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FLOW OF MACNETIZABLE PARTICLES IN TURBULENT AIR STREAMS

by
Kent Ritter Davey

Submitted to the Department of Electrical Engineering on July 27, 1979 in partial

fulfillment of the requirements for the Doctors of Science.

ABSTRACT

The requirement of particulate removal from turbulent flows arises in coal
desulfurization, mineral beneficiation, water purification, particle research
where particle loss is undesirable, and aerodynamic drag reduction, where the
containment of particulate in a quasi-stationary manner within a turbulent
boundary layer is desired followed by precipitation after a given length.

Special consideration will be givern to particle precipitation. Light parti-
cle (diameter < 2(0u) and heavy particle models (diameter > 20u) are developed.
The first involves the numerical solution of a diffusion equation in which
boundary conditions are imposed only where particles enter the volume of interest.
Inertial effects are unimportant. The second model involves a momentum balance
in Lagrangian coordinates augmented by a diffusion force. The diffusion term is
added so that the theory is consistent with inertia and diffusion dominated
limits, and accounts for the effects of turbulent eddies in spreading particles
in flight. Both models lump the effects of turbulent eddies into a measurable
diffusivity constant.

Precipitation experiments with light and heavy iron powders acted on by a
stationary permanent magnet structure are correlated with the numerical model
predictions. A useful degree of accuracy in predicting particle precipitation,
as compared to existing analytical models, is demonstrated for light and heavy
particles.

Positive correlations with data encouraged the use of the heavy particle
analysis in examining particle flight in an aerodynamic boundary layer over a
flat plate. The model predicted that with conventional permanent magnets, 90%
of the injected particulate is collected in 5 meters and 4% would be lost. An
alternative is described in which a travelling wave structure is used to contain
and shuttle particles along in the boundary larer. In this mode, in which
particles continually interact with the wall, 1! appears that particle loss can
be greatly reduced.

Thesis Supervisor: James R. Melcher
Professor of
Electrical Engineering
and Computer Science
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I. Introduction

The flow of magnetizable particles in a turbulent air stream in the
presence of an imposed magnetic field is of interest to NASA (National Aero-
nautics and Space Administration) in utilizing the experimentally observed
phenamenon of drag reduction produced by the introduction of particles in a
turbulent boundary layer. The earliest observation of this effect were in
the 1940's [1, 2, 3] and have recently been expounded on by Landahl [4, 5],
Boothroyd, and Rosetti, and Pfeffer [6, 7]. According to Landahl, the particles
dissipate energy in the small scale boundary layer eddies. Long, thin parti-
cles are most effective in reducing drag. Other investigators believe that
stabilization of small scale motion leads to a reduction in turbulent stresses
near the wall, and to an associated thickening of the wall layer. In gas-
solid suspensions, 10-60 micron particles yield significant drag reduction
with a maximum reduction observed using 30 micron particles. Particles larger
than 100 micron however, increase the drag [7]. NASA is interesfed in whether
particles can be introduced into a turbulent boundary layer, ducted along the
skin of a fuselage, and then precipitated. Figure 1-1(a) illustrates an
hypothesized configuration over an airplane wing.
The interest in particle convection migration is widely ranging. Soo
[8, 9] has been working with multiphase flows for some time. The applications
of and interest in such flows are quite varied. Some examples are as follows:
(1) Determination of the proximity of the particle flow to stream
motion in order tc use solid particles as tracers in studying
the flow of fluids [10].

(2) Determination of the diffusivity of the particles with respect
to the continuous phase [11].
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(3) Determination of the diffusion of fuel and air as influenced by
the relative motion of the fuel particles and air stream in order
to optimize the combustion of solid field particles [12].

(4) Determination of the relation of the motion of solid particles and
the field stream in sedimentation studies and pneumatic conveyance
applications [13, 14].

More germaine to this investigation is work being done in the area of
magnetic precipitation {15, 16, 17]. Liu and Lin give an excellent overview
of work in this area. It is now clear that the use of magnetic fields in
removing pyrite (desulfurization) an@ other inorganic contaminants from coal
will be important in the next few decades. An IEEE Magnetics conference this
past sumner (1978) [18], as well as in 1975 [19], summarized the current work
in this area, Currently, most magnetic precipitators use steel wool or a
similar magnetizable mesh to enhance the magnetic gradient and precipitate
particles (Fig. 1-1(b). The first major contribution to this area where the
effect of particle inertia was considered aﬁpeared in a thesis by Clarkson
[22].

The central theme of this thesis is the flow of particles in turbulent
air streams, and particularly in the boundary layer interaction. Towards this
end, two practical avenues of research emerge. A detailed study of the precipi-
tation of particles from an aerodynamic air stream is considered. Precipitation
is required for removing particles from the boundary layer. It is also a
measure of the turbulent diffusion magnetic migration processes at work in the
flow, This thesis will focus on precipitation because of both its basic
implications and its practical application to drag reduction and particle
management .

(1) Small particle theory (< 10 micron)
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Inertial effects are small but turbulent diffusion must be
considered. The determination of particulate density is accomplished
by solving a two-dimensional diffusion equation. |

(2) Large particle theory (> 40 micron)

Turpulent diffusion is less dominant, and inertial forces are
significant. Particulate distribution is analyzed through a
numerical integration of the momentum equation, i.e. of determining
the particle trajectories modified by the inclusion of a diffusion-
type force.

The principle contribution of this study is the incorporation of
turbulent diffusion theory with an imposed magnetic migration process both
with and without inertia effects. In this work, the imposed migration is
magnetostatic; the nature of this magnetic force to particle interaction will
be explored in depth.

This thesis begins with a review of the pertinent background information
on turbulent flows and the prediction of particulate diffusion. The nature
of the particle magnetic force will be discussed and the inherent difference
between electric and magnetic precipitation considered. Small and large
particle concentration theories will be developed and followed by a presen-
tation of the experimental apparatus, procedures, and theory correlation.
Finally, -the computer model will be used to simulate the flight of particulate
in an air stream over a flat plate. The objective in this final study will
be to understand the controllability of particle confinement in the boundary
layer by altering the density profile. A steady density in the layer is
desirable to obtain the drag reduction benefits. A brief consideration is

given in the concluding chapter to using a traveling wave structure for
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walking particles along a wall in a boundary layer. Figure (1-2) shows such

a structure mounted on the top of the duct.

Before beginning turbulent diffusion theory review, a cursory examination
of the basic experiment is in order. The apparatus used in studying both the
precipitation and ducting of magnetizable particles is shown in Fig. 1-2.
Particles are injected through a copper tube at A and blown down a six-foot
duct. In the precipitation experiments, a permanent magnet structure serves
as the source of a periodic static magnetic field source. The magnets along

the bottom of the duct enhance the precipitation of magnetizable particulate

~on the lover plate. Particles not collected by this field leave the duct at

D. A velocity profile grid at B is used to promote and control turbulent

air flow.
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II. MAGNETIC THEORY BACKGROUND

A. Magnetic Force

The first question that must be considered whether considering
particle precipitation or ducting is "what is the nature of the particle
magnetic fcrce?" A ferromagnetic particle of radius a, permeability u,
in a field of intensity H, experiences a total force

Fadn 2 - 1) 2 (21)

'
2 + g (]

The reader is referred to Appendix A for a derivation of the Eqn. (2-1).
The force expression (2-2) is subject to the following two restrictions:
1) The particle is much smaller than the characteristic length
over which the field changes, i.e., the assumption of constant
H external over the particle's dimension is valid.
2) Particle-Particle interactions are small.
For the largest particles the author will be using (100 um in a
field structure wavelength of 5 cm, assumption (1) is quite valid.
The second assumption is questionable when heavy precipitation
occurs. The particles agglomerate into nair-like structures
and enhancement of local field gradients undoubtedly occurs. This
effect is only significant in the vicinity of precipitated ag-
glomerates. (The author attempted to rest. ict the amount of pre-

cipitant to low levels.)

The two field structures used in this work are shown in Fig. 2-1. The

sinusoidal wave structure used in the ducting experiments excites a trav-
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Figure 2-1 Field Structures Used
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eling wave, the speed of which is determined by the frequency and winding
pole pitch. The field above the motor is Laplacian, decaying exponentially
in the y direction with the same wave number k as the drive current J.
The permanent magnetic square wave structure has an infinite number
of odd harmonics, again Laplacian and falling off in magnitude in the y
direction as the inverse of the harmonic. Thus, a square wave fieid struc-

ture with surface field Ho would yield in the upper half plane

)

o sin mkx 1x
Fo=h I L o™ | (2-2)
m=1 S
odd ) cos mkx 1y

The field above such a structure is in reality not a square wave. Figure
(2-2) shows the typical surface normal magnetic force density 1/4" above the
permanent magnet structure. This field can be decomposed into its Fourier

components and represented as

sin mkx 1x

A=Y H oMy (2-3)

8

o)
cos mkx i
y

Using the first harmonic sinusoidal field of Fig. (2-1(a)) along with
eqn. (2-1), one arrives at the particle force
-2ky H2 ;

oy
or (2-4)

Fe. =2ky 3
F o ke 1y

F=-a"(2k) e
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Figure (2-2) Normal Surface Force Density 1/4" Above Permanent Magnet Structure
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4 .3 3 u 2

h = e ——————— -1 H

where o (=_s;1r«'=\)(2+u”)(]Jo )“oo
0

Note, the net force is y directed only and independent of x.

For the more general Fourier expanded field of (2-3) HeH becomes

MZZ z Hy He g~ (m+L)ky cos(m-2 Ykx (2-5)
m=1 2=
The force is obtained by taking the gradient of (2-5) and multiplying by
the constant o' of (2-3)

= (m+2)ky

(m¥e) k e cos(m-2) kx ?

y
' (2-6)
=1 2=1 (m-2) k g~ (mHe)ky sin(m-2) kx ?x
Equation (2-6) contains many components that will contribute 1ittle to a
particle's motion, When m = %, all the x directed force components vanish.
Furthermore, if m # 2, both the x and y force components have a sinusoidal
x dependence which averages out for interaction lengths greater than one
wavelength. This averaging is more effective when ¢ and m are quite dif-
ferent. Thus the significant force contributions occur when & = m and is
y directed.

~
]

o0

= 2 -2mky

F = - 21 HE (2mk), i,
m=

(2-7)
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The reader may wonder if there are other significant mechanisms for
producing a magnetic force not accounted for by this model. Remembering that
the force per unit volume is uoﬂ3VF. it is evident that the existence of
a permanent moment m yields a force other than in the direction V(H.H). Non-
colinear alignment of m and H results in a torque on the particle and a con-
sequent particle spin. Hysteresis would have the effect of giving rise to a
non-coiinear magnetization in a changing external field. Increasing tem-
perature can cause permeability to decrease (true of most ferromagnetic
materials) or to increase (e.g. magnetite below the Curie temperature).
None of these effects will be considered in this thesis. The author will
be using ferromagnetic powder (p ~ 7 x 103 kg/m3) with a permeability much
greater than g

B. General Precipitation Remarks

The author shall for the remainder of the chapter limit the discussion
to particle flows where inertia is unimportant. The aim, specifically, in
this section, is to gain an understanding of the important géneral proper-
ties common to electric and magnetic precipitators. The added complication
of inertia effects will be considered in Chapter 4.

We shall consider the flow of particulate in a fluid of velocity u acted

on by a migration force F. The particle flux is

T = n(u + F/8) (2-8)
where n = particle density
B = Stokes drag coefficient 6mnr
and qE = electric precipitation

m|
"

o'VHeH = magnetic precipitation
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Since -g-% + VT = 0, the Lagrangian density follows (assumingVeu = 0)

2e-0f o

along . (2-9)

-T+Fre

When .inertia is negligible, Eqn. (2-9) describes the state of the par-
ticulate. The problem with (2-9) is that the velocity U in turbulent flows
is a highly fluctuating quantity. A typical electric precipitation with
negligible self field effect has a divergence free force field (V.qE = 0).
In such an electric precipitator, the particulate density is constant along
any trajectorylflow 1ine. One might wonder if the density would ever de-
crease in a channel even when precipitation occurs. Equation (2-9) shows
that whenever a packet of particulate enters the volume of interest, the
density in the packet remains unchanged no matter how random or fluctuating
its path. The particulate associated with a trajectory is removed from the
flow when it meets a surface. Trajectories entering through solid surfaces
(e.g. side walls in a channel) enter the volume of interest with zero density.
It is the continued mixing of these zero density trajectories with initial
particulate trajectories (which are themselves constantly being removed by
precipitation) in turbulent flow that leads to a density decay down a channel
with a constarc cross-sectional value. This is in fact the Deutsch model we
shall examine in the next section. The point is that all analyses can be

said to be specializations of egn. (2-9), the key issue being how to
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handle the u nf eqn. (2-9,b). Before applying this general theory to

electric and magnetic precipitation in a channel, the author wishes to
point out a general property of all magnetic systems.

It follows from (2-9,(a)), that it is impossible to act on particulate
with a force field whose divergence is positive definite, and have the dens-
ity increase with time. This explains self charge spreading in an electric
system where V+F is proportional to the charge squared. The author will
now prove that the density always decays along trajectories for magnetic sys-
tems in curl-free regions ( in quasistatics thjs means no current density J).

The proof follows by demonstrating the divergence of the force field
(~V(R+H)) is positive definite. A simplification of the force term can be

made
V(HH) = 2H.VH + 2H x (Vv x R) = 2H.vH (2-10)
Using the Einstein summation convention, the term of interest can be written
V(A = 2 == (H, xo— H,) = 2 —3—-3—)3(? (HyH,) (2-11)

i exi J ij

The last step follows after applying V-ﬁ'= 0. Applying the divergence free

requirement to the last term in (2-44) again leads to

my =g g oy
7+(VH-H) = 2 X Ax. (2-12)
J 7%
_ oH, 9H,
Now since V x H = 0, 5§1-= Eil and the proof of a decaying particulate
J i

density is accomplished.
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C. Electric Versus Magnetic Precipitation

Before examinin in detail the full precipitation problem, it is helpful
to consider the nature of the.precipitation process, and to identify the in-
herent difference between electric and magnetic precipitators. Electric pre-
cipitators have been around for some time and analyzed extensively, but there
‘1ies in the physics of the magnetic precipitator a fundamental dissimilarity
that warrants special attention. With this goal in mind, the author will
compare the performance of a charged particle precipitator in the limit of
complete mixin§ (the Deutsch model) and the 1imit of laminar flow with the
magnetic precipitator in the same flow regimes.

Electric Precipitation: Figure (2-3) is the basis for modeling electric

precipitation in a fully-mixed turbulent duct flow. Particles ¢f charge q

in a plug flow velocity U are acted on by a constant vertical field Eo‘ It

is assumed for the moment, that gravitational forces are negligible. The
particles are charged before entering the precipitation region, perhaps by a
corona source. The axial dependence of density is derived from mass conserva-
tion arguments. In this mixing model, also referred to as the Deutsch model
after its originator, the density is uniform over any cross-section because

of the turbulent mixing. Balancing the particle flux entering with the flux

precipitated and the flux leaving gives

qt

U(n(x + Ax) = n(x)) 2aw = - —EQ WA X (2-13)
or
5
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The density then decays exponentially as

(x = x)
%L-= exp - — 0 (2-15)
0 P]
where
¢ = 2a U

The precipitation length Py represents that length when roughly 2/3 of the
initial material has been precipitated.

The equivalent precipitator in the laminar flow model is shown in fig.
(2-4). An analysis based on mass conservation again follows but the trajec-
tory flow lines are of importance now. The flux at any position in the duct
is given by |

- ey qEO A
F'=nl 'l.y ol ny (2-16)

Since the divergence of flux must equal the negative time rate of
change of the density, it follows that

- E
an . 9y - -
3{;’ + (U 1)( - _8.._ i )¢Vn =0 (2']7)

y
Note that the divergence of the E field should appear on the RHS of (2-17),
ignoring this term is equivalent to assuming self charge effects are neg-
ligible and that migration is dominated by the imposed field E. Any di-
vergence-free force field will result in a constant density along the

trajectory lines.
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In the particle's reference frame, (2-17) can be written

ar _ 7T qE; -
at Ui, « —

) i, (2-18)

Equation (2-18) reveals that all particles are removed in the time it takes
for particles to fall the height of the duct (t = 2a/2E0/B). The turbulent
model never removes all the precipitant. The equivalent precipitation length

in the laminar model is

1
. 23(1 --é') U

L (2-19)
P2 qEys

Not only does the Deutsch model predict that the precipitant s never com-

pletely removed, it predicts a longer precipitation length, their ratio being

Yo

—_—=] -

" (2-20)
Zp1

Wj—

The fact that these two lengths are comparable should be quite surpris-
ing. In the Deutsch model, particles are supplied to the wall via the tur-
bulent mixing and then precipitated because of the electric field. In the
laminar model, migration to the wall is dominated by the electric field
force. The precipitation lengths will provide a basis of comparison in
examining the magnetic precipitation equivalents.

Magnetic Precipitation: The fully mixed magnetic precipitation model

is shown in Fig. (2-5). Magnetizable particles of permeability u, radius a,
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and density n enter the duct with plug velocity U. A flux conservation

balance requires

F
U 2a (n(x+ax) - n(x))w = 7¥-A X W (2-21)

where Fy is the magnetic force (ignoring gravity). If the magnetic field
structure is a linear travelling wave, (2-5) gives the ferce as -ake'Zky ?&

and (2-21) becomes)

1dn_. o
wax " - Us(Z (2-22)

(x=x)
O I v
0 P3
where (2-23)
2a U
*py ¥ k7B

Again particles are supplied to the wall by the turbulent eddy mixing and
precipitated via the magnetic force at the wall. Equation (3-23) reveals
that the most effective precipitation occurs when k is very large, i.e.,
when the traveling wave structure has a very small wavelength. The physics
duscussed earlier would dictate that a small wavelength field would have a
high gradient and thus a large particle force.

In the laminar flow model (Fig. 2-6), particles of permeability yu and

initial density N, enter the duct in plug flow with velocity U. A traveling

-2ky T

y The particle flux is

wave source again exerts a vertical force ake
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- . 'Zky ~
Faunf=-%e__p i, (2-24)
' B

Equating the flux divergence with the negative time rate of change of density

gives

S T~ n (2-25)
This is a case where the imposed forcezfield has a limited divergence (see
eqn. 2-9,(a)), unlike our electric precipitator. Thus eqn (2-22) can be

written )

at"""g§ °©
along
dr _y 7 ook 2y

The decay is consistent with the spreading of the particle trajectory lines.
By contrast in the electric case, the two-dimensional trajectories are paral-
lel. Integration of (2-26(b)) gives the particle trajectory x and y depend-

ence on time as

Ut (2-27)

x
]

” ) }
%E en(e” 70 - 39%—50 (2-28)

<
L]
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where the particle is assumed to begin its trajectory at x = 0 and y = Yor

The density is found by substituting for y in equation (2-26(a)) and integ-
rating to give

g ol
Loy (2-29)
0 o Yo

The examination of these results as a function of starting position Yo
is found by substituting (2-27) into (2-28) and setting y = 0 to give
us o 4
X=s—=5 e -1 (2-30)
20k
From this result or eqn (2-26,b) it is evident that there exists an op-
timum wave number for minimizing precipitation length. Setting %f =0 in

(2-30) gives
2ky
e (ky,-1)+1=0 (2-31)

The solution to this equation occurs when ky0 = 0.8. Because Y, can be no

longer than 2a, optimum precipitation occurs for the wavelength

A = lZﬂ%éZil =1 m for a 12.7 cm duct. (2-32)

One can now compare the precipitation lengths for the two iimiting
regimes - using this optimum k as was done in the electric case study. The
result is that the ratio of the laminar to Deutsch length is .55. This com-

parison would give the laminar case an unfair advantage. The author wishes
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to stress the difference of the above case study results from the electric

analog.

The electric case showed no difference (to an order of magnitude) of
precipitation lengths for two entirely different flow regimes. The magnetic
casé.gives entirely different results depending on the wavelength. The cor-
rect precipitator design for a highly mixed turbulent flow where particulate
is supplied to the walls primarily by turbulent diffusion is to install a

very short wavelength field structure at the precipitating surface. A good
| design in a laminar flow regime asks for a wavenumber roughly equal to the
reciprocal ha]f‘duct height. Too small a wavelength means 1ittle field pene-
tration into the duct volume, while too large a wavelength results in little
field gradient-and thus little force. This regime has no help from fluid
motion to get particles to the wall.

The foundation of two basic precipitation models is now laid. Further
extensions to these models such as the inclusion of additional field harmonics
to more accurately represent the H-field could be made at this time, but the
author wishes to incorporate these into the full precipitation models. A
refinement of the magnetic precipitation models presented in this section is
developed in Appendix B and the model predictions appear for comparison pur-

poses with other results in Chapter 6.
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IT1I. TURBULENCE PHENOMENA

The essential problem in effectively predicting the profiles of magnet-
izable particles in turbulent air streams is to account for the effect of the
turbulent diffusion. Three major camps have evolved in the study of particles
in turbulent air stream: the flux conservation camp, the momentum or force
balance analysis, and the stochastic or statistical attack. Much empirical
work is intermixed with theory and as a result, many terms and seemingly,
unrelated variables are used to represent effective turbulent diffusivities.
The author wishes to introduce some congruity to -these three avenues by an
initial section defining the relevant parameters and discussing their inter-
relation.

A. Parameter Introduction and Interrelationships [1,2]

In laminar flow, it is known that the following relations hold for

viscous stress 1 and molecular diffusion D.

T v
XYoo, X -
5 “Vay (3-1)
%% = Dv2n ' (3-2)
where p = density of the fluid
n = concentration of the particulate (1/m3)

Vy = fluid velocity in the flow (horizontal) direction
y = direction perpendicular to the duct wails

v = kinematic viscosity

By analogy, it is hypothesized that there exists a similar relation-

ship in turbulent flows, i.e.,
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T av v
LY . S X -
3 (v + vt) V¢ 5y (3-3)

3. (0+0,) vPn ~ 07?0 (3-4)

Here Vis the turbulent or eddy viscosity (often given the symbol ¢) and Dt'
the turbulent diffusivity (often given the symbol es) are much larger than
the kinematjq viscosity and molecular diffusivity respectively.

The convéntiona1 starting point in most fluid mechanics derivations is
;o begin with the Navier-Stokes equations, split the velocity components into
ﬁean and fluctuating parts (e.g. Vy = V; + v;), and then average these equa-

tions in time [3]. The x component of the momentum equation becomes

X3

@
@
@
<|

S Y S B =l -
+ v v * 3% (vx ) + 3 (v; v§> > X + vv u (3-5)

Q2
>
Q,|

<

where V+v is assumed zero, second order terms have been dropped, no z

—

dependence exists, and v; represents the average of the x directed perturba-

tion velocity squared. In steady state this reduces to
' 3 2
S - + -
0 3 (v; v}) w Ve (3-6)

The first term on the right hand side of (3-6) is hypothesized to be

Bvx

which completes the connection with equation (3-3). Since the ratio of %
is a constant again, by analogy, it is believed that Dt/vt would be a con-

stant. Thus the ultimate goal of determining Dt could be found if vy were
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known. The major drive then is to determine Vg
One of the earliest schemes for determining the so called Reynolds stress
(V;_V;) was through the large scale eddy mixing length, given the symbol 2.
The net flux of particles/area/time in the y direction assuming particles

are transferred across a horizontal plane by the same perturbation velocity

]
vy is

Ty = vy nly + 8y) = vy n(y) = vy(n(y) + 2y 2—;}) - vy n(y))

or

= y! @. -
Py .vy 2 3 (3-7)

where the'representativeIengthin the y direction has been replaced by the
Prandt] mixing length. The Prandtl mixing length is effectively the mean
free path of a pulse of liquid and is thus a measure of the scale of the
turbulent eddies. Comparing (3-7) with (3-3) and (3-4), one sees that

v}z = Dt if vy equals Dt' Davies [2] points oﬁt that due to the elongation,
both shear and angular, the processes of momentum and mass transfer will be
effected. The mixing length g should be replaced by slightly larger length
which would depend on the physical properties of the system and the intensity

of the turbulence. A further extension of the mixing length concept is to

relate it to the shear stress as follows:

| v
-2 (5" (3-8)
giving
v
Vg = 2? (75%02 (3-9)

PRO—
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Anotheir parameter, the shear velocity U,, has been used to evaluate Vg
T
U, = ?g (3-10)

Here, 7, is the shear stress at the wall. The shear velocity can be cal-
culated by determining the pressure drop between two points in a duct; the
details are outlined in a thesis by Videla [3]. From relations (3-7),
(3-8), and (3-10), it follows that

: v
-~ X
U* = 2:""—3

' Dt
Vy = T (3-11)

wall wall

Prandt]l first suggested that mixing length was proportional to distance

away from the wall through the Von Karman constant (k ~ 4).

L= k‘y (3-12)

Michel et al. [5] and McDonald, et al. [6] have calculated relationships
for mixing length as a function of distance from the wall, but their transi-
tion across the boundary layer is questionable (see Fig. 3-1). Videla
voices a caution about developing the mixing length approach. Apparently
a more realistic transition can be framed by focusing on the character of
the eddy viscosity and its associated shear stress rather than the mixing
length concept. |

An approach the author feels may be more fruitful was first fostered
by Taylor [7]. The argument runs as follows: the position y(t) of a given

fluid particie is
t
y(t) = J vy(th)dt! (3-13)
0
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where v&(t') is the Lagrangian perturbation particle velocity in the vertical
direction. (We could just as well analyze the perturbation from the mean in

the x direction.) Now

3 y2(t)

t
STEY iy e ) = TTET 7 A4
y(t) vy(t) =53¢y t l vy(t ) vy(t) dt (3-14)

where the overbar signifies average (i.e., the integrand is first averaged over

t). Finally, it follows that after a change of variables (T =t - t') and for

long times
—— —5 | V(E) Vi (t-T) )
75 Y = I A dt'=;fT (3-15)
0 vy
where v}z is the turbulent intensity in the y direction obtained by squaring

the perturbation velocity in thatdirection and then averaging on time.

The symbol T is called the Lagrangian integral time scale and represents
the time it would take for neighboring fluid eddies to become completely un-
correlated. It is often tied in with the Lagrangian integral scale length

and related to the integral time scale through the average turbulent velocity

(sl.

L="TYV,

) (3-16)

This length or Lagrangian eddy scale as it is also called, represents the
length a fluid element would travel before originally neighboring fluid
elements would become uncorrelated. It represents the size of the energy
carrying eddies, those which get their energy from the main stream flow.

The smaller eddies dissipate their energy through viscosity. Another form
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of this length scale is given as
- <]
L= Ry oy (3-17)
0
VI(&) v (Y)
where R(y) = velocity correlation = ——¥ " averaged on &
Yy
The alternate correlation in space
v (th) v (t'-t)
Ry(t) = X J averaged on t' (3-18)
e
Yy

Hinze (8] argues, must be equivalent to the space correlation when working
with Eulerian velocities.

| Before drawing the connection between (3-15) and Dys it should be ob-
served that in homogeneous turbulence (which is what the author will be
assuming) the above analysis follows in all directions. Furthermore, the
time and integral length scale will be the same. Finally, the above analysis
was valid in a Lagrangian frame where tagged particles are followed. The
measurements done in this paper will be Eulerian. Following a lead by
Barfield, et al. [9], the author chooses to assume the Eulerian statistics
are valid. The reader is referred to a thesis by Chadam for further dis-
cussion of this topic [10].

