)
program, redu,a%ons of approximatel y S PNdB were observed. The reductions for a specific
engine are a function of the exact combination of stream temperatures and velocities. The
noise power levels 4 perceived noise levels. scaled to full size. were found to collapse to
single lines when correlated with fan stream velocity and temperature. fan to primar y velocity
ratio (Vf V p ) area ratio (Af A..). Spectral characteristics and velocity profile measurements
in the jet plume indicate that the noise suppression (when '. - f '%'p >1) is due to more rapid
mixing of the coannular jet compared to standard circular jets.

The me,hanicaih' suppressed confi g urations produced as much as 18 PNdB reduction below
current predictions for an unsuppressed nozzle (4 PNdB of this is due to a treated ejector).
At typical AST engine conditions. reductions of approximately 15 PNdB were observed.
Relative to the unsuppressed confi.-urations, the suppressed nozzles provided noise reductions
over a wider range of conditions.

.additional com-lations cif the data from both suppressed and unsuppressed configurations
showed that the noise was a function of exhaust system geometry and also that it was related
to th:; maximum velocities existing ill 	 jet plume downstream of the nozzle exit.

The measured force data indicated that the basic suppressor configurations yielding the most
noise suppression had the hi ghest thrust losses. The impact of adkiing an ejector was-highly
dependent on the suppressor ;fesign since the match between the suppressor and ejector is
critical. Similarl y . the impact of adding acoustical treatment in the ejector was also very de-
pendent on the size of the suppressor.

The overall impact of these results on recent AST studies has been significant in terms of
cngine sizing and vehicle characteristics.

The suppressed confi g urations consisted of mi iti-element suppressor units applied to the far.
stream only. since the DBTF fan stream is the dominant noise source. Three concepts were
evaluated: a multi-tube unit having 44 tubes. an 18 lobe convoluted Liesign and a finger type
employing 32 segments. The total .ict area of the models was equivalent to a 0.127 m (5 in.)
diameter convergent nozzle., or approximately one -tenth of the full scale size being studied
under AST programs. The area ratio between the fan and primary stream was varied from
0.75 to 1.2 in some configurations, with the total area maintained constant.

A total of 41', test conditions were evaluated. The fan stream pressure ratio was varied from
1.3 to 4.1 and the primary stream pressure ratio from 1.53 to 2.5. The t,nnpe,attire in hoth
strrams was v,)ricd independently from 395°K to 1090°K. The resultant data is presented
in the Comprehensive l:ata Report, CR 134910.



2-0 INTRODUCTION

21 BACKGROUND

Prior to this program, extensive propulsion system studies, conducted as part of the NASA
sponsored Advanc°d Supersonic Technology (AST) effort, identified the duct burning tur-
bofan (DBTF) as a promising cycle in terms of both system economics and low noise genera-
tion. The DBTF eneine cycle can be matched to provide a high velocity duct (fan) stream i
surroundin g a low velocity core (primary) stream. 1 his type of cycle requires that only the
fan stream be suppressed to provide reduction in jet noise. However, very little experimen-
tal substantiation existed for this type of exhaust system.

3

The noise characteristics of conventional coannular exhaust systems, whereby the fan ex- q
haust is of lower velocity than the primary stream exhaust. have been extensively investi-
gated during the past few years. The work of Williams (Ref. 1) first pointed out that the
noise of a coannular jet was related to fan to primary stream velocity ratio and showed that
the nose of a coannular jet was less than the noise of the primary jet under isolated condi-
tions for a large range of fan to primary velocity ratios less than one. The basic results of
Williams were extended by Eldred (Ref. 2) to include c^.wnular jets hav`;n g a heated stream
and include.: 0 ,	.1iects of fan	 primary stream exhaust area ratiu. analytical x! Is dev-
eloped in References 1 and'_' showed that the gross results of the coannular jet could ue ► .
lated to the aerodyna,aic characteristics of the jet exhaust plume. For example, high fre-
quencies were shown to be reduced due to the relative velocity effect of the fan exhaust sur-
rounding the primary stream, and low frequency characteristics were ascribed to the-presence
of a merged jet	 c.,;m the mixing of the fan and primary jets downstream of the noz-
zle. The experimental in,.  iptions of Olsen (Ref. 3) and Bielak (Ref. 4) confirmed the re-
sults of Williams and Eldred, and the SAE Subcommittee on Jet Noise has developed a co-
annular jet noise prediction procedure drawing upon some of the results from References
1 - 4, and additional coannular jet noise ^-^ta produced during recent experimental testing. $
Predictions from the SAE procedure have show n very reasonable agreement with model and d	 '
full-scale engine noise data, but is limited to subsor,1 , `low conditions where the fan exit
velocity is less than the primary velocity. The recently published prediction procedure of
Stone (Ref. 5) includes the effects of supersonic jets, but is limited to V f/Vp ratios less than yi	 ,
1.0. The work of Dosanjh (Ref. 6) focused on the noise of coaxial and triaxial cold super-
sonic jets. Results from his investigation have shown that the jet noise could be minimized
for certain combinations of pressure ratios between the coaxial and triaxial jets, including
cases where the inner stream velocity was less than the velocity of the outer stream. How- +'
ever, due to the cold jets, Dosanjh's results relate to the shock noise component of jet noise,
and are not directly applicable to the noise of the hot jet exhausts existing on a duct burning
turbofan engine.

Thus, a large effort has been expended on investigations of coannular jet noise, but the re-
sults of these studies cannot be used to assess the noise generated by the hot coannular jet
exhaust of a DBTF engine having a fan to primary velocity ratio greater than one.

4
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Z2 PROGRAM DESCRIPTION

The program described herein was conducted to establish the aero-acoustic ;vi-for-nance
characteristics of unsuppressed and fan stream suppressed coannular nozzles over a large
range of operating conditions. in particular at conditions where the fail to primar y stream
velocity ratio was greater than one.

Durin g the desi g n phase of the program. two hasic coannular nozzles were designed to sinnl-
late nozzles that could exist on a full -size DBTF en,_ine_ These nozzles were designed to
achieve fan to primary area ratios of 0.75 and L' in order to investigate the aero-acoustic
effect-, of area ratio over a range considered practical for DBTF operation in a supersonic
transport.

Three multi-elentent nozzle suppressors were desi gned to produce various amounts of noise
suppression in the fan jet of the 0.75 area ratio nozzle. These can tigurations. in order of in-
creasing predicted suppression, were convoluted. finger and multi-tube. Nardwall and acous-
tically treated fli^ht type ejector shrouds were designed to investigate the effects of an
t: • ctor on the noise of the basic nozzle configurations. In addition, a convoluted suppres-
sor c0 •r~.:;:ttion, with and without ejectors, was designed at an area ratio of 1._' to deter-
mine the	 )f area ratio on a typical suppressor configuration. All nozzle models had the
same equivalent exit diameter (0.1'_7m), which was one-tenth of the full size diameter (1.27m).
The studies leading to the design of all the configurations are documented in Reference 7.

All of the confi gurations were fabr i cated anki tested statically at the Pratt & Whitney Aircraft
Outdoor 3ei Noise Test Facility lo:ated in West Palm Beach. Florida. This test facility pro-
duces two independently controlled flows with properties ty pical of the primary and fan
flow streanis of a DBTF. A total of 4 7 test points were run on 17 separate nozzle configu-
rations, including a single stream convergent nozzle used to provide reference noise levels.
11te pressure ratio in the fan stream was varied from 1.3 to 4.1 and in the primary stream from
1.53 to 2.5. Tot.-Ai temperature was varied from 395°K to 1090°K in both streams. Far field
noise signals were measured at 9 angles, ranging from 60 0 to 165 0 relative to the upstream
jet axis. Pressure, temperature, weight flows, and thrust were measured for all test points.
Exit pressure and temperature profiles were measured for selected test points. Section 3.0
contains deta ! •l descriptions of the test facility and models tested. All data obtained during
the testing , is contained in the Comprehensive Data Report (Ref. 8), while the major results
of the program are contained in this report.
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3.0 APPARATUS

The experimental apparatus used in this program is described herein. This includes the test
facility. alone with supplementary hardware ....J instrumentation. as well as the model nozzle
.onllgoratlon evaluated in the program.

3.1 TEST FACILITY	 •

The facility used in this program (shown in Fi gure 3-1) is the P&WA Jet Noise Test Facility
located in West Pahl Beach. Florida. The details of the test facilit y are shown schematically
in Figure 3-2.
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The airflow to the test nuXdel is supplied by bleed flow from a JT3C "slave" engine and
passes throu gh a 0.2 5 m ( 10 in) diameter underground pipe surfacing near the test stand. The
flow enters the test rig at the pivot point. where teflon seals prevent leakage while allowing
the rig to pivot freely in the vertical plane. The flow is then divided into two 0.20m (8 in)
diameter pipes. The flow in each pipe is independentl y controlled by motor-operated wafer
valves in each line. Flow rates are measured independently in each pipe by flow-measuring
venturies which have been accurately calibrated at the Colorado Engineering Experimentation
Station, Inc. Temperatures are set by separate heater/hurner systems in each line. The bur-
ners are JP-fueled, and are capable of temperatures up to 1922 0 K (3000°F). The fuel flow

K
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into the system is established by calibrated digital fuel meters. Both flow lines are then
t_irned 90° through water cooled sections. and formed to provide coannular flows to the test
model. The flow then passes through a transition section into the instrumentation section
and test model. The assembly is suspended from two cables, on opposite sides of the vertical
centerline. which are in series with load cells and connected to the rigid supporting frame-
work. The load ccll axes are coplanar with the vertical flow axis. An array of microphones
is positioned at a 4.57m (15 ft) radial distance from the nozzle exit, in the plane of the nozzle
centerline.

NOZZLE
+	 MODEL

MICROPHONE	 TRANSITION DUCTING
ARRAY

15 FT	 LOAD CELLS

hi"Urc 3-2

FLOW VENTURIS

SINGLE	 1
BURNER CANS DUCT
/ FLOW PIVOT

PRIMARY FLOW

FLOW CONTROL
VALVES

Scheneatic of P&IVA outdoor Jet Noise Tes! Farilitr

INSTRUMENTATION
SECTION

SOUND
ABSORBENT
BLANKET

r

This facility allows free field jet noise measurements since the nozzle is situated 4.2m (14 ft)
above the ground in 4 vertical orientation and thus essentially eliminates spectral distortion
from ground reflections. The possibility of small amounts of signal enhancement at high
frequencies, at the mere forward-angle microphones. was eliminated by the use of acoustic-
ally absorbing fiberglass matting 0.1 m (4 in) thick, positioned on the ground underneath the
microphones. Figure 3-3 shows the model test rig assembly installed on an 0.71m (28-in)
diameter flan ge near the top of the test stand. The assembly was made long enough to insure
that no obstruction existed between the nozzle exit and the microphone array, whose lowest
point lies 30° below the plane of the nozzle exit.
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Figure 3-3	 Details of Test Model Installation

The components of the test rig assembly are shown in detail in Figure 3-4 and described in
the following sections. All of the hardware was made from AMS 5512 material. The relative
position of the various components are indicated by station numbers which equal the distance
from the reference mounting flange (STA 0).

7

1

6

1



3!. =8

I d 4

y 11^ul1

i	 j
!!	 Io ^	 11	 I0

11^iY	 1
I

^j
I I	 I	 I'

1I
1	 ^

e	
pq

C _ T̂ q

I	 III	 I	 I
h ¢>:^ ^^c

^i^iti 111
^'^fj, 7

^B--
eg

u	 I	 II ^^	 I	 ^i

ppN

II 11	 1^

^1ff
	 II	 uI

t	 ,p 44- ?

I II	 1	 ^	 YW -

i` F

:t
moo:

y

43
G

3
0

,O
v
Ol

O

b

r

e^

^ O

y y
i1

ti
O

d 
b

Q

u^
_ pia

a

0
z /

a e?I
ou

I	 u z

ag

x	

1
1

o_ ^
a

O

1	 z

F 1 ^

z z

F ¢ E ^ ^ f

4 10-*

^o

c

i

:J



V. 1 Transition Ducting

The transition ducting mates the model test hardware to the existing rig and serves as a muf-
fler. It consists of a set of conical approach ducts. The duct walls are lined with acoustic
blankets made of "Cerafelt" to damp out any extraneous noise from within the basic test
stand. Cerafelt is a lightweight, refractory-fiber insulation notable for its excellent thermal
and chemical stability. Made predominately of alumina and silica, it combines lightness, heat
resistance, low conductivity, and high sound- absorption qualities. Available in various densi-
ties and thicknesses, the particular type selected in the muffler is 0.0, 27m (% in) thick and
has a density of 64.07 kg/m3 (4 lbs./ft3). These values were chosen to provide sound atten-
uation over a wide frequency range for the operating condi tions encountered during the tests.
The attenuation (or transmission loss) thrrlgh the muffler was on the order of 20 dB. The
sound treatment material is contained by a perforated facing sheet having 30 percent porosity,
with 0.0014m (0.056 inch) diameter holes, which does not interfere with the sound absorb-
ing capabilities of the absorber material. Thermal expansion of the facing sheet is allowed for
by the provision of sliding joints at the upstream end of each sheet.

The outer duct forms the main support for the model test rig. It is bolted to the instrumen-
tation assembly section and takes the blow-off load at the large flange which interfaces with
the test facility. Leakage is prevented between the streams by means of a slip jci A with pis-
ton rings. The joint takes no axial load but is instead; permitted to slide, allowing for axial
growth due to temperature variation.

3.9.2 Instrumentation and Support Section

This section of the test rig serves a dual purpose. It maintains the concentricity of the as-
sembly and contains all of the necessary instrumentation to define the pn: perties of the flow
entering the nozzles.

'The major portions of the instrumentation duct are shown in Figure 3-5. A single strut, hav-
ing an 18 percent NACA series 400 airfoil cross-section, passes through the primary duct and
is welded in place at the primary duct walls. The same strut passes freely through the fan
duct walls where clearance is provided to allow for relative growth due to temperature differ-
entials in the two streair_ Two short struts, welded to the outer diameter of the primary
tube and positioned 9G' to the primary strut, & , o pass freely through the fan duct wall.
W;,en operating with a Yermal gradient, the fan _uct is allowed to change in d i ameter rela-
tive to the primary duct without distorting the duct shape and without any significant varia-
tion in concentricity. Outer seal housings were built around the floating struts to prevent
leakage from the fan stream.

Instrumentation for the measurement of total pressure and total temperature were installed
within the struts. The probes are made up of removable rakes which are held in place at the
ends of the struts. The rakes may therefore be installed or removed after rig assembly with-
out having direct access to the primary or secondary flow passages.
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Two diametricaay opposed rakes are used in each stream to establish the total premres and
temperatu-es. The probes (Pt and Tt ) are arranged radially in each du:t sucl • that the ero}es
represent equal areas. An arithmetic average of the probe readings is th -a eaval to lure area-
averaged value. The pressure and temperature probes are both i ncj';;d cd :n ^a a. rake so t;ut
the flow is sampled across the entire duct to determine an a ye r---e of Cach p—..:pert-

Static pressure taps were installed on the walls of the iastrumentation section us define the
endpoints of the total pressure profiles across the passage. A total of 1 2 static taps w.•,► in-
stalled. 4 on each wall at 40° intervals (4 primary taps. b tai t p ^c). ine taps were positioned
upstream and to the side of the struts to insure that the pressure readin gs zrr not influenced
by the blockage of struts or rakes.

In addition to supplementing the total pressure profi:e data. the static pressure r--adings pro-
vide an alternate means of determining the total pressure; the continuity averaging process.
In this process, the total pressure is calculated on the basis of the static pre^sure. the duet
area and the measuied flow rate.

3.1.3 Exit Plane Instrumentation/Traverse Rig

The mech, sm used to traverse the ejector exit plane for flow p:aperties is shown in Figurc
3-6. The purpose of the traverse rig is to establish the static precture. tots: pressure. and total
temperature of the tlow along a radial line at the exit plane of the eiector.

Duri ng selected nozzle tests, the exit plane traverse was accomplished immediately after
thrust and acoustic data were taken. This procedure calls for a traversing system that is not 	 j
in view of the microphone arras while acoustic data are taken. A vertical traverse unit is
used to move the horizontal (i.e., exit plane) probe traverse system into its operating position.	 i
where the probe is driven along a radial line at the exit of the ejector. When exit pane data
are not being taken, the traversing system is stowed in a position upstream of the nozzle exit,
on the side of the nozzle opposiie the microphone array.

10
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31.4 Aooustie Instrumentation

Labomixy talibrated Bruell and Kjaer 0.006m (0.25 in) (No. 4135) microphones were em-
ployed without protective grids or wind screens. They were positioned in a polar array con-
taining nine microphones at 60 75 °. QO°. 105°. 120°. 1300 . 140°. i50°, 3nd 165° relative
to the upstream jet axis at a distance of 4.6m ( 15 ft) from the exit of the nozzle. The signals
from each microphone were rc,-orded by a Honeywell 7600 series FM tape recorder, it!. a
double extcn&J bandwidth modc operating at 3.05 m/sec (120 in/sec). The frequency res-
ponse in this operating mole was RO kHz-

3-2 NOZZLE CONFIvURATIONS

A total of senenteen different configurations were evaluated during this program. All were
fabricated from ANS 551' material. The pertinent geometric variables of the basic configu-
rations Iwtthout ejectors) arc presented in Table 3-1. These variables include fan stream exit
area t Af ). pnmary stream exit area I Ap ), total exit atea (At ), equivalent diameter (D eq ) based
on total exit area, and the diameter encompassinc the fan nozzle and primary nozzle assembly
tDp r '. which represents the outer perimeter of the total basic nozzle unit.

