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I. INTRODUCTION

The application of refractory ceramic materials, in particular Si3N 4 and

SiC, for use in advanced gas turbine engines has recently been an extremely

active area of interest. Both Si3N _ and SiC have exhibited excellent proper-

ties in the areas of strength, thermal shock, creep resistance, and oxidation

resistance. However, the use of these materials in certain critical gas tur-

bine applications may be severely limited due to their very low fracture

toughness (i.e., resistance to impact damage). Thus, it is imperative to

improve the toughness of these materials without sacrificing or compromising

their good mechanical and thermal properties.

Various research programs having the objective of improving the impact re-

sistance of Si3N 4 and SiC have been completed during the last few years. These

programs were based on three general approaches:

(i) Improving the impact resistance by fiber reinforcement (Refs. 1-3).

(2) Improving the strength and impact resistance by compressive surface

layers (Refs. 4-6, i0).

(3) Improving the impact resistance by energy absorbing surface layers

(Refs. 1,7-10).

The first of these approaches was previously studied at United Technologies

Research Center with excellent results for improving the impact resistance of

hot-pressed Si3N4 through the use of tantalum wire reinforcement. The second

and, in particular, the third of these approaches was studied in a recent NASA

contract NAS3-19731 (Ref. i0), the highlights of which are given in the follow-

ing section of this report. From the results of this previous work, it was

decided to concentrate efforts in the current contract on improving the impact

resistance of hot-pressed Si3N % through the use of energy absorbing surface

layers of porous reaction sintered Si3N 4.

The objective of this program is to improve the toughness of Si3N 4 by the

development and control of the process of formation of an energy absorbing Si3N _

surface layer on a dense Si3N 4 substrate by in-place nitridation of silicon

powder. The program is divided into two tasks :

Task I - Development of Reaction Sintered Si3N 4 (RSSN) Energy

Absorbing Surface Layers on Hot-Pressed Si3N _

Task II - Effect of Thermal Exposures on R.S. Si3N _ - H.P. Si3N _

Combinations With and Without Overlayers of Chemically

Vapor-Deposited (CVD) Si3N _.
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II. BACKGROUND

The use of energy absorbingsurfacelayers of porous Si3N4 on dense hot-
pressedSisN4 in order to improveimpact resistancewas first studiedunder the
recentlycompletedcontractNAS3-19731(Ref.i0). It was anticipatedthat sur-
face layers of this type could be expected to absorbenergyupon impact due to
crushingand crack diversion.

Charpy and ballisticimpact specimensof R.S. Si3N4 layers on NC-132 SisN4
were fabricated in situ by nitriding a layer of silicon metal powder that had

been appliedusing a water or toluenebased slurry. The types of R.S. SisN4
surface layers investigated varied from relatively dense (70%), fine-grained

R.S. Si3N4 made from -325 mesh Si powder to quite porous (55% dense),large
particle-sizedlayersmade from -100, +200 mesh Si powder.

The resultsof Charpy impact tests at RT and 1370°Cshowed that the nitrided

-200 Si and -325 Si layers on NC-132 SisN 4 did not increase the Charpy impact

resistance significantly over Si3N 4 control values. In contrast to the nitrided

-325 Si and -200 Si layers, however, the higher porosity large grain size ni-

trided -i00, +200 Si layers on NC-132 SisN 4 exhibited Charpy impact energies •

2½ times NC-132 SisN 4 controls at RT and slightly over twice that recorded for

Si3N _ controls at 1370°C. From the instrumented Charpy impact load vs time

curve it was evident that crushing of the R.S. Si3N 4 layer occurred during impact.

Ballistic impact tests at RT and 1370°C of R.S. Si3N4 layers on NC-132

Si3N 4 resulted in a fivefold to sixfold improvement in impact energy before o

substrate failure for nitrided -i00, +200 Si and -200 Si layers but only a two

to threefold improvement for nitrided -325 Si layers over NC-132 SisN4 control

values. To realize optimum energy absorption during a ballistic impact event,

it was thought that a combination of porosity and fairly large particle size was

necessary to allow crushing of the R.S. SisN 4 layer but at the same time, be

somewhat resistant to penetration by the projectile.

In order to evaluate the effect of the R.S. SisN 4 energy absorbing surface

layers on the strength of the NC-132 SisN 4 when the interface between the R.S.

Si3N4 and NC-132 Si3N4 is subjected to tensile (bending) stresses, a series of

Charpy impact tests were performed with the samples impacted on the side oppo-

site the R.S. SisN4 layer. The results of these tests showed that well bonded

R.S. Si3N% layers degraded the Charpy impact strength and bend strength of the

NC-132 SisN 4 by up to 50%. In general, the large particle and pore size ni-
trided -100, +200 Si layers degraded the strength more than the smaller particle

and pore size nitrided -325 Si layers. The possibility that the degradation is

due to th4 large pores in the R.S. Si3N 4 layer near the interface acting as

stress concentrating flaws suggested that minimizing pore size at the R.S. SisN4/

H.P. SisN_ interface by using a graded density R.S. Si3N 4 layer could possibly

help alleviate this problem.



Thermal cycling of R.S. Si3N 4 surface layers on NC-132 Si3N _ between 200°C
and 1370°C in air for up to 50 cycles resulted in a large amount of silica for-

mation in the high surface area nitrided -325 Si layers that caused debonding

at the R.S. Si3N4/H.P. Si3N 4 interface possibly due to thermal expansion mismatch

between the silica and the NC-132 Si3N 4. The larger particle size nltrided

-i00, +200 Si layers did not form sufficient silica to cause debonding during

thermal cycling with the result that the ballistic impact resistance of these

cycled layers was the same as noncycled layers at RT and mugh higher at 1370°C.

The increase at elevated temperature may be due to plastic deformation of the

silica during the high temperature ballistic impact event. For a practical R.S.

SI3N 4 energy absorbing surface layer that must operate in a gas turbine environ-

ment, it may be necessary to have an outer layer of dense, impermeable CVD Si3N 4

covering the R.S. Si3N 4 surface to add oxidation and possibly erosion resistance.
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III. SUMMARY

The development of Si3N % of improved toughness was accomplished by the in-

vestigation of reaction slntered Si3N % (RSSN) energy absorbing surface layers

on hot-pressed Si3N 4 (HPSN) by in-place nitridation of silicon powder. Two

types of HPSN substrates were used, NC-132 SI3N k with MgO additive and NCX-34

Si3N _ with Y203 additive. Three different particle size Si powders were

evaluated: -100, +200 mesh, -200 mesh, and -325 mesh. The toughness increase

due to the presence of the i mm thick RSSN layers was measured through the use

of a ballistic impact test at RT and 1370°C. The effect of the RSSN layer on

the strength of the HPSN substrate was measured at RT through the use of a

4-pt bend test with the RSSN layer on the tensile side of the sample.

During characterization of the NCX-34 Si3N _ it was found that this partic-
ular lot of material undergoes excessive oxidation and resultant loss in strength

o
after 48 hrs at 700-1000 C in air even though NCX-34 material studied previously

was very good in low temperature oxidation. It was also found that this lot of

material contained 7.15 w/o Y (9.1 w/o Y203 ) which is higher than the value of

8.0 w/o Y203 that according to Norton Co. should be present in NCX-34 Si3N k.

Furthermore, the Y203 content varied considerably throughout the billet. It

was noted, however, that if this material was subjected to a standard nitriding

cycle to 1375°C for 60 hrs in N2, on subsequent oxidation for 190 hrs at 930°C

no weight gain occurred and the strength of the material actually increased.

However, at lower temperatures (730°C), disastrous oxidation still occurs but

at a much slower rate. Due to the oxidation problems of NCX-34 Si3N 4 that were

encountered during this and other programs, the Norton Co. withdrew this material

from the commercial market. The problem of NCX-34 Si3N _ further emphasizes the

fact that the Si3Nk-Y203-SiO 2 system is not fully understood and that continued

:investigation is necessary to identify the processing parameters and phase re-

lationships in the system that control most of the thermal and mechanical

properties.

The RT 4-pt bend strength and the RT and 1370°C ballistic impact strength

of NCX-34 and NC-132 Si3N 4 control samples was determined. The RT 4-pt bend

strength of 848 MPa (123 ksi) for the NCX-34 was 25% higher than the NC-132

Si3N k. The RT ballistic impact resistance for the NCX-34 of 2.8 joules (2.1
ft-lbs) was almost 50% higher than the NC-132 Si3N4, while the 1370UC ballistic

impact resistance of both types of Si3N 4 was approximately the same.

In order to evaluate the effect of energy absorbing surface layers of RSSN

on the strength of the hot-pressed Si3N k substrate, a series of nitriding runs

in pure N2 under different nitriding conditions was done, using both -325 mesh

and -i00, +200 mesh Si powder layers on NC-132 SI3N _ substrates. These tests

showed that nitriding conditions that resulted in substantial conversion of Si to
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Si3N 4 (13700C, 24 hrs) resulted in severe strength degradation (-325 MPa) of the

NC-132 Si3N 4 when the layered side was tested in tenslon_ while nltriding con-

ditions of 1250°C, 24 hrs that resulted in only slight conversion of Si to Si3N 4

(-10%) did not lead to strength degradation of the Si3N 4 substrate. Examination

of fracture surfaces revealed that the fracture origin of degraded samples

appeared to be small voids within the RSSN layer lying very close to the
RSSN/HPSNinterface.

RT 4-pt bend tests of NCX-34 Si3N4, nitrided to 1375°C for 60 hrs in N2,

with well bonded RSSN surface layers indicated that, as previously found for

NC-132 Si3N4, the nitriding of the Si powder layers introduces strength limiting

flaws at the HPSN/RSSN interface that result in a 40-50% drop in bend strength

when the nitrided layer is tested in tension. Nitriding tests with Si powder

lightly sprinkled on the NCX-34 tensile surfaces showed that the fracture origin

of degraded samples was always associated with a nitrided particle of Si or a

depression that appeared to be at one time associated with a nitrided Si

particle.

However, results of 4-pt bend tests on NC-132 and NCX-34 Si3N 4 with RSSN

layers of various purity nitrlded in a N2/H 2 mixture indicate that a minimal

amount of substrate degradation occurs for well bonded layers of 98% purity

-325 Si and -200 Si on both NCX-34 and NC-132 SigN 4. Nitriding in N2/H 2 mix-
tures (96% N2/4% H2) also led to a much faster rate of conversion of the Si to

Si3N 4 and an e to B-Si3N 4 ratio of -2:1, whereas nitriding in 100% N2 gave an

RSSN product of .70% B, 30% e. The much greater amount of _-Si3N_, which forms

primarily as fine whisker-like crystals interconnecting the B-Si3N 4 grains, may

be responsible for the lesser amount of substrate degradation observed for the

samples nitrided in N2/H 2 mixtures, due to the _-Si3N 4 whisker mat not allowing

the B-Si3N 4 grains to bond directly to each other or to the HPSN substrate.

Thus, no large stress-concentrating flaws are bonded directly to the HPSN sur-

face and cracks initiating in the RSSN layer cannot propagate directly through

B-Si3N 4 grains and into the HPSN substrate.

Ballistic impact tests at RT and 1370°C on NCX-34 Si3N 4 substrates with

RSSN layers fabricated from both -325 and -i00, +200 Si powder indicated that

fully nitrlded RSSN layers (i.e., no residual Si) result in only modest (50-

100%) improvement in impact resistance. To obtain optimum impact resistance

of over ii joules (8 ft-lbs), as previously found for -i00, +200 Si RSSN layers

on NC-132 Si3N_, a certain amount of residual silicon within the RSSN particles

appears to be necessary. However, enough Si3N 4 must be formed to strongly bond

the particles to one another. For -i00, +200 Si RSSN layers the optimum amount

of residual Si for excellent ballistic impact resistance was found to be in the

range of 15-25 vol %.
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In order to obtain an RSSN energy absorbing layer with a smoother surface

finish, -325 and -200 mesh Si powder was used to form RSSN layers containing

residual Si. From nitriding experiments conducted first in 100% N2 and later

in 96% N2/4% H2 on both NC-132 and NCX-34 SisN 4 substrates, it was found that

a residual Si content of >20 vol % was necessary for optimum ballistic impact

resistance. The highest RT ballistic impact resistance ever recorded during

the course of this program of 14.5 ft-lbs (19.7 Joules) was obtained for -325

Si RSSN layers on NCX-34 SisN 4 substrates that were nitrided in a 96% N2/4% H2

mixture according to a schedule that resulted in ~20 vol % residual Si in the

RSSN layer. The program goal of 7 ft-lbs (9.5 joules) at RT and 1370°C
was met and exceeded for ballistic impact samples of -325 and -200 Si layers,

nitrided in N2/H 2 to yield 20 vol % residual Si, on either NC-132 or NCX-34

Si3N _ substrates. The residual Si is apparently absorbing a great deal of energy
as it is crushed and fractured by the ballistic projectile.

Task II of this program consisted of evaluating the effect of thermal

cycling on the integrity of the RSSN/HPSN combinations, in particular the effect

of silica formation within the RSSN layer on its ability to absorb energy dur-

ing ballistic impact. To minimize silica formation, an oxidation barrier of

CVD SisN 4 on top of the RSSN layer was also to be evaluated. In addition, the

hot gas erosion characteristics of the RSSN layers at 1200 and 1370°C in a

Mach 0.8 gas stream were evaluated, both with and without a thin CVD SisN 4

overlayer.

It was found that thermal cycling 75 times between 150-200°C to either

1200 or 1370°C does not adversely affect the ballistic impact resistance of

NC-132 or NCX-34 Si3N 4 control samples, tested at RT and 1370°C. Ballistic

samples of NC-132 or NCX-34 Si3N 4 with -325 or -200 RSSN layers containing -25

vol % residual Si, when cycled 75 times between 150 and 1200°C or 200 and 1370°C,

actually register an increase in ballistic impact resistance when tested,

especially at 1370°C. The increase at 1370°C is undoubtedly due to the large

amount of SiO 2 formed within the RSSN layers during cycling that is deforming

plastically during impact. Even though large amounts of cristobalite (SiO2)
were formed within the RSSN layer during thermal cycling, it did not affect the

bonding between the RSSN layer and the HPSN substrate. Also, the cristobalite

formed mainly at the expense of the _-SisN 4 within the RSSN layer and thus did
not reduce the residual Si content below the critical 20 vol % level.

Attempts to form a protective CVD SisN 4 overlayer on RSSN layers containing

~25 vol % Si were unsuccessful due to the interference of the Si with the depo-

sition process. CVD Si3N4 could only be deposited at temperatures of 1400°C

or greater and at these temperatures pinholes were formed in the layer over

residual Si particles. Attempts to deposit CVD Si3N 4 at lower temperatures,

where the Si vapor pressure would not be as high, were unsuccessful.



However, CVD SiC, which can be deposited at temperatures of ll00-1150°C,
was successfully deposited on-200 RSSN layers. CVD SiC overlayers thicker
than ~50_ (2 mils) tended to crack severely on cooling from deposition due to

thermal expansion mismatch, and on subsequent thermal cycling tended to spall,
offering no protection from oxidation. CVD SiC overlayers of 12-25_ (0.5-1.0

mils) in thickness were deposited crack-free and, on thermal cycling, did offer

substantial oxidation protection and no decrease in ballistic impact properties.
While some in=ernal oxidation of the RSSN layer still occurred, it is felt
that an optimized CVD SiC overlayer could be extremely oxidation resistant.

Mach 0.8, 5 hr, hot gas erosion testing at sample temperatures of 1200°C

and 1370°C were run on NC-132 and NCX-34 Si3N4 controls and on samples with -200

and -325 RSSN layers (25 vol % Si), both with and without CVD Si3N 4 overlayers.

