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FOREWORD

This report summarizes a contracted study of an advanced supersonic
propulsion system conducted for NASA by Pratt & Whitney Aircraft during the
period p rom October 1978 through July 1979.

The NASA project manager for this study was Laurence Fishbach assisted by
Leo C. Franciscus, Fli ght Performance Section, NASA Lewis Research Center,
Cleveland, Ohio. Key P&WA personnel were Robert A. Howlett, Study Program
Manager, Richard B. Hunt, Assistant Manager, and George Aronstamm,

t	 Preliminary Design Coordinator.
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SECTION 1.0

SUMMARY

Refined design definition of the Variable Stream Control Engine (VSCE),
an engine concept for advanced supersonic transports, has been accom-
plished in a NASA-sponsored, P&WA study contract. This design defini-
tion complements experimental programs that are being conducted for two
of the unique and critical components that make up this engine; a high
performance, low emissions duct burner for thrust augmentation, and a
high performance, low noise coannular nozzle system. The refined VSCE
definition incorporates the latest results from these experimental pro-
grams, as well as updated design definition for all of the major engine
components, with emphasis on the hot section of the engine core.

Previous studies have indicated that the very severe thermal and stress
environment at supersonic cruise, coupled with the fact that at least
50 percent of the engine operating time is spent at these conditions,
dictate the need for very advanced materials and cooling systems for
the main burner and turbine components. The impact of high temperature
technology alone on the cverall system is greater than 52 in airplane
range. The study results summarized in this report update and expand
the critical technology requirements for these hot section components,
and provide basic information that can be used for formulating and
planning future VSCE critical research and technology programs.

Based on these hot section component requirements, a test program is
recommended in which advanced materials and cooling system technologies
are combined and applied to high performance aerodynamic designs of the
VSCE main burner and single-stage high pressure turbine, and experi-
mentally evaluated in a complete high spool engine. This recommended
program would be the initial step in verifying and substantiating the
performance and durability characteristics of high temperature tech-
nology required for viable advanced supersonic engines. The updated
VSCE definition described in this report is based on successfully con-
ducting this recommended advanced high temperature technology program
over the next several years.

It is projected that all of the advanced technologies incorporated in
this updated VSCE could be ready for commercial service by the early to
mid 1990's time period. The resulting VSCE design has 3.0% better spec-
ific fuel consumption at supersonic cruise relative to the preceeding
parametric version of this engine.



2

SECTION 2.0

CONCLUSIONS AND RECOM MATIONS

2.1 Conclusions

o The updated and refined VSCL-515 resulting from this technolo-
gy definition study has the following characteristics relative
to the proceeding VSCE-5028 parametric engine definition:

- A 30 improvement in fuel consumption at supersonic cruise
resulting from increased component efficiencies, improved
cycle matching (higher core flow at supersonic cruise)
and from a reduction in overall pressure ratio (from 20:1
to 15:1) due to temperature constraints affecting hot
section (burner and turbine) design life requirements.
This performance gain includes the effect of improvements
in duct burner efficiencies based on results from the
on-going WE technology programs (99.5% chemical effi-
ciency and 960 thrust efficiency at supersonic cruise).

-	 A 0.90 increase in subsonic cruise fuel consumption due
to the reduction in overall pressure ratio.

-	 A 30 increase in engine weight.

- When the effects of these performance and weight changes
are combined and evaluated in terms of changes to air-
plane range:

the all supersonic mission range is increased by
2.2% and,

the mixed mission range (includes a 600 N.Mi sub-
sonic leg) is increased by 1.7%

o	 Critical Technology Requirements for the VSCE-515 are:

-	 Low Noise, High Performance Coannular Nozzle*

-	 Low Emissions, High Performance Duct Burner*

-	 High Temperature, High Performance, Long Life Turbines

-	 High Temperature, Long Life, Low Emissions Main Burner

-	 Variable Geometry Components

Inlet

f
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Fan

Compressor

F	 Nozzle/Ejector/Reverser System

-	 Integrated Electronic Control System

*Programs are in progress on these components

o Of all the advanced technologies that are required to meet
these projected performance levels, the hot section of the
engine core is one of the most critical areas. A burner/tur-
bine VCE-High Temperature Validation (VCE-HTV) program is

` recommended as the next major VCE Technology Program. It will
combine critical elements of advanced materials and cooling
technology with high performance designs of a main burner and
a new single-stage high pressure turbine. The selected hot
section technologies will first be substantiated individually
and then collectively in component rig tests. They will then
be evaluated and substantiated in a complete high spool
engine. Results from this program will be applicable to all
candidate AST engines, including VSCE's, Low Bypass Engines,
and Inverted Flow Engines. It will also benefit advanced mili-
tary engines. This recommended program is summarized in
Section 4.3.

o The refined VSCE-515 retains all of the unique operational and
cycle matching features of the VSCE-502B that are essential
fcr AST economic and environmental requirements, including:

`	 -	 Inverted Velocity Profile (IVP) for providing the coannu-
lar nozzle noise benefit.

Inverse Throttle Schedule (ITS) for the main burner for
providing the coannular noise benefit and for low fuel
consumption at subsonic and supersonic cruise. This in-
cludes the capability to high flow the engine core at
supersonic cruise in order to control the lapse in cycle
bypass ratio for low fr:el consumption.

A staged duct burner to cover a wide range of c:itical
operating points over the entire flight regime, including
low noise and low emissions for takeoff, high thrust for
transonic/supersonic climb, and low fuel consumption for
supersonic cruise.

Flexibility to tailor the exhaust conditions for
optimizing nozzle performance as well as the coannular
noise benefit. At any one power setting, different

3



throttle	 schedules	 for	 the	 duct	 burner,	 in	 addition	 to
unique	 fan and nozzle matching,	 can vary	 the coannular
nozzle	 velocity	 ratio,	 temperature	 ratio,	 and	 pressure
ratio	 to	 minimize	 the	 takeoff	 noise.	 These	 variables
affect	 the	 following	 aft	 noise	 sources:	 jet,	 shock,
combustion and turbine.

-	 In	 conjunction	 with	 several	 of	 these	 features,	 the •
VSCE-515	 retains	 the	 capability	 of	 providing	 the	 IVP
coannular noise benefit	 over a wide range of power set-
tinge.	 This	 programmed	 throttle	 schedule	 is	 a	 critical

4

feature	 for	 noise	 abatement	 through	 operational	 proce-
dures being	 evaluated by	 the	 Supersonic	 Cruise	 Research
(SCR)	 airplane	 contractors	 under	 NASA-Langley	 Research

#

Center contracts.

-	 Compatibility	 with	 a	 choked	 inlet	 to	 suppress	 forward
noise.

o For the 340 kg/sec (750 lb/sec) size, the total VSCE-515
weight, including the nozzle/reverser system and engine acces-
sories, is 5,216 kg (11,500 lbs). This is 32 heavier than the
VSCE-502B when both are scaled to the some airflow size. Sec-
tion 4.2.2 summarizes the VSCE-515 weight estimate.

o For the 340 kg/sec (750 lb/sec) size, the VSCE-515 length
from the fan front flange to the nozzle trailing edge is 625
cm (246 inches). The D max over the duct burner/coannular noz-
zle interface is 203.7 cm (80.2 inches). These are identical
to the VSCE-502B dimensions.

o Updated noise estimates, using a refined prediction procedure,
indicate that operational procedures will be required, and
possibly some degree of oversizing and throttling will be
necessary to meet FAR Part 36 Stage 2 (1969) noise levels,
with a corresponding economic penalty. If FAR Part 36 Stage 3
(1978) rules are imposed on advanced supersonic aircraft,
significant changes to the VSCE will be required, such as
adding a stowable suppressor to the outer, high velocity
stream, and/or modifying the cycle, resulting in even greater
economic penalties. Section 4.2.3 summarizes the VSCE-515
noise update.

U

	

	 EPA parameter (EPAP) estimates for the VSCE-515 in the airport 	 y`
vicinity, based on application of VCE duct burner experimental
results, show significant reductions in the CO EPAP resulting
from refinements made to the Iuct burner during the test pro-
gram. However the EPA rule that has been set for advanced
supersonic engines !Class T5 engines) requires even lower CO
levels. Also, a ver,, advanced and complex main burner is only
marginal in meeting the NO, EPA rule. Because the EPA rule

I
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was larger derived from goals for advanced subsonic engines,
and because of the distinct differences between advanced
supersonic and subsonic transports and engines in terms of
total projected numbers, takeoff and landing procedures, and
the airports they will operate from, it is concluded that the
EPA rule for Class TS engines requires a complete review.
Special consideration should be given to the uniqueness in
design and operating characteristics of advanced supersonic
transports.

Section 4.2.4 summarizes the emissions update.

2.2 Recommendations

VICE Technology Programs

o Initiate the VCE-High Temperature Validation (VCE-HTV) program
described in section 4.3. Based on the results of this VSCE Tech-
nology Definition Study, this VCE-HTV program has been formulated
and is recommended as the next major VCE critical technology pro-
gram. The approach is to select critical elements of advanced hot
section technology, and experimentally evaluate and substantiate
them in an advanced main burner and a new single-stage high pres-
sure turbine design. Sufficient experimental component and rig
testing will be required to qualify the selected technologies first
individually and then collectively. They would then be substanti-
ated in a hot diagnostic test using either a complete high spool
system for tine test-tied, or a high temperature burner-turbine rig
facility. This diagno.,:ic test will be instrumented to correlate
measured temperatures and stress levels with life characteristics
of the got section components and materials. This program concen-
trates on two critical WE technology areas: high temperature
materials combined with advanced cooling systems. Advanced aerody-
namic design features will be included so that a high level of
turbine efficiency can also be demonstrated. In addition to being
applicable to the VSCE hot section main burner and high pressure
turbine, this program would also provide a technology base for
other AST engine concepts such as the Low Bypass Engine (LBE) and
the Inverted Flow Engine (IFE). In general, this program would
benefit Trost advanced commercial and military engines, including
conventional designs as well as unique concepts such as VCE's.

o Complete the WE Testbe.!. Program;, Especially the large scale acous-
tic test, in order to gain confidence in the coannular noise bene-
fit for the full size VSCE. This program will also indicate the
significance of various noise sources, especially jet, shock, duct
burner combustion and fan exhaust noise. The effectiveness of an
acoustically treated ejector will also be determined.

C
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u Continue refinement of the staged duct burner through further rig
and testbed testing in support of the VSCE concept. Future work
should concentrate on simplification of the duct burner for
application th commercial engines.

o Continue the coannular nozzle program by designing and testing
coannular nozzle models that have high subsonic performance, while
retaining high performance in the supersonic mode, and design fea-
tures that provide the coannular noise benefit. Once these features
are established, evaluate the installed characteristics of repre-
sentative coannular nozzles in AST airplane model designs.

o Evaluate a stowable jet noise suppressor which could be integrated
into the outer, high velocity stream of the VSCE coannular nozzle
models designs. Conduct acoustic and thrust loss tests in simulated
flight on suppressed nozzle model configurations that include tuned
acoustically treated ejectors.

AST-VICE Studies

• Develop updated and refined design definition of alternate AST
engine concepts; viz. the Low Bypass Engine (LBE) and the Inverted
Flow Engine (IFE) in order to bring these engines up to the same
level of design definition as the VSCE-515 which is summarized in
this report. Apply stowable suppressor designs to all three engines
and -anduct comprehensive noise versus system economic studies.
These study results will help direct future WE programs.

• Continue the joint propulsion integration studies.

-	 Generate custom-tailored engine definitions of the VSCE-515
for the NASA-Langley SCR airplane contractors.

-	 Continue programmed throttle schedule studies for noise
abatement through operational procedures

- Define and evaluate the overall impact of concepts that have
the potential for meeting FAR Part 36 Stage 3 noise levels,
including new WE concepts, thermal acoustic shields that
reflect and refract exhaust noise, stowable jet noise suppres-
sors, and choked inlets.



SECTION 3.0

INTRODUCTION

3.1 AST-VICE Program Overview

Pbr the past several years, P&WA has been conducting NASA-sponsored
analytical and experimental programs for Advanced Supersonic Technology
(AST) engine concepts. Parametric studies of many types of conventional
and unconventional engine concepts (1, 2, 3), including Variable Cycle
Engines (VCE's) and propulsion integration studies jointly conducted
between Pratt & Whitney Aircraft and the Supersonic Cruise Research
(SCR) contractors (4,) have identified the Variable Stream Control
Engine (VSCE) as having the greatest potential for meeting both the
economic and environmental requirements of future supersonic trans-
ports. The overall feasibility of the VSCE concept is based on two
unique components, a duct burner for thrust augmentation and a lcw
noise coannular nozzle. Progress is being made in experimentally evalu-
ating and verifying the critical features of these two unique compo-
nents, including performance and environmental characteristics (5, 6).

To provide engine information for planning and formulating follow-on
VCE critical technology programs, a technology definition study was
conducted for the VSCE, concentrating on the hot section components,
the main burner and the turbine designs. The reason for concentrating
on the hot section can be illustrated best by reviewing the results of
a technology sensitivity study, which was conducted as part of the 1977
propulsion integration studies (4). Two levels of technology were
evaluated for the VSCE, an advanced and an intermediate level. Areas of
technology were isolated, and the impact of each area on engine perfor-
mance was evaluated. Figures 3.1-1 and 3.1-2 show the results of these
technology sensitivity studies. The intermediate level of main burner
and turbine technology increases supersonic thrust specific fuel con-
sumption approximately 2 percent and subsonic fuel consumption approxi-
mately 5 percent relative to advanced technology levels. In addition,
the total engine weight increases approximately 15 percent, primarily
due to a reduction in bypass ratio. Combining these effects, the high
temperature technology impacts the VSCE performance by 463.3 Km (250
N.Mi) for the all supersonic mission, which is approximately 5 percent
of the design range. It is apparent from Figures 3.1-1 and 3.1-2 that
the impact of high temperature technology is dominant relative to the
other technology areas. Studies conducted on alternative types of
engines show similar sensitivities. Based on these results a high
temperatures technology program has been identified as a critical ele-
ment for future VCE work. In preparation for formulating and planning
this recommended program, the parametric definition of the VSCE was
updated and refined in this technology definition study. This report
summarizes the results of this VSCE technology definition study.

7
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3.2 VSCE Background

As the VSCE concept has evolved through NASA-funded Pratt & Whitney
Aircraft programs, significant progress has been made in refining and
improving this engine. Figure 3.1-3 charts this progress from the early
parametric definitions (1973 and 1974) through the VSCE technology
definition study being reported on (1979). The most recent version is
identified as the VSCE-515 and reflects results from the on-going VCE
duct burner and coannular nozzle programs. It is also based on updated
advanced technology projections that extend the high performance
components of the NASA/Pratt & Whitney Aircraft Energy Efficient Engine
(E3 ) Program approximately 5 years further out in time. The VSCE-515
is therefore consistent with technology that could be ready for appli-
cation to an engine development program by the late 1980's. The corre-
sponding timing for certification would be the early to mid 1990'x. As
Figure 3.1-3 illustrates, the VSCE-515 has 25 percent better range
capability relative to the early C-D definition, and is approximately 2
percent better relative to the VSCE-502B. As indicated by this evolu-
tion chart, refinement of the VSCE concept has resulted in significant
improvements over the several year period. Further changes or improve-
ments to the overall engine can only be obtained by verifying and re-
fining the elements of technology that constitute each major component.
Future VSCE work should concentrate on verifying new areas of critical
technology, in addition to the duct burner and coannular nozzle, to
eventually realize the full potential of this engine concept. Also,
concepts that compliment the coannular noise benefit in reducing total
engine noise even further should be explored, including stowable jet
noise suppressors and thermal acoustic shields that reflect and refract
exhaust noise. The technology definition study summarized in this
report provides design information for starting additional VCE critical
technology programs.

3.3 VSCE Technology Definition Study

This report summarizes the results of a VSCE technology definition
study sponsored by NASA and conducted by P&WA in the time period from
late 1978 through mid 1979. This study takes the critical technology
requirements identified in previous NASA-sponsored Advanced Supersonic
Technology (AST) Propulsion Studies that have been conducted by Pratt &
Whitney Aircraft, makes quantitative technology projections to meet
these requirements, and incorporates these projections in a refined
engine design definition. The advanced technology projections are ap-
plied to the major engine component designs and performance levels. The
resulting advanced components are integrated into a refined VSCE design
definition. Results from the on-going VCE technology programs, includ-
ing the Duct Burner Rig Program (5), and the VCE Testbed Program (7)
are reflected in this refired engine definition.

The purpose of this VSCE study is to provide engine design definition
and quantitative description of critical technology requirements,
especially for the hot section of the engine, that will be used in
structuring future VCE research and technology programs.

I'
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Figure 3.1-3	 VSCE Evolution Code for Variable Stream Control
Engines

The results of this study are an updated definition of the VSCE con-
cept, identified as the VSCE-515, consisting of:

Engine component design definition including critical technol-
ogy requirements for the hot section of the engine core. Sec-
tion 5.3.1.

Cross-section drawings of the complete engine showing the major
components, and the important structural and mechanical details
such as the rotor support arrangement, the cooling and secon-
dary system airflow and leakage characteristics. Section
4.1.2.2.

- Refined engine performance, weight, and environmental esti-
mates. Section 4.2.

- Recommendations for the next WE critical technology program
are to conduct a VICE High Temperature Validation (VCE-HTV) Pro-
gram. Section 4.3.

10



SECTION 4.0

PROGRAM RESULTS - VSCE-515 DESIGN FEATURES, ADVANCED
TECHNOLOGY REQUIREMENTS AND PROGRAM RECOMMENDATIONS

1.
4.1 Overall Description of VSCE

4.1.1 Operating Features of the VSCE Concept

Inverted Velocity Profile (IVP)

A fundamental requirement for obtaining the coannular noise benefit is
to provide a significantly higher velocity in the outer exhaust stream

i relative to the inner stream. For the VSCE-515 at a representative
sideline takeoff power setting, the relative velocity of the outer by-
pass stream is approximately 792.4 M/sec (2600 ft/sec.), and that of
the inner engine stream is 426.7 M/sec (1400 ft/sec). These levels cor-
respond to an outer/inner absolutE velocity ratio of 1.7. To obtain
this un^,Tue Inverted Velocity Profile (IVP), the main burner exit temp-
erature is at an intermediate level (1177-1260 0C (2150 to 23000F) -
depending on the noise level) and the duct burner is operating at its
maximum design temperature (in the range from 1094-1427 00 (2000 to
26000F) - again depending on the noise level). For flyout over the
community, the coannular benefit is preserved at cutback power settings
by throttling the burners in both streams and rematching the engine and
nozzle. Figure 4.1-1 illustrates representative VSCE-515 exhaust condi-
tions corresponding to sideline and community operation.

Inverse Throttle Schedule SITS)

Current commercial engines for subsonic transports take off at maximum
burner exit temperatures and then throttle back to lower temperatures
for cruise. Representative levels are 1316-1371 00 (2400 to 25000F)
for takeoff and 1204-126000 (2200 to 23000F) for cruise. For three
major reasons, exactly the opposite schedule, referred to as the
Inverse Throttle Schedule (ITS), is employed to provide significant
VSCE matching features:

(1) To meet the unique thrust schedule of advanced supersonic
transport aircraft over the entire flight spectrum,

(2) To provide one of the basic prerequisites for the coannular
noise benefit - a low inner stream exhaust velocity, and

(3) To minimize fuel consumption at supersonic cruise by high flow-
ing the core engine to control the cycle bypass ratio.