12
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TABLE 3-1

PERTINENT GEOMETRIC VARIABLES OF TII1:
BASIC NOZZLE CONFIGURATIONS

Configuration A; A, At-/Ap At 11.11 Uper
m' m4 m' In nl
(in') (in') (ill 2 ) 60 (ill)

Referemv Convergent Nozzle - - - .0126 .I'7 .127
(19.6) (5.0) (5.0)

Unsuppres-sed Coannular Nozzle .0054 .0073 0.75 .01216 .127 .135

(R.40) (11.30) (19.6) (5.0) 15.3,2')

Unsuppressed Coannular Nozzle .0069 .0057 1.2 .0126 .127 .135
(10.01)) (8.91) (19.6) (5.0) I ^.? 2)

Multi-Tl.he Suppressor Nozzle .0054 .007' 0.75 .0126 .127 .175
(8.40) (1 1 '0) (19.6) (5.0) (7.00)

COIIVOlufed Suppressor Nozzle .005 4 .0072 0.75 .0126 .127 lot
(8.40) ( I 1.20) (19.0) (5.0) (0?4)

i

Convoluted Suppressor Nozzle .0069 .0057 1.2 .0126 .127 .165
(10.(, q ) (8.91) (19.0) (5.0) (0.49)

Finger SuPpressor Nozzle .0054 .007 0.75 .0126 .I27 .10
(8.40) (11.20) (19.0) (5.0) (0.00)

Detailed descriptions of all of the test models are presented in the following sections.

3.2.1 Reference Convergent Nozzle

The single stream reference nozzle is a low angle conical convergent nozzle shown in Figure
3-8. In order to adapt this nozzle to the coalinular ductin g of the test rig, a primary duct
fairing was made to blend the two streams, maintaining a constant fan/engine area ratio to
the mixing ),lane. The end piece is tapered to a minimum thickness to prevent all

 wake. When to<ting tills nozzle, the same (10%% properties were established in both set:-
ments, therefore. the flow at the nozzle exit is uniform.
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Figgure 3-8 D-mis ofRejirence Convergent Nozzle

3.2.2 Unsuppressed Coannular Nozzles

Two unsuppressed coannular nozzles were built. The first with a fan to primary area ratio
of 0.75 is illustrated in Figure 3-9, while the second configuration, having an area ratio of
1.3 is illustrated in Figure 3-10. The primary nozzle for both configurations is a convergent-
divergent design (with an exit to throat area ratio of 1.1). This type of nozzle design has been
employed durin g many of the SCAR studies where high Mach number operation is the key
design point. The axial spacing between the primary and fan stream exits is also consistent
with these requirements.
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Figure 3-9	 Details of Unsuppressed C'nmtrr tar Nozzle. o. 7.5 Arca Ratio
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Figure 3-10 Details of Unsuppressed Coannular Nozzle, 1.2 Area Ratio

3.2.3 Multi-Tube Suppressor Nozzle

This configuration consists of 44 identical tubes arranged in two circumferential rows which
form the throat of the fan nozzle (See Figure 3-11). Each tube is a convergent nozzle having
a 15 percent diameter convergence (area convergence ratio of 1.32), with a convergence half-
angle of 15 0 . The primary nozzle is the same as that used with the corresponding unsuppressed
coannular nozzle.
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Figure 3-11 Details of'Afulti-Tube Suppressor Nozzle, 0.75 Area Ratio
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1

Me tubes are fixed in a conical ring which is an integral part of the fan no77le body. The
external lines of this conical ring are identical to those of the coannular 1111suppre.sed noz-
zle. The upstream ends of the tubes are blended with the internal surface of the conical zinc_:.
File downstream ends are at the same axial station, upstream of the primary nozzle exit.

The conical ring, to which the tubes are attached, conies into near-contact with the external
.urface of the primary nozzle. A radial clearance of about 0.0006m (0.025 inch) is provided
to allow for differential thermal expansion.

	Six stat'.c pressure taps were placed oil 	 external surface of the suppressor to monitor the
external flow characteristics and to aid in analyzing performance and acoustic data. The tali
locations arc referenced to station 55.5 which corresponds to the position of the ejector Iead-
ing edge when an ejector is employed. The taps are aligned axially, in the space between the
radial se gments of tubes; three at the base of the tube assembly and three along the approach
to the tubes.

3.2.4 Convoluted Suppressor Nozzles

The first con voluted suppressor consists of 18 equally spaced lobes which form the fan stream
throat area (see Figure 3-12). This configuration has a fan to primary area ratio of 0.75.
Mach of the internal lobes were machined to a constant width, continuing upstream frorn
the exit (alon g the inner slope shown in the side view in Figure 3 -12) blending with the cv-
lindrical duct upstream of the convergence. The external lobes were likewise machined along
their inner slope, blending with the external surface of the fan duct. The result is a three-
dimensional convoluted approach to the fan exit by which the fan flow and ambient air (or
external flow) are mixed,
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Figure 12 Plululs ol'Conr,ilitted Suppressor Nozzle. 0.75 Area Ratio
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T'he axial positions of the taps on this convoluted suppressor are the same as those of the
tubular suppressor arranged along the inner slope of an external flow convolute (see Figure
3- • I).

A second convoluted suppressor, of similar design to the first, but with a fan to primary area
ratio of 1.2 is illustrated in Figure 3-13.

I	 ^

The primary nozzles used with the convoluted Suppressors are the same as those used with
the unsuppressed coannular nozzles of the sanle fan to primary area ratio.
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Figure 3-13 Details of Convohlted Suppressor No_:lc, i ' Area Fazio

3.2.5 Finger Suppressor Nozzle

The finger suppressor is composed of 32 equally spared radial projections which subdivide
the fan nozzle exit into an equal numher of individual rectangular nozzles (Figure 3-14). As
in the other suppressor designs, the external lines approaching the plane of the fingers are
identical to those of the unsu1)pressed coannular nozzle.
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The fingers have it 	 cross-section (as shown in Figure 3-14, Section 13-13); the apex
being at the upstream side to smooth the approach to the exit plane. The downstream side
is tlat, representing the portion of the finger that would he flush with the inner wall of the
far. duct when the suppressor is stowed. The primary nozzle was the same as that used for the
0.75 area ratio unsuppressed coannular nozzle.

As with the other suppressors, pressure taps we • .^ placed oil downstream surface of the
fingers and on other portions of the suppressor where non-ambient pressure levels were ex-
pected in order to monitor the flow characteristics and to aid in interpreting the data.

3.2.6 Ejectors

The ejector geometry is haled on the coil figu rat tons used for recent SCAR studies and. as
such, represents a Ilight-type. high Mach number design. The same ejector length/diameter
ratios are maintained. The relation between the ejector and the primary/fan nozzle system
was established o il 	 basis of supersonic cruise requirements. The ejector ink t and exit
areas however, were sized to , p roduce high performance at static conditions for the 0.75 area
ratio unsuppressed coannular nozzle. However, the same ejectors were used with all configu-
rations.

Two ejector configurations were tested; it hardwall version and one with internal sound treat-
ment. A basic ejector shell could accept it hardwall or an acoustically treated insert. Each
of the two ejectors were interchangeable with the suppressor configurations. The hardwall
ejector is shoe n in Figure 3-15, matted with the convoluted suppressor. The treated ejector
is shown in Figure 3-16, mated with the tubular suppressor. In all configurations, the leading
edge of the ejector is at station 55.5.
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Fmrc ;-16 Details qJ Acoustic •allr Trcated lijector dlounted to the 0.75 Area Ralio Mufti-Tube
Suppressor

The hardwall ejector contained the instrumentation required to establish the internal axial
static pressure gradient along the full length of the ejector wall. The instrumentation in the
cylindrical portion of the ejector was contained within the hardwall insert. This instrumen-
tation was eliminated when the hardwall insert was replaced with the acoustically treated in-
sert. However, the upstream static taps remained in place for both configurations. The pres-
sure taps were placed in two axial rows at circumferential positions that correspond to the
extremes of the suppressor. For example, when the ejector is assembled with the convoluted
suppressor, one of the rows of taps is aligned with an internal (fan stream) lobe and tlae other
is aligned with an external lobe. Wttcn the I-J.__	 i s combined with the tubular suppressor,
one row of taps is aligned with the tubes; the other with the spaces between the tubes. The
two rows of pressure taps are placed 9° apart circumferentially. This relative location accom-
modates all suppressor installations. The taps were located circumferentially about mid-way
between the ejector struts to avoid the local flow interference in the vicinity of the struts.

The internal wall of the treated ejector is fitted with an insert containing a 0.0064m (4 in)
thickness of compressed "Cerafelt", used to absorb flow-generated sound. The insert has a
face sheet porosity of 30 percent made with holes of 0.0004rn (0.016 in) diameter.

The relation of the ejector to the unsuppressed and suppressed coannular configurations is
illustrated in Figure 3-17. The axial spacing (AX) between the fan nozzle exit and the lead-
ing edge of the ejector is indicated along with the ratio of the ejector diameter to the dia-
meter of the circle enclosing the basic nozzle/suppressor exit (Dejec/Deer)•
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4.0 DATA

The types of data produced from the experimental testing are described in this section,
along Nvith the test procedure and a matrix showing the conditions at which each of the
model configurations was tested. Various acoustic and aerodynamic parameters were ob-
tained from the testing of the 17 Jiff:rent configurations over a matri , at pressure ratios and
temperatures. Data covered a total of 417 operating points. Acoustic data from this program
is documented in n ► odel size as well as scaled to represent a full size AST powerplant.

The model scale data is based oil 	 0.1'7m (sin) equivalent diameter size models tested.
The acoustic parameters are:

•	 One-third octave band sound pressure level spectra at 4.6m ( i 5 ft) radius from
600 to 1650 relative to t;te upstream jet axis, corrected to theoretical day condi-
tions. "Theoretical day" is a hypothetical day with atmospheric conditions pro-
ducing zero atmospheric attenuation of noise. The noise levels thus were corrected
for the till] amount of atmospheric absorbtion occuring during each test point
acquisition time period.

•	 Overall sound pressure level at 4.6m ( 15 170 for the same angles as spectra.

•	 One-third octave band power spectra for 0.1 27m 15 in) equivalent diameter models.

•	 Overall sound power level.

The following acoustic parameters are scaled l OX to a 1.27m (50 in) size to represent a full
size AST powerplant:

s	 One-third octave band sound pressure level spectra at 45.7m 1 150 ft) radius from
600 to 165 0 relative to the upstream jet axis.

•	 Overall sound pressure level at 45.7nt ( 150 ft) radius front 600 to 165° relative to
the upstream jet axis.

•	 One-third octave hand power spectra.

•	 Overall sound power level.

0	 Perceived noise levels calculated at various sideline distances including 648.bm
sideline at zero altitude from 6C O to 165 0 relative to the upstream jet axis.

The aerodynamic parameters are:

•	 Nozzle thrust coefficient.

•	 Nozzle now coefficient for each steam.
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•	 Static press ire distri t, ution along the internal surface of the ejector and the ex-
tcrnal surface of the suppressed nozzle.

•	 Temperature an , t velocity profiles in the plane of the ejector exit, whether or not
the ejector was in place.

The actual test procedure used to obtain data was as follows:

I ) The slave J57 engine used to provide the model airflow was started and allowed
to run for i/2 lir. in order to warm the ductwork and expell any foreign matter in
the piping.

2) The acoustic and thrust measuring systems were checked an 1 calibrated.

3) Wind velocities were monito.-ed. Normally, acoustic measu. •ments were made
with wind velocities under 8 mps; however, on occasion, sl.,,htly higher wind 	 I
velocities were allowed, but Only if all microphones exhibited normal behavior.

4) Pressures and temperatures were set in each stream and allowed to stabilize.

5) Pressure, temperature and thrust levels were read under steady state operating
conditions and entered on computer coding sheets for subsequent computerized
data reduction.

6) Acoustic data was recorded simultaneously for all 9 channels on a 14 channel
tape recorder for subsequent processing.

7) On-line one-third octave band analysis was performed on signals from selected
'	 microphones (i.e., angles) to ensure satisfactory operation.

The above test procedure was followed in the testing of all configurations ensuring consis-
tency in the results obtained during the program.

Samples of all of the full scale acoustic and aerodynamic parameters are presented in this
report for each configuration, illustrating the major findings of the program. In addition, a
tabulation of acoustic power level and perceived noise levels, at all measurement angles, for
all test points, is included in Appendix 1.

Due to the large amount of data involved. the complete results of the testing have been corn-
piled separately in the Compret ►ensive Data Report (CDR), NASA CR-134910 (Ref 8). This
report includes both the model scale and full size data.

Table 4-1 lists the nozzle operating conditions `or each test point. In this table, nominal
values if the stream temperatures and pressures are ;fisted.

The detailed data reduction procedures and sample data outputs are presented in Sections 4.1
and 4.2. A discussion of data validity based on the acoustic measurements taken with a con-
vergent nozzle is presented in Section 4.3. The method used to synthesize the jet noise of a
coannular nozzle is presented in Section 4.4 foi reference purposes.
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TABl E 4-1 

E T MATRI 

P IP II' .1 
T (oK) 

Ip Tlf (o K) P /t> II .1 

1.3 I. 2.5 :L 4.1 
0.75 Ar a Ratio /I uppre cd oannular 

1.53 3q) J95 II) X 
700 
895 X 

108<) X 
700 3()) X 

700 X X 
HC)5 X X 

1f),C) X X 
8 11 395 

700 X 
895 X 

10XlJ 
10 <) 395 X 

700 
')~ X 

IOR9 X 
2.0 II 700 X 
2.0 II IllHC) X 
2.5 II "l OO X 
2.) 1\ 10 ) X 

0.7 5 Area Ratio n. upprc ~l'J annular With H.trtlwall jector 

1. 53 II 700 X X 
10 q X X X 

0.75 rca Ratio Un uppn: cd Oalll1uiar With T', JI d jector 

1.53 811 7() X 
10XI> X X X 

1.2 Area Ratiu n upprc""l!u oannular 

1.53 395 700 X X X 
10 () X 

81 ! 700 X 
IOI-W 

(I) rll .lr
J 

I 15 
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TABLE 4-1 (Cont'd)

Pip /I',	 Tti, (°K) T<< , K) Pfr/P^

1.3	 1.8 '.s 3.'_ 4-1
Multitube Suppressor

1.53	 395 395 C	 X X
700 \	 x X X
895 \	 X x x
1089 X X X

811 395 X	 X X

700 X	 X X X
895 \	 x X X
1089 x X x

2.0	 811 700 x	 X X
2.0	 811 1089 X X x
2.5	 811 700 X	 X X

811 1089 X X X

M

2,

Multitube Suppressor With Hardwall Ejector

1.53 395 395	 x
700	 X

895	 X

1089

1.53 811 395	 X
700	 X

895	 x

1089

Multitube Suppressor With Treated Ejector

1.53 395 395	 x
700	 X

895	 x

1089

811 395	 X

700	 X

895	 X

1089

2.0 811 700	 X
'.0 811 1089
2.5 811 700	 x
2.5 811 1089
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4.1 AERODYNAMIC DATA REDUCTION

ne measurcd aerodN namic properties are divided into three categories:

	(a)	 Ihrtist Coefficients and Ho%% Coefficirnt-^
(bl tiurface Static Pressures
(c 1 U m t Profiles

11 ic  basic aerodynamic performance cIiaracteristics are I , resented In category' (a) along %w II II
Ille Ilow pn i pe'rtles 111 each stream. I -llc static pressures ( 1 1 ) provide the axial pressure
distributions useful III 	 the performance of the nozzles. Chc exit profiles (c)
include Ilse temperature and %elocity survcys nlrastircd ill the mvile pltimc.

These data are based on pressure, (cmi lerattire :ind Ihrllst meastin , ments made' while main-
taillillg head y -Mate' mold 'l llw% c'ondltlons thiring each test point. Mlle presslln' dal;, were
established b% nicalls of 1 1 -tlloc Illailk l lllelern, I lelse gauges and ;I presstirc transthicer system.
Ilic te Ili peraltire-, %%en' incastlred %%'till the list of Bro%%'ll poletltlollletl'rs. the thills: Illea-
%menients were based on the outvil, of two KIM%%in-Luria ILlmlltt,n load cells 0000 lb.
c.Ip.Icitv).%%lIosC accliracy %%.is riled at ±t?.O_'' of lull ralid load.

111e n• duc tion of the basic data to the final acrod%ummic parameters is described in detail
in !^^Ilo%%in^ srctlons.

4.1.1 Thrust Coefficients and Flow Coefficients

111e I11niS1 coetllOCllt of ;I 11011It Is a tmiction of the Illrust produc'e'd by the nozzle (1')
.Ind the ideal Ihrtist %% loch Is a%ailable ( 1 = i ) based kill 	 properties of the tlo%% etttennr the
noi.zle. the nozzle thrust coefficient. C,, is defined as.