The differential mass in the control volume of Fig. 3-2 is
dm =pdx dy dz (3-19)

Locally, the normal gradient of velocity is approximately a constant

aV;/ay. The differential x-directed momentium is
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Figure 3-2 Momentum Transfer in Turbulent Flow



v
dp, = p(-a—yi) dy(dx dy dz) (3-20)

Integrating over y gives the net x directed monr.antum over this infinitesimal
rectangular area

1 dv. 2

Py =3P 75%- (y-yo)© &x A2 (3-21)

Differentiating and averaging gives the net longitudinal stress as
v
= ] x d (32
Txy -7 P 3y dt (y ) (3'22)

Thus one observes from (3-15) that the turbulent intensity V“z and the La-

grangian time scale are relaiad to the turbulent kinematic viscosity.
T (3-23)

One more point needs to be considered before the procedure is consistent.
Yermolli and Taggert [11] have shown after a lengthy study that the diffu-
sivity and eddy viscosity are not equal and indeed vary with particle size,
density, and mixture concentration. A more accurate procedure would be to

let

D, = Bv, (3-24)

(see Videla [3]). However, their results showed B varied between .9 and 2
for sundry sizes and mixtures. In addition, Chien and Einstein [12]
showed that for various mixtures, B was almost nearly one. The author will
in this work consider B = 1.0 henceforth. There is a fourth approach

based on the time scale necessary to dissipate the energy of the eddies.
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2
( /9-51510 but the interested reader in referred to Hinze.
ot

To summarize, the different methods of approximating turbulent diffusion

are as follows:

(a) through mixing length

v
= 2 —x = . -
Vg = 2 3y v} % (3-25)
Vs
(b) through shear velocity U, = }?
\)t b U*R’ (3'26)

(c) through turbulent intensity and the Lagrangian (= Eulerian) time

scale

=V r

Ve (3-27)

A1l of the above assume that Dt = Bug * Vo It remains to demonstrate how
these three attacks can be used to determine particle concentration.

B. Flux Conservation

The earliest work using this method for approaching turbulent diffusion
was done by Schmidt (1925) and Prandtl (1926) [13]. A detailed analysis of
the theory is outlined by Bauday [14]. We shall for the remainder of this
chapter consider no other external forces aside from gravity. Beginning
with the mass conservation equations, all quantities are broken up into
steady state and fluctuating parts as was suggested earlier, yielding an

equation of the form

n vy + nwy =0

where y = /vertical direction
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v& = perturbation velocity in the y direction

W
Yy
n = average concentration

= fall velocity in the y direction

(3-28)
n' = perturbation from average concentration

Here Schmidt hypothesized the n" v' = Dt %3-wh1ch yields the so-called

Schmidt equation

an .
Dt --y- + Wy n 0 (3'29)

The author wishes to outline a flux conservation argument because of
its applicability to forthcoming work. If T represents the flux of particles,

then the net particle flux T (particles/area/time) becomes

T = convection + diffusion + migration (gravity)

=vn + (D, + D ) Vn + wn (3-30,a)

molecular

The divergence of flux must equal the negative time rate of change of concen-

tration.
alv.n)  avin 3(v_n) 3w n)
an _ X Y Z 20 4+ — Y -
5t ax oy T3t (Dp D) Vin v — (3-30,b)

A simpler exprcssion of (3-30) results from noting that the net y directed

flux must be zero. Averaging (3-30(b)) and neglecting Drolecytar 25 Small,
gives
on - -
Dt 3 + wyn =0 (3-31)

The reader should note that three .<sumptions are inherent in (3-31)--steady
state conditions exist, the particulate is dispersea evenly over the channel

and is therefore considered a continuum, and no net buildup of particulate
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occurs.

The work the author has examined is quite extensive and centersonmaripu-
lations of equation (3-31) [15,16,17,18]. Graf and Raudkivi and Yalin al:
give a broad scope of the gensral analysis, Csanady is quite clear, and
Hinze is the most detailed and complete. Taggert and Yermolli as well as
Videla are clear, supplying much of the backgrouna justification.

The key to the problem is in finding a diffusion coefficient to match
a given turbulent flow. Assuming D, is constant as Hurst (1929) [11] first
did,

n . ) - )

ns expl: L, (v a)]/Dt:] (3-32)

where nd}is the concentration in the center of the duct at position y = a.
A more realistic approximation to Dt may be gotten through (3-3). In

a turbulent rectangular channel, the shear stress is [11]

T= To('l - S'Zlo-) (3'33)

where To is the stress at the wall and Yo is the distance to the center of

the duct. Ippen [19] expressed the flow in a turbulent channel as

an(1 37?%:)
= (3-34)

<
x

<

Y
X 0
max an(l + VI )

Von Karman and Prandt]l independently determine the turbulent velocity rela-
tion in 1934 [11] to be
X X

~ Tmax % an(L) (3-35)
u Yo
*
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using (3-34), (3-33) and (3-3), one can integrate to get
w

‘ ]
n Yoy 2(v/k U,)_ B T(’L'IY:
n, ook R GwAT, (3-36)

and if (3-35) is used,

W
- -3
n. ..__...yo y 9.] BU.k (3-37)
Ny yo-b y

where n, is the concentration at some height. b. |

Indeed the various attempts to qbtain an accurate approximation for Dt
are quﬁte involved. Videla chooséé-to evaluate different diffusion coeffi-
cients in the different"f1bw zones shown in Fig. 3-1. The notion that 28
depends on distance from the wall seems reasonable because of the smaller
s¢a1e‘edd1es'near the wall and the altered flow in the boundary layer. The

summary of his work is as follows:

Laminar sub-layer Vg TV

y Uy
\Y

k U
v{l + -ia;it tanh (a

Buffer zone Vi )}

ok y Yx (1-Y) wiere y = non-
Y3 (1-y™ dimensional
vertical

m = constant

Wall zone V¢

' , 1-
Defect zone vp = Us ¥, K X(;:'59 (3-38)

Y
Finally, White attempts to make correlations between V¢ and the Prandt]
mixing length [20].
Several observations have sparked research along alternate 1ines [17].

For example, experiments indicate that the Von Karman constant (3-35) of

e
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flow with suspensions of neutrally buoyant particles decreases with in-
creasing concentration while the turbulent intensity increases. This runs
contrary to the assumption that flows of neutrally buoyant particles should
remain unaffected since no energy is required to suspend them.

C. Momentum Equation Attack
The first major attempt to describe the motion of particles in a tur-
bulent stream was by Tchen [21]. His starting point was the momentum equa-

tion for the particle

dv dv dv
%-m‘g op %V%E = Gwrp(vf-vp). + évrg‘rpf T + \;—g-wrg pf(?ti : Ttp')
1 - 2 3 4
t dvf dv
+ 6rp Aoar j LU (3-39)
to St
~ ~ - haa Vond
5 6

The subscripts p and f refer to particleand fluid respectively. The terms
are explained as follows:
1) force required to accelerate particle
2) Stokes viscous resistance force
3) pressure gradient force in the fluid surrounding the particle
caused by acceleration of the fluid
4) force to accelerate the virtual added mass of the particle rela-
tive to the ambient fluid
5) force due to the fluctuating, non-steady state flow pattern

6) external force field such as gravity or electromagnetic forces
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The analysis involves auto correlations of the fluid velocity, via a
Fourier integral switch into the frequency domain. The result is an expec-
tation value of the square of the particle's position [22,8,17]. The theory
involves several assumptions, one of which requires that the neighboring
fluid near the particle not change with time. This assumption reduces the
Tchen analysis to a pedagogical exercise for turbulent flows.

Khosla and Lederman [23] attempt to build on Tchen's theory and alter
the above 1imiting assumption. Instead of allowing time rates of change of

the particle (H%") to equal those of the fluid (E%;)’ they hypothesized
P

L;%

dv
f

P T, (3-40)

Qal

where v is an empirically determined constant. The analysis again proceeds
by going into the fourier frequency regime, and seeks to find the ratio of
the diffusivities of particle and fluid. They conclude that the results are
sensitive to temperature, density of fluid, and the presence of various par-
ticles. These factors limit the method to low frequency and low speed tur-
bulent flow.

A momentum attack that has much credibility and links back to Taylor's
early work [7] was first fostered by Chadam [10] and later elaborated by Bar-
field, et al. [9]. With only the external force of gravity, the equation of

motion of the particle is

dv, - . P, _
Eealt) - -01-D73 (3-41)
p
where 6
B:—Z—TE.

P
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P
£ density fluid
pp density particle

<< 1

and a(t) = the accelerative forces imparted to the particle by the fiuid
turbulence. If the particle was being dragged by the turbulent
fiuid, in a strokes type drag, one could represent this accelera-
tion as vi(t),which is what the author will assume.
Chadam integrates (3-41) directly but without including the effect of

gravity. His analysis proceeds as follows:

. t
vy(t) = vee Bt 4 onf J e P& a(e)ae (3-42)
0
Y Bty 1 -8t ; BE
=2 (1 .¢e" -t "
xp(t) g (1-e™) -ge f e~ a(g)dg
0
t
+%Jawmg (3-43)
0
Squaring and averaging gives
(12 < 2R Va2 -gté . & -gt _ -2t
X(£)¢ = S5t + S (1-e7F%) + By (-3 + 4278 L o7oBT (3-44)
B < 28
where A =
t+At  tHAL
a(g) a(e) de de
t t
and

Re 6 [ velt) velten) oo
0
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where the note after (3-41) has been used.

With the analogy in (3-15) with Taylor's work, a connection to D¢ fol-

f
lows
— - o Dy = Sve(t) ve(tet)de
=14 . 2t {
Dy =73 X * Yarge* ¥ ° 52 >
D =v'ZrT
t
. (3-45)
2 o y2,2 Y
tsma11e X = Vot > D, = v'“ ¢

Note, attention is fixed on the change in average squared position. The Vo
introduced in (3-42) is a turbulent perturbation velocity, the same as v'
introduced earlier. The objective is to determine the fluctuation from the
steady laminar type flow.

The author would suggest another approach--to integrate (3-41). First,

rewrite the basic equation as (g = 0)

dv; '
1?2 + BV, = BV (3-46)

Xg
-B(t-~1)

The homogeneous solution of (3-46) gives e as the impulse re-

sponse Uo(t-T) of the system. With 8v§ the drive, v! becomes

f xp
t
v (t) =.J o-B(t-1) sv;p(r) dr (3-47)
P b
Thus
t t
xp=(t) J J e-B(t-1) Bv)'(p(t) dt dt (3-48)
0 =



6]~
interchanging the order of integration gives

t
xp(t) = I (1 - e-B(t=T)y v;‘p (t) dt (3-49)

Barfield [9] (after erroneously writing (3-49)) claims that it is rea-
sonable to assume that the turbulent diffusion process is Gaussian and has

a variance equal to

.
2
ol = K’I (1 - e'B(t'T)) dr (3-50)
]
and a probability distribution function

P 18 )
] f(xp) (m) exp( 5 02) (3-51)

Evaluation of (3-40) gives the same result as in (3-44) which agrees with
Chadam. Barfield then generalizes this attack by including the gravitational

fie1d. Integrating (3-41) as before gives (from 3-49 but in the y direction)

t
y p(t) = J(1 . m8ltet)) [vi(7) - 8 dr (3-52)
or
t
y, + ?E (8t-1) = j [ - e BT () e (3-53)

where the lTower bound on the particle's position is changed to zero for
physical reasoné. Barfield again argues that a normal Guassian distribution
applies and the the probability distribution of the function

G = y(t) + -892- (Bt-1) is

1 1 &
f(G) = (z=2') EXP(E?) (3'54)
TO

R = NS
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with a mean of

y=- fg (8t - 1) (3-55)

and the same variance as in (3-51).

The Gaussian assumption is generally accepted especially where turbulent
diffusion occurs in the atmosphere [18]. Indeed, fine particle plume con-
centration analyses are developed from this view point. If one begins with

the diffusion equation, the analysis is as follows:

B4V n- D72 (3-56)

Q

whose solution is

n,  -x2/dDt ..
n = - e 3-57
Z/HDtt
The spread variance is
(- -]
2 _ 1 2
Oy = 7 J x- ndx =20, (3-58)
o =00
This variance is identicalwith Barfield and perhaps guided his reasoning
along these lines. If one thinks of 02 as iﬁ and remembering (in line with

Taylor's work) that Dy, = %'3_ x2 the 3-D plume spread from a point becomes
X

[8,18] (iin a uniform x directed flow)

2
n (x -V t) 2 2
_ 0 y Z .
ne (21r)3 20 g, o e 20 20 202 } (3-59)
Xy z X y b4

where Co is the number of kilograms released per unit time at the origin.

In line with (3-45) it follows that c "'Z t2 for short times (distances)

2

and is 2v; Tt for long times. The steady state source distribution is ob-

N A S I
Fr
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tained by integrating (3-59) from zero to infinity with cz = Zczth.
3 = Zc;éTt. 2V'2Tt at large distances. Thus
ne= ] »— e *
_2'_2' 1/2 ¢ x 2° 172
4w( Ta) [ + -11-+ -]
'y wZp  yilp iy

Yy y y

172

2
.—-—- —L— ——— - -
exp ,/ ("2& + + _.2;) X (3-60)

The author wishes only to point out the connection to the momentum
Gaussian approach here. Chadam makes the connection between this probability
distribution and the flux diffusivity model using statistical arguments (in
the next section). However, one last point should be made concerning the
connectibn between time and distance relationships of diffusivity as seen in
sections B and C; Equation (3-44,b) points out that Dt represents the cor-
relation of the fluid velocity with itself, that is the time it takes a
fluid element to forget its neighbor. The diffusivity is constant for long
times when fluid velocities are uncorrelated. Davies shows that in the cen-
ter of pipes diffusivity is constant and changes over the wall region, as
shown by Fig. (3-3). Near the wall, turbulent eddies are more correlated
than at the center. (This is not exactly the same for rectangular ducts.)
This process is considered ergodic in the sense that time averages are re-
lated to space averages. "Herein lies the reliability of the formulas listed
in section A showing space dependence.

Lastly, a method for obtaining diffusivity in the main core of the
channel based on the pipe friction factor has been fostered by Dhanak [27]

and used in predicting the performance of electrostatic precipitation [28].
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(a) Pipe Cross Section
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(b) Radial Dependence

Figure 3-3 Pipe Diffusivity
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Dhanak begins by expressing the eddy viscosity V¢ in terms of the Fanning

friction factor f of the channel, where
.2 (72 _
f > (Vx) T, (3-61)

This factor is determine by either pressure differences down the pipe or the
Blasius's equation. Although the formula derivation is uncertain, Dhanak

concludes that

D, = .0708 R, wE (3-62)

t a

He compares the above prediction with

D, = XY (3-63)

(Which agrees with (3-6)) and finds good agreement.

D. Statistical Approach

Chadam [10] closes the loop between the Gaussian normal approximation
outline in section C and the diffusion equation. He defines a function
W(vs, t,vé,to) to be the probability of a fluid element with velocity v, at
time t, to have velocity v' at time t. A similar function N(x,t,xo,to) is
defined for transition of particles from position Xo to x. Csanady states
that most turbulent flows behave according to a Markov process, one in

which the velocity autocorrelation

R(E) = Vylt)vy(r-t) Y.

[
VX

(3-64)
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where the numerator overbar indicates an average over t.

Chadam shows that in such a process, which can be assumed Gaussian,

(v'-vg e'et)2
WUV s tavsaty) = ‘ roe JEa-e (3-65)
on % (- e-ZBtsf
where A is defined in (3-44)
Furthermore,
1 (x-xo)2
W(x,t,xo,to) = ZE;§§3T7E exp. - o (3-66)

which would agree with Barfield et al.'s equation (3-52). His next step
however is to find the probability distribution P(x,t) of finding a particle

o
at position, and time t using

P(x,t) = j P(x',t') W(x,t,x",t') dx’ (3-67)

It is shown that the function

t+At
B(At) = J a(g) dg (3-68)
t

has a Gaussian expectation value

] (8(at))?
W(B(At)) = ——t—y7, exp | 4Mat (3-69)

(47AAT) /

The following mathematical Taylor expansion
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P(x'st') + & (x,t') = P(x,t') - fax(P'W + PH) d(ax)
2
+IMZ‘—- (PH" + 2W'P' + P"W) dAx
+ 0(ax)’ (3-70)

(where the primes in the integrals indicate space derivatives)

reduces with (3-67) to

2
ap A 3°p p
— 2 \3_7])
at 52 —Zax

Thus, again a turbulent diffusivity results equal to vTeT,
The author wishes for completeness to examine two more approaches.
Batchelor [24] defines acharacteristic function ¢(£) in a normally dis-

tributed Gaussian field

¢(g) = exp [J %9 t- %— g? £ ;13:?] (3-72]

(adopting Einstein summation convention)
Conditional probabilistic arguments are then used to link ¢(&) to
P(r,t). This involves transforming between £ space to x space. The details

are given in Barfield [4]. The result after much calculation is

2 — -
2prr,t] = & (k) &RALt) LM o opiF t) (3-73)
ot ot *7i%j 3% X, 8
i9%;



and
t
335 (32}7;) - -;_- viYj I Ry4(7) + Ryy() dr (3-74)
0
v, (t)v,(t+T)
where Rij(T) =1 (averaged on t)
V] Vv§
17

Now for large times the integral in (3-74) becomes the Lagrangian time

scale T and (3-71) becomes

Brt) o vy vir v2R(Ft) + B . v R(F,Y) (3-75)

Finally, Soo [25] begins by expanding the fluid velocity in an infinite
spectrum o¥ narmonics (isotropic turbulence)

x©

=vi=vy=2 A sinart (3-76)
m=1

'
vX

He then couples this into the force equation

-ﬁp- = B(Vf - V ) + _g- (3‘77)

—_— hog A2
2 _ ] Z m
Vx ) 7 '|+(g.m)2
P m=1 B
Z.ly M, o (3-78)
Vy T2 )
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After expressing the correlation function R(t) in terms of these infinite
components and the scale of turbulence f R(x) dx, the Einstein equation for
diffusivity [26] is used to relate ‘the d1ffusiv1ties of one phase of the
flow to the other phase. The analysis is intended for intimately mixed or
multiphase systems. His conclusion is that the correlation, scale, and in-
tensity of one phase of the systeﬁ\can be calculated from statistical re-
lations on the other phase. .

The author will henceforth adopt the position that the turbulence ef-
fects can be incorporated into a diffusivity model where ?biffusion = DyVn

and D is represented by the turbulent 1ntensity';—2t1mes the Lagrangian

time scale T = ;.!_ill.!zlﬁzll_ii . The time scale is physically related to

o] v!
the approximate time for turbulent eddies to decay. It is related to the

integral scale L (size of largest eddies) through the mean flow V;T
) .
T== . (3-79)
Vg -
Dt has been found to behave roughly as b e'wy + d in channels. Its measure-

ment will be described in Chapter 5.
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IV. TURBULENT PRECIPITATION THEORY

A. Introduction

Two precipitation models have been pursued in Chapter 2:

(1) a fully mixed turbulent model (Deutsch) where the particulate is
supplied to the wall via eddy mixing and the cross sectional density
is uniform (representing an effective D, for transverse diffusion
equal to infinity)

(2) a trajectory model where the flow lines are determined from particle
conservation and in this method of characteristics analysis the
density is found to decrease along trajectory lines.

This chapter outlines a method of predicting magnetizable particulate
precipitation from a turbulent airstream. Two analyses emerge based on the
above models. The first, appropriate to light particles, applies where
particle inertia is negligible. The theory is analogous to the Deutsch model
so far as the physics of the problem (both accent the importance of turbulent
diffusion), and the analysis parallels that in the trajectory model. The net
particle flux has four components:

gravitational magnetic
I = convection + migration + migration + diffusion

=ﬁn+%§n+a'wg—'m-n+mn

D

turbulent =D

where D = Dy otar * turbulent (4-1)

The diffusion equation results after setting the divergence of (4-1)
equal to zero.

The second heavy particle analysis considers particles in which inerttal
effects are important. In-the consideration of very heavy particles, the theory

to the laminar flow study of chapter 2. The particles with large
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inertia ride through turbulent eddies, and diffusion can be neglected. This

analytical theory is expressed by the particle momentum equation which pro-

duces information of particle trajectories:

mdv,
1-52 + 61mrp\rp = énnrpvf +mg + a'y HH) (4-2)

The important point of this investigation is in connecting these two
analyses to produce an explanation of particle precipitation. Summarized in
Table (4-1) is the interconnection of particle size, fluid flow, and the two
analyses. The heavy particle turbulent section is split to indicate the model
dependency on the degree of turbulence (lower graph). In reality there exists
a gray area in which both diffusion and inertia are important; for this, a
hybrid model will be developed in Section D-2Z.

A synopsis of this chapter is shown in Table 4-2. The decision of which
size-dependent analysis is valid must proceed from consideration of the rele-
vant system characteristic times. Three models evolve in the light particle
diffusion analysis. The three differ by diffusivity representation, boundary
conditions, and computer simulation used. The heavy particle analysis is
subdivided according to whether diffusive effects are considered.

B. Characteristic Times

The major question to be answered is, ''or what size particles are the
effects of diffusion and inertia important?" This is best answered by
examining the characteristic times of the system. In balancing the inertial
and viscous temms in equation (4-2), one arrives at the inertial-viscous
time

3

1.659 x 10~ sec 8u iron particle

2

_2 r (4-3)
R

- m
Tin-vis - &mr

.3137 sec 110u iron particle

3
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— ”
Laminar Turbulent
Size Flow Lo
Particle
: P
Trajectory
Model
Trajectory
Heavy j
Model Rybrid
Model
(medium heavy)
[ _
Trajectory Diffusion
Light
Model Model
d
_ Particle Trajectory r’
Diameter Model
Diffusion
Model

Degree of Turbulence

Table 4-~1 Model Agglicabilitz given Particle Size and Fluid Flow
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Light Particle Analysis

P
=

Diffusion Effects

Heavy Particle Analysis

Inertial Effects

L
L
LIGHT PARTICLE ANARYSIS
Non-Causal - Causal Perfunctory Causal Fundamental
Model Model Model
Core; Dt - Dt(x) Core; Dt = Dt(x,y) Core; Dt = Dt(x,y)
Dt no y dependence | Lower Region;
y dep ower Region; Dt =0 Lower Region; Dt =0
Bondary layers; D_=0
Transverse] on _ 0 on top and
Boundary oy n =0 on top n =0 on top
Conditions

bottom of core

%5 = 0 on bottom of
v

no lower condition

core
balanced 2-sided y 1-sided backward migration y derivatives
Com utér derivatives
P forward l-sided x l-sided backward x derivatives
Simulation derivatives
' axial march along march in x with simultaneous solution of
channel transverse points
I — n=0 n=0
3n_4
oy A=.031cm
—Dt—-. Core Dt
A=.5cm A=.031
- in g cm o
- — —— - oy _ 9y | condition;
) A < A
HEAVY PARTICLE ANALYSIS
-

Momentum Equation Attack - particles
ride through turbulent eddies-no
diffusion (1ike laminar flow theory)

Inertia Model

term added

Hybrid Model

Hybrid Momentum Attack - diffusion

to momentum equation

by superposition

TABLE 4-2

Chapter 4 Synopsis
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For processes involving times shorter than T experiments show that

in-vis
inertial forces must be considered; a system where the characteristic times

were longer than 7 can be shown experimentally to be accurately

in-vis
represented by the viscous dominated flux expression (4-1).
The choice of proper characteristic system time deserves careful con-

sideration. Because the particle's residence time is defined to be how long

it takes a particle to traverse half the height of the duct, special attention

to force terms of the RHS of equation (4-2) is in order. The basis of com-
parison is the time it takes a particle to fall the duct half-height in a

viscous dominated environment. The gravitational-viscous time is

3.905 sec 8u particle
-2 | (4-4)
Tgrav-vis mg/B g
.02066 sec 110u particle
The equivalent magnetic-viscous time calculation requires more information

concerning the field strength and wavelength. For a single hammonic sinu-

soidal field, the magneto-viscous time becomes

0
1 _ 8 2ka _ _
& i e 7 dy P (e 1) (4-5)

3
and with o = i"gl'_ (;—_E:) (ﬁ— -1y oHoz’ a 1000 Gauss, 8 cm wavelength field
)

102.5 sec 8u

= (4-6)
.542 sec 110u



-77-
Finally, the analogous diffusion time is

2
a a
Tt b - (4-7)
Po0%

v MW e o,
The measurement of the turbulent coefficient Dt (~D) discussed in Chapter 2

is outlined in Chapter 5. A representative diffusivity for such a system is

2
.002 EEE' Thus, the diffusion time becomes

T = 2.016 sec, independent of particle size (4-8)

Examination of the times in equations (4-5) to (4-8) allow a more in-
telligent handling of equation (4-2). For the 8u particle, the inertial-
viscous time is much shorter than the characteristic migration or diffusion
time, indicating that the viscous-dominant flux analysis posed in (4-1) is
valid. In the heavy particle analysis however, the characteristic inertial-
viscous time is not short. Therefore, inertia has a significant influence.
The fact that the diffusion time is much longer than either of the migration
terms, however, illustrates the reduced effect turbulent diffusion has with
larger particles. The momentum equation (4-2) without the diffusion term
appears to be the correct approach here. Thus there exist two well defined
avenues of analysis depending on the size of particle being used and the
resulting relative time constants.

The larger particles used in the experiments were 55-65 microns in
diameter in which the gravitational viscous time and magneto-viscous time
are .082 seconds and 2.08 seconds respectively. Clearly these particles fit
into an intermediate domain where diffusion is not negligible, especially
over distances smaller than the duct half height (e.g. the injection tube
diameter). This intermediate region will be considered in section D of this

chapter.

"=
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C. Diffusion Model - 4u Particles

The above analysis revealed that 4u particles are viscous dominated,
inertial effects are negligible, and thus a flux, particle conservation approach
using equation (4-1) is in order. Assuming sieady state operation, the

divergence of T can be set equal to zero to give

-V.(Dwm) + [(o‘_'lg@)r;] - %‘g%;- +U %;- = ( (4-9)

Using a single hamonic field with the magnetic force equal to ake'Zky, (4-9)

becomes

2ky 2-2ky
-v.(DVn) + (-l‘ﬂe___-%‘&) -%+U~%+29-15§———=0 (4-10)

The next step in the analysis is to check whether any simplifications can be
made. In this study and indeed for most boundary layer analyses, the con-
vective horizental flux dominates the corresponding diffusive flux. A
characteristic density analysis elucidates this point.

Given a uniform injection of particulate during a time sufficient for

10 grams to be spread over 2 meters of duct, the average concentration is

102 o3 ke

avg.  (121% o (4-11)
and assuming a linear axial concentration profile, the density n is typified
by

n~-0.6 (x-2) 5§ (4-12)
m
; 2
In a 4.3 s%c' flow with a diffusivity of .004 s—?elE , the convective and

diffusive fluxes are respectively

- k .
convective 1+3 T2 (4-13)

(m®-sec.)

r
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r.. 5 (.004)(.6) = .0024 —X (4-14)
diffusion ) "22—0“ )

Thus the axial diffusion temm is justifiably ignored. As shown in the last
section, vertical diffusion must be considered to be at least comparable to
gravitational and magnetic migration.

The equation to be solved then reduces to

1
2 -2ky
pdn _3Dsn _mgaon gke “ 30 aly-al \9 an
DayZ 3y ay B ay B a}'+Umax( 2 )ax
2 -2
+2—°‘k8—-'?—kyn-o (4-15)

where D is a function of y and x. Including the field harmonics, (4-15)

becames
1
-Da-z“-%a“-vc)anw a-ly-al} an 3.y (y)n = 0 (4-16)
;YT y - 'mY’ §y max( a ax Y
where
Vm(y) = vertical magnetic migration velocity
-3
4.3 3.k ) 2 _-2kmy
= o T (= -]1) (=) — mB_ e
3 o )(2_._2_ m 1n
Mo

2
3 2k 2,2 _-2kmy
Vo) = B8 = 3’ c“ (=) < ] nBle
¥ - 3 2+ Ho =1 M
Ho
The imposition of the proper boundary conditions on equation (4-15) is
necessary for numerical solution. The fact that (4-16) is first order in
x and second order in y suggests two boundary conditions on y (one each at
the top and bottom of the duct) and one on x (at the entrance to the duct).