For the SI3N 4 controls, no surface recession or weight change was observed at

1200°C, while at 1370°C a very slight surface recession (2.5_) and weight gain

(+0.i mg) was observed for NC-132 Si3N 4 and a rather large surface recession

(25_) and weight loss (-3.5 rag) for NCX-34 Si3N 4. For the -325 and-200 RSSN

layers, no surface recession was detected at 1200°C but there was a substantial

weight gain (-20 rag) due to the formation of silica on and within the RSSN

layers. Samples with CVD Si3N 4 overlayers also exhibited ~20 mg weight gains,

indicating that the CVD layer was not protecting the RSSN from oxidation, al-

though no oxidation product was detected on the CVD Si3N 4 surface. At 1370°C,

the -325 and -200 RSSN layers did exhibit a small surface recession (-8B) and

a substantial weight gain (-12 rag). The samples with CVD Si3N 4 overlayers

again gained substantial weight but did not exhibit any measurable surface

recession, indicating that the CVD Si3N 4 layer is very erosion resistant even

though it is not completely continuous over the RSSN surface.

Hot gas erosion tests of samples of NCX-34 and NC-132 Si3N4 with -200 RSSN
layers (25 vol % Si) and overlayers of CVD SiC of 36_ (1.5 rail)thickness
showed that these overlayers were very resistant to surface recession and rela-

tively good in oxidation protection. Compared to the CVD Si3N4, samples with
CVD SiC overlayers gained less than 25% of the weight. Again, it is felt that

an optimizedCVD SiC overlayercouldofferexcellentoxidationanderosionpro-
tectionfor RSSN energy absorbing surface layers on hot-pressed Si3N4 substrates.



IV. TECHNICAL PROGRESS SUMMARY

4.1 Fabrication and Characterization of Specimens

4.1.1 Fabrication and Characterization of Hot-Pressed Si3N4 Substrate

Material

The silicon nitride samples used in this investigation consist of Norton Co.

hot-pressed Si3N4, both NC-132 with MgO additive and NCX-34 with Y208 additive.

Bend specimens of dimensions 4.44 x 0.508 x 0.254 cm (1.75 x 0.200 x 0.i00 in.)

and ballistic impact specimens of dimensions 3.81 x 2.54 x 0.64 cm (1.50 x 1.00 x

0.25 in.) of both types were machined from 15.3 x 15.3 x 2.54 cm ( 6 x 6 x i in.)

billets. The wide (0.508 x 4.44 cm) face of the bend specimen and the narrow

(0.64 x 3.81 cm) face of the ballistic impact specimen were perpendicular to

the billet hot press direction.

Randomly selected specimens from each billet were characterized as to den-

sity, grain size, impurity content, and surface defects. The grain size and

morphology was determined by replication techniques using the electron micro-

scope. Impurity content was determined by spectrochemical analysis. Zyglo dye

penetrant inspection was used to detect surface cracks or pits.

The impurity content of the NC-132 and NCX-34 Si3N 4 materials, along with

their densities, is given in Table I. The major impurities in NC-132 Si3N 4 are

AI, Fe, Mg, and W. The Mg is added deliberately as MgO for densification pur-

poses while the W is present as WSi2, resulting from WC pickup during milling

of the powder prior to hot pressing. The major impurities in NCX-34 Si3N4 are

Fe, W, and Y. In this material, the Y is added deliberately as Y203 for densi-

fication purposes. It is interesting to note that 7.15 w/o Y corresponds to

9.1% Y203, more than the 8.0 w/o Y203 that, according to Norton Co., is supposed
to be present in the NCX-34 material. Subsequent chemical analysis of billet

#F338355, which was machined into 4-pt bend samples, indicated that the yttrium

content varied throughout the billet with the Y203 content ranging from 7.6 to

9.4%. The grain size and morphology of the NCX-34 and NC-132 Si3N 4 can be seen

from Fig. 1 and Table II. While the Si3N4 grain size and morphology is similar

for the two materials, their etching characteristics (hot HF) are quite dif-

ferent, which is indicative of different grain boundary phases. The NC-132

Si3N 4 etched very readily due to the magnesium silicate glassy phase that is

present at grain boundaries and triple points. The NCX-34 material was very

difficult to etch with very little etching occurring except for rather large

areas of what appears to be a second crystalline phase, probably "H" phase

(YIoSi6024N2). "H" phase was detected by X-ray analysis as well, and appears
to be present in the amount of approximately 9 vol %.



All of the NCX-34 Si3N 4 samples cut from the three billets ordered from
the Norton Co. exhibited a macrostructure that was visible to the naked eye.

This macrostructure consisted of a lighter colored skeletal structure inter-

spersed with dark regions. On immersion in Zyglo dye penetrant with subsequent

examination under U.V. light, the light areas pick up the penetrant while the

dark areas do not (Fig. 2). Although the NCX-34 Si3N 4 samples appear to con-

tain either porosity or very small cracks, 4-pt bend tests conducted at RT

gave a strength of 848 MPa (123 ksi), which is 25% higher than that recorded

for NC-132 Si3N 4. Xhus, the defects in NCX-34 Si3N 4 that are visible from

Zyglo dye penetrant inspection, do not appear to compromise the strength prop-

erties of the material, at least at RT.

Included in the characterization study of NCX-34 Si3N 4 were oxidation

studies in the 700-i000°C range, since some Si3N4-Y203 materials have been

known to exhibit poor oxidation properties in this temperature range. Previous

studies at UTRC and Norton Co. indicated that the NCX-34 Si3N 4 material did not

exhibit oxidation problems in this temperature range. However, tests on the

recently delivered material, in particular the bend specimens cut from billet

#F338355 which contained 7.15 w/o Y, showed that after oxidation at 930°C for

i00 hrs in air, the samples gained over i mg/cm 2 and suffered a reduction in

strength from 848 MPa (123 ksl) to 675 MPa (98 ksi). The lighter colored areas

started to turn very white after a few hours while some, but not all, of the

darker areas remained quite dark, as shown in Fig. 3. After 150 hrs at 930°C

a few samples became degraded to the point of exhibiting essentially no strength.

Aging the NCX-34 SI3N 4 material at 730°C in air produced even more pronounced

degradation, with samples literally falling apart after only 48 hrs, as shown

in Fig. 4.

An interesting sidelight to the oxidation characteristics of the NCX-34

Si3N 4 is that samples that had been put through a nitriding cycle to 1375°C in

N 2 for 60 hrs, while exhibiting a loss in strength due to this cycle from 848

MPa (123 ksi) to 725 MPa (105 ksi), did not gain any measurable weight when sub-

sequently oxidized for 190 hrs at 930°C and actually exhibited an increase in

strength to 930 MPa (135 ksi). Gazza, et al (Ref. ii) noted similar behavior

for Si3N 4 + 13 w/o Y203 samples nitrided in N2/H 2 mixtures and subsequently
oxidized at 1000°C. The mechanism responsible for this "healing" effect for

oxidation prone Si3N4-Y203 materials is unknown at this time; however, it does

not prevent disastrous oxidation from occurring at lower temperatures. A series

of nitridlng runs were conducted using both pure N2 and 96% N2/4% H_ mixtures

for periods up to 65 hrs at 1375°C with subsequent oxidation at 730 C. While

the NCX-34 SisN 4 samples put through the nitriding cycles did not degrade as

rapidly as "as-received" samples during the subsequent 730°C oxidation treat-

ment, they eventually did degrade. It took approximately 48 hrs at 730°C for

visual cracks to form in the nitrided samples compared to less than i0 hrs in

the as-received NCX-34 Si3N 4.



Although the low temperature oxidation problems of the NCX-34 Si3N 4 pro-
cured for this program were extremely serious, and led the Norton Co. to remove

the material from the commercial market, this phenomonon could not be studied

further under the scope of the present contract. However, it was decided to

use the material along with NC-132 Si3N 4 as a substrate for the evaluation of

energy absorbing surface layers of reaction sintered Si3N 4 (RSSN). The reason

for this decision was that all testing under the program was to be done either

at RT or 1370°C, and the material was found to exhibit excellent strength

properties at these temperatures. However, the problem of NCX-34 SiaN 4 further

emphasizes the fact that the Si3N4-Y203-SiO 2 system is not fully understood and

that continued investigation is necessary to identify the processing parameters

and phase relationships in the system that control most of the thermal and

mechanical properties.

4.1.2 Fabrication and Characterization of RSSN/HPSN Combinations

The RSSN energy absorbing surface layers were fabricated in situ on

ballistic impact and 4-pt bend samples of hot-pressed Si3N 4 by nitriding a

layer of Si powder applied to the sample from a liquid slurry. The Si powders

used were purchased from Cerac, Inc. and consisted of two -325 mesh powders of

98% and 99.6% purities, a -200 mesh powder of 98.5% purity, and a-100, +200

mesh powder of 98.5% purity. The chemical analysis of the four powders used

is given in Table III. The major impurities in the 98% and 98.5% pure powders

consist of Fe, A1, Mn, and Ca. The major impurities in the -325 (99.6%) powder

are AI and Pb. The surface area of the finer powders was also determined by

the BET method. The results of this analysis are given in Table IV and show

that the surface area of the -325 (98%) powder is greater than the -200 (98.5%)

as would be expected, and that the -325 (99.6%) is substantially greater than

the lesser purity -325 mesh powder, which was not expected.

The procedure for fabricating the RSSN layers on the HPSN ballistic and 4-

pt bend samples was as follows. The -325 or -200 Si powder was mixed with enough

distilled water to form a thick slurry. The -i00, +200 mesh powder would not form

a slurry with water that, when dried, couldbe handled without damaging the Si

layer, so it was mixed with toluene + 5 wt % polystyrene to form a slurry that

had good green strength when dried. The Si powder slurries were then applied

to the HPSN samples to form a layer ~1.5 mm thick when dry. The samples were

then loaded into Mo boats with loose fitting covers_ which were then put into

a mullite tube furnace with controlled atmosphere for nitriding. After nitriding,

the RSSN layers were surface ground to a uniform thickness of 1 mm. Figure 5

shows three steps in forming an RSSN layer of -200 mesh Si powder on an NC-132
d

Si3N 4 ballistic impact sample, starting from the dried Si powder slurry, through

the nitriding step, and then the surface grinding. With a more precise method

of applying the powder slurry, such as injection molding, the final grinding

step would not be necessary.
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Densitymeasurementstaken on RSSN surfacelayershave shown that, using
the slurrymethod of fabrication,a fullynitrided-100, +200 Si layer would
containapproximately45% porosity,a-200 Si layer would contain -30-35%
porosity,while the -325 Si layerswould contain-25-30%porosity. Occasionally,
large bubbles in the Si slurrywould persistin the RSSN layer, creatingvery
large pores. Sampleswith this type of porositynear the impact point would be
rejectedfroe:the testingprogram. Any samples that exhibitedpoor bonding or
crackingbetween the RSSN layer and the HPSN substratewould also be rejected
from further testing. This problemwas only encounteredwith the -325 Si
(99.6%)RSSN layers,and even then only infrequently. Representativesamples
from each nitridlngrun were subjectedto X-ray diffractionanalysisin order

to determinethe relativeamountsof _-Si3N4,B-Si3N4,and free Si in the KSSN
layer.

4.2 Ballistic Impact Testing

The ballistic impact testing procedure consisted of firing 4.4 mm diameter

hardened chrome-steel pellets, weighing 0.34 gms, from a modified Crossman air

pistol or rifle (for higher velocities) at the center of the ballistic impact

sample protruding from the holding arrangement. The plates of Si3N 4 were held

at one end in a vise arrangement so that a 2.54 x 2.54 cm (i.0 x 1.0 in.) square

0.64 cm (0.25 in.) thick was available for impact. The pistol and rifle were

pressurized by helium, which could be adjusted so that velocities of 99 to 230

m/sec (325 to 755 ft/sec) could be obtained for the pistol and 152 to 343 m/sec

(500 to 1125 ft/sec) could be obtained for the rifle. These velocities were

measured at a distance of 30 cm (12 in.) from the end of the gun barrel and it was

at this distance that the samples were always positioned. The kinetic energy of

the steel pellets available for impact could thus be varied from a low of 1.6

joules (1.2 ft-lbs) to a high of 19.7 joules (14.5 ft-lbs).

Ballistic impact tests were performed at RT and 1370°C. The 1370°C tests

were done by heating the reverse side of the ballistic impact sample with ano

oxyacetelene torch until the front side registered a temperature of ~1370 C as

read by an optical pyrometer. Control samples of hot-pressed Si3N 4 (i.e., those

without a RSSN layer) were tested by setting the helium pressure at a value

that corresponded to 145 m/sec pellet velocity and then impacting the sample.

If the sample did not fracture, the helium pressure was raised in 50 psi incre-

ments until failure occurred. Often, five or more impacts would be necessary

to fail the sample. Samples with RSSN layers could be impacted only once, since

the RSSN layer was usually damaged or destroyed after impact, so that a number

of samples were required to establish the velocity necessary to fracture the

Si3N 4 subs trate.
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4.2.1 Ballistic Impact Testing of Si3N _ Controls

Ballistic impact tests were performed on NCX-34 Si3N 4 controls at RT and

1370°C. NC-132 Si3N 4 ballistic tests had been done under the previous contract

(Ref. i0) and were not repeated, except for a few to verify the previous results.

The results of these tests are given in Table V. The average RT impact energy

necessary to fail the 25.4 x 38.2 x 6.35 mm (i x 1½ x 0.25 in.) sample of NCX-34

Si3N 4 was 2.8 joules (2.1 ft-lbs), compared to NC-132 Si3N 4 that failed at 1.9

joules (1.4 ft-lbs). The increase in RT ballistic impact resistance of the NCX-

34 Si3N 4 over the NC-132 Si3N 4 is consistent with the observation that Si3N 4

densified with Y203 additive exhibits a significantly higher RT fracture tough-

ness (KIc z 7 _£q/m3/2) than Si3N 4 densified with MgO (KIC = 4.5 MN/m 3/2) (Ref. 12).

At 1370°C, the ballistic impact resistance of the NCX-34 Si3N 4 is approxi-

mately the same as at RT, being 2.6 joules (1.9 ft-lbs). This compares favorably

to the value of 2.8 joules for NC-132 Si3N 4 at 1370°C, which for this material

is due to energy absorption through plastic deformation of the magnesium silicate

grain boundary phase.

The fracture mode for NCX-34 Si3N 4 is predominantly tensile failure on the

reverse side of the sample at RT and indeterminate at 1370°C. At 1370°C, the

samples tend to split longitudinally into two pieces with a very smooth fracture

surface, whereas at RT they normally shatter into 4 or more pieces with very

rough fracture surfaces and very definite fracture origins. In contrast, the

NC-132 Si3N _ samples fail in a predominantly Hertzian mode at RT and a mixed
Hertzian/tensile mode at 1370°C.