As described in the preceeding IVP section, the VSCE main burner exit
temperature at take off is at an intermediate setting -- in the
1177-12600c (2150 to 23000F) range. At supersonic cruise, it is
148200 (27000F,) the maximum level.
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Figure 4.1-1 VSCE-515 Coannular Nozzle Exhaust Conditions During
Takeoff
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This ITS feature enables matching the high spool to a higher flow rate
for supersonic operation than would be possible at lower temperatures.
High flowing reduces the cycle bypass ratio, increasing core engine

i thrust. The level of duct-burner thrust augmentation can be optimized
and supersonic TSFC is improved. It should be noted that ITS combines
the most severe thermal cooditions (highest cooling air temperature and
burner exit temperature in the engine stream) together with maximum
rotational speed of the high spool. Because at least 50 percent of the
VSCE operating time is spent at supersonic cruise, high temperature
materials and advanced cooling systems are critical technology require-
ments that result from this ITS feature. Figures 4.1-2 through 4.1-5
graphically show the differences between more conventional subsonic
engines and the VSCE in terms of temperature, stress, cooling level and
time.

Programmed Throttle Scheduling

Use of an integrated electronic control system can minimize total noise
contours or footprints by varying engine power settings from start of
roll, through lift-off and along the climb-out trajectory. This techni-
que takes advantage of the effects of engine shielding and Extra Ground
Attenuation (EGA), both of which decrease as the aircraft gains alti-
tude. At low altitude where shielding and EGA are effective, the
engine power setting can be increased in one or both exhaust streams,
and then progressively decreased as the aircraft gains altitude. The
throttle schedule can be programmed to hold sideline noise constant,
and the increased thrust provides a higher altitude and/or airplane
velocity for community fly-over, thus reducing community noise. This
VSCE feature is illustrated in Figure 4.1-6. For the 60 percent to 100
percent thrust levels, the optimum value of IVP can be obtained. At low
altitudes, the beneficial effects of shielding and EGA allow the use of
higher power sittings in the airport vicinity and a "bent throttle"
schedule can be applied to the main burner, increasing thrust by as
much as 25 percent. This causes an increase in inner stream velocity,
and the IVP ratio decreases, as shown in Figure 4.1-6. Although this
compromises the coannular noise benefit in the airport vicinity, it has
the potential to reduce the overall takeoff noise contours. Included in
this capability is the tailor:,,g of exhaust conditions (temperatures,
pressures and velocities) in both streams to optimize the coannular
benefit as a function of power setting. The SCR airplane contractors
are presently evaluating various definitions of programmed throttle
scheduling, and the WE Testbed Program acoustics test will provide
information regarding the sensitivity of the coannular noise characte-
ristics to the IVP ratio. Programmed throttle schedules are of special
interest because, in contrast with most approaches for reducing noise,
the benefits of this technique can be obtained with no performance
penalty to the overall system.

13
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The VSCE Spends 50% of Its Operating Life at Maximum
Temperatures and Stress Levels.
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The VSCE Main Burner and Turbine are Exposed to Very
High Hot Section Temperatures at Cruise.
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Figure 4.1-6	 Takeoff Thrust Available for Programmed Throttle
Scheduling.

Compatibility with a Choked. Low Noise Inlet

Inlet studies being conducted by the SCR airplane contrac tore indicate
at least 6 EPNdB reduction in total engine noise at approach if the
inlet can be choked. At the low power settings corresponding to ap-
proach conditions, total airflow of a conventional engine is low, mak-
ing it difficult to design the inlet for choked conditions. With the
flexibility of the VSCE-515, especially flow scheduling provided by the
variable nozzle system, the engine can be high-flowed at low power set-
tings to minimize the complications of choking the inlet. Further inte-
gra :ion studies are required to optimize this feature of the VSCE con-
cept.

As the VSCE-515 is tailored to each of the advanced supersonic airplane
designs being evaluated by the SCR contractors, all of these features
will to refined and optimized.

16
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4.1.2	 VSCE-515 Description

4.1.2.1	 VSCE-515 Cycle

The VSCE-515 cycle is similar to the parametric VSCE-502B cycle except
for the overall pressure ratio (OPR). A reduction in OPR from 20:1 to
15:1 resulted	 from the updated technology projections for 	 the engine
hot	 seW ,)n.	 At	 supersonic cruise,	 the compressor	 exit	 temperatures
correspoi—ing	 to	 the	 20:1	 and	 15:1	 OPR's	 are	 70400	 (13000P)	 and
6490C	 (12000F).	 If	 the	 70400	 supersonic	 cruise	 compressor	 exit
temperature of the VSCE-502B had been retained, the hot section design,
based	 on	 the	 updated	 and	 refined technology projections,	 would have
become too complex, and the advanced burner/turbine materials and cool-
ing systems would have been beyoni the projected time period. By reduc-
ing	 the	 compressor	 exit	 temperature	 to 64900	 (12000P),	 it	 was	 pos-
sible	 to design	 the hot	 section components on a basis that 	 is more
realistic for advanced commercial engines for the projected time frame.
It	 should	 be	 noted	 that	 64900	 (12000F)	 is	 5500	 (1000F)	 higher
than the maximum compressor exit	 temperature for	 the Pratt i W.,itney
Aircraft	 Energy	 Efficient	 Engine	 (E3 )	 cycle.	 The	 engine	 sir	 was
reduced from	 408	 kg/sec	 (900	 lb/sec	 total)	 corrected airflow	 to 340
kg/sec.	 (750 lb/sec). This brings the VSCE-515 size closer to the range
being evaluated by the SCR airplane contractors.

By isolating the effect of the lower OPR on the VSCE-502B (no component
efficiency or turbine cooling air changes), the impact on supersonic
and subsonic performance was assessed. Figure 4.1-7 shows plots of TSFC
versus thrust for supersonic and subsonic cruise. As indicated for
supersonic operation, the reduced OPR increases the dry (non-augmented)
thrust of the cycle. This shifts the TSFC curve of the 15 OPR cycle to
the right, resulting in a 1.5 percent improvement in augmented TSFC at
a representative power setting. For subsonic cruise, the reduced OPR
cycle causes a 4.1 percent ircrease in TSFC. When combined, these
performance changes represent a 0.4 percent increase in range for the
all supersonic mission, and a 0.25 percent decrease for the mixed mis-
sion with a 1,112 Km (600 N.Mi.), subsonic leg. Based on this relative-
ly insensitive effect, the reduction in OPR was considered to be a
small concession to gain realism in the updated VSCE definition, and
the change was therefore incorporated into the VSCE-515.

Table 4.1-I summarizes the cycle parameters for the VSCE-502B and
VSCE-515, reflecting the reduced OPR along with improvements in
component efficiencies which are summarized in the next section. The
reduced take-off CET for the VSCE-515 main burner is made possible by
these improvements in component efficiencies. This results in more
Inverse Throttle Schedule (ITS) capability, and a corresponding in-
crease in the level of core engine high-flowing for supersonic opera-
tion, leading to a lower Bypass Ratio (BPR) for the VSCE-515 at super-
sonic operation, and improved fuel consumption, as reviewed in Section
4.2.
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Figure 4.1-7 Performarce Effects of Cycle Overall Pressure Ratio
(OPR) on VSCE.

TABLE 4.1-1

VSCE CYCLE COMPARISON OF Till OPOATEO VSCE-S 15 (15 on
RELATIVE TO THE PARAMETRIC VSCE-5028 (20 OPR)

Subnnntc	 Super Son I 
SLTO	 Cru1"	 Cruue

0 ft 0 M^	 11,000 aOb,084 ► t)	 0.9 Mn	 lb,IS4 m(5).000 Pt) 2.)2 Mn

Engine -5022 -515	 -5(	 a	 - S!5	 -50:8
ODR 20 IS	 22	 14,5	 11.9 9.4 .i

wAn ktl.ec(ib(sec) 408(900)	 )40(750)	 408(900)	 140(7SO)	 104(670) 214(558)
FPO ).) ).)	 3.1	 ).)	 2.45 ...5
8P8 1.1 1.)	 1.2	 l.)	 t.5 l.4
CET °C( OF) 1199(2190)	 111b(2040)	 1177(1.150)	 1007(1840)	 1482i270O) 148212700)
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4.1.2.2 VSCE-515 Cross-Section

Figure 4.1-8 shows a complete cross-section of the VSCE -515 design. It
has a two rotor configuration. ;iith a staged duct burner locate-I around
the main burner and turbine assemblies. The coannular nozzle/ejector/
reverser system is close-coupled to and supported from the outer engine
case structure. The low pressure rotor consists of a three-stage fan
driven by a two-stage low pressure turbine. Making up the high pressure
rotor is a five-stage compressor driven f-jy a single-stage turbine. The
close-coupled arrangement of these components provides an optimum flow-
path by avoiding awkward transition ducts in either the engine stream
or the bypass stream. The variable geometry components are the fan, the
compressor, and the nozzle system. The structural interface with the
airframe is located at two planes, one in the region of the fan inlet
guide vanes, and the other just upstream of the duct burner. The low
pressure rotor is supported by three main hearings, and the high rotor
by two. The fan f.s straddle mounted and the low pressure turbine is
supporter: by radial rods contained in the exhaust case. Axial and
radial support for the low rotor is provided by a thrust (ball) bearing
located behind the fan and supported through static structure making up
the intermediate case. Radial and axi.:l support for the high spool is
provided by a ball bearing also located in the intermediate case. This
arrangement allows the two thrust bearings to be contained in one com-
partment. Rear support for the high rotor is through a low-to-high
rotor intershaft bearing. This design eliminates the need for either a
hot strut between turbine assemblies or for a separate (fourth) bearing
compartment located in the hot region under the main burner. This five
bearing arrangement with only three bearing compartments provides the
best tip clearance control to maintain high performance, and minimizes
the cooling requirements associated with hot structure. The clearance
for the high components is further improved by the large diameter hub
connecting the compressor and the turbine. The two rotors are designed
for co-rotational operation. The supersonic inlet can either be sup-
ported directly from the inlet case of the engine with only a small
increase in engine weight, or it can be hung independently- off the
nacelle structure.

Figures 4.1-9 and 4.1-10 show cross sections for the VSCE-515A and
VSCE-515B respectively. The VSCE-515A incorporates an alternate high
compressor-diffuser design and the VSCE-515B a main burner based on a
convey.ional single-stage configuration with aeratinr nozzles rather
than the two stage vorbix design incorporated in the VSCE-515 and 515A.
These variations to the VSCE-515 design are discussed in the following
sections of this report.
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Cross-Section of the VSCE-515A

21



. .~'



ar^_'

^, ^ ^^_ ^•l.y :-i ce ^..	 ..a----'---^.`. 
^	

^'	 , .,

it •I '^rtrJ*j,

Figure 4.1.10	 Cross-Section of the VSCE-515B

22



I

t

4.1.2.3 Engine Components

The most significant changes made in updating the VSCE components are
the improvements in efficiencies. Some of these improvements are from
the on-going VCE duct burner rig tests and Testbed Programer. Other
efficienci^l a are based on extensions of the technology base being
developed by the NASA/Pratt & Whitney Aircraft E3 program. All of the
component efficiencies as projected and applied to the VSCE-515 are
listed in Table 4.1-II. For reference, the equivalent VSCE-502B effi-
ciencies are listed. Table 4.1-III summarizes the design features and
characteristics of the VSCE-515 major components. Also listed is a
breakdown of the hot section cooling system. Table 4.1-IV lists the
advanced technology projections that were incorporated into the major
components of the VSCE-515.

TABLE 4.1-II

COMPONENT EFFICIENCIES FOR THE UPDATED VSCE-515 RELATIVE
TO THE PARAMETRIC VSCE-502B

Design	 Design
Point	 Efficiency

Engine

Fan

Compressor

Main Burner

High Pressure Turbine

Low Pressure Turbine

Duct Burner

*Thrust efficiency

Sea Level Static Operation

Sea Level Static Operation.

Sea Level Static Operation

Supersonic Cruise

Supersonic Cruise

Supersonic Cruise

-502B	 -515

83.9%	 85.7%

87.2% 88.9%

100.0% 100.0%

89.3% 92.0%

91.4% 92.0%

94.5%	 96.0%*

Fan

The advanced, three-stage fan design emphasizes high efficiency at
supersonic cruise, -ompatibility with supersonic inlets (especially
stability, flow matching and choking for noise reduction), and compati-
bility with the duct burner. This duct burner compatibility requires
high diffusion in the basic fan design. Also, for reduced aft noise,
the fan has graduated spacing between the blades and vanes of three
stages. The first stage has 50 percent spacing, the second has 75 per-
cent and the third has 100 percent, all expressed as the axial gap at
the outer diameter relative to the axial chord of the upstream airfoil.
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TASLE 4.1-III

DESIGN FEATURES OF VWS-515 MAJOR COM:POMM
(Engine Rise , 340 kg/sec (750 lb/sec) Total Airflow)

FAN

(Fan Aero Design Point • Sea Level Static 0. ration)

Design Pressure Ratio 3.3:1
Number of Stages 3
Design Corrected Airflow Size 340kg/sec (750 lb/sec)
Design Corrected Specific Airflow 210 kg/see/m2

(43.0 lb/see-ft2)*
Design Corrected Rotational Speed (rpm) 6107
Design Corrected Tip Speed 488 m/sec (1600 ft/sec)*
Exit Axial Mach No. 0.40
Inlet Hub/Tip Ratio 0.33*
Exit Hub/Tip Ratio 0.64
Adiabatic Efficiency (t) 85.7
Surge Margin (t) > 20
Structural Definition Unshrouded Blades

*At leading edge of first blade.

Fan Airfoil Definition

Stage No. - 1 1 2 2 3 3

Airfoil IGV R1 S R2 S2 R3 S3

Number of Airfoils 18 24 40 34 42 50 65

Root Aspect Ratio 3.0 2.8 3.8 2.8 ;1 .8 3.0 3.0

Hoot Gap/Chord 0.44 0.40 0.42 0.44 0.44 0.50 0.49

Root Chord cm 18.3 17.5 11.4 14 12.2 9.9 8.4

(inches) (7.2) (6.9) (4.5) (5.5) (4.8) (3.9) (3.3)

Taper Ratio (Tip?Root Chord) 1.0 1.38 1.0 1.20 1.0 1.10 1.0

Variable Camber X - - - - - X

COMPRESSOR

(Compressor Aero Design Point - Sea Level Static Operation)

Configuration	 Constant Outer Diameter

Design Corrected Airflow Size (lb/sec) 55.3 kg/sec (122 lb/sec)
Pressure Ratio 4.6 :1
Number of Stages 5
Corrected Tip Speed (ft/sec) 363 m/sec (1190 ft/sec)
Hub/Tip Ratio

Inlet 0.70
Exit 0.87

Average Aspect Ratio 1.3
Adiabatic Efficiency, 	 (t) 88.9
Surge Margin,	 (t) > 20
Number of Blades and Vanes 453

MAIN BURNER

(Main Burner Design Point - Sea Level Static Operation)

Temperature 6830K (123008)
Fuel/Air Ratio 0.0224
Heat Release Rate (Btu/hr-atm-ft 3 ) 6.0 x 106
Residence Time (sec) 0.008
Burner Length* 54.1 cm (21.3 in)
Burner and Diffuser Length* 88.9 cm (35.0 in)
Chemical Efficiency, 	 (t) 100.0
Pressure Loss (t) 5.2

*Vorbix Configuration
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TABLE 4.1-III (Cont'd)

HIGH PRESSURE TUgIHS

(HPT Aero, Cooling and Structural Design Point
Supersonic Cruise Operation)

Expansion Ratio 	 2.3x1
RPM	 11,286
AN 2	3.7 x 107 m2/min2

(5.8 x 10 10 in2/zin2)
Blade Root Stress (ksi) 	 413.640 k n/m2 (60 ksi)

Mean Velocity Ratio	 U mean	 0.58
1 g	 dh

Axial Velocity/Wheel Speed	 0.60
Rim Speed	 404 m/sec (1325 ft/sec)
Cooling and Leakage Flow (6 ccre flow)	 6.2

!H Cooled Efficiency ( 0)	 92.0
_ Average Blade Turning (0)	 91.0

LOW PRESSURE TURBINE

(LPT Aero/Cooling and Structural Design Point - Supersonic Cruise)

1	 .
Expansion Ratio	 3.1:1

Number of Stages	 2
RPM	 6616
AN2	 3 . 87 m2/min2 (6 x 1010)

in2/min2
Second Blade Root Stress 	 413,640 kn/m2 (60 ksi)
Mean Velocity Ratio (Um/	 29J p h)	 0.49

f Axial Velocity/Wheel Speed 	 1.01
i Rim Speed	 221 m/sec (724 ft/sec)

Cooled Efficiency	 (t)	 92.0
Cooling and Leakage Flow (i Core Flow) 	 3.97
Average Blade Turning ( 0)	 87.0

SUMMARY OF TURBINE COOLING AND LEAKAGE AIRFLOW

High Pressure Turbine	 Flow ( i Core Flow)

y 1st Vane	 1.9

1st Blade	 2.5[

Disk and Case Cooling and Seal Leakage 	 1.8

6.2 Subtotal

Low Pressure Turbine

let Vane	 0.7

1st Blade	 1.4
2nd Blade	 1.1

Disk, Case and Tailcone Cooling and Leakage 	 0_8

4.0 Subtotal

i
10.2 TOTAL

DUCT BURNER

Design features to be obtained from on-going VCE Technology Programs

COANNULAR NOZZLE/REVERSER SYSTEM

i

Design features to be obtained from on-going VCE Technology Programs
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TABLE 4.1-IV

ADVANCED TECHNOLOGY PROJECTIONS INCORPORATED
IN VSCE-515 MAJOR COMPONENTS

FAN
D

• Shroud.less Boron/Aluminum blades for first two stages .^
• Low-loss, variable-camber inlet and exit guide vanes• Advanced aerodynamic airfoil contours, 	 including controlled diffu-

sion airfoils
• Abradable trench tip rubstrips
• Low noise features, including compatibility with a choked inlet and

axial spacing

COMPRESSOR

• Controlled endwall losses 1
-	 Abradable trench tip rubstrips
-	 Low-volume inner seal cavity design

• Multiple circular arc controlled diffusion airfoils
• Airfoil coatings to preserve surface finish
• High-temperature,	 dual	 property	 disks	 (649 0C	 (1200 1-'-:)	 rim	 capa-

bility)
• High	 temperature	 case	 and	 diffuser	 material	 (6770C	 (12500F)

capability)

MAIN BURNER

• Oxide dispersion strengthened (ODS) liner material with a thermal
barrier coating

• Advanced cooling system for liner (impingement - transpiration
cooling)

• High temperature cas( material
• Low emissions config ation (either from NASA/P&WA Experimental

Clean Combustor Program (ECCP) or derived from more conventional
burner designs)

HIGH PRESSURE TURBINE

o Advanced materials
-	 Airfoils made from single crystal alloy or Rapid Solidifica-

tion Rate (RSR) powder metallurgy techniques
-	 Thermal barrier coating and substrate oxidation coating for

airfoils, endwalls and platforms
-	 Duai property disks (649 0C (12000F) rim capability)
-	 High temperature case material
-	 Abradable ceramic seal

26



1
i_

TABLE 4.1-IV (Cont'd)

o Advanced cooling system
-	 High effectiveness cone ^, ­. .on cooling for airfoils, using wavy

wails or trip strips
-	 Film cooling using low - g le holes for releasing coolant
-	 Improved design of airfoil trailing edges such as elliptical

pedestals
-	 Improved feed of disk/blade cooling air with advanced tangen-

tial onboard injection and multi-source (mid-compressor) bleed
-	 Air/air heat exchanger to cool the turbine cooling air, using

fan air as the cooling medium

o Advanced aerodynamic technology
-	 Low Mach number (high annulus area), high rotational speed

design
-	 Low loss vane endwalls
-	 High airfoil loading levels designed for mid transonic opera-

tion
-	 Radial load coefficient varied with blade taper to minimize

blade pull stress

LOW PRESSURE TURBINE

o Advanced two-stage design
-	 High included wall angle
-	 Supercritical exit guide vanes

o High strength blade material (single crystal or RSR) with tapered
contours and mini-shrouds

o High temperature case material

DUCT BURNER

• o Simplified two-stage design that retains high efficiency, low emis-
sions and good operational characteristics demonstrated in VCE
technology Programs

o High cooling effectiveness, oxide dispersion strengthened liner
with thermal barrier coating

o Low pressure loss diffuser

COANNULAR NOZ ZLE

• Light weight configurations/mechanisms for variable area control
for low noise and high performance requirements
-	 Approximately 408	 area change for primary stream
-	 Approximately 2008	 area change for duct stream
-	 Ejector opening controlled as function of Mach number

Self-positioning tail feathers
-	 Targetable reverser

•	 Inverted velocity profile optimized for low jet and shock noise
• Lightweight acoustic treatment integral with ejector/reverser com--

pane„ts
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To meet nacelle envelope dimensions established by the SCR airplane
contractors for good installed performance, as well as to provide space
for packaging accessories around the fan case, the fan is designed to
have a low elevation (law hub/tip ratios). Due to strers limitations in
the low pressure turbine blades, and also because of the emphasis on
high efficiency and low noise, the design tip speed r,i the fan is opti-
mum at approximately 487.7 14/sec (1600 ft/sec) . To provide high effi-
ciency at subsonic cruise in addition to supersonic cruise, variable
camber inlet and exit guide vanes are required to accommodate the swing
in air velocities entering and leaving the first and last stages. Low
aspect ratio, unshrouded composite Boron/Aluminum material was assumed
for the blades of the first two stages. The higher temperatures of the
third stage require titanium blades.