The boundary condition on x is simply the specification of the incoming
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particle density (no) . The principle of conservation of particle flux must

be employed to arrive at the vertical boundary conditions.

Further analysis is best pursued in stages. This step progression is
needed to highlight the internal issues involved in a self-consistent solution.
First, a non-causal theory is developed assuming a uniform diffusivity across
the duct with a step change to zero a distance A from the walls. The
equations are then représented in difference form. Axial differentiation
will be represented by forward one-sided derivatives yielding a very straight-
forward solution. This is then followed by two more exact causal theories
in which representations of diffusivity are used. Boundary conditions and
representation of axial and vertical derivatives are examined carefully to
be consistent with causality.

1. Non-Causal Diffusion Model

The measurements of turbulent diffusivity (Chapter 5) along with the
observations of Davies discussed in chapter 3 indicate the diffusivity is
apprcximately constant over the duct cross-section and decreases to zero
near the walls. If turbulent contributions to the particle flux at the
walls are negligible, a resonable model is one with the problem divided into

(1) a boundary layer region close to the wall where diffusion is

insignificant.

2) a region over the duct interior where turbulent diffusivity is

constant with y, but does has an axial dependence.
Thus, in both regions, the %";7 term in (4-16) drops out.

The above assumptions (summarized in Fig. (4-1)) along with flux

conservation suffice to give the vertical conditions for the inner diffusion

region. At. the lower boundary (y = 4), flux continuity demands
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[-D 5% - mgn + a'V@EMn] = [-ngn + o'V B-H) (4-17)
o Ty, y = A
or -g% =0aty=A4, (4-18)

At the upper boundary (y = 2a - A), continuity again requires

[-mgn + o'V H-H] = [-D, £ - mgn + o'v A (4-19)
y = (2a-4), 4 y = (2a-4)_

Equation (4-19) implies

5= 0atys (2a-), (4-20)

In the layer regions it is appropriate to apply flux conservation, but
with Dt = 0, This is identical with the particle trajectory theory discussed
in Chapter 2.

Each of thé above model divisions will now be examined in more detail.
The greatest difficulty is with the lower boundary. There are two physical
conditions that must be realized in the lower region--no particle reintrain-
ment occurs, and diffusivity for iron particles in the laminar sublayer must
be zero (i.e. molecular diffusivity and brownian motion do not enter for the
size scale particles we are concerned with).

An understanding of approaches employed by hydraulic and chemical
engineers to the precipitation problem is helpful. A method used often in
hydraulic's literature (Barfield, et. al. - see Bibliography, Ch. 3) for
modeling an absorbing wall is to force the density to zero at the wall. The
pertinent diffusivity is considered to remain high near the wall in sedi-

mentation research, for instance. This zero density requirement implies two
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conditions wh.ich give credence to this assignment.

(1) zero density at the wall insures a positive gradient away from the
wall and thus only downward diffusive flux,
(2) large migration (gravitational) flux to the wall with abnommal
depletion of the core region is prohibited by the assignment n = 0
at the wall. The density ic required to be small in the neighborhood
of the wall, since any large gradient would constitute a correspondingly
large diffusive flux (which could not exist in steady state).
A typical engineering problem is the dissolving of a salt at a wall into
a flowing liquid. The wall molecular diffusivity is very important again.
The wall for such a problem is often supplying flux into the duct or keeping
the particle density in equilibrium, in which case the diffusive and migration
fluxes balance (implying a negative density gradient at the wall). At the
laminar sublayer where the diffusivity increases tremendously, the normal
density must be nearly zero.
Appendix D shows the analytical solution of a three region diffusion
problem (Fig. 4-1) with only gravitational migration, and no x dependence.
The boundary conditions are n = n,aty = 2aandn=0aty=0. The
diffusivities are allowed to be nonzero in the laminar sublayers. The
result is that the normal density gradient at the boundary layer equals the
ratio of the diffusivity in the sublayer to the diffusivity in the core.
Also plotted are density profiles for various ratios of core to layer
diffusivity as well as variation effects of diffusive to gravitational
migration times. The density gradient in the sublayer is determined from
trajectory theory and is fixed by the gravitational and magnetic migration

terms (Appendix B). Negligible layer diffusivity therefore implies zero
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core gradient.

The condition can be examined less rigidly through the exponential
magnetic force decay in the duct. Changes occur less rapidly axially than
transversely. Small axial flux changes imply a somewhat constant transverse
flux. (This hypothesis will be used to explain density profiles in chapter
6). In the core, magnetic migration is small. One mechanism by which flux
is conserved from the core to the layer region is by diffusive flux di-
minishing at the lower layer where magnetic migration increases. The
diminishing flux appears as a decreasing gradient near the lower layer.

Figure (4-2) shows characteristic profiles of these two cases as well
as a calculated density profile for magnetizable particulate deposition where
the wall is absorbing (i.e., no reintrainment occurs) and molecular diffusivity
in the laminar sublayer is zero. Zero sublayer diffusivity is a reasonable
assumption for 2-8 micron iron particles.

From this there appears to be a sound basis for approaching the problem
as a multi- region one, the core being a constant diffusivity diffusion

problem with boundary conditions 8 - 0 at y = A and y = 2a - A. Differences

d
with other engineering disciplinesyhave been considered.

There now remains the task of matching the core region solution to the
laminar sublayer regions. Because D = 0 in the sublayers, the method of
characteristics approach discussed in chapter 2 can be applied. With a single
harmonic field the vertinent equation is

% = Tzakze-Zkyn along 3:11;: =0+ %E - E‘-I-(Eg—z-bhi}' (4-21)

and with the full hammonic field (4-21) becomes

&=V (4-22(a))
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along

g;: =U. (aa -2 )'i'x - ’;-Ei'y - VO, (4-22(b))

Here the explicit form of U has been inserted. Integration of (4-21,a) shows
that along the particle trajectory lines (4-22,b), the density decays as

n, g.g;;z(_(;g_’. (4-23)
where n and Y, are the initial density and pcsition of the particulate in
the layer (i.e. at y = A). The particulate distribution on the bottom of the
duct is given by (4-23) with three specifications -- n, is set equal to the
density of the diffusion analysis ((4-16) at y = A), y is set equal to zero,
and the appropriate axial position for each density is found by numerically
integrating (4-22,b) across the boundary layer. The splicing of the different
region solutions is thus accomplished.

The upper layer must be investigated from a different perspective,
because all vertical migration is downward. Since the diffusivity goes to
zero in the upper layer, no mechanism exists for particles to enter this
region. In other words, the particle trajectory linzs emanating from the
upper boundary must have zero as their initial density. The upper layer
correct boundary conditions are: - n = 0 and g$-= 0. Although numerical
integration shows that the two conditions give nearly identical precipitation
results, the densities do differ throughout the volume. The zero density
condition is only a result of no upward migration forces. The zero gradient
condition exists independent of migration force direction--this latter
condition therefore seems to be more fundamental. Figure (4-3) summarizes

the system representation and boundary conditions used.
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Before examining the numerical method of solution, it is helpful to
normalize the defining equation (4-16). Variable normalizations and

relevant times are as follows:

Z.f a
x=7
t
t=
=  Tpiff
n
N 8 ce
. szgf_
Diff. A . (4-24,a)
T . .2
grav-vis (mge)
T L 2a
magnetic-vis V;
TRes ~ . T
S
Umaan-l -al}s
a
T = 1
mag-k ’ﬁg

The diffusion equation is now written

3 _ _"piff _ 3m) . _"Diff am) , Tiff ? g )
AR § e 9 Iy T
)4 grav-vis "mag-vis Res

T
DL 529 (4-24,b)
mag-k

The boundary conditions are that (n) = 1 at x = 0; %§?J= Oaty-= %5 3

and R4 aty=1 - %5

or n=0
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Method of Solution

The proper method of solution in the duct diffusion region with an
initial boundary condition on x is to sequentially step in x space. A finite
difference system was used to numerically solve equation (4-15).

Figure (4-4) shows the partitioning of the diffusion region into a number
of points separated vertically by Ay and horizontally by Ax. In finite
difference form, equation (4-24) at point i,j becomes,

-(‘liﬂ.j"ﬁi-l,j‘Zﬁi.j)-r. (=t =)
oy Diff \Torav-vis Tmag-vis

[’lmgj ‘ Bi-l,j) . _Diff (&i,ju - ’-‘i’,j) _ 'Diff
5 TRes bx "mag-x ')

Because all the first colum elements are kncwn (g_,j .; = 1), expressing
(4-25) for the (j-2) elements yields a solution of the (j- ' elements. The
net system solution is obtained by stepping colum-wise from left to right.
At the lower boundary if one were to specify that the next row of elements
(i+3) have the same value as the (i+l) row elements of the same colum, then
the condition ?I-X. =0aty-~= %—5 would be insured. Matching the (i-2) row
elements with the (i) row elements at the upper boundary insures the same
condition on the nommal density gradient at the top. If the alternate
condition (n=0) is desired at y = 1 - %5’ then the last set of difference
equations must stop within the diffusion region, i.e., at row (i). Appendix
E lists the programs KPDI4 used with n=0 on the upper layer, and KDDI9 with
-?5,1- = 0 at the upper layer. The correlation of the experimental result with
the above predictions is discussed in chapter 6.

A point about stability is necessary before concluding this approaci.

The worst possible solution perturbation is oscillatory in y having the form
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at a given grid point (see Fig. (4-5))

= - i -
£ 5 (1) (4-26)

The criteria for stability is that such a perturbation not grow in x. With
such an oscillatory pattern, equation (4-25) including diffusion and con-

vection temms only, demands that

Giong " fio15 - %55y | Toaee Giga i) (4-27)
ay* TRes &
or with equation (4-26)
4t Tt
= . - — Res -
£i,50 = £ 5 {1 o ‘rDiff} (4-28)

If the perturbation £ is not to grow the second temm in brackets must not
exceed 2.0 in magnitude. This condition translates to a restriction on Ax,
i.e.
A 2 Trs
=~ 'Diff

2 res (4- 29)

For the présent analysis with a typical residence time of 0.23 secs, a diffusion
time of 4.03 secs (Dt = ,004), and Ay = .1, Ax must be less than .087. In
this analysis, Ax was set to .0125S.

It is interesting that the first solution of (4-25) involved finite
difference equations as above, but with two boundary conditions on x. A
boundary condition of n = 0 was imposed approximately 24 duct widths down-
stream. The finite difference system was imposed as above, but the network
of equations was solved simultaneously using a Gauss-Jordan elimination
technique. Except in the neighborhood of the downstream point, the solution

was of the same order as the above stepping procedure. The stepping procedure
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eliminated the need to solve simultaneous equations but the question of
causality when using the one-sided forward derivative in x must be considered.
The results of the non-causal deposition prediction are compared in Chapter
2-A,

2. Causal PerfunCtory Model

Three modifications of the non-causal solution are in order. The
question of causality points to the first refinement, calling for a more
careful examination of the boundary condition imposition as well as repre-
sentation of first order partial derivatives. With no diffusion, equation
(4-24,b) becomes a first order partial differential equation which can be
solved ﬁsir.g characteristic trajectory theory; The correct analysis in this
limit would impose one boundary condition wherever particle trajectories
entered the region of interest. Spatial derivatives in x and y would be
evaluated in a one-sided difference representation always using particle
location information of earlier time. The exact solution should be con-
sistent with the trajectory analysis and in fact, degenerate to it as
diffusivity decreases. One approach to the problem then would be to extend
a finite difference grid through the upper and lower laminar sub-layers,
imposing the boundary condition n=0 at the upper surface. It would also be
in order to use one-sided partial derivatives consistent with causality for
non-diffusion terms. This solution would surely be more fundamental.
Unfortunately, the refinement of the grid necessary to develop information
through the boundary layer presented numerical difficulty to the small PDP
11-03 computer available in this study. It was decided to continue to split
the problem into regions.

The nature and position of the split leads to the second solution refine-

ment--the transverse dependence of the turbulent diffusivity. Equation (3-38)
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reveals one representation of the diffusivity vertical dependence. The
point was made in chapter 3 that according to Davies, the diffusivity is well
represented by Figure (4-6). The turbulent diffusivity is linear over 1/4
of the duct half - height dropping very quickly to zero in the neighborhood of
the laminar sublayer A. The thickness of the layer is computed from Schlichting
(chapter 5-[1]) to be

A s - = .031 cm (4-30)

71 1
.03325 Ua\rgz vz a 7

Here Uavg' the average duct velocity, was assumed to be 4.57 m/sec. Schlichting

also shovs that the axial flov in the swb layer canbe represented as
7 1 -1
rosszsu, Fv¥a B
v

The equation tobe solved in the core is identical to (4-24), but with
the 3D term of (4-16)

3y
2
_3n  Tpigr . Diff  an - 13D an . "Diff sn
axz Tgrav-vis W Tmag-vis 3L D3y oY TRes
Tre
- ____Tlef n =0 (4~ 32)
mag-k

The normalization of (4-24)p) was used in (4-32).

The model alterations incorporating these refinements appear in Figure
(4-7). Boundary conditions are imposed on the top and left side of the duct
wiere trajectories would enter. The grid is extended into the upper layer
where the condition n=0 is imposed.

The lover boundary condition at y=A is necessary if Dt is non zero at
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that point (2nd order in y). As figure (4-6) points out, a discontinuity in

Dt exists at y=A, The imposition of Dt-o at y=A implies significant alter-
ations that will be discussed in the following section. The discussion in the
causal model section of the boundary condition %‘; = 0 at y=A applies in this
model as long as Dt is non zero throughout tle <ore.

The trajectory model was then meshed with the diffusion solution at y=A
as explained in the approximate model solution.

The finite difference representation of (4-32) consistent with causality

and degenerating to the trajectory analysis as D, goes to zero becomes

C@i-1,5 Y Bie1 T g
By

( Diff TDiff) (’li-le - Bi,i>
Tgra\r-vis Tma.g-vis by

1D (2.1-1,3' " Bi41,5), Tpiff (S T M-l
D 3 2oy Tres iX

- —_‘[lef n, =0 (4' 33)
mag-k 2

Note the %’;; term uses a two-sided derivative of density, while the migration
and convection terms use a one-sided derivative. The solution is quite
general in that it is applicable to any type of migration. If migration were
up in some region and down in others (e.g. due to positioning magnets at

y=2a as well as y=0) a point bv point check of the direction of local migration
would be necessary before one would know whether to choose n, ; ; orn,

o SRERE B

f 1 t. ——'
or evaluating o

Causal representation of the x derivative convective term necessitates

14
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the simultaneous solution of all densities in a single colum before proceeding

to the next colum. The point to remember is that the axis in which dif-
fusion is important will require simultaneous solution of all points along
that axis. The other axes give the directions of sequential numerical
stepping.

Appendix F lists the program KDPFZ used to predict the causal perfunctory
light particle diffusion theory solution. The above discussion illucidates
the requirements causality imposed on boundary conditions and numerical
differentiation. A comparison of this models' precipitation prediction with
experimental data is in chapter 6-2.

3. Causal Fundamental Diffusion Model

As shown in Fig. (4-6), there exists a discontinuity in diffusivity at
y=4A., If Dt is set to zero at the lower layer, the core analysis requires
no lower boundary condition. The diffusion equation representation for the
final row of elements in Fig. (4-7) involves only elements above and to the
left of their location (i.e., backward in time).

Except for the change in Dt and this boundary condition, the analysis
is identical to the previous section. The program listing appears in
Appendix G. The theory precipitation correlations with data follow in
Chapter 6A. A comparison of these two causal solutions differing by the
lower boundary condition is also discussed in Chapter 6-A. The zero boundary
condition theory predicts a 5-10% lower particulate deposition than the zero
gradient causal theory. The most surp:rising result was that the no lower
boundary condition causal solution predi:'ted a density profile identical in
shape to the zero gradient theory, including a zero density gradient at y=A!
The conclusion is that this third no lower boundary condition causal solution

is more fundamental,
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D. Heavy Particle Analysis

(1) Inertial Model - (rp = 50y )

As discussed in section (B), inertial effects must be considered for
sufficiently large particles (> 25u). On the basis of the comparison used,
even a 25u particle had a migration time constant one order of magnituce
smaller than the diffusion time constant. The question of inclusion of
turbulent diffusion will be considered in the next section; for the following
discussion) diffusion will be ignored. In this section, a particle trajectory
analysis including particle inertia will be discussed.

In the Lagrangian coordinates, the momentum equation is

dv. _ -
m HT:E + 61rnrvp = 6mrU + mg + Frag (4-34)
where

U = the mean gas velocity

4 3 3
-FmagE--s'ﬁr(——z‘.u—-)
H

/
o

‘co
I |
(“o )”o mel 0 Y

A rommalization is employed as before, but the base time is an inertial-
gravitation time. (This normalization is altered in chapter 7 where gravity

is ignored--the base time is a characteristic diffusion time).
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(4-35)

2 p
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Writing equation (4-34) for the x and y directions in terms of nommalized

variahles gives

d_2§ _ lin grav
dt“  Tin vis

:_54 _(:m grav)%_ ] - _in grav

(4-36(a))

(4-3€(b))

(@)

®)
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Equations (4-37) can be mumerically integrated if the y integrations (c,d)
are performed first.
A fourth order Runge-Kutta numerical integration system was adopted
marching equations (4-37) in time. (1] The procedure made four approximations
on the change in v

—y
. The change in y over this interval of time is found by a

over the time interval At, taking a weighted average of

these to get v.
8 Ly
forward Euler approximation.

Given v and at time t
T Yo =

AV'Va = At g(yyo; Yo' to)
AL 1y,
Yo = Yot & \Zyyo + Ayya)
Ay, At

ﬁ’a
= + 4 s £+ -
A‘_fyb At ngyo - Yai £ t 7 4-37)

At
%Yot g (Y v %)

Av.
= b, . At
A!Vc = A.t_g(‘_ryo + ‘T‘, be EO + 2"‘)

At
= + 2 + A
Yo = Yo * T (0, * %)
Av, = At g(v. + Av, ;3 y.; t + At)
ya — _yo ..yc zc

1
v =v_  +=(Av. + 20v + 20y + AV
B B A [ Ya b e Xd)

1
Y1 =Yyt (A (z},o + zyl)
The same procedure is then employed to obtain le and X, over this time

(yo * ¥1)
interval with y at midpoint approximated as -—9—-2—-—1—. The integration
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program KDDN4 is listed in Appendix H. The final result is the particle tra-

jectory flight profiles for different exit positions from the injection tube.
(figure 4-8).

The use of the flux conservation principle is necessary to obtain density
information from these results. In steady state, the spreading of the tra-
Jectory lines is related to the density. Specifically, if the profile tra-
jectories have an initial separation Ay and impact the lower duct wall with

a separation (Tho) , then
no &, vy = n| ¥| my (4-38)
() y=0

or after normalizing

n_, fo¥
% my [ (4-39)
t

Inherent in equation (4-39) is the assumption that the density is uniform
over the injection tube cross section.

Inherent in eqn. (4-39) is the assumption that the problem is two-
dimensional with no spreading in the transverse z direction. This assumption
is consistent with using a multi-tube particle injector positioned at several
z locations across the duct. A transverse slit may be ideal from this view-
point but would surely perturb the air flow and generate a disruptive wake.
(Figure 4-9(a)). The z dependence is not critical since all precipitation
measurements were averaged over the duct width. The effects of turbulent
diffusion considered in the next section tend to somewhat uniformly spread

the precipitate after about two duct widths downstream,even for moderately
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large particles (100u). It was decided therefore to use a simple tube

injector.

Figure (4-9(p)) depicts a reasonable flux profile upon exit from the
injection tube. Quantitatively, the net flux should display the characteristic
turbulent velocity tube profile dependence, i.e.,

1

Tom Y-Vl &
0 0 -
e &

T = 4-40
0 nmaxvxmj (4-40)

where

Vy = the average injection velocity
inj

the tube radius

g
[ ]

the position in the tube measured from the bottom of the duct

5
u

Yo the distance to tube centerline from the bottom of the duct

the maximum density at the center of the tube

Pmax

The net weight of particulate injected during a time t, in steady state is

to y°+r

- FL)wdydt (4-41
chected) é Vc{'ro oML wdy )

and using equation (4-35)

(injected) = () 2rg)(9 ) e (4-42)

The flux and weight of precipitate collected on the bottom over an interval

Ax are respectively:

- 1 d -~
r= (coj%%:ent (n(a%) hy (4-43)
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Figure 4-9 Particle Injection System
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&
L Xt

Corlected = | "o! i © Cpug Ty v dx (4-44)
T

Combining equation (4-44) with (4-42) it follows that the weight collected
per unit interval Ax becomes

Ax B
o ) Ginected) (a%?,.n fig (4-45(a))
ollected C.9) (Zr )v
*inj
or nommalized
X
wt (
L (injected) OF .o X1 (4-45())
ollected (.9) (Zr )v
et :.m
Combining the above with equation (4-39) gives
¢ wt ) - (m ected) Ay &x (4-46)
collected C. §§22r )(Ih_)

=0’ =0

Thus a knowledge of the particle trajectories is enough to link the inertial
theory on an absolute scale to experimental precipitation results. The
experimental correlation is shown in chapter 6-c. This theory, ignoring
turbulent diffusive effects altogether, predicts far too large a particulate

deposition.

(2) Hybrid Inertial-Diffusion Model.(10u < o < 50w )

The results from the time constant analysis indicate migration times are
an order of magnitude shorter than the duct diffusion time for 55u particles.
This was based however on diffusion over the duct half height.  Upon exit
from the injection tube, the vertical density gradient is quite large near the

tube outer radius. Furthermore, chapter 5 reveals that the upstream diffusivity
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is nearly an order of magnitude larger than the downstream value (.002 %?Ec)’
An inclusion of diffusion effects appears nucessary especially in the
neighborhood of the injection nozzle. The protlen: then centers on incorpor-
ating both inertia and diffusion.

The aim is to accurately predict the density profile and precipitation
of particles in the diameter range 55-75 microns. The above discussion would
indicate a perturbation on the inertia theory analysis is more appropriate
than a modification of the diffusion small particle theory for this particle
range. Towards this end, it appears that the addition of a term to the
momentum equation is acceptable because the solution degenerates to the
diffusion model when inertia effects vanish. A possible solution meeting
this requirement (basically superposition of models) is

dv

» -— = N - - ll}_ -
ma-t-:-2 + ﬁnnrpvp 67 pU +mg + Fmag 61rnrp D, (4-47)

Withm = 0, nmitiplying by density n and dividing by (61mrp) gives the flux
expression (4-1). The diffusion model then follows by taking the divergence.
Equation (4-47) is in Lagrangian coordinates, and thus the instantaneous
particle density and gradient must be lmown along its trajectory. The
evaluation can be made only by incorporating conservation of particle flux.
This is to be expected since the nature of the diffusion term depends not on
a single particle's parameters, but on the proximity of its neighbors.

One can now proceed along the lines of the previous section. The normal-
jzations mimic those of (4-35) except for the x variables which are normalized

tc the duct height 2a for ease in evaluating density gradients.

x" 73
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v, = via g v

2

Tore ® a 1
a-|y-al) ¥
a

RES

claﬁ

. - (4-48)
max

2
2a
Tpie * '(D')"t
As with the diffusion theory of sectionr B, longitudinal diffusion will be

assumed negligible when campared to convection. With these changes, the two

normalized equations to be solved become

T: 2 .
+ _in"-grav
Tin vis TRES

2
d’x w . lin-grav
dt*  Tin-vis

&

,2 2 3
d

=]

- . T1'n-grav
at*  Tin-vis

-1 -(Tinggav)z . (Tin-grav)
Tin-mag Tin vis "Dif

1312

(4-49)

1=

The method of integration is identical with the inertia model. Prior
to the y integration however, the evaluation of the local density and density
gradient is formulated for each flux tube (from the previous time step results),
and this is used as the input for the next time step. The analysis requires
that, the density be evaluated at every noint. As the integration is carried
out in Lagrarigian coordinates, it is desired to compute the density in the
same representation.[zl All particle positions are specified by their initial
position and time only. Figure (4-10,a) shows an incremental volume in space
when t=0, the comer position designated & (3,0) = a. By the time t, the
volume element has changed location and shape as shown in Figure (4-10,b).
The rate of change of the position vector I with respect to the initial
volume element edge directions is found by observing the change of these edge

vectors between the time o and t.



AV = Aa Aa la
Xy 2

(a)
E(atda 1 ,t) - E(a,t) = -a-&;:- Aa
yvy 3a
fro-——- Femy
/ '
, ! /1
- - /7 /7
E(atba_i_,t) - E(a,t) ) fmm———— -/~
L A Y A { /
z - %g Aa : J/
| a 2 1/
y -/
E(atta 1 ,t) - E(a,t)
Bax
E(a,t)
<
(b)

Figure(4-10) Lagrangian Representation of Incremental Volume
Element (a) t = 0,initial configuration (b) configuration at

time t
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Conservation of mass requires that

0(3,0) 4v (3,0) = p(@t) AV @&,t) | (4-50)

The initial volume of the differential elements is (A 8y Aay A az). The final
volume of the element at time t is just the parallelopiped volume of Fig.
(4-10,b), i.e.

Av (@,t) = g%;Aax . (-galy Aay X %;- Aaz) (4-51)

This volume is first found by taking the cross product and then carrying out
the dot product of the volume element edge extentions. This operation on the
derivaiivw.s of the position vector alone is known as the Jacobien J. Combining

(4-50) and (4-51) gives

o@,t) = o Byo) (4-52)

agx aay 35,:
8ax aax aax
14 14 13
where & | X oL SE |
& & %y
9E, BE), 3E,
aaz aaz aaz
. %y
Each element of the Jacobian determinant, e.g. 35 Tepresents the change

of position vector T in the kth direction of a particle beginning initially at

a+la j5 rather than at @. In a two dimensional evaluation where

9&; 0 i#z
a?z'= 1 i=z

(4-53)
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then J = (4-54)

QL
[ M

™ ~
SR
x?

)
<

The evaluation of the Jacobian and tuus the density at position El' time t, of
figure (4-11) is obtained from knowledge of the trajectories of three other
points beginning at position 2,3, and 4 at time t = 0. These elements are

related to the position vectors as follows:

3ax AXO _
12 (53' q5-4!) .-{Y

a

y Yo . (4-55)
35 (511 - 52')‘1

ax

1 @31 - .54')'-1;

x=
aay ZAy°

where Axo = (v&o) At, At being the incremental numerical time step.

Note that derivatives involving initial changes in vertical position A y,
were obtained from the displacement of position vectors to either side of the
point in question to yield an effective two-sided derivative. This procedure
was adopted throughout except at the upper and lower trajectories where a
single vertical derivative was used.

The final step is to compute the vertical density gradient from this

information. The attack employsd here is to calculate the true gradient from

a knowledge of the gradient component in two arbitrary directions. Consider
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again figure (4-11) with the vector Fi'-S' representing the vector from point

1' te point 3' and I}l' 5 representing a unit vector in that direction.