4.3 4-Pt Bend Testing of NCX-34 and NC-132 Si3N 4 Controls

NCX-34 and NC-132 Si3N4 bend specimens of dimensions 4.44 x 0.508 x 0.254

cm (1.75 x 0.200 x 0.i00 in.) were tested in 4-pt bending at RT. All 4-pt bend

testing was done using an inner span of 1.9 cm (0.75 in.) and an outer span of

3.81 cm (1.5 in.) at a crosshead speed of 0.25 cm/min (0.i in/min). The average

bend strength of NCX-34 Si3Nk controls was 848 MPa (123 ksi), which was substan-

tially higher than that found for NC-132 Si3N k of 662 MPa (96 ksi). The frac-

ture origin invariably was located at a surface flaw (mostly at corners) intro-

duced by the machining process. All samples had been longitudinally ground with

a 400 grit diamond grinding wheel.
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4.4 Task I - Development of RSSN Energy Absorbing Surface Layers on

Hot-Pressed Si3N _

Previous work (Ref. i0) had indicated that relatively thin layers (~i ram)

of reaction sintered Si3N 4 (RSSN), formed in situ on hot-pressed Si3N 4 sub-

strafes by nitriding a layer of Si powder, increased the ballistic impact resis-
tance of the _ubstrate by up to a factor of seven. The most successful RSSN

layer was fabricated from-i00, +200 mesh Si powder. RSSN layers fabricated

from -200 and -325 mesh powder were less successful in increasing impact resis-

tance. It was surmised from this that for maximum impact resistance, a large

grain size, large pore size RSSN layer was necessary.

4.4.1 Ballistic Impact Testing of RSSN/HPSN Combinations

In order to verify the previous results, which had been obtained using NC-132

Si3N _ substrates, a nitriding run was done using NCX-34 ballistic impact samples

with both -325 Si and -i00, +200 Si layers. All samples were nitrided in one

run using the standard schedule of 20 hrs at i150°C in Ar, 24 hrs at 1250°C in

N2, followed by 60 hrs at 1375°C in N2. Ballistic impact tests were performed

on these samples at RT and 1370°C, the results of which are given in Table VI.

From these tests, it was found that the NCX-34 Si3N 4 with -325 Si nitrided

surface layers could withstand only 6.2 joules at RT and 4.9 joules at 1370°C

before fracturing. The samples with -100,+200 Si nitrided surface layers with-

stood even less; 4.9 joules at RT and 3.7 joules at 1370°C. While these values

represent an improvement of 50-125% in ballistic impact resistance over samples

without RSSN layers, they were still much less than found previously for RSSN

layers on NC-132 Si3N4. The reason for this appears to be due to the fact that

the RSSN layers in these tests were essentially completely nitrided, even the

-i00, +200 Si layers. From X-ray results on the nitrided-i00, +200 Si layers,

less than 5 vol % unreacted Si was detected. Photomicrographs of these layers

confirm this finding, as shown in Fig. 6. This figure shows the interface be-

tween the nitrided -i00, +200 Si layer (top) and the NCX-34 Si3N 4 substrate

(bottom). Only the large B-Si3N 4 particles with very small amounts of unreacted

Si are evident in the RSSN layer, due to the fact that the resin used to infil-

trate the sample for polishing purposes (dark grey phase) has destroyed most of

the fine e-Si3N 4 needles that exist between the large B-Si3N 4 particles. X-ray

analysis indicates that this RSSN layer consists of ~70% B, 30% _-Si3N 4.

Previously tested -i00, +200 Si layers on NC-132 Si3N 4 contained a substan-
tial amount (~15-20 vol %) of unreacted silicon in the interior of the nitrided

particles. The reason for the complete nitridation of the -i00, +200 Si powder

particles on NCX-34 Si3N 4 is not clear, since the standard nitriding scheduleO

of 20 hrs in Ar at 1150 C, 24 hrs in N2 at 1250°C, and 60 hrs in N2 at 1375°C,

has been used almost exclusively throughout the program.
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In order to evaluate the effect of unreacted Sl on the ballistic impact

resistance, both NC-132 and NCX-34 SI3N 4 substrates with layers of -100,+200

Si were nitrided according to the above schedule except that the 1375°C nitri-

dation step was reduced to 24 hrs. From X-ray analysis and optical microscopy

of the nitrided layers, it was found that this nltriding schedule resulted in

approximately 25-30 vol % unreacted Si in the interior of the -i00, +200 nitrided Si

particles, as shown in Fig. 7. The results of RT ballistic impact tests on these

samples are given in Table VII.

From Table VII, it can be seen that an impact energy in excess of 9.1 joules

is necessary to fracture the NC-132 substrates with over 11.4 joules being

necessary to fracture the NCX-34 Si3N 4 substrates. These results are more in

line with previous results for NC-132 Si3N4 and are what was anticipated for NCX-34

Si3N4, based on its higher ballistic impact resistance at RT over NC-132 Si3N 4.

It thus appears that to obtain maximum ballistic impact resistance from a RSSN

layer on dense Si3N4, a certain amount of unreacted Si is necessary.

Further nitriding tests were done on ballistic samples of NCX-34 Si3N 4 with

both -325 Si and -100,+200 Si layers using the normal schedule except with only

an 8 hr hold at the maximum temperature of 1375°C. A few of the -100,+200 Si

samples were placed in the nitriding furnace in such a position that the maximum

temperature was only -1300°C.

The results of RT ballistic impact rests on the samples nitrided to 1375°C

for 8 hrs are given in Table VIII. As in the case of -i00, +200 Si layers nitrided

for 24 hrs at 1375°C, an impact energy !n excess of 11.4 joules was necessary to

fracture the NCX-34 Si3N 4 substrates. However, the nitrided -325 Si layers

could only withstand up to 6.2 joules before the substrate fractured. From X-ray

analysis and optical microscopy of the nitrided layers, it was found that the

8 hr, 1375°C nitriding schedule resulted in approximately 60% unreacted silicon

within the large B-Si3N4 grains of the -100,+200 Si nitrided layer (Fig. 8),

while the -325 Si nitrided layers were essentially completely nitrided (Fig. 9)

to a mixture of -65% B, 35% _-Si3N 4.

The -100,+200 Si samples that were deliberately nitrided to only 1300°C,

8 hrs, exhibited RT ballistic impact resistance less than the -100,+200 Si

samples nitrided to 1375°C, 8 hrs. They were also somewhat friable, indicative

of poor particle-to-particle bonding. From X-ray analysis and optical microscopy

it was evident that very little of the Si had been converted to Si3N 4 (~i0 vol %), as

shown in Fig. ]0. Not enough Si3N4 had been formed to bond the particles together,

thus resulting in the observed friable layer.
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It thus appears obvious that some residual silicon must be present in the
RSSN layer in order to achieve maximum ballistic impact resistance. However,

enough Si3N_ must be formed to strongly bond the particles to one another.
Since the samples with -100,+200 Si layers containing -60 vol oi_oresidual silicon

did not exhibit any greater impact resistance than those with -25 vol % residual

silicon, it would appear that to avoid any possible thermal expansion mismatch

problems, only the minimum amount of residual silicon necessary to achieve
maximum impact resistance should remain in the RSSN layer. For -100,+200 Si
layers this optimum amount of residual silicon appears to be in the range of
15-25 vol %.

4.4.1.1 RT Ballistic Impact Testing of Fine Grained RSSN Layers

Since it appeared that the excellent impact properties of -i00, +200 RSSN

layers were related to the amount of residual Si present, it was decided to

determine if finer grained RSSN layers fabricated from-325 or -200 Si and con-

taining residual Si after nitriding could achieve the same results. To date,

almost all of the -325 or -200 Si layers studied have been fully nitrided. The

finer grained RSSN layers could offer certain advantages over the -i00, +200 Si

RSSN layers due to their smoother surfaces and ease of fabrication. Accordingly,

nitriding experiments with -325 Si and -200 Si layers on ballistic samples of

both NC-132 and NCX-34 Si3N 4 in N2 and N2/H 2 mixtures for varying lengths of

time at the maximum nitriding temperature of 1375°C were run.

The first nitriding experiments were run in pure N2 for a period of i hr

at the maximum nitriding temperature of 1375°C. The -200 Si layers nitrided

under these conditions appeared to contain approximately 30 vol % unreacted Si,

as determined from X-ray analysis and optical microscopy. The determination of

the relative amounts of _-Si3N4, B-Si3N4, and free Si was done using the method

of Gazzara, et al (Ref. 13). The -325 layers nitrided under the same conditions

contained approximately 20 vol % unreacted Si. The Si3N _ in both samples was a

mixture of ~55% B, 45% _.

The results of RT ballistic impact tests of NC-132 and NCX-34 Si3N _ with

the above layers are presented in Table IX. Most of the samples in this nitrid-

ing run were NC-132 Si3N _ and, from Table IX, it can be seen that both -325 Si

and -200 Si RSSN layers on NC-132 Si3N 4 required an impacting energy of 15.4

joules in order to fracture the substrate. Figure ii shows the NC-132 Si3N 4

sample with a -200 Si RSSN layer that was impacted at 230 raps (9.1 joules).

Note that the RSSN layer was destroyed only at the point of impact. This value

is higher by almost 2 joules than the previously obtained value of 13.6 joules

for -i00, +200 Si RSSN layers on NC-132 Si3N 4 that contained ~20 vol % unreacted Si.
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Only two samples of NCX-34 Si3N 4 were included in the i hr, 1375°C, N2

nitriding run; one with a -325 Si layer and one with a -200 Si layer. Both of

these samples withstood an impacting energy of 15.4 joules without failure of

the substrate. This demonstrates once again that, at least at RT, NCX-34 Si3N 4

has greater ballistic impact tolerance than NC-132 Si3N4, both with and without

RSSN energy absorbing surface layers.

Since it was found on this program that nitriding in a 96% N2/4% H2

atmosphere instead of pure N2 resulted in minimal strength degradation of both

NC-132 and NCX-34 Si3N 4 when RSSN layers of -325 Si (98%) were tested in 4-pt

bending with the layered side in tension, as discussed in a following section,

it was decided to continue further short time nitriding tests using the N2/ll2

mixture as the nitriding media. Accordingly, a repeat of the previous nitriding

run of Ar, i150°C, 20 hrs followed by 1250°C, 24 hrs, in N2, and then 1 hr at

1375°C in N2, was done using 96% N2/4% H2 in place of the 100% N2. Both NC-132

and NCX-34 Si3N 4 substrates were used with -200 Si layers but only NCX-34 Si3N _
was used with -325 Si layers.

From X-ray analysis and optical microscopy it was found that the -200 Si

layers contained ~21 vol % residual Si (Fig. 12) down from ~30 vol % for -200 Si

layers nitrided in N2 for i hr at 1375°C, while the -325 Si layers contained

only ~5 vol % residual Si (Fig. 13) down from ~20 vol % for -325 Si layers nitrided

in N2. It was also found that the microstructure of the layers nitrided in

N2/H2 mixtures was quite different than the same layers nitrided in 100% N2 .

There was much more evidence of fine grained e-Si3N 4 around the larger B-Si3N 4

grains. This has also been observed recently by Lindley, et al (Ref. 14). This

was substantiated by the X-ray analysis of both the -325 Si and -200 Si layers

indicating that the SisN _ present consisted of more e than B; 73% _, 27% B for

the -200 Si layers and ~58% e, 42% B for the -325 Si layers. This is in con-

trast to the same layers nitrided under identical conditions except using 100%

N2 , where the B-Si3N 4 content was always greater than the e-Si3N 4 .

The results of RT ballistic impact tests on these samples are given in

Table X. As in the case of -200 Si layers nitrided for i hr at 1375°C in N2 ,

these layers nitrided in N2/_ under the same conditions resulted in impact

energies of 15.4 joules being necessary to fracture the NC-132 Si3N4 substrates
while 17.2 joules was necessary to fracture the NCX-34 substrates. Figures 14

and 15 show the NCX-34 Si3N4/-200 RSSN ballistic samples after 15.4 and 17.2

joule impacts, respectively. However, the -325 Si layers on NCX-34 Si3N4, ni-

trided in N2/H 2 for i hr at 1375°C, and containing only 5 vol % unreacted Si,

required a rather low impact energy of 9ol joules to fracture the substrate.

It is thus obvious that more than 5 vol % is necessary in the RSSN layers for

maximum impact resistance.

16



In order to determinethe minimumamount of residualSi necessaryin RSSN
layers on dense Si3N4 for maximum impact resistance,furthernitridingtests
were carriedout using -325 and -200 Si powder layers on NCX-34 SI3N4 substrates.
Sampleswere nitrided in N2/H2 at a maximum temperatureof 1375°C for periods
of 30 rain,i_ hrs, and 2 hrs for the -200 Si layers and for 30 mln for the
-325 Si layers. QuantitativeX-ray analysisshowed that for samplesnitrided
for 30 mln at 1375°C,the -325 Si layers consistedof 20 vol % Si, 55 vol %
e-Si3N4, and 25 vol % 8-Si3N4,while the -200 Si layers contained25 vol % Si,
50 vol % e-Si3N4,and 25 vol % B-Si3N4. The amountof residualSi in -200 layers
nitrided for 1½ hrs was -14%while those nitrided for 2 hrs was -6%.

The RT ballisticimpact resultsfor these and the previouslytested samples
nitrided for 1 hr at 1375°Care given in a shortenedform in Table XI. Only
the test results for samples that fall on either side of the energy requiredto
fracturethe Si3N4 substrateare shown. From Table XI, it is evidentthat

nitriding-200 Si layers in N2/H2 for much more than 1 hr at 1375°C resultsin
too much conversionof Si to Si3N4 with accompanyingreductionin ballisticim-
pact resistance. ResidualSi contentof greater than -20 vol % does not lead

to increasesin ballisticimpact resistanceat RT. For maximum impact resistance
with minimum residualSi contentfor -200 Si RSSN layers,a nitridingschedule
of ~I hr at a maximum temperatureof 1375°C in a 96% N2/4% H2 mixture appears
to be optimal.

For the finer grain size -325 Si RSSN layers,a shorternitridingtime at
1375°C is necessary for optimumballistic impact resistance,compared to the -200
Si layers. In fact, -325 Si layers on NCX-34 Si3N4 substratesnitrided for 30
min at 1375°C in N2/H2, when testedat RT in ballisticimpact, could not be frac-
turedwithin the limits of the ballisticimpact equipment. The maximumvelocity
obtainableis 343 m/sec (1125 ft/sec)which is equivalentto an impactingenergy
of 19.7 joules (14.5 ft-lbs). This energywas insufficientto fracture the
above mentionedsamples,which representsthe highestas-nitridedRT ballistic
impact resistanceever recordedunder this program.

One additional type of RSSN layer containing -20 vol % Si was tested in
ballistic impact at RT. These layers consist of 75 vol % -325 Si and 25 vol %

-i00, +200 Si. The nitriding schedule was such that essentially all of the

-325 Si was converted to SisN4 while only a small amount of -i00, +200 Si
particles were reacted. Thus, the layer consisted of a fine grained fully
nitrided matrix with large Si particles interspersed throughout. Ballistic

impact testing of this type of RSSN layer on NCX-34 SisN4 substrates gave a
maximum impact energy without substrate failure of 13.6joules. Thisvalue,
while substantial, was lower than the values obtained for -200 and -325

RSSN layers and was more comparable to previously obtained results using 100%
-i00, +200 Si layers. The smoothness of the layer was also not as good as that

obtained for either -200 or -325 RSSN layers. Thus, the mixed particle size
layers were dropped from further consideration.
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4.4.1.2 1370°C Ballistic Impact Testing of Fine Grained RSSN Layers

Ballistic impact tests at 1370°C were also performed on NC-132 and NCX-34 Si3N4

substrates with RSSN layers fabricated from both -325 and -200 Si powder. Two

types of RSSN layers were investigated, one with 5 vol % residual Si and one

with -25 vol % Si. The results of these tests are given in Tables XII and XIII.

Table XI_Ishows the RT and 1370°C ballistic impact resistance for -325 Si

RSSN layers with 5 vol % residual Si on both NC-132 and NCX-34 Si3N 4 substrates.