Zcomressor

The five-stage compressor is designed for maximum efficiency at super-
sonic cruise. The high operating temperature -- air exits at 64910C
(12000F) at supersonic cruise -- and the fact that it has a relative-
ly low number of stages because of its low pressure ratio of 4.6:1 and
high rotational speed, make the VSCB-515 compressor design unique rela-
tive to other advanced commercial engines.

Main Burner

There are two special operating requirements that affect the design of
the main burner; long design life (durability) in the severe thermal 	 !
environment at supersonic cruise, and low emissions in the airport 	 w^
vicinity. The durability requirement dictates the need foc an advanced
burner liner configuration that has high cooling effectiveness, com-
bined with high temperature materials. The emissions goals -- EPA Rules
and Regulations, Title 40, Chapter 1, established for advanced super-
sonic engines - Class TS - were set in August, 1976 at:

Pollutant	 EPAP	 ^-

TUC	 1.0
CO	 7.8
NOx	 5.0

These goals are extremely agressive and will require a very advanced
main burner configuration to compliment the advanced technology duct
burner being evaluated in the VCE Technology Program.

Three main burner configurations were -Aez-.ned for the VSC&-515, two
were a two-stage VORBIX design derived f r om the NASA/Pratt 6 Whitney
Aircraft Experimental Clean Combustor Program, and the third was an
advanced single stage configuration which is an extension of conven-
tional annular main burner designs with aerating nozzles. The VORBIX
types have the potential for lower emissions, but present significant
compromises in terms of weight and complexity. I concentrated research
and technology program will eventually be required to define the most
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suitable burner concept for advanced supersonic commercial engines.
Durability of the burner liner and case is a common requirement regard-
less of he burner configuration, and therefore is one of the critical

L	 technology elements included in the VCS-ETV program recommended in
Section 4.3.

High Pressure Turbine

The most unique and critical advanced technology features of this
single-stage turbine design are those associated with long design life
(durability) and high efficiency at the high temperature high stress
conditions at supersonic cruise. These features include high tempera-
ture materials for the blades and vanes, thermal barrier coatings
applied to the outer surfaces of these airfoils, high efficiency air-
foil designs contoured to reduce the pull stress at maximum rotational
speeds, and an advanced cooling system, consisting of a lightweight,
compact heat exchanger to cool the turbine cooling air, a tangential
on-board injector for efficient transfer of blade cooling air from the
static to rotating reference, and high heat transfer effectiveness of
the internal cooling passages of the vanes and blades. Collectively,

^-	 these advanced technologies have the greatest overall impact on the
VSCE-515 performance and life. Furthermore these same requirements are
just as critical in affecting the performance of all other candidate
AST engines, including alternative VCE concepts as well as conventional
engines. The VCE-HTV program recommended in Section 4.3 concentrates on
these requirements.

Low Pressure Turbine

The low pressure turbine is designed for high efficiency and for high
'	 rotational speed. The high speed allows the turbine to be a two stage

configuration and provides a low elevation flowpath for the three-stage
fan. The turbine flowpath also has a low profile to minimize the duct
burner diameter. This is a critical design consideration in that the
low pressure turbine and duct burner together set the maximum diameter
of the nozzle. These performance and dimension requirements result in
the low pressure turbine design having airfoils with subsonic exit con-
ditions. This yields a relatively large exit annulus which, when com-
bined with the high rotational speed (high AN 2 ) requires the same
high strength blade material as is applied to the high pressure turbine
blade. To compliment this high efficiency design, the turbine exit
guide vanes which house the radial supports for both rotors is a su,er-
critical airfoil design. To provide high efficiency for off-design
operation (subsonic cruise) and to avoid the complication of having
variable geometry in this hot region of the engine, elliptical leading
edges are included in these vane designs for reducing sensitivity to

1	 air angle mismatches.

The recommended VCE-HTV program in S&7tion 4.3 applies not only to the
high pressure turbine, but also to the most critical requirement for

t: this low pressure turbine -- the high strength material and thermal
barrier coating for the airfoils of both stages, especially the second
blade.

^i
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Duct Burner

The VSCB-515 duct burner is a simplified, two-stage version of the
thr; l atage configurations being evaluated in the on-going VCS Techno-
logy Programs. The two-stage design retains the operating flexibility
that provides essentially two design points: one is a low fuel/air
condition for supersonic cruise where duct burner performance (thrust
efficiency*) is a critical parameter; and the other for maximum power
operation which occurs at takeoff and during supersonic climb. At
takeoff, SPAP emission-, rules constitute another basic design consider-
ation. Because the VCS duct burner research programs are continuing,
the design definition incorporated in the VSC$-S1S is preliminary and,
unlike the other major components that make up this engine, it does not
reflect the ultimate configuration or all of the advanced technology
features that are anticipated for this unique component for the pro-
jected late 1980's time frame.

Coannular Nozzle/Ejector/Reverser System

The proceeding commenta on the duct burner apply also to the coannular
nozzle design incorporated in the VSCE-515. The on-going VCS nozzle
programs are emphasizing higher levels of subsonic performance while
retaining the coannular noise benefit and high supersonic performance.
Progress anticipated from the present analytical design effort, and
from follow-on model tests are expected to czvise and improve the pre-
sent definition of the coannular nozzle design, especially the aerody-
namic contour of the ejector, and the Thrust reverser concept.

4.2 VSCZ-515 Performance

4.2.1 Thrust Specific Fuel Consumption

The updated and refined VSCE-515 cycle offers a 3% TSPC improvement at
supersonic cruise and a 0.9• TSPC penalty at subsonic cruise relative
to the VSCE-5028. Figure 4.2-1 shows TSPC versus thrust characteristic:
for both engines over a range of power settings at these two operating
points. The higher efficiency components, based on results from the VCR
programs and by extending E3 technology out another five years, were
the most significant contributions in improving supersonic fuel con-
sumption. The reduction in cycle overall pressure ratio (OP.R) would
have caused a large increase in subsonic fuel consumption, but the
higher efficiency components largely offset this penalty.

*Thrust efficiency combines the effects of nonuniform temperatures and
pressures in the duct burner exhaust with depressed temperatures re-
sulting from chem i cal inefficiency and dissociation in the combustion
process. The method for calculating this efficiency involves integrat-
ing the momentum flow radially and circumferentially across the duct
burner exhaust and comparing this integrated thrust with the ideal
thrust that would be obtained with 100% chemical efficiency, no disso-
ciation, and no thermal or pressure gradients in the exhaust stream.
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Figure 4<2-1 TSFC Versus	 Thrust	 Characteristics	 for	 Refined
VSCE-515 Relative to Parametric VSCE-502B
Engine size = 340 kg/sec (750 lb/sec)
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readiness time period. Furthermore, these components are affected by
environmental constraints in addition to other commercial engine design
considerations, and more design work, plus experimental evaluation is
required before their final configurations and weights can be deter-
mined with confidence. Therefore, at this time, the weight increase for
these components is not being incorporated in the updated WRI.-515
study engine definition.

The official weight for the advanced VSCE based on the late 1980's
technology projections is 5216 kg (11,500 lba).
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4.2.3 Noise

Figures 4.2-3, 4 . 2-4 and 4.2-5 summarize the updated VSCB-515 noise
estimates. Relative to previous prediction procedures. an  iVroved
technique has been used. Specific areas that have been updated are:

o A more accurate procedure for estimating jet and shock noise
-levels for coannular nozzles with inverted velocity profiles. For
the first time, this includes the effect of nozzle geometry
(radius ratio) in Pratt & Whitney Aircraft VSC$ noise estimates.
This improved procedure was developed from nozzle model test data
obtained under NASA/Pratt & Whitney Aircraft contract NAS3 -20061
and described in reference 6.

o A revised procedure for flight effects, described in the same
final report.

o Correction to some of the previous sideline and flyover noise
estimates in allowing for the proper number of engines.

o Allowance for a more realistic ground plane reflection effect.

Table 4 . 2-II sumuarizes the bases for these updated prediction proce-
dures.

Figure 4.2-3 for sideline noise indicates that a specific thrust level
of about 62 corresponds to FAR Part 36 (1969), when the effects of
shielding and extra ground attenuation (EGA) are included. Figure 4.2-4
for community flyover indicates a specific thrust of about 42 meets the
rule. A 32 percent reduction in power setting is required for community
flyover to meet the rule at both measuring stations. These results also
show that the maximum power setting (70 specific thrust) exceeds the
sideline rule by approximately 3dB. Therefore programmed throttle sche-
duling combined with other operational procedures is required if the
penalties associated with oversizing and throttling back the engine are
to be avoided.

Figure 4.2-5 shows a breakdown of the engine noise sources at the side-
line condition. The total noise (top) curve is the same as Figure
4.2-3. Jet and shock are the major noise sources, and although the pro-
cedure for estimating duct burner combustion noise is not considered to
be very accurate, it may add approximately l to 2 dB to the total
noise, as illustrated in Figure 4.2.5. With the choked inlet and the
level of acoustic treatment assumed for the duct and nozzle systems,
fan and low pressure turbine (LPT) noise and other core sources are
insignificant.
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Figure 4.2-4	 VSCE-515 Noise Estimate - Community Flyover 0.3 MN
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BASIS FOR VSCE-515 NOISE ESTIMATE

Basis for Estimatinq Noise Sources:

- Jet and shock: based on model data for coannular IVP nozzles and
developed under contract NAS3-20061 (accounts for nozzle geome-
try as well as exhaust flow conditions) (reference 6)

-	 Fan: based on engine/rig data as a function of:
•	 tip speed
•	 stages and blade number
•	 spacing
•	 size

-	 Turbine: empirically derived as a function of:
• work
• speed
•	 stage and airfoil number
•	 size
•	 shielding by fan stream

-	 Main and Duct Burner: empirically derived from main burner data

and scaled as a function of:

•	 size
•	 local Mach number
• geometry
•	 fuel/air ratio

•	 attenuation through turbomachinery

Fan Spectral Attenuation:

-	 Forward Quadrant: Near sonic "!hoked" inlet yields a 20 dB
reduction in fan noise

-	 Rear Quadrant: Duct attenuation equivalent to acoustic treatment
having an L/H = 16

Corrections for Fli qht Svstem:

-	 Fan and turbine noise corrected from test stand conditions to
free field

-	 Jet and burners at free field
-	 Jet noise adjusted for flight effects
-	 Sources adjusted for doppler shift and convective amplification
-	 Data extrapolated to aircraft distances and ground reflections

applied representative of aircraft flight data
-	 Extra ground attenuation applied to all sources
-	 Shielding applied for sideline conditions
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From these estimates, it can be concluded that a significant reduction
in jet and shock noise will be required to meet the more stringent

Stage 3 FAR Part 36 1978 Noise Rule, if it is imposed on advanced
supersonic engines. Figure 4.2-6 compares the two FAR Part 36 Rules,

showing that an 8 dB reduction at sideline, and a 1 dB reduction at the
community point are required to meet the newer rule. As noted, the
sideline measuring station for the 1978 rule has been moved in from 650
meters (0.35 N.Mi.) to 450 meters (0.25 N. Mi.). The sideline noise
level shown in Figure 4.2-6 includes the effect of this closer distance.

4 ENGINES

CHOKED INLET
TREATED DUCT AND EJECTOR

WITH SHIELDING AND EGA

TAKEOFF FN/WC1 = 62.0 LBF/LBM

115

1969 RULE
(STAGE 2)

110

m	 FAR PART 36

LU

2a	 rn
105 —

100

SIDELINE	 COMMUNITY

(650M/0.35N.Mi) (CUTBACK TO 65%
OF TAKEOFF THRUST)

1978 RULE
(STAGE 3)

FAR PART 36
r —

SIDELINE	 COMMUNITY
(450M/0.25N Mi)	 (CUTBACK TO 65%

OF TAKEOFF THRUST)

Figure 4.2-6	 VSCE-515 Noise Estimates Relative to FAR Part 36
Noise Rules

At the approach measuring station, either a choked inlet, or one with
highly effective acoustic treatment will be required. Figure 4.2-7 is a
summary of the VSCE noise sources at the approach condition relative to
the two rules. The reduction in total noise provided by the choked

inlet gets to within 2 EPNdB of the 1978 rule.

I
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4.2.4	 Emissions

One	 of	 the	 new	 elements	 in	 estimating	 the VSCE-515	 emissions	 is	 the
R

availability	 of	 experimental	 data	 from	 the	 on-going	 VCE	 programs.
Figure	 4.2-8	 compares	 the	 duct	 burner	 goals	 that	 were	 established
several	 years	 ago	 for	 the	 VSCE-502B	 (shown	 by	 the	 white	 bars),	 and

y	 those	 resulting	 from	 the VCE	 duct	 burner	 rig	 tests	 and	 from	 the VCE
Testbed Tests	 (the black bar	 labeled	 test	 results).	 As	 shown,	 the	 two
efficiency	 goals	 were	 exceeded.	 Only	 the	 pressure	 losses	 were	 higher
than predicted. Applying these performance results,	 and	 the correspond-
ing emissions levels 	 to the VSCE-515,	 the EPA Parameters (EPAPs)	 in the
airport	 vicinity	 were	 estimated	 and	 are	 summarized	 in	 Figure	 4.2-9.
These estimates are	 based on an advanced main burner concept such as
the	 two-stage	 VORBIX	 configuration	 derived	 from	 the	 NASA/Pratt	 &
Whitney Aircraft Experimental Clean Combustor Program.

1

As	 shown	 in Figure 4.2-9,	 the NOx EPAP is 3.5. When the effects 	 that
are associated with production engines are allowed for, as indicated by
the	 cross-hatched	 areas,	 the	 VSCE-515	 just	 meets	 the	 NOx	EPAP	 goal
which is indicated by the broken line. For CO, 	 the level	 is 11.1,	 and
with production allowances, 	 is slightly over 15, or approximately twice
the goal. Most of the CO contribution is from the duct burner. 	 There-
fore,	 although	 considerable	 progress	 has	 been	 made	 in	 the	 VCE duct
burner	 program	 to	 date,	 further	 chemical	 efficiency	 gains	 would	 be
required	 to meet	 the CO	 EPAP goals.	 The required	 improvement	 in CO
would render the THC level	 to below the rule.	 The appropriateness of 4^
the EPA rule	 for	 advanced supersonic transport and engines	 (class T5
engines) should be reviewed, as recommended in Section 2.2.

4.3	 VCE Critical Technology Requirements and Program Recommendations

4.3.1	 Summary

Based on the results of this VSCE Technology Definitio,i S'_udy, a VCE-
High Temperature Validation	 (VCE-HTV)	 Program has been formulated and
is recommended as the next major VCE critical 	 technology program.	 The iT
approach	 is	 to select critical elements of	 advanced	 high	 temperature ^t

'	 technology,	 an6	 experimentally	 evaluate	 and	 substantiate	 them	 in	 an
advanced main	 burner	 and	 a	 new	 single-stage	 high	 pressure	 turbine ..Y
design.	 Sufficient	 experimental	 component	 and	 rig	 testing	 will	 be t
required	 to qualify	 the	 selected	 technologies	 first	 individually	 and
then collectively. They would then be substantiated in a high temper-
ature diagnostic test using either a complete high spool system for the
testbed, or a high temperature burner-turbine rig facility. 	 This diag-
nostic test will be instrumented to correlate measured temperatures and
stress levels	 with life characteristics of 	 the hot section components
and materials. This program concentrates on two critical VCE technology
areas:	 high temperature materials	 combined with advanced cooling	 sys-
tems. Advanced aerodynamic design features will be included so that a
high level of turbine efficiency can also be demonstrated. The elements
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that make up this VCE hot section program are shown in Figure 4.3-1. In
addition to being applicable to the VSCE hot section main burner and
high pressure turbine, this program would also provide a technology
base for other AST engine concepts such as the Low Bypass Engine (LBE)
and the Inverted Flow Engine (IFE). In general, this program would
benefit most advanced commercial and military engines, including con-
ventional designs as well as unique concepts such as VCE's.

4.3.2 Program Objectives

The objectives of this VCE-HTV Program are to evaluate and substantiate
high temperature material capability, advanced cooling effectiveness,
and high efficiency for an advanced main burner and a single-stage high
pressure turbine (HPT) design for VCE's, using a high spool engine as
the experimental testbed. The technical. goals for the commercial AST
engines that would use these hot section technologies are:

• Burner Exit Temperaturemax - 1482 to 15380C (2700 to 28000F)

• Compressor Discharge Temperaturemax - 649 to 704 0C (1200 to
1300oF)

• HPT cooled efficiency 90 percent

• HPT cooling and leakage airflow < 8 percent Wae

• HPT design life - 10,000 hours/5000 cycles (of the 10,000 hours,
5000 hours are at maximum rotational speed, maximum CET and maxi-
mum CDT).