Components of the density gradient are found as follows:

v A A

ST e N
n,,-n

Vn . T 2 1 (4-57)

'1 B commea—

Tyeope Irlv-zvl
Splitting the gradient into x and y components and performing the dot product
yields

an (x3|'x1v) . an (Y3|'}'lv) _ (n3"n19) 4-58
X Tyroge -3—)7 Irl'-3" B |r3'~1" ( )

an (xzc'xlv) . an ()'Zv')’lv) (nzc'nlv) 4-59
x irlv-ztl ) -3-)-'- |r1|_2v| |r1v-2v| ( )

Equations (4-58) and (4-59) can be solved to give the vertical gradient

an _ (nsv"nlv)(xzv’xlv) . (nzv'nlv)(xso'xlv)
ay (ySv’Yll)(xzt’xlv) - 6’2"}'1') (xsl'xlv)

(4-¢0)

This analysis is basically good except for the one-sided nature of the vertical
point difference C?s'-l')‘ This one-sided difference was found to precipitate
oscillations in the computer program. For trajectories other than the upper
and lower ones, it was better to replace equation (4-56) with one involving
points 3' and 4' to approximately represent the gradient at 1', i.e.,

Nze=Nye

Vn-1r4'-3' = W (4-61)

The vertical gradient throughout most of the trajectory region becomes
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an (n3"n4|)(xzv"x1') - (nzs‘nlv)(xst'x‘;v)
133 (Y30'Y40)szv°x1|) - 6’2")’13 (xst'x4o)

(4-62)

It was desired to keep the incoming flux profile unchanged from the
inertial assumption. To also avoid huge gradients at the tube periphery, the
injection velocity was assumed constant across the injection tube exit area

and the density giveh the characteristic turbulent profile, i.e.

1
n o (Torlyyol » J
“x=0 ’(—'——ro (4-63)

The linking of these results with the deposition on the lower wall proceeds
exactly as in the previous section (equation (4-46)). The program KDIN7 used
is listed in Appendix I.

One final comment concerning particulate spreading by turbulent diffusion
is in order. Turbulent eddies can never cause movement of particulate faster
than the turbulent perturbation velocity. It was necessary to put an upper

limit on Didy at v' which from cnapter 3 becomes
n

D.Vn
t. t
no < \J T (4-64)

Furthermore, it was assumed sufficient in the perturbation type analysis to

keep D, uniform across the duct core region and setting it to zero one-half
centimeter from the wall (Dt goes from 0 to maximum value in roughly 1 centi-
meter). The theory's insensitivity to the choice of cutoff layer thickness
shown in chapter 6, justifies this action.

A comparison of this hybrid theory's precipitation prediction with

experiment follows in chapter 6-B. The work in chapter 7 concerning particle
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flight in a jet boundary layer builds on the hybrid diffusion theory.
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V.  DOCUMENTATION OF FIELDS AND FLOWS

A. Introduction

The thrustlof this thesis is directed towards predicting the precipita-
tion of magnetizable particulate in turbulent air flows. Towards this end,
it is necessary to quantify turbulent eddy effects and magnetic field ef-
fects and magnetic field effects. The purpose of this chapter is three-fold:

i) to describe the method used for inducing turbulence in the duct

ii) to document the measurement of the channel turbuelnt diffusion co-

efficient

ii1) to give an account of the permanent magnet array field measurement

The goal of the first objective was to induce turbulence in the
duct that would not decay as quickly as that incited by a screen. It was hoped
that the design of a velocity profile grid might give rise to a channel in-
tensity resembling fully developed turbulent flow. The result was in fact a
turbulent intensity decaying an order of magnitude over the channel length
(which is considerably better than the turbulence excited by a screen). The
axial non-uniformity in turbulence was acceptable but necessitated measure-
ment of turbulent diffusivity at several axial locations.

The result of the second objective was an experimental measure of the
turbulent diffusivity's axial and transverse character in the duct. The
outcome of this testing was the establishment of the credibility of linking
these measurements to existent fluid turbulence diffusivity literature.
Specifically, the data supported the decision to use the transverse dif-
fusivity dependence documented by Davies (chapt. 3 [2]) with the peak mag-
nitude obtained experimentally along the duct. This course of action was

motivated by the desire to avoid using transverse experimental results be-
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cause of the asymmetry they exhibited. The asymmetry was caused by the
hot wire anemometer probe schroud; the schroud inhibited fluid flow dif-
ferently when extended clear across the duct than when extended just past
the insertion hole.

The third objective was to determine the nature of the magnetic field on
the duct lower surface excited by the permanent magnet structure. The goal
specifically was to ascertain the relatiQe size of the different harmonics.
As an aside, it was found that positioning the magnets 1/4" from the duct
lower surface yielded a nearly sinusoidal field on the duct surface.

A B. Inducement of Turbulence and the Velocity Profile Grid

This section describes the construction of a velocity profile grid in-
tended to excite a fully developed turbulent flow. The grid design (an
improvement over a plane screen) succeeded in inducing turbulence decaying
an order of magnitude down the duct.

The desirability of a fully developed turbulent flow poses a problem
in this experiment. Although the Reynolds number for this flow is well
within the turbulent region (~36,000), the length of duct necessary for
development of tﬁis flow is prohibitive. Schlichting [1] states that the
point of transition at which an instability initiates a growing disturbance
in the flow has been found empirically to occur when

U X

Ry = = 3.5 x 10° (5-1)

For a 4.3 m/sec flow, this gives a transition length of 2.5 meters. Further-

more, the boundary layer thickness § is given by
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U .
8(x) = (0.37) x (-2 /5 (5-2)

Thus the distance x for this boundary layer to grow half the duct width
(a = 6.35 cm) is

X = (-§;05/4 (;;)]/4 = 2.6 meters (5-3)
It would take over 4.5 meters to insure fully developed turbulent flow.

One method of exciting turbulence in the duct is to use a screen or
wire mesh. According to Baines and Peterson [2] the mesh size of the screen
and the wire diameter (bar thickness) completely determine the character of
the turbulence excited. Theirresults reveal that 5 - 10 mesh lengths (see
Fig. 5-1) downstream from the screen are required to insure good flow estab-
lishment, i.e., homogeneity. It is the screen bar thickness b (wire diameter)
however, which'detérmines the turbulent intensity decay. The figure shows
roughly this intensity versus distance downstream dependence in terms of
number of bar thicknesses. It is desirable to work in the region where
v'/u = .01, 100 bar thicknesses downstream. This option would however yield
a very low intensity, and a roughly exponential decaying turbulent level would
still exist in the expeirmental section. For this reason the option of using
a nonuniform velocity profile grid rather than a screen was adopted.

There are at least two requirements that such a profile grid must meet
to establish a fully developed turbulent Flow--

1) The size of eddies excited by the grid spires must be the same as

the large scale eddies (L) that would exist in the full developed
turbulent duct flow.
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2) The impedance presented by the grid'to the upstream flow must be

such that the average axial flow velocity U over the duct cross-
section matches that of the fully developed turbulent flow.
It is noted that this discussion does not consider the effect of duct walls
on the turbulence growth.

Most work on profile grids has been done with circular dicts. A typical
profile grid for a round pipe is shown in Fig. (5-2(b)). The grid consists
of a number of radial spires, the size of which at any radius is chosen to
match (i.e., insure the same velocity of) the fully developed flow. The
number of spires is determined in meeting requirement (1) above. The average
thickness of a spire (e.g. at half the radius) represents the average eddy
scale excited; this inust be the same order as the turbulent length scale
for the circular duct flow desired.

The corresponding grid for the rectangular duct is shown in Fig. (5-2(a)).
Each side of the duct has the same number of spires extending toward the cen-
ter, but each is terminated on the duct diagonals. The same procedure is used
in determining the width and number of each spire.

It was concluded after private consultation [9] that the characteristic
duct integral scale is roughly a quarter of the duct width. The eddy size
excited by a spire will be roughly the same as the spire width. This would
indicate four spires to a side as being the proper choice, which is what the
author used. |

The spire width calculation required more work. Frank Durgin [3] has
studied the excitation of full scale turbulence in pipe flow, and has found
that the spire width d and the spire spacing % should be related as follows
(see fig. 5-3):



(a)
Figure 5-2 Velocity Profile Grid

-2cl-

(b)

(a)duct grid, (b) pipe grid - black indicates blocked portiomns
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] R
(2 =1+, —8a) (5-4)

a
1-(d/2)

where U = the average X directed velocity
Uo = the maximum midstream x directed velocity

k.I = constant

In circular pipe flow ky 1s about 4, but private discussion [9] has led the
author to believe ky = 10 is more accurate for rectangular ducts.

To complete the calculation, a formula for flow velocity with position
is needed. The author has measured the duct flow velocity with position.
The results for maximum flow speeds of 850 ft./min. (4.3 m/sec) and
450 ft./min. (2/2 m/sec) are shown in Fig. 5-4. The asymmetry about the center
line is attributed to two aspects of the anemometer probe:

1) At lower y positions, the probe extends across the entire duct
impeding flow above the probe tip. At the upper positions leakage
is occuring through the probe insertion hole.

2) The anemometer probe tip is completely surrounded by a metal
shroud inhibiting sensitive measurements especially near the
wall. This is undoubtedly the source of asymmetry exhibited in
Figures (5-4) and (5-10).

The author has fitted several curves of the form

U _ 1/
i (& /n (5-5)

where (n = a constant) to the above data. The best fit appears to occur

when n = 9; these are plotted next to the experimental measurements in
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figu (5-4)0

Using the above results, equation (5-4) transforms to

& 2L
\ (5-6)

Now since % is equal to a quarter of the duct width, d is calculated for every
position up to the center of the duct. £ and a are different for the ver-
tical sides with rectangular ducts, but (5-6) applies. Thus the author con-
structed eight identical vertical spires and eight horizontal spires, posi-
tioning these as in Fig. 5-3 and cutting them along the duct diagonals.

As will be shown in the next section, the turbulence decay is consistent
with screen literature prediction; if the characteristic screen bar size is
chosen equal to the thick base (1.25") of the spire. Choosing any other
thickness of the spire as a representative bar size leads to the conclusion
that the spires induce a turbulence that does not decay as rapidly as would
screen turbulence (incidently, 4 screen bars 1.25" thick would block the duct
completely). The important point is that turbulence is induced and has an
axial variation.

C. Turbulent Diffusion Coefficent Determination

Historically, work in the area of turbulent electrostatic precipitation
[7] has been geared along one of two limits. One involves the assumption of
an infinite diffusivity known as the Deutsch model, which implies the fliud
turbulent eddies dominate all other forces in supplying particulate to duct
walls where it can be precipitated. The second 1imit ignores diffusion and

infers that particles have a large enough inertia that they are unaffected
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by turbulent eddies. The work by Williams and Jackson [8] assumes a con-
stant diffusivity (based on Dhanak's formula.--chapter 3) falling instantly
to zero a small distance § from the walls. The intent of this section is to
build upon the work of Davies (chap. 3, [2]), i.e., to use the transverse
diffusivity dependence he docdments with the midstream measured duct diffu-
' sivity.
The'turbulent diffusion coefficient was found in Chapter 3 to be

D =v'ZT (5-7)

X

where v'® is the time average squared perturbation velocity

and T = J T VT dr
A e

v
The long overbar in the Lagrangian time scale T is understood to be an
average in time t.

The turbulent intensity ;T?-was measured with an RMS meter and an ane-
mometer probe. The velocity probe signal feeds a resistance bridge in the
anemometer which then in turn supplies a voltage to an RMS voltmeter that
blocks any dc signal (see Fig. 5-5, a). The RMS voltage is then multiplied
by a constant to give the turbulent intensity.

The output from the anemometer wire represents the resistance change
resulting from'the coo]ing of the hot wire probe. This velocity voltage
relationship is sometimes referred to as the King relationship and is shown
in Fig. 5-6. The anemometer signal can be fed into an equalizer to linearize

the voltage dependence. If the interdependence is linear, then any perturba-

tion velocity superimposed on the main floy)when filtered through an RMS
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voltmeter and multiplied by the slope (change in velocity with respect to

voltage% will yield the turbulent intensity.

Because an equalizer was not available, a more approximate method had
to be adopted. Figure (5-6) shows the anemometer voltage~velocity relation-
ship. As long as the velocity perturbations about the steady mean are small,
the RMS voltage is related to the average perturbation velocity through the
local S1ope. By taking the slope from fig. (5-6) for the average flow at
every position y in the duct (fig. (5-4)), one gets the proper multiplying
factor, ¢, along the duct. The turbulent intensity measured in this manner
is shown in Fig. 5-7 for mean flow velocities 4.32 m/sec and 2.28 m/sec.

The measurement of the turbulent time scale is more involved and re-
quires a measurement of the energy spectrum, i.e., the turbulent energy in
isolated frequency bands. Von Karman [4] and Berman [5], as well as Hinze's
book ((pp. 165-174) referenced in Chapter 3) use stochastic theory to pro-
vide a connection between the integral of the velocity auto-correlation in
eqn, (5-7) and the turbulent energy specturm. Berman, as well as Durgin and
Fannucci [6], specifically correlate the integral length scale with the fre-

quency at which the turbulent intensity begins to fall, i.e.,

U
L - 27%%) (5-8)

the maxium axial velocity

where Uo

fb the turbulent intensity break point frequency

Figure (5-8) shows the turbulent intensity in 20 Hz banrd widths with
a main flow of 4.32 m/sec and 2.28 m/sec. The measurements were made in the

center of the duct in both the x and y directions. The equipment set-up
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is shown in fig. (5-5(b)). The process is identical to that above except

for the addition of the bandpass filter. As fig. (5-8) shows, the 20 Hz
bandpass test beginning at 10 Hz, revealed. only the characteristic decrease
in turbulent intensity with a 5/4 fall off. It was necessary to decrease
the frequency bands to 4 Hz, centering the first at 4 Hz to observe a con-
stant intensity and a break frequency. Figure (5-9) shows these results,
again for measurements in the center of the ducf for a 4.32 m/sec flow. The
axial flow intensities for each flow exhibit a 19 Hz break frequency at 4.32
m/sec flow and a 15 Hz break frequency at 2.28m/sec. flow.

Using equation (5-8) and the work from Chapter 3 in connecting the
turbulent length and time scales (T = L/Uo), the desired turbulent para-

meters follow:

L=2.7cm
4.32 m/sec flow
T = .00624 secs.
(5-9)
L=1.81 cm
2.28 m/sec flow
T = .00791 secs.

Multiplying these time scales by the respective turbulent intensities of

fig. (5-7) gives the turbulent diffusion coefficients shown in Figs. (5-10)
and (5-11). Along with these experimental values are shown the diffusivities
as predicted by Davies and Dhanak (see chapter 3). Davies's prediction

based on the duct width Reynolds number gives
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’°1V(Rez ).875 4,32 m/sec DT = ,00147
a

DT (5-10)

2.28 m/sec DT = ,00084
As shown in figs. (5-10,5-11), Davies assumes a rise in diffusivity to the

above values in 1/8 of the channel width. Dhanak bases his diffusivity pre-

diction on the duct half width Reynolds number as well as the duct friction

factor.

4.32 m/sec DT = ,00205

D, = .0708 R, wf

¥ a

2.28 m/sec D, = .0013

+
Here it is assumed from Dhanak's empirical results that the friction flow
factor for a dry air is .011 and .016 for the 4.32 m/sec and 2/28 m/sec
flows respectively. This value which represents axial dependence only is
intended to be valid in midstream. The rough agreement of the three is ac-
tually quite good when one remembers that these expressions are obtained
empirically for specific flows.

One further point should be made concerning the generality of this
approach. The diffu:ivity obtained was based on turbulent intensities
measured in the flow direction. To apply this diffusivity to diffusion in
the y direction, one must assume isotropic turbulence, which shall be as-
sumed henceforth. It was hoped that the turbulent intensities might be
measured in the transverse directions, but the probe multiplicative con-

stant is difficult to determine near zero mean flow and the linearity
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assumptions are questionable.

The diffusivity representation adopted in this work uses the transverse
dependence of Davies with the measured experimental midstrean: diffusivity to
determine longitudinal magnitudes. TQe hybrid diffusivities are shown dot-
ted in figures (5-10) and (5-11). Thése measurements were taken just before
the right-most flange of fig. 1-2. One rough order estimate of the diffu-
sivity's axial dependence is obtained from screen turbulence literature, e.g.,
Baines and Peterson [2]. Given a screen bar size equal to the base spire
width (1.25"), their results predict a grid turbulence level (%}Qz = .16 and
a turbulength scale L = .0095 m, 6 inches from the screen. With a 7.62 m/sec

flow the diffusivity is
[]
D, = & (%) U2 = 0116 m¥/sec (5-12)

This would indicate an order of magnitude decay down the duct is likely.
Fig. (5-12) shows the measured diffusivity versus axial position. The
region immediately following the grid where the velocity "necks" down ex-
hibits a calm before a turbulent transition. This data was matched in a
least squares polynomial fit using the MIT Math library subroutine LSFIT.
The axial dependence past the 1' mark was found to be accurately representzd

as

D. = .0546 - .151 x + .202 x°

.t

- .0843 x3 - .079 x* + .0289 x° + .0656 x° (5-12)

- .0336 x’
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This completes the measurement of diffusivity as a function of both x and y.
D. Magnetic Field Distribution
As mentioned in chapter 2, the permanent magnet field structure is not
sinusoidal, but contains manu harmonics. Given that the field pattern re-
peats over a length L and begins at zero, a reasonable representation would
be

m
Bret(X) =2 by sin 2—“L'"—" . (5-13)
m=1

Multiplying equation (5-13) by sin ZT%X and summing over 2M-1 discrete X

steps gives

(ZM‘] )Ax]
(2m=1) AxqM
:E B(x) sin &% Zﬂzx ;zzr ‘25:- by, sin Zﬂmx sin ZT?X‘ (5-14)
x=4%, _ x=4xy  m=]

where Ax] = L/2M

Using the discrete orthogonality property for sinusoids wherein

(2M-1)Ax1 0 m#R
2 sin (-2-1’&"-&) sin (ngEJzi = (5-15)
x=Ax1 1/2 (2M-1) m=4
it follows that
_ 2 . X
by = T ;E Bnet (x) sin ( =) (5-16)
X=Ax~|

The normal flux density was measured 1/4" above the permanent magnet
wave structure for each of three wavelengths—5.08 cm, 8 cm, and 12 cm using

a Hall effect prove. For each case, a discrete Fourier aralysis according
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to the above discussion was performed using the computer program FOURIE

1isted in Appendix I. The measured field for the above three wavelengths

along with the first 9 calculated harmonic components is shown in figs.

(5-13) to (5-15).
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VI. Experimental Results and Correlations with Theoretical Models

A, Small Particle Dynamits

Figure (6-1) shows the experimental arrangement for the small particle
tests. The injection nozzle is positioned approximately 3 feet before the
magnetic structure to insure a uniform initial particulate density over the
duct cross-section. Severa]: "tests appeared to indicate an injection distance
6" into the settling chamber gave reasonable uniformity. Where possible,
precipitation was avoided in the local region just after the profile grid
where flow necking and spurious wakes could cause unwanted side effects. The
tests were performed for three field wavelengths - 5.08 cm., 8 cm., and 12
cm, For each experiment, the total lweight of particulate injected was re-
corded, and the amount of material precipitated across the duct width per
half wavelength axial distance was measured.;

1. Correlation of Measured Parameters from Numerical Models

It is necessary to correlate the number of grams per half wavelength
‘with the density def:endence theory calculation. The correlation is based on
the assumption that particulate at density n, is injected during a tin'xe
interval t, seconds at the beginning of the precipitation structure. The

total weight in grams of particulate injected is

ts 2a
(Net Wt.) = I J o U n, w dy dt (6-1)
grams - o o
where
p = mass density of particles grams/m3
W = duct width-meters
1
U = axial flow velocity = U . (-a—'laL'—a—L)@'
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Evaluation of (6-1) yields

-

Net wt:,) = p(Za)( 9 U ) wn,t, (6-2)
grams ,

In terms of the vertical particle flux at y = 0, (Fy = o)» the precipitated

particulate per half wavelength strip in a steady state operation lasting t,

seconds is
to X+ 2/4 .
(measured) = I I p(’f"y - O'Ty) w dx dt (6-3)

where X is measured from the beginning of the magnetic precipitation structure.

The particle flux at y = 0 is in Stokes flow without diffusion so that

(-z—:i-—) .
Eg_ (3171‘) “Ho (ﬂ) k_ 2 mezm*\ Ty

8 Ho - W1

F .
= -G+ Yy (6-4)
Assuming there exists an average flux over any one axial half - wave strip

whose magnitude is Iy (x)., the measured output (6-3) can be written

(measured) = p T W(’Z') t,
output

where T_ is evaluated at (x + %—) ' (6-5)

Using (6-3) this becomes
( grams of

particulate) (_2_) e ., J)

injected n

(measured) = o ®
output o avg. at (x
v (2a)(.9 Umax)

(6-6)
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2. Correlation of Measured Parameters from Deutsch Model

The data will be compared to the refined Deutsch precipitation iodel
developed in Appendix B, The Deutsch model analysis correlation proceeds in a
similar fashion to section 1. The density developed is,

n X=Xy ).
i M ) s O (6-7)

o) av
Ig?r"m ¥ _ak)

and is valid for plug flow U and a single harmonic B field., Including the full
harmonic field and the actual flow velocity, (607) becomes

n ( X=X
D . e - (6-8)
nO mg +“Fmag) !

lZa Uavg (---——-——B .

is defined in (6-4)

where Fmag

1

a

: 2 9.

and Uavg *7a j Unax (‘}) dy = .9 Uppye
)

Integrating equation (6-3) with I‘y = 0 given by (6-4) and substituting the

total mass injected using equation (6-2) gives

B aate ¢+ Fag) ] ] (™ P,
(measured) ={:° exp - ) (x-7)} - exp| - (
cutput injected CRU- B .t aUve 8

(o )iR (6-9)

3. Observations of Theoretical Deposition Predictions
The theories of secticn 4-B are conpared by examining the percentage of

injected particulate collected per half wavelength on the lower duct surface.



-150-
Figure (6-2) shows the deposition predictions (with 4%-u particles. 8 cm
field wavelength) for the four light particle theories--Deutsch, non causal,
causal perfunctory, and causal fundamental as presented in chapter 4. The
numerical theories are computed with the spacer grid representation discussed
in section 4-C using 25 transverse points and 80 axial steps. Studies re-
vealed the accuracy of numerical solution with such a grid assignment is
questionable for two reasons, figure (6-2) is useful for comparing theories
only in a cursory manner.

The first problem to be considered is that of numerical convergence.
The causal theory downstream (7.5 cm) deposition prediction decreases 50%
as the grid size is increased from 15 to 40 transverse points (axial = 80).
Considerations of grid stability indicate the axial spacing Ax should be less
than or equal to (D,U). This criteria sets the number of axial grid points
into the thousands. The numerical density solution was calculated in the
1imit of constant diffusive and convective terms only, and compared
to the analytical solution. When using 95 transverse points and 1000 axial
steps the numerical solution demonstrated reasonable convergence and dif-
fered from the analytical solution ¢:ly in the third significant figure
(<1% difference).

The second problem of numerical accuracy is more subtle. The diffu-
sivity and magnetic force in the lower portion of duct near the laminar
sublayer change very rapidly. These facts added to the uncertainty as to
the nature of the sublayer physics make it clear that the lower portion of
the grid solution at the wall is the area of greatest uncertainty. The

solution outlined in section (4-C) couples the migration fluxes to the
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density at the lower grid point (for each axial location) to arrive at de-

position on the wall, although the net profile is relatively unaltered.
Considerable changes in predicted densities occur for the lower transverse
grid point locations when the number of transverse points is increased
further.

An alternative to predicting depositicn rates which effectively in-
tegrates through the region of numerical diffuculty, involves applying th:
principles of mass conservation to the numerically calculated density pro-
files (for which the analy*tical model gives credibility). Specifically the
transverse flux deposition on a strip Ax equals the difference of upstream
and downstream axial fluxes. The procedure of using *he density profiles
of section (4-C) in this manner to arrive at deposition predictions is
described in Appendix K, and the corresponding refined causal fundamental
FORTRAN program KDFF1 1is listed in Appendix L.

Figure (6-3) shows the causal and refined causal deposition predic-
tions (grid 95 x 1000) along with the Deutsch theory prediction for 8u
particles and an 8 cm field wavelength. The increased grid accuracy re-
veals the error of the unrefined model. Increasing the grid accuracy from
(95 x 1000) to (500 x 2000) gave only a 5% decrease in deposition pre-
diction (the 95 x 1000 grid assignment will be used for the remainder of
this chapter). The refined perfunctory prediction exceeded only slightly
the fundamental causal preductions (<1% difference).

The Deutsch model, with an infinite diffusivity always predicts greater
precipitation (except at the initial axial locations) than the finite

diffusivity models and exhibits a less rapid initial decay. This observa-
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tion is linked to a property common to all the theories concerning the

shape of the deposition prediction. Mass conservation dictates that the
predictions must have the same integral (i.e., net area). Thus, steep
initial deposition predictions must be bclanced by slow downstream decays.
Theoretical predictions are limited in how they can differ; the principle
difference occurs in the nature of the initial deposition decay.

As pointed out in fig. (4-6), the diffusivity undergoes a rapid change
in slope at the laminar sublayer. An attempt to simulate this change in the
causal fundamental model (in which Dt goes to zero just above the sublayer)
was made by increasing the magnitude of the slope by a factor of 10 for the
last transverse core grid point only. This assignment is in fact an arti-
fice, but may represent the diffusivity dependence more realistically. The
numerical deposition prediction was not sensitive to this alteration; leav-
ing the diffusivity slope unaltered results in a 0.5% lower deposition pre-
diction (at x = 7.5 cm). The factor of 10 increase in diffusivity slope
will be inserted into the last grid point assignment for the remainder of
this section.

The refined causal fundamental model displayed a much smaller sensi-
tivity to particle size than did the Deutsch theory (4%-u tests were 13 to
20% lower at upstream locations, negligible downstream). It is expected
that small downstream precipitation predictions should exist. Magnetic
migration is extremely dependent on particle radius (~r2); at upstream
Tocations, magnetic forces remove particulate in the vicinity of the wall at
different rates dependent on their size. After particulate is removed

from this magnetic interaction region, further removal is more dependent
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on turbulent diffusive effects which are independent of size. The only
parameters important in the Deutsch model spring from migration forces which
depend on the particle diameter squared.

Discussion of the representation of the field harmonics and their
effect on theory predictions is in order. Numerical predictions differed
little (approximately 1% for A = 12 cm) when only one, rather than nine
harmonics (chapter 5) were used to represent the field. The nine harmonic
tests cannot be treated by superpositions, i.e., more harmonics yield a
higher flux toward the wall, and thus greater precipitation. The actual
field being more uniform in sections nas a smaller field gradient, and thus
a smaller force. The fundamental harmonic field computer test predicts
greater precipitation. A nine harmonic field representation is used through-
out this chapter.

Figure (6-4) shows the effect of removing the magnetic field altogether.
The deposition decays slowly downstream. Such a drop in precipitation is
not surprising since the magnetic force is 81 times larger at the wall
(A = 8 cm) than the gravitational force. Only a dusting of the duct Tower
wall was observed experimentally when all magnets were removed. Reentrain-
ment made a true measurement of gravitationally deposited particulate dif-
ficult.

Figure (6-5) shows the theory sensitivity to the magnitude of Dt;
turbulence at larger diffusivities keeps particulate dispersed evenly over
the upper portion of the duct and sweeps more particulate to the wall where
it can be precipitated. The numerical solution should converge to the

Deutsch prediction as diffusivity increases. The Deutsch precipitation
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prediction exceeds the causal model prediction further downstream, because
particulate is not swept up to the top of the duct by eddies. In the limit
of zero diffusivity, particles decay along trajectories; 1in section (2-C)
it was shown that particles in trajectory precipitation are removed more
quickly than the Deutsch model predicts. The point to emphasize is that
precipitation at upstream positions is quite sensitive to the value of dif-
fusivity.

4, Numerical Density Profiles

Figures (6-6) to (6-8) show the density profile transverse dependence
at four axial locations for 5.08, 8, and 12 cm field wavelenghts respectively
with 8u particles as predicted by the fundamental causal model (95 x 1000
pts). The density rises from zero at the top of the duct, peaks below the
center, and decreases toward the lower wall. The greater the penetration
of magnetic forces into the volume (i.e. at larger wavelengths), the greater
is the decrease in density profile magnitude downstream due to particulate
removal. This is confirmed in figs. (6-6) to (6-8).