The impact resistance of RSSN layers with 5 vol % Si on NC-132 Si3N _ substrates is

substantially higher at 1370°C than at RT, reflecting the greater impact resis-

tance of NC-132 Si3N 4 at elevated temperature. The impact resistance of RSSN

layers containing 5 vol % Si on NCX-34 Si3N _ at RT is somewhat higher than the same

layers on NC-132 Si3N4, as expected. However, at 1370°C the impact resistance

for the NCX-34 Si3N_/RSSN samples drops considerably, and is much inferior to

NC-132 Si3Nk/RSSN material. The fracture of the samples with NCX-34 substrates
at 1370°C is rather unusual. On impact, the samples split in half in the direc-

tion normal to the hot-pressing direction. The origin of fracture is rather

difficult to discern since the fracture surface is extremely flat. However,

when the samples were photographed using oblique lighting, the fracture origin

became discernible. Figure 16 shows a sample of NCX-34 Si3N 4 with an RSSN layer

fabricated from -325 Si with 5 vol % residual Si, that was impacted at 1370°C

at a velocity of 169 m/sec (4.9 joules). The RSSN layer has, for the most part,

remained strongly bonded to the substrate while the NCX-34 Si3N 4 substrate has

failed in the usual manner for this material at 1370°C. Figure 17 shows one

side of the fracture surface of this sample. It appears that the fracture

origin is located near a corner (i.e., the top edge) of the substrate, approxi-

mately 8 mm away from the point of impact. This type of fracture was typical

for most of the NCX-34 Si3N k samples impacted at 1370°C.

Table XIII gives the results of 1370°C ballistic impact tests for -325 and

-200 Si RSSN layers on both NC-132 and NCX-34 Si3N4 substrates with -25 vol %

residual Si present in the RSSN layers. Similar to the results obtained at RT,

RSSN layers of both -325 and -200 Si, on either NC-132 or NCX-34 Si3Nk, that con-

tain >20 vol % residual Si, result in much greater ballistic impact resistance

than RSSN layers with less than 20 vol % Si. Again, as found for RSSN layers

with 5 vol % Si, the samples with NC-132 substrates exhibited greater impact re-

sistance at 1370°C than similar samples with NCX-34 Si3N 4 substrates. The frac-

ture origin for the NCX-34 samples was again difficult to determine. The -325

RSSN layers on NC-132 substrates gave slightly higher impact values than the -200

RSSN layers, as was noted at RT for these layers (with 20 vol % Si) on NCX-34

subs trates.

A summary of all ballistic impact tests of RSSN layers on NC-132 and NCX-34

Si3N _ substrates is presented in bar graph form in Figs. 18 and 19, respectively.
From these figures, it is immediately obvious that maximum impact resistance for

any given particle size RSSN layer is only obtained when that layer contains
>20 vol % unreacted Si.
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4.4.1.3 Ballistic Impact Observations

The role of the residual Si within RSSN energy absorbing surface layers in

maximizing the tolerance of the RSSN/HPSN combinations to ballistic impact of

hardened chrome-steel spheres is not fully understood. It appears that the

residual Si absorbs the spheres' energy and slows it as the Si is crushed, frac-

tured, and, _ t appears, actually ignited by the friction caused by the impact

event. Figures 20a and 20b show the impact surface of a steel ball after RT

impact with a control sample of NCX-34 Si3N 4 at a velocity of 130 m/sec (2.8

joules). This velocity is sufficient to fracture the NCX-34 Si3N 4 sample. The
steel sphere in Fig. 20 is considerably flattened and exhibits cracks that

originated at the point of impact. In Fig. 20b the grinding marks from the

Si3N 4 surface can be seen imprinted on the contact area of the steel sphere.

Figures 21a and 21b show the impact surface of a steel ball after RT impact

with an NCX-34 Si3N _ sample having a -200 RSSN surface layer with ~6 vol %

residual Si. The impacting velocity was 230 m/sec (9.1 joules) which was suf-

ficient to fracture the NCX-34 Si3N 4 substrate. The surface of the sphere is

roughened by passing through the RSSN layer and the contact area with the NCX-34

Si3N 4 substrate is quite small. Some particles of RSSN layer appear to be

adhering to the surface of the sphere.

Figures 22a and 22b show the impact surface of a steel sphere after RT im-

pact with an NCX-34 Si3N 4 sample having a -200 RSSN surface layer containing

21 vol % residual Si. The surface of the sphere is very abraded and roughened

with no contact area with the substrate visible. Large particles of the RSSN

layer appear to be imbedded in the surface and, although not apparent in this

view, the impacting surface of the sphere has been slightly worn away by passing

through the RSSN layer, losing ~.5 mg of weight. Figure 23 shows the impact

point at the bottom of a hole created in a -200 RSSN layer by a steel sphere

impacting at a velocity of 300 m/sec. Flattening of the RSSN layer near the

impact point is quite evident. At the moment of impact of a steel sphere with

an RSSN layer containing considerable residual Si, a flash of sparks can be seen

emanating from the impact point. These sparks are apparently ignited Si par-

ticles caused by frictional heating during the impact event. The striations

seen on the RSSN surface in Fig. 23 are evidently caused by the outward passage

of these particles. Whatever the actual mechanism, the Si particles in the RSSN

layer definitely tend to slow down the incoming steel sphere to a greater extent

than RSSN layers with little or no residual Si.

Another important observation concerning the RSSN energy absorbing surface

layer concept is that, while most of the RSSN/HPSN combinations tested in ballistic

impact had RSSN layers of i mm thickness, a substantial amount of energy can be ab-

sorbed by much thinner layers, as shown in Table XIV. Even a 0.25 mm thick RSSN

layer absorbs 4 times the amount of energy of an NC-132 Si3N 4 substrate with no

layer. This is important due to the fact that some components could be too small

to accommodate a standard RSSN layer of 1 mm thickness.
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4.4.2 4-Pt Bend Testing of RSSN/HPSN Combinations

Frompreviouswork on energyabsorbingRSSNsurfacelayerson NC-132SisN4
(Ref. i0), it had been shown that a severe strength degradationoccurredwhen
the RSSN/HPSNsamplewas tested in either Charpy impact or bendingwith the RSSN
side in tension. In order to determineat what point in the nitridingcycle
the strengthdegradationat the RSSN/HPSNinterfaceoccurs_a series of
nitridingruns were done under differingconditions,using both -325 Si and

-i00, +200 Si powder layers on NC-132 and NCX-34 substrates. Sets of SisN4
bend samples (4.44 x 0.508 x 0.254 cm) with the two different Si powder layers

were subjectedto four differentcycles: (i) Ar, i150°C,20 hrs; (2) Ar, i150°C,
20 hrs, plus N2, 1250°C,24 hrs; (3) Ar, i150°C,20 hrs, plus N2, 1250°C,24
hrs, plus N2, 1375°C_ 24 hrs; and (4) the normal nitriding cycle of 20 hrs in

Ar at I150°C,24 hrs in N2 at 1250°C,followedby 60 hrs in N2 at 1375°C. The
sampleswere then testedin 4-pt bending at RT with the RSSN (or Si) layer in
tension.

The results of these tests are given in Table XV. It is apparent that deg-

radation of the sample strength does not occur until the nitriding temperature

of 1375°C is reached. A nitriding time of 24 hrs at this temperature is suffi-

cient to degrade the strength of nitrided NC-132 and NCX-34 SisN 4 samples

with -325 mesh Si layers to half the control value, with longer times being

necessary to achieve this with the coarser -i00, +200 mesh Si layers. Note

that NC-132 Si3N 4 by itself appears to increase somewhat in strength after

undergoing the standard nitriding cycle, while the NCX-34 SisN 4 is decreased

in strength somewhat. The intermediate temperature strength degradation prob-

lem of this lot of NCX-34 Si3N 4 may be contributing to the loss in strength,

even though the nJtriding treatment is carried out in a nonoxidizing environment.

An X-ray diffraction analysis of the nitrided -325 Si layers after 24 hrs at

1250°C in N2 indicates that the layer consists primarily of Si, with only about
i0 vol % of the Si converted to SisN 4. In contrast, the samples nitrided to 1375°C

for 24 hrs exhibited over 90 vol % conversion to a mixture of e and B Si3N 4. It

thus appears that as soon as a substantial amount of the Si powder layer reacts

with the N2 to form SisN4, either the surface of the Si3N 4 substrate be-

comes a source of stress concentrating flaws due to interaction with the nitrided

Si grains, or that the interfacial bonding is increased to the point that cracks

propagating through the RSSN layer during stressing are not blunted or deflected

at the RSSN/HPSN interface but continue to propagate into the HPSN.
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The fracture surfaces of -325 Si layers on NC-132 Si3N k nitrided at maxi-

mum temperatures of 1250°C and 1375°C for 24 hrs were examined by scanning

electron microscopy (SEM). The 1250°C nitrided sample is shown in Fig. 24.

This particular sample had a 4-pt bend strength of 586 MPa (85 ksi) which is

somewhat less than the control value of 662 MPa (96 ksi). The fracture sur-

face is fairly rough with the fracture origin located near the sample edge.

The origin is indicated by arrows in Fig. 24 and appears to be a small void with-

in the NC-132 Si3N 4 at a distance of ~20_ from the tensile surface. The nitrided

Si surface layer does not appear to have influenced the fracture of this sample

and actually has debonded from the NC-132 Si3N 4 near the fracture origin.

Figure 25 shows the fracture surface of the -325 Si sample nitrided at

1375°C for 24 hrs. The nitrided Si layer is primarily converted to Si3N 4 and

is quite strongly bonded to the NC-132 Si3N 4. The fracture surface of the NC-132

Si3N 4 is very smooth, which is indicative of a sample with low bend strength; in

this case 300 MPa (44 ksi). The fracture origin is indicated by arrows in Fig. 25

and appears to be a void of about 20p diameter in the RSSN layer located about

50p from the NC-132 Si3N 4 interface. This particular sample appears to have

had a few very large bubbles (i.e. voids) in the RSSN layer but they do not

appear to affect the nature of fracture. Other -325 Si layers, nitrided at

1375°C, containing no large voids exhibit the same type of fracture behavior.

Some RSSN/HPSN combinations were rather difficult to fabricate with a well

bonded interface, in particular the -325 RSSN layers on NCX-34 Si3N k substrates.

A typical fracture surface for a weakly bonded -325 RSSN layer on NCX-34 Si3N 4

is shown in Fig. 26. The RSSN layer on this sample is still adhered to the

substrate; many -325 RSSN layers debonded when the samples were broken. The

relatively rough surface of the NCX-34 substrate cross section is indicative of

a strong sample, in this case 702 MPa (102 ksi). Figure 27, by way of contrast,

shows the quite smooth fracture surface of the substrate for a -i00, +200 RSSN

layer on NCX-34 Si3N 4 with a degraded strength of only 407 MPa (59.1 ksi). In

this case, the fracture origin appears to be located at some point within the

RSSN layer, near the interface.

In order to determine whether or not the strength degradation is due to

interaction between the Si particles and the Si3N _ substrate during nitriding,

NCX-34 Si3N k samples that had both -325 Si and -i00, +200 Si powder lightly

sprinkled on the tensile surface were nitrided by the usual method. These

samples, when tested at RT with the lightly covered RSSN surface in tension 3

exhibited significant degradation in strength. The fracture origin was always

located on the surface at either a nitrided particle of Si or a depression that

at one time was associated with a nitrided Si particle. Figure 28 shows a

typical fracture origin for a sample with a surface covered with nitrided -i00,

+200 Si particles.
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4.4.2.1 Bend Test of RSSN/HPSN Combinations Nitrided in a

N2/H 2 Mixture

In order to insure that impurities in the Si powder or oxygen contamination

from the nitriding gas are not contributing to the observed degradation, addi-

tional nitriding runs were done using a much purer Si starting powder and using

a 96% N2-4% H2 mixture as the nitriding media. Both NC-132 and NCX-34 Si3N 4

bend specimens were fabricated with approximately one mm thick layers of -]00,

+200 Si and -325 Si powder of two purities; a nominal 98% pure powder th__ has

been used throughout this program and a high purity 99.6% powder. The chemical

analyses of these powders was given previously in Table III. It can be seen

that the main impurities in the -325 (99.6%) powder are AI and Pb (.1%) while

the-325 (98%) powder contains Fe (.7%), AI (.2%), Mn (.3%), Cr (.1%), and Ca

(.1%). The samples were nitrided according to the standard schedule except that

the nitriding atmosphere consisted of 96% N2/4% H2, instead of the usual 100% N2.

The results of RT 4-pt bend strength tests with the RSSN in tension are

given in Table XVI. It can be seen that both NCX-34 and NC-132 Si3N 4 with well

bonded RSSN layers of 98% purity -325 Si are not significantly degraded in

strength when the nitriding is carried out in a N2/H 2 mixture. The 99.6% -325

Si and the -100, +200 Si of 98.5% purity, when nitrided using N2/H 2 mixtures on

both NC-132 and NCX-34 Si3N _ substrates, do tend to degrade the strength; al-

though less so for the NCX-34 Si3N 4. For some reason, the -325 Si (99.6%) layers

on NCX-34 Si3N 4 usually exhibit rather poor bonding. This may be due to the very

small particle size, i.e. high surface area, of this powder causing debonding due

to high shrinkage during drying of the Si layer. Figures 29 and 30 show the

fracture surfaces of the -325 (98%) Si RSSN layers on NC-132 and NCX-34 Si3N_,

respectively. The RSSN layers on both samples are very well bonded to the sub-

strate and the fracture surfaces are quite rough, in agreement with the high

strength of these samples. Shown in Fig. 31 is the usual fracture surface ob-

tained when -325 Si (98%) layers on NC-132 Si3N 4 are nitrided to 1375°C, 60 hrs,

in pure N2. This sample exhibited a bend strength of 264 MPa (38.3 ksi) com-

pared to 659 MPa (95.6 ksi) for the sample in Fig. 29 nitrided in 96% N2/4%

H2. The fracture origin for the samples nitrided in N2/H 2 mixtures appears to

be at or very near the RSSN/HPSN interface; near the right corner for the sample

in Fig. 29 and midway between the left corner and center for the sample in

Fig. 30. The fracture origin for the degraded sample in Fig. 31 is not readily

apparent, but appears to be within the RSSN layer.

Subsequent 4-pt bend tests have been done on samples of both NC-132 and

NCX-34 Si3N 4 with-325 and-200 Si layers, that were nitrided in N2/H 2 mixtures

along with ballistic impact samples. Three bend test samples of each RSSN/HPSN

combination were included in each nitriding run. All of the samples nitrided in

the 96% N2/4% H2 mixture showed some degradation in bend strength. The NCX-34

Si3N 4 samples with either -325 or -200 RSSN layers containing 20.-25 vol % Si
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gavebendstrengthsthataveraged572_Pa (83ksl). TheNC-132SI3N_ samples
with similarRSSN layers averaged503 MPa (73 ksl). These results are also

given in Table XVI. This representsa 32% drop in strength for the NCX-34 SisN4
and a 24% drop in strengthfor the NC-132 Si3N4 over the as-receivedcondition.
However, the NCX-34 Si3N4 degrades-15% in strengthdue to the nltrldingtreat-
ment alone. This drop in strengthmay be connectedto the observedintermediate
temperatureoxidationproblemof thisNCX-34 SI3N4 material. Figures32 and 33
show all of the 4-pt bend strengthdata for NC-132 and NCX-34 substrates,re-
spectively,with the variousRSSN layers,plottedin bar graph form.