HIGH TEMPERATURE
MATERIALS

VCE.HTV PROGRAM

VALIDATION OF
HIGH EFFECTIVENESS	 HIGH TEMPER-

COOLING	 ATURE BUKNER
AND TURBINE
TECHNOLOGY

HIGH AERODYNAMIC
PERFORMANCE

Figure 4.3-1	 VCE-HTV is a Technology Applications Program
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4.3 .3 Program Elements
f

This VCE-HTV Program consists of four major elements:

1. Screen, evaluate and apply advanced materials and cooling con-
cepts to an advanced main burner and to a single-stage EPT design.

2. Through individual component and rig tests, qualify the selected
4	 technologies with respect to the design and operational require-

ments of these two components.

3. Conduct cascade tests, uncooled (cold) rotating rig tests, and
cooled (warm) rotating rig tests to refine the HPT design in
order to incorporate th? advanced materials and cooling systems.

4. Experimentally evaluate the advanced main burner and HPT using
either a complete high spool assembly or a high temperature
burner-turbine rig facility. Diagnostic techniques using high
temperature instrumentation will be used to measure cooling
effectiveness, thermal gradients, metal temperatures, stress
levels, pressure losses and efficiency. Detailed post-test
inspection of airfoils, seals, disks, and other critical compo-
nents will be requi;-ed to determine the existence and extent of
creep levels, bowing, cracking, flaking, etc. that may occur dur-
ing the high temperature, high speed, steady state and cyclic
operation.

4.3.4 Description of VCE-HTV

4.3.4.1 Selection, of Critical Technology

Figure 4.3-2 lists the candidate technologies for this VCE-HTV program.
Additional technologies that will also be considered are listed in
Figure 4.3-3. High strength turbine blade and disk alloys are required
to accommodate the high turbine temperatures and stress levels. Single
crystal alloys and Rapid Solidification Rate Directionally Recyrstal-
lized (RSRDR) alloys offer the best potential for high strength blades
and vanes. Since the VSCE turbine is operating at high speeds as well
as at high temperatures at supersonic cruise, a high strength, high
temperature capability for the rim of the disk is required. Thermal
barrier coatings and substrate metallic coatings will be applied to the
airfoil surfaces. These coatings must be compatible with both the sub-

;

	

	 strate alloys and with the high effectiveness cooling system incorpo-
rated in the airfoil designs.
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t APPLICATION Of MATERIALS:

- THERMAL. BARRIER COATINGS FOR HFT AIRFOILS
- SINGLE CRYSTAL OR RSRDR AIRFOILS
- SUBSTRATE METALLIC COATING

- DUAL PROPERTY DISK
- BURNER LINER

COOLING:

HIGH EFFECTIVENESS FILM COOLING FOR HPT AIRFOILS
THERMAL BARRIER COATIN G
COOLED TURBINE COOLING AIR

AERODYNAMICS:	 DIAGNOSTIC TEST

TRANSONIC FLOVJ HPT DESIGN 	 t	 OF ADVANCED
LOW CX/V, HIGH TURNING

- HIGH AN , TAPER%. U) BLADES	 SINGLE STACIE HPT
LOW RAI]IUS CONFIGUnATION

Figure 4.3-2	 Candidate VCE-HTV Technologies

^^ S

t:

Figure 4.3-3

MAIN BURNER:

• LUNG LIFE LINER MATERIAL- (ODS OH CERAMIC)

• ADVANCED LINER COLLINU SYSTEM

• LOW EMISSIONS

HPT

• ACTIVE CLEARANCE CONTROL
• ABRADABI- T IP SEAL"
• !.OW WINDAGE DISK
• )MPRUVEU SEAL SYS'l LMS (HEUUCEU LEAKAGLI

Additional High Temperature Technology Considera-
tions for AST-VCE Program

44



^.1

i
h

4.3 .4.2 Technology Evaluation and Substantiation 	
S

f	 The advanced technologies selected for this VCE-HTV Program will be
combined and tested for overall compatibility and suitability for the
engine or hot rig test. Material tests will be conducted first, includ-

	 s

ing thermal cycling, creep, oxidation resistance, and compatibility
	

q

testing. Fabrication procedures, especially for applying the thermal
barrier coatings to the airfoils with advanced cooling systems, will be
evaluated. Figures 4.3-4 through 4.3-7 list some of the candidate hot
section materials and qualification testing required for this program.

The heat transfer technologies and aerodynamic design features of the
	

1

turbine will initially be worked separately and later integrated
through more detailed design and testing to evaluate and substantiate
the cooled turbine performance. Figures 4.3-8 and 4.3-9 list the pro-
gram elements for each of these areas. Airfoil cascade tests will be
conducted to evaluate the aerodynamic characteristics of the transonic
single-stage turbine, first separately and then together with the
advanced cooling system. Aerodynamically, the objective is to design
highly loaded airfoils with high turning but with low aerodynamic
lcsses. To accomplish this, trade-offs between endwall contours, air-
foil ontours, solidity, reaction, airfoil taper and turbine flowpath
will L:e made. The heat transfer technology will address the cooling of
high velocity regions (transonic flow regions) such as the airfoil
suction side walls, while minimizing injection losses. The technology
required for precooling thn turbine cooling air will also be considered
and could be included in this program. Once the basic materials, aero-
dynamic and cooling technology are confirmed by cascade testing, fur-
ther testing and design substantiation will be accomplished in an un-
cooled (cold) rotating turbine rig. Several design refinements of the
single stage HPT will be evaluated under highly instrumented testing to
mee t_ the high level of performance. The next step is to combine all of
the advanced cooling and aerodynamic design features for testing the
HPT in a cooled (warm) rotating rig. Cooled performance will be sub-
stantiated in this test sequence.

BENEFIT:*

- INCREASE BLADE TEMP, BY 83°C (150"F)
- INCREASE VANE TEMP, BY S8 ` C TO 111°C (175°F TO 260°F)

RECOMMENDEDPROGRAM:

- ALLOY COMPOSITION EVALUATION FOR AST REQUIREMENTS
- MATE=RIAL VERIFICATION iESTS
- DESIG= N VERIFICATION ENGINE TESTS

RELATIVE TO CURRENT TECHNOLOGY

Figure 4.3-4	 Single Crystal or RSRDR Blades & Vanes
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BENEFITS:

- EFFECTIVE REDUCTION IN BLADE & VANE TEMP. UP TO 1670 C (300"F)

YIELDS REDUCED TCA, INCREASED 11i
i

RECOMMENDED PROGRAM:

LAB. TESTS -- CONULICTIVITY/THERMAL EXPANSION/DENSI'rYI

THZEiMAL SHOCKISPALLING/C013ROSION RESISTANCE

RIG TESTS OF SELECTED COA1 INGS (TOGETHER WITH SINGLE CRYSTAL
OR RSRDR ALLOYS, ADV. COOLING SYST, ETC.)

•- TEMPERATURL.CYCLIC/LIFE ENGINL TESTS

Figure 4.3-5	 Thermal Barrier Coating

BENE FITS:

- REOUIRED 10 REALIZE IIENEF1IS OF SINULL CRYSTAL OR RSRDR ALLOYS

WITH THERMAL BARRIER t;OATINGS

RECOMMENDED PROGRAM:

- LABORA'10Rt' $ RIG 'PESTS TO EVALIIaI'E OXIC Al ION RESISTANCE, C.OMPAT'IBILITY BETWIrEN
SUBSTRATE AND OVERLAY COATING, ADHERING CHARACTEHISTICS, ETC,

- 1'EMPERATURE?CYCLICiLIFE ENGINE TESTS

Figure 4.3-6 	Metallic Substrate Coatinq (Under Ti,,, rmal Barrier
Coating Over Single Crystal or RSRDR Allays)
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BENEFITS:

- INCHEASL HIM TEMP, BY 28"C 01;0 F) UVEfi ASTROLOY

- MAINTAIN 1 - LNSILE LCF UF'L OF IN IOU

RECOMMENDEDPROGRAM:

- ttl.VlklV St'tit EN t1Li.U\' ANI:I t'iiU^:LSSiNIi t;i)Mt3iN.^1"il)NS t = U1+ TEMP,; 51tTLNli1411

LCf' RLQUIRWENI S

-- EVALUA T"E. AL LoYS AND FA8MCA110N PHUCLUURLS F= UR MATERIAL TRANSITION

WIAIETALUG JOINT)

- TE.S1 81 - 11t NGTH PBOPE:RTILS

- E ABRICAI L AND 1 LST DISK

• SI'INfkiUliST"`Ll;"rIilli l"E51^

+ ENGINL TEST z

riguic 4.3-7	 Dual Property Disks

ELEMENTS FOR SINGLE STAGE NPT FEATURING:
THANSONIC ULSIGN	 - NIGH AN
LOW SOLIL)ITY	 NIGH AIRVOIL TAPLH
HIGH TURNING	 CONTOURED ENDWALLS

- LOW CXfU	 - LOW RADIUS CONF16L)RAI]ON

BENEFITS:
- HIGH SPELL), HIGH LFFICILNCY DESIGN

RECOMMENDED PROGRAM;:
UFSI6N STUDIES
CASCADL- TESTS

NOT"A]INGWARM I LOW HIG T'ESIS

HOT ENGINE PESTS -- PL1?T: OIiMANCE, COOLINLi, DUPA81 LITY

Figure 4.3-8	 Ifigh Yiessure 'Turbine Aerodynamic Technology
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ELEMENTS:
-- HIGH EFFECTIVENESS FILM COOLING
— COMPATIBILITY WITH:

+ ADVANCED AIRFOIL MATERIALS
• TRANSONIC DESIGN (SUCTION SIDE)

— COOLED COOLING AIR (HEAT EXCHANGER)

BENEFITS-
- MINIMUM TCA
— HIGH EFFICIENCY

RECOMMENDED PROGRAM:
— DESIGN STUDIES
— CASCADE TESTS
— ROTATING WARM FLOW RIG ESTS
— HOT ENGINE TESTS — PERFOHMANCE, COOLING, DURABILITY

Figure 4.3-9	 High Pressure Turbine Cooling Technology

4.3.4.3 Hot Validation Test

All of the advanced materials and cooling system design features will
be applied to the high performance HPT design for diagnostic testing in
a hot rotating environment that simulates all critical operating condi-
tions of the VSCE, especially supersonic operation. An altitude chamber
may be required for this phase of the program. To obtain these rigorous
conditions, a complete high spool is considered most suitable. Hot tur-
bine rigs could also be used, and are considered to be options for this
phase of the program. A completely new, advanced technology single-
stage HPT will be designed and fabricated, incorporating as much of the
advanced technology described in the preceding sections as is feasi-
ble. This test will include extensive turbiiv? instrumentation to verify
component metal temperatures, cooling effectiveness, and stress levels
while the engine is operating at elevated t:mpera tures. Instrumentation
will be included to measure and substantiate turbine performance. Post-
test burner and turbine measurements will indicate the overall suitabi-
lity of these technology elements in meeting the durability and perfor-
mance requirements in the thermal and stress environment of an AST
engine. If damage occurs during hot testing, the extent of creep, bow,
oxidation, diffusion, cracking, corrosion, erosion, fretting or other
distress will indicate what weaknesses exist that will need further
evaluation before the overall capability of these component designs can
be validated.

4.3.4.4 VCE-HTV Schedule

Figure 4.3-10 shows a nominal 5 year schedule for this VCE-HTV Program.
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FROM

r
` 1)	 SCREEN, EVALUATE & SELECT MATERIALS I ,I

4
2.1	 QUALIFY SELECTED TECHNOLOGIES

INDIVIDUALLY & COLLECTIVELY

r	 ^

dj

3.1 DESIVN VALIDATION TESTS OF
ADVANCED BURNER & TURBINE

MATERIALS	 APPLICATION

C

HIGH SPOOL ENGINE VALIDATION TESTS

J
I	 2	 3	 4	 5

YEAR

Figure 4.3- 10 	VCE-HTV Program Schedule
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SECTION 5.0

PRELIMINARY ENGINE DESIG"

5.1 Design Considerations

5.1.1 Major Elements

Figure 5.1-1 shows the major elements of the preliminary design process
used in this VSCE definition study. Inputs to this process consisted of
key initial component aerodynamic and mechanical parameters, updated
technology projections, materials updates, and initial engine design
tables. The preliminary design process defined performance, engine/noz-
zle contours, and component and sub-system configurations. Because of
the limited scope of this study contract, the aerodynamic, structural,
and mechanical analyses summarized in Figure 5.1-1 concentrated on the
hot section components, the main burner and the two turbine assemblies.

Complete and updated outputs of the preliminary design analyses were
refined engine design tables, spool definitions; engine/nozzle system
drawings, performance, weights, noise, and emissions estimates for the
VSCE-515.

INPUTS

COMPONENT
ALRODYNAb'ICSi MATERIALS/

UPDATED UPDATED
TECHNOLOGY

TECHNOLOGY PROJECTIONS
PROJECTIONS

COMPONENT
M EC.H ANICAL	 INITIAL
PARAMETERS;

UPDATFD	 ENGINE DESIGN

TECHNOLOGY I I	 TABLES

PRELIMINARY
DESIGN

ANALYSIS

HIGH SPOOL
COMPONENTS I	 I C M^ONENTS	 ! SUB-SYSTEMS

OUTPUT'S -------------1-----_ ----- ---_—_

SPOOL	 ENGINE	 PERFORMANCE,
REFINED ENGINE	 DEFINITIONS	 LAYOUTS	 WEIGHTS,
DESIGN TABLES	 NOISE,

EMISSIONS

Figure 5.1-1	 Primary Elements of the Preliminary Design Process
Used in the VSCE Definition Study.
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5.1.2 Design Requirements

Mission Life and Durability

F Figure 5.1-2 shows a typical flight profile for an advanced supersonic
transport, including reserve operating requirements. In establishing
VSCF hot section mission life and durability design requirements, an
assessment of various AST missions was made and reviewed in terms of

t

	 operating time spent at the most severe temperatures and maximum rotor

t
	 Needs.

r

1•r

t^	 Ii^

1 "

t

1-

I

S	
t

l

1

a

10 TAXI

0 TAKEOFF

3O ACCELERATF AND CLIMB TO BCA*

C SUPERSONIC CRUISE

05 DESCEND AND DECELERATE

0 1 L APPROACH

0 ALLOWANCE

® SUBSONIC CRUISE TO ALTERNATE
O9 HOLD

1@0 TAXI

10 MIN, H = 0, GROUND IDLE FUEL FLOW

TO H = 1 1M (35 FT)

TOM - CRUISE

CLIMB CRUISE

FLIGHT IDLE FUEL FLOW

TO TOUCHDOWN

6% TRIP FUEL

M = 0.9, HP = 11521M (37,800 FT), R = 482 KM (260 NMI)

30 MIN. HP = 4572M (15,000 FT), M = OPTIONAL

5 MIN, H = 0, GROUND IDLE FUEL FLOW

'BC,A = BEST CRUISE ALTITUDE

Figure 5.1-2	 AST Flight Profile and Reserves
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.. Table	 5.1-I	 summarizes	 the	 time	 ( in minutes and	 in percent of	 total
block time)	 for an all suaersonic mission and for	 two mixed missions.
The mission with the 556 Km	 (300 N.Mi) subsonic leg, with a block cycle
time of	 190 . 6 minutes, was selected as being	 most	 representative	 for
establishing hot
Table 5.1-I,	 56 $

section design criteria.
of the operating time

As indicated
is spent	 theat

at the bottom of
most	 tem-severe

perature and stress condition.

^	
r

TABLE 5.1-I
1

TIME BREAKDOWN FOR ADVANCED SUPERSONIC TRANSPORT VSCE MISSIONS

x 556 Km 1112 Km
ALL ( 300	 n . mi.) (600	 n.mi.)

MISSION SEGMENT SUPERSONIC SUBSONIC LEG SUBSONIC LEG

(CET) MIN.	 % MIN.	 $ MIN.	 %

t
TAXI ( IDLE 10.0	 5.68 10.0	 5 . 28 10 . 0	 4.8$

TAKEOFF 0 . 7	 0.4% 0.7	 0.48 0.7	 0.3%
1204 to 134300
(2200 to 24500F)

SUBSONIC CLIMB 14.5	 8.18 17 . 4	 9.18 17.2	 8.28
137100 (25000F)

SUBSONIC CRUISE -	 - 18.5	 9 . 7$ 52.0	 24.7%
t 10940C (20000F)

*SUBSONIC CLIMB 16.1	 9.0$ 14 . 7	 7.7$ 13.9	 6.6$
1371 to 148200

(2500 to 27000F)

_ *SUPERSONIC CRUISE 	 104 . 4	 60.2 $ 99.7	 52 . 38 87.0	 41.3$

y 148200 (27000F)

DESCENT ( IDLE) 22.8	 12.8$ 22 . 8	 12.0$ 22.8	 10.8$

APPROACH (LOW) 1.8	 1.08 1 . 8	 0.98 1.8	 0.98

TAXI	 ( IDLE) 5.0	 2.8$ 5.0	 2.6% 5.0	 2.48

MISSION TOTAL 176.3	 100$ 190.6	 100$ 210.5	 100$

REPRESENTATIVE
MISSION

*	 MAX. CET, MAX. N2 + MAX. TCA TEMP = 52.3% +	 (7.7$/2)
= 568 Time at Most Severe Conditions

t
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Corresponding	 to	 this	 representative mission, 	 life	 limited	 carts	 are
designed for 10,000 hours of operation, and, 	 during this time, the hot
section	 parts	 would	 experience	 maximum	 combustor	 exit	 temperature,
maximum rotor speed and maximum cooling air temperatures, 	 for approxi-

s matel	 5000 hours. This hot section des ignY	 n criteria was used to deter-9

{ mine allowable stress/temperature levels for the VSCE-515 main burner,
high pressure turbine, and low pressure turbine.

i Critical Operating Conditions

Critical	 mission	 operating	 points	 were	 selected	 for	 consideration	 in
f design of the VSCE-515 engine component assemblies and are listed be-

low.	 Also	 listed are	 the most significant operating requirements for
each point.

f
t Takeoff,	 sea	 level	 static,	 max.	 augmentation	 -	 high	 specific

thrust, low noise

5 Takeoff, cutback power, 335 m (1,100 ft), 0.3Mn - low noise

Subsonic	 cruise,	 1100	 m	 (36,089	 ft),	 0.9Mn	 -	 low	 thrust,	 low
r fuel consumption, inlet flow-matching

Subsonic climb, 11125 m (36,500 ft), 1.3Mn - high thrust
r	 _

Supersonic	 cruise,	 16154	 m	 (53,000	 ft),	 2.32Mn	 - high	 thrust,
t low fuel consumption

The	 following	 section	 provides	 a	 brief	 description	 of	 the	 VSCE-515
operating characteristics at these selected conditions.