The lowest density plotted is actually that calculated at the laminar
sublayer (y/2a = ,002). The final wall density ranges from .92 to .95 of
the density at the sublayer (at y = .002*2a cm) as predicated by the trajec-
tory model of Appendix B.

The density gradient is greater in the sublayer than in the core (see
fig. (4-2)). The perfunctory model imposes a zero gradient at y = A, and
as explained in chapter 4, it does so by assuming the density just below the
core region to be the same as that above. This nunerical assignment is

cektainly ad hoc, since the density does not increase in the sublayer.
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The splicing on of the trajectory model solution distorts what the core
diffusion analysis assumed should exist below y = A. The diffusivity of
fig. (4-6) undergoes a power law decay to zero at the boundary layer, not a
discontinuous decay. This implies from Appendix D that the sublayer density
gradient be much larger than the core gradient. The fundamental model pre-
dicts this condition without imposing a difficult to justify boundary con-
dition, and inherently represents a more realistic diffusivity by keeping
Dt finite in the core region.

The fundamental model deserves the title "fundamental" for another
reason. As the degree of turbulence diminishes, it is meaningful to think
in terms of trajectories. In this 1imit the fundamental model imposes
boundary conditions only where particle trajectories enter the region of
interest.

Included with the plots of (6-6) to (6-8) are the diminishing
diffusivities at the given axial locations as well as the exponential mag-
netic force decay. The results indicate magnetic migration is relevant
over only 1/4 of the duct. The density profile resulting when magnetic
forces are eliminated entirely is shown in fig. (6-9). The results con-
firm the proposition that the densities are not aitered significantly over
the upper three fourths of the duct. The smaller migration over the Tower
1/4 of the duct yields a smaller deposition despite the large wall density.
The densities in the uniform migratioﬁ (no Dt) sublayer do not decay.
Finally, it is interesting to consider the density profiles in the limit

of no turbulence, i.e. D, = 0. The density (fig. (6-10)) can only decay
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over the lower portion of the duct where magnetic forces are significant.
(No density decay occurs over the region of divergence-free force where
gravity dominates.) The core region of the duct should have uniform density
dropping discontinuously to zero near the upper region. The discontinuous
density jump to zero represents the point ab;.e which all trajectories can
be traced back to an entry point on the upper wall where the density is
zero., A1l trajectories below the transition point have their origin at the
entry plane x=0.

An examination of the experimental results and their correlation with
theory will follow a discussion of the particle size distribution. The non-
causal model will not be considered in this comparison; its predictions are
for rcadily seen reasons, too low. The perfunctory model's predictions
differed only slightly from the fundamental model. For this reason and the
above discussion concerning difficulties in justifying the zero gradient
boyndary condition, the perfunctory model will not be compared with date
either.

5. Particle Size

The iron powder used in the diffusion tests ranged in diameter from 1
to 26 micrometers. It was necessary to know to what extent the particles
acted as agglomerates in flight. A microscope analysis (histogram) of the
particle agglomerate size spread is shown in fig. (6-11). (The tests was
prepared by blowing powder through the injection tube and allowing it to
settle on an oil coated microscope slide.) The scope base particle size

was about 4 micrometers. With the intent of determining more of the
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particle's size behavior in flight, an Anderson Impactor Test (which balances

a particle's inertia forces with drag forces) was conducted. The results
(fig. (6-12)) indicated that then equivalent aerodynamic diameter represent-
ing particles dispersed essentially as in the magnetic collection experi-
ments ranged primarily from 4% to 8 microns in diameter. [he microscope
test procedure would favor collection of heavier particles; this may be

the reason for the disparity.

6. Theoretical Predictions Compared to Experimental Deposition Data

The Deutsch and fundamental causal theory predictions are compared to
experimental collection results at field wavelengths 5.08, 8 and 12 cm
tests in figs. (6-13) to (6-15) respectively for particles as described in
the previous sections. Included with Fig. (6-15) is the fundamental causal's
prediction of deposition of 2u particles. The data supports the causal
model's steeper decay over the Deutsch model's gradual decline.

The Deutsch model prediction increasingly departs from the data with
decreasing wavelengths. The 4%-micron theory results shown in fig. (6-7)
reveal that ths Deutsch model still predicts a high particulate deposition at
a 5.08 cm field wavelength, and a slow axial deposition decay. It was noted
in chapter 2 that the Deutsch model is based on two major assumptions--

(1) Fluid turbulence is 1infinitely capable of supplying particles to

the wall.

(2) The migration forces (primarily magnetic) hold the particle to the

wall; their interaction in the duct is small.
Assumption (1) is always optimistic. At short wavelengths where assumption
(2) is accurate, the Deutsch prediction should be high because of assumption

(1). At the larger wavelengths (with the magnets spaced further apart),
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forces are larger at further distances from the wall, and thus augment the
precipitation process (the optimum wave number is approximately the recipro-
cal duct height). The error of both assumptions then emerges in a trade off
at larger wavelengths where the Deutsch model departs less from data.

7. Discussion of Results

Large initial deposition is expected since magnetic forces remove parti-
cles immediately at upstream locations in the magnetic field dominant region.
Larger upstream theory depositions are in part caused by the step input in
initial density (high density edge gradients; sine wave input yielded lower
immediate initial deposition). Dividing the most uncertain parameter Dt by
10 (which makes upstream D, = 2*(1iterature value)-developed flow) improves
agreement with data. Altering the second uncertain parameter rp
significant alteration in initial deposition also. In the light of these
comparisons, model credibility along with a useful degree of accuracy in
predicting precipitation and density profiles exist.

Three dimensional effects are the most significant effects deleted from
the theory. The true velocity representation as well as magnetic field ini-
tial and edge gradient effects should enhance precipitation. Fruitful
future research may be directed toward understanding the effect of precipi-
tated dendrite augmented tip effects. Certainly one starting point
for determining the magnitude of this effect is by determining whether the
rate of deposition is altered by the loading of already existant precipitant.

This effect of augmented gradient effects is a concerted interest to re-

searchers in mineral beneficiation and particulate removal.

(fig. 6-15) shows
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Of the effects discussed above, those related to wavelength are

the enhanced gradient effects. Specifically the augmented field gradients
' due to magnet edge effects should become more prominent at large wave-

lengths. Furthermore, non-realistic representation of the transverse
dependence of axial velocity may be wavelength dependent as well. Too
large a velocity was adopted throughout the core analysis except at the
center of the duct. Slower moving particulate would in reality have more
interaction time with the field forces. This effect would be more sig-
nificant when the force penetrates into the volume (i.e. at larger wave-
lengths).

It is hypothesized that thoce three-dimensional effects are not
as important as accurate representation of the axial and transverse dif-
fusivity dependence. Despite the lack of these refinements, the refined
causal fundamental model has a useful degree of accuracy in predicting

sedimentation in particle flows where inertia is unimportant.
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B. Large Particle (50-100u) Analysis - Inertial Hybrid Model

Figure (6-16) shows the physical arrangement for the large particle tests.
Unlike figure (6-1), the injection tube extends well into the duct, usually
14." past the profile grid. The number of grams injected as well as the amount
precipitated. pei' half wavelength is recorded for each test. Except for an
isolated case, the injection velocity was adjusted to match the main duct flow
in order to avoid secondary fluid mechanical effects due to non-isokinetic jet
mixing. The jet was found to cause the diffusivity to increase only slightly
in the duct. The new diffusivity profile was fitted with a least squares
polynomial fit and used in the hybrid theoretical model discussed in Chapter
4, section D. The first nine harmonics of the magnetic field structure used
in each test were used for the magnetic force calculation. The position of
the injection tube varied roughly from one-third to two-thirds of the total
duct height.

(1) Diffusion-free Model Results

The first test (figure 6-17) reveals the inaccuracy of the trajectory
precipitation model (Appendix B) and the inertial model (chapter 4, section
D) for 60 micron particles. Plotted are the particle paths from the top and
the bottom of the injection tube for the two trajectory models along with
the percentage particulate collected per half wavelength (6 cm). Particulate
was injected isokinetically at 1500 ft/min. The inertia-free model predicts
precipitation far too early primarily because of the immediate vertical
viscous-limited velocity upon injection. The particle's inertia keeps the
particle in flight longer and predicts precipitation in nearly the same regi'on
as the observed experimental collection peak-. However, the inclusion of
diffusion is clearly necessary if the trajectory spread is to have any

correlation with the experimental observations.
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Figure (6-18) shows the same tes;'with 100-180 micron particles. The
experimental collection spread is not as large but again exceeds the inertial
model prediction. The peak collection again occurs near the inertia model's
impact prediction. The viscous drag dominated model also predicts precipitation
much too early. The percentage collection consistent with the above trajectory
models was not shown because of its large value, being at least an order of
magnitude larger than the observed collection for the 60u case.

(2) Hybrid Inertial-Diffusion Results

Figure (6-19) comp2res the experimental precipitation with the hybrid
inertia-diffusion model prediction. As with the diffusion tests, the per-
centage particulate (of the total injected) collected per half wavelength
is the precipitation ordinate., For this 12 cm wavelength, 70 micron particle
test, the hybrid theory is seen to predict a co?parable peak collection
shifted downstream somewhat from the observed peak collection. The particulate
spread is much larger now but still smaller than the experimental prediction.
For illustration, the inertial theory prediction is shown at the top of the
graph quite compressed in spread with a predicted precipitation an order of
magnitude larger than the test results,

The results of 5.08, 8, and 12 cm wavelength tests for 60-70 micron
particles are shown in figures (6-20) to (6-22). In all three cases the
inertial diffusion hybrid model predicts larger precipitation with a peak some-
what downstream of the observed peak. Experimentally only 1/3 to 1/2 of the
material injected was collected over the approximate four foot working section.
The theory appears to always predict a short total collection distance, but
this could only be theoroughly investigated with a longer duct working section.

(3) Particle Size Considerations

Particle size sensitivity is pertinent in all models. The iron particles
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used in these tests were sized by sifting through several progressively
smaller screen meshes., The smaller size particles used above were caught
between 38 and 45 micron mesh screens, the hypotenuse of this size square
opening being 54 and 64 microns respectively. The largest spherical particle
must indeed be between 38 and 45 micron; most particles were however anything
but spherical. Thus, ellipsoidal and elongated particles much heavier than a
45 micron sphere could surely exist in a batch. Observation of the particle
group under the microscope revealed 60 micron to be the representative
diameter of the 38-45 micron batch.

The particle size sensitivity of the hybrid model's particulate deposition
prediction for the 8 cm wavelength case is shown in figure (6-23). As with
the diffusion case, the size dependent parameters are proportional to the
particle radius squared, a 20 micron spread appears to be quite significant
indeed. The interesting result here is that the smaller particles with less
inertia have a smaller deposition per half wavelength (over most of the
precipitation region) and a peak deposition upstream of the larger ones.
Figure (6-24) shows the hybrid model's deposition prediction for 40 micron
spheres in this 38-45 micron sifted batch for a 12 cm wavelength field.
Figures (6-25) and (6-26) show the equivalent comparisons for a 5.08 cm test
45-54 micron batch and an 8 cm, 38-45 micron batch. The upper trajectories
in the 8 cm test are subject to Question because they involved collisions with
the upper wall.

The improved agreement leads one to believe that larger oblong particles
behave in flight more like smaller spherical particles. This idea would
certainly have credibility in terms of viscous drag forces. The streamlining
of the heavier oblong particles and resulting lower drag would play against

the larger gravitational and magnetic forces. The microscope, two-dimensional
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slide picture is wnfortunately lacking in its ability to reveal the total

particle shape.

(4) Boundary Layer Thickness Sensitivity

For completeness, the question of model boundary layer thickness sensitivity
must be addressed. The deposition predictions of the hybrid model at an 8 em
field wavelength with the boundary layer thickness varying from 1/4 to 3/4 em
are shown in figure (6-27). Unlike the diffusion case study, the results are
relatively insensitive to thickness choice, varying only slightly at downstream
duct positions. This is understandable because of the much greater role the
migration forces should play with larger particles, especially the magnetic
force (which grows exponentially towards the wall).

(5) Non-Isokinetic Injection

In all the precipitation tests, an effort was made to inject particles
as close to the ambient duct flow velocity as possible. Figure (6-28) shows
the collection results and theory predictions for a non-isokinetic test where
the jet injection (2300 ft./min.) was more than twice the duct velocity
(925 ft./min.). The working duct section was not long enough to observe the
complete deposition pattern; less than half of the injected particulate was
collected. The theory deposition prediction was based on a 70 micron particle
representing a 45-53 micron grid batch (which, based on the above comments,
is subject to question). Nevertheless, the results indicate a substantial
difference between theory and experiment.

As figure (6-29) points out, there exists a region at the top and the
bottom of the jet in which momentum is being exchanged between the two fluid

streams., The thickness of the layer grows approximately as

§ ~ v/t (6-10)
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The fluid within this region § is highly turbulent. Measurement of the

fluid turbulence from such an injection showed little significant increase in
diffusivity, but that may be attributed to the insensitivity of the anemometer
probe and equipment.

(6) Field Harmonics

Finally, the inclusion of additional field harmonics has negligible effect
on the precipitation level. Light particles are supplied by a relatively,
strong diffusion force to the wall. The heavier particles depend on the
magnetic force and gravity to get to the lower wall. As the fluid field
decays exponentially into the volume (the harmonics to a greater extent _e-kmy)
their omission or addition changes little.

(7) Conclusion

The effect of adding diffusion to the momentum equation is to spread the
particles out. The technique of marching in time in a Lagrangian frame,
calculating density locally at every point in space is applicable to any
geometry provided knowledge of the turbulent diffusivity is available. The
diffusive term becomes more important when steep density gradients exist
(e.g. at injection tubes). The next chapter‘will use the hybrid diffusion

to analyze particle flight over a flat plate.



-193-
VII. Particle Flight Over Jet Fuselage

A. Introduction

The possibility of ducting particles with a pemmanent magnet structure
will be considered in this section. The objective is t¢ retain a substantial
part of the particulate within the boundary layer as it evolves. A first
attempt at this is to apply the hybrid inertial precipitation work of Chapter
4 to the problem.

The hybrid diffusion heavy particle computer model substantiated in
chapter 6 will be the tool for analysis of this theoretical study. The flow and
boundary layer development over a flat plate will be used to represent to
first order the aerodynamics over an aircraft fuselage. All airstream com-

" pressibility effects will be ignored.

B. Fluid .Mechanics and Diffusivity

Any analysis requires first, knowledge of the bownidary layer thickness
and diffusivity. The experimental evidence (Schlichting-see reference Ch. 5)
indicates that if the boundary layer becomes turbulent at axial position
X=X, its thickness will increase as

1
U_(x- 5
§ = .37(x-x,) (-‘29:-359-)-}

(7-1)
where v = local atmosphere kinematic viscosity and
U, = ambient air stream speed relative to the jet
The transition to turbulence occurs when
U x
3x10° < = < 3x10° (7-2)

For a passenger jet cruising at 40,000 feet, air speed 500 MPH, the onset of
turbulence occurs about 24 inches after the leading edge and the boundary iayer

thickness is .68 meters, 10 meters downstream.
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The turbulent diffusivity depends not only on the axial displacement

along the fuselage, but also on the normal position in the boundary layer.

Hinze (see chapter 2 reference, p. 645) shows Klebanoff's data for the eddy
viscosity's distribution acresc the boundary layer. Equating the eddy viscosity
with the turbulent diffusivity (as discussed in chapter 2) yields the diffusivity
profile shown in figure (7-1). A least squares polynomial fit was made to

represent D,. The results are

D, = 0376 (-.00103 + .201 (¥) + .007 (¥) ?
-136 ()% + a8 () + 2,223 (¥)° (7-3)

-.277 (%) 6 . 1.556 (%) 8 +1.20 (¥) 9]

Typically, injection would occur a few millimeters vertically into the
boundary layer. As shown in figure (7-1), the diffusivity near the surface
becomes negligibly small at downstream positions where § is large. The

diffusivity can be approximately represented as

D, = (037U 8)(.07) sin (F-) | (7-4)

Using the expression for § from (7-1), the axial position for maximum D, is

found by setting the derivative of (7-4) equal to zero. The 1esult is

tan 15'2- = ’31 (7-5)

The graphical solution of (7-5), shown in figure (7-2), reveals that the only
meaningful solution occurs where ng goes to zero. The actual vertical
dependence (7-3) of D, goes to zero faster than sin(éTt indicating that for a
given vertical location, diffusion will have a more pronounced effect at up-

stream (smaller boundary layer thickness) locations. C 6
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C. Typical Injected Pensity Pyofiles

Figure (7-3) shows computer calculations of particle trajectories for
particulate injected isokinetically through an 8mm diameter tube into an
aerodynamic boundary layer 6émm away from the plane skin. Injection for this
calculation was set at just over 1 m downstream of the leading edge where the
boundary layer thickness had grown to 7.3 cm. The calculation was identical
to the hybrid inertial diffusion model developed in chapter 4 except that
gravity was ignored here. The calculation was performed assuming use of 40
micron spheres, an eight cm wavelength field structure, and an ambient air
sreed of 500 MPH. The strength of the magnetic field was chosen to be compa-
rable with commerically obtainable permanent magnets--the field strength on
the aircraft skin 1/4" from the magnet being about .095 web/m;. Iron powder
was chosen as the injected particulate, but any large u material of density

~7 x 10°

kg/m; would give equivalent results. A listing of the program KD747G
used is listed in Appendix J.

The effect of the small layer thickness and thus large initial diffusivity,
is seen to force the upper trajectories away from the plane structure. The
lower trajectories are, however, precipitated.rather quickly. It is not until
the lower trajectories begin to precipitate and thus lower the densities
among the upper trajectories, that they begin to drop as well. This upward
diffusion makes it quite difficult to collect the last 5% of particulate. In
the above calculation, the upper trajectory was only beginning to curtail its
upward ascent 47 meters downstream, 7.5 cm above the skin. Because of the
diminished effects of diffusion downstream at the same injection height,
precipitation of all the particulate is easily accomplished (e.g. with xinjection

= 10m, all particulate is collected in 3 meters). In any event, with an initial

density injection profile characterized by a (y/a)l/7 dependence, ducting is
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not possible; either the particulate will be precipitated or lost.

D. Possibility of Quasi-Stationary Profiles

The question that must be considered is whether or not there exists an
injection density profile that would yield a steady or quasi-steady positioning
of particulate in the boundary layer. This would require a balance between
the upward diffusive flux and the downward magnetic migration. From the

results of chapter (4-D), this would require

6mxD ?
i N I SR N PR O S S B _
— +3y -S-m' (24-“—-)(0 l)u m=lmBe 0 (7-6)

o

or with a fundamental harmonic field only

émrD,
t (an) _ =2ky _ .
- —= ('87) ake 0 (7-7)

Equation (7-7) could be integrated if :he density at some location y
were known. Although the assignment of n=0 at y=8 is reasonable, D, also goes
to zero there and the evaluation of the first term above becomes a problem.
Again approximating Dt as (.037 an)(.07) sin(%x). The analysis proceeds by

assuming

yos = (69 (7-8)

Equation (7-7) gives

-1
ake ™Y = (6mr) (.037 U g) (.07) [g (G-y)] ["—(‘S-XJD—J (7-9)
ys (8-n)°
or - 2k8
° = T GO (7-10)
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The constant in front of the exponential is equal to about 82 for parameters

characteristic of the above text. The exponential power 2k$§, however, is 41,
indicating that p is a very small number. The density is nearly uniform, but
drops sharply at y~8 in the neighborhood of the boundary layer exterior. Desig-

nating the density at y=§_ as n,, equation (7-7) can now be integrated to give

n, §_

-zlw MAd
o | s
A y  8(6mr)(.0370).07 sin g-

Reversing the order of integration, (7-11) becomes

%
m(%o)= ) J e 28(8)  af¥)

(6mnr) (.037U ) .07 sin %Z (7-12)

Equation (7-12) was integrated numerically beginning 10 ft. downstream
from the transition to turbulent instability where §=.26m for an 8 cm wave-
length field. The calculation was quasistationary in that it assumed a constant
boundary lay- ' thickness. The resulting density profile is shown in figure
(7-4) alons -ith the necessary sharp cutoff dependence near y=§.

The .rge density at y=0 indicates a problem occurring in this region.
There is a0 way to terminate the density in this region except as a step at
y=0, from n=0 to a very large n almost instantaneously at y=0O+e. At this
point, the search for a possible steady profile becomes merely a mathematical
exercise, since the profile in this region implies a very rapid precipitation
ratio.

It is interesting to compare the spreading of two density profiles under
the same conditions. The trajectory profiles with isokinetic injection of

particulate 3 meters after the transition to turbulence, under the same condi-
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tions as the trajectories in figure (7-3), are shown in figures (7-5) and (7-6).

The characteristic turbulent profile (y/at)l/7

dependence is assumed in fig.
(7-5), while an initial density profile similar to that in figure (7-3) is
assumed in fig. (7-6). The calculated densities are plotted for various
locations downstream. The results indicate the skewed profile case does
indeed keep the mid to upper trajectories more horizontal for a longer axial
distance. The precipitation of the lower trajectories occufs within the same
distance as the normal density profile case however. Downward diffusion
dominates at these lower trajectories since no particulate exists between the
plane skin and the lower part of the injection tube initially. The density
plots reflect just how quickly the effect of downward diffusion and migration
of the lower trajectories propagates upward. The author's conclusion from the
above analysis is that ducting of magnetizable particles in a turbulent boundary
layer with a permanent magnet structure is unfeasible. Ninety percent of the
particulate injected 6 mm above a flat surface in a 500 MPH airstream can be
contained and collected within 4 m. The last 10% if collected, will be spread

over the following 4 m stretch.
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VIII. Concluding Remarks

A. Particle Entrainment over Jet Fuselage

The piocess of entraining magnetizable particulate in a boundary layer
may now be examined in the light of the chapter 7 results. If particulate is
moving in near synchronism with the jet air speed, and collection of particulate
and reintrainment at the front of the craft is in effect, it is 1easonabie to
assume particulate undergoes one full cycle when the jet has traveled twice its
length with respect to the air at "infinity". The density tests of chapter 7
indicate that at best 4% of the injected particulate will be lost per cycle.
(This assumes that particles collected prematurely are shuffled along the wall
while still interacting with the boundary layer in some positive drag reducing

manner.) Thus with these figures, a 100 ft. craft undergoing a 10 mile flight

-

. ‘ (10%55280
(and hence on 380 round trips) 100{1 - (1 - .04) ] = 99.9979 per cent

of the original particulate would be lost.
Assuming the craft has a surface area of 4700 sq. ft. and specifying that
1 gram of powder be exposed to 2 sq. ft. of the craft skin at any instant, it

would be necessary to begin the flight with 1.13 x 106

kg of powder stored omn
board! Clearly this is an unacceptable demand and an alternative in which
constant interaction with particulate over the skin must be sought.

B. Travelling Wave Interaction with Particulate

A travelling wave structure mentioned in the introduction has been
examined qualitatively as a means of shuffling particulate along the skin in
an aerodynamic boundary layer. The experiment shown in fig. (1-2) involved

injecting particulate just under the duct upper edge; particles were captured

by the field, held against gravity, and shuttled downstream opposite to the
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direction of the travelling magnetic field.

Figure (8-1) shows an inverted picture of the field region just above the
wave structure with a right traveling wave, an observer at point P encounters a
counter clockwise rotating field. Non-spherical agglomerates experience a counter-
clockwise torque in such a field resulting in a reverse walking motion on a sur-
face adjacent to the structure.

Figure (8-2 depicts a typical instantaneous picture of agglomerates on the
duct upper wall. Pa;ticles generally form agglomerates in the magnetic field.
Most of the agglomerates will cling to the end of the field stfucture. Agglom-
‘erates over the body of the étructure actually bounce along the s.rface toward
the downstream field edge. Particles and agglomerates gravitate to some degree
toward the side edges as they propagate down the duct because of the edge effect
gradient,

The flight of a single agglomerate is shown in fig. (8-3). The agglomerate
literally walks end upon end; at low freauencies- (1 liz) this effect becomes clear
as long agglomerates (1/4") walk along the duct.

Agglomerate speed is a function of frequency and agglomerate length. Two
steps are taken every cycle, each equal to the agglomerate length. Agglomerate
size has a strong dependency on wave structure frequency, there being a gradual
decay in agglomerate length between 1 Hz and 40 Hz. Above 40 Hz particle
agglomerates are small (<00u). Inertial effects become even more important
above 60 Hz where motion is impeded. Particles are observed to form into very
thin (1-4 particle diameters thick) hill-type structures (fig. 8-3,b). All
motion at these frequencies occurs by particles skirmishing over the top of
such hills; the area between these thin hills remains clean. This particle
formation forms to minimize the reluctance in the region below the field

structure. The dominant mode of operation at lower frequencies involves walking
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uniform]y'on the duct wall with a wave undulation moving opposite to the particle

migration in the same direction as the travelling wave.

An alternative step for studying these effects is shown in fig. (8-4)*.
A 4-pole, 3 phase synchronous stator now serves as the field structure. A
cylindrical chambef with a rectangular plate of plexiglass suspended on pins
serves as the secondary member. It is sealed and filled with water and a small
amount of iron powder. A clockwise field causes the powder to circulate counter
clockwise on the walls of the chamber. The powder drives the water by viscosity
which in turn causes a rotation of the paddle. The experiment is especially
suited to correlating particle speed with frequency. The speed was found to
increase somewhat 1inearly with frequency up to 20 Hz (indicating that
agglomérate length is a nonlinear inverse function of frequency, decreasing
sharply after 20 Hz). _

These effects indicate particle ducting via a travelling wave sfructure
is feasible. The exact nature of drag reduction benefits obtainable from
particles confined and shuffled in this manner is not clear. The particles
do bounce and rotate along the surface and provide a mechanism for both trans-
fering momentum from the wall to the flow or vice versa. This transfer can
be coherent in the sense of tending to prolong a net circulation, but it
appears that it coulci also function on the scale of the turbulent eddies. A
longer interaction in the free stream flow might be obtainable by actually
releasing the particles by using a standing, rather than travelling wave field.
The consideration Qf particle loss may cause this mode of operation to be im-

practical. In any event, operation in either mode must be at a frequency less

*This experimental apparatus was built and studied by Ed Wooten, Massachusetts

Institute of Technology.
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‘Figure 8-4 Cylindrical Wave Structure for Studying Particle

Motions Without End Effects
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than 60 Hz. This restriction necessitates the use of a long pole pitch if a
travelling wave is used to synchronously (a distance 1/3 of the way into the
boundary layer where the speed is roughly half the free stream speed) shuttle
particles along the aircraft skin. A 500 MPH jet operating at 40 Hz would

require a wave structure pole pitch

.. (500) (5280)
p =Y .1 T3600)7;0250)
T 2 (40)

=1l.4m (3-1)

The results of this thesis are directly applicable to the design of a precipitator.
for capturing the particulate at the aircraft tail and shuttling it to the nose.

As energy needs expand, it may be desirable to apply this process to ships
and underwater vessels. The travelling wave interaction could in fact be the
basis for propulsion, perhaps with a reduction in hydrodynamic noise associated
with conventional propulsion. The restriction on weight would not be as severe.
The smallér difference in density between particulate and flow medium will be an
advantage in terms of particle loss. The implantation of a travelling wave
structure near thel skin of the vessel should be an easier task as well.