(\

llle notzlc thrust is measured with t%%o load cells positioned hrt%cr n the tloating thrust
bed and the stationan platform. I he No!/Ie illnlst (H is established as lollo%ws:

	1. = I: t	 I .o + .1I : 1 + AI - , + JI 1	 (N, Ibst

	

where 	 I ,	 =	 Total load call output
I :0 	"tio-Ilow" load cell oulpllt I the initial load cell readings

taken after thr stand Is brtnlght up to operating temperature.

Stand tore fi,rces associated with variations due to thermal
gro%%tit of the metric components.
Corrections for variations in the air weight withir the nlet-
rlc portion of the stand. I lie voltmic of the metric portion
of the Ilo%w system is large enough to experience some van-
ahons ill weight within the operating range of tempera-
ture .Ind presstlrr.
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The total ideal thrust ( F it ) is defined as:

F = F	 + F	 (N. Ibf)
^t	 iprimary	 'Fail

The ideal thrust W i ) of each stream is calculated by the equation.

I;Fi	
t	= P A* .^ ,)	 r	 I	 ,

—

	

7-I	 7 i I	 1't

where:

1' t = Total {p ressure at instrumentation station (N/m l- . Asia)

Na = ambient pressure (N'ni-, psia)

I, t	 gC -Y

I and	 Wt	 =	 Total Mass Flow = W + Wfuel (kg/sec, Ibm/sec)

W	 =	 Air flow rate. measured at the upstream venturis (kg/sec, Ibm/sec)

W fuel =	 Fuel flow, measured by digital fuel meters (kg/sec, Ibm/sec)

T t	 =	 Total temperature at instrumentation station (°K, ° R)

y	 =	 Specific heat ratio

=	 Gas constant = (88.51 Nm/kg °K, 53.3 Ibf ft/lbm °R)

gc	 =	 Conversion factor = (1.0 k,, m/N sec 2 , 32.174 Ibm ft/lbf sect)

The nozzle flow coefficient for each stream is calculated by the equation:
Wt

Cd = —

Wi

(y + I)

where:	 W,	 =	 l + —^ NI -
R	 :Mc I.o

(kg/sec, Ibm/sec)

i

I

'_8

r^



A	 =	 Nozzle exit area in each stream (m 2. i112)

The exit area, were determined by measurement at ambient
temperature and corrected for the effect of the elevated
testing temperature.

y t

M	 = Fully Expanded Mach Number =	 —, I (P(P 	 7 — 1
7-1

The thrust coefficients and flow coefficients for Al the test configurations are included in
Section B of Volume 11 of the CDR. A sample of the data available in the CDR is presented
in Figure 4.1-1a for Configuration (3) which is the multi-tube suppressor nozzle. The thrust
and flow coefficient are tabulatc ,.l along with the flow properties of each stream (Pressure
ratio, Pt iPa, temperature Tt , and ideal jet velocity V).

4.1 .2 Surface Static Pressures

Static pressures (P) were measured along the external surface of the suppressors and along
the internal surface of the ejectors. The pressures are ratioed to ambient pressure (P a ) any
tabulated 'Ill ('DR where the)' are identified by Pressure orifice number (TAP) and axial
location, \/L. where:

= position of pressure orifices relative to station 55.5
(which corresponds to leading edge of the ejector)

L = 1 :J ector length = 0.295M (I I .b3 in.)

All of the static pressure data is presented in Section B, Volume II of the CDR. A sample of
the data is presented in figure 4.l -1 b for CUltflgnration (4) which is the multi-tube suppressor
with file Itardwall ejector.

4.1.3 Exit Prof?ies

Temperature and velocity profiles were obtained in the plane of the ejector exit. All
configurations (with or without an ejector) were traversed :ding a radial line in the same
plane. The suppressor nozzles were oriented circuntterentially such that the probe was mid-
way between extreme points of the suppressor geometr y . When all ejector was used, it was
oriented Jrcuniferentially such that the traverse probe was midway between the support
struts. The probe readings therefore reflect all 	 of the circumferential distribution.
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The probe simultaneously measured a static pressure (Ps ), a total pressure (Pt ) and a total
temperature (Tt ) A a given radial position (R). The velocity (V) was then calculated by
the fallowing equation:

'Ygc it Tt M 2
V =(m/sec, ft/sec)

1+ ry-1 M2
2

where:

M =	
((Pt /P

s) 7 - 1
7-1

All of the resultant traverse data is included in Section B, Volume II of the CDR. A sample
of the data is illustrated in Figure 4.1-1c. It is presented at each radial position (R), non-
dimensionalized to the exit radius of the ejector (Rexit)•

a) 7Annt wdGaMa and Flog Coc[tideota

CONFIGNO.	 TES I'T.	 PV/PA T1P(DFGF) VP(FPS)	 PTFIPA TTF(DBCF) VF(FPS) CV CDP CDF
3.0	 205.03	 2.00 9S2. 1735. 178 1463. 1889. 0.939 0.988 0-M
3A	 206.01	 148 999. 2015. 3.21 824. 2101. 0956 0985 4941
3A	 206.02	 2.51 967. 2018. 1.80 813. 1543. 0944 0.999 0.921
3.0	 206.03	 2.49 990. 2013. 1.29 807. 1031. 0-938 1.000 0.906
3.0	 207.01	 2.49 995. 2016. 4.08 1509. 2841. 0.949 0.995 0.951
3.0	 207.02	 2.53 984. 2021. 235 1501. 2374. 0.948 0.986 0.918
3,0	 207.03	 250 984. 2011. 1.79 1491. 1904. 0953 0997 0.908

:b)	 Surface Static Pressures

r	CONFIG. (4) MULTI-TUBE W/HARD EJECTOR TEST POINT NO. 60.010
TAP	 1	 2	 3 4	 5 6 7	 8 9 10 11 12 13
XIL	 .028	 .093	 .IS7 .222	 308 .416 .545	 674 Im 932 .028 A93 .157
PRA	 0926	 OS26	 0.864 0954	 Q888 0957 0990	 0993 09% 0990 0210 0.830 0970
TAP	 14	 IS	 16 17	 18 19 20	 21 n 23 24 2S 26
X/L	 222	 308	 A16 .545	 674 903 932	 .050 226 -JXN . 234 •.107 -.273
P/PA	 0250	 0.881	 09.0 0.991	 1.000 0999 1.000	 0.783 0.866 OS41 0.931 0.991 0998

c)	 Fait Profiles

CONFIGURATION (3) MUL11-TUBE TEST POINT NO. - SSAIO
R/REXIT	 OA	 0.139	 0.278 OA17 0.356 0.694	 0.833 0972 1.111 I.=
TTEJOT	 931.	 930.	 939. 917. 890. 7S3.	 569. 402. 270. 190.
VEXIT	 909.	 953.	 974. 957. 1017. 990.	 729. 413. 188. 73. r

Figure 4.1-1 Sample of the Aerodynamic Data Contained in the Comprehensive Data Report NASA CR134910
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4,2 ACOUSTIC DATA REDUCTION

The measured acoustic signals recorded by the nine microphone array at 4.6m (15 ft) radius
were corrected, analyzed and converted to full size engine data (1 OX model size) by the
procedure illustrated in Figure 4.2-1. This figure also indicates the data outputs available
for both the 0.127m (5 in) equivalent diameter model size and the 1.27m (50 in.) full size
scaled engine data. All of the data is available in the companion Comprehensive Data Report,
NASA CR-134910 (Ref. 8).

Far Field Acoustic Signals Recorded and
Storrd on Magnetic Tape: Nine Microphones
at4.6m (15 ft) Radius

M_

V

Acoustic Signals Anal y zed to Produce
One-Third Octave Band Spectra From
100 Hz to 80,000 Hz

• Spectra Corrected for Cable and
Microphone Calibrations

• Spectra converted to "Theoretical
Day" by correcting to "Zero" Atmospheric
Absorbtion

• Calculation of overall sound pressure
level, sound power level spectra and
overall sound power level

• "Theoretical Day" Spectra Scaled 1OX
Size to Produce Acoustic Parameters
for 1.27m (50 in) equivalent Diameter
cull Size Engine at 45.7m (150 ft)
radius measuring distance

• Scaled Spectra Corrected to Standard
Day by Subtracting Standard day
Atmospheric Absorbtion from
"Theoretical Day" SPL Values

• OASPL Calculated

• PNL Calculated for Different Sideline
Distances

Output

Data for 0.127m (5 in) Equivalent Diameter
Models Converted to "Theoretical Day"
(Zero Atmospheric Absorbtion)

• SPL Spectra for all Angles at 4.6m
0 5 ft) Radius

• OASPL at Each Angle
• PWL (f) and OAPWL

Output

Data for 1.27m (50in) Equivalent Diameter Full
Scale AST Engine Converted to Standard Day

• SPL Spectra and OASPL for all Angles
at 45.7m (150 ft) Radius

• PWL(f) and OAPWL
• PNL at 45.7m (150 ft) Radius and 61m

(200 ft), 112.8m (370 ft),243.8m
(800 ft) and 648.6m (2128 ft)
Sidelines

Ekure 4.24 Acoustic Data Reduction Procedure
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The tape recorded far field signals from the nine microphones were reduced to one-third oc-
tave band sound pressure levels by analog /digital analysis equipment. This analysis was per-
formed on a General Radio No. 1921 Analyzer.

The one-third octave band as-measured model size sound pressure levels, analyzed in the
GR 1921 Spectrum Analyzer from 100 Hz to 80,000 Hz, were corrected for calibrated
cable and microphone response. he data were then transformed into "theoretical day"
data by applying the values of atmospheric absorption defined in reference 9. This procedure
entails adding a ASPL as a function of frequency, relative humidity, and ambient tempera-
ture to the measured SPL levels. The OSPL corrections represent an estimate of the absolute
sound absorption for noise in each of the one-third octave bands. The resulting "theoretical
day" data represents the noise that would be measured at the microphone if no noise were
lost through atmospheric absorption. Typical values of atmospheric absorption calculated
by the method of reference 9 for the 15 ft measuring distance used in this program are illus-
trated in Table 4-II.

TABLE 4-II
ATMOSPHERIC ABSORBTION ESTIMATES

FOR A TYPICAL DATA POINT

4.57m (15 ft) Radius
Temperature -307°K (93°F)

Relative Humidity -49%

Freq	 Freq	 Freq
(KHz)	 A SPL	 (KHz)	 A SPL	 I	 (KHz)	 A SPL

0.050 0.0 0.80 0.0 12.5 0.5
0.063 0.0 1.00 0.0 16.0 0.6
0.080 0.0 1.25 0.0 20.0 0.9
0.100 0.0 1.60 0.1 25.0 1.4
0.125 0.0 2.00 0.1 31.5 1.9
0.160 0.0 2.50 0.1 40.0 2.8
0.200 0.0 3.15 0.1 50.0 4.4
0.250 0.0 4.00 0.1 63.0 6.4
0.315 0.0 5.00 0.2 80.0 9.6
0.400 0.0 6.30 0.2 100.0 14.4
0.500 0.0 8.00 03
0.630 0.0 10.00 0.3

The corrections at the very high frequencies, i.e., above 40K Hz, become quite large. At
80K Hz, the correction of 9.6 dB represents a loss of nearly 90% of the noise that would
have radiated to the microphone if no atmospheric absorption were present. The formulae
used in Reference 9 have been verified as accurate only for sound frequencies below 10,000
Hz. However, since a more accurate method of estimating atmospheric absorption is not pre-
sently available, the formulae of Reference 9 were used directly to calculate the values of
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atmospheric absorption for frequencies up to 80,000 Hz required for the scale model data.
The "theoretical day" SPL's were integrated over the measured frequency range to obtain
overall sound pressure levels (OASPL).

The theoretical day model scale data from all test points are compiled on computer output
sheets in the Comprehensive Data Report (Ref. 8). Table 4-II1 is a sample data page. At the
top of the page are listed the pertinent ambient and nozzle operating parameters in both U.S.
customary units as well as the International System of Units (S.I.).

The left hand column lists the ambient temperature (TEMP), pressure (PRES), and relative
humidity (REL H). Wind direction. (WIND D) and wind velocity (WIND V) were also moni-
tored but not included in the data sheets. A tabulation of wind velocities is included in the
Comprehensive Data Report-

The center columns list the full scale primary and fan stream exhaust nozzle areas (AREA)
as equal to zero to indicate that the noise data are in model scale form. In the same columns
are found the stream total to ambient pressure ratio (P.R.), stream temperature (TEMP), and
stream density (RHO), and the ideally expanded velocity (VEL).

The right hand columns list the full scale mass flow (MASS FLOW) as equal to zero to indicate
that the noise data are in scale model form. Also listed in this column are the model size ideal
thrusts (THRUST, IDL), exhaust nozzle areas (AREA MOD), and mass flows (W MODEL).

Below the parameter listing are the tabulated, model scale one-third octave band sound pres-
sure levels at a 4.57 m (15 ft.) polar distance under free field measurement conditions dur-
ing a "theoretical day." The center frequencies of the 30 measured one-third octave bands
from 100 Hz to 80 K Hz are listed in the left hand column. The one-third octave band sound
pressure levels for each microphone measuring angle, 60°, 75 0 , 900 , 105 0 , 1200 , 13011 , 1400 .
1500 , and 165°_ at each one-third octave band are listed in the appropriate columns.

The one-third octave band power levels (referenced to 10 -12 watts) are listed at the extreme
right hand side of the page.

Below the one-third octave band sound pressure and sound power levels are listed the 4.57 m
(15 ft.) radius overall sound pressure level (OSPL) for each angle and the overall sound power
level (OAPWL).

The theoretical day noise data were also scaled to represent a full size SCAR engine having
linear dimensions corresponding to a 1.27 m (50 in.) equivalent nozzle diameter (ten times the
model size). Thus, the measured SPL levels were increased by 20 log 10 or 20 dB and mea-
sured frequencies were reduced by a factor of 10 to produce full scale engine noise character-
istics.

The full scale SPL levels were extrapolated to 45.7 m radius for a standard FAA day by ap-
plying the spherical divergence law, A dB = 20 log r Z /r i and the atmospheric attenuation
corrections of SAE ARP 866. Ovci-all sound pressure levels (OASPL) were determined by
integrating the SPL values from 50 Hz to 8000 I-iz.
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Perceived noise levels (PNd':} ^,, fe computed according to SAE ARP 865 from the SPL
spectra and extrapolated tc: 	 sous sideline distances at zero altitude.	 R

Sound power level spectra and overall power level were determined individually for the model
data and data scaled to full size by spatial integration over the nine microphone positions from
the listed SPL and OASPL values assuming symmetry about the jet axis of the noise generation.
Since the theoretical day model scale data represents the noise that would be measured if no
atmospheric absorption were present, the power levels represent noise generation at the source.
The full scale data, however, represents noise that would be measured on a standard FAA day.
Thus the full scale power levels represent an integration of the far field noise levels on a 	 ti
standard FAA day, reflecting the common method for comparing full scale data. The actual
power level calculations employed were:

i'

W
PWL = 10 log ( --) = sound power level, in decibels

W'ef

n	 P. 2

where: W	 AAi = the acoustic power, in watts
i = 1	 P.C.

Wref	 =	
10-12 

watts = the reference power level

SPL

P i e	 =	 10 10	 Pref2 = mean square sound pressure

P'ef	 =	 20 X 10-6 N/M 2 = reference acoustic pressure

P" 	=	 atmospheric density

C	 = atmospheric speed of sound

n	 = number of microphones

AA i 	=	 surface area of spherical segment associated with i ll' microphone

• for the first microphone

0, +0'2
AA, = 2rrr2 [cos 0 1 — cos (	 )]

2

e for intermediate microphones

AAi = 21rr 2 [Cos( ---	 ) --Cos( 	 )1
2
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• for the last microphone

0„_ 1 +0„
AA„ = 2ttr 2 [Cos( 	 ----) - cos 0„ [

where:	 r	 =	 distance of microphone from nozzle

As the characteristics of the test facility insure far ticld acoustic signals free from ground
reflections, all acoustic values calculated from the measured data are also far field. The ex-
trapolated values do not include extra ground attenuation. The acoustic data from all test
points is compiled on computer output sheets in tilt, Comprehensive Data Report (Ref. 8).
Table 44V is a sample data page. At the top of the page are listed the pertinent ambient
and nozzle operating parameters in U.S. customary units as well as the International System
of Units (S.I.).

The left hand column lists the ambient temperature ('TEMP), pressure (PRES), and relative
humidity (REL 11). Wind direction (WIND D) and wind velocity (WIND V) were also moni-
tored but no: included in the data sheets. A tabulation of wind velocities is included in the
Comprehensive Data Report.

The center columns list the full scale primary and fan stream exhaust nozzle areas (AREA)
as well as stream total to ambient pressure ratio, (P.R.), stream temperature (TEMP), and
stream density (RHO). The ideally expanded velocity (VEL) is also presented.

The right hand columns list the full scale mass flow (MASS FLOW) and the full scale ideal
thrusts (THRUST, IDL), model size exhaust nozzle areas (AREA MOD), and mass now (W
MODEL) of the scale models used in the test.