Take-off - Figures 5.1-3a and 5.1-3b depict the	 unique	 inverted	 velo-
city profile for take-off operation and also shows related temperature
levels	 in	 both	 exhaust	 streams.	 As	 indicated,	 the	 primary stream	 is
throttled to an intermediate power setting so that the jet noise asso-
ciated	 with	 the	 primary stream	 is	 low.	 To provide	 both the	 required

J take-off thrust,	 and the inverted velocity profile, 	 the duct-burner	 is
operated close	 to	 its maximum design	 temperature	 as shown	 in Figure
5.1-3a.	 For	 climb out over	 the community,	 both	 streams are	 throttled

I back, and the inverted velocity profile is retained, as shown in Figure
t

'
5.1-3b.	 These take-off conditions set the cooling requirements	 for the

t
duct-burner and nozzle system. 	 Relative to military augmentor systems,
the peak duct-burner temperatures for the VSCE are low.

I
At the take-off power settings that correspond to FAR Part 36 sideline
and community noise levels,	 the VSCE variable components and 	 throttle

( settings	 are	 matched	 to	 "high-flow"	 the	 engine.	 High-flowing	 is	 the
! capability	 to maintain	 the	 maximum design	 flow of	 the	 engine	 during

part-power	 operation,	 as	 required	 for	 low noise.	 This capability con-
pliments	 the	 coannular	 noise	 benefit	 to	 enhance	 the	 overall	 noise
characteristics of the VSCE.
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Subsonic Cruise - For subsonic cruise operation, the primary burner is
throttled to a very low temp-nature, the duct burner is off, and the

r	 VSCE operates like a mW erate hypass ratio turbofan cycle. Exhaust Con-
ditions for this third criti oil operating point are shown in Figure
5.1-3c. Again, the variable ieometry components are matched to high-

F	 i.low the engine, so that tho Pngine airflow can be matched almost
.xactly with the inlet airflow. This greatly reduces inlet spillage and
bypass losses, and alio improves nozzle performance by working with the
elector to fill the nozzle exhaust area at this part-power condition.
This reduces installation losses including boat-tail drag. In this
subsonic mode of operation, the VSCE has low fuel consumption that
approaches performance levels of current turbofan engines designed
stn ictly for subsonic operation

2
1

i.

3'

a-

VELOCITY PROFILES
M/SEC

0	 300	 600	 900	 1200

FT/s EC
0	 1000	 2000	 3000	 4000

...............................
TAKEOFF

(a) (FAR-36	 -	 -
SIDELINE)	 710 C

1427' C	 -

...; ....

TAKEOFF
(b) (FAR-36	 -	 -

COMMUNITY)	 632 C

671"C

SUBSONIC
(c) CRUISE a8r'c

Emil j `C

ABSOLUTE VELOCITY RATIO
BYPASS STREAM/PRIMARY STREAM

1.7

1.7

1.0

-1.0

(d) SUPERSONIC_
CRUISE	 841"C

725'C

Figure 5.1-3
	

Variability of Exhaust Conditions for the VSCE-515
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Supersonic Cruise - For supersonic operation, the VSCE primary burner
temperature is increased (relative to take-off), and the high spool

M	 speed is also increased. This is accomplished by matching the variable
engine components to the higher primary burner temperature. This unique

{. matching technique is referred to as the inverse throttle schedule
(ITS) - inverse relative to conventional subsonic engines which cruise
at much lower temperatures and spool speeds than occur at take-off con-
ditions. This ITS feature enables matching the high spool to a higher
flow rate at supersonic conditions relative to a conventional turbofan.
In effect, this high-flow condition reduces the cycle bypass ratio. The
level of duct-burner thrust augmentation required during supersonic
operation can, therefore, be reduced. As shown in Figure 5.1-3, the
exhaust temperatures fr,m both coannular streams are almost equal, and
the variable nozzle :areas are set for a flat velocity profile to reach
peak propulsive efficiency in both streams. The resulting VSCE fuel
consumption characteristics approach those of a turbojet cycle designed
exclusively for supersonic operation. The ITS feature enables sizing
the VSCE propulsion system for optimum supersonic cruise performance,
while also meeting FAR Part 36 noise levels at the other end of the
operating spectrum, by means of the coannular noise benefit.

Transonic Climb

During transonic climb operation, the primary burner temperature is
increased and high spool speed is increased relative to take-off. Duct
augmentation is gradually increased from the dry subsonic climb condi-
tion to a fuel/air ratio in the vicinity of 0.03 at higher climb mach
numbers. Actual fuel/air L'atio in the duct burner would be tailored to

i	 meet specific aircraft/missirn/thrust requirements as determined by, the
airframe companies.

For these critical conditions, design table information for the VSCE-
; 515 was generated and is contained in Table 5.1-II. These tables speci-

fy engine pressures, temperatures, speeds, flows and efficiencies
throughout the engine. This information, in conjunction with the speci-
fied design criteria, formed the basis for the mechanical/structural
design of the VSCE-515 engine. The information contained in Table
5.1-II has been generated consistent with the engine station designa-
tions illustrated in Figure 5.1-4.

r
i
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TABLE 5.1-II

VSCE - 515B

COMPONEN'r PERFORMANCE SUMMARY

1 2 3 4 5 6 7

Operating Point SLS (De- Takeoff 88% Take- Subsonic Subsonic Supersonic Supersonic

sign Point (Reduced off (Re- Climb (Min Cruise Climb (Max Cruise (De-

for Fan + FPR, duced FPR- AJE) CET) sign Point
Comp. + 14760C Cutback for HPT +
Partial Aug) Max Aug) Power) LPT Max

CET)

TAME	 oC STD +10 +10 +8 +8 +8 +8
ALT	 M 0 335 335 11000 11000 11125 16154

MN O 0.3 0.3 0.9 0.9 1.3 2.32

CYCLE

W2AR	 Kg/SEC 340.2 340.2 340.2 340.2 340.2 344.0 253.2

BPR 1.30 1.52 1.54 1.21 1.32 1.21 1.39

FPR 3.25 2.8 2.8 3.25 3.25 3.29 2.41

OPR 14.85 13.81 13.52 16.03 14.53 16,40 9.57

T4	 oC 1115.7 1211.6 1189.3 1103.8 980.9 1308.4 1482.6

n Thermal 0.4045 0.4075 0.4031 0.5060 0.4863 0.5617 0.6397

n Propulsive 0 0.2448 0.2688 0.5260 0.5535 0.533 0.1,2

Customer Bleed (Kg/SEC) 0.4536 0.4536 0.4536 0.4536 0.4536 0.4536 U. ­,i6

Power Extraction (WATTS) 149140 149140 149140 149140 149140 149140 149140

INLET

2 W2AR DES 100 100 100 100 lU0 101.1 74.4

I?	 RAM 0.932 0.970 0.970 0.970 0.970 0.9535 0.931

W2A (Kg/SEC) 340.2 340.2 340.2 340.2 340.2 344.0 353.2

Mo 0 0.3 0.3 0.9 0.9 1.3 2.32

V airplane (M/SEC) 0 103.5 103.5 270.5 270.5 390.8 697.4

FAN AVERAGE

W2AR 340.2 340.2 340.2 340.2 340.2 344.0 253.2

P23Q2A* 3.25 2.8 2.8 3.25 3.25 3.29 2.41

n AV* 85.,; 78.9 78.9 85.7 85.7 85.4 86.3

UT1P/	 ^_O(M/SEC) .487.7 481.0 481.0 487.7 487.7 491.9 416.1

NLR2A (RPM) 6107 6022 6022 6107 6107 6159 5209

NL (RPM) 6107 6158 6158 5814 5814 6292 6622
No.	 Stages 3 3 3 3 3 3 3

FAN ENC. STRFA14
W2R (Kg/SEC) 147.9 135.2 133.7 153.5 146.6 155.6 106.1

* P23QZ 3.25 2.8 2.8 3.25 3.25 3.29 2.41

* n ID 0.857 0.789 0.789 0.857 0.857 0,854 U.863

* Includes FEGV

H IGH COMPRESSOR

W23R23* (Kg/SEC) 55.1 57,8 57.1 57.2 54.6 57.4 50.5
P3Q23* 4.57 4,93 4.83 4.94 4.47 4.99 3.96

n HPC 0.889 0.886 0,887 0.886 V.89U 0.886 0.896

NHR23 (RPM) 8073 8644 8424 8488 8025 8554 7749

NH (RPM) 9772 10574 10306 9786 9152 10S99 11318

UTIP/C23 (M/SEC) 362.7 388.3 378.6 381.3 360.6 384.4 348.1

No Stages 5 5 5 5 5 5 5

* Includes	 I.0t
Inte.rmrdiate Cara 6
1GV A P/P
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TABLE 5.1-1I	 (Cont'd)

1 2 3 4 5 6

Operating Point 51,5	 (De- Takeoff 88Z Tak es - Subsonic Sub nn!,ic Supersonic Supersonic
sign	 P., int (Reduced off (Ro- Climt.	 (Min Cruise Climb (Max Cniise Or-
for Fan + FPR, dncod FPR- AJE) CET) sign Point
Comp.	 + 14260(, Cutback for HPT +
Partial Aug) Max Aug) Power) LPT Max

CET)

MAIN BURNER

T3 ( 0C) 397.1 42h.8 422.2 352.2 333.+ 446.7 642.2
T4 ( 0C) 1115.7 1211.6 1189.3 1103.8 980.9 1308:4 1482.6
-IT (0C) 718.6 784.8 767.1 751.6 657.6 861.8 840.4
W3R3	 (Kg/SEA) 123.6 117.5 116.2 52.7 50.3 78.8 88.9
W4R4	 (Ki(/SF.C) _123.6 117.5 116.2 52.7 50.3 78.8 88.9
A P/P* 4/3 0.052 0.050 0.051 0.049 0.i53 0.048" 0.054
11	 B 100 100 100 100 100 100 100

* Incltides Diffusor

HIGH TURBINE
P4SQ4 ?.?9 2.31 2.31 2.2h 2.In 2.26 2.27

n HPT 0.9171 0.9217 0.9199 0.9190 0,1)1n8 0.9191 0.9203

T4 " oC 111S.7 1211.6 1189.3 1103.8 980.9 1308,4 1482.1
T45 - 0C 855.3 932.6 914.3 846.2 740.5 1020.3 1170
No,	 St.ges 1 1 1 1 1 1 1
NH (RPM) 9772 10574 10306 9-186 9252 1OS99 11318
% NH DES 86.3 93.4 91.1 86.5 81.7 93.6 100
TCATOT (X) 10.2 10.2 10.2 10.2 10.2 10.2 10.2
(Includes LPT)

LOW TURBINE

P49Q45 3.42 3-38 3.52 2.92 3.57 2.91 3.o6
?7 LPT 0.9222 0.9198 0.9196 0.9192 0.9218 0.9197 0.9195

T45	 0C 855.3 932.6 914.3 846.2 740.5 1020.3 1170
T49	 0C 574.3 638.6 616.3 596.7 476 740.3 854.1
No.	 Stag-s 2 2 - 2 2 2 2
HL (RPM) 6107 6158 1658 5814 5814 6292 6622
M NL DES ,`2.2 93.0 93.0 87.8 87.8 95.0 IUO

LPT EXIT CASE. + TIP

M49 - Axial 0.579 O.S61 0.691 0.441 0.676 0.441 0.483

E-it Swirl	 (0) 28.73 29.83 34.52 19.68 33.23 19.25 23.77

( 00	 is Axial)
45 - Axial 0.600 0.598 0.659 0.471 0.658 0.473 01514

A P/P ECV 0.018 01020 0.038 0.0098 0.033 0.0098 C•.0II

J P/P* T/P 0.014 0.014 0.017 0.0081 0.011 0.0087 0.010

cooling Air 0.04 O.U4 0.04 0.04 0.04 0.04 U.04

(X WAE)

* includes Probe Loss

DUCT BURNER

F/A 17 0.024 0.040 0.027 U U U.030 0.010

T!3 ( 00 148.74 157.79 1'37.19 157.80 151.80 168.49 341.10

T17	 ("C) 967.37 1425.24 1(175.59 113.2N 112.94 1159.$9 7(!(j, S8

W13	 (Kg/SEC) 179.2 198.9 2(K)." 71.850 74.572 106.1 137.8

W17	 (Kg /SEC) 183.5 206.9 205.9 71.850 74.572 109.9 139.1
0 P/P

Struts + Diffuser 0.015 0.026 U.026 0.014 U.015 0.01= 0.o14

Co 13 -- -- - (J.U45 U.o51 _ -

Hot 0.081 0.201 0.162 -- -- U.U78 U.(i51

M13 0.115 0.159 0.1;4 0.lot) U.111 0.112 U.110

M17 0.209 0.368, (),303 0 U 0.'•1'1 0.151

8	 Thrust Effective 0.9442 0.9350 U.94U1 0.92U U.92U 0.938 0.960
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TABLE 5.1-11 (Cont'd)

1 2 3 4 5 b 7

Operating Point SI,S	 (Dr- Tak- ff 88$ Take- Suh q ,ni^ , Suhsnnic Suprrconir Suprrgonir
si gn Point (Rrd,tcvd off (Re- Climb	 (Min Cruise Climb (Max Cruise Or-
for Fan FPR, dncrd FPR- qJE) CET: sign i'oint
Comp. ♦ 1476or.. Cot ha, k f„r	 NI'T	 +
Partial Aug) Max Aug) Power) 1.11T	 Mnx

CET')

NOZZLE
CDR 1.01 1.00 1.03 0.99 0.99 U.99 o.99

CD18 0.98 0.9E 0,98 0.98 0.98 0.98 0.98

CV9 0.984 .1.983 0,985 U,9R2 0,981 0.979 0.982

CV19 0,984 0,9R3 0.985 0.9R2 O.oR3 0,979 0.982

V9 M/SEC 463.2 495.6 451.7 733.4 5v4,7 90'1.14 1112.14

V19 M%SEC 787.21 A42.9 767.3 525.8 525.2 1137.7 100	 .3

Vi9!V9 1.7 1.7 1.7 0.717 0.883 1.259 0.981

A8 (M 2 ) 0.611 i:.6'Nx 0.665 0.526 U.W'tR 0.524i O,i1,9
RF.L AS	 Z DES 1.0 1.O 1.05 O dS 1.06 0.85 u,9U

A18	 ( M 2 ) 0.589 0.983 P..831 6.309 0.323 0.605 V.-4o4
RF:1, A18	 Z DES 1,814 3.10, 2.62 0.974 1.02 1.91 1.27
Al23(A8 0,933 1.S7!? 1.'_`[4 0,588 0.491 1.151 t1, 722
AEKTT 9 ♦ 	 l9 ( M2 ) 1,2x,6 1.ti3 1.51,1 1.1:4 1.7.25 2.266 '3.019
PTA (KNlM 1 ) 164.4 163.1 1	 u.,^ 84,." 59.22 136.9 153,?
PT18	 (KN/M2 ) :78.1 °Z1.6 231._' 113,1 112.3 1'4.^ 270.4
PBQAMB 1.613 1.678 1.5.142 3.722 _,616 6.174 15.31

PIgkmtt 145 :.?' ,̀ _,37='^ 5.(10 4.965 .AR1 26.'114
TS	 ( oC) 573.16 t,1 'i 11(14,96 596.24 47',.5: 1'19,54 851,20
T16	 ( IC) 968 1526 1075.59 113.28 1142.9; 11161 '--01.2

WFS KK SEC 2.5;4 6c9 _.599 1.114 0,412 _.623 2.3i

WEIR Kv.!SF(C 4,2514 8,(142 5,475 tl a 3.?ua 1.319
WC8 Kg/SEC 139.) 1'1`:.4 131.14 59.87 56.88 s". 7' 101.2

WC 18 Kg;4EC 183.5 206.v ;nS.A 71.85 74.',7 1oli.9 134.1

UMAX (CM) 103.146 203.9x, 2°03.96 ;(13.96 .13.'46 20i.9h 20-i.96

5oatt.6l	 Oran f N) 0 ?64..14 254.8 36()8.2 11',5.2 3141.'+ 1^1.4

Ejector Pozition UPEN OPEN OPEN OPEN OPEN CLUSLU t;LUSEU

F:NGINf:	 P_EkF.

FCCV9	 (N) ~5,819 '76 f	 t?,'149114 44,6-i-3 3~,316 82,795 115,731
FG(',V19	 (N) 146,775 1	 1419 11.),342 38 	 4hf: 39,8	 ; 12	 73 154,803
FCCV (N) 212,654 2  8),73? 83,12:1 74,1,:: Io,JtiR .69,535
FRA.MToT (N) 0 :,I`2 34,152 35,µi7 35,4±; t,,136 165,141
FNCV9 (N) b4,811 52N L6, o63 ,86821	 7 7	 557 45.6!` 1 144	 36.14
FN("Vl9	 (N) 14v,41H 153,81:' :'{14,'!18 1H,'94. IH,491 81,i6.S SS,tN9
FN CV (N) ^09,238 2=u>,401 I8#,2;! .6,:111 37	 550 1?9,`^66 lu3	 701
SF(;	 (:V	 KKr'NR--N 0.117 O.18 0.P`9 U.uKK it .pKi 3 tt.l'+-+9 U.1 S4?
Boatt4; i	 (hag N L; .66.43`1 54.?71: '^f,08,? 3165.? :1191.9 1 '1.430
P1	 INST N 209,:)5 .?06.134 18!,017 4',663 3.:,"183 L"n, 7' 99,13+
1SFC TNST KK/RR-N U.117 o.16/ 0.1584 U.U957 U.U953 0.1488 (1.1344

LOCAL TF_MPERA'ItlKE
^1 1MMARY 06
TA19 ^	 ^ 14.8114 ^.1 2 -48.618 -:18.618 -48,h18 -LK,61
T2A 14.819 ?7.912 ;7.072 17.155 155 27.=.?l 19:.1414
?23 148... 1',,.14814 1`..7ii 1U9.61i I ti lt, 6Ii 16x.49 351. iii

112 -1	 1 42	 9 111.81 '11''.W, 44h,,. 6:141.
T4 iiK.55 1'711. .n IIt,8,7 1114!'.67 97v,vG 1;1414;.14 !:..yl.u7
;:,5 x521 48 9'11.+K 91"14,86 K45."18 719.7. lo!9.1i l6s.,,
1'S 73.1!, 617.14; t,lh..,5 5y6,;4 47
513 14K,74 J,17. :8 1 1	 7.7!7 uv.6i s 1'	 } 11:8,	 19 i -:1.114
1'11 9f,8. 1426 1015.1, 113.28 112,~9 1161 701.2

0

S8



17	 18	 ,B

ru

DUCT BURNER 1lw

HIGH LDW	 T
)'*PRESSOR bINE	 TURBINE Ell,

F

3	 A 49	 5 B 9

'TURBINE EXIT GUIDE VANE

„	 12
	 ,J

0

FAN

I

a

INLET
FLAW

AMBIENT

1	 2

Figure 5.1-4 VSCE Station Designations

5.2	 Preliminary Design Results

5.2.1 High Spool Components

5.2.1.1 High Pressure Compressor

Design Characteristics

The high pressure compressor is designed for maximum efficiency at
supersonic cruise and to maintain adequate surge wargin throughout the
flight spectrum. The advanced supersonic transport mission results in
the VSCE-515 operating at maximum speed and temperature for approxi-
mately 56% of the typical mission time. This causes the design crite-
ria of the high compressor assembly to be primarily creep and/or burst
margin related with a reduced effect from low cycle fatigue. The cycle
;elected for the VOCE-515 (see sectior. 4.1.2.1) results in a maximum
compressor discharge temperature of 649 0C (12000F) at this long
time supersonic cruise condition. Disks, airfoils, and materials of the
higle pressure compressor were selected to provide durability consistent
with commercial application and the aforementioned speeds and tempera-
tures.