4.4.2.2 Conclusions on the Degradation of RSSN/HPSN Bend Strength

In general, when well-bonded RSSN layers on HPSN substrates are tested at

RT in bending with the RSSN layer in tension, severe strength degradation (-50%)

occurs for those samples nitrided in 100% N2 while only moderate to very little

strength degradation occurs for those samples nitrided in 96% N2/4% H2. Also,

the strength retention is usually best for NCX-34 Si3N 4 over NC-132 SisN4, re-

flecting the higher initial strength of the NCX-34 material.

The reason for the strength degradation for those samples nitrided in 100%

N2 appears to be caused by the type of microstructure developed within the RSSN
layer and the way it bonds to the HPSN substrate. RSSN nitrided in flowing N2
is comprised primarily of large particles of B-SisN4, with very little e-SisN_

whisker formation between the B-Si3N4 particles, as discussed by Lindley, et al
(Ref. 14). Bonding in this type of RSSN layer on a HPSN substrate consists pri-

marily of direct8-Si3N4 to 8-Si3N4particlebondingand B-Si3N4 particleto
HPSN substrate surface (also 8-SisN4) bonding. From experiments with sprinkled

Sl powder nitrlded in 100% N 2 on HPSN substrates, it was found that the nitrided
Sl particles bond very strongly to the substrate with a continuous B-SisN4 struc-

ture and act as large surface flaws, causing strength degradation. RSSN layers

on HPSN substrates, nitrided in pure N2, cause strength degradation by allowing

crack propagation to occur through the direct B-SisN4 to B-Si3N4 particle
bonding and then on through the HPSN substrate. The fact that most well-bonded

RSSN/HPSN combinations, nltrided in pure N2, do not exhibit fracture origins at
the RSSN/HPSN interface but rather somewhere in the RSSN layer indicates that

flaws (i.e. porosity) in the RSSN structure are controlling the mode of fracture.

RSSN layersnitrided in Nz/H2 mixturesexhibit a much differentmicro-
structurethan those nitrided in pure N2. Every _-Si_4 particle,whether or
not it containsresidualSi in the center,is surroundedby a fine structureof

_-Si3N4 whiskers. This e-SisN4 whiskermesh separatesthe B-Si3N4 grains from
each other and from the HPSN substructure,thus not allowinga direct path for

crack propagation. The flaw size within the RSSN nitrided in N2/H2 mixtures
is also considerablyreduced,due to the pores between Sl particlesbecoming

filledwith the fine _-Si3N4 structure. Well bonded RSSN layers on HPSN sub-
stratesalways exhibitfractureoriginsat the RSSN/HPSNinterface,indicating
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that the fracture mode is controlled by flaws at the interface, not within the

RSSN layer as is the case when nitriding is done in pure N2. And, since the

interface consists primarily of _-Si3N 4 whiskers bonded to the HPSN substrate,
the flaws at the interface are not large, thus leading to minimal strength

degradation.

4.4.3 Task I - Conclusions

The general goal of Task I of this program was to develop RSSN energy ab-

sorbing surface layers on hot-pressed Si3N 4 that would consistently result in

ballistic impact strengths at RT and 1370°C of over 7 ft-lbs (9.5 joules) while

minimizing the RSSN/HPSN interfacial strength degradation that occurs as a re-

sult of the nitriding process. This goal has been accomplished with the

development of RSSN layers of either -325 Si or -200 Si nitrided in a 96%

N2/4% H2 mixture, to minimize interfacial strength degradation, according to
a schedule that results in at least 20 vol % residual Si remaining in the RSSN

layer. Using either NC-132 or NCX-34 Si3N 4 substrates in combination with these

RSSN layers meets the 7 ft-lb (9.5 joule) goal at both RT and 1370°C, with the

NCX-34 Si3N_ material _erforming better at RT and the NC-132 Si3N _ material per-
forming better at 1370 C. The latter observation is undoubtedly due to the

higher fracture toughness of Si3N 4 (Y203) materials at RT and the greater plastic

flow at the grain boundaries of Si3N 4 (MgO) materials at elevated temperatures.

4.5 Task II - Effect of Thermal Exposures on RSSN/HPSN Combinations With and

Without Overlayers of CVD Si3N 4

The purpose of Task II of this program is to evaluate the effect of thermal

cycling to 1200 and 1370°C in air on the integrity of the RSSN/HPSN combinations,

in particular the effect of silica formation within the RSSN layer on its ability

to absorb energy during ballistic impact. In addition, the hot gas erosion

characteristics of the RSSN layers at 1200 and 1370°C in a Mach 0.8 gas stream

are to be evaluated, both with and without a thin overlayer of chemically vapor

deposited (CVD) Si3N 4. The CVD Si3N 4 overlayer is being investigated as a

possible oxidation and erosion resistant barrier for the RSSN/HPSN combinations.

4.5.1 Thermal Cycling of Si3N 4 Control Samples

Ballistic impact samples of both NC-132 and NCX-34 Si3N 4 were subjected to
o

75 thermal cycles between ~150 to 1200 C and ~200 to 1370°C in air. An exposure

cycle consisted of heating to either 1200 or 1370°C in ~15 min, holding at tem-

perature for 40 min, and then cooling to the minimum temperature in a cold air

blast for i0 min. After thermal cycling, the samples were inspected visually

and analyzed for weight gain and, by X-ray diffraction, for the formation of

surface oxide phases. They were then tested in ballistic impact at a sample

temperature of 20 and 1370°C.
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The weight gain and oxide formation data for the thermally cycled ballistic

impact control samples of NC-132 and NCX-34 Si3N4 are given in Table XVlI. For

both temperatures, the oxide layer formed on the NC-132 Si3N 4 was much thicker

than that formed on the NCX-34 Si3N4, as expected from previous oxidation data

for these two materials. Figure 34 shows the surface of the NCX-34 Si3N 4 (left)

and the NC-132 Si3N 4 (right) samples after the 75 cycle, 1370°C exposure. There

was no eviden :e of the low temperature oxidation problem previously noted for

the NCX-34 Si3N 4 occurring during cycling of this material to either 1200 or

1370°C. The weight gain for the NC-132 Si3N 4 was approximately three times

that of the NCX-34 Si3N 4 at 1370°C and approximately 70% higher at 1200°C. At

1370°C, the oxide formed on the NCX-34 Si3N 4 was entirely crystalline, as deter-

mined from X-ray analysis, consisting of elongated Y2Si20 7 crystals with a

small amount of Si02 (cristobalite). The oxide layer formed on the NC-132

Si3N 4 was a mixture of a glassy silicate phase, SiO 2 (cristobalite), and MgSiO 3

(clinoenstatite). At 1200°C, the predominant surface oxide phase formed on

both materials was SiO 2 (cristobalite) with small amounts of what appears to be

the XI phase of Y2Si05 forming on the NCX-34 and small amounts of Si2N20 plus

an unidentified phase on the NC-132 Si3N 4.

The results of ballistic impact tests at RT and 1370°C on thermally cycled

Si3N 4 substrates control samples are given in Table XVlII and compared to values
for as-received controls. Within statistical scatter, there does not appear to

be any significant effect of thermal cycling on the ballistic impact properties

of either NC-132 or NCX-34 Si3N 4. Both materials exhibit somewhat better RT
ballistic impact properties and somewhat poorer 1370°C impact properties after

thermal cycling, except for the NCX-34 material cycled to 1200°C and tested at

1370°C. In general, the 1200°C cycling gives higher ballistic impact results

than the 1370°C cycle, for both NC-132 and NCX-34 Si3N 4. The fracture mode

for the materials was not changed by the thermal cycling exposure.

4.5.2 Thermal Cycling of RSSN/HPSN Combinations

Samples of both NC-132 and NCX-34 Si3N 4 with -200 RSSN layers containing

~25 vol % Si were subjected to thermal cycling tests between 150 and 1200°C and

between 200 and 1370°C. Samples of NC-132 with-325 RSSN layers have also been

thermally cycled. From weight gain measurements of cycled samples, it was

determined that the -200 RSSN layers cycled 75 times to 1200°C gained ~115 mg

while the -325 RSSN layers gained ~ii0 mg. The -200 RSSN layers cycled to

•1370°C gained ~150 mg while the -325 RSSN layers gained -130 mg. No difference

in weight gain was noted between P_SN layers on NC-132 or NCX-34 substrates.

X-ray analysis of the cycled RSSN layers revealed that the oxide product con-

sisted entirely of e-cristobalite (SiO2). The amount of residual Si in the

cycled layers was essentially unchanged as calculated from X-ray analysis, so

that the silica that was formed resulted from the reaction of oxygen with the
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and 8 Si3N 4, not with the Si. This would be expected, since the residual Si

exists in the interior of B-Si3N 4 particles. Photomicrographs of the cycled

RSSN layers revealed that the silica almost completely filled the void space

that previously existed between Si3N 4 particles, as shown in Fig. 35 for a -200

RSSN layer cycled 75 times to 1370°C. At high magnificatlons_ as shown in Fig.

35b, it can be seen that the Si particles appear to be oxidizing somewhat along

grain boundaries.

The results of RT and 1370°C ballistic impact rests on the RSSN/HPSN com-

binations, both as-fabricated and cycled 75 times to 1200°C and 1370°C are shown

in Table XIX. Only the energy and velocity necessary to fracture the hot-

pressed substrate are shown in Table XIX. From these results, it can be seen

that the ballistic impact resistance of -200 Si RSSN layers on both NC-132 and

NCX-34 Si3N 4 substrates, tested either at RT or 1370°C, either increases or

stays the same after 75 thermal cycles to 1200°C or 1370°C. The -325 RSSN

layers on NC-132 Si3N 4 also showed no decrease in RT impact resistance after

thermal cycling.

From the tests conducted on samples cycled to either 1200 or 1370°C, it is

apparent that the formation of _-cristobalite in the interior and on the surface

of the porous RSSN layers does not cause degradation of the RSSN layer and in

most instances has a beneficial effect on its impact resistance. The silica

forms predominantly at the expense of the Si3N4, not the residual Si, and thus

does not reduce the amount of residual Si below the apparently critical value °

of 20 vol % necessary for optimum impact resistance. The silica also appears

to withstand the high to low cristobalite transformation that occurs when the

sample is cooled through the 200-275°C range, at least without cracking or de-

laminating the RSSN layer.

4.5.3 Thermal Cycling of RSSN/HPSN Combinations with CVD Si3N 4 or SiC

Overlayers

As described in the following section on Mach 0.8 gas erosion testing, the

formation of a protective CVD Si3N4 overlayer on the RSSN layers was not possible

due to the residual Si present in the optimized RSSN layers interfering with the

deposition process at the usual deposition temperatures of 1400-1450°C. A fully

nitrided P_SN layer was shown to be amenable to CVD Si3N 4 deposition at 1450oc

with subsequent thermal cycling of the sample to 1370°C showing no appreciable

oxidation of the RSSN layer. However, the impact resistance of the fully nitrided

RSSN layers is about one-third of layers with 20 vol % residual Si so that if

oxidation protection of the RSSN layer by a CVD Si3N4 overlayer is desired, a

compromise in impact resistance must be made.
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Since CVD SiC can be deposited at a much lower temperature than CVD SI3N4,

it was decided to investigate RSSN layers with overlayers of CVD SiC. Even

though the thermal expansion coefficient of SiC (~4.5 x i0-6/°C) is somewhat

higher than that of Si3N4 (~3.1 x i0-6/°C), thus causing residual tensile

stresses in the SiC upon cooling from the deposition temperature (ll20°C), it

was thought that a very thin but continuous CVD SiC overlayer could be protec-

tive of the RSSN layers.

CVD SiC deposition was carried out at i120°C using a mixture of methane

and hydrogen saturated with methyldichlorosilane. The first samples of NC-132

with -200 Si layers were coated with CVD SiC of ~6 mils (.15 mm) in thickness.

On cooling from deposition, the CVD SiC coatings cracked but were still very

adherent to the RSSN layer. The corncob appearance of the CVD SiC and the cracks

formed can be seen in Fig. 36. Upon thermal cycling to 1370°C, the SiC over-

layer tended to spall off, thus not offering any protection from oxidation.

The sample shown in Fig. 37 completed 21 cycles to 1370°C with the coating

starting to spall after ~i0 cycles. Due to the spallation of the coating, no

weight gain data could be taken but it can be assumed that the RSSN layer con-

tained considerable silica.

The CVD deposition parameters were changed to obtain a thinner, finer

grained SiC coating. Subsequent samples exhibited coatings of 0.5 to 1.5 mils

(12-36p) in thickness. Figure 38 shows the CVD SiC surface of a sample of

NC-132 with -200 RSSN layer, with the thickness of the CVD SiC coating being

~i mil (25_). As can be seen in this figure, cracks are still in evidence in

some areas of the coating. It was found that all coatings of thickness i mil

(25_) or greater contained cracks, whereas thinner SiC coatings were crack free.

A total of ten NC-132 ballistic impact samples with -200 RSSN layers (20%

Si) were coated with 0.5-1.5 mils (12-36p) of CVD SiC and then subjected to 75

thermal cycles to 1370°C. These samples along with nonthermal cycled samples

with CVD SiC overlayers, were then tested at RT and 1370°C in ballistic impact.

The weight gain and oxide formation data for the thermally cycled samples is

shown in Table XX. As can be seen from Table XX, the weight gain of the

samples with CVD SiC overlayers is somewhat higher than NC-132 Si3N 4 substrates

and substantially lower than the RSSN/HPSN combinations with no CVD SiC over-

layer. The actual values of weight gain for the samples with CVD SiC overlayers

ranged from 36 mg for thin (~12p) CVD SiC, with no cracks evident, to 70 mg for

a thicker (~36p) CVD SiC that exhibited cracking similar to that shown in Fig.

38. A fairly thick silica layer formed on the CVD SiC during cycling which, on

cooling, exhibited some cracking as shown in Fig. 39. From the weight gain data

and from X-ray diffraction analysis it is apparent that while some internal

oxidation of the RSSN layer is occurring, it is much reduced by the presence

of the CVD SiC overlayer.
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The ballistic impact resistance of as-fabricated and thermally cycled
samples with CVD SiC overlayers was determined at RT and 1370°C, is shown in

Table XXI. The only difference noted between those samples with CVD SiC coatings
and those without was a slightly lower impact resistance for the thermally

cycled samples with CVD overlayers. This is likely due to the relatively lesser
amount of internal oxidation within the RSSN layer for the samples with CVD SiC
overlayers. Table XXII summarizes all of the ballistic impact data obtained on

thermally cycled samples, both with and without CVD SiC overlayers.

4.5.4 Mach 0.8 Hot Gas Erosion Testing

In order to determine the effect of a simulated gas turbine environment on

the erosion and oxidation characteristics of the RSSN energy absorbing surface

layers, samples of NC-132 and NCX-34 Si3N4, both with and without -200 and -325

RSSN layers, were subjected to Mach 0.8 hot gas erosion testing for 5 hrs at

sample surface temperatures of 1200 and 1370°C. The samples tested at 1200°C

were approximately 1.92 x 1.23 x 0.64 cm (0.75 x 0.50 x 0.25 in) in size with

the largest face positioned at a 30° angle to the direction of hot gas flow.

Samples run at 1370°C had a substrate thickness of 0.28 cm (0.15 in). Sample

temperatures were monitored by a continually recording optical pyrometer.

Samples of -325 and -200 RSSN layers with CVD Si3N 4 or SiC overlayers were also
tested in erosion at 1200 and 1370°C.