Below the parameter listing are the tabulated, full scale one-third octave band sound pres-
sure levels at a 45.7 in (150 ft.) polar distance under free field measurement conditions dur-
ing a standard FAA day. The center frequencies of the 24 measured one-third octave bands
from 50 Hz to 8000 liz are listed in the left hall(] column. The one-third octave hand sound
pressure levels for each microphone measuring angle, 60°, 75°, 90°, 105 0 , 1200 , 1300 , 1400 .
150°, and 165°, at each one-third octave band are listed in the appropriate columns.

The one-third octave band power ]eve's 	 jcrejlCe(l to 10" 12 watts) are listed at the extreme
right hand side of the page.

Below the sound pressure level and sound po ,.'. , rr level spectra are listed the 45.7 m (150 ft.)
radius overall sound pressure level (OSPIJ for cawli angle and the overall sound power level
(OAPWL). Perceived noise levels (PNL) are listed for each measuring angle at 45.7 in (1.50
ft.) radius, and at 60 m (200 ft.), 1 1 lm (370 ft.), 244 in (800 ft.), and 648.6 in (2128 ft.)
sideline distances at the bottom of the data sliest.
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4.3 ACOUSTIC DATA VALIDITY/REFERENCE CONVERGENT NOZZLE

In this section, the validity of the testing, measurement, recording, and data reduction tech-
niques used during the program is established. This was accomplished by comparing the jet
noise characteristics measured for the reference convergent nozzle with value predicted
using two new prediction methods. One method, described in Reference 10, is based on the
work of the SAE Subcommittee on Jet Noise and is intended to replace the original SAE Jet
Noise Procedures of Reference 11. Predictions using this method have shown reasonable
agreement with measured full scale engine data, especially at the angle of peak sideline noise
which is normally located at 130 - 135 0 . The second tnethod, described in Reference 5, is
part of a new procedure developed by J. Stone at NASA Lewis Research Center. Neither
prediction method has, as of yet, been accepted as a standard. Therefore, both methods
were used to predict the levels of the jet noise of the convergent reference nozzle. A com-
parison of the measured OASPL data and the two prediction procedures is shown in Figure
4.3-1 for the 90° angle. The measured results agree well with the two prediction methods. A
comparison of the OP SPL directivities is shown in Figure 4.3-2. At the lower of the two jet
velocities, the data and values predicted by both methods agree over all angles. At the higher
jet velocity, the measured noise agrees well with the Stone method at all angles, while the
SAE procedure underpredicts the levels at angles aft of 130°. Comparisons of the one-third

11	 octave band SPL spectra at 90°, 130°, and 150° are shown in Figure 4.3-3 for the two values
of velocity. At the lower velocity (Figure 4.3-3a), the data agrees well with the SAE pre-
dictions at all angles. The agreement with the Stone method is almost as good at 90° and
130°. At 1500 , the Stone method overpredicts the levels at the high frequencies, but agrees
with the data in terms of peak SPL. At the higher jet velocity (Figure 4.3-3b), the data agrees
well with both prediction methods at 90 0 and 1300 . At 150°, the data agrees much better
with the Stone method than with the SAE method. Similar results were obtained at other
high velocity, high temperature conditions. The results of these tests indicate that the Stone
method appears to predict the noise of high velocity, high temperature jets more accurately
than does the SAE procedure. Based on these comparisons, the noise data for the reference
convergent nozzle at subsonic operating conditions is considered valid.

The measured data for the reference convergent nozzle scaled to a nozzle diameter of 1.27
meter (i.e., 10 X model size) is shown in Figure 4.3-4 for all conditions tested. In this figure,
the overall noise power level (PWL) is shown as a function of ideally expand:;d jet velocity,
along lines of constant total temperature. Subsonic nozzle conditions (P t %Pa < 1.89) are
shown as open symbols, and supersonic nozzle conditions (Pt /Pa > 1.89) are shown as solid
symbols. At the present time, no reliable method to predict supersonic jet noise is available
so the noise levels are not compared with predicted values. However, the consistent data
trend at both subsonic and supersonic conditions suggest that equally valid data were obtained
for all operating conditions. Since the same testing and aata reduction procedures were used
for the entire program, all the data obtained are considered valid.
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4.4 COANNULAR NOISE SYNTHESIS

At the onset of the SCAR studies, no procedure was available that would provide accurate
estimates of jet noise (mini turbofan exhausts having jet velocities in the fan stream higher
than in the pr;mary stream. Existing jet prediction methods are applicable only to single
jets and conventional turbofan exhausts (i.c.. V t < V  ).

In order to support the SCAR c\ the studies, a simple prediction procedure was developed to
provide estimates of jc t noise from turbofan exhausts having fan jet velocities higher than the
priman- stream. This procedure therefore provided a base to which the refer:nce coannular
nozzle noise data could be compared.

This procedure, based in part on the )riginal SAE ARP 876 (Ref. 11) and NASA TMX 71618
t Ref. 5) predicts the sound power level from a coannular nozzle to be equal to the sum of
the sound tK-,wer levels from two independent, single jets whose areas are the same as the
fan and primary nozzle :mas, as shown in 1=igurc 4.4-1 - The operatin g conditions of the indi-
%idual jets are taken to be equal ic. Vw fan and primary conditions of the coannular nozzle.
To allow accurate prediction on this basis. the reference con vergent nozzle was tested at all
of the primary and fan conditions of the coannular nozzle test matrix. The converg ent noz-
zle test data was scaled in level io the appropriate exhaust areas, and scaled for frrquency to
the equivalent cir:ular Oiameters of tote primary and fan nozzle areas, respectively. The scaled
data was then added logarithmically as shown in Figure 4.4-1. Typical power level predic-
tions bawd on this ss nthesized model are shown in Figure 4.4 for the 0.75 area ratio model.

'41

1



V	 •: • V15 t^flp 1 ►$1

,v

,m

•4

S"."70	 ,090"Sm,

3

e

3

1

Vu

^VP

AP	 -

• SVNTHESIZED NOISE OF COANNULAR NOZZLE • SUM OF NOISE
FROM INOEPENDE NT CIRCULAR JETS AT PRIMAR V AND rAN STREAAICONOITIONS

—L	 ( PWL -- 1P00FR LEVEL I SVN - 10 LOG lqG
-1 ( 

10
0	 LOG 1	 --

 10
P	 t

►NL 1 1
• PE RCfIVfONO15F LEVEL WOW = 10 LOG lOG-1 (--!!L-)

 
	 lOG-1

	

10 	 P	 10 I J

Ftpwe 4.4-1 Ctululiclar Je •t ,%'oise SL • nrhe-sis Procedure

IY	 - XW	 FPS/DO	 [^	 3w	 \1	 tax	 t wx	 a•00

_	 1	 1	 1	 I	 l	 I	 l	 1	 1	 1
. b	 :sa	 JOO	 nc	 +JO	 5.n 	6tn	 Ioo	 /eo	 900	 MP5

FAN JET VELOCITY

Figure 4.4-2 Svnthesi:ed CoantuJ1ar Jct Noise Poyxr l.erels, 0. 75 : trca Ratio. Scaled to 1.27m (50 in. )
l:yuiralent Diameter

The predicted values of perceived noise Lvels ( PNL) were synthesized in a similar manner
(see Fig. 4.4.1). i.e., the PNL's of the scaled convergent nozzle data were added logarithmically
to obtain a synthesized PNL. The PNL values obtained in this manner are very close to the
values that •..ould he determined b- , summing the one-third octave band noise spectra of the
convergent nozzle scaled !o the fan and primary nozzle sizes and then computing PNL from
the resulting summed spectra hecause the primary and fan streams were close in exit area and
in equivalent circular di.,meter. Power level and ivrceived noise level predictions based on this
synthesis procedure can be obtained for both the 0.75 at:d !.2 area ratio coannular nozzles
at any of the nozzle operating conditions by applying the method illustrated in Fi gure 4.4-1
to the convergent nozzle data contained in Appendix A.
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5.0 RESULTS AND DISCUSSION

File acoustic and acrodynamic results obtained during the program are presented tit 	 sec-
,i on, ,doll- with a discussion of the potential impact these results hive oil 	 engine cycle
studies. The results are generally presented over a partial ramge of conditions which illustrate
the important characteristics and conclusions. I'hc complete acoustic and aerodynamic data
(model sire and scaled I OX to engine size) are contained in the Comprehensive Data Report.
NASA CR-13-11110.

5.1 ACOUSTIC RESULTS

The tests of (lie various suppressed alld tlllstlppressed nozzle collllgtlrations produced a laruc
amount of acoustic data %%hich charlctcrims the noise emission of the models over a wide
range of oper:ltlllg conditions. fit l!le Iollowing, sMloil.^, a de%crlptlo p of tllC Illlportant pulse
tcatllres of the %arlotls Coll hs'.tlr.iti Its Is presented. I Ile liaise char'[cristics of the moklek
tested are presented in 11C'Ills of peak perceived noise level, perceiNctl noise level dirCCtlyit
one-third oche hand sound pressure and power spectra, and overall power level, as neces-
sary to describe and document the Raise of the various nozzle contisurations both on an ab-
solute hasis and relative to each other and to the reference configurations. Appendix I con-
tains a complete listing of acoustic mower and perceived noise level directivit y for all testing
conditions. The ►ollowin ', topics are discussed unsuppresscd callmular nozzles, t:an stream
Suppressor,, cticct of e .lectols and data Correlations. :III of Ille IlU1SC d ;lta :arc Sealc I t0 a
I.27 Ill eyui y alent nozzle diameter 1 10 times the model linear size) and cmrapolated to
645.c. ill sideline distance to t pify an :SST propulsion system at a sideline take-off condi-
tion.

5.1.1 Unsuppressed Coannular Nozzles

Tllc measured acoustic data from the 0,75 :Ilia 1 .2 area r:ttlo mistlppres,ed coannular Iloz.-
zles serve a dual purpose. First. It provides .1 IMSC of 110W Inlornlatloll cliaracterizlllg the
basic noise emission of a D11 FF c\h.tust s} , stom. Secondl y . it provides refcrencc noise charac-
teristics with which to comp.lre Tile results obtained front the various tan stream suppressor
contl-uratiom,.

5.1.1.1 Measured Characteristics

Since the Fan stream ict tends to control the total measured jet noise for most of the test
range, ide.11ly expanded fan jet vclocit\ . was selected as the main parameter for presentation
of the acoustic data. The perceived noise level IPNL):n the angle of peak noise level is
shown ill 	 5.1-1 as a function of ideall y expanded fail 	 vclocity, for fixed values of

fan stream total temperature • . and fixed primary jet total temperature and velocity. l hi, is
typical of the data obtained at the various primary operatin g conditions, showing the inllu-

enec ul the fan jet velocity and temperature oil 	 p leasured noise. The data -re well he-
behaved, as evidenced by the smooth shape of the curves fit through the data point,. It

should tic noted that the curves tend to converge to a single curve as the fan let velocjty de-
creases to levels below that of the primary jet velocit y . ]Ili; behavior indicates th:lt the
controlling noise mcchani,m transfers front :he Ian let to the primar y jet. Fimure i.1-_
shows the effect of priman stream velocit} oil 	 peak PNL for three values of fan velocity.
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At the lowest fail 	 an increase in primary velocity causes a rapid increase in noise,
indicating little inlluence of the fan stream on the noise. At the two higher fan velocities,
the effect of increasing primary velocity is less significant, especially at primary velocities be-
low 400 mps. A point of interest in this figure is that the noise at the highest fan velocity
(853 nips) is affected by primary velocity in the range of 400 - 550 nips. Since the noise at
V f• = 314 nips is completely dominated by the primary jet, it could be considered a floor
level primary stream jet noise. As this primary stream noise is 10 dB or more Below the
noise levels at Vf = 853 nips for V  below 5`0 nips, the-primary jet noise would not be ex-
pected to cause changes in the noise at the high fan velocity if the streams generated noise
independentl y as assumed in the synthesis. A conceptual model of noise generation for co-
annular jet. hiving V f-> Vp shows that this behavior is related to the unique mixing of the
primary and fan jets associated with the inverted velocity profile jet exhaust. A detailed
description of the conceptual model is presented in Section 5.1.1.2.
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The directivity characteristics of the data are illustrated in Fi g ure 5.1-3, which shows PNL
as a function of measuring angle for a series of fail 	 velocities. The noise level varies con-
tinuously with angle at all velocities, and the directivity shapes are the same for all velocities
at ailgleS aft of 90°. The slight change in directivity shape at angles forward of 90° at the
two higher velocities compared to :he two lower velocities is due to the presence of shock
noise at the supersonic pressure ratios (P t /Pa > 1.89).
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One-third octave band spectra at the 140 0 angle (the angle at which jet noise normally is a
maximum) are shown in Figure 5.14 for six different combinations of primary and fan velo-
cities. These spectra show some of the unique noise characteristics of coannular nozzle-
operating with velocity ratios (V t•/V 1,) less than 1.0 and greater than 1.0. Curves A, B, and C
show the effect of increasing primar y velocity for a relatively low fan velocity. The spectra
are similar to those generated by standard turbofan exhaust jets (V f < Vp ), and the noise
level increases with increases in primary velocity. Curves D, E, and F show the effect of in-
creasing primary velocity for a high fail 	 First, comparing Curve D to Curve A (con-
stant primary velocity), it is seen that the noise spectrum undergoes a radical change as the
fail 	 increases. The spectrum ill 	 is much higher in level, and more significantly,
has a shape differing considerably from the spectrum in A. The "spike" in the spectrum is a
shock screech tone possibly due to the underexpanded supersonic fan flow. Such tones are
normally present in model tests at these conditions but not present in full scale engine noise
spectra because ol the physical non-uniformities that exist in full scale engines. By fairing a
smooth cur ve through the spectrum to edit out the extraneous shock tone, the peak fre-
quency of the broadband noise is seen to occur at 500-600 Hz. This peak frequency is cha-
racteristic of a jet with a smaller diameter than that of a circular nozzle having either the
fail 	 primary nozzle area. This feature is true of all operating conditions where the fan jet
velocity is much larger than the primary jet velocity. Its presence can be explained by the
annular shape of the fan exhaust which produces a jet with a much smaller characteristic
dimension titan all 	 circular jet (i.e., annular height rather than equivalent diame-
ter). Further, this implies that the noise of 'he annular tan Jet is dominated by till' mixing 	 S:
process occurring in the nozzle flow field where the fan jet is still annular rather than after
it mixes with the primary stream to form a single jet further downstream. As shown by
comparing curves D and E, an increase in primary jet velocity caused an increase in the low
frequency end of the spectrum with little change at the higher frequencies. This implies that
the annular fan jet noise generation is relatively unchanged, but the contribution from the
downstream jet resulting from mixing of the fan and primary jets is increased because of an
increase in the mixed velocity.

At a still higher primary velocity (Curve F), the spectrum remained similar to a single jet at
high velocity. The noise at high frequencies from the annular fail 	 is no longer present as
a specific peak since it has now merged with the prima ry flow to produce a spectrum cha-
racteristic of a single jet.

The spectral characteristics of the data, when the fail 	 primary area ratio is increased to
l.'_, is shown in Figure 5.1-5. These spectra follow the same basic trends observed with the
lower area ratio nozzle. A direct speliral comparison of the two area ratios is shown in
Figure 5,1-6. This comparison shows two effects. First, the 1.2 area ratio produces slightly
higher broad-hand noise levels due to the larger tan area. Secondly, a shock screech tone
present in the 0.75 area ratio model is not present in the larger area ratio spectra. This dif-
ference in shock tone behavior is typical of the intermittent nature of shock screech tones.
it should again be noted that shock screech tones are not normally present in full scale en-
One noise spectra. The spectral characteristics of the noise from the unsuppressed coannuiar
nozzle, for conditions where the fall 	 is of much higher velocity than the primary jet, be-
come extremely important for understanding large differences between measured and pre-
dicted jct noise levels for the duct burning turbofan (DBTF) type of nozzle.
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The unsuppressed coannular nozzle was also tested to investigate the possibility of tempera-
ture shielding on the jet noise of a DBTF exhaust. The temperature shielding concept ern-
ploys a low velocity hot annulus of flow surrounding a higher velocity cooler central jet. To
accomplish this, nozzle operating conditions were selected to ptvduce a cold supersonic pri-
mary stream and a ]lot subsonic fan stream for a controlled experiment in which the fan jet
noise would be substantially lower than the noise from tite primary (or central) jet.