Technology Projections and Design Features

Abradable trench tip rubstrips and a low-volume inner cavity seal
design are used to control endwall losses.

A constant outside diameter flowpath to maintain acceptable loadings
and surge margin and provide desirable speed matching with the high
pressure turbine was employed.
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Four Stage High Exit Mach Number Compressor Design9
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featuiees semi 'problems` 'asso ciatad .^ ltb 4a sinaiion- of Uner , segment
Zonfiguration and material. The cowbihatise cf 'Malecfali '.and 000liag
configurations- within the heowy : broken line itidibates whim of these
bas 

the 
potential to meet the AST -,Sea life . raguir^ts. of the, twelve

combinations, the four Frith- ceramic materials are considered to `W--
beyond , the "late 1980 'a technology readiness period, especially- 'in the
`advanced -configuratioias. Of ,the: three potential candidates, the c .̂ ombi-
nation

"
of `Oxide "Dispersion Strengthened

_ 
(GDS) Nickel; Alloy "for the

-liner material,- with the ' .Impingement/Transpiration cooling
configuration was selected as the prime design for the VBC3t -515 ` liner

mesegments. A Hastelloy X fra, which Is exposed to lower tesperatures,
supports the high temperature segments, A ' thermal barrier coating ^-`
plied to the-'outer (hot) surface of these' liner segments may -offer
improved: life capt^bility and/or rafuced cooling air requirements.
Lowering the liner cooling will provide flexibility - for optimising. the
overall burner design for emissions, performance . and temperature pro-
files entering the turbine. Figure 5.2-3 shown this frame and segment
configuration. This selected combination, or any of the other advanced
cooling configurations and materials are compatible with the diffuser-
burner configurations described in the following sections.

Diffuser-Burner Configurations

'three main burner, configurations were defined for the VOCE-515i9 s one
based on: a conventional, single-stage configuration with aerating
nozzles (VSCa-5158), and the other bro derived from the two-stags
VORBIX concept evaluated in the NASA-P4MA Bxperi^ntal Clean Combustor

` Program (DCCP), and in particular from -the Phase'Ii2 JT9D - test program.
All three are annular designs. The two VORSIX types were designed to
match the two compressor configurations described in section 5.3.1.1
that have different levels of exit Mach number. One has a conventional
Mach number leaving the compressor and entering the diffuser of the
main burner (VOCE-515) and the other has a higher exit Mach number
leaving the compressor and entering the diffuser of the main burner
(V'8CH-515A). The more conventional burner was defined to serve as a
baseline for comparing the VORSIX configurations.
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ment/Transpiration Cooled Burner Liner
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V80 515 Two-Stage Voxbix Burner
Geometry; and Pressure Loss Characteristics;

Low Mn. Comps	 High No Cows

Diffuser Length/Inlet Height 	 3	 5.5

=	 Diffuser Area Ratio.

Total Diffuser-Burner Length	 88.9',cm.(35.0.in) 88.65 cm (34.9 in)

Pressure Losses ( X d► P/P)
Compressor Ixit, Guide Vane 	 Base	 ¢1.0

Diffuser Loss	 .3	 .j

Dusk Loss	 1.6	 2.8
Shroud. Loss	 .3.	 .3

- Burner Liner Lost	 3.0	 ^- 3.0
Total Pressure Loss	 5.2	 7.8
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Figure 5.2-4	 Two Stage Vorbix Burner Flowpath for Conventional
Exit Mach Number Compressor or (VSCB-515)
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Figure 5.2-5	 Two Stage Vorbix Burner Flowpath for High Exit Mach
Number Compressor VSCE-515A
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TABLE 5.2-111

ECCP AND VSCE-515 VORBIX MAIN BURNER
OPERATIONAL AND DESIGN CHARACTERISTICS

(SLTO Std Day)

JT9D-ECCP Phase III	 VSCE-515

Vorbix Burner

ative Airflow (Z)	 --	 +33.0

Discharge Total Pressure
2212.9 KN/m2 (321 psi&)

Discharge Total Temperature
7640K (13750R)

1/air ratio

umetric heat release
e

idence Time (sec.)	 .0072

ume	 .065m3
(2.3 ft3)

bustion Chamber Length (in.) 	 38.86 em
(15.3)

n Radius (in.)	 39.70 cm
(15.63)

rall Diffuser/Burner	 60.33 cm

gth (in.)	 (23.75)

0222

1416.7 KN/m2 (205.4 pnia)

6830K (12300R)

.0224

6.0 x 106 /BTU/ Hr-atm-ft3

.0080

0.136m3
(4.80 ft3)

54.20 cm

(21.34)

40.65 cm
(16.00)

88.98 cm
(35.0)

COMPRESSOR
EXIT
GUIDE

30 — 	VANE

W 35 2 14
Z 40	 16

j 45	 18	
18 STRUTS

50 Q 20	 5.8" X 0.5"

0	 D:	 14.73CM X 1.27CM

^ 55	 22^

60	
24

TURBINE
INLET
GUIDE
VANE

	

1 - 1	 1	 1	 1	 1	 1	 1	 1	 1	 i	 1	 1	 1	 i	 1	 1	 1	 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

LENGTH INCHES

	

I	 1	 I	 I	 I	 I	 1	 I	 I	 I	 I	 I	 I	 I	 I	 1	 I
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Figure 5.2-6	 Single Stage VSCE-515B ]:lowpath Main Burner
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The various liner cooling configurations and materials summarised in
Table 3.2-I coupled with overall burner configurations 	 described in
this section illustrate the broad choice of advanced technology ele-
ments	 that	 can be	 incorporated	 in	 the VOCE slain burner.	 Extensive
analysis and experimental evaluation are required to select the best
combination of performance, 	 durability,-- -and`.. emissions	 levels	 for	 the
VOCE-515.	 The	 recommended	 VICE-MTV piogram '; .described _ in Section
includes the most critical element -- tha,burner liner'coo2ling confiqu-
ration at.d material. it should be noted that all of the other candidate
AST engines (Inverted Flow Engines, Low Bypass Engines and other VCR
concepts) will also, require the same type of advanced technology main
burner.

Emission	 characteristics of	 the VSCS-515	 are summarized	 in Section
4.2.4.

5.2.1.3	 High PressurE Turbine

Design Consideraticas

The VSCB-515 operating requirements are unusual in that maximum turbine
temperatures and rotor speeds occur during the long time cruise portion
of the mission. This causes the major criteria of the high pressure
turbim^ design life to be creep and/or oxidation related and a reduced
effect from low cycle fatigue. Maximum combustor exit temperature of
148200	 (27000F)	 and	 compressor	 discharge	 temperature	 of	 64900
(12000F)	 occur	 simultaneously	 at	 supersonic	 cruise	 and	 establish

L material and cooling flow requirements for the preliminary design of
this	 turbine.	 Advanced	 cooling	 techniques	 coupled	 with	 material
improvements	 are	 necessary	 to	 achieve	 durability	 consistent	 with
commercial	 application	 and	 minimum	 cooling	 flow	 to	 avoid	 large
penalties	 to	 the	 engine	 cycle	 and	 turbine	 efficiency.	 The	 following
table	 summarizes	 the	 design	 criteria	 utilized	 in	 establishing	 the
VSCE-515 durability goals.

A.	 Engine Cycle Conditions

VSCE-515
16 9 154 m (53,000 ft), 2.32 MN, STD + 80C (14.40F)

Nominal Values

^t
Compressor Discharge Temperature (TO)	 6450C / 1192OF
Combustor Discharge Temperature	 (Tt4)	 1482oC /27OOoF

h
HPT Exit Temperature	 M4.5)	 12110C/22120F

Max High Rotor Speed	 (N2)	 11193 RPM

r^ B.	 Design Mission

4 hours
2 hours of hot time per mission

i

'i

a

x

•a
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C. Design Life

The high pressure turbine assembly was designed to cause less than 5%
Unscheduled Engine Removals WER) in 10,000 hours of operation.

Technology Projections & Design Features

To attain high adiabatic efficiency while meeting the durability
requirements of the VSCE mission profile outlined in Section 5.2.2,
technology advancements ?n aerodynamics, cooling effectiveness and
materials must be achieved. The following section reviews these
technology projections and design features for this unique high pres-
sure turbine.

The HPT i.s a single stage design with airfoil aerodynamic loading 17%
higher than the E3 loading. This increased HPT loading is projected
for late 1980's technology low solidity turbines operating at the cur-
rent level of aerodynamic losses.

A 10% reduction in profile loss and 15% reduction in erdwall or secon-
dary losses relative to E 3 technology are assumed, based on improved
airfoil and endwall shapes as well as tailoring of spanwise velocity
distributions.

The use of improved single crystal or RSRDR alloys is projected for
both the vanes and the blades. The vane alloy will provide a (1750F)
920C advantage and the blade alloy a (150 0F) 830C advantage over
current engine alloys. These advantages provide increased creep
strength for the blade and improved oxidation resistance for the vane
at elevated temperatures.

The use of increased strength single crystal or RSRDR alloys provides
the potential for improved turbine performance by accommodating in-
creased airfoil root stresses. The improved turbine performance was
obtained by increasing turbine annulus area 44% relative to E 3 which
had a net effect of reducing aerodynamic losses but with increased
blade root stress. The VCE HPT design has an average blade root stress
of 413640 inn/m2 (60ksi) which is 20% higher than the E3 design.
Airfoil load coefficient is varied radially by blade taper to minimize
blade pull stress.

Thermal barrier coatings will provide insulative protection of 111
1670C (200 - 300 0F) for both the VSCE turbine airfoil and platform
designs. The use of electron beam deposited coatings with smooth sur-
face finish and low thermal conductivity offers both aerody gamic and
heat transfer advantages.

Oxidation/corrosion protection for both the airfoils anti platforms is
expected to be 55.5 - 111oC (100 - 2000F) better than current
metallic coatings with the use of advanced metallic and ceramic overlay
type coatings.
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(SOOF)	 increased	 rim	 temperature	 capability	 relative . to
current disk materials was used in the 9PT disk-to socofodate the
higher turbine temperatures while retaining high bob strength.

Parametric O	 -	 ,arametr c tudies
l

The VBC8-515 preliminary design table information provided a base for
turbine paramstric studies. The effects of load factor, annulus area,
and rotor speed on turbine efficiency were investigated to determine on
-0ptinum performance level.

The initial investigations involved sizing the VSCH-515 BPT to the E3
load	 factor	 and	 M2 .	 resulting	 in	 the aerodynamic characteristics
show below.	 The	 data presented also includes 	 the 5038	 cycle	 for
reference. This aerodynamic design is conservative, mainly because of
the reduced pressure ratio of the VivW-315 high compressor for this
cycle relative to E3 and the VSCB-5036.

M	 VOCID-5038	 VOCN-315

Blades-pas Turning (Avg.)	 119	 93	 90
Relative Exit Mach Mo. 	 1.30	 1.11	 0.93
8PT Pressure Ratio	 4.0	 3.0	 3.3

To obtain a more aggressive design, a parametric study of 16 high pres-
sure turbine configurations was conducted to identify a Von configura-
tion wbichs (1) Would achieve high efficiency, (3) satisfy VOCE flow-
path geometrical constraints, and (3) represent the beat match for the
VOCE WC. To aeat the efficiency objective, three independent turbine
parameters - turbine annulus area, rotor speed (M), and load factor
(L.P.) - were varied from the parametric 5038 base values. The turbine
efficiencies and related results for the 16 turbine configurations are
listed in Table 5.3-IV. The increasing trend in turbine efficiency
resulting from the increased average blade root stress (AM3) with
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a.^	 ♦7aa	 - a y .av	 ar^.v	 sw7v	 •dp/	 al.ar	 a.vr	 wa•	 .rr'
4A	 1.0	 9200	 .910	 16.18	 9:.0	 1.863	 .462	 13.56	 2.86	 907.	 .454
43	 1.2	 .9187	 12.69	 106.6	 2.148	 .373	 17.85	 2.83	 498.	 .369
4c	 1.3	 .921	 11.70	 110.3	 2.267	 .343	 19.74	 2.82	 493.	 .333
4a	 1.4	 .922	 10.86	 114.0	 2.371	 .318	 21.48	 2.81	 489.	 .307

r:

annulus area at constant rotor speed is shown in Figures 5.2-7 and
3.2-8	 for	 load factors of .1.62 and 1.36, 	 respectively. Most of the
efficiency change at constant rotor speed results from the decrease in
airfoil exit such numbers with increasing annulus area. An additional
i-crease in turbine efficiency is obtained from the increased turbine
annulus at constant rotor speed which increases airfoil turning, aspect
ratio, and convergence ratio. The higher aspect and convergent ratios)
outweigh the adverse effect of increased turning on the endwoll loss )
coefficient, and results in a net decrease in endwall loss coefficient.
Although the profile lon g coefficient also increases with increased €"
airfoil turning, its effect on the 16 configurations is smaller com-
pared to the decrease in loss due to Mach number and endwall effects.
The upper curve in Figure 5.2-8 (LF - 1.36, 11 a 9200 RPM) does show,
however,	 a	 tendency	 for	 an efficiency	 trend	 reversal with further
increases in annulus area due to the increase of profile loss coaffi-
cient.
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a	 Figure 5.2-8	 Configuration Study, Turbine Efficiency Versus Anmi
lus A• ca X Speed -
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The gain in efficiency with decrease in load factor for constant annu-
lus area and	 rotor	 speed	 is	 noted by comparing corresponding points 1
from	 Figures	 5.2-7	 and	 5.2-8.	 The	 load	 factor	 decrease	 to	 1.34	 in
Figure 5.2-8	 results	 from increasing the mean turbine diameter by 108

} for	 the constant	 rotor speeds given	 in Figure 5.2-7. This increase in
mean	 turbine diameter	 causes	 a	 decrease	 it	 airfoil	 turning	 (reduces
profile	 loss)	 with	 an	 increase	 in convergence ratio	 (reduces endwall
loss).	 The	 increase	 in	 turbine	 mean	 diameter	 also	 decreases	 airfoil
aspect	 ratio	 (increases endwall	 loss)	 and	 increases blade tip leakage
area	 (increases tip loss).	 Within	 the	 limits of	 the	 two load	 factors

studied,	 the net	 gain	 in	 efficiency	 results	 primarily	 from	 the reduc-
tion in profile loss due to decreased turning and reduced Mach number.

r ^'

Candidate	 turbines	 which	 potentially meet	 the efficiency objective	 for
the VCE high pressure turbine were selected	 from tte matrix summarized
in	 Table	 5.2-IV	 for	 further	 consideration.	 The	 efficiencies	 of	 four`
turbine configurations are indicated in Figures 5.2-7 and 5.2-8 accord- "1 `
ing	 to	 scheme	 number	 from	 Table	 5.2-IV.	 The	 two	 reduced	 load	 factor +_
turbines	 shown	 in	 Figure	 5.2-8	 are	 from 0.3	 to 0.9%	 higher	 in	 effi-

♦
L F.

ciency	 than	 those	 in	 Figure	 5.2-7.	 One	 turbine	 was	 selected	 for	 each -E
combination	 of	 rotor	 speed,	 load	 factor	 and	 AN2	ratio	 equel	 to	 I.S.
The	 AN 2 /AN2	502B	 ratio	 of	 1.3	 is	 equivalent	 to	 an	 average	 blade
root	 stress	 of	 413640	 kn/m2	(60	 ksi)	 which	 is	 20%	 higher	 than	 E3,

^E
'

using	 the	 E 3	 airfoil	 taper	 ratio	 for	 these	 VSCE	 study	 turbines.	 An
average	 blade	 root	 stress	 of	 413640	 kn/m 2	(60	 ksi)	 was	 selected	 as
being representative of	 the	 advanced	 turbine materials	 capability	 for s
the VSCE.

Further consideration	 of	 the	 four configurations	 shown	 in Figure 5.2-9
indicates	 that	 the	 HPT/LPT geometric	 envelopes	 are	 restricted	 by	 the >``
LPT exit	 dimensions. Scheme 4C is	 the least	 favorable design because it_
results in the steepest ID wall angle for the LPT. 	 Scheme 1C results in r'

- the	 least	 difficulty	 for	 the LPT design	 based	 on	 the	 fixed	 LPT	 exit
k) _

_ dimensions, but	 is	 significantly lower in efficiency (from 0.4 to 0.9X)
than	 the	 other	 three	 schemes.	 Another	 consideration	 is	 the	 effect	 of
rotor	 speed	 can high	 pressure	 compressor	 efficiency	 which	 favors	 both
Schemes	 1C	 and	 3C.	 From	 the	 16	 configurations	 summarized	 ir.	 Table
5.2-IV,	 Schemes	 1C,	 2C	 and	 3C	 represent	 the	 most	 promising	 HPT/LPT
designs, and were used to guide more detailed study of the HPT.

Further analysis of the effect of load factor variation at maximum
AN2 of 3.7 x 10 7 m2/min 2	(5.77 x 1010 in g /min t )	 (equiva-
lent to 1.3 x AN 2 of the VSCE-502B) was conducted. The data from this 	 :Y

study are indicated in Figure 5.2-10 and resulted in a load factor of
1.49 being the maximum which would ensure that blade suction surface
Mach numbers remained subsonic, thereby redacic- pressure losses, and
providing cooled efficiency levels capable of meeting the design goal.

F_
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Figure 5.2 -9	 High	 Pressure Turbine Configuration Study Max Blade
Root Stress = 60 Ksi

A study was then conducted to determine the optimum AN 2 and wheel
speed combination for the turbine. Several assumptions were made for-
this study.

f	 Fens t i on = 39 percent

Tip clearance = 0.051 cm (0.02 in.)

Trailing edge th i ckness - 0.137 cm (0.054 in.)
Number of airfoils set by aerodynamic loading

In
1

{

1	 ,
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	 Parametric Study Load Factor Variation at Maximum
AN2

Preliminary cooling flows were estimated and cooling losses were scaled
from E3 results. A series of turbines were evaluated over a range of
AN 2 when turbine velocity ratio, reaction, and work are held con-
stant. As indicated on Figure 5.2-11, turbine efficiency s improved at
any given spool speed as turbine annulus area is increased. Also, at
the	 maximum AN 2	of	 3.7	 x	 10 7 m2;'min 2	(5.77	 1010	 in2/
min t ), changes in wheel speed had minor impact on turbire efficiency,
thereby allowing compressor design considerations to influence the
design rotor speed selection of 11193 rpm.