C. Synopsis and Related Research

The thrust of this thesis centered on the prediction of magnetic particle
ducting and pi'ecipitation in turbulent air flows. Towards this end two models
were developed, one appropriate for light particles (< 20u) and the other for
heavy particles (> 20u). The light particle model requires the solution of a
diffusion equation with appropriate boundary conditions imposed where trajectories
enter the duct volume. Inertial effects are unimportant. The heavy particle
hybrid inertial-diffusion model represents the particle momentum balance in
Lagrangian co-ordinates with an additional diffusion term added in by super-

position. In both models, the effects of turbulent diffusion are lumped into a
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measurable diffusivity constant. By means of correlation with experiments,

both models have been shown to provide a useful degree of accuracy in predicting
particle precipitatioh. Significant improvement over analytical models was
shown in correlations with experimental data. This encouraged the application
of the hybrid diffusion model to the problem of particle containment in the
aerodynamic boundary layer. Results indicated about 4% of the injected particulate
would be lost if permanent magnet collection were used in a boundary layer of
typical aircraft. The analysis further revealed 90% of the particulate would
be precipitated over a 4 to 6 meter length of the aircract. Thus, unless it
were reintrained in some manner of benefit to drag reduction, it also would be
lost as a drag reducing agent. |

The analysis indicated that to improve correlation of experiment with
predictions, the three dimensional nature of the problem must be brought into
the model. .Specificélly either the flow and field structure needed to be made
wider, or the three dimensional considerations needed to be added to the model.
Incorporation of variations of flow over the width of the channel and viscous
effects of the side walls into the model would lead to higher precipitation
predictions in both heavy and light particle analyses. Magnetic field edge
effects which are a function wavelength should explain some wavelength trends
observed. For applicétion to precipitation technology, for example coal
desulfurization, the consideration of small gradients around the tips of
precipitated dendrite structures may be the most significant area for further
study. The dependence of precipitation on loading would give a clue as to the
magnitude of this effect.

The precipitation models should be of use to particle ducting studies in

which loss of particulate is undesirable. The models developed should aid
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researchers in particle augmented drag reduction since precipitation would
normally be required simply to conserve particles.
The wind tunnel is quite useful for experimentally studying general drag
reduction effects and in this context, the above research is directly applicable

in collecting particulate.
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Appendix A - Particle Magnetizable Spherical Particle

It is helpful in determining the nature of the magnetic force to consider
the analogous polarized particle in an external electric field. The polar-
ization originates from charges separated by a distance d (fig. A-1), and the

force can be examined separately on the two charges, i.e.,

T=26EF+d) = 2E(r) (A-1)
Employing Taylor's expansion and assuming d small, (A-1) becomes

f=2E{ +dVE) - 2E(T) (A-2)
or

f=pVE . < (A-3)

where p is the particle polarization given by 2d. The material can be

considered to have a number of dipoles per unit volume np From equation (A-3),

p
F= np'ﬁ VE = P.VE (A-4)

The force on a magnetized particle now follows by analogy. No magnetic

the force density F is had by multiplying by n_, i.e.,

monopoles exist, but one can certainly examine magnetic dipoles and deﬂfine M
as the number of magnetic dipoles m per unit volume. Now the electric force
of (A-4) can be obtained via energy arguments, i.e., by taking the gradient
of energy of electric dipoles in an external electric field. It is legitimate
to use the same energy arguments with magnetic dipoles and the result must be
the same, i.e.,

F= uol\_fl'VFf (A-5)
where the u o Comes in because of the historical definition of M

(Veu (1 + H) =0.,7- (¢ E + P) =4).
The requirement of a gradient in the external field is intuitively reasonable;

there must exist a different field at either end of a particle (acting
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(a) Polarized Particle ' (b) Magnetized Particle

Figure A-1 Particle Magnetic Force
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differently on the poles) to yield a net force.

To apply (A-5) in detemmining the force, it is necessary to examine the
field internal to a highly permeable sphere in an external field Ho (fig. A-2).
For the external Z directed field Ho and a particle of radius a, the scalar

potential outside thc sphere is represented as

b
¥, = -Hor cosf + ;2- cos@ (A-6)

Y., = Ar cos6 (A-7)

wvhere H= -vy

Matching tangential H and normal B at r = a gives

u
I
. 3(“0 )
D Hoaz+£_)
Ho
x - 3 -
A HO(Z*U) (A-5)

In a linear permeable material, the magnetization M and H are related as

M= (B- - 1) H (A-9)
Ho
Using (2-10) then, one finds M to be
a3 \E . .
M (2 +L)(“o 1) Ho (A-10)
Ho

With (2-5) and the fact that the particle force is obtained by multiplying by

the volume, one finds that



¥

>

or
F=a'v |.H)

Here the H due to magnetization has been brought inside the gradient.
should be emphasized that the H in (A-11) is the external field only.

(A-11)

It
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Appendix B - Refinement of Basic Precipitation Models

The refined models and laminar flow test calculation are developed from
the results of chapter 2, section C. The .easiest model to refine is the Deutch
model for a turbulent, fully mixed flow. The model posed thus far incorporated
migration due to magnetic force only. Adding gravitational migration for

particles with mass m :'ters (2-21) to

-2ky
%g}c" " ,I: ) fﬁakeiZai (B-1)

The solution of (C-1) again gives an exponential fall for the density. Since

precipitation occurs at y = o, the density becomes

n XX,
o= €Xp - (B-2)
() 2al(mg + ak)
B

Two additions to the particle trajectory laminar flow are in order. The
first is the inclusion of the gravitational migration. The second deals with
the replacement of the assumed uniform air velocity plug flow with the

1
characteristic turbulent flow profile (U = Uo(%) ix) . The net particle fiux

now contains a more accurate convective term along with two migration terms.

P -l . kel

< 3 - Bp— 7 (8-3)

Following the procedure above of taking the divergence of T gives

1

9 mgi, o
3n |- Y (S EBD Y gy - . K CVED ;
e Uy % - +( B ) vn . B " (8-4)

or in the particle's frame,
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As in the previous study it is noted that if the force field is not divergence-
free, (V. (VH-H) # 0), the density is not constant along a trajectory line.

For a single harmonic sinusoidal field (C-5) becomes

dn | -Zc:kze-zh n
1
- - - -2ky
dr 9 mgl_ ki .
along I = UO (é\) lx - gB, -2 —eg— 12 (B'6)

The particle trajectory dependence is (C-5, b) as before. The vertical tra-

jectory's dependence on time can be found by integration immediately as

+ ocke.Zky

-y B m ,
S ) .

It is not as fruitful to seek the trajectory and density time dependence in this

refined model, but is more convenient to solve for the x - y trajectory
character and then to find the density dependence on a space dimension. Towards

this end, dt can be eliminated from the two equations in (2-25,b) to give

(B-8)
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The density y dependence is obtained by substituting for dt its

equivalent in terms of dy from (2,25,b), i.e.,

dt = gy (8-9)
_-%lg_ . ake 2KV
and thus
dn _ 20k’ gy (B-10)

dy mg + oke Y

It follows from (2-41) that

L. (nw_;ga\) (B-11)

(o} mg + ake
For any starting position yo, the density upon impact at y=0 follows directly.
The particle's trajectory follows by numerically integrating (C-9). The pro-
gram KDTRAG (Appendix C) uses a forward Eulerian integration, stepping y from
yo to the duct wall at y=0. Fig. (B-1) shows typical trajectories of iron
particles where the magnetic migration is upward. The calculation for these
profiles assumed the particle size and magnetic field were such that the
magnetic force balanced gravitational force midway up the duct. The increased

downward curvature of the gravitationally dominated trajectory lines near y=0

1
reflect the convective (%"-)9' dependence. The magnetically dominated trajectories
exhibit an even greater curvature (upward) due to the exponential field depend-

ence.
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Appendix C - KDDTRAG ¥IS POy,

This program calculates particie c;ajectories according to the re-
fined inertia-free model developed in appendix B. X and Y represent
the particle’s axial and vertical position respectively, while n repre-

sents particle density. The program is in basic.

10 DIM YO(3)»XO0(3)9sN(3)»Y(37100)9X(39100)9J9(3)

12 PRINT °THIS FPROGRAM COMFUTES INERTIAL FLOW TRAJECTORIES®
13 PRINT °*FOR SINGLE HARMONIC E--UO(1/9)sEsAND GRAVITY °*
14 PRINT °T-GRAVsyT-IN/MAG »T-RES» K FOLLOW®

15 INPUT G1,M1,R1sK \ FRINT GlsM1sR1»K

20 D2=.,1 \ D3=,01

30 FOR I=1 TO 2

35 Y0(1)=.,4252 \ Y0(2)=,315 \ X(I+0)=0

40 FOR J=0 TO 400

50 Y(IyJ+1)=YO(I)-JXkD3

55 IF Y(I»J+1)<1,00000E~-03 GO TO 85

60 U=G1/R1X(2X(1-Y(I»J+1)))".111111

65 IF Y(I»J+1)<:5 THEN U=G1/R1K(2%XY(I,J+1))7,111111
70 F=U/(14+G1/MIXEXF (~2¥KkY{Ir»J+1)))IXD3

75 IF J=0 THEN F=FX.95

80 X(IyJ+1)=XC(I»J)+F \ NEXT J

85 N(I)=(1+G1/MIXEXP(-2XKXYO(I)))/(1+G1/M1)

88 J9(I)=J

P90 XOC(IN)=X(I»J) \ NEXT I

?3 PRINT °THE YO»XO0» N FOLLOW®

95 FOR I=1 TO 2

100 PRINT YO(I)FiXOCID#NC(I)y \ NEXT I \ FRINT

105 INFUT Hi \ FPRINT °*THE XY TRAJECTORIES FOLLOW®
110 FOR I=1 TO 2

120 FOR J=1 TO J?2(I)

125 PRINT X(IsJ)3Y(IvJdr N\ NEXT J N\ FRINT

130 INPUT H2 \ NEXT I

135 STOP
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Appendix D - Analytical Diffusion Analysis

The point of this analysis is tc determine the nature of the density
gradient at a boundary separating regions at high and low diffusivity. Figure
(D-1) shows the problem considered here, two thin layer regions of small
diffusivity d and thickness § separated by a large core region of diffusivity
D and thickness (2a-28). Only gravitational migration exists and no x depend-
ence is considered. Injection of particulate occurs at the upper wall and the
boundary conditions are n = n,atys= 2aand n =0 at y = 0 (perfectly absorbing
lower wall).

The flux in region 1 is

s .qon _m . -
In the steady state with %%- =0,
2
qan _ mg 9n . (-
d;{ 2 3y (D-2)

The same equations apply to region 2 with d»D. Normalizing to the duct width,

we have

pA
2
Qg)_ =T (D-3)

2
(2a)" _ <
_.-r.- 'D
2a =T
ng &

B

_n
n-§-
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Figure D-1 Analytical Diffusion Study Model
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(D-2) becomes

az

9

=

M . (D-4)

aY
+
Al A
Wl
&

The general solution of (D-4) is

-Tr-'x
n=c +c,e g (D-5)

With the boundary condition n = 0 at y = 0, we have
T
..d

Tg L
ny =, {1 - e } | (D-6)

Similarly for region z, the density is

{?21) |
Ny =Cz +Cye g (D-7)

Imposing the condition of continuity of particle density and flux at y = %5 =4

determines n, to be

(py) & Dy
T T
n=c 1 -le g e & (D-8)
i |
Finally in region 3, we have a characteristic density

Wy

g
Ny = Cc + Cg € (D-9)

and the boundary conditions n = 1 at y = 1 and continuity of density and flux
at y = (1-d). Combining (D-6), (D-8), and (D-9) with these conditions yields

the densities for each region as
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T
-4y
. g
1_1.1 nO l1-e /
i R
g &ff \g &-9
n, = n, 1l -|e e
D X
rg (1-28 'rg (y-(1-26))
Nz = n, 1l -|e e
where
= 1
no _-12 -‘t—d (D-10)
T (1-298) Tg [
1l -\e e

Figure (D-2) shows a typical density profile for this problem assuming
D>>d. The ratio of density gradient in the core region to the boundary layer

region at y = § or 1-§ is found straight away from (D-10). The result is

on

2 lre ion 2 D |

— /8 = = (D-11)
on

region 3, y=1-§

Thus, for small diffusivity d, the density gradient is nearly zero in the

T
core. This is explicityl shown for the two curves with -T—I-J- = ’}(5 The dashed

T g
D_ 1
curve with 'q ~ T00 displays a sharp vertical slope at y=§. Also the effect

of smaller core diffusivity is seen to squeeze all the particulate into the

lower layer.
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Appendix E ~ KDDI4 ; KDDI9 ORIGINAL PA&BT}IS(?‘OOT;{E

These fortran programs calculate particle density and deposition
according to the approximate diffusion model presented in chapter 4-B.
KDDI4 imposes the boundary condition n=0 on the upper boundary,

while KDDI9 uses a zero density gradient condition there.

KDDI4

CALCULATION OF DUCT CONCENTRATION FROFILE
SMALL FARTICLE TUREULENT DIFFUSION CASE

DIMENSION R(10+80)9X(80)yAN(B80)»ERO(16)sAM(10))U(10)yAMK(10)
COMMON AKyEOyU1,AMMV ) NHARM» ILTUR
WRITE(S»3)

S FORMAT(’ THE NUMERER OF ROWS ANDI COLUMNS ARE’)
REALN(S»10)IROW, ICOL

10 FORMAT(215)
WRITE(S:15)IROW, ICOL

15 FORMAT(2ISs/»’ INFUT VARIAELES GlsAKyXEsAMMYyDLXMS » XMAG, DLTUR )
READ(S»20)G1»AKy XEyAMMV y DLXMS » XMAGs DLTUR

20 FORMAT(F15.2)
WRITE(S»25)6G1 »AK» XEs AMMY» DLXMS » XMAG» DLTUER

25 FORMAT(’ THE INFUTS GlsAKs»XE)AMMVDLXMS»XMAG»LTUE ARE’ s/6F10.4)
READ(S»23)AH1

23 FORMAT(F10.2)
WRITE(Ss16)

16 FORMAT(’ THE # OF HARMONICS AND THE NORMALIZELD' E-FIELDS’/’

1 FOLLOW--EB(N)="HXX2%X@XK/b/(1/23) ')

READ(S» 10)NHARM
REALNC(S»20) (BO(I) sy I=1sNHARM)
WRITE(Sy»17)(ROCI) s I=1sNHARM)

17 FORMAT(8F10.5)
DLX = 1./7¢(ICOL+1.)
W=12.7
DLY = (1.,-2.%OLTUR/W)/IROW
Ul=,5968/XE
YU=1,.,-DLY-DLTUR/W
XFOS=XMAG + DLXXXE
CALL DT2A(XFOS,IT)
CALL UOAM(YUsU2,AM2yAMK2)
u¢iry=u2
AM(1)=AM2
AMK (1) =ANMK2
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62=G1/DT
AM2=AM2/DT
AMK2=AMK2/DT
U2=U2/DT
B(1s1)=1,~DLX/U2X(AMK24 (G24ANMD) /2/DLY+1 . /DLY%X2)
10 30 I=2, IROW
YU=1,-DLYXI-DLTUE/W
CALL UOAM(YU»U2/sAM2y AMK2)
U(I)=U2
AM(T)=AM2
AMK () =AMK2
AM2=AM2/DT
AMK2=AMK2/DT
U2=U2/07
B(I»1)=1,-DLX/U2XAMK2
CONTINUE
[0 S0 J=2,ICOL
XPOSaXMAG + JKDLXkKXE
CALL DT2A(XFOS,IT)
D0 45 I=1,IROW
62=61/0T
AM2=AM (1) /DT
AMK2=AMK (1) /DT
U2=U(I)/DT
IFCIoGT 1+AND. I, LT IROWIB(IyJ)=B(TsJ=1) + DLX/U2%(
~AMK2XE( Ty J-1) 4 (B2+AM2) K (B(I=1yJ~1)=E(I+19J=1))/2/DLY
$CECI-19J-1)+BC(I419J=1)=2KE(1sJ=1))/DLY%%2)
IFCILEQ.1) BC(IrJ)=R(IyJ-1) +DLX/U2K(-AMK2KE(IyJ=1) -
(G24+AM2)KB(I+1rJ-1)/2/DLY+(B(I+1sJ=1)=2KE 19 J=1)) /DLYRX2)
IFCI EQe IROWIBC(I» J)=BCT s J=~1)+DLX/U2K(~AMKZRE( Ty J=1]
$(2KB(I~19J=1) = 2.XE(IyJ=1))/DLYX%X2)
CONTINUE
CONT INUE
00 111 J=1,1C0L»10
WRITE(S990)(I+I=1+10)sJ

90 FORMAT(’ THE LENSITIES ARE AS FOLLOWS’»/»3XrI11+s9(6Xs12)»

100
108

1

/¢’ THE FIRST COLUMN IS’»I13)
JJ=J+9

IF(JJ,GT.ICOL)JJ=ICOL

DO 108 I=1,IROW

WRITE(S,»100) (BR(IyJJII) v Jdd=dryJIJ)
FORMAT(10F8.4)

CONTINUE

READ(S»110)AH3

110 FORMAT(F10.2)

111

CONTINUE

YU = DLTUEB/W

DLYO = YU/10.

CALL UOAM(YU,sU2,AM2rAMK2)
AMO=AM2
SUM=,5%U2/(G1+ANM2)

[0 115 J=1,9

YU=YU-DLYO

CALL UOAM(YU»UZ2yAM2yAMK2)

e



-231-

oF THE
SUM=SUM+U2/(G1+AN2) REPRODUC“*“’YIS%S POOR
115  CONTINUE ORIGINAL PAGE
SUM=SUMKDL YO |
WRITE(S,110)8UM

CALL UOAM(O. U2/, AM2sAMR2)
o 120 J=1,ICOL
ANCJ)=BC(IROU» J)X(G14+AMO) /7 (G1+AM2) XDLXMS
X(J)=(DLXXJ+SUM) XXE

120 CONTINUE
WRITE(S2125)(X(I)2AN(I)»I=1,ICOL,»3)

125 FORMAT(4E15.,4)
STOF
END
SUBROUTINE UOAMCYU»U»sAM»AMK)
DIMENSION RO(16)
COMMON AK»BO»U1»AMMYNHARM» DLTUR
Y=YU
IF(YU.GT . e8)Y=1,~Y
U=U1X(2.XY)%k%,1111111
AM=0,
DO 15 I=1,NHARM
F=2 . XKIKAKXYU
IF(P.GT.20.,)60 TO 15
AM=AM+AMMUXEBO (I ) XXk2KIXEXFP (~F)

3 CONTINUE
IFCYU.LT.DLTUER/12.7)G0 TO 30
AMK=0,
o 25 I=1,NHARM
P=2.,XIXAKXYU
IF(FP.GT.20,)G0 TO 2%
AMK=AMK+2 + KIKXk2KAMMVXEBRO (I ) Xk2KAKXEXF (~F)

2% CONTINUE

30 RETURN
END
SUEBROUTINE DT2A(X,IT)
DX=,1524
IF(X LT DXO)DT=,003625
XE1=2,XDX
IF(XsGE DX AN X LT« XEL)DT=,003625+.020915%(X~-01X) /IIX
IF(X.GE.1,33985)DT=,00178
IF(X.LT«XE1,0R.X.GE.1.,33985) GO TO S50

T T DT=.054658-,150851%X+, 201784 KXKK2~-,084262%KXKk%X3~,07902%
1 XX%4+4,028938XXKKG+ + 0656TPKXKXKE-+ 03361 6%XXXX7

S0 DT=DT/.127
RETURN
END
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KDDI9

CALCULATION OF DUCT CONCENTRATION FROFILE
SMALL PARTICLE TURBULENT DIFFUSION CASE
CHANGE UFPPER EOUNDARY CONDITION

9
10

15

17

DIMENSION B(10,80)X(80),AN(80)»RBO(16)»AM(10),U(10),AMK(10)

COMMON AK/yEOyU1»AMMV»NHARNM

WRITE(S,S)
FORMAT(’ THE NUMEER OF ROWS AND' COLUMNS ARE’)

READ(S»10)IROWy ICOL

FORMAT(21%)

WRITE(S»15)IROWs ICOL

FORMAT(21ISs/»’ THE INPUT VARIAELES G1,»AK,XE»AMMV»DLXMS)XMAG ARE’)

READ(S»20)G1 9 AK s XEr AMMV» DLXMS » XMAG
FORMAT(F15.2)

WRITE(S»25)61»AKy XE» AMMV» DLXMS » XMAG
FORMAT(’ THE INFUTS G1lsAKsXByAMMV»DLXM3»XMAG ARE’»/6F10.4)

READ(S»23)AHL
FORMAT(F10.2)

WRITE(S»16)

FORMAT(’ THE # OF HARMONICS AND THE NORMALIZED R-FIELDS’/’

FOLLOW==B(N)="HXX2X@XK/b/(LI/23) ’)

READ(S» 10)NHARM

READ(S+20) (BO(I) » I=1)yNHARM)

WRITE(S»17) (BO(I)»I=1yNHARM)

FORMAT(B8F10.5)

DLX = 1./7C¢(ICOL+1.)

W=12.7

DLY = (1.-1,/W)/(IROUW=1,)

Ui=,5968/XHE

YU=1,-.5/UW

XPOS=XMAG + DLXXXE

CALL DT2A(XFOS:DT)

CALL UOAM(YUr»U2sAM2yAMK2)

uc1)=uz

AM(1)=AM2

AMK(1)=AMK2

G2=G1/0DT

AM2=AM2/DT

AMK2=AMK2/DT

u2=u2/07

B(1,1)=1,-DLX/7U2%(AMK2)

o 30 I=2,IR0OW

YU=1,-DLYX(I-1:)=.5/U

CALL UOAM(YU,U2»AM2, AMK2)

ucI)=u2

AM(I)=AM2

AMK(I)=AMK2

AM2=AM2/DT

AMK2=AMK2/0T



30

%0

(% X8

-233-

U2=U2/DT

BCIs1)=1,-DLX/U2KAMK2

CONTINUE

DO S50 J=2,ICOL 1y OF THE
XPOS=XMAG + JKDLXXXE Ronucmm 13 POOR
CALL DT2A(XFOS,DT) RED NAL PAGE

DO 45 I=1, IROW ORIG

62=61/DT

AM2=AM(T) /DT

AMK2=AMK (1) /DT

U2=U(I)/DT

IF(I.GT+1,AND.I.LT IROWIBCIrJ)=BCI J=1) + DLX/U2%(
~AMK2KEB (T 9 J=1)+(B2+AM2 K (B(T=19J=1)~E(I+1,J=1))/2/DLY
+(B(I=19J=1)+B(141,J=1)=2KB(IsJ=1))/DLYXX2)
IF(ILEQe1) B(IrJ)=B(IyJ=1) +DLX/U2K(-AMK2XE(IrJ=1)
$O2KBCI419J=1)-2,XB(IyJ=1))/DLYXX2) *
IF(ILEQ.IROWIB(I J)=B(1sJ=1)+DLX/U2X (~AMK2KE(I s J=1)
$(2KBCI=19J=1) = 2.KB(I»J=1))/DLYKX2)

CONTINUE

CONTINUE

00 111 J=1,ICOLs10

WRITE(S5»90)(171=1110),J

90 FORMAT(’ THE DENSITIES ARE AS FOLLOWS’»/93XsI199¢6X212)>»

100
108

110
111

1

/v’ THE FIRST COLUMN IS’,I13)
JJ=J+9

IF(JJ.GT,ICOL)JJ=1ICOL

DO 108 I=1,IROW

WRITE(S»100) (R(IyJJIJ)»JII=drJd)
FORMAT(10F8.4)

CONTINUE

READ(S»110)AH3

FORMAT(F10.2)

CONTINUE

YU = ,O/U

DLYO = Yu/10.

CALL UOAM(YUsU2y AM2 s AMK2)
AMO=AM2

SUM=,5xU2/ (G1+AM2)

00 115 J=1,9

YU=YU-DLYO

CALL UOAM(YU»U2yAM2y AMK2)
SUM=SUM+U2/(G1 +aM2)
CONTINUE

SUM=SUMXDLYO
WRITE(S»110)SUM

CALL UOAM(O. U2y AM2y AMK2)
0o 120 J=1,ICOL
AN(J)=BC(IROW, J) X (G1+AMO) / (G1+AM2) XDLXNS
X(J)=(DLXXJ+SUM) ¥XE

CONTINUE

WRITE(S»125) (X(I)»ANCI)s»I=1,ICOL,3)
FORMAT(4E1S5.4)

STOF

END



R

-234-

SURROUTINE UOAM(YU»U»AM»AMK)
3 DIMENSION EO(16)
COMMON AK»EO» UL » AMMYV » NHARM
I:Igu BT, 5)Yal,~Y ity O P THE
. 1 eS)Y=m],~ 1B
UsULX(¢2,KY) %X, 1111111 REYRODUC g IS POOR
AM=0, ORIGINAL
. DO 15 I=1,NHARM

Pu2, KIXAKXYU
IF(P.GT.20,)6G0 TO 15
AM=AM+AMMVKEO (I ) XX2KIKEXP (-P)

15  CONTINUE
IF(YU.LT..5/12.7)60 TO 30
AMK=0,
DO 25 I=1,NHARM
P=2, KIXAKXYU
IF(P.GT.20.)G0 TO 25
AMK=AMK+2 . KT XKK2KAMMVKEO ( 1) KK2KAKKEXF ¢ -F')

25 .CONTINUE

30  RETURN
END
SUBROUTINE DT2A(X»DT)
DX=,1524
IF(X. LT DX)DT=,002625
XE1=2, kDX
IF(X,BE DX ANDI X, LT, XE1)[T=, 003625+, 02091 5% ( X~[1X) /DX
IF(X.GE.1,33985)[T=,00178
IF(X.LT.XEL1.OR.X,6E,1,33985) GO TO S0
[T=,054658-, 150851 %X+, 201 784XXKK2~ , 0B4262%kX k%3, 07902K

1 XXKA+,02893BXXKKS+, 065659KXkKkE~, 03361 6KXKK?

S0 IT=DT/.127
RETURN
END



L9

TTOOOOD

20

-235-
Appendix F- KDDF2

This fortram program calculates particle densities and particulate
deposition according to the refined small particle diffusion analysis
disscused in chapter 4-B. The exact diffusivity X-Y dependence, vertical
densities are solved simultaneously, and space derivatives consistent

with causality are used.