Results of the temperature shielding tests are presented in Figure 5.1-7a illustrating the
OASPL directivit y at a constant primary jet velocity (593 m , s) and fan velocity (366 mps)
for a range of fan temperatures (395°K to 1090°K). if a temperature-shielding effect were
present, the noise at the aft angles should decrease with increasing fan temperature. However,
the reverse is seen to be true. The hotter fan temperatures result in slightly higher noise
levels than observed with cooler fan stream conditions over the range of surveyed angles.
The spectral comparison presented in Figure 5.1-7b further illustrates this magnification ef-
fect. While the broadband portion of the spectra is essentially unchanged, indicating that a
temperature shielding effect is not present, the shock tone from the primary jet is seen to
vary considerably with fan temperature and is the basic cause of the OASPL increasing with
temperature. These test results indicate that the temperature of the secondary stream has
,in important effect on the shock noise of the primary stream, but is ineffective in reducing
the jet mixing noise generated by a central jet.
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5.1.1.2 Measured Versus Synthesis

In order to assess the effects of the interaction of the coannular flows oil 	 generation,
the measured noise characteristics are compared to those obtained by the synthesis described
in Section 4.4. A comparison of the measured and synthesized power levels for the 0.75 area
ratio unsuppressed coannular nozzle is presented in Figure 5.1-8a. The differs 	 I)etween
the measured and synthesized power levels is shown as a function of fan jet velocity and tem-
perature. A most important feature of DBTF type unsuppressed coannular nozzle jet noise
is illustrated in this plot, the measured levels are substantially lower (up to 8 dB) than the
predictions based on the synthesized model. Suppression was observed to exist at all primary
stream conditions with [lie level of suppression decreasing at the higher values of primary
velocity. Appendix 1 contains the data necessary to compare measured and synthesized levels
at other operating conditions. This suppression effect enhances the potential of the DBTF
cycle for SST application, since actual noise levels are substantially lower than those based
on earlier prediction methods.

A similar comparson of synthesized and measured power levels was made for the 1.2 area
I- atio unsuppressed coannular nozzle as illustrated in Figure 5.1.8b. Comparisons of mea-
sured and sythesized spectra produced results similar to the 0.75 area ratio case, although
the larger area ratio nozzle produced slightly less suppression relative to the synthesis. In a
later section of this report (5.1.4), the noise power level data from all operating conditions
at which hoth the unsuppressed coannular nozzles were tested are seen to correlate well after
applying normalizing factors related to fan stream temperature, fan to primary velocity ratio
and exhaust nozzle area ratio.
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Noise povvcr level represents the total !wise generated, but fur evaluating Its impact on air-
craft mission studies, the perceived noise level WNI_) is the widely accepted unit. Therefore,
the diflcrence in measured and s y nthesize d coannular noise levels for both area ratio nozzles
is presented as a ;PNL at the respective angles for peak noise on a 648.6n1 sideline tit
^. 1-9. Altllo::;oh some change in curve shale is seen relative to the previous PWL comparisons
(Figure 5.1-8). the major trends remain the swine. Measured PNI. reductions of up to
PNdB occur compared to the codilm tar synthesis. Similar comparisons for other operating
conditions call 	 ohtnined from the data contained in Appendix I.
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The synthesized and pleasured PNL direct ivities arc shown in f = igure 5.1-10 for supersonic
and subsonic fan jet %elocities. In both cases, the actual measurements are less than the pre-
dicted value for all angles, although in the subsonic tail Itrlocity case, the reductions are mach
larger in the aft angles. This observation is trLIC for all cases tested. "The data contained in the
appendix call 	 used to construct the comparisons at any operating conditions tested. The
reason for the different b;.11avior at subsonic and supersonic fats stream conditions can be ex-
Plained with the aide of the spectral comparisons of Fi g ure 5.1-11. The subsonic case (`' f=
45 7/ nips) shows large reductions ill 	 measured low frequency noise of the coannular noz-
zle relative to the synthesis at 140 0 : while at 900 and 600 , the p leasured spectra show small
reductions at low frequencies, with the higher frequencies at about the sanle level. Since the
PNL's at Q0° and 00° are controlled by the high frequencies, the resulting PNL differences
are slight. However, at the Supersonic pain velocities (V f = 564 and 625 nips), the results are
substantially different. At 90° and 600 , the measured low frequency noise is significantly
lower th.m the :\ nthesis. This result iS due to a reduction in the shock noise which dominates
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S

at the side and forward angles. At 140°, large reductions in low frequency noise similar to
the subsonic case are present. Since at this angle, mixing noise dominates over shock noise,
the agreement between the subsonic and supersonic cases is not unexpected. The spectral
resUlts Shown here were reheated at the other operating points wl,,ere V
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5 1.2.1 Multi-Tube Suppresor Nozzle

The reductions in the 1'erczived noise level produced by the multi-tube suppressor relative to
the mcasurt-d uncupprczed coannular nozzle noise l:vYls and to the synthesized leNels arc
sh,•w•n in Fivare ;.1-1 b for the full ranee of fan let conditions : nd a representative priman_
cclocit% . Data for other primar y velocities are contained in the al,lvendix. The following
trends can he derived from this data

•	 Supprcccion inaca _ccs with fan vek+.aty at constant fan teml crature

• Supprev4on de.-Tciees sith increasing fan temperature at constant v-elocih

• %Uximum suppressicm ohtaincd for a hot fan stream temperature %ac i PNdB
relative to the referenor coannular nook. and up to 1 4 P%dB relative to the
S% 	 'Alcd levels.
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The eff-c: of fan to primary nozzle area ratio on the noise cliancteristics of the convoluted
suppressor is shown in Figures 5.1-19, 5.1-20 and 5.1 1. The peak PNL suppression of the
two convoluted suppressors is presented in Figure 5.1-19, relative to their respective unsup-
pressed nozzles and also to the synthesis. As shown, the suppression of the two configura-
tions is essentially the same over the ran ge of test conditions. Thus, the suppression with the
convoluted suppressor is insensitive to a rea ratio between 0.75 and 1.2. PNL directivities for
one condition are shown in Figure 5.1-'0. The directivity shapes follow the same general
trend with the 1.2 area ratio levels being slightl y higher because of the larger fan jet area.
Spectral comparisons are shown in Figure 5.1-' 1 for two ankles. At 140 ` , a slight shift of
the high frequenc%- peak (around 1000 Hz) to lower frequencies can be associated with the
larger characteristic dimensions of the 1.2 area ratio con volUte We- the 1.2 fan exhaust is
larger and contains the same number of con v olutes). At 900 , this trend (around 1000 Hz) is
also present. The spectra were not normalized to correct for the effect of different fan and
primar y areas existing on the 0.75 and 1.2 area ratio configurations as the con-eptual model
of noise generation presented earlier su ggests that different corrections would be necessary
to correct the noise at different frequencies.
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5.1.2.4 Suppressor Comparisons

A direct comparison of the suppression obtained from the three suppressor configurations
is shown in Figure 5.i-22 as a function of fan velocity for two fan temperatures. As
illustrated, the three concepts represent different levels of suppression which must be
weighed against the mechanical complexity of those designs.
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The directivity patterns for the three suppressors are shown in Figure 5.1-23 for two
different fan temperatures. The trend of increasing suppression from convoluted to finger
to multi-tube, is seen to be reasonably consistent at all angles for both operating conditions,
With the highest suppression occurring from 140 to 150° on a sideline basis.
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The SFL spectral characteristics of the suppressors at angles of 90' and 140' at the two
fan temperatures are shown in Figure 5.1-24. The prei jously observed trend of increasing
suppression in going from convoluted to finger to multi-tube suppressors can now be
interpreted in terms of measured spectral changes. The spectra at the 140' angle, in Figure
5.1-24b and d is used for the interpretation, since the low and high frequency components
of the noise are separated in frequency. At mid frequencies, between 500 and 2000 Hz, the
noise reductions are due to th lo improved mixing rates of the three suppressors causing more
rapid velocity decay of the annular fan jet. The smaller reductions at lower frequencies re-
sult from the lower velo.,;ty annulus mixing with the low velocity primary jet and producing
smaller reductions in the effective velocity of the downstream mixed single jet compared to
the reductions in the an,LLaus velocity. The small changes in peak frequency (near 1000 Hz)
are related to the different characteristic dimensions of the suppressor elements (i.e., 18 con-
volutes, 32 fingers, 44 multi-tubes). The greater the number of elements, the smaller the
characteristic dimension, and thus the higher the characteristic or peak frequency. The pre-
sence of double humps in the spectra at 140' compared to the broad simple spectra at 90'
is similar to the results from turbojet suppressors, as in references 12 and 13.
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Examinin g the effect of primary velocity on the absolute PNL noise levels and the A PNL
suppression provides a better understanding of the relative importance of fan and primary
velocities. Figure 5.1-25 shows the PNL level in terms of primary velocity for the multi-
tube and finger suppressors. It is clearly shown that the noise level is essentially constant
when V  is low relative to V f, and increases with increasing V  as V p approaches Vf.
Similar characteristics are seen for the convoluted suppressor with both the 0.75 and 1.2
area ratio nozzles, as illustrated in Figure 5.1-26.

An intefesting feature is noted in the noise characteristics of the 0.75 area ratio convoluted
suppressor in Figure 5.1-26. The noise at V f = 853 raps shows approximately a 2 PNdB
increase when V  increases from 425 to 520 nips, even though V f is appreciably greater
than V.. The explanation for the higher observed noise levels is that the jet noise for co-
annular nozzles having V f > V  is composed of high frequency noise generated by the con-
voluted annular fan jet plus low frequency noise generated by the downstream merged jet.
At Vf = 853 nips, the annular jet noise dominates at the lower V p , as evidenced by the con-
stant noise level at the two lower values of primary velocity. The increase in noise caused
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by the still higher values of primary velocity is due to the merged jet noise becoming domi-
nant over the annular jet noise. The increases in noise level can thlen be explained by the
fact that the merged jet noise is dependent upon the merged jet velocity, which is higher
than the primary jet velocity.
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5.1.3 Effect of Ejectors

Turbofan engines that power supersonic aircraft may incorporate ejectors in the exhaust sys-
tem to provide high performance at all operating conditions. Thus, an important aspect of
this program was to determine the effect of both hardwall and acoustically treated ejectors
on the noise and performance characteristics of the various nozzle configurations. In this
section, the effect of the ejectors on the noise characteristics is described.

5.1.3.1 Unsuppressed Coannular Nozzle With Ejectors

The effect of the hardwall and treated ejectors on the peak PNL of the 0.75 area ratio un-
suppressed coannular nozzle is shown in Figure 5.1-27. A slight (< 1 dB) reduction was ob-
tained by adding the hardwall ejector. The presence of acoustical treatment in the ejector
produced a small amount of additional suppression. Across the test range, 2 PNdB or less
=otal suppression was obtained. Since the unsuppressed coannular nozzle results described

	

earlier indicated that the high frequency noise was generated in the fail 	 exhaust
near the noz:.le exit and the low frequencies in the mixed jet downstream, some shielding
suppression of the high frequency noise was expected by addition of the ejector, and further
reduction is consistent with the addition of acoustic treatment. The effect of the ejectors
oil 	 directivity is shown in Figure 5.1- 2 8. Little difference exists in the directivity shapes.
although a slight reduction at 140-150 0 is seen for the ejectors cases. The spectral compari-
sons in Figure 5.1-29 show ► n interesting effect of the hardwall ejector. At 140 0 , a large
reduction in the SPL at high frequencies is seen, while at 90 0 , the high frequency levels show
a slight increase. The treated ejector provides a moderate reduction in high frequency at all
angles. The power spectra comparison shown in Figure 5.1 -30 illustrates that the hardwall
ejector causes only minor changes to the noise generation while the addition of treatment re-
duces the noise at high frequencies.

V P 427 NIPS 11400 FV51

n0	 TTp' 917 K (1000 F)	
NO

TTF 1090 K (1500 F)

HARONALL EJECTOR

00

TNEATEO

90

901—	 I I I I FPS
1000	 2100	 JOUII

I	 I	 I	 I	 I	 I_	 I	 MPS
300	 350	 400	 500	 000	 1110	 800	 900

FAN JET VELOCITY

Figure 5.1-27 Effect of Hardwall and 7reated Ejectors on Peak PM. ofCowinular Unscppressed jVozz'e,
0.75 Area Ratio, Scaled to 1.27m (50 in.) Equivalent Diameter

66



ry JC tOE 20	 ,W	 '^

6--b.
12 1 N  y T . T.

Figure 5.1-28 Effect of Harditull and Treated Ejector on PNL Directivity of Coannular Unsuppressed
No._ le. 0.75 Area Ratio, Scaled to 1.27m (50 in.j Equivalent Diameter

., 0 - W-

_x r T. • t17'rc	 Ia00'F
p r* - X3 1 WS  t X00 EK'

t0' Vx 7TOF^_F. _

O

%` EJECTOR

.
NEiECTOR

\^	 r. T^..wgnwwl.:

O ^^

> MTN TTREATEO

3O ELECTOR
u
O

S
~ y	 ^ I	 I	 I I	 I^

QQ tOf¢ low

FREQUENCY IN HERTZ

Figure 5.1-29 Effect of Hardwall and Treated Ejectors on SPL Spectra of Coannular Unsuppressed Nozrle,

0.75 Area Ratio, Scaled to 1.27m (50 in.) Equivalent Diameter

67



N w

4 
^t	 It"O.A.10au.,

a	 v^ • atr Rrs.l^es.y.
t R • I	 R 1 1 •^ r

S	 i	 *p,16, % Mv - -S -

O

1•

L	 ^^

.Itix. tivl
r. •. •••W1M.11 /

R	 ••• x•11 itt 411 , •1 ^^\

. L I_
1 Nt1KANCt iN NINA

Fkvir ^ V") ! 'rt, • 1 •t if 11ar wall arr,l /rt • Ited beet rs o pt SIT Spc etra	 ( : ;arvtukr ('rtstcplvrssl^l

r r. i An-a Ratr , ` _..awa to 1.27r►J 150 UL I h1(uAviertt thameter i ConClll ird)

z	 ^

' L_^1	 1	 I

• •.1 WI A9 1N MI R

/ }wrr i. l-. 441 Ont-t of ll.:rJ11v7 and Treated herb ors l n PkI. sprt-tra , I Cownular ( rrsul+presscd rf c:ie.
0 '^ -In l Rino. Scaled to 1 2-in t 5 in. + 1 yun •alent l>tamcter

5.1.3.2 Multi Tube Suppressor With Effectors

The leak PNL of the multktihe --uhhressor with and without an ejc.tor is presented in
Figure i . 1-31. Ilse hardwall ete_• tor (p rovides a small reduction in { peak PNL at most of tilt•
operating conditions %%hile the addition of acoUStic treatment cause more significant re-
ductions (i.e.. 4 PNdB m the Itmor fan VeIoeities and 3 PNdli at hi g her fan %elocihrs).
Figure i.I-?' dishla%s the PNL direoivity lt o r two fan stream %docitu e s. At the lower I:ut
%cloth) Wig.ig. i. 13'a ► . the hard%all eiector causes lan_,e reductions at aft :uigles arid little
change .It the side and fr o nt ,u„le. File llcalcil e jector hro llidt-, onl y slightl\ mor: re-
duction at aft angle, but more significant reductions at side and front angles. At the higher
fan velocity Il ig. 5-1-3 `h1 tlu • noise redt:clion due to the eje • ctora is al o l omximatrh the sane
at loth Front, side, and , ► I-1 angles.
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The corresponding spectral comparisons shown in Figures 5. I-?3 are used to explain this be-
havior. One-third octave band SPL spectra at 900 and 1 .300 and power spectra for the multi-
tube nozzles are shown in Figure 5.1-22 for the lower fan velocity. At QO° (Figure 5.1-33a)
the hardwall ejector causes a 2 dB reduction in the low and mid frequency ran ge, and a 1 dB
reduction at high frequencies. At 140° (Figure 5. 1-33b), however, a large reduction in high
frequency noise can he seen. The addition of treatment causes further reductions at high
frequency at both angles, but no additional reductions at low frequency. The large angular
variation in hardwall ejector attenuation is belie%ed to he caused by refraction of' the high
frequency noise generated within the ejector and reflected from the ejector walls as it passes
through the shear layer emanating from the :jector lip. This phenomenon is similar to the
shear layer refraction present during open jet wind tunnel tests ( Ref. 1 .3). Si-:i:.ir directivity
effects have also been observed in recent tests by the Boeing Company (Ref. 15). The low
frequencies are unaffected since they are generated downstream of the ejector. To detinc the
ch inces in radiated acoustic power caused b} the ejector, t;:, ,ioise spectrum was integrated
across all measurin g ankles to obtain the noise power spectrum shown in Figure 5.1-33c, The
power spectra remove the refraction phenomenon, which is a directivity effect. This com-
parison clearly shows two effects. First, the hardwall ejector produces from _' to 5 dB reduc-
tion across the spectra, which can he explainer. by source strength reduction due to the re-
duced relative velocity hetweer. the jet and the ejector induced flow. Secondly. the presence
of the acoustical treatment causes no further reduction in the low frequency portion of the
pectrum up to 400 Hz, but increasing amounts of suppression from 400 Ili, to I OOCO Iiz,
Tilts is 1, tisistent with the design goal of the treatment, which was selected to pr,)vide broad
hand attenuation down to scaled frequencies of about 400 Ile..
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Comparisons of the SPL spectra at 90° and 140', and the power spectra, are shown for a fan
velocity of 850 nips in Figure 5.1-34. The effect of the ejectors is similar to the effect in the
previous case at the lower fan velocity. However, at the higher fan velocity, more noise exists
in the low and mid frequency range (<500 Hz) relative to the noise at high frequencies. The
ejector treatment (which attenuates only the high frequency noise generated by the annular
fan jet close to the nozzle exit), therefore, is less efficient in reducing the noise.
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5.1.3.3 Finger Suppressor With Ejectors

The effect of the ejectors on the noise reduction characteristics of the finger suppressors is
essentially the same as for the multi-tube suppressor. The effect on peak PNL, shown in
Figure 5.1-35, indicates a slight reduction due to the hardwall ejector (1 PNdB) while the
addition of acoustical treatment produces a varying reduction ranging from 3 PNdB at low
fan velocities to nearly zero at the higher velocities. The PNL directivity, as illustrated in
Figure 5.1-36a, for a fan velocity of 707 nips shows reductions at aft angles for the hardwall
ejector, and small additional suppressions at all angles due to the treatment. At V F = 850
mps, Figure 5.1-36b, the hardwall ejector shows noise reductions similar to those at the lower
fan velocity, but the treated ejector produces no further noise reduction.
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Figure 5.1-35 Effect of Nardwall and Treated Ejectors on Peak PNL of Finger Sup pressor. 0.75 Area
Ratio, Scaled to 1.27m (50 in.) Equivalent Diameter
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The SPL and power spectra comparisons at the lower fail 	 presented in Figure 5. 1-
show the same general characteristics as those exhibited by the multi-tube suppressor. In
particular, a large reduction in the SPL at high frequencies at rear angles, caused by addition
of the hardwall ejector, and consistent high frequency reductions at all angles due to the
treatment. Comparisons of the SPL spectra at 90 0 and 140°, and the power spectra for
V F = 850 nips are presented in Figure 5.1-38. As was the case with the multi-tube suppressor.
at this hi gh fan velocity, the noise generated by the merged jet is much higher than for the
lower fail 	 case and dominates the entire spectra. Thus..., the high fan velocity, the
ejectors have negligible effect oil 	 total noise. It is noted that the addition of treatment
to the ejector provides no attenuation even at high frequencies. This result is different from
the effect of the treated ejector on the noise of the multitube suppressor shown previously
in Figure 5.1-34. The explanation for this different behavior lies in the amount of merged
jet noise compared to the noise generated in the annular fan exhaust close to the nozzle exit
illustrated in Figure 5.1-39.