4.5.4.1 Erosion Testing of Si3N 4 Controls

Both NC-132 and NCX-34 SisN _ controls were tested in erosion at 1200 and

1370°C. The two control samples of hot-pressed Si3N 4 tested at 1200°C did not

exhibit any detectable weight change or surface recession. X-ray analysis of

the exposed surfaces indicated no detectable oxide formation during the 5 hr

test. Erosion testing at 1370°C for 5 hrs on NC-!32 and NCX-34 Si3N 4 controls,

however, did produce measurable surface recession. Somewhat surprisingly, the

NCX-34 Si3N 4 sample eroded considerably more (~25_) than the NC-132 Si3N 4 (~2.5_).
The NC-132 Si3N 4 sample gained a slight amount of weight (0.i rag) while the

NCX-34 Si3N 4 sample lost weight (3.5 mg). Both samples exhibited a very thin

oxide scale on the surface (predominantly e-cristobalite from X-ray diffraction

measurements) which would tend to increase the weight of the sample; however, in

the case of the NCX-34 Si3N 4 this weight gain was more than offset by weight

loss due to material erosion. Figures 40 and 41 show the eroded surfaces of

the NC-132 and NCX-34 samples tested at 1370°C. While both samples exhibit a

rather rough oxidized surface, the NC-132 appears to have a glassy, bubbly oxide

layer while the NCX-34 has a more crystalline but substantially rougher surface.
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4.5.4.2 ErosionTestingof RSSN/HPSNCombinations

Samplesof NO-132 and NCX-34 Si3N4 with -200 and -325 RSSN layers,con-
taining-25 vol % Si, were erosion testedfor 5 hrs at 1200 and 1370°C. The
RSSN layers tested at 1200°C did not exhibitmeasurablesurfacerecession,but
did exhibitsubstantialweight gains of -20 rag. RSSN samples testedat 1370°C
exhibiteda slight amount of surface recession(~8_) (Fig. 42) but a somewhat
lowerweight gain of -12 mg; the latter due to less of the substratesurface
being coveredwith the RSSN layer. From X-ray analysis,a substantialamount

of SiO2 (e-cristobalite)was presenton the surfaceand in the interiorof the
RSSN layers tested at both 1200 and 1370°C. Figure43 shows the -325 and -200
RSSN layers tested at 1370°C,along with the NC-132 and NCX-34 Si3N4 controls
tested at the same temperature. No differencein erosionbehaviorbetween the
-325 and -200 RSSN layers can be observed. Figure 44 shows the erosionsurface
of the -200 KSSN layers tested at 1200 and 1370°C,with the 1370°C sampleex-
hibiting a much roughersurfaceoxide scale. Table XXIII gives the completere-
sults of the Mach 0.8 hot gas erosiontests on the Si3N4 controlsand RSSN layers.

4.5.4.3 Erosion Testing of RSSN Layers with CVD Si3N 4 and SiC

Overlayers

While the hot gas erosion resistance of RSSN layers containing 25 vol % Si

at 1200 and 1370°C is quite good, as far as surface recession is concerned, the

large amount of oxide formation may be detrimental during very long time expo-

sures. It would thus be desirable to have a CVD coating system that would pro-

tect the RSSN layer from oxidation. CVD Si3N 4 coatings deposited at the usual

deposition temperatures of 1400-1450°C, using a mixture of SiF 4 + NH3, can be

extremely protective of fully nitrided RSSN material; however, the presence of

residual Si for optimum impact resistance in the RSSN layers studied under this

program has prevented the formation of a successful CVD Si3N 4 coating applied

at 1400-1450°C.

A sample of NCX-34 Si3N 4 with a -200 RSSN layer that had been coated with

a .005 cm (2 rail) layer of CVD Si3N 4 at a deposition temperature of 1450°C

(Fig. 45), was run for 5 hrs in the hot gas erosion rig at 1200°C. The sample

exhibited no surface recession after the run, but did gain a considerable amount

of weight (22 mg), indicating that the CVD Si3N 4 layer did not completely cover

the RSSN surface. X-ray analysis indicated that the CVD Si3N 4 layer was 100%

_-Si3N4, both before and after erosion testing. From optical microscope exam-

ination, this coating covered the RSSN quite well except for occasional pinholes.

The pinholes appeared to be forming over residual Si particles in the RSSN

layer. It was apparent that the residual Si was melting and/or vaporizing

during the CVD process and preventing complete coverage of the RSSN surface.
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The CVD process parameters were changed such that the chamber temperature

would not exceed 1400°C, thus preventing Si meltout. The CVD Si3N _ coating

formed under these conditions appeared to be continuous when viewed in cross-

section (Fig. 46), but still contained a few pinholes located over residual Si

particles. While the Si did not appear to be melting, the Si vapor pressure

must be high enough to cause Si vaporization, thus preventing complete Si3N 4

deposition. A sample of NC-132 Si3N 4 with a-325 RSSN layer, covered with a

CVD Si3N 4 coating of 2 mils (50p) that was deposited at 1400°C, was run for

5 hrs at 1370°C in the hot gas erosion rig. The sample gained a considerable

amount of weight (33 rag), indicating that oxygen was penetrating into the RSSN

layer through pinholes in the CVD coating, but exhibited no measurable surface

recession and no oxide formation on the CVD Si3N 4 surface. It is apparent

that the erosion resistance of an RSSN layer with a CVD Si3N q coating would be

excellent if a pinhole-free coating could be deposited.

Since a protective CVD Si3N 4 overlayer could not be obtained, CVD SiC

layers were deposited at i120°C on erosion samples of NC-132 and NCX-34 with

-200 RSSN layers. The CVD SiC layers were ~1.5 mils (36p) in thickness. The

results of erosion tests at 1200 and 1370°C (see Table XXIII) showed that these

overlayers were very resistant to surface recession and relatively good in oxi-

dation protection. Compared to the CVD Si3N 4 overlayers, the CVD SiC overlayed

samples gained only 6 mg (vs 22 mg for Si3N4) at 1200°C and only 2.5 mg (vs 33

mg) at 1370°C. The slight amount of SiO 2 that formed on the surface of the

CVD SiC at 1370°C was evidently sealing the surface cracks in the SiC, thus not

allowing significant internal oxidation of the RSSN layer to occur. Figure 47

shows the cross-section of a -200 RssN layer with a CVD SiC overlayer both be-

fore and after a 5 hr, 1370°C erosion test. The erosion test has roughened

the CVD SiC overlayer somewhat, but other wise there exists no significant dif-

ference in the two samples.

Interestingly, a rather dense transition zone exists under the CVD SiC

overlayer and can be seen in both samples in Fig. 47. From electron microprobe

examination, this transition zone consists of residual Si particles surrounded

by a rather dense matrix that contains Si, N, C, and some O. The reactant

gases during the early stages of the CVD process are evidently reacting with

the _-Si3N 4 whisker matrix forming either a mixture of SiC and Si3N 4 with some

02 contamination or some compound of the four elements. If a compound is form-

ing, X-ray analysis has not been able to identify it.

Bend tests conducted on as-nitrided -200 RSSN layers on NCX-34 Si3N % and

identical samples after the application of a CVD SiC overlayer showed a de-

crease in RT 4-pt bend strength for the samples with CVD SiC overlayers compared

to those without. The samples without CVD SiC overlayers averaged 590 MPa (86

ksi) when the -200 RSSN layer was tested in tension, while those with CVD SiC

3O



overlayers averaged 421 MPa (61 ksi). The fracture origin of the samples with

CVD SiC overlayers was invariably located close to the RSSN/HPSN interface near the

corner of the sample where the dense CVD SiC/RSSN transition zone came in-

to contact with the HPSN substrate, as shown in Fig. 48. The dense transition

zone is evidently providing a crack path at the corners of the sample where it

is in contact with the HPSN substrate. Samples tested that had 0.25 mm (i0

mils) groun_ off each side so as to remove the transition zone that is in con-

tact with the HPSN substrate did not exhibit severe strength degradation,

averaging 540 MPa (78 ksi) in strength.

In an actual component of dense Si3N _ with an RSSN energy absorbing sur-

face layer overlaid by a CVD SiC coating_ it would be likely that the CVD SiC/

RSSN transition zone would not come into contact with the dense Si3N_ component.

If it did, the part could probably be designed so that the transition zone

region in contact with the dense Si3N 4 would not be a highly stressed area.
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V. CONCLUSIONS

The major conclusions that can be reached from work done on this program

to improve the toughness (impact resistance) of hot-pressed Si3N 4 are as follows:

i. The ballistic impact resistance and bend strength at RT of Norton Co.

NCX-34 hot-pressed Si3N 4 is substantially higher than that of NC-132 Si3N 4. At

1370°C the ballistic impact resistance of the two materials is approximately

equal.

2. Certain lots of NCX-34 Si3N 4 with Y203 additive, including all three

billets used for this program, exhibit catastrophic oxidation properties in the

temperature range of 700-i000°C. The cause of this phenomenon is not fully

understood and must be further investigated in order to fully utilize the po-

tential of Si3N 4 with Y203 additive.

3. Reaction sintered Si3N 4 (RSSN) surface layers on either NC-132 or

NCX-34 Si3N 4 substrates cause a severe (~50%) drop in strength of the substrate

when the nitriding is carried out in pure flowing N2, but only a minimal drop

in strength when the Si powder layer is nitrided in a 96% N2/4% H2 mixture. The

reason for the strength degradation appears to be connected with the difference

in microstructure between RSSN layers nitrided in pure N2 and in N2/H 2 mixtures.

Large, interconnected B-Si3N 4 particles are formed when nitriding is done in

pure N2 whereas the B-Si3N 4 particles formed in N2/H 2 mixtures are always

separated from each other and from the substrate by an e-Si3N 4 whisker mat.

Thus, no large stress-concentrating flaws (B-Si3N 4 particles) are bonded di-

rectly to the HPSN surface and cracks initiating in the RSSN layer cannot

propagate directly through B-Si3N _ grains and into the HPSN substrate.

4. Ballistic impact tests at RT and 1370°C on NC-132 and NCX-34 Si3N 4

substrates with i mm thick RSSN layers fabricated from either -325 mesh, -200

mesh, or -i00, +200 mesh Si powder indicated that fully nitrided layers (i.e.,

no residual Si) result in only modest (50-100%) improvement in impact resistance

over HPSN control values.

5. To obtain optimum impact resistance on the order to 600-700% improve-

ment over control values, the nitriding schedule must result in at least 20

vol % residual Si remaining within the RSSN layer. The residual Si is apparently

absorbing a great deal of energy as it is crushed and fractured by the ballistic

projectile.
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6. For a smooth surfacefinish and a relativelydense (-30% porosity)

mlcrostructure,either -325 or -200 mesh Si powdernitrided in N2/H2 mixtures
to a residualSi contentof 20-25 vol % is preferredover the rather coarse
-i00, +200 Si powder previouslyused. Controlof the residualSi contentwith
the finer powdersis more difficult,however.

7. Thermal cycling75 timesbetween 150-200°Cto either 1200 or 1370°C
does not ad%erselyaffect the ballisticimpact resistanceof eitherNC-132 or
NCX-34 Si3N4 controlsamplesnor does it affect the impact improvementof
-325 and -200 RSSN layers (25 vol % Sl) on HPSN substrates. A large amountof
silica (crlstobalite)is formedwithin the RSSN layersduring cycling,but
this did not affect the RSSN/HPSNbonding or the abilityof the RSSN layers to
absorbenergy during impact since the silica forms primarilyat the expense of

the a-SI3N4 within the RSSN layers and thus does not reduce the Si contentbe-
low the critical20 vol % level.

8. Attempts to form an oxidation and erosion protective CVD Si3N % over-

layer on RSSN layers containing residual Si were not successful due to the

high Si vapor pressure at the deposition temperature (1400-1450°C) interfering

with the deposition process and causing pinhole formation over residual Si

particles.

9. CVD SiC overlayers were successfully deposited at i120°C on RSSN layers

containing Si and, while cracking of the SiC was often a problemj crack-free

coatings were deposited and, on thermal cycling to 1370°C, did offer substantial

oxidation protection and no decrease in ballistic impact properties, although a

bend strength decrease was noted due to crack propagation through a dense transi-

tion zone under the CVD SiC coating.

i0. Mach 0.8, 5 hr, hot gas erosion testing at sample temperatures of

1200°C and 1370°C on NC-132 and NCX-34 Si3Nu controls showed that no surfaceo o
recession or weight change occurred at 1200 C, while at 1370 C a very slight

surface recession (2.5D) and weight gain (+0.i mg) was observed for NC-132

Si3N 4 and a rather large surface recession (25_) and weight loss (-3.5 mg) for

NCX-34 Si3N _. For the -325 and -200 RSSN layers with 25 vol % Si, no surface
recession was detected at 1200°C while a small surface recession (~8_) was de-

tected at 1370°C. A substantial weight gain was observed at both temperatures

due to internal oxidation of the RSSN layer.

ii. Erosion tests of -200 RSSN layers (25 vol % Si) with 36_ (1.5 mil)

overlayers of CVD SiC showed no surface recession at 1200 or 1370°C and very

small weigh t gains. It is felt that an optimized CVD SiC overlayer could offer

excellent oxidation and erosion protection for RSSN energy absorbing surface

layers on dense Si3N 4 substrates.
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12. From the results of various research programs carried out during the

past six years that have been concerned with improving the impact resistance of

SI3N 4 through the use of compressive surface layers (Refs. 4-6) or energy ab-

sorbing surface layers (Refs. 1,7-10), the system of R.S. SI3N 4 surface layers

on dense Si3N4, investigated during this contract, appears to be the only

practical system investigated thus far for potential use as an energy absorbing

surface layer on dense Si3N 4 used as a high temperature structural ceramic.

While the RSSN surface layers do tend to degrade the inherent bend strength of

the dense Si3N 4 substrate somewhat, and they do tend to oxidize internally in

high temperature environments, these do not appear to be limiting factors in

the application of the RSSN energy absorbing surface layer concept.
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TaSleI

SpectrochemlcalAnalysisof NortonNC-132and
NCX-34Si3N4 ImpurityContent

NC-132 SI3N4 Element Wt _ Present
p = 3.25 gms/cc

A1 0.i0

Fe 0.15

Mg 0.35
W 3.00

Cr,Co,Cu,Mn,Ti,Ca,Na <0.01 each

NCX-34 Si3N4
p = 3.35 gm/scc

Y 7.15,
Fe 0.20
A1 0.20
Mn 0.05
W 2.90*
Ca 0.i0

B,ME,Ti <0.01 each

*Determinedby atomic absorption
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Table II

Grain Size of NC-132 and NCX-34 Si3N4

Sample Grain Size (_)
Max. Mean Min.