KDDF2

CALCULATION 0OF DUCT CANCFNTRATION PQNFI_E
SMALL PARTICLE TURARLULENT DIFFUSION CasE
BNUNDARY CONMDITINNS CONSTSTANT wITH CAUSALITY
ZFRO DENSITY GRANIENT IMPOSED ON LOWER SURIFACE

NDIMENSION 3(65) 4 X (R0O) ¢AN(B0) (RN () 4R2(6S) 432K (65) oY (65) o
1R (65) « AMO (A5) JRR(55480) ¢ A (654 7)

DOUBLE PRECISINN A,8

COMMON AK¢309WeAUMV ¢NHARM

WRITE(64+5)

FORMAT (¢ THE NUMARFR OF ROWS AND COLUMNS ARce)
PEAD(S5+10) TROW, ICOL

FORMAT (215)

WRITE (6,415) IROW, TCOL

FORMAT (215e/9 0 INPUT TGIAMMYoWV4X3eILXMS ARE ')
READ(S5920) TGo AMMY s WV ¢ XB ¢ ILXMS

FORMAT (SF1n,2) ‘

WRITE(6425) TGeXBeAMMY oWV o DLXMUS

FORMAT (¢ THE INPUTS TGeX3eAMMV WY 4NLXMS ARE 14 /AF10,4)
NHARM=9001

IF(WV.EQoﬂ..OR.NV.FQ.lZ.)GO TO 30

AK=15,71

XMAG=,489

RO(1)=.080356

80(2)=,0027

a0 (3)=.00392

RO(4)=.00151

B0(S)=,001

RO(6)=.000093)

B0O(7)=.0007905

RO(R)=.0003374

20(9)=.000352

GO TO 40

IF(WV,EN.17.)60 TO 35
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AK=9,979
XMAG=,317S
R0O(1)=.099763
B0(2)=,001A43
RO(3)=.00457
RN(4)=,0005366
B0(S)=.0015
RO(6)=.000578
RN(7)=,00126

BO(R)=.0005 REPRODUCIBILITY OF THE
BN (9)=,00035 ORIGINAL PAGE I FQOR
GO TO 40

19 AK=60650
XMAG=,0762

RO(1)=,08993
RO(2)=,00136
RO(3)=,02%
BO(4)=,000267
RO(S)=.,00178
RN(6)=.0000582
BO(7)=,003%4 \
RN(8)=,000267

, RO(9)=,0001064

A DLX = 1./7(1COL)
\‘“"-'12.7
W=.127
ALY 2 (le=,031/WW) /7 (TO0W)
NO 45 I=]1,1R0W
ANO(I) =1,

i Y{I)=1le=DLY®]

45 CONTINUE
00 S0 I=1,T20W _
CALL UNAM(Y (1) aMqaAMK U)
B2(1)=AM
B2K (1) =aAMK
UR(I)=U/XB

<0 CONTINUE

€ INPUT FINISHED==SFT UP FINITZ ELEMENT £QJATIONS
N0 151 NCOL=1.1COL
XPOS=XMAG + DLX#XBeNCOL
DY=DLY
DO 100 NROW=1,TROW
CALL DTZA(X°0990T0Y(VDOW)9DTMAY)
TIO=DT/W#a>
C=0,
IF(Y(NPOW).LTOOI?S)C=‘O
IF(Y(NROW) GT,,R75)C==1,
GRDT = CH#DTVAX /W#a28TG2]12.7/(1,.,5875=,031)/2,/0Y
A(MROW2)=TGaTTIN22/DY442¢ (] ,+TA#R2 (NDW) /W) /DY
1TG#UR (NROW) /DL X+ TG#R2K (N0W)
A(NROWe 1) ==TGaTIN/DY#42=(1,+TG2R2 (NRIN) /W) /NY=RDT
ANROWs ) ==TGaTIN/NY&>825RDT
RIMPOW) =THeUR (MRNAW) /N§ X#AND (NRNW)
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100 conTINuE 2)-(¢.+ 6 # B2(zROW) /W) /DY

A (Z7OW,2) s A(TROW,

Allsl)=0,

ACIROWs1) = A(TONW,1) =T53¢TIN/NY882 - GRDT
A(IROWe3) =0,

C SINGLE COLUMN OF Fi_EMENTS NOWN READY FNR INVERSTION

139
14}

145
151

CALL INVRST (AR IROW)
AN (NCOL ) =AND (TPOW) #NLXMS
DO 145 JJd=1.1PNVW

ANO(JY) = B(J.)

| REPRODUCIBILITY OF THE
BR(JJINCOL)=ANDO (.
CONTINUE L ) , ORIGINAT, PAAR 18 PAnR
X (NCOL ) =NCAL®NI_X#XR
CONTINUFE

€ DNENSITIES ARE NOW KNOWN = OJTPUT FOL|IWS

9n

107
10R

IF(TGoNEo?Q.GQQ) GO Y0 108
WRITE(6490) (141=11e71,20)

FORMAT (¢ THE NENSITIFS ARE AS FOLLAWS'4/010XeT243(6XeT12))
DN 108 I=1yIRNY

WRITE(64107)Y (1) o (QR(TeJ)ed=11471420)

FORMAT(F5.39“F806)

CONTINUE

YU=,031/wWW

DLYO=YU/S.

CALL UOAM(YUsAM4AMK 41))

AMO)=AM o

SUM=S# 1§/ (J4/TG+AM)

NO 165 J=1.4

YU=YU=DLYO0 .

CALL UOAM(YLleAMeAMK o l})
SUM=SUMeU/ (W/ TG+ AM)

CONTINUE

CALL UOAM(N, e AMqAMK 4!))

RAT=(W/TG+AMO) /(W/TG+aM)

SUM = SUM aD|LYo#w

WRITE(64187)SUUMRAT ) ‘

FORMAT (¢ THYE X INTFGRATIIN AND N RATIO ARE1.2F12.5)

00 170 J=1,IcOL

AN(J) =AN(J) #RAT

X{(J)Y=X(J)+SUM

CONTINUE

WRITE(64125) (X(I)eAN(T)oI=101CNL,3)

FORMAT (4E15.4)

sSTOP

FND

SURROUTINE UOAM(YUoAWoAM<9U)

DIMENSION 20 (9)

COMMON AK 30 ¢W e AMMV ¢ NHARMY

Y=Yl _

IF(YUCGT..;)Y=1.-Y .

U=40572§(20§Y,“*01111111

AM=0,
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NO 15 I=1,\YHARM gcﬁ‘ “\‘6?00
P22, #]oAK Y ﬁggo"
IF(P«GT,20,)GN TN 15. 16
AMZAMe AMMV 280 (1) 4828 T8EXD (=0) d“
- AMK=AMK+2, 2T #0820 AMMYSRN () #020AK/WHEXP (=P)
158 CONT INUE
IF(YUeGT.o03N0/12,7) GO THD 3n
U = 242%428Y0108,127/,000015
20 RETURN
END _
SURROUTINE DT2A(XeDToYsDTMAX)
NDX=,1824
IF(XeLT, DX)DT=,003625
XEl=2,%nX
IF‘XOGF DX ANU.K.LT.XFI)DT-.Oﬂﬁﬁ?QO nzﬂQlS“(X'DX)/Dx
IF(XeGEe14339RS)NT=,nA178
IF(XelLToXEL1eORX,5Fe1,33985) 6N TO S5O
07=,054658-=,150R5]1%#X+,201784uX002-,0842624%08%3-,_079070
1X#84+ ,N2893808% 085+ , 0680592 06a,0I3R168 X HE7
50 DTMAX = NT
IF(YelTeel25)NT=NTRY/, 125
IF(YeLE,+030905/12,7) DT = 0.
IF(YeGT.eB75)NT=NTR(1,=Y)/.125
RETURN .
END
SUBROUTINE INVPSF(A-RoIPOW’
DIMENSION A(65¢3)sR(65)9D(65) «l1(65+2) sY(RS)
- DOUBLE PRECISION AsReNsUsY
Ullel) = A(142)
U(le2) = A(1,3)
NO 30 I = 2¢IROW )
U(lysl) = A(T92)=A(I=143)%A(T141)/U(T=101)
U(T42) = A(143)
DII) = A(Is1)/U(T=101)
30 CONTINUE
Y(l1y = 8(1)
DO 40 I = 2,1RNW
Y{I) = RII)=D(1)#Y(I=])
40 CONTINUE
B(IROW) = Y(IROW) /U(IRNW.])
N0 SO0 JU=2,10W
I=IROWe1=y _
B(I) = (Y(I)=l)(T142)%R(I+1))/7U(Ts])
S0 COMTINUE
RPETURN
_ FND
7/7G0,SYSIN DD #
S5 80
24,684 14,063 8, 1.5 1,1875
/%
/REQ) nnsatssn
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Appendix & - kopEE ORIGINAT, PAGE

This fortran program calculates light particle densities and particu-
late deposition consistent with causality. Both the x and y diffusivity
dependence are included in the model.Diffusivity is allowed to go to zero
at the laminar boundary layer and thus, no boundary condition is imposed

at the lower core boundary. '

KDDF1

20

CALCULATION OF DUCT CONCFNTRATION PRNFILE
SMALL PARTICLZ TUPRULENT DIFFUSION CASF
ROUNDARY CONDITINNMS CONSTSTANT WITH CAUSALITY
NO BOUNDARY CONDITION ON LOWER SURFaACE

O IMENSION 3(6?{9!(80);AN(80)090(9)982(65)032K(65)9Y(6=)9
1UR(AD) « AND (55) aBR(AS4R0) ¢ A(6547)
DOURLE PRECISINN 4,8
COMMOM AK 42N o'W e AMMY ¢ NHARM
WRITE(6,5)
FORMAT (v THE MUMBFR 0OF QIWS ANN COLUMUNS ARcy)
READ(S+10) TROW, ICOL
FORMAT (219%)
WPITE(6,15) 120w, TCOL
FORMAT (P2T1S5e/¢" INPUT TGoAMMY WV eXReILXMS ARF 1)
READ(S+20) TG 9 AMMY g WV o XR 4 JL XMSG
FORMAT (SF1n,2) .
WRITE(6425) TGeXR e AMMY ¢ WV 9 DL XMS
FORMAT (¢ THE IMPUTS THReX3eAMMV WV NLXMS ARE 1, /AF10,.4)
NHARM=0,01
IF(WV,EQeR, DR, WV,EN,12.)GD TD 30
AK=15,71
XMAG=,489
RO(1)=.,0807356
B0(2)=.0027
B0(3)=.,00392
RO(4)=.00151
RNO(S)=,001
. RO(6)=,0000931
BO(7)=.0007905
RO(B8)=4000537A
BRO(9)=,0001352
GO 10 40 ‘
IF(WV-EQ.I?.)G” TO 35
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50

3

=240~

AK=9,975
XMAG=,3179%
RO(1)=.N59763
80(2)=,00183
RO(3)=,00457
B80(4)=.00053564
RO(S)=,0015
RO(6)=,000578
RO(T7)=.00176
B80(8)=.0005
RO(9)=,00095
60 7O 40
AK=68,650
XMAG=,0762
B0(1)=,08953
BO(2)Y=.00]156
80(3)=.025
BN(4)=.000767
B80(S)=,.00]28
RO(6)=,0000n583
RO(T7)=.00354%
BN(8)=.000267
BO(9)=.0001064
DLX = 1,/7(TCOL)
wW=12,7

w=.127

DLY = (1e=,031/WW)/(T1P0W)
NO 45 I=1,T1R0OW
Y{I)=1.=-DLY®]
CONT INUE

N0 S0 I=1,120W
CALL UOAM(Y (1) ,AMeAMK )
B2(1)=AM
B2K (1) =AMK
UR(TI)=UsXB
CONTINUE

€ INPUT FINISHED-=SET UP FINITZ ELEMFNT EQUATIONS

c

KENT LOVES LANA

DO 151 NCOL=1.TCOL

XPOS=XMAG + DLX®XB=NCNHL

DY=DLY

DO 100 NROwW=]1,TROW

CALL DT2A(XPOSNTY(NOOW) ¢ DTMUAX)

TID=DT/ueta>

c=0,

IF (Y(NROW) .GT. 0875)C=-1 [

IF (Y (NROW) oL T.o175)C=1,

GRDT = C#DTMAX /WaupeTA#]12.7/(1,5875=.031)/2,/NY
A(NRPOWL2) =THETIN®#2/DY842+ (] ,+TREQ2(N0W) /W) /DY
1TG#UR (NROW) /DL X+ TG#R2K (NOW)
A(NROWe1)==TGETIN/DY#42=(1,+TG#R2(NIIW) /W)L /DY=GROT
A(NRPOW3) ==TGRTIN/NY#82+3RDT

B (NPOW) =THHUR (NRNOW) /D1 X#AMO {NRNW)
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CONTINUE Kall _ , .
ACIROWs1)=a (IROW1) «GROT=DTUAX® (,031/WWeDY) /,125/DY#TR/Waa2/NY#10,
A(IROWe2) =A(IQNWe2) +NTMAXS( 01 /7WWeDY) /,125/DYRTG/We82/NnY#1N,
Allel)=0.

A(IPOWe3) =0,

C SINGLE COLUMN JF FLEVEMTS NOWN READY FOR INVERSINN

130
141

145

151

CALL INVRSE (AeReTROW)

AN (NCOL ) =AND ( TRNW) DL XMS
N0 145 JJ=1e1RNY

ANO (JJ) = B(JD)
AR (JJ«NCOL) =ANMO (JJ)
CONTINUE |

X (NCOL) =NCIL®*DLX#XR
CONTINUE

C DENSITIES ARE NOW KNOWN « OUTPUT FOLLIWS

an

107
108

IF(TG.NFe24.684) 60 TO 108
WRITE(649N) (TeI=11471420)

FOPMAT (¢ THE DENSITIES ARE AS FOLLOWS' /010X 12,3(6X,412))
DO 108 I=1+IRNYW

WRITE(64107)Y(T) e (RR(TeJ)oJ=11471,20)
FORMAT (FSe394FR0)

CONTINUE

YU=,031/Ww

DLYO=YU/S,

CALL UOAM(YUsAMeAMK 1))

AMO=AM

SUM=oS#1)/ (W/TGe AM)

NO 165 JU=l.%

yUsyU=DLYO

CALL UOAM(YUsAMeAMK o U))
SUM=SUM+ U/ (W/TReaM)

CONTINUE .

CALL UOAM(N,s9AMgAMK 41})
RAT=(W/TG+AMO) / (W/TG+AM)

SUM = SUM #DLYNnW

WRITE(64187)SUMeRAT )

FORMAT (* THE X INTEGRATION AND N RATIO ARF1,2F12.%5)

D0 170 J=1,ICOL

AN (J) =AN(J) #RAT

X(J)=X(J)+SUM

CONTINUE

WRITE(64123) (X(I)sAN(T)eI=191COL3)

FORMAT (4F15.4)

sToP

END

SUBROUTINE UOAM(YUsAM,AM< 1))

NIMENSION 30(9)

COMMON AKeR0eWeAUMY g NHARPY

Y=YU ‘

IF(YUeGTseS)Y=1e~Y ,

J=4,3572#(2,02Y)2%,1111111

AM=n,

DO 1S I=1,VHARM

P=2,21%AK#YY
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IF(PeGT,20,)G0 TO 15 ORIGINAL PAGE IS POOR
AM=AMs AMMYBAQ (1) 2028 4EX? (=D)
_ AMK=AMK 42,2 12028 AMMVARO (]) 2020 AK /WHEYP (=P)
15 CONTINUE
IF(YUeGTeos0300/12,7) GI TD 3n
U = 2429%028YYa,127/.000015
10 RETURN
END )
SURROUTINE DT2A(XeNTeYeDTMAX)
DX=,152¢4
IF(XelLT,DX)DT=,003625
XEI=3.°DX
IF(XeGE DX oAND ¢ XoLToXF1)IT=,003A25+,0209154 (X=DX) /DX
IF(XOGE01013985)0T=000179
IF(XeLToXE140RXeGFEe1,33985) GN TO 5N
NT=,054658«,1508514Xe¢,201 7800002, 08420248 483, 079020
1X%84¢ ,02893R0X##5+, 005659 XR0Re,0336]68 07
S0 OTMAX = DT
IF(YelLTeel25)NT=0T®Y/, 125
1IF(Y«LE.«031001712,7) DT = 0,
IF(YeGT,e873)DT=NTH(1,=-Y)/,128
RE TURN
END '
SUSROUTINMNE INVPSE (A+R4IRIW)
NDIMENSION A(ASe3) eR(A5) eI (65) 411(6592) 0Y(H5)
DOUBLE PRECISION Ae¢BeNeloY
Ullel) = A(107)
D(le2) = A(1le7)
NO 30 1 = 2.1IRNW )
J(Iel) = A(T42)=2(T1=143)%A(I,1)/U(1=101)
UlI42) = A(T,43) ,
NII) = A(I41)/7U(T=1,41)
30 CONTINUE
Y(1) ='8(1)
DO 40 I = 2+IRNW
Y(I) = BR(IY=D(I)2Y(1I=1)
4n COMTINUE -
R{IROW)= Y(IROW) ZU(IRNW.])
NO S0 J = 2.100W,.1
I = IROVW+1=J
B(I) = (Y(1)=U(I+s2)%#B(I+1))/U(T41)
50 CONTINUE
RETURN
_ END
77G0.SYSIN DD #
Ss 80
124,96 1.8519 17, 1.5 «23R9
/5
/BFEN |} aunpitoss
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Appendix H - KDIN4

This fortran program calculates heavy particle inertia trajectories

method.

+TYFE KDIN4.FOR

c

C THIS PROGRAM CALCULATES THE TRAJECTORIES OF HEAVY
C PARTICLES INERTIA LOMINATES~~NO DIFFUSION

c
5
10
15
20
25
30
35
c

FORMAT ¢/

and deposition according ta the theory of chapter 4-C. No diffusion is

considered. Numerical integration is based on a forth order Runga-Cutta

LDIMENSION Y(3+200)»YFP(3r200)»X(3y200) s XF(3+200) yRO(LT) » JMAX (3

COMMON AMMG» NHARM» AKXy BO
WRITE(S,»3)

FORMAT(’ GIVE ME T-INGs»T-INVsT~RES»AMMGy YOy XFO»AKyDLT»OIA")

READ(S»10) TGy TV TRy AMMGy YO XFO v AKXy DLT» D IA
FORMAT(F15.5)
WRITE(Sy13) TGy TVy TRy AMMGy YOy XFOr AR DLTyDIA

WRITE(S,20)

FORMAT(/ GIVE ME THE #HARMONICS AND THE R"S‘)
READ (S 25)NHARM

FORMAT(IS)

READ(S s 10) (ROCY) y I=1y NHARM)
WRITE(S230) (RO(I) v I=1yNHARM)

FORMAT(’ THE DENSITIES ARE‘»/»8F10.4)
GVU=TG/TV

GUR=TGEXX2/TR/TV

Y(2y1)=Y0

Y(1y1)=YO+NIA/2.

Y(391)=YO-LIA/2,

no 35 I=1,3

YP(Iy1)=0,

XF(Is1)=XFO

X(Iy1)=0,

CONTINUE

INFUT IS8 FINISHEDs VERTICAL INTEGRATION FOLLOWS

0o 90 I=1s3
o 89 J=2,200

YO=Y(IyJd-1) . e R e = e

YFO=YF(LyJ=-1)

CALL AM(YOsAMOG)
ODYFL=DLTX(=GVXYFO-1.~AMG)
YHALF=YO+DILT/2.XYFO

CALl. AMCYHALF » AMG)
DYFR=DLTXK(=GUX(YFO+DYF1/24) =1, ~AMG)

INFUTS TG TVU» TRy AMMGs YO s XFOy ARy DLT»DIA ARE’/8F10. 4y

———tame
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YHALF=YO+DLT/2. (2. XYPO+LYF2) /2,
CALL AM(YHALF v AMG)
DYP3=DLTX(~=GUX(YFO+LYP2/2:) =1 +.=AMB)
YI=YO+LLTX (2. XYFO+DYF3) /2,
CAaLL AMCY1l»AMG)
DYFA=DLTX(~GUX(YFO+DIYF4) =1 . -AMG)
YRP(I»D)=YFO+C(DYPL1+2 . X(DYPR+UYFI)+DIYFA) /4.
Y(IvJ)=YO+ (YFO+YF(IyJd))/2.X%DLT
YHALF=(Y) + Y(I»J))/2,

C THE Y-INTEGRATION IS FINISHEDy X~INTEGRATION FOLLOWS

839
88
20

?3

10
20

a

XFO=XF(IyJ=1)

X0=X(IrJ=~1)

CaLL Ul<YOrUs»GVR)
OXPL=DLTX(~GUXXFO + W)

CALL UL(YHALF»s»UyGVR)
DXFR=DLTX(~CGUX(XFO+DXFL/2.) + W)
ODXF3=DLTX(=GUX(XFO+DXF2/2,)+U)
CALL ULl(Y(I»J)rUsGVR)
DXF4=DLTX(=-GUX(XFO+DXF3)+U)

XF IrJd)=XFO+ (LUXFL+2.X(OXF2+OXF3)+DXF4Y /6.
XCIvJ)=XO0+(XFO+XF(IyJ)) /2. %DLT
IFCY(Iy D)W LELWO.) GO TO 88
CONTINUE

JMAX(I)=J

CONTINUE

X=INTEGRATION FINISHELD »QUTFUT FOLLOWS

DO 110 I=1,3

WRITE(S»93)IyJMAX(I)

FORMAT(’ XsYsUXyVY ARE FOR CASE-» JMAX--=/3215)
WRITE(Sy 232 XCLo D)oY (Lo D)o XPC(T o J) v YR (T o Jd v d=1ly IMAXC(L) 2 10)
JM=JIMAXC(I)

WRITE(S»9T) UMy XL M) o YC(Lp JM) o XFCT v M)y YF (I v IM)
FORMAT(IG»4F15.3) '
READ(Sy102AH]

CONTINUE

STOF

END

SUBROUTINE AMCY»AMG)

DIMENSION ROCLT)

COMMON AMMG » NHARM» AKy RO

AMG=0,

DO 10 I=1sNHARM

P=2.KAKXYXI

IF(FWLT.0.)F=0,

IF(PGT.20) GO TO 20
AMG=AMG+AMMOK T ARBO CL ) HKDKEXF ( ~F )

CONTINUE

RETURN

END

SURROUTINE U1(Y»UsGVR)

U=0Q.

IFCYLT.0.360 10 5

IFCY o LT o S0 U=GVRXC2 Y %k, 1110101

IFCYJBE o S)U=GVRX (2K Lo ~Y ) )k, 0011111

RETURN

END
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Appendix I - KDIN7?

This fortran program predicts particle densities and deposition
according to the hybrid-inertial theory presented in chapter 4-D.

Particle trajectories are calculated as in the diffusion-free model,

but the diffusion term causes additional trajectory spreading. The
analysis is especially tailored to intermediate sized particles where

inertia and diffusion are important.

cc
C THIS PROGRAM CALCULATES THE TRAJECTORIES OF HEAVY
C PARTICLES INERTIA DOMINATES--WITH DIFFUSION!!

c
DIMENSION Y(30)»YP(30)9sX(30)sXF(30)»BO(?) 9 JMAX(30) s AN(30)
i DLN(30)sANOO(30)»ANO(30)»GCLT(30)»GCLT2(30),Y00(30)¢X00(30)
DOUEBLE FRECISION XsYsXPrYFrANr YOO »XO0y»ANOO»XO9» XFOr YO YFO !
1 FCHY»PCHX s YCHAN s XCHAN» X3y Y3 » RN3
COMMON AMMG» NHARM» ARy BO
WRITE(S»S)
S FORMAT(’ GIVE ME T-INGsT-INVyT~RESsAMMG» YOs XFOsWVDLT»/
1 / DIAYXTUBE sEND-LAYER(CM)y #ROWS»DIF-ON’)
READC(S,10)TGy TV TRy AMMGr YO s XFO» WV DL Ty DIA» XTURE » BL » ROW» DON
10 FORMAT(F15.5)
WRITE(S»15)TGsTV» TRy AMMGs YO» XFO WYy DLT s 1 IA» XTURE y BL » ROW s IION
15 FORMAT(’ TGsTVsTR,AMMG»YOsXFO»WVyDLT»DIA» XTUEE» BLyROW, DON’
1 +/16F12.6)
NROW=ROW+.01
NHAR!1=9.+.01
T=.006244
IF(WV.EQ.8,.0R.WV.ER.12,)G0 TO 20
AK=15.71
BO(1)=,080356
B0(2)=,0027
BO(3)=,00392
E0(4)=,00151
BO(S)=,001
B0(6)=,0000931
RO(7)=,0007905
B0(8)=,0005376
RO(9)=.,000352
GO TO 30
20 IF(WV.EQR.12,)G0 TO 25
AR=9,975
BE0(1)=,099763
E0(2)=,00183
BO(3)=,00457
B0(4)=,0005344
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BO(S)=,0015
BO(6)=,000678
BO(7)=,00126
BO(8)=,0005
BO(9)=,0009%
G0 TO 30
AK=6, 649
BO(1)=,08993
NHARM=1.,+.,01
60 TO 30
BO(2)=,00156
BO(3)=,025
BO(4)=,000267
BRO(S5)=,00128
B0O(6)=,0000583
RO(7)=,00364
BO(8)=,000267
BO(9)=,0001064
GV=TG/TV
GVR=GVXTG/TR
DE=TGXX2/.127%X%2/TVXION
DLY=DIA/ (NROW+1)
DO 35 I=1»NROW
Y(I)=YO+NIA/2.~-IXDLY
X(I)=0, ‘
XP(I)=XFO
YFP(I)=0.
SJMAX(I)=1000
ANO(I)=(1,~ARS(Y(I)-YO)/(DIA/2.))%k%k, 1111111
AN(I)=ANO(I)
CONTINUE
CALL DT(XTUEE.I!)
DLNC1)==AN(2)/2,/DLY/ANC(1) XD
DLN(NROW)=AN(NROW-1)/2.,/DLY/AN(NROW) XD
DO 36 I=3y»NROW
DLNC(I-1)=(AN(I-2)-ANCI))/ANCI-1)/2./7DLYXD
CONTINUE
DLXO=XFOXDLT
IMAX=NROUW

INFUT IS FINISHEDy» VERTICAL INTEGRATION FOLLOWS

DO 120 J=1,1000

DO 40 I=1,IMAX

YO=Y(I)

YPO=YP(I)

CALL AM(YOsAMG)
DYFL1=DLTX(~-GVXYFO~1,-AMG-DIGXDILN(I))
YHALF=YO+4LLT/2.XYFO

CALL AMCYHALF»AMG)
DYF2=DLTX(-GVX(YFO+DYF1/2,)-1,-AMG-DGXDLN(I))
YHALF=YO+DLT/2. %X (2. XYFO+DI'YF2) /2,

CALL AM(YHALF »AMG)
DYF3=DLTX(-GVX(YFO+DYF2/2,)~1,~AMG=~DGXDLN(I))
Y1=YO+DLTX(2.%¥YFPO+DYF3) /2,

CALL AM(Y1,AMG)
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DYPA=DLTX(-GUX(YFPO+DYF3)~1,~AMG~DGXILN(I))
YPC(I)=YFO+(DYP142,. X(DYF2+DYF3)+DYP4) /6,
Y(I)=Y0+ (YFO+YF(I))/2.,%DLT
YHALF=(Y0 + Y(I))/2.