The PWL spectra for the finger and rnultrtube suppressors with hardwall ejectors at 707 mps,
illustrated in Figure 5.1-39a, shows the merged jet noise spectra extrapolated to higher fre-
quencies assuming a typical jet noise spectrum shape. The spectrum is therefore consistent
with the noise that would be generated by a single jet exiting a circular nozzle at the merged
jet condition. This "floor level" noise is below the SPL level of the high frequency n^ise ac-
tually generated by both suppressors. As the multi-tube case has a much lower merged jet
noise, and therefore a lower "floor level" noise, the ejector treatment should provide more
attenuation than for the finger suppressors as can be seen by comparing FiE-res 5.1-33 and
5.1-37. The effect of increasing the fan jet velocity to 850 mps is illustrated in Figure 5.1-39b.
In this case, the merged jet spectrum extrapolation for the finger suppressor falls very close
to the measured spectra, indicating that the merged jet noise dominates the noise over the
entire frequency range. However, the same extrapolation of the merged jet noise of the mul-
ti-tube suppressor falls below the level of the suppressor generated noise. Thus, the applica-
tion of the treatment would be expected to provide attenuation at the high frequencies for
the multi-tube suppressor, but not for the finger st .)pressor.
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5.1.3.4 Convoluted Suppressors With Ejectors

The comparison of peak PNL for the 0.75 area ratio convoluted suppressor, with and without
ejectors, is shown in Figure S.1-40. As illustrated, the hardwall ejector provides approximately

PNdB reduction. The presence of the acoustically treated ejector provides an additional
4 PNdB reduction at low fail velocities and no reduction at the higher fan velocities. The
PNL directivities at two fail velocities, shown in Figure 5.1-41, indicate a larger ejector im-
pact at 0 = 165 0 compared to the other suppressor configurations. However, at the peak
PNL angle, the effect is comparable to that of the finger suppressor, but not as large as the
multi-tube design. The PNL reduction due to the ejectors is negligible at side and forward
angles at the fan velocity of 850 nips, similar to the results from t'- 	 "ti-tube and finger
suppressors. SPL and power spectra comparisons are shown in Fig, 	 ,-42 for a fail

cite of 707 nips. The hardwall ejector provides a large amount of suppression at high freq-
uencies at 0 = 1400 , but has little effect at 0 = 900 . The treated ejector provides high freq-
uency suppression at both angles. The sound power spectra comparison in Figure 5.1-42c
indicates a 1-3 dB redaction due to the hardwall ejector. The treated ejector provides up to
6 dB reduction at the higher frequencies. Comparisons of SPL spectra at 90' and 140° and
power spectra for the higher fail velocity of 850 nips are shown in Figure 5.143. As was
seen for the multi-tube and ti ►n,1er suppressors, the high levels of noise generated by the nierged
jet doininates the noise spectra at this high fan velocity, and the ejectors are ineffective in
reducing the noise generated in the merged jet region. It is noted that no high frequency at-
tenuation is present due to the treatment in the ejector for the 850 mps case. The explana-
tion for this behavior is the same as for the finger suppressor discussed previously, i.e., the
merged jet noise is dominant over the entire frequency spectrum.
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Me unpact on ITA PAL suppression of increasing the tan to primary area ratio of the con-
voluted suppressor from 0.75 to I._ is shown in Fi gure 5.144 for both the hardwall and
treated ej:•cton. The suppression was essentially the same for the two different area ratios.
Ili• impact of the ejector on the noise power slkctra of the 1.2 area ratio convoluted sup-
pr:ssors is presented in Figure 5.1-45. The effect of the ejectors is seen to be similar to that
o the 0.75 area ratio configuration ilhtstrat d in F=igure: 5.14', The hardwall ejector re-
duds the noise by v3n ing amounts across the entire frequency range while the treated ejec-
tor results in additional suppression only at the higher frey:ienci:s. The reduction ir noise
power slkctra_ due !o the ejectors relative to the :onvoluted suppressor noise with no ejec-
tor. is preScTnted in Figure 5.1-46 for both area ratios. Except at the very high frequencies
(.move 4.000 Ili ). the suppression spectra .ire quite similar for Kith the 0.75 and I area
ratio models. Since the suppression spectra are approximatel y the sam:, it can inferr.•d that
the effect of ejectors on the suppression provided by the convoluted suppressor is essentially
insensitive to noiile area ratio char ges from 0.75 to 1.'.
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5.1.4 Data Correlations

Three special correlations developed using the jet noise power level data obtained during
this program are presented in this section.

The correlations quantify the noise trends produced by the DBTF exhaust systems and
focus on three topics:

0	 Acoustic power levels and perceived noise levels of the unsuppressed coannular nozLles
defined in terms of fan to primary -elocity and area ratios.

•	 Acoustic power level of a;l configurations in terms of suppressor geometric parameters.

•	 Acoustic power level of all configurations in terms of jet plume velocity profile mea-
surenients.

5.1.4.1 Correlation of Unsuppressed Coannular Nozzle Noise

Since the unsuppressed coannular nozzle produced significant noise reductions rolative to
the synthesis, it is desirable to correlate the results in a general manner that adequately
describes the overall noise characteristics of the nozzle system. A general correlation of the
unsuppressed coannular nozzle noise data is presented in this section. The results show that
for V f/Vp > 1, the noise power level, when corrected for fan ctrP^T • ernoerature. can be
represented as a function of fan streavi velocity along a lamily of nearl y str..^eht lines of
constant V f/Vp . The effect of V f/V p and A f/Ap are then accounted for by empirically
derived normalizing factors.
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Hit, power level normalization factors were also used to collapse the peak PNL data, the
results being generally similar to those of the PWL cortrlation,

Figure 5.147 illustrates the power level along lines of constant tarn stream temperature for
all the values ol' pnm.rn stream %clocity run during the tests of the unsupprvssed coannular
nozzle having A I./'A = 0.75 including V of 305, -10_,-1_'7, 500. 53`) and 010 nips. 11re
power levels stratiWalong constant fan steam temperature lines, especially at the higher
values of fan velocity. 71us indicates that at the higher fan velocities, the fan flow is
responsible for the dominant portion of the overall jet noise. Under these conditions, the use
of a fan stream temperature for density 1 nommlizing parameter proved useful in collapsing
the noise (ever along a single line 1r.e., removing [le effect of fan temperature 1. The para-
meter used for this purlx)se is the fully expanded ratio of fan stream density to ambient den-
sity raised to an exponent which varies with jet vciocity, where -APWL = 10 log, O (pf/Pa)47
is added to the noise level of a jet at elevated temperature to equal the noise level of an ambi-
ent temperature jet. Applicatiuo of this pcirameter has been shown to provide an excellent col-
lapse of subsonic jet mixing noiselevels in Ref. 10. the expon . nt varies from -1 at low velo-
cities to a value of +3 at high jet velocity as shown in Figure 5 1-38. This normalization ap-
plied to the convergent reference nozzle data produced an excellent collapse of the power
level as shown in Figure 5.1-49. The cure shape closely simulates the results in Ref. 10 when
the referenced data are converted to a power level basis. At low velocities the slope is approx-
imately 8. then increases to ! 1.5 between 30- and 610 mps, and decreases at velocities above
610 nips. The 11.5 slope arises front 	 effects of convective amplification which becomes
increasingly important above 305 nips. The only data points that do not collapse are for low
temperature, supersonic velocity fan operating conditions that contain large amounts of shock
screech energy. The otherwise excellent data collapse indicates that. on a power level basis.
the jet noise is dominated by mixing noise rather than shock related noise sources. Applying
the same normalizing factor based oil 	 jet density and velocity to the unsuppressed coan-
nular nozzle noise levels results in the collapsed noise power curves in Figure 5.1-50. each
curve representing a constant primary velocity. At V 	 305 mps, the data collapses well
over the entire velocity range. except for the t%skl low temperature supersonic velocity fan

points which contain shocks similar to those in the conver gent nozzle data. Above 305 nips,
the shape of the curve is si ►p ilar to that of the convergent nozzle data (i.e., a reasonably
straight line at velocities between 305 and 010 nips, and decreasing slope between 305 and
above 6`0 nips). The slope of 8.5 in the mid-velocity range is less than that of the conver-
gent nozzle data and is due to the jet noise from the primary stream becoming increasingly
important at decreasing fail 	 At V 1, = 40' nips, the slope is 7, indicating a further
contribution of the priman' jet to the total jet noise. At V  = 4 1 7 mps, the slope is o.3, and
it is seen that the nomializ.ation does not work at V f < V , due to the hi gh contribution of
the primary jet to ti a total jet noise. At a velocity of 500 nips, the influence of the primary
stream on the nois_ tends to obscure the slope in the 305-610 nips V p range, and at V I, = 539
and 610 mps, the densit y notmalization, for the limited data region tested, does not collapse
the data due to the high contribution of primary jet noise. However, extrapolation of the
data curves to hi gher fail 	 ind i cates a collapse at large V f . Figure 5.1-50 shows the
normalized power level curves for all o inrary velocities where the shaded re gions represent
the uncertainty in the densov norm..l,zed curves due to non-collapse of the data. The cor-
relation was established to represent th; data at vames of 4' f^V l, > 1.0. The uncertainty
exists for only a limited region of the correlation where the pnmar y velocity is over 500 [lips.
The lar_c uncertaint is ± 1.5 LIB.
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Figurc 5.1-51 Composite Map of Density Normalized PWL of Coannular Unsuppressed Nozzle at All
Tested Primary Velocities, 0.75 Area Ratio, Scaled to 1.27m (50 in.) Equivalent Diameter

To further enhance the data correlation, the effect of velocity ratio, V f/VP . was established.
-Mis was accomplished by locating points on each constant primary velocity line (on
Figure 5.1-51) corresponding to V f/V p of 1.0. 1.2 ....2.8. The lines best fitting these
points are shown as dashed lines in Figure 5.1-50 and by themselves in Figure 5.1-52 for
more clarity.

Also shown on Figure 5.1-51 is the normalized power level curve from the convergent
nozzle data. This line represents the ideal noise power level of a coannular nozzle having
equal fan and primary velocities. Note that it lies from 2 to 5 dB above the coannular nozzle
Eric having V f/V p = 1.01 thus indicating that the coannular nozzle under the conditions of
equal primary and fan velocities produces less noise than a single jet. Two major factors
may contribute to this result. The first factor is the differences in geometry. The presence
of the primary stream tailpipe that separates the fan and primary streams can produce
significant differences in the exit velocity profile compared to the convergent nozzle. In
particular, an intermediate shear layer caused by the boundary layer growth inside of the
primary nozzle and the fail 	 inner diameter surface is present and could affect the
actual mixing process. In addition the two streams exhaust to ambient at different axial
locations, and this will also affect the mixing process relative to a single jet. The second fac-
tor is that the normalization for density was based strictly on the fan stream conditions. Nc
Ldjustments could be made to correct for different primary stream densities as data were not
obtained that would allow definition of the effect of this parameter.
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In any event, the correlation of the coannular nozzle noise levels clearly shows that at all
fan velocities, an increase of V f/Vp causes substantial noise reductions up to V fNp = 2.0.
Increases of V f/V p above 2.0 causes only small additional noise reductions.

Using the results in this form enables determination of the noise reduction due to the inver-
ted profile effect (i.e., V f > Vp ), knowing only the fan velocity and the fan to primary velo-
city ratio (for a configuration having A f/Ap = 0.75). Since the V f/V p lines of Figure 5.1-52
are well behaved, the data correlation has been extended one additional step, which is the de-
termination of the normalizing factor necessary to collapse all of the data to a single line. It
was postulated that a data collapse could be accomplished by using only V f/Vp as a parame-
ter. Figure 5.1-53 shows plots of APWL vs 10 log V f/Vp for four different fan velocities, in
order to determine the behavior over a wide range of fan velocity. These APWL were deter-
mined by subtracting the PWL at each value of V f/Vp from the PWL value at V f/V p = 1.0.
These data collapsed reasonably well. The correlating parameter of APWL based on the mean
line through the points is 10 log (V f/Vp ) m as shown in Figure 5.1-54, where

A PWL (Rel. to V f/Vp = 1)	 1	 \ 1/5

= —3.75	 1
10 log (V f/Vp )
	

1 + 0.0127 X 5

Application of this parameter results in the final normalized power level curves shown in
Figure 5.1-55. The maximum deviation of ± 1 dB from a mean line representing the curves
indicates that the normalizing parameter adequately describes the effect of the fan to pri-
mary velocity ratio for this configuration having A f/A = 0.75. An important observation
that can be made from this correlation, and in particular frori the expression for m shown
above, is that negligible additional suppression (<2 dB) is gained for Vf/Vp greater than 2.0.
This indicates that if the primary stream were turned off, i.e., V f/V p = —, the suppression
would be approximately the same as for V f/V p = 2.0. In other words, a single jet exiting
as an annulus surrounding a zero length plug centerbody would be expected to produce ap-
proximately the same suppression as a coannular flow of Vf/V p = 2.0 if the annulus in each
case is similar, and if the single jet were provided with a small amount of leakage fl;)w to pre-
vent a severe overexpansion shock system and its associated shock noise.

The same formula for m determined for the 0.75 area ratio nozzle was applied to the data
produced by the second unsuppressed coannular nozzle, having, A f/Ap = 1.2. The normal-
ized power level curves showed reasonable collapse as shown in Figure 5.1-56. A compari-
sfn of the normalized curves for the 0.75 and 1.2 area ratio unsuppressed coannular nozzle
,,onigurations shows that the noise of the 1.2 contig.Aration is 2-3 dB higher. It also shows
that the normalization tends to over-compensate the noise of the 1.2 area ratio nozzle at
the higher ratio- of V f/Vp , implying that the inverted profile effect is less as A f/Ap increases
from 0.75 to I.I.

The apparent effect of Ar'/ Ap was determined by using A PWL = 10 log, { (A f/Ap )n , where
for simplicity and due to the limited data, the area ratio and velocity rati,, are considered
to act independently. The va l, ie of n required to collapse the two sets of data was found to
be equal to 1.0. The final :iota normalization using mean lines for both sets of data is
illustrated in Figure 5.1-57.

M =
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Figure 5.1-58 shows all the measured PWL data for the V f/Vp operating conditions normalized
by the resulting procedure.
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The same nurnerical values of correlating parameters used to correlate the power level data
were used to normalize :he perceived noise level data results shown in Figure 5.1-59. The
data spread is similar to that of the power level normalization.