Figure 5.2-12 shows turbine elevation, axial spacing anc T foil count for
the resultant HPT flowpath.
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Turbine Configuration

These parametric studies resulted in a single stage, unshrouded air
cooled turbine aerodynamic design with relatively high velocity ratio
and a large annulus area to reduce airfoil mach numbers without large
increases in turning. The aerodynamic parameters are summarized in the
following table at the supersonic cruise operating point.

No. of stages	 1
Mean velocity ratio 	 0.588
Mean load factor	 1.49
Expansion ratio	 2.29
Axial velocity/wheel speed 	 0.6
AN 2	3.74 x 107 m2/min 2 (5.8 x 1010

in2/mint)
Turbine exit Mach No.
Average Airfoil Inlet Mach No
Average airfoil exit Mach No.
Cooled Efficiency
Speed	 RPM
Average blade turning
Mean stage reaction

0.49
0.35

0.89
91.6
11193
910
0.39

As indicated a cooled adiabatic efficiency of 91.68 was predicted for this
turbine stage and is developed as follows. Efficiencies shown include cool-
ing, leakage, and pumping effects. Note that this level of efficiency does
not include the effects of precooling the turbine cooling air, described
later in this section.

Efficiency

Current Technology

	

	 91.0%
including AN 2 , velocity
ratio, pressure ratio
effects

Advanced technology

	

	 +0.68
profile 5 secondary loss
reductions

TOTAL	 91.68

Figure 5.2-13 illustrates the preliminary design configuration for the
HPT.

I
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Figure 5.2-13	 VSCE-515 High Pressure Turbine Cross Section

A tangential on-board injector (TOBI) for efficient transfer of blade
cooling air from the static to rotating reference is utilized to mini-
mize parasitic losses. The inlet guide vanes are also air cooled. Ini-
tial cooling scheme estimates use high compressor exit air in a dual
feed to the vane (OD and ID) utilizing approximately 4.0% of core
engine flow. This cooling configuration is illustrated in Figure 5.2-14
showing the foil cooling pats, leakage paths, and disc c r)oling provi-
sions in the high pressure turbine area. Table 5.2-V indicates the tur-
bine cooling bleed source and sink locations in addition to the cooling
flow rate. It should be noted that the levels of cooling flow shown in
Figure 5.2-14 and Table 5.2-V were preliminary in that they were recal-
culated to reflect the full potential of the advanced ' - 1-nology pro-
jections for the high pressure turbine, the single crystal or RSRDR
alloy, the thermal barrier coating and the precooled cooling air
resulted in the final cooling levels summarized in Table 4.1-III.
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I
TABLE 5.2-V

VSt'E-515 HIGH PRESSURE TURBINE
COOLING FLOW

Compre3sor Flow Bleed Release

Bleed Source I Nae Location

Location

7th Blade 0.20 Disk Rear Flow

I.D.	 Rear 0.06 Disk Front Flow

0.03 Blade Platform Leak

0.13 Disk Rear Dump

0.05 Disk Thru Flow

HPC O.D. 1.78 Vane O.D.	 Foil Cooling

Exit 0.79 Vane O.D. Platform Cool

(Burner) 0.06) Vane Front O.D. Leakage

0.06 1 	.18 Vane U.D. F/S Leakage

0.06 Vane Rear O.D.	 Leakage

0.09 OAS Front Cooling

0.13	 .22 OAS Rear Cooling

0.09 1 OAS Leakage

Compressor Flow Bleed Release
Bleed Source I was Location

Location

HPC	 I.D. 2.50 Blade Foil Cooling

Exit 0.79 Vane I.D.	 Platform Coolinq

(Burner) 0.0'. Vane I.D. Front Leakage

0.05 Vane I.D. FIS Leakage

0.11 Vane I.D. Rear Leakage

0.05 Blade Platform Leak

1.77 Vane Foil Cooling

0.20 Disk Front Flow

0.06 Disk Thru Flaw

HPC	 I.D. 0.35 Blade Rear Dump

Ex?t

A parametric study was then conducted to examine the potential benefits
of employi.ig an air/air heat exchanger to precool the turbine cooling
using fan air as a cooling medium. The heat exchanger core designs con-
sist of arc segments located in the annular space between the bypass
duct and the engine core over the compressor case. Cross flow heat
exchanger operation is assumed with the cold side flow from the bypass
duct flowing axially and the hot side compressor discharge bleed flow-
ing circumferentially. Trade studies, assessing the impact of reduced
turbine cooling flow, turbine efficiency gains and heat exchanger
weight were made for two systems. The first in which vane cooling air
only is precooled and the second in which the TOBI air (1st blade Cool-
inq) is precooled. For each case the engine cycle was optimized and
evaluated at supersonic conditions to take full advantage of the
resultant cooling flow and turbine efficiency changes. The most promis-
ing precooling system for each airfoil is listed in Table 5.2-VI. For
reference, the VSCE-515 base is also tabulated. The case numbers refer
to the different heat exchanger systems that were evaluated and are
summarized in Figures 5.2-15 and 5.2-16. Relative to the VSCE-515
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TABLE 5.2-VI

VSCE-515 PRECOOLED 'TURBINE COOLING AIR EVALUATION

HPT HPT
Reference Vane Blade

(No Precooli ng) Precooling Precooling

Case Nc.	 (Fig.	 1 &	 2) Base 2 4

Turbine Cooling Airflow
(6 Wae)

Total 12.1 10.1 11.1
HPT Vane 4.2 2.2 4.2
HPT Blade 2.5 2.5 1.5

Heat Exchanger Weight 0 27 Kg 7 Kg
0 (60 Lbs) (16	 Lbs) i.

HPT Efficiency	 (%) 91.58 92.05(+.47) 91.7 (+. 12)

CET at Takeoff 113000 111600 112200 .
(20660F) (20400F) (20520F)

Wae3 105.7 Kg/sec 106.1 Kg/sec 105.9 Kg/sec

(233.0	 lb/sec) (233.9	 lb/sec) (233.5	 lb/sec)

TSFC at Supersonic -- -.42 -.25
cruise	 ($)
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Figure 5.2-15	 Parametric	 Evaluation	 of Cooling-515	 High	 Pressure
Vane Cooling Air
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base,	 case no.	 2 for	 vane precooling has a 27.2 	 kg	 (60 lb)	 heat exchan-
ger	 weight,	 and	 provides	 a	 28	 Wae	 reduction	 in	 vane	 cooling,	 a	 0.408
increase	 in	 turbine	 efficiency,	 and	 allows	 a	 small	 increase	 in	 core
high-flowing	 at	 supersonic	 cruise	 to	 improve	 dry	 specific	 thrust,	 end
augmented	 TSFC	 by	 -0.408.	 This	 high-flowing	 rematch	 is	 indicated	 in
Table	 5.2-VI	 by	 the	 reduction	 in	 take-off	 Combustor	 Exit	 Temperature
(Cr—,r)	 and	 the	 0.41	 Kg/sec	 (+0.9	 lb./sec.)	 increase	 in	 core	 flow	 at
supersonic	 cruise.	 Figure	 5.2-15	 shows	 the	 matrix	 of	 four	 cases	 that
were evaluated for vane precooling.	 As	 the heat exchanger size	 (weight)
is	 increased,	 the TSFC improves,	 but	 at a diminishing	 rate.	 Case	 2	 was
selected	 as	 having	 most	 of	 the	 TSFC	 benefit	 for	 a	 small,	 27.2	 kg	 (60
lb.),	 heat exchanger	 weight penalty.	 Another	 18.1	 kg	 (40	 lbs.)	 is	 added
to	 allow	 for	 the	 ducting	 of	 the	 cold	 side	 of	 the	 precooler	 system,
making	 a	 total	 weight	 increase of	 45.4	 kg	 (100	 lbs).	 The	 plumbing	 and
ducting	 systems	 for	 the	 vane precooler	 are	 located outside	 the primary

'. stream	 flowpath	 in	 the	 region over	 the compressor	 case,	 thereby mini-
mizing the added compl.-xit-, r to the secnndary flow system.

The	 third	 column	 in	 Table	 5.2-VI summarizes	 the	 effects of precooling
° the blade.	 The blade precooler	 is in	 series with and upstream from the

tangential	 injector	 system which expands	 the blade cooling	 air	 through
convergent	 nozzles	 to	 match	 the rotational	 speed	 of	 the	 disk	 that

^• receives	 the cooling air.	 As	 the level of precooling	 is	 increased,	 and
the	 heat exchanger	 pressure	 loss increases,	 the effective work	 of	 this
tangential	 injector	 system on	 the turbine rotor	 decreases,	 and	 the net
effect	 on	 engine	 performance	 is the	 reverse	 slope	 shown	 in	 Figure

` 5.2-16.	 From	 the	 matrix	 shown	 in this	 figure,	 Case	 4	 was	 selected	 as
I
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the representative blade precooling system, and is sum,mariaed in Table
5.2-VI. Although the blade precooling system is a good trade in terms
of weight versus TSFC, it was rejected for the VSCE-515 mainly because 	 4

it excessively complicates the secondary flow system ir the region
the tangential injector and in the plumbing system that crosses the

primary flowpath going to and from the heat exchanger. More detailed
design studies are required to determine the overall merit versus
complexity of the blade precooling system. 	 }

Based on these results, the VSCE-515 performance was modified to
include the effects of precooling the first vane.

5.2.2 Low Spool Components

5.2.2.1 Fan

Design Considerations

The	 VSCE	 fan	 design	 emphasizes	 high	 efficiency	 at	 supersonic	 cruise,
compatibility	 with	 supersonic	 inlets	 (especially	 stability,	 flow
matching	 and	 choking	 for	 noise	 reduction),	 compatibility with	 the duct
burner,	 and low noise generation.	 The basic fan design provides	 a	 rela-
tively	 low	 exit	 Mach	 number	 to meet	 the	 fan duct burner	 compatibility
requirements.	 In	 addition	 to	 being	 compatible	 with	 inlet	 choking	 for
noise attenuation, 	 the	 fan	 tip	 speed	 design must be consistent	 with	 low
noise	 generation	 as	 well	 as	 stress	 limitations	 in	 the	 low	 pressure
turbine.	 Spacing	 between	 the	 stages	 must	 adhere	 to	 generating	 lnw	 aft
end	 noise.	 Jo	 meet	 nacelle	 envelope	 dimensions	 established	 by	 the	 SCR
airplane	 contractors	 for	 good	 installed	 performance,	 as	 well	 as	 to
provide	 space	 for	 packaging	 accessories	 around	 the	 fan	 case,	 the	 fan
must be designed to have low elevation and hence low hub/tip ratios.

Technology Projections and Design Features

A high diffusion, low elevation, 3 stage fan design was incorporated in
the VSCE-515 design. The fan has graduated spacing between the blades
and vanes of the three stages --- 502, 752, and 100% front to back
axial Rap at the outer diameter relative to the axial chord of the
upstream airfoil.

The flowpath was altered from the constant mean diameter design aced

for the parametric 502B definition by increasing the outside diameter
of the back end to maintain surge margin/loading capability consistent
with the technology time frame.

Advanced aerodynamic controlled diffusion airfoil contours are used to
provide high effic ; ency and minimize losses.

Variable camber inlet and exit guide vanes are employed to 7educe the
incidence range in the first and last stages and provide high effi-
ciency at subsonic cruise In addition to supersonic cruise.
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(j Low	 aspect	 ratio	 unshrouded	 b l ade	 airfoils	 fabricated	 from	 heron/

aluminum	 material	 were	 assumed	 for	 the	 first	 two	 stages.	 The	 higher
temperature	 environment	 required	 the	 3rd	 stage	 blades	 to	 he	 made	 from
titanium.	 Stators	 in	 all	 rows	 are	 fabricated	 from	 advanced	 aluminum
alloy.

An	 overspeed	 capability	 for	 trim	 and	 deterioration	 allowance	 consistent
with current	 production engine philosophy ha;, been provided.

Configuration Definition

An	 advanced	 3	 stage	 fan	 design	 was	 evolved	 for	 incorporation	 in	 the
VSCE-515	 definition	 and	 is	 illustrated	 in	 Fi gure	 5.2-17.	 The	 following
discusses	 the configuration definition of 	 this	 fan assembly.

The fan inlet case structure provides front support for the low rotor
system, a variable Area inlet to the fan and a mounting structure for
the engine. The basic structure consists of an inner ring structure
joined by 18 struts, with separate variable area trailing edges, to an

outer case section with an engine mounting ring.

r

Figure 5.2-17
	

Advanced Three Stage Fan Design Utilized in the
VSCE•-515 Definition
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Fan containment designated on the VSCE-515 configuration drawing
(Figure 5.2-17) by cross hatched areas external to the fan case is an
advanced composite material.

The	 material	 candidate	 selected	 for the	 case	 is	 an	 ae-,, anced	 aluminum
alloy.	 However,	 due	 to	 the	 critical nature of	 the mounting	 system,	 it
is	 recommended	 that	 the	 material selection	 be	 reviewed	 as	 more
information on the mounting system is defined.

The	 following	 data	 characterizes	 the	 fan	 section	 at	 the	 sea	 level
aerodynamic design point.

Design Pressure Ratio 3.3:1
Number of Stages 3
Design Corrected Airflow Size 340 kg/sec	 (750 lb/sec)
Design Corrected Specific Airflow 210 kg/sec-•m 2	(43 lb/sec-ft2)

'	 Design Corrected Rotational Speed	 (rpm) 6107
Design Corrected Tip Speed 48.8 m/sec	 (1600 ft/sec)
Exit Axial Mach No. 0.40
Inlet Hub/Tip Ratio 0.33
Exit Hub/Tip Ratio 0.64
Adiabatic Efficiency	 (8) 85.7
Surge Margin	 (%) 20

Rotor root chord lengths are set by the material limited aspect ratio,
number of blades are chosen to maintain reasonable distributions of
both gap-chord ratio and chord taper ratio. Stt.tors are all constant
chord designs with aspect ratio and number of vanes adjusted to give
reasonable gap-chord ratios while avoiding having rows with the same
number of blades or vanes for noise considerations. A summary of the
airfoil definition is provided in the following table.

Stage No.	 -	 1	 1	 2	 2	 3	 3
Airfoil	 IGV	 Rl	 Sl	 R2	 S2	 R3	 S3
Number of Airfoils	 18	 24	 40	 34	 42	 5C	 65
Root Aspect Ratio	 3.0	 2.8	 3.8	 2.8	 2.8	 3.0	 3.0
Root Gap/Chord	 0.44 0.40 0.42 0.44 0.44 0.50 0.49
Root Chord cm	 16.3 17.5 11.4	 14	 12.2 9.9	 8.4

(inches)	 (7.2) (6.91	 (4.5) (5.5) (4.8) 	 (3.9)	 (3.3)
Taper Ratio (Tip/Root Chord)	 1.0	 1.38 1.0	 1.20 1.0	 1.10 1.0
Variable Camber	 X	 -	 -	 -	 -	 -	 X

As noted variable camber stators .-eie incorporated in both the inlet
and exit guide vanes of the fan section. Estimated swings in the angle
of attack on the first rotor and exit vane rows from the aerodynamic
design point to the supersonic cruise condition are significant and for
the exit guide vane may be as much as lo o to 14 0 . Conventional air-
foils do not have enough range for low loss operation at both condi-
tions, consequently the exit guide vane features a variable leading
edgr, flap and the inlet guide vane a trailing edge flap to minimize
losses.

i
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The intermediate case is a titanium structure which carries the thrust

loads of the fan and high pressure compressor. The transition duct in
the engine core section is a moderate aerodynamic flowpath design with

approximately ten axially oriented structural struts crossing the flow-
path. The fan duct section of the intermediate case is also assumed to
have ten structural struts. The precise number of struts will be deter-
mined at some later detail design phase.

5.2.2.2 Low Pressure Turbine

r

Design Considerations

li Design considerations for the low pressure turbine for the VSCE-515 are
similar to the high pressure turbine in that maximum speed and tempera-
tures occur during the long time cruise portion of the mission. Hence,

durability goals for the low pressure turbine are similar to the high
pressure turbine, but are reviewed here for convenience.

Engine Cycle Conditions

VSCE-515
16154 m (53000 ft) 2.32 Mn Std + 8 0C (14.4 oF) Day

Nominal Value

n	 Compressor Discharge Temperature (Tt3) 	 6450C(11920F)
II	 Low turbine inlet temperature (Tt4.5) 	 1211oC(22120F)

Lc ,w turbine exit temperature (Tt5)	 8390C(15410F)
Max low rotor speed (N 1 )	 6616 RPM

Design Mission

4 hours
2 hours of hot mission time

Design Life

The low pressure turbine assembly was designed to cause less than 5%
unscheduled engine removals (UER) in 10,000 hours of operation.

Technology Projections & Design Features

Technology advancements in aerodynamics, cooling effectiveness, and
materials must be achieved for the VSCE low pressure turbine to attain
i)igh adiabatic efficiency while i eeting the durability requirements of
the mission profile outlined in Section 5.2.2. The following section

reviews these technology projections and design features.

An advanced two stage, air cooled, high speed design with high airfoil
loading capability was defined and incor porated in the VSCE-515. The
flowpath has a low profile to minimize the duct burner and engine
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diameters in order to provide good installation characteristics,
especially low boatt3il drag for the nozzle during subsonic cruise
operation.

Inside and outside wall angles of 10 degrees and 25 degrees respective-
ly for a combined angle of 35 degrees were selected to minimize weight
and lzngth and keep endwall losses to a minimum for the two stage
design.

Similar to the high pressure turbin- aerodynamic design, a 108 reduc-
tion in profile loss and a 158 reduction in endwall or secondary losses
relative to E 3 technology were applied to the low pressure turbine
design. These technology advances are based on improved airfoil and
endwall shapes as well as tailoring of spanwise velocity distributions.

Airfoils are contoured to minimize the pressure loss effect of rela-
tively high inlet Mach numbers.

The low pressure turbine assembly is close-coupled to the high pressure
turbine without a high temperature transition duct and without hot
struts. The same high strength single crystal or RSRDR alloys that were
applied to the high pressure turbine are used to provide increased
thermal fatigue strength for the low pressure turbine vanes and
increased creep strength for the blades. The vane alloy will provide a
920C (1750F) advantage and the blade alloy a 8 3o (150 0F) ad-
vantage over current engine alloys. Blade airfoils incorporate mini tip
shrouds to allow high aspect ratio airfoils.

Oxidation/corrosion protection for both airfoils and platforms is
projected to be 55.5 to 111 0C (100 to 200 0F) better than current
metallic coatings with the use of advanced metallic and ceramic overlay
type coatings.

Thermal barrier coatings will provide insulative protection of 111 to
167 oC (200-3000F) for both turbine airfoil and platform design. The
use of electron beam deposited coatings with smooth surface finish and
low th(,rmal conductivity offers both aerodynamic and heat transfer
advantages.

Airfoil cooling effectiveness is improved 10% relative to current
state-of-the-art convective cooling systems and will be accomplished
through development of advanced trip strips, pedestal optimization, or
wavy wall Criss cross trailing edge configurations.