NC-132 2.4 0.80 <0.15

NCX-34 2.7 0.88 <0.15
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Table III

Impurity Content of Si Powders (w/o)

Powde r Fe AI Mn Mg eb C___r T__i C_a_a

-325 Si (98%# .7 .2 .3 <.01 .01 .i .03 .i

-325 Si (99.6%) .05 .i <.01 <.01 .i <.01 <.01 .05

-200 Si (98.5%) .4 .2 .i <.01 .02 .05 <.01 .i

-100,+200 Si .3 .2 .03 <_01 .02 <.01 .02 .i

(98.5%)
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Table IV

BET (N2) Surface Area Analysis of Si Powders

Powder Sample Surface Area (m2/g)

-325 Si (99.6% purity) 7.2

-325 Si (98% purity) 2.7

-200 Si (98.5% purity) 0.77
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Table V

RT and 1370°CBallisticImpact Propertiesof NCX-34 and NO-132
Si3N4 Controls Using 0.34 gm (4.4 mm) Hardened

Chrome-SteelProjectile

Sample No. Temp <°C_ Impact Velocity Impact Energy Comments

m/se.___.£ft/sec Joules ft-lbs

NCX-34-BI-I RT 130 425 2.8 2.1 TensileFailure
-2 " 130 425 2.8 2.1 " "
-3 " 127 415 2.7 2.0 HertzianFailure
-4 " 127 415 2.7 2.0 TensileFailure

-5 " 13__4 44__0 3.__0 2.___2 " "
Avgs 130 425 2.8 2.1

-6 1370 134 440 3.0 2.2 TensileFailure

-7 " 117 385 2.3 1.7 FractureOrigin
-8 " 127 415 2.7 2.0 Uncertain
-9 " 117 385 2.3 i.7 "
-i0 " 117 385 2.3 i.7 "

Avgs 122 400 2.6 1.9

NC-132Averages RT 105 345 1.9 1.4 Predominantly
HertzianFailure

" 1370 128 420 2.8 2.1 50-50Hertzian
& TensileFailure
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Table Vl

RT and 1370°C Ballistic Impact Properties of NCX-34 Si3N 4

with i mm Thick RSSN Layer, Nitrlded 60 hrs at 1375°C

Layer Temp. °C Impact Velocity Impact Energy Comments

m/sec ft/sec joules ft-lbs

-325 Si RT 191 630 6.2 4.6 Layer destroyed, no

damage to substrate

" " 230 755 9.1 6.7 SiBN 4 substrate frac-

tured, tensile failure

" " 246 810 10.5 7.7 "

" 1370 169 555 4.9 3.6 Layer destroyed, no

damage to substrate

" " 191 630 6.2 4.6 Si3N 4 substrate frac-

tured, tensile failure

-100,+200 Si* RT 169 555 4.9 3.6 Layer destroyed, no
damage to sub strate

" " 191 630 6.2 4.6 SisN 4 substrate frac-

tured, tensile failure

" 1370 152 500 3.7 2.7 Layer destroyed, no

damage to substrate

" " 169 555 4.9 3.6 Si3N 4 substrate frac-
tured, origin uncertain

* <5 v/o Si unreacted
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Table VII

RT Ballistic Impact Properties of NC-132 and NCX-34 Si3N4

with 1 mm Thick ESSN Layer (-100,+200 Si),
25-30 v/o Unreacted Si Nitrided 24 hrs at 1375°C

Substrate

Material Impact Velocity Impact Energy Comments

m/sac ft/sec Joules ft-lb_____s

NC-132 Si3N4 191 630 6.2 4.6 Two-thirds of layer retained,
no damage to substrata

• " 212 695 7.6 5.6 Layer destroyed, no damage
to substrata

" 230 755 9.1 6.7 "

" 246 810 10.5 7.7 Si3N4 substrata fractured,
Hertzlan failure

NCX-34 Si3N_ 191 630 6.2 4.6 Half of layer retained,no
damage to substrate

" 212 695 7.6 5.6 "

" 230 755 9.1 6.7 Layer destroyed,no damage
to substrata

" 246 810 i0.5 7.7 "

" 260 850 11.4 8.4 "

" 271 890 12.5 9.2 Si3N4 substratafractured,
tensilefailure
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Table VIII

RT Ballistic Impact Tests of RSSN Layers, i mm Thick,

on NCX-34 SisN4 (Nitrided to 1375°C, 8 hrs)

Lag.y2__ Impact.Velocit7 Impact Energy Comments

m/sec ft/sec Joules ft-lbs

-325 Si 169 555 4.9 3.6 2/3 of layer destroyed, no
damage to substrate

" 191 630 6.2 4.6 SisN 4 substrate fractured,
tensile failure

-100,+200 Si* 260 850 11.4 8.4 layer destroyed, no damage
to substrate

" 272 890 12.5 9.2 Si3N 4 substrate fractured,
tensile failure

" 282 925 13.6 i0.0 "

* 60 v/o Si unreacted
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Table IX

RT Ballistic Impact Properties of NC-132 and NCX-34 Si3N 4 with

i mm Thick RSSN Layers, Nitrided i hr at 1375°C, N2

Substrate Impact Velocity Impact Energy

Material Layer m]sec ft/sec _oules ft-lbs Comments

NC-132 -200 Si* 230 755 9.1 6.7 Layer destroyed only at

point of impact, no damage
to substrate

" " 260 850 11.4 8.4 Two-thirds of layer re-

tained, no damage to
substrate

" " 282 925 13.6 i0.0 Layer destroyed, no
damage to substrate

" " 300 980 15.4 ll.4 Si3N4 substrate fractured,
Hertzian failure

NCX-34 " 300 980 15.4 11.4 Half of layer destroyed,

no damage to substrate

NC-132 -325 Si** 282 925 13.6 i0.0 Layer destroyed, no

damage to substrate

" " 300 980 15.4 11.4 Si3N 4 substrate fractured,
Hertzlan failure

NCX-34 " 300 980 15.4 11.4 Layer destroyed, no

damage to substrate

* 30 v/o unreacted Si

** 20 v/o unreacted Si
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Table X

RT BallisticImpactPropertiesof NC-132and NCX-34Si3N4 with 1 mm
ThickRSSNLayers,Nitrided1 hr at 1375°Cin 96% N2/4%H2

Substrate Impact Velocity Impact Energy

Material Layer m/see ft/see Joules ft-lbs Comments

NC-132 -200 Si* 260 850 11.4 8.4 Layer destroyed only at

point of impact, no
damage to substrate

" " 282 925 13.6 i0.0 Half of layer destroyed,
no damage to substrate

" " 300 980 15.4 11.4 SisN4 substrate frac-
tured, tensile failure

NCX-34 -200 Si* 300 980 15.4 11.4 Layer destroyed only at
point of impact, no
damage to substrate

" " 315 1045 17.2 12.7 SisN4 substrate frac-
tured, Hertzian failure

NCX-34 -325 Si** 191 630 6.2 4.6 Layer destroyed, no

damage to substrate

" " 230 755 9.1 6.7 Si3N 4 substrate frac-
tured, Hertzian failure

" " 260 850 11.4 8.4 SisN 4 substrate frac-

tured, tensile failure

* 21 v/o unreacted Si

** 5 v/o unreacted Si
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T_le XI

RT Ballistic Impact Properties of NCX-34 Si3N _ with i mm Thick RSSN
oCLayers, Nitrided for Various Times at 1375 In 96% N2/4% H2

Layer Time at 1375°C Impact Velocity Impact Energy Comments

(Vol % Si) m/sec ft/sec ioules ft-lbs

-325 Si 30 mln (20% Si) 343 1125 19.7 14.5 Layer destroyed, no
damage to substrate

" i hr (5% Si) 191 630 6.2 4.6 "

' " 230 755 9.1 6.7 Si3N4 substrate
fractured, Her tzian
failure

-200 Si 30 min (25% Si) 300 980 15.4 11.4 2/3 of layer des-

troyed, no damage
to substrate

" " 315 1045 17.2 12.7 Si3N4 substrate
fractured,Hertzian
failure

" 1 hr (21% Si) 300 980 15.4 11.4 Layer destroyed
only at point of
impact, no damage

to substrate

" " 315 1045 17.2 12.7 Si3N4 substrate
fractured,Hertzian
failure

" 1½ hrs (14% Si) 191 630 6.2 4.6 Layer destroyed, no
damage to substrate

" " 230 755 9.1 6.7 Si3N 4 substrate

fractured, tensile

failure

" 2 hrs (6% Si) 191 630 6.2 4.6 Layer destroyed, no
damage to substrate

" " 230 755 9.1 6.7 Si3N4 substrate
fractured,tensile
failure

47



Table XII

RT and 1370°CBallisticImpactPropertiesof NC-132andNCX-34
Si3N4 with 1 mm Thick RSSN Layers Containing5 vol % Residual Si

(i hr at 1375°C, N2/H2)

Layer Substrate Temp. Impact Velocity Impact Energy Comments

m/sec ft/sec joules ft-lbs

-325 Si NC-132 RT 169 555 4.9 3.6 Layer destroyed, no

damage to substrate

" " RT 191 630 6.2 4.6 Si3N 4 substrate frac-
tured, tensile failure

" " 1370°C 230 755 9.1 6.7 Layer destroyed, no

damage to substrate

" " 1370°C 260 850 11.4 8.4 Si3N 4 substrate frac-

tured, tensile failure

" NCX-34 RT 191 630 6.2 4.6 Layer destroyed, no

damage to substrate

" " RT 230 755 9.1 6.7 Si3N 4 substrate frac-

tured, Her tzian
failure

" " 1370°C 152 500 3.7 2.7 Layer virtually in-

tact, no damage to
sub stra te

" " 1370°C 169 555 4.9 3.6 Si3N 4 substrate frac-

tured_ fracture

origin uncertain
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Table XIII

1370°C BallisticImpactPropertiesof NC-132 and NCX-34
SisN4 with i mm Thick RSSN Layers Containing -25 vol % ResidualSi

(30 rain at 1375°C, N2/H2)

Substrate Layer ImpactVelocity ImpactEnergy Comments
m/sec ft/sec Joules ft-lbs

NC-132 -200 Sl 300 980 15.4 11.4 Layer destroyed,no
damage to substrate

" " 315 1045 17.2 12.7 SisN4 substratefrac-
tured,Hertzian
failure

NCX-34 " 260 850 11.4 8.4 Layer destroyedonly
at point of impact,no
damage to substrate

" " 282 925 13.6 i0.0 SisN4 substratefrac-
tured, fractureorigin
uncertain

NC-132 -325 Si 315 1045 17.2 12.7 2/3 of layer destroyed,
no damage to substrate

" " 336 1100 19.0 14.0 SisN_ substratefrac-
tured,Hertzian failure

NCX-34 " 260 850 11.4 8.4 2/3 of layer destroyed,
no damage to substrate

" " 282 925 13.6 10.0 SisN4 substratefrac-
tured, fractureorigin
uncertain
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Tab le XIV

RT Ballistic Impact Condition Needed to Fracture NC-132 Si3N 4

with Varying Thickness RSSN Layer (25 vol % Si)

Layer Impact Velocity Impact Energy

L___.x_r Thickness m/sec ft/sec Joules ft-lbs

-200 Si 1.0 mm 300 980 15.4 11.4

-200 Si 0.64 mm 282 925 13.6 i0.0

-200 Si 0.50 mm 260 850 ii.4 8.4

-200 Si 0.25 mm 212 695 7.6 5.6

None - 105 345 1.9 i.4
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Table XV

RT 4-ptBendTestsonNC-132andNCX-34SisN4,
WithandWithout1 mm ThickRSSNSurfaceLayers

Layer Nitridin$Treatment Modulusof Rupture- }_a (ksi)
NC-132 NCX-34

None* None 662 (96) 848 (123)

-325 Sin* Ar, i150°C,20 hrs 695 (i01) 827 (120)

-325 Sinn At, i150°C,20 hrs 627 (91) 690 (i00)
+ N2, 1250°C,24 hrs

-325 Sin* Ar, i150°C,20 hrs 327 (47.5) 414 (60)
+ N2, 1250°C,24 hrs 700 (102) poorbond
+ N2, 1375°C_24 hrs

-i00, +200 sin* ,, 405 (58.7) 462 (67)

-325 Si n Standard 324 (47) 414 (60)

Ar, i150°C,20 hrs 710 (103)poor bond
+ N2p 1250°C,24 hrs

+ N2j 1375°C,60 hrs

-i00, +200 sin " 338 (49) 427 (62)

None* " 785 (114) 725 (105)

nAverage of i0 tests

**Average of 5 tests
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Tab le XVI

RT 4-pt Bend Strength of NC-132 and NCX-34 SisN 4 with

Well Bonded RSSN Layers Nitrided in N2/H 2 to 1375°C

Substrate Layer Vol % Si Modulus of Rupture*
MPa ksi

NC-132 -325 Si (98%) <5% 632 91.6

" -325 Si (99.6%) <5% 361 52.3

" -100,+200 Si (98.5%) 5-10% 338 49.0

" -325 or-200 Si (98%) 20-25% 503 73.0

NCX-34 -325 Si (98%) <5% 640 92.8

-325 Si (99.6%) <5% 539 78.2 (well-bonded)

708 103.0 (poorly-b onded)

-100,+200 Si (98.5%) 5-10% 513 74.5

-325 or-200 Si (98%) 20-25% 572 83.0

*Average of three tests
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Table XVII

Weight Gain and Oxide Formationon NC-132 and NCX-34 Si3N4
ControlsAfter 75 Cycles from 200 . 1370°Cand 150 . 1200°C

Substrate Thermocycle Wt Galn-mg* Oxide Formation

NCX-34 200 . 1370°C 8.2(0.30 mg/cm2) Y2Si207 + SiO2

NC-132 " 23(0.85 mg/cm2) MgSiO3 + SiO2 + glass

NCX-34 150 . 1200°C 4(0.15 mg/cm2) SiO2 (major) + Y2Si05 (minor)

NC-132 " 6.7(0.25 mg/cm2) SiO2 (major) + Si2N20 (minor)
+ unidentified minor phase

*average of six samples
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Tab le XVIII

RT and 1370°C Ballistic Impact Properties of NC-132 and NCX-34 Si3N 4 Control Samples,

As-received and After 75 Thermal Cycles to 1200°C and 1370°C

Sample Cycle Test Temp. Impact Velocity Impact Energy* Comments
m/sec ft/sec joules ft-lbs

NC-132 None RT 105 345 1.9 1.4 Predominantly Hertzian Failure

" 150 . 1200°C " 117 385 2.3 1.7 "

" 200 . 1370°C " iii 365 2.0 1.5 "

" None 1370°C 128 420 2.8 2. i Hertzian & Tensile Failure

" 150 . 1200°C " 123 405 2.6 1.9 "

" 200 . 1370°C " 120 392 2.4 1.8 "

NCX-34 None RT 130 425 2.8 2.i Predominantly Tensile Failure

_" " 150 . 1200°C " 140 458 3.3 2.4 "

" 200 . 1370°C " 135 444 3.1 2.3 "

" None 1370°C 122 400 2.6 1.9 Fracture Origins Uncertain

" 150 . 1200°C " 133 438 3.0 2.2 "

" 200 . 1370°C " 115 378 2.2 1.6 "

*average of 5 tests



Table XIX

Ballistic Impact Energy Necessary to Fracture NC-132 and NCX-34

Si3N h Substrates with i mm Thick RSSN Layers (20-25% Si),
As-Fabricated and After 75 Cycles from 150°C.1200°C and 200°C.1370°C

Substrate Layer Treatment Test Temp. Impact Velocity Impact Energy Comments
m/sec ft/sec joules ft-lbs

NCX-34 -200 Si none RT 315 1045 17.2 12.7 Hertzian failure
o

" " cycled to 1200 C " 336 ii00 19.0 14.0 "

" " cycled to 1370°C " 336 ii00 19.0 14.0 Tensile failure
o

" " none 1370 C 282 925 13.6 I0.0 Indeterminate failure

" " cycled to 1200°C " 300 980 15.4 11.4 Hertzian failure

" " cycled to 1370°C " 315 1045 17.2 12.7 Tensile failure

NC-132 -325 none RT 300 980 15.4 ii. 4 Hertzian failure

" " cycled to 1200°C " 300 980 15.4 ii. 4 "

" " cycled to 1370°C " 315 1045 17.2 12.7 "
" 300 980 15.4 ii. 4 Tensile failure" -200 none

" " cycled to 1200°C " 300 980 15.4 ii.4 Hertzian failureo

" " cycled to 1370 C " >336 ii00 19.0 14.0 No fracture
" " none 1370°C 315 1045 17.2 12.7 Hertzian failure