17his correlation procedure produced a reasonable collapse of the noise levels of the inverted
velocity profile coannular nozzles. However, for airplane mission studies, a prediction pro-
cedure is required which includes the estimation of SPl_ spectral characteristics at all angles.
This more sophisticated prediction requirement is needed in order to allow EPNL calcula-
tions for 11yovea conditions. In order to develop a prediction procedure of this type, con-
sideration of the noise generation process is necessary. The total noise spectrum is com-
prised of low frequency noise related to the properties of a downstream merged jet, and
high frequency noise related to the properties of the annular tan stream close to the nozzle.
The use of simple paranaetl-rs based on ideally expanded properties of each s!rram at the
nozzle exit to correlate a noise level representing the sum of th. noise from the two sources
is considered to lie too simple a basis for providing an accurate method to normalize the
data. Preliminary correlations based on dividing the measured SPL spectra into separate
high and low frequency noise components indicate that a satisfactory p rediction procedure
could he developed by correlating the low frequency and high fregt,cncy noise individually
agains' parameters better representing the noise generation in the two separate regions.
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5.1.4.2 Suppressor Geometry Correlation

This correlation is shown in Figure 5.1-60 for a variety of flow combinations. The geometric
parameter selected is the projected area ratio, defined as the total area enclosed by a circle
surrounding the outermost perimeter of the fan nozzle (Suppressor Projected Area), divided
by the actual fan exhaust flow area (Flow Area). When the fan velocity is substantially
higher than the primary velocity, this parameter represents a rough measure of the cross
sectional area available for the high velocity fan flow to mix with both the ambient and low
velocity primary exhaust flows and thus to decay to lower velocities downstream. This
parameter is analogous to the suppressor area ratio parameter used to correlate noise suppres-
sion of turbojet suppressors (Ref. 16). The noise levels for the projected area ratio of 1.0. di.P
the single jet) was obtained by scaling the reference convergent nozzle noise levels to a
single jet having the came area as the fan area of the coannular nozzle. The correlation
between noise power and the area ratio parameter suggests that the suppressor-like behavior
of the unsuppressed coannular nozzle, when compared to a convergent nozzle, is related to
the ratio of the fan area to total area, and that this is the parameter which controls the sub-
sequent mixing with both the lower velocity primary exhaust and the ambient air.
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Based on this limited correiation, an inference could be made relating to the possibility of
obtaining the inherent coannular nozzle noise reductions for V f/Vp > 1 exhaust profiles
through the use of a large centerbody plug in place of a low velocity primary stream. Data
contained in Ref. 12 indicates that a single stream annular nozzle with no centerbody
generally produces noise reduction consistent with the coannular nozzle having large
V IN p . However, results of Ref. 13 showed that a single stream annular nozLle surrounding
a large, long plug centerbody produced only a moderate amount of suppression compared
to the coannular noise reductions obtained during this program. Consideration of the flow
aerodynamics would explain these results. Whereas the coannular jet provides for mixing
of the high velocity fan flow jet with the ambient air on the jet outer diameter and with
low velocity primary flow on the jet inner diameter, the presence of a lar ge centerbody plug
in place of the low velocity inner flow would severely redu.• e the mixing on the jet inner
diameter. Thus, the coannular noise/geometry correlation ,iresented in this section would
be optimistic if' used to predict the suppression of an annular jet surrounding a large, long
plug centerbody.

5.1.4.3 Velocity P rofile Correlation

The third correlation was developed to relate the noise to the jet plume characteristics of
the various configurations. The measurements of velocity profiles at the axial position of
the ejector exit plane (whether or not an ejector was used), shown in Figure 5.1-61 for a
typical operating point, were used in conjunction with the measured noise power levels to
derive a correlation between the noise and the flowfield characteristics of the various con-
figurations. The basis for this correlation is the work of Chen (Ref. 17) in which he demon-
strated that jet noise can be approximated by a spatial integration across the jet volume of
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a lame number of radiating noise elements (or turbulent eddies). Each of the elements gen-
i rates noise approximately as the eighth power of the local mean velocity. The approach
Used in this program was to determine the maximum velocity behind both the primary and
fan stream nozzle at the ejector exit plane station, and add these values logarithmically with
an appropriate area weighting factor relating to the fan to primary stream area ratio. The
velocity profiles were highly dependent upon the nozzle configuration at each operating cot _
dttion, as would be expected due to the large influence of nozzle suppressor geometry upon
the mixing and subsequent velocity decay of the jet exhausts. This is illustrated by the pro-1
files presented in Figure 5.1-61. The correlation of noise level with the velocity parameter
for all points at which profile measurements were made is shown in Figure 5.1-62. The max-	 i
imum deviation from the mean line was 3 dB; however, 2/3 of the data falls within 1 dB.
Extended studies in this area may prove useful in supplementing the understanding of sup- 	 t
pressor nozzle behavior.
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5.2 AERODYNAMIC PERFORMANCE

The aerodynamic performance characteristics were obtained simultaneously with the acous-
tic measurements at each pressure ratio and temperature for all the configurations tested.
The aerodynamic performance is defined by the nozzle thrust coefficient, Cv , which is the
ratio of actual total thrust generated by the complete exhaust system to the total ideal
thrust available. In addition, an array of static pressures on the suppressor configurations
«as used to aid ill 	 the flow through the system.

The performance of the various nozzle/suppressor configurations is presented relative to the
appropriate LIsUppressed coannular nozzle, operating at the same flow conditions. The un-
suppressed coannular nozzle is used as a reference configuration since the aerodynamic per-
formance characteristics of a coannular system cannot be directly synthesized from the per-
forinance characteristics of a simple convergent nozzle.

vic resulting differences between a given test configuration and the unsunpressed coannular
nozzle were then compiied, point by point, primarily in terms of fan stream pressure ratio
and a smooth mean line careful F'.i; blished through the data. In ^,omc cases, this mean
performance level was tempered b y cros-.-correlating with the pressure integrals in the nozzle
as well as established differences between other configurations. The large quantity of data
on many of the configurations provided a good statistical sampling of the performance levels.
,VI of the data is presented in Volume II of the CDR (Ref. 8), The performance data is used
as measured rnd not adjusted for any full scale effects since the physical full scale exhaust
systen: characteristics have not been established.

The discussion of performance characteristics will cover the following items. The perfonm-
ance of the reference nozzles will he presented t'irst, for both the convergent nozzle which
provides a check oil basic facility, and the unsuppressed coannular nozzles which serve
as the baselines for all of the suppressor configurations. The characteristics of all the sup-
pressor configurations are then discussed, with the low ara ratio (A f/A p = 0.75) presented
first, followed by the larger area ratio (A f/A p = 1.2) evaluations.

The performance aspects of the ejectors are included in the discussion of the basic nozzle/
suppressor rather than in a separ. ► te discussion, as in the Acoustic Results (Section 5.1). A
brief summary of the flow coefficients for all the models is also included. A special correla-
tion presenting the impact of acoustical treatment is then discussed, prior to a complete
summary of the aerodynamic performance relating all the test configurations.

5.2.1 Convergent Nozzle

The convergent nozzle thrust coefficients are shown in Figure 5.2-1 for all the measured
points, at temperatures from 395°K to 1090°K. These data do not indicate any discernible
trend with variation in temperature, and therefore, a single mean fine representing the per-
formance level was established. The level shown is consistent with that generally accepted
for a convergent nozzle, when the installation is considered. The installation in this test had
a relatively long distance and large amount of internal surface area between the instrument-
ation station and the nozzle exit. The internal friction losses, therefore, become significant,
particularly at the low pressure ratios. This is reflected in the high lapse rate at the low pres-
sure ratios. The losses diminish in importance at the high pressure ratios, where they are small
compared to the nozzle thrust.
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5.2.2 Unsuppressed Coannular Nozzles

The performance levels of the unsuppressed coannular nozzles are presented in Figure 5.2-2
for all the measured points. As indicated, there was a large amount of data generated with
these nozzles, since they were baseline configurations. All of the test conditions simulated
with the suppressor configurations were duplicated with the baseline units, plus additional
points to ensure a thorough and complete understanding of the baseline configurations. As
with the convergent reference nozzle, no significant trend consistent with stream tempera-
hae was observed, and therefore, a single smooth mean Be was used to represent the base-
line performance levels.
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The performance of the two unsuppressed coannular nozzles is compared to that of the
convergent nozzle in Figure 5?-3, where the average performance levels of the configura-
tions are illustrated. The performance is presented in terms of mass averaged total pressure
ratio so that all the reference nozzles can be meaningfully com pared. The difference bet-
weer the convergent nozzle and the unsuppressed coannular nozzle with an A t•/Ap = 0.75
is due to the presence of a convergent-divergent nozzle in the primary stream of the coannu-
lar configuration, as well as the Increased frictional drag associated with the coannular noz-
zle. The primary nozzle was selected to reflect requirements of higher design flight speeds
associated with a supersonic cruise vehicle. The C-D nozzle (A/A th = 1.1) is overexpanded
at the low primary pressure ratio (1.53) simulated in this series of tests. The frictional
losses are due to the additional wetted areas of the coannular nozzle, downstream of the in-
strumentation station. As illustrated, when these calculated differences betweer configura-
tions are accounted for, the performance levels are consistent and acceptable.

Also presented in Figure 5.2-3 is the performance of the higher area ratio (A f/Ap = 1.2) un-
suppressed coannular nozzle. As illustrated, it is approximately 0.5`lo below the 0.75 coannular
nozzle. This loss reflects the increased internal duct Mach number associated with increasing
the fan stream discharge area with a fixed upstream duct size. The primary stream has an
opposite trend, but it is not enough to offset the fail 	 losses.

CONV1f1G114T REFFRENCI

100	 iNTENNAL.	 —
Lost

on
--	 _	 COANNULAR UNSUPM111311)

ADDITIONAL	 A	 -
INTERNAL WSS - 	 P	 —

1^–

	 •I)
o 92^	 _	 AeMIMANT CDfif FCT –	 COANNULAA VNb11l'oN1ESED-	 j

}
A,

-o7b
o ee A

.r-- ^	 l — I — T_
r— - - i	 - -I--T ----r-- -^— --- 

J 7

	

2	 -1

o	 17	 1	 11.	 Ie	 70	 :I	 7.	 76	 7e	 70	 j 

MASS AVERAGED TOTAL PRESSURL RATIO –P
I AVG ro	 WtP )PtP ro1) -WO MOP,)

1

WIP * wEf

Figure -5-2.3 Comparison of Aerodynamic Perfilrmance of Convergent Reference Nozzle. and Coannular
Unsuppressed Nozzles at a Pnman , Pressure Ratio of 1.53

One of the unsuppressed coannular nozzles (A l,/Ap = 0.75) was also tested at higher primary
pressure ratios to supplement similar tests with suppressor configurations. The performance
levels are presented in Figure 5.2-4. The over-all performance level increases slightly when
the primary pressure ratio is increased because the primary over-expansion losses, discussed
earlier, are reduced. Since the primary overexpansion losses are changing, the data was not
included in the comparison of Figure 5.2-3, However, since the data shifts at the higher
primary pressure ratios can be entirely attributed to the changes in the overexpansion losses,
the data is believed to be consistent with the previous baseline data.
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Since the coannular unsuppressed nozzle demonstrated noise levels well below that which
would be predicted using normal methods, the thrust characteristics of this system are of
special interest. Mating an ejector to this nozzle would constitute a flight-type exhaust sys-
tem. The impact of an ejector on the performance characteristics of the unsuppressed co-
annular nozzle is shown in Figure 5.2-5. At a nominal fan pressure ratio of 2.5 the hardwalt
ejector pruvided approximately I %thrust augmentation to the baseline nozzle. Adding
acoustic treatment to the ejector produced a !oss of about 0.5%, due primarily to the in-
creased frictional drag. It should be noted that these increments could be improved by slightly
altering the relative size and/or position of the ejector. The performance characteristics of
both the hardwall and treated ejectors are presented in terms of fan stream jet velocity in
Figure 5.2-6. The latter is a transformation from pressure ratio and temperature to jet ve-
locity, and is presented as a convenience to expedite correlation with the corresponding acoustic
data.
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5.2.3 Fan Stream Suppressors

5.2.3.1 Multi-Tube Suppressor

The performance characteristics of the multi-tube suppressor configurations are presented
in Figure 5.2-7, relative to the unsuppressed coannular reference nozzle for a typical set of
flow conditions. Since fan stream temperature does not appear to significantly affect the
performance characteristics, a single line through all of the data establishes the performance
change to be a functi , : Ts the fan stream pressure ratio. The perforntance loss increases
with increasing pressure ratio because the static pressure acting on the base regions of the
tube array is decreasing, causing additional drag. At a nominal pressure ratio of 2.5, the
basic multi-tube suppressor exhibited a Icss of 3.5 %. Adding the hardwall ejector reduced
the net loss to 2%, reflecting the augmentation gains of the ejector. Adding acoustical treat-
ment to the ejector increases the loss to about 6.5%. This additional loss is due to the
increased friction on the internal surface of the ejector, along with an associated change in
the ejector pumping characteristics. Since the outer perimeter of the tube array is very

1	 close to the inner surface of the ejector (see Figure 3-17, Section 3.2.6), the treatment is
being washed by the high velocity discharge from the tubes. The normal frictional loss is

{	 magnified by the following factors: the facing sheet of the treatment has a moderately
high porosity (30%). and the backing material ("Cerat'01") is penetrable and when subjected
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to an axial static pressure gradient, as observed in the ejector, recirculat;on losses arc created
in the treated walls of the ejector. The observed overall loss associated wish the acoustic
treatment could be reduced by: increasing the clearance between the ejector and the tube
array, redu:ing the porosity of the facing sheet, if acceptable from a noise suppressor and
exhaust system viewpoint, and compartmentalizing the space behind the facing sheet or
adopting a honeycomb backing material tuned to a specific design point. As a convenience,
the same performance characterist;cs are presented in terms of ideal jet velocity in Figure 5.2.8.
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5.2.3.2 Convoluted Suppressor

The performance characteristics of Ilie convoluted suppressor configurations are illustrated
in Figure 5.2-.1 relative to the unsuppressed coannular nozzle operating at the same condi-
tions. At a Typical fan pressure ratio of 2.5, the basic convoluted suppressor exhibits a loss
of almost V/%. The loss is a combination of the internal total pressure losses, associated with
a multi-element nozzle, and the base pressure drag generated on the external surface of the
convolutions, primarily near the nozzle exit. When the ejector was added, a performance
gain of neatly 2% over the unsuppressed nozzle was ob.ained. This is 3% over the basic con-
voluted suppressor, representing; the ejector augmentation. This augmentation is slightly more

t	 106



I.

than observed with the multi-tube suppressor. The shift in augmentation between the two sup-
pressor configurations is the result of the chancing match between the suppressors and the
ejector, which was the same unit in each case. The impact of the ejector on a given suppres-
%or could be altered if the ejector geometry is varied. Adding acoustic treatment to the ejec-
,or lowered the performance by :approximately l"r. but the resultant convoluted suppressor

1	 configuration will stril 1% higher than the unsuppressed nozzle. This loss is due to the increased
scrubting drag as well as changes in the ejector numpang characteristics. As illustrated for
these three configurations, fan temperature does not appreciably change the performance
comparisons; however, increasing fan pressure ratio does cause a slight decay in the perforrlt-

'	 ance levels. The same performance characteristics arc presented as a function of fan jet velo-
city in Figure 5.2-10.
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Several of the preceeding suppressor configurations were evaluated at higher primary stream
pressure ratios, ranging u, to 2.5. These configurations were the basic convoluted suppremor
and the multi-tube suppressor, with and without an acoustically treated ejector. The resultant
perf,;Emance trends are summarized in Figure 5.2-11, illustrating the decrease in performance
lass, relative to the unsuppressed coannular nozzle, when the primary pressure ratio is increased.
This is due to the increasing percentage of the total mass flow passing through the relatively
loss-free primalN nozzle, while the fan stream thrust contribution remains unchanged. The
loE3es in the fan stream suppression de-ice become it smaller percentage of the total thrust
produced by the complete nozzle configuration.
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The performance . harzeterktic.; of a convoluted aippressor with an area ratio of 1.2 are shown
in Figure 5.2 - 12. re!ati,e to Il l s• performance of the romparahle unsonpressed coannular nozzle
(A f•,I Ap = l._'). The basic convoluted suppressor exhihitod a loss of about 1 1.41 (ACv at a fan
pressure ratio of 2.5) relative to the unsuppressecl coannular nozzle. Adding the hisidwall
ejector producrd about 3`r gain over the hasil convoluted suppressor performance level. How-
ever, when acoustic tr %athnent was addL-d to the ejector, a loss of about 2 t T relative to hardwall
ejector was noted. Tl.e resultant performance of the treated ejector was therefore I l i, higher
than the basic convol3ted suppressor. I'hese performance trrnds are pr1 • sentrkf in terms of fan
stream j.t velocity in Figure 5.2 - 13.
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These results are qu::e similar to those obtained with the lower area ratio convoluted nozzle.
Tile performance characteristics for the two configura t ions are compared in Figure 5.2-14.
When the basic suppressor, as well as the su ppressor with a hardwall ejector, are considered.
the higher area ratio nozzle is only slightly lower in performance level. A higher percentage
of the total configuration flow is passing through the loss producing portion (i.e. convolutions)
of the nozzle system and therefore total performance is decreasing. When an acoas! ically
treated ejector is added to the suppressor, the impact of nozzle area ratio is magnified and
a difference of approximately 1.5io between the configurations is noted.
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5.2.3.3 Finger Suppressor