C THE Y-INTEGRATION IS FINISHED» X-~INTEGRATION FOLLOWS
XPO=XF (1)
X0=X(I)
CALL U1(YOrUsGVR)
DXP1=DLTX(-GVXXFO + U)
CALL UL(YHALF»U»GVR)
DXF2=DLTX(-GVX (XFO+DXP1/2.) + U)
DXF3aDLTH(=GUX(XFO+IIXF2/2,)+U)
CALL UI(Y(I)»U»GVR)
DXPA=DLTX(~-GVX (XPO+DXF3) +U)
XPCI)=XPO+ (DXP1+2.X(DXF2+4DXFP3)+0XF4)/76,
X(I)=XO0+(XFO+XF(I))/2.,%DLT
IF(Y(I)LE.O,+) IMAX=IMAX~1
IFCY(I)JLE O ) JIMAX(I)=J
Y00(I)=YO
X00(1)=X0
40 CONTINUE
c X~INTEGRATION FINISHED ,»NOW GET DENSITY
D0 90 I=1,NROW
X0=X00(I)
YO=YO00(I)
ANOO(I)=AN(I)
IF(I1.EQ.3)G0 TO 65
IF(Y(I-1).LE+O. AND.JMAX(I).LT.JIGO TO 90
IF(I.EQ.NROW)IGO TO ¢8
YCHAN=(Y(I-1)-Y(I+1))/2./70LY
IF(Y(I+1) LE«O IYCHAN=(Y(I~1)-Y(I))/DLY
XCHAN=(X(1)-X0)/LLX0
FCHY=(X(I-1)=-X(I+1))/2,/DLY
PCHX=(Y(I)-YO0)/DLXO
GO T0O 70
65 YCHAN=(Y(1)=-Y(2))/DLY
XCHAN=(X(1)-X0)/DLX0
PCHY=(X(1)~-X(2))/DLY
PCHX=(Y(1)-Y0)/DLXO
~eoTQ 720 - T T
68 YCHAN= (Y (NROW-1)-Y(NROW) ) /IILY
XCHAN= (X (NROW)~X0)/DLX0
PCHY=(X(NROW-1)-X(NROW)) /LIILY
FCHX=C(Y(NROW)-Y0)/IILXO
70 ANCI)=ANO(I)/ (XCHANXYCHAN~FCHYXFCHX)
?0 CONTINUE
C DENSITIES ARE KNOWN-GET DXGRADIENT(N)
95 DO 110 I=1,NROW
DLN(1)=0,
IF(I.GT.IMAX)GO TO 110
IFCY(I) . LE.BL/12,7,0R.Y(I).GE.(1.,~BL/12.,7))G0 TO 110
XPOS=X(I)X.127+XTURE
CALL DT(XFOS,IV
IF(I.EQ.1) GO TO 100
JIF(I.EQ.NROW)GO TO 105
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Y3=sY(I+1)
X3=X(I+1)
RN3=ANCI+1)
DLNCI)=( (ANCI=1)=RN3)X(X(I)=X00(I))~(AN(I)~ANOO(I) )X
(XCI=-1)=X3))/ (Y (I=1)=YIIR(X(I)-X00(I))=(Y(I)=YCOCI))X
(X¢(I=1)=~X3)) / ANCI)XD
GO TO 109
DLNC1)==AN(2)XK(Y (1) =Y(2) )/ C(X(1)=X(2) ) k%k2+(Y(1)=Y(2))
XX2)/7AN(IIXD/ 2,
GO TO 109
DLN(NROUW) =ANCNROW=1) X (Y (NROW=1)=Y(NROW) )} / ( (X(NROW-1) -~
X(NROW) ) %%2+ (Y (NROW=-1)~Y (NROW) ) XX2)./AN(NROW) X[/2, '
SIGN=1,
IFCDLNC(I) JLT+0,)SIGN=-1,
W=, 127%SQRT(D/T)
IF(SIGNXDLNC(I) +GTW)DLN(I)=SIGNXUW
CONTINUE
IF(Y(1).LE.0.,)G0 TO 125
IF(MOD(J»S)NE.O)GO TO 120
WRITE(S,111)J
FORMAT(’ THE OUTFUTS=XsYsXPsYFyDENSITY»DLN=-CASE=’y13)
DO 1135 I=1,NROUW
WRITE(Ss113)IoX(I) o YC(I) o XFPCI) o YF(I)»ANCI) »DLNCI)
FORMAT(IS,6E12.35)
CONTINUE
CONTINUE

INTEGRATION FINISHED--OUTFUT FOLLOWS

WRITE(S,126)

FORMAT(’ THE OUTPUT FOLLOWS’/92Xs "I’ 9Xs’ JMAX’ 96Xy ‘X’ 911Xy
‘Y’ 910Xs ‘XP’ 9 12Xs ' YF/ 9 ?Xs ‘GCLT’ #8X» 'GCLT2’)

[0 135 I=1,NROW

IF(I.NE+1.,AND.I NE.NROW)GDX=(X(I~1)-X(I+1))/2,
IF(I.EQ.1)GDX=X(1)=-X(2)
IFC(I.EQ.NROW)IGDX=X(NROW-1)~-X(NROW)
GCLT(IX=100./.9/LIAXDLY/GDXAWV/2:/1247%XANO(T)
GCLT2(1)=~100,%WV/2./12.7/.9/DIA/XFOXANCI)XYF(I)

CONTINUE

00 140 I=1,NROW

X(I)=X(I)%k.127

WRITE(S9»130)Is IJMAXC(I) s X(I)sY(I) o XF(I)»YFC(I)sGCLT(I)»GCLT2(I)
FORMAT(21456E12.5)

CONTINUE

STOF

- END

SUBRROUTINE AM(YsANMG)
LIMENSION RO(9)

COMMON AMMGsNHARM» AN s EO
AMG=0.

[0 10 I=1sNHARM

F=2. KAKXYXI
IF(FP.LT.0.)F=0,
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IF(F.6T.20.) GO TO 20 EPRODIICIR
AMB=AMGHAMMGXIXEO ( I ) KX2KEXF (~F) °R IGINAL PAI(I}I% THL‘
CONTINUE Pnn
RETURN
END |
SUBROUTINE U1(YsUsGVR)
U=0,
F=1,/9,
IF(Y.LE+0.)GO TO 5 '
IFCY BT (1:=05/12,7))U=GURK(2,%X:5/12,7) k%P
IF(U.NE.0,)G0O TO S
IFCY LT e SIURGURK (24 XY ) KXF
IFCY GE .« 5)U=GURK (2, X(1,=Y) ) KXP
CONTINUE
RETURN
END
SURROUTINE DT(X»D)
D=,061684~.146418%X+, 135854%kXKK2~,013655KXK%3
=, 03752KXKKA= s 002257KXKXS+, 009903k X kKb
RETURN
END .
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Appendix § - FOURIE | 'ORIGINAL f:ﬁ%ﬁw OF Thy

J P OOR

This basic program performs a discrete fourier analysis of the mag~
netic field density waveform ]/4" above the permanent magnet structure.

The analysis follows that described in chapter 5.

DIM X(31)sE(16)

FRINT *N HARMONICS FOLLOW--NEED 2N-1 DATA FOINTS®
PRINT *N=* \ INFUT N \ PRINT *X(I) FOLLOWS®
P=2XN-1

FOR I=1 TO F \ INPUT X(I) \ NEXT I

PRINT *THE X‘S ARE® \ FOR I=1 TO F \ FRINT X(I)y \ NEXT I \ FRINT
FOR J=1 TO N \ E(J})=0

FOR I=1 TO P

BCJ)=BCJ)+X (1) /NKSIN(3,14159/NKJIXI)

NEXT I \ NEXT J

FOR I=1 TO N \ FRINT I,B(I) \ NEXT I
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Appendix K - KD747G

This fortran program calculates particle density and deposition
for intermediate sized particles injected over the skin of an aircraft
£lying 500 MPH at an altitude of 40,000 ft. The exact normal and axial
diffusivity dependence in the boundary layer is used. Only magnetic mi-
gration exists normal to the fluid stream flow; gravitational effects

are ignored. the analysis follows that described in chapter 7.

THIS FROGRAM CALCULATES THE TRAJECTORIES OF HEAVY
FARTICLES- INERTIA DNOMINATES-~WITH DIFFUSION!!
CALCULATES FLIGHT OF FARTICLES OVER 747 JET
ALTITUDE= 40,000 FT.» SPEEDI=500 MFH,

DIMENSION Y(30)sYFP(30)9X(30)9XFP(30)sEO(D) s IMAX(30)»AN(30)
1 DLN(30)sANOO(30) s ANO(30) syGCLT(30)sBCLT2(30)rY00(30)+X00(30)
IOUBRLE FRECISION XsY s XFoYFsANs YOO » X009 ANOO s X0 s XFO»YOr» YFOy
1 PCHY»PCHX» YCHAN» XCHAN» X3y Y3»RN3
COMMON AMMG»NHARMsAK»EO
WRITE(S»S)
] FORMAT(’ GIVE ME T~ING»T~INVyT~-RESyAMMGr YO XFO»WVIDLT'»/
1 / DIA»XTURE, #ROWSs»LIIF-ON’)
REALI(S»10)TG» TV TRy AMMGr YO XFO» WV LT » It IA» XTURE » ROW » [ION
10 FORMAT(F15.%5)
WRITE(S»1S)TGrs TV TRy AMMGy YO XFOIWV»DLTsDIAYXTUREs ROWs IION
15 FORMAT(’ TGsTVsTRYAMMGY YO r A0 WVHIDLTsDIAXTUREYROW,ION’
1 +/+6F12.6)
NROW=ROW+,.01
NHARM=9.4.01
IF(WV.EQ.8. .0R.WV.ER.12.)6G0 TO 20
AR=123,68
BO(1)=,080356
BO(2)=,0027
RO(3)=,00392
BO(4)=,00151
B0(S)=,001
BO(6)=,0000931
RO(7)=,0007905
BO(8)=,0005376
RO(9)=,000352
60 TO 30
20 IF(WV.,EQR.12.,)G0 TO 25
AK=78.54
BO(1)=,099763
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BO(2)=,00183
BO(3)=,00457
BO(4)=,0005364
FO(S)=,0015
FO(4)=,000678
BO(7)=,00126
O (8)=,0005
BO(9)=,00095
60 TO 30
AK=52,36
BO(1)=,08993
FO(2)=,00156 NEPRODUGHy,
BO(3)=,025 AR
BO(4)=,000267

BO(5)=,00128

FO(6)=.0000583

BO(7)=,00364

BO(8)=,000267

BO(9)=,0001064

6V=1,

GUR=TV/TR

DG=TVXDON

ILY=D0TA/ (NROW+1)

DO 35 I=1/)NROW

Y(I)=YO+DIA/2,=TKILY

X(1)=0.,

XP (1) =XPO

YP(I)=0,

JMAX(1)=850
ANO(I)=(1,-ABS(Y(I)=Y0)/(DIA/2,)) kK, 1111111
ANCI)=ANO(I)

Y00(I)=Y(I)

X00(I)=-XFOXDLT
ANOO(I)=AN(I)
CONTINUE
DLXO=XFOXDLT
IMAX=NROW

INFUT IS FINISHED» VERTICAL INTEGRATION FOLLOWS

ng 120 J=1,850

DO 40 I=1,IMAX

YO=Y(1)

YPO=YP(I)

X0=X(1I)

XDT=XTURE+X0
DL=37%XDTR(XOT/TR/ 4 4701 ) %X (-, 2)
GO TO 95

CALL AM(YOr»AMG)
DYP1=DLTX(~GVXYFO-AMG-DGXDLN(I))
YHALF=YO+IILT/2,%YFO

CALL AM(YHALF»AMG)
DYF2=DLTX(-GUX(YFO+DYF1/2.,)-AMG-DGXDLN(I))
YHALF=YO+DLT/2.X(2.XYFO+DOYF2)/2.
CALL AM(YHALF s»ANMG)
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DYP3=DLTX(~GVX(YFO+DYF2/2,)~-AMG-DGXDLN(I))
Y1i=YO+DLTX(2,XYFO+DYF3) /2,

CALL AM(Y1,AMG)
DYP4A=DLTX(-GVX(YFPO+DYF3)~AMG-DGKDLN(I))
YP(I)=2YPO+(DYP142, X (DIYP2+DYF3)+DYFP4) /6.,
Y(I)=Y0+ (YFO+YF(I))/2,X%DLT

YHALF=(YO0 + Y(I))/2.,

C THE Y-INTEGRATION IS FINISHED'» X-INTEGRATION FOLLOWS

40
c

70
90

XFO=XP(I)

CALL U1(YO»U)GVRsLIL)
DXF1=0LTX(~-GUXXFO + U)

CALL U1 (YHALFsUsBVR,IL)
DXP2=DLTR( -GV (XFO+DXF1/2,:) + U)
DXFP3=DLTX(=-CGVX(XFO+LXF2/2,)+U)
CALL U1(Y(I):UyGVR,DIL)
DXPA=LILTR(~-GVX(XPO+DXF3)+U)
XP(I)=XPO+ (IXP1+2.%(DIXP2+DXF3)+DXF4)/6,
XCI)=X04+(XFPO+XF(I)) /2. XDLT
IF(Y(I).LE.O.) IMAX=IMAX-1
IFCY(I)JLE.O ) JIMAX(I)=J
Y00(I)=YO

X00(I)=X0

CONTINUE

X=-INTEGRATION FINISHED' +NOW GET DENSITY

DO 90 I=1,NROW

X0=X00(1I1)

YO=Y00(I)

ANOO(I)=AN(I)

IF(I.EQ.1)60 TO 65
IFC(Y(I-1),LE.O. ANDI  JMAX(I).LT.J)GO TO 90
IF(I.EQ.NROW)GO TO &8
YCHAN=(Y(I-1)-Y(I+1))/2./71LY
IF(Y(I+1),LE O )YCHAN=(Y(I-1)=Y(I))/DLY
XCHAN=(X(I)~X0)/0LX0
PCHY=(X(I-1)-X(I+1))/2./DLY
FCHX=(Y(I)-Y0)/DLXO

GO TO 70

YCHAN=(Y(1)-Y(2))/LLY
XCHAN=(X(1)-X0)/DLX0
PCHY=(X(1)=X(2))/DLY
PCHX=(Y(1)-Y0)/DILX0

60°TO 70 - 777 -

YCHAN=(Y (NROW=-1)-Y(NROW) ) /IILY
XCHAN= (X (NROW)~X0) /LILX0O
PCHY=(X(NROW-1)~-X{(NROW))/LILY
FPCHX=(Y(NROW)~-Y0) /DLXO

ANCI)=ANO(I)/ (XCHANXYCHAN-FCHYXFCHX)
CONTINUE

IF(Y(1).LE.0.)G0 TO 125
IF(MOD(JsS).NE.O)GO TO 120
WRITE(S»?1)JyIMAX
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FORMAT(’ XsYoXPrYFyDENSITY s DLN-CASE=’»15s’ IMAX=’,15)
D0 923 I=1,NROW
WRITECS»P2)I9X(I) oY (X))o XPC(I) v YP(I)sANCI) »DLNC(I)
FORMAT(IS,6D12,5)

CONTINUE

CONTINUE

C DENSITIES ARE KNOWN-GET D¥GRADIENT(N)--THE FOLLOWING STATEMENTS
C ACT AS A SUBROUTINE TO GET THE GRADIENT

oo

9?5

106

£ -

100

109

DUN(I)=0,
IF(I.GT.IMAX)GO TO 39 THE
IFCY(I)GE.DIL.OR.Y(I).LE.O0.)GO TO 39 ()DUCIBI LITY OF

CALL DT(DL,Y(I)sD) 1S POOR
IF(I.EQ.1) GO TO 100 GRKHNAl'PAGF
IF(1.EQ.NROW)GO TO 105 '
Y3=Y(I+1)

X3=XC(T+1)

RN3=ANCI+1)

DLNC(I)=((ANCI~1)=RN3)IX(X(I)~X00(I))~ (AN(I)-ANOO(I))*
(X00(I~-1)=X3))/((YOO(I-1)=-Y3)K(X(I)-X00(I))=-(Y(I)-YOO(I))
X(X00(I-1)=~X3)) / ANCI)XD

GO TO 109

DLNC1)==ANC2) X (Y (1))=Y (2))/(L{X(1)=X(2) I kX2+(Y(1)=-Y(2))
Xk2) /ANCIIXD/2,

GO TO 109
DLN(NROW)=AN(NROW-1) % (YOO (NROW=-1)-Y(NROW) )/ ( (XOO(NROW-1)
=X (NROW) ) k%24 (YOO (NROW=-1)~Y (NROW) ) X*k2) /AN(NROW) XD/2.
SIGN=1.,

T=DL/7/223.5 .
IFC(DLNC(I) sLT+04)SIGN=~1, . |
W=SQART(I/T)

IF(SIGNXDLNC(I) GT WIDLN(I)=SIGNXW

GO0 TO 39

NET INTEGRATION FINISHED--OUTFUT FOLLOWS

130
140

WRITE(S,126)

FORMAT(’ THE OUTFUT FOLLOWS’ /92Xy ’'1’9Xs IJMAX’ 96Xy 'X’ 111Xy
‘Y 910Xy "XP/912Xs ‘YP’ 99Xy GCLT’ +8Xy 'GCLT2)

[0 135 I=1,NRUW
IF(IJNE+1,ANDINE«NROW)GDX=(X(I~-1)~X(I+1))/2,
IF(I.EQ.1)GDX=X(1)=-X(2)
IF(I.EQ.NROW)GIX=X(NROW=-1)-X(NROW)
GCLT(IN=100,/.9/DIAXDLY/GDXXWV/2,/12,7%ANOC(I)
GCLT2(I)==100.%XWV/2,/12:7/9/DIA/XFOXANCIIXYF(I)

CONTINUE

[0 140 I=1,NROUW

HRITE(41130)17JHAX(I)9X(I)9Y(I) XFCI) e YF(I)»GCLT(I)BCLT2(I)
FORMAT(2I4y6E12

CONTINUE

STOF

END
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SURROUTINE AM(Y»AMG)

DIMENSION RO(9)

COMMON AMMGy NHARM» AK» RO

AMG=0,

DO 10 I=1,NHARM

Fe2, XARXYXI

IFC(P.LT.0,.)P=0,

IF(F.GT.20,) GO TO 20
AMG=AMG+AMMGKIXRBO (I ) XK2KEXF (~F)
CONTINUE

RETURN

END

SUEROUTINE U1(Y»Ur»GVR»IL)

U=0.,

IF(Y,LE.0.)G0 TO S
IFCY.LT.DLI)GO TO 3

U=GVR

GO TO S

F=1./7,

U=GVRX(Y/LIL ) X%F

CONTINUE

RETURN

END

SUERROUTINE DT(DLyY oI

=0, .
IF(Y.LE.O,. .OR.Y.GT.DL)GO TO S0
YN=Y/DL

[==,010314+2.91226XYN++ 070557 KYNKX2-13,614712KYNX*3
+4.179703%KYNXkX4+21 s 233276 KYNKKS~2,772369KYNkXS6~
15,509223SKXYNKX7-8.,465072KYNXk8+12,027271 KYNXX9?

D=0%.0037%223 . SXDIL
IF(DJLT 04 ) D==D
RETURN

END
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Appendix L - Refinement of Causal Fundamental Light Particle Model

The density profiles predicted by the fundamental causal model are in-
tegrated to give mass deposition per half wavelength on the lower duct sur-
face. This technigue integrates out numerical difficulties in the lower
duct region caused by diffusivity gradients and a steep exponential magnetic
variation. The integration forces the model predictions to be consistent

with causality.

Figure (L-1) shows a representative flux balance at position x in the duct.

Mass conservation demands that
REPRODUCIBII ITY OF THE

APTrY -4 ~ T TyAm
x+A/2 2a
r wdx = I (I'x in (x=x=A/2) -~ Ty out(x=x+>\/2)) w dy (L-1)
x-x/z 0

Assuming steady state operation over an interval to seconds, the amount of

particulate collected on the lower duct surface is

to X+A/2
mass collected, _
( /2 ) T dx dt
0 x=A/2
(L-2)
X+A/2
= W to Fy dx
X=A/2
With an average axial duct velocity, Uavg in the duct, the net mass injected
is
2a to
(mass injected) = f J Ny Uwdt dy
0 0 (L-3)
= n,. U t
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Figure (L-1) Flux Balance in Duct
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combining (L-1), (L-3) with (L-2) gives

*
mass collected mass injected
( ) = ( )

A2 L Uavg

. (L-4)

ir, in(x=x=A/2) - T ¢ (x=x+1/2)] dy

X ou

O

The program predicts n/no and since Py = n u, the mass collected can be
calculated. The FORTRAN program KDFF1 incorporating these changes is listed
in Appendix M. Simpson's rule is used to perform the transverse flux inte-

gration.
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Appendix M - KDFF1

This FORTRAN program computes densities and half wavelength deposi-
tion for light particles. Particle deposition is computed using mass
conservation arguments; integration of the entire transverse profile is
involved in predicting deposition. The analysis occurs in Appendix L.

CALCULATION OF DUCT CONCENTRATION PROFILE
SMALL PARTICLE TURBULENT DIFFUSION CASE
BOUNDARY CONDITIONS CONSISTENT WITH CAUSALITY
NO BOUNDARY CONDITIONS ON LOWER SURFACE

OO0

¢

dimension B(100)9:(1000)ar(1000)yb0O(P)ybh2(100) b2k (100)53(100)
dimensiorn ur(l00)yan0Cl00) bbb (10054)93(10052)93rs(2,100) 5118 (40)
ncf(140)

double srecision assb

commor aksbO0rswrammveriharm

write(és,3)

format(" THE NUMBER OF ROWS AND COLUMNS ARE®)
read(Sy10)irowricol

format(2iT)

write(sy1lS)irowvicol

format(2iTs/9 " INFUT TO,AMMV WU XE:DLXMS ARE")
read(Sy20)tgrammvrwvriibrdlyms

format(FfL15.5)

write(sy2S)tdvubyamnmvywvrdlums

format (" THE INFUTS TGy XEBryAMMYs WV DLXMS ARE"y/6110.4)
rmharm=9,01

rig=0

no=iceol/25

rneoll=0

iftlwv,.ea .8, 0r.wve@a.12.0¢80 to 30

ah=15,71

Mmas=, 489

BOC(1)=,080354

BO(2)=,0027

BO(3)=.00392

D0(4)=,00151

B2O0(5)=.001

bOCs)=, 0000931

HO(7)=. Q007905

0l 8Y=, 00085376

0D0(9)=,000352

go Lo 40

iflwveaa.l12.080 to 39

sl=® 975

smasE=,3175

Do(L)=.0997463

bO(2)=,00183

BO(3)=,00457

D0(4)=,.0005346



A

-260-

bO(S)=,0019
0H0(8)=,000678
b0(7)=,00126
bhO(8)=,0005 TY OF THE
D0(9)=,0009% ODUCIBILI
fo to 40 gﬁfg‘mm, PAGE IS POOR
33 ak=6.4%50
Hmas=,40008
b0(1)=,08993
38 00(2)=,00156
po(3)=,0295
bO(4)=,000267
b0(5)=,00128
p0(4)=,0000583
b0(7)=.,00344
bO(8)=,000267
bO(?)=.00010464
40 dlx = 1./(icol)
ww=12,7
w=.127
ndlf=wv/2.K.01/d1x/xb
kos=0
ke=0
nend=icol-ro
do 43 Jd=nrnorrnendsno
42 ke=ke+l
ifCCbXJXdl-wv/4X,01) gt (hoXubXdlx)) do to 42
kes=skes+l
nes (keos)=ke
ricf(lkes)= ke+ndlf
43 comtinue
kesend=hkes
write(érd4d)lkecsendy (nes(d)vynef () ri=lvkesend)
44 formast(’ kesendrnesyand nef asre’/i3/141%5)
ko=l
Adlu=(1-,.031l/ww)/irow
do 49 i=lsirow
wlid)=1,~gdluXi
arn0(id=1,
45 corntinue
do 50 i=lvirow
call wuOamlwCidvamyambyu)
b20id)=am
hak (i) =amlk
e (d Y=g/ uh
50 corntinue
¢ INFUT FINISHED--SET UF FINITE ELEMENT EQUATIONS
o KENT LOVES LANA
do 191 rnecol=lyicol
wros=xmag + dlxxkbincol
cfu=idlw
do 100 mrow=lsirow
call dtl2s(xrossdtyw(rmrow) sdtmar)
tid=dt/ wkk2
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\13'61/!1**2/dy:':10 .
Q=0
if(e(rnrow).gL..870)ex~1,

if(aglnrow).lt..1285)c=1,

grdt = ohdtmax/ WwRkk2XtaE¥12,7/(1.5875-,031)/2./1d49
B{rrows)=taXtidi2/dukk2+ (1, +tdkb2(mrow)/w) /duttdkur(nrow)/
1 dlx+tg*b2k (nrow)
a(rnrowrl)==LaXtid/ dekk2=-(1 ., +LagXb2 (nrow)/w) /du~gradl
salnrowr3)=—tagktid/dukk2+gdradt
bimrow)=ta¥ur(nrow)/dlxkarnd(nrow)

cortinue

alirowrl)=s(irowrl) tdradt-cdtmank(, 031/ wwtdy) /. 124 /dgykts ®d3
a(irowr2) =a(irowy2)+dtmax ¥ (. 031/ wwtcly) /.125/duXtd *d3
a(lr1)=0,

alirowr3)=0.

¢ SINGLE COLUMN OF ELEMENTS NOW REALY FOR INVERSION

139

P0%

143

130
185

call invrse(arbrirow)
do 145 Jd=lrvirow
an0(dd) = b{(Jd)
nee = icol/4
iflrncol.nmesncocand.ncol.rme.2%nco.arnd.rncol srne.3knco.and.ncol
.ne. (4*nco-1)) go to 145
if{ncoll.eq.rncol)go to 903
rg=rg+l
necoll=rncol
sh(ddyrd)=arn0(dd)
continue
ndum=1
iftrcolenesncsche)sandorcol srme.ncs(ketl)) g0 to 185
if(ncol.ge.ncs(he+l) ) ndum=2
do 180 i=lrirow
ang(rndumyi)=and{i)
cormtinue
PfCrnefled)ieqincoldeell Fluin(angranrirowsursdluydifa)
if<nefke).ne.rmcol) go to 151
Pif¢rncol.ltimecs(lke+1)) g0 to 170
do 187 i=lyirow
arns{lyid=ans (210
contirue
feulot ]
arnireol)=100.Xdifakub/.9/4,572
continue

¢ DENSITIES ARE NOW KNOWN - QUTFUT FOLLOWS

noo=icol/4
Writel(sy?20) (iri=noorsical vnon)
format(* THE DENSITIES ARE AS FOLLOWS" s /s 10:rids 30y i4))
do 108 i=lsirowe3
Write (s L0070 e li)s (b (ivd)ydm=led)
format(fS5.2+4f8.4)
comtinue
o 190 d=lrkcserd
slid=res (L) Rdludbhdww /4. %, 01
continue
Wwrite@(sr125) (Cidvan(i)ri=lrkosand)
format(4el3.4)
o e P
il
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subroutine wOam(wiramy amk vig)
dimension bG(?)
commor aksyd0rwyammvrrharm
WYy

IfPCagegdt,e eS)u=1l,.~y
Ed O72%C2 Kw) kR, 1111118

am=0,

do 15 i=lsnharm
=y Kikak Ky

if(r gt .20.,)d0 to 15
am=amtammvikb0 (i) KXK2Kikeur (=)
ambh=amb+2 s KLKK2X3mnv kDO (1) KK2Xsh/ wkexw (~F)
continue

ifP(uu,gt, ,0309/12.7) do to 30

o= o 242KK2%Kwk . 127/7.000015

raturn

@nrl

subroutine dt2a(ydtywrddtmas)

w=,1524

PP (el oeds)ft=,.003625

s@l=2 X
if(igoid.arndselteel)dt=,0056204+.020915%K (se~cde) /ddsx
if(edes1,33982)3t=,00178
if(xslteiveliorex.ge.1.33985) g0 to 50

dt=,054658~, 150851 K+ . 201 784K kK2~ . 084262K:¢0KK3 =, 07902XK::0k %k 4

0 14.028938%x ' *%5+,065659%x**6~,033616**%*7

ctmax = dt
if (a1t s 129)dt=dtku/ 125
if(wele. . 031001/12.7) dt = 0O
PF (gt 270 cdt=adt k(] =) /.12
return
@l
gubroutice invrse(sshyirow)
dimersion aCl33s3)sb(L35)ved (13T pia(l35y2) vy (135)
double srecision arD
Clel) = &¢1sy2)
(ly2) = 5(l,3)
o 30 1 o= 2eirow
Wlinl) = 8Cis)=a(i-1y3dka(isl)/uCi=-1s1)
i) = aCis3)
Adli) = slis1)/uCi~1v1)
cortinue
wl(l) = bh(l)
do 40 1 o= 2virow
w(i) = b{i)=-ad(i)ku(i~-1)
continge
blirow)= wlirow)/ulirowsl) .
do 30 4 = 2virowsl
i = irowtl-J
bOid) = (w(i)=u (i 22X (i4+1) )/ ulivl)
continue
raturn
@rd

?
=
W
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subroutine fluxin(amnsrsanOsirowrurrdlurdifa)
dimension ans(2,100)ya3r0¢100) yur(100)
: Pl=dly/3+%kans(irow)Xur(irow)
P F2=dlu/3Ikan0(irow) kur(irow
* iro=irow-1
iroe=irow=-2
do 10 i=lriros2
flafltur(i) R4, kedlw/3 . kams (i)
CoL FPR=F24 ur(i)X4,.Xdlu/Ikam0(i)
L 10 contirue
t do 20 i=2yiroer
Fl=fl+ur(l) 2. %dluw/3 . kans (i)
FREFI4FUr (LI K2 Xdluw /3 karm0(i)
20 cortinue
difag=fl-~F2
returm
erid

A T R ST AL et
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