Supercritical airfoil design is used for the turbine exit guide vane.
Elliptical leading edges are included in these vane designs to reduce
sensitivity to air angle mismatches that occur at subsonic cruise and
low power (cut-back) takeoff operation.
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H
Disks	 selected	 for	 the	 low	 pressure	 turbine	 consist	 of	 a	 nickel	 base

L; superalloy	 variable	 property	 material	 made	 from	 powder	 metallurgy

fabrication.	 Disk	 profiles,	 as	 in	 the	 high	 pressure	 turbine,	 utilize
i the dual properties of the material at the bore and rim.

Parametric Studies

L'
The	 initial	 step	 in	 defining	 the	 low	 pressure	 turbine	 was	 a	 parametric

t: configuration	 study	 to	 ensure	 compatibility	 of	 the	 high	 and	 low

V pressure	 turbine	 designs.	 This	 initial	 survey	 is	 reviewed	 in	 sec-,ion

5.2.	 A	 two	 stage	 low	 pressure	 turbine	 flowpath	 was	 composed	 for	 the

VSCE-515	 design	 spec,-1	 of	 6616	 rpm	 which	 was	 set	 by	 the	 maximum

allowable	 design	 str?ss	 of	 the	 second	 blade.	 For	 high	 efficiency,

1

subsonic	 airfoil	 exit	 Mach	 numbers	 were	 achieved	 by	 means	 of	 a

large	 annulus	 area.	 This	 resulted	 in	 a	 last	 blade	 AN 2	ofrelatively
3.84	 x	 10 7	m2 /min 2	(5.95	 x	 10 10	in2 /min 2 )	 which	 was	 accept-

N

able based	 on utilizing	 the advanced	 superalloy	 single crystal	 or RSRDR

materials	 for	 -improved	 creep	 strength	 for	 the	 blades.	 Both	 blade	 rows

required cooling.	 This	 two	 stage design has	 a cooled	 efficiencv of 922,

a	 load	 factor	 cf	 approximately	 2.0	 and	 an	 axial	 exit	 Mach	 number	 of
0.51.

L.;
For back-up considerations, a parametric study was conducted to eval-
uate the possibility of reducing the last blade AN 2 by adding a thirdL stage, thereby reducing the last blade stress and cooling requirements.

The resulting three stage machine reduced AN 2 by 117, including a 10%
reduction in mechanical low rotor speed, and was approximatel y 0.3 per-

cent more efficient relative to the two stage design. Although cooling

l	 airflow distribution was different for ti ,e three stage machine, all
blade airfoils required cooling, and total cooling requirements remain-

L

ed nearly equal to the two stage configuration.

The following table compares the cooling flow requirements for the two
,	 and three stage turbine configurations.

Required Cooling
Percent of Core Airflow

2	 stage 3 stage

2nd vane platform .2 .2

[l airfoil .E .6

2nd blade 1.32 .87

3rd vane uncooled .25

3rd blade 1.07 .83

C
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4th vane	 - - -	 uncooled

4th blade	 - - -	 .38

TOTAL	 3.19	 3.13

The	 fact	 that	 the cooling	 flow requirements could	 not be	 significantly
reduced,	 in	 conjunction	 with	 the	 lower	 wheel	 speed	 of	 the	 3	 stage {
design	 necessitating	 an	 additional	 fan	 stage	 to	 maintain	 fan	 surge +j
margin,	 resulted	 in	 the	 selection	 of	 the	 two	 stage	 configuration	 for
the	 VSCE-515	 low pressure	 turbine.	 Figure	 5.2-18	 shows	 the	 flow	 path
for	 this	 two	 stage	 configuration	 indicating	 elevations,	 axial	 spacing,
and airfoil count. Aspect	 ratio definition of the foils is as follow:;.

2nd vane	 2.28
7?
!!

2nd blade	 3.75 e

i 3rd vane	 4.29
3rd blade	 5.32 i

f
As	 discussed	 above,	 the	 low	 pressure	 turbine	 selected	 for	 this

^

preliminary	 design	 of	 the	 VSCE-515	 consists	 of	 2	 stages	 with	 tip t
shrouded,	 air	 cooled	 blades.	 Cooling	 of	 the	 2nd	 turbine	 vane	 and
turbine	 exit	 guide	 vanEs	 ,G	 also	 required.	 Aerodynamic	 design
characteristics	 for	 the	 selected	 low pressure	 turbine design are	 shown)
below for the supersonic cruise design point.

Cooled Efficiency	 928
Rotor speed	 (RPM)	 6616
Mean Load Factor	 2.06
dessure ratio	 3.25
AN 2 1st blade/2nd blade	 2.39 x 10 7/3.84 x 10 7 m2/min2 j

." hub/tip	 (last blade)	 0.48
C!absolute mach number-exit	 0.56 L

axial mach nu,tber-exit	 0.51
stage work distribution	 50$/50$
mean stage reaction	 0.45
average axial velocity/wheel speed 	 1.04

DAs	 indicated,	 an	 aerodynamic efficiency of 928	 has been predicted	 for I
this 2 stage machine and	 is derived from the current technology base as I
follows.

Cooled Efficiency

Current Tchnology	 90.78

Technology Projections based on 	 +1.38
{

o	 Airfoil. contour

a{`
o	 Profile loss reduction

i
o	 Er,dwall/secondary loss reduction

92.0% t
9
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Figure 5.2-18	 VSCE Low Pressure Turbine Flowpath

To complement this high efficiency design, the turbine exit guide vanes
which house the radial supports for both rotors are based on a super-
critical airfoil design. To provide high efficiency for off design
operation (subsonic cruise) and to avoid the complication of having
variable geometry in this hot region of the engine, elliptical leading
edges are included in this vane design for reducing sensitivity to air
angle mismatches. The following table illustrates the design parameters
for the turbine exit guide vane at supersonic cruise conditions.

16154 m (53000 ft. 2.32 Mn)

parameter

inlet swirl	 260
inlet mach number	 0.56
mach number exit	 0.5
pressure loss	 1.38

Performance estimates for the VSCE-515, in addition to the 1.38
pressure loss for these exit guide vane, also include 0.58 pressure
loss for the pressure instrumentation which ,could be included at this
station to monitor engine pressure ratio.

Figure 5.2-19 illustrates the preliminary design configuration for this
two stage turbine and shows the paths for airfoil and disk cooling and
leakage. Table 5.2-VII details the source and sink locations for the
various airfoil, leakage, and disk cooling paths.
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Figure 5.2-19	 VSCE-515 Low Pressure Turbine Cooling Flow Map

TABLE 5.2-VII

VSCE-515 LOW PRESSURE 'TURBINE

COOLING AND LEAKAGE SECONDARY FLAW SYSTEM

Compressor Flow Bleed Release
Bleed Source Location	 % Wae Location

7th Blade 0.06 3T Blade I.D.	 Front
I.D.	 Rear 0.10 2T Blade I.D. Front

1.32 2T Blade Foil Cooling
1.03 3T Blade Foil Cooling

5th Vane 0.09 2T OAS Front Cooling
O.D.	 Rear 0.13 2T OAS Rear Cooling

0.09 2T OAS Leakage
0.60 2T Vane O.D. Foil Cooling
0.10 2T Vane O.D. Platform Cooling
0.04 2T Vane O.D. F/S Leakage
0.07 2T Vane O.D. Rear Leakage
0.04 2T Vane O.D. Front Leak

LPC I.G. 0.25 TEGV & Tailcone Cooling
Exit

0.05 3T Blade Rear
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5.2.3	 Unique VSCE Components

The	 feasibility	 and	 overall	 competitiveness	 of	 the	 VSCE	 concept	 is1
dependent	 on	 the	 performance,	 environmental	 and	 operational	 characte-
ristics of two critical and unique components - the duct burner and the
coannular nozzle.	 The on-going VCE experimental programs are concentra-
ting	 on	 research	 and	 substantiation of both 	 components.	 Because	 these
programs	 are	 not	 complete	 at	 the	 time	 of	 this	 writing,	 the	 refined
VSCE-515	 includes	 interim definition of 	 these components.	 Furthermore,

(i not	 all	 of	 the	 advanced	 technology	 requirements	 for	 these	 components
have	 been	 established	 or	 projected,	 in	 particular	 in	 the	 durability
area	 and	 in	 the operational	 features	 that make	 these components 	 suit-

Q

able	 for	 application	 to	 commercial	 engines.	 Further	 analytical	 and
experimental	 work	 is	 required	 to	 refine	 these	 two	 components	 to	 thew
same degree of design definition as the other major VSCE-515 components.

5.2.3.1	 Duct Burner

Design Requirements

High	 = 99.5% to	 CO	 THCo	 chemical efficiency	 meet	 and	 emissions goals

o	 High thrust efficiency at supersonic cruise = 96%

o	 Maximum	 exit	 temperatures	 in	 the	 1094	 to	 1427 0C	 (2000	 to
2600 0F)	 range,	 depending	 on	 the	 noise	 goal	 and	 the	 requirements
for programmed throttle scheduling

o	 Low	 emissions	 (EPAPs)	 in	 the	 airport	 vicinity	 (summarized	 in
Section 4.2.4)

^}	 I

o	 Configuration	 must	 be	 compatible	 with	 commercial	 engine	 design,
operational and installation requirements

o	 Design Life - 10,000 hours total for hot parts

Design Definition

Figure	 5.2-20	 shows	 a cross-section of	 the VSCE-515	 duct burner.	 It	 is
` ( a	 simplified,	 two-stage version of	 the	 three-stage VORBIX	 design	 being

II tested	 in	 the	 VCE	 duct	 burner	 rig	 and	 testbed	 programs.	 By combining
the pilot with	 the	 low power	 stage,	 the overall	 complexity	 is	 reduced
by	 eliminating	 one	 complete	 fuel	 manifold	 assembly	 and	 associated
hardware	 and	 control	 elements.	 This	 improvement	 is	 based	 on	 the	 VCE.
test	 results	 that	 show	 there	 are	 no	 significant	 pressure	 pulses	 or
instabilities associated with the	 light-off and	 staging	 fuel/air	 ratios
that correspond to a two-stage design.	 As was	 the case	 for the original
three-stage	 design.,	 the	 low	 power	 stage	 is	 tailored	 for	 higl-	 thrust
efficiency	 at	 supersonic cruise	 (.010	 to .015	 fuel/air	 ratio,	 depending
on the selected engine size),	 and	 the high power	 stage	 ir	 Jesigned	 for

[1 maximum	 fuel/air	 ratios	 (.030	 to	 .040)	 for	 takeoff	 and	 supersonic
climb.	 As	 an	 indication	 of	 the	 variation	 in	 fuel/air	 ratio	 that	 the
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	 VSCE-515 Duct Burner Cross-Section - Simplified Two
Stage Configuration

duct burner operates at over the complete flight spectrum, Table
5.2-VIII lists the fuel/air ratios at specific altitudes, Mach numbers
and time for a full 7408 Km (4000 Nautical Mi.) mission. Table 5.2-VIII
is based on a relatively small engine size (.00095 airflow/TOGW ratio)
that does not meet noise constraints.

Figure 5.2-21 is a graph of thrust efficiency versus fuel/air ratio for
the refined two-stage duct burner. It shows the peak level of 968 at
ti;e low fuel/air ratios that correspond to supersonic cruise. At the

higher power levels where both stages are operating, the higher temper-
ature rise causes the thermal profiles to increase slightly, and the
thrust efficiency is reduced to 93.58 at the maximum fuel/air ratio of

.040.

The pressure loss characteristics for the two-stage duct hurner are
shown in Figure 5.2-22. Two curves are plotted, one for operation on a
reduced fan pressure ratio line which may provide a lower level of iet
noise*, the other for normal operation. The higher pressure loss for
the reduced operating line is caused by the increase in corrected air-

flow, and the increase in Mach number for this unique operating mode.
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TABLE 5.2-VIII

RANGE OF DUCT BURNER FUEL/AIR RATIOS OVER COMPLETE FLIGHT SPECTRUM

ALT (Min)
TIME INTO

{! Takeoff
FT.

(0)

M

0
MN
0

MISSION -
0

FUEL/AIR
.04

(35) 11 .3 1.0 .04
* (1500) 457 .4 1.73 .002

(3000) 914 .5 2.99 0
(20500) 6248 .8 12.12 0
(24000) 7315 .85 14.72 .006
(27500) 8382 .9 17.01 .0102

1 (27900) 8504 .95 18.32 .0142
(31000) 9449 1.00 19.61 .0224
(32500) 9906 1.10 20.96 _.0400

U (34500)	 10516 1.20
_

22.14 .0400
(36500) 11125 1.30 23.26 .0400

Climb (38000) 11582 1.40 24.29 .0400
(39500) 12040 1.50 25.27 _0400Q
(41500) 12649 1.60 26.34 .0370
(43000) 13106 1.70 27.40 .0320
(44500) 13564 1.80 28.46 .02921
(46500) 14173 1.90 29.66 .0268
(47700) 14539 2.00 30.80 .0240
(50000) 15240 2.10 32.25 .0228
(53000) 16154 2.30 35.97 .0160

l (53400) 16276 2.32 36.50 .0160
(55267) 16845 2.32 37.18 .0160

Cruise (55267) 16845 2.32 37.18 .0117
i (63370) 19315 2.32 185.11 .0120

Descent `	 (63370) 19315 2.32 185.11

1

 (1.500)

^a

457 0.23 207.9

l
.I

SUPTR60NIC CRUM
!R ^

U	 N6
2
W
V W
LL
LL

y	 B^

D:

M 	 9:

)t

001 00. 00400j

FUEL/AIR RATIO

Figure	 5.2-21 VSCE-515	 Duct Burner	 Thrust	 Efficiency Versus Fuel/
+ Air Ratio
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Figure 5.2-22.	 VSCE-515 Duct Burner	 P/P Versus Fuel/Air Ratio

The thrust efficiency levels of Figure 5.2-21 and the pressure losses
of Figure 5.2-22 are projected from the duct burner rig test and from
the testbed program which provide experimental data that is directly

applicable to the VSCE-515 duct burner. In contrast, the duct burner
definition for the parametric VSCE-502B was extrapolated from main
burner and augmentor systems that were designed for other engine appli-
cations and had different design requirements. 'Therefore, the VSCE-515
duct burner definition has a more substantial base, and completely

supersedes the VSCE-502B design, even though further work is required
to fully establish its performance, environmental and durability
characteristics.

* (Footnote) The VCE testbed acoustic test may provide data to deter-
mine the effects of fan operating line on jet nmive.

The VSCE-515 emissions estimates are summarized in section 4.2.4.
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Subsonic cruise

5.2.3.2 Coannular Nozzle/Reverser System

Design Requirements

0	 Nigh Performance at Critical Operatit.lt Points

- Supersonic Cruise, CF - 0.08

l^	

- Subsonic Cruise, CF - 0.94

- Takeoff, C F - 0.98

o	 Thrust reversing effectiveness - 402 of mnxi-+um dry takeoff thrust

o	 Variable Area Capability

BYPASS N07ZLE ARFA
ENGINE N07ZLE AREA

CM 2 (in2)
CM 2 (in2)

Takeoff-maximum
	

6252 ( 969) - +202
	

9 7 03 (1504) _ +2162
augmentation

Takeoff-cutback
	

6794 (1053) a +312
	

8155 (1264) +1652

Subsonic climb
	

5265 ( 816) _ + 1%
	

3071 ( 476) = minimum

6581 (1020) = +26% 3200 ( 496) = + 4%

Supersonic climb
	

5258 ( 815) = + 19
	

6045 ( 937) = +998

Supersonic cruise
	 52J0 ( 806) = miniirum

	
4077 ( 632) = +33%

Design Description

Figure 5.2-23 shows a cross-section of the VSCE-515 coaniular nozzle/
reverser system. This definition is significantly different from the
parametric VSCE-502B nozzle design because of two special requirements-
an increase in the area change requirement, and to improve subsonic
performance. The inc rease in area change is required for the engine
nozzle (the inner stream of the cc-.nnular nozzle) so that the cycle
matching flexibility can meet the WE operating conditions, especially
in providing the low noise inverted velocity profile during low power
flyout over the community. This increase in area change eliminated the
possibility of using a variable geometry splitter between the coannular
streams which was the type incurporated in the VSCE-50213. Instead a
translating plus, is used, shown in Figure 5.2-23. An improved flowpath
is required for the ejector stream to meet the performance level
required for subsonic cruise. The need for this improvement was made
evident from the results of initial model testing of ejector nozzles
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conducted in a separate NASA-P&WA program. Although the coannular noz-
zle configuration shown in Figure 5.2-23 is considered to be an im-
provement over the earlier VSCE-502B definition, more quantitative
design analysis, followed by wind-tunnel model tests will he regl:ired
to verify arid refine the coannular nozzle/ejector/reverser system
design. At the time of this w=sting, a nozzle design study is being
conducted under a separate NASA-h6WA nozzle design-analytical contract.
Results were not available for incorporation into the refined VSCE-515
definition.

TURBINE AXNAUST	 TRA143LATING PLUG FOR VARYING
CASE & VANE	 1%01019 18NAU1T AREA	 ENGINE
W1LDOONT

DUCT @UANE N	 w +-_	 = ' ^-

IRIS SYSTEM FOP VARYING
OUCT E[MAUST AREA

Figure 5.2-23	 VSCE-515 Coannular Nozzle/Reverser System Cross-
Section
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LIST OF ABBREVIATIONS

AN Z Annulus Area Times Revolutions Per Minute Squared

AST Advanced Supersonic Technology

BCA Best Cruise Altitude

BPP. Bypass Ratio

CET Combustor Exit Temperature

COD Corstant Outer Diameter

C Centerline

CMD Constant Mean Diameter

dB Decibel

Dma% maximum Diameter

CO Carbon Monoxide

Cx Velocity Axial Direction

EEE Energy Efficient Engine

ECCP Fxperimental Clean Combustor Program

EGA Extra Groand Attenuation

EGV Exit Guide Vane

EPAP Environmental Protection Agency Parameter

EPNdb Effective Perceived Noise - Decibels

EPNL Effective Perceived Noise Level

FAR Federal Aviation RegulationE

FN Net Thrust

h Enthalpy

HP Horsepower
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I

HPC High-Pressure Compressor

HPT High-Pressure Turbine

IFE Inverted Flow Engine

IGV Inlet Guide Vane

ITS Inverse Throttle Schedule

IVP Inverted Velocity Profile

LBf Pounds Force

LBn Pounds Mass

LBE Low Bypass Engine

LPT Low-Pressure Turbine

M Meters

NASA National Aeronautics and Space Administration

NOx Oxides of Nitrogen

ODS Oxide Dispersion Strengthened

OPR Overall Pressure Ratio

PR Pressure Ratio

RPM Revolutions Per Minute

RSRDR Rapid Solidification Rate Directional Recrystallization

SCAR Supersonic Cruise Airplane Research

TCA Turbine Cooling Air

TEGV Turbine Exit Guide Vane

THC Total Hydrocarbons

TSFC Thrust Specific Fuel Consumption

TOBI Tangential On-Board Injector
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VCE-HTV	 Variable Cycle Engine-High Temperature Validation

U	 Wheel Speed

UER	 Unscheduled Engine Removals

VREL	 Relative Velocity

VSCE	 Variable Stream Control Engine

V	 Velocity

VC'E	 Variable Cycle Engine

VCEE	 Variable Cycle Experimental Engine

WAE	 Engine Core Airflow

W 	 Engine Airflow & Fuel Flow
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