The thrust characteristics of the finger-type suppressor are illustrated in Figure 5.2-15 relative
to the unsuppressed coannular nozzle. The finger su ppressot by itself, exhibited a performance
loss of 2.7% (A Cv @-) P.1/ pa — 2 .5) due primarily to the low pressures created on the down-
stream side of the fingers. When the hardwall ejector was added, the performance loss in-
creased to approximately 4.3%. This performance decay is due to the severe reduction in
static pressure on the suppressor as illustrated in Figure 5.2-16. As shown, the average
pressure acting on the fingers drops from 95% of ambient to 81'7. This is offset somewhat
by the low pressure acting on the lip of the ejector, but the dominant fo;c;e is that acting
on the suppressor. This reduction in internal pressures is associated with the induced airflow
produced by the ejector.
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Adding acoustic treatment to the ejector increased the thrust penalty of the system to 5.0°70,

relative to the unsuppressed coannular nozzle (Figure 5.2-15). Integration of the static pres-
sures, illustrated in Figure 5.2-16, showed that the net force acting on the suppressor and
ejector lip was equal to that with the hardwall ejector. The additional performance loss of
0.7'7 (5.0-4.3) is therefore attributed to the frictional drag of the acoustic treatment. These
performance characteristics are presented in terms of fan jet velocity in Figure 5.2-17.
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A comparison of the internal pressures for the various suppressor configurations is shown in
Figure 5.2-18 for a typical flow condition. The convoluted suppressor, which showed the
largest amount of ejector augmentation, had relatively high pressures on the suppressor as a
result of proper ventilation. The „orresponding pressures in the ejector indicated a moderate
amount of lip suction for the convoluted suppressor. Since the ejector is cylindrical for the
last 75% of its length, the pressure distribution in this region does not contribute significantly
to the overall force. The multi-tube suppressor and the finger-type suppressor both exhibit
low pressures on the suppressor, however, the lip suction on the ejector is better for the multi-
:uhe configuration. The integrated force, therefore confirm that the multi-tube suppressor
exhibited much more ejector augmentation than did the finger design, but not as much as the
convoluted configuration.
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5.2.4 Flow Coefficients	 E

The flow coefficients of the primary nozzle for A t•/Ap = 0.75 are presented in Figure 5.2-19
for a range of flow conditions. The primary' nozzle flow coefficient at a P tp/Pa = 1.53 is
shown on Figure 5.2-19a. As illustrated, it is not appreciably changed by the type of fan
stream nozzle employed (i.e.. unsuppressed or suppressed). The thermal growth of the
model hardware has been analytically accounted for in the flow calculation and therefore,
there is no significant stream temperature effect. A single curve is therefore drawn through
all the points. The level is significantly above unity over the range of lfan nozzle pressure

I
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ratios. These high values of flow coefficient occur because the primary nozzle is a convergent-
divergent design, being aspirated by the surrounding fan stream. The ideal flow of this noz-
zle is calculated for an indicated pressure ratio of 1.53 (relative to amhient pressure): how-
ever, t'tis nozzle is operating with an exit pressure that is lower than ambient and is conse-
quently passing more airflow than defined as ideal. Phis phenomenon does not occur when
the indicated primary pressure ratio exceeds approximately 1.9 since the nozzle becomes
choked. The primary flow coefficient at a pressure ratio of 2.5 is illustrated in Figure 5.2-19b
where the level is below unity. The general trend of the primary flow coefficient (for both
primary nozzle pressure ratios) is to decrease with increasing fan nozzle pressure ratio, due to
the suppressive effect of increasing fan pressure ratio. This tends to counteract the high levels
of aspiration which the primary nozzle experiences at the lower fan pressure ratios.
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The flow coefficient of the fan stream for Af/A p = 0.75 (shown on Figure 5.2-20) has a
more conventional trend, with the peak level varying from 0.95 to 0.98 depending on the
configuration. The unsuppressed nozzle and the convoluted suppressor are on the upper end
of the band, reflecting the gradual convergence of the fail 	 passage. The flow coeffi-
cients of the multi-tube and finger suppressors art• oil 	 lower end of the band hecause
of the increase in wetted perimeter at the nozzle exit and a more abrupt convergence. Since
there is no significant effect of stream temperature on the flow coefficients, single curves
represent each of the configurations. The variations in fail 	 coefficients are not large
enough to create any significant differences in either the relative thrust characteristics or
the relative acoustic properties used in the configurational comparisons.
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Figure 5.2-20 Typical Fan Flow Coeffc•ients for Several Coannidar Nozzles, 0.75 Area Ratio

The configurations having an area ratio. A f•/A p , of 1.2 are geometrically similar to those
having a 0.75 area ratio. The flow coefficients arc, therefore, similar, but have slightly dif-
ferent absolute levels. The fail 	 (A f•/Ap = I f is lower in flow coefficient, as shown
in Figure 5.2-21, where the fan flow coetficients of both the unsuppressed nozzles are com-
pared. All of the data taken for each configuration is presented with a mean line indicating
the level of flow coefficient for each area ratio. The 1.2 area ratio fan nozzle flow coeffi-
cient is lower because the increased fail 	 area is associated with a higher fan duct r,res-
sure loss due to an increased internal Mach number. This increased loss is equivalent to about
I% decrease in fan nozzle now coefficient (above the choked pressure ratio) which is the
difference between the mean levels of' flow coefficient for the two configurations.

The primary stream undergoes the reverse trend when the area ratio is increased from 0.75
to 1.2. However, the resulting cavng; in primary flow coefficient is negligible because the
Mach numbers in the primary passage are so low. In other words, the primary flow coeffi-
cients presented in Figure 5.2-19 apply to both the 0.75 and 1.2 area ratio nozzles.

Fig+uc 5.2.21 Effect of Area Rati)) on Fan Flow Coefficient of Coannular Unscppressed Nozzle 	 .
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5.2.5 Acoustical Treatment

The addition of acoustical treatment to the ejector had a significant impact on the iTerform-
ance of all the suppressor configurations because of the scrubbing drag on the perforated wall
liner. The severity of this drag is dependent on the geometry of the suppressor, which will
dictate the outer bounds of the fan stream plume. The ratio of the ejector area to the pro-
jected area of the suppressor then furnishes a convenient parame ter to describe this effect,
as illustrated in Figure 5.2-22. Each of the suppressor configuratiE r,s tested with a treated
ejector has been compared to the corresponding hardwall version to establish the thrust de-
crement. As shown, a distinct trend prevails without regard to the type of suppressor system.
As the area ratio is descreaseG (i.e.. when the clearance between the suppressor and the ejector
is reduced), the losses increase, especiall y if the area ratio is below approximately 1.3.
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5.3 IMPLICATIONS FOR CYCI F CTUDIES

A cross section of the measured characteristics is presented in Figure 5.3-1, at a typical set
of primary and fan stream conditions, representing the current family of engine cycles being
evaluated in the Advanced Supersonic Propulsion Study. The amount of noise suppression
(relative to noise levels synthesized using modifications to the proposed revision of the SAE
jet noise prediction procedun-s) produced by the various configurations is compared to the
associated thrust change, thus providing a measure of the overall system effectiveness. The
coannular unsuppressed nozzle, representing a DB'rr exhaust system, is 6 PNdB quieter	 +
than predicted. Since this is the baseline configuration for the thrust measurements, the
thrust change is zero. Adding an ejector to the baseline produced i PNdB more suppression
and l'io thrust augmentation. Incorporating acoustical treatment in the ejector produced
another I PNdB suppression, at the expense of 0.51 thrust loss. The net result is that an
unsuppressed flight type exhaust system, consisting of a basic nozzle system and a treated
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ejector, is 8 PNdB quieter Ihan previously estimated. The characteristics of convoluted,
linger and multi-tube suppressors are also shown in Figure 5.3-1. The multi-tube suppressor
nearly doubled the coannular baseline noise reduction (up to 15 PNdB), with the other sup-
pressors in between. The hardwall ejector did not appreciably change the n.)ise Icvel K 1
PNdB) hilt its thrust impact varied from a gain of 3'''( to a loss of 1.5%. illustrating the sensi-
tive interaction between the basic suppresser design and the ejector. The introduction of
acoustical treatment in the ejector produced from 1.0 to 3.5 PNdB additional reduction hilt
at thrust losses from 0.5 to 4%. These losses indicate that acoustic treaunent is a potentially
critical factor, requiring careful consideration.
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Figure 5.3- / Exhaust SYstem E fficetiveness, 0.75 Area Ratio

Within the range of area ratios considered (0.75 to 1.2), the relative size between the pri-
mary and fan streams A f•/A p , did not appreciabl y c1-,angc the .;et results.

The results ol' this program have had a strong influence on the Advanced Supersonic P-.*pui-
sion Studies being conducted in support of the SCAR program (as summarized in Ref. 18).
The inherent suppression characteristics of the coannular exhaust system provide several s y s-
tem advantages. As illustrated in Figure 5.3-2, for a band of study engines, a reduction i.i
vehicic take-off gross weight of approximately 100,000 Ibs can he achieved at a giver, jet
noise level by incorporating these new coannular henefits into the previously used prediction
techniques. In terms of the noise "footprint" at constant TOGW, the impact is even more
dramatic, as Jtown in Figure 5.3-3. A reduction in footprint size, down to 25% of its origi-
nal size, is possible because of the coannular ber fits. The projected range improvement due
to these test results is illustrated in Figure 5.34. applied to the evolutionary trend in the
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newer variahle stream control engines. The range improvements reflect the reduced power-
plant weight on a given aircraft, allowing more fuel to he carried, providing increased range.
Tile newly defined exhaust system characteristics intensify the normal engine improvement
rate and greatly improve the range pay-off, for the advanced technology engines projected
for the future.

Figure 53-2 Impact of C,annular Nozzle Noise Bcnefir on Airrmf r Weight
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6.0 SUMMARY OF RESULTS

Static acoustic and acrody;iamic perfonmance characteristics of typical duct-horning turbo-
fan nozzles were measured during this program using 0.127 m equivalent diameter scale
models, approximately I /10 size. e'oniigurations with and without fan stream jet noise
suppressors were evaltw.tcd, and the effects of hardwall and treated ejector shrouds were de-
termined.

The nozzles writ tasted over a large range of opera ing conditions. Primary stream velocity
ranged from 303 i,ips to 010 nips at temperitures of 395°k to 1090 ` x. Fan stream
velocity varied from 235 mps to 853 nips at temperatures of 395°F to 1090°K. A total of
417 operating points were tested. Radial pressure: and temperature profiles were measured
at the position of the eicctor exit plane at selected conditions. A data bank comprising all
of the results obtained dunng the program has been established and documented in the Com-
prehensivr Data Report, NASA CR-134910. The aerodynamic performance data is presented
in terms of non-dirnensionsl coefficients and thus can be applied to any size engine. The
acoustic data has been scaled IOX model size to represent the noise characteristics of a 1.27m
equivalent diameter ruzzle.

6.1	 ACOUSTICS RESULTS

T-he more significant results from the acoustic tests are summarized in this section. First,
the coannular unsuppressed nozzle results are presented, followed by the fan stream
suppressor nozzle results.

6.11 Coannular Unsuppressed Nozzles

•	 Coannular unsuppressed nozzles were significantly quieter (u:p to I I PNdl3)
than predictions based oil coannular noise synthesis of two unmixed streams.
The 0.75 area ratio: nozzle produced shrhtly more noise reduction than did the
1.2 area ratio nozzle. "The coannular unsuppressed nozzles were also significantly
quieter lop to 7 PNdl31 than single stream jets having the same thrust and flow,

•	 A model of the noise generation process for a coannular jet, based on the
measured acoustic spectra and velority profile data, indicates that the beneficial
noise characteristics of the coannular unsuppressed nozzles are due to rapid
mixing and velocity decay inherent in an inverted velocit% profile jet (i.e.,
VII 'V > 1 ). According to this aiwIN tical model, the lowest	 sSihlc noise level
o anli	

pIL

inverted profile jet wrnild br the level genertt:d by .he primary stream
alone.

•	 The addition of a hardwall ejector to lh: coannular unsupprtssed nozzle pro-
duced up to 1 PNdl3 additional noise reductions. Inc f )rpor,rting acoustical treat-
ment on the inner surface of the ejector produced a , , additional noise reduction
of up to I PNdl3 beyond that obtained with the hardwall ejector.

•	 Ilie sound power ;nod perceived noise levels produced at all operating conditions
where V I ./V P > I were normalized for fain stream temperature, fail 	 primary
velocity ratio, and area ratios, and then correlated as a function of fan velocity.
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6.1.2	 Fan stream Suppressor Nozzles

']'lie use of three different types of fail 	 suppressors with ;end without hard-
wall and treated ejeclo ► s produced various amounts of noise suppression, up to
a maximum of IR PNdB relative to the synthesized prediction.

•	 '.'ire convolut,d suppressor with a 1.2 area ratio produced approximately the same
sup p ression as did the 0.75 area ratio. Tire noise ICVeIS of the various f;111
suppressor nozzles were shown to correlate with factors relating to both geometry
Mid velocity prottle nreasuren ► ents.

•	 A summer- of the noise suppression obtained by each of the suppressors, with
and without hardwall and treated ejectors is presented in Figure 0-1 for one set
of operating conditions representing a typical duct-burning turbofan eyrie.
('These conditions do not necessarily provide • the maximmai suppression demon-
strated in tix test progrun.l The suppression is defined relative to the synthesized
coannular unsuppressed nozzle ne^ise IeVeIS and also relative to the measured co--
annular nozzle noise levels. The multi-tube suppressor clearly provided the most
suppression, with and without the hardwall and treated ejectors. The finger and
convoluted suppressors provided more modest reductions. For each configuration,
the hardwall ejector provided only Slight reductions relative to tine same cuntigura-
tionS Without ejectors. The treated ejector p rovrdud a significant reduction relative
to the hardwall ejector.

higure 6-1 Jet VoIsr Suppression Sit mmarY for ( rnr Set of 7:vpiraI PR7T' 0 lelr t i nditions, A;•/AI, = a 7.5
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6.2 AERODYNAMIC PERFORMANCE

Ilic relative aerodynamic performance of all the 0.75 area ratio coannulm nozzles is
summarized lit 	 ().2.  This comparison is based on the same imw cooditions used for
the acoustic summary presented ill 	 6.1. It serves to illustrate the basic performance
characteristics established lit 	 program. Similar trends were observed with the 1.2 area
ratio contigutalions, and al other operating conditions. The nu^ir sitznilic.nit results air

•	 The more intricate suppressors, :uch as the multi-luhe and finger types, with
blunt regions between the elements cxhibit significant performance losses of
as much its 3': relatke to the unsuppressed baseline. The convoluted design,
which provides a well ventilated multi-elcitk • nt I'mi stream exit, is cicadV better
fniui ,ui icrod\ namic point of view.

•	 g lue hardwall elector used ill 	 program improved the performance of the unsup-
pressed haseline. tite ittulti-tube suppressor and the convoluted suppressor, ill vary-
in g deMcs up to 317  (.101. It was, however, detrimental to (lie finger suppressor,
cre ating an additional performance loss of 1.5% WN). Ejector augmentation is a
complex interaction of many factors. 11i0 Slow characteristics of the suppressr
itself. along with the size, location aiid particular contours of the ejector, influence
system performance. 'Ibis points out the need I'Or matching the ejector to the par-
tic idar nozzle for best performance.

•	 Adding, acoustical treatment to the ejector resulted ill performance loss
ranging from 0.5%(A('v) %iat th o unsuppressed baseline to 4.5 (ACv) with
the multi-tube suppressor. i'hese losses may be reduced somewhat by modifying
the design of the acoustical treatment. in general. 1110 ntort chdiorate supprrssorx.
providing high Iev%• Is of jel noise suppr0ssi•.ui. 10.1111 lit a closely packaged exhaust
system. lending to aggiavalc this problem. i he oplimiratioit of the exhaust
system chase tedstics will w(luire careful tailoring of the inalor components to
achieve maximum ht-neills.
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APPENDIX I

ACOUSTIC POWER AND
_RCEIVED NOISE LEVEL
DIRECTIVITY DATA

led (10.0 to 1.27 m (50 in.)
nt Diameter Size, Representative
i Full Size AST Powerplant
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LIST OF ABBREVIATIONS

NOMENCLATURE (The following symbols are used throughout the report unless otherwise defined in the text.)

A Area
C Speed of Sound

C Coefficient (Actual Wright Flowildc•t! Wei , 	Flow)
rV Thrust Coefficient (Actual Thrust/ldeal rtt
D -	 Diameter
F Tli rust

gc Gravitational Constant

L Length

M Mach Nunibci

OASPL Overall Sound Pressrrc Level - dB ie 20 x 10' Newt-:-is/M2
P -	 Pressure

PNL -	 Perceived Noise Level
PWL Power Level - dB re 10.1 ` Watts
^R Gas Constant
r. R Radius
Ref Reference

SL Sideline
SPL -	 Sound Pressure Level - dB re 30 x 10

-6
 Newiora;M2

Synthesis Synthesized Noise Levels of Coanuula r Refemn..•_ Nor--w (As Described in Text)

U -	 Velocity Measured in Plunie Traverse

V Jet Velocity (Ideally Expa^ided to Ambient f owitions)

X Distance

W Mass Flow

Y Specific llcat Ratio
A Delta Dif!eicnce) in Noise or Thrust Levels
0 -	 Angie From Inlet Center5ne
P -	 OensitV

SUBSCRIPTS Tlie subscripts are used in citlh-r lo%%vr case or upper •..ase lean.)
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