" " cycled to 1200°C " 336 ii00 19.0 14.0 "

" " cycled to 1370°C " 336 ii00 19.0 14.0 "



Table XX

Weight Gain and Oxide Formation for NC-132 Si3N4

with -200 RSSN Surface Layers after 75 Cycles from

200°C.1370°Cj Both With and Without CVD SiC Overlayers

Substrate Layer Overlayer Thermocycle Wt Gain Oxide Formation

(mg)

NC-132 none none 200.1370°C 23 MgSiO 3 + SiO 2 + glass

" -200 Si none " 153 _-cristobalite (SiO2)

" " CVD SiC " 52 "
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Tab le XXI

Ballistic Impact Energy Necessary to Fracture NC-132 Si3N _ With 1 mm Thick RSSN

Layers (20-25 vol % Si), As-fabricated and After 75 Cycles from 200.1370°C

Both With and Without CVD SiC Overlayers

Substrate Layer Overlayer Treatment Test Temp Impact Velocity Impact Energy

m/sec ft/sec _ules ft-lbs

NC-132 -200 Si none none RT 300 980 15.4 11.4

" " CVD SiC none " 300 980 15.4 11.4

" " none cycled to 1370°C " 336 ii00 19.0 14.0

" " CVD SiC " " 315 1045 17.2 12.7L_

o

Note: Values for 1370 C test results are comparable



Table XXII

Ballistic Impact Properties of Thermally

Cycled* RSSN/HPSN Combinations

Impact Energy for Subs trate

Thermal Cycle Fracture (_joules)

NC-132 Si3N i NCX-34 Si3N 4
RT 1370vC RT 1370°C

None None i.9 2.8 2.8 2.6

" 75 cycles, 150.1200°C 2.3 2.6 3.3 3.0

" 75 cycles, 200.1370°C 2.0 2.4 3.1 2.2

-200 Si(20-25v/o Si) None 15.4 - 17.2 13.6
" 75 cycles,150.1200°C 15.4 - 19.0 15.4
" 75 cycles,200.1370°C 19.0 - 19.0 17.2

-200 Si + CVD SiC None 15.4 - - -

" 75 cycles, 200.1370°C 17.2 - - -
m

-325 Si(20-25 v/o Si) None 15.4 17.2 - -

" 75 cycles, 150.1200°C 15.4 19.0 - -

" 75 cycles, 200.1370°C 17.2 19.0 - -

*Cycle = 15 min heatup + 40 min hold + I0 min cold air blast cool
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Table XXIII

Mach 0.8, 5 hr, Hot Gas Erosion Testing of NC-132 and NCX-34

Si3N4 Controls and RSSN Surface Layers

Tes t

Substrate Layer Tem__ Surface Recession Wt. Change Surface X-ray Analysis

NCX-34 None 1200°C Not Detectable 0 B-Si3N _

NC-132 None " " 0 "

NCX-34 -200 Si " " +21.2 mg e-Si3N4_ B-Si3N4_ Si_ SiO 2

NCX-34 -325 Si " " +17.1 mg "

11 I!

NCX-34 -200 Si + CVD Si3N 4 +22.0 mg _-Si3N _

NC-132 -200 Si + CVD SiC " " + 6.0 mg _-SiC

NC-132 None 1370°C 0.i mils (2.5_) +0.i mg B-Si3N 4 + SiO 2 (minor)

Vl

NCX-34 None " 1.0 mils (25_) -3.5 mg

NC-132 -325 Si " 0.3 mils (8p) +12.4 mg e-Si3N4, B-Si3N4_ Si, SiO 2

NC-132 -200 Si " 0.3 mils (8_) +12.2 mg "

NC-132 -325 Si + CVD Si3N 4 " Not Detectable +33 mg e-Si3N _ . SiO 2 (Minor)

NCX-34 -200 Si + CVD SiC " " +2.5 mg B-SiC + SiO 2 (minor)





R79-914364-12 FIG. 1

MICROSTRUCTURE OF NC-132 (a) AND NCX-34 (b) HOT-PRESSED Si3N4 (TEM REPLICA)

a) 1_



R79-914364-12 FIG. 2

NCX-34 Si3N4 SAMPLE FROM BILLET F 338355 SHOWINGMICROCRACKS
ENHANCED BY ZYGLO PENETRANT

79--03--209--8



R79-914364-12 F IG. 3

NCX-34 Si3N4 OXIDATION STUDY

100 HR 930oc

BEFORE

AFTER

1 CM

78--10--259 4

F-



R79-914364-12 FIG. 4

NCX--34 Si3N4 (BILLET F338355) AGED IN AIR AT 730°C ' FOR 48 HRS

TOP VI EW

I i
1.2 cm

79--01 --63--2
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STEPS IN FABRICATION OF HPSN/RSSN BALLISTIC IMPACT SAMPLES
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R79-914364-12 FIG. 6

INTERFACE BETWEEN-100, +200 RSSNLAYER AND NCX-34 Si3N4,
NITRIDED TO 1375oc, 60 HRS, N2

"_-- --100, +200 RSSNLAYER
(<5 V/O UNREACTED Si)

-_ NCX-34Si3N 4

79--01 --63--3



R79-914364-.12 FIG. 7

RSSNLAYER (-100, +200 Si) NITRIDED TO 1375oc, 24 HRS, N2
(25-30 V/O UNREACTED Si)

50/1

79--01 --63--4

__



R79-914364-12 FIG.8

RSSNLAYER (-100, +200 Si) NITRIDED TO 1375oc, 8 HRS, N2
(60 V/O UNREACTEDSi)

79--01 --63--5



R79-914364- i2 FIG. 9

RSSN LAYER (-325 Si) NITRIDED TO 1375oc, 8 HRS, N2
(Si COMPLETELY NITRIDED)

i i
50,u

79--01 --63--6



R79-914364--12 FIG. 10

RSSNLAYER (-100, +200 Si) NITRIDED TO 1300oc, 8 HRS, N2
(10 V/O OF Si CONVERTED TO Si3N4)

79--01 --63--7
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R79-914364-12 FIG. 11

BALLISTIC IMPACT SAMPLEOF NC-132 Si3N4 WITH -200 RSSN
LAYER AFTER'9.1 JOULE IMPACT

0.5cm

79--04--80--4



R79--914364-12 FIG. 12

RSSN LAYER (-200 Si) NITRIDEDTO 1375°C, 1 HR, 96°/oN2/4% H2
(21 V/O UNREACTEDSi)

L J

50/J

79--04--80-- 5
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R79-914364-,12 FIG. 13

RSSN LAYER (-325 Si) NITRIDED TO 1375oc, 1 HR, 96% N2/4% H2
(5 V/O UNREACTED Si)

79--04--80--6



R79-914364-12 FIG. 14

BALLISTIC IMPACT SAMPLE OF NCX-34 Si3N4 WITH -200 RSSN
LAYER (21V/OSi)AFTER 15.4 JOULE IMPACT

0.4cm

79--04--80--7



R79-914364-12 FIG, 15

BALLISTIC IMPACT SAMPLEOF NCX-34 Si3N4 WITH -200 RSSN
LAYER (21 V/O Si) AFTER 17.2 JOULE IMPACT

0.4cm

79--04--80--8
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R79-914364-12 FIG. 16

BALLISTIC IMPACT SPECIMENOF NCX--34 Si3N4 WITH --325 RSSNLAYER (5 V/O Si)
IMPACTED AT 1370°C, 169 M/SEC (4.9 JOULES)

79--04--80--9



R79-914364-12 FIG. 17

FRACTURESURFACEOF BALLISTIC IMPACTSPECIMENSHOWNIN FIG. 16

I,,i,,

L t
0.5cm
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R79-914364-12 FIG. 18

Ballistic Impact Properties of N0.132 SI3N4 with RSSNEnergy Absorbing
Surface Layers
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Ballistic Impact of Properties of NCX·34 Si3N4 with RSSN Energy Absorbing
Surface Layers
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R79-914364-12 FIG. 20

IMPACTSURFACE OF A STEEL SPHEREAFTER 130 M/SEC (2.8 JOULES) IMPACT
WITH NCX-34 Si3N4 CONTROL

i

!

a) ' '400,U

b)
200_u

79--04--80-- 11



R79-914364-12 FIG. 21

IMPACT SURFACE OF A STEEL SPHEREAFTER 230 M/SEC (9.1 JOULES)

IMPACTWITH A -200 RSSNLAYER (6 V/O Si) ON NCX-34 Si3N4

a)
400_

b)
200_U

79--04--80--12



R79-914364-12 FIG. 22

IMPACT SURFACEOF A STEEL SPHEREAFTER 260 M/SEC (11.4 JOULES) IMPACT
WITH A-200 RSSNLAYER (21 V/O Si) ON NCX-34 Si3N4

• _ i¸¸

a) 400#

b) 200#

79--04--80--13
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R79-914364"12 FIG. 23

POINT OF IMPACTTHROUGH A-200 RSSNLAYER DOWNTO THE HPSNSUBSTRATE
FOR A STEEL SPHERETRAVELING AT 300M/SEC

400_

79--06--156--9

r



R79-914364-12 FIG. 24

FRACTURE SURFACEOFNC-132Si3N 4wITH-325Si LAYER (NITRIDED AT
MAXIMUM TEMP. OF 1250oc FOR 24 HRS.)

A ) L__J
800/1

B) 100#

C) 20#
78--10--170--4



R79-914364-12 FIG. 25
FRACTURE SURFACE OF NC-132 Si3N4 WITH -325 Si LAYER (NITRIDED AT

MAXIMUM TEMP. OF 1375°C FOR 24 HRS.)

A) '----'-'-'
800_

BI ' '
1oo/_

c) ''
20_

78--10--170--1



R79-914364-12 FIG. 26

FRACTURE SURFACEOF POORLY BONDED RSSNLAYER (-325 Si, 98%)ON NCX-34 Si3N4,

NITRIDED TO 1375°C, 60 HRS,N2

I__J
OVERALL Vl EW 800#

L--.__,._I

ORIGIN AREA 100,u

79--01 --63--8
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R79-914364-12 FIG. 27

FRACTURE SURFACE OF STRONGLY BONDED RSSN LAYER (-100, +200Si)
ON NCX-34 Si3N4, NITRIDED TO 1375oc, 60 HRS, N2

t__J

OVERALL VIEW 800/._

L_J
ORIGIN AREA 100,U

79--01 --63--9

__



R79-914364-12 FIG. 28

FRACTURE ORIGIN OF NCX-34 Si3N4 WITH LOOSE -100, +200 Si PARTICLES

ON THE SURFACE, NITRIDED TO 1375oc, 60 HRS, N2

1 i

10o#

79--01 --63--10



R79-914364-12 FIG. 29

FRACTURE SURFACE OF -325 Si (98°/o)RSSN LAYER ON NC-132 Si3N4,

NITRIDED IN 96% N2/4% H2 TO 1375o0, 60 HRS

OVERALL VIEW 625/4

ORIGIN AREA 100/.4

79--01 --72--3



R79-914364-12 FIG. 30

FRACTURE SURFACEOF -325 Si (98%) RSSNLAYER ON NCX-34 Si3N4,

NITRIDED IN 96%N2/4% H2 TO 1375°C, 60 HRS

625/a
OVERALL VIEW

100/.z
ORIGIN AREA

79--01 --72--2



R79-914364-12 FIG. 31

FRACTURE SURFACEOF -325 Si (98%) RSSNLAYER ON.
NC-132 Si3N4, NITRIDED IN N2 TO 1375oc, 60 HRS

OVERALL VIEW 800/J

LmJ

ORIGIN AREA 140#

79-01-72-1



R79-914364-12 FIG. 32

Effect of RSSNLayeron R.T.4.Pt. BendStrengthof NC.132 Si3N4

I A: Ar, 1150C, 20 hrs

B: N2, 1250C, 24 hrs
C: N2, 1375C, 24 hrs

HEAT TREATMENTS D: N2, 1375C, 60 hrs
E: 96N2/4H2, 1250C, 24 hrs
F: 96N2/4H2, 1375C, 60 hrs
G: 96N2/4H2, 1375C, 1/2 hr
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R79-914364-12 FIG. 33

Effect of RSSNLayer on R.T.4.Pt. Bend Strength of NCX.34 Sl3N4

A: At, 1150C, 20 hrs

B: N2, 1250C, 24 hrs
C: N2, 1375C, 24 hrs

HEAT TREATMENTS D: N2, 1375C, 60 hrs
, E:96N2/4H2, 1250C, 24 hrs

F: 96N2/4H2, 1375C, 60 hrs
G: 96N2/4H2, 1375C, 1/2 hr
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R79--914364-12 FIG. 34

NCX-34 Si3N 4 (LEFT) AND NC-132 Si3N4 (RIGHT) SAMPLES EXPOSED FOR

75 CYCLES FROM 200oc TO 1370°C,

i =
0.5cm

79--04--80--14



R79--914364--12 FIG. 35

RSSNLAYER (-200 Si) ON NC-132 Si3N4 AFTER 75 CYCLESTO 1370oc

A)

50#

Si GRAIN BOUNDARY

OXIDATION

BI [_J
20#
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R79-914364-12 FIG. 36

THICK (0.15MM) CVD Si C ON -- 200 RSSN/HPSNBALLISTIC IMPACTSAMPLE

50_U

79--06--1 56--11



R79-914364-12 FIG. 37

THERMALLY CYCLED (21 CYCLESTO 1370oc) SAMPLEOF -200 RSSNON NC-132 Si3N4
WITH THICK (0.15 MM) CVD SiCOVERLAYER

L I
0.5 CM

79--06--156--14
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R79-914364-12 FIG. 38

THIN (25_), FINE GRAINED CVD Si C OVERLAYER ON -200 RSSN

I.,..=_..J
20/_
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R79-914364-12 F IG. 39

OXIDIZED SURFACE OF CVD SiCOVERLAYER AFTER 75 CYCLESTO 1370oc.

10/J

79--06--156--10



R79--914364--12 FIG, 40

SEMOF NC-132 Si3N4 EROSIONSAMPLETESTED AT 1370oc, 5 HRS.

A)
250_

B)
100#

5/_
79--06-- 156--3



R79-914364-12 FIG. 41

SEM OF NCX-34 Si3N4 EROSION SAMPLE TESTED AT 1370°C, 5 HRS.

A_ [_j
250#

B)
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c_ L___J
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R79-914364-12 FIG. 43

HOT GASEROSIONTEST SAMPLESAFTER 5 HRS. AT 1370°C

--200 RSSN --325 RSSN NC--132 NCX-34 -

79 --06--156--5



R79-914364-12 FIG.44

SEM OF -200 RSSN EROSION SAMPLES TESTED AT (A) 1200°C, 5 HRS.,
AND (B) 1370°C, 5 HRS.

A)

10#

B/ I__J
10#
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R79-914364-12 FIG. 45

SURFACE OF CVD Si3N40VERLAYER ON A -200 RSSN/HPSNEROSIONSAMPLE.

L =
10_
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R 79-914364-12 FIG. 46

CROSS-SECTIONOF A CVD Si3N4 COATING DEPOSITEDAT 1400oc
ON -200 RSSNLAYER

i i
50/.=

79--O6--1 56--7



R79-914364-12 FIG. 47

CROSS-SECTIONOF A-200 RSSNLAYER WITH A CVD SiCOVERLAYER BEFORE (A)

AND AFTER (B) A 5 HR, 1370oc EROSIONTEST
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R79-914364-12 F IG. 48

FRACTURE SURFACE OF -200 RSSN/HPSN COMBINATION
WITH CVD SiC OVERLAYER
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