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ABSTRACT

The Implementation of control systems using small-scale digital hardware
has largely been a neglected Issue. However, in the field of digital signal pro-
ceasing a great deal of attention has been paid to the development of results
concerning the finite -precision implementation of digital filters. In this thesis, we
will use, adapt, and extend these Ideas for digital feedback compensators.
Specifically, we will primarily focus on steady -state linsear-quadratic -Gaussian com-
pensators. For some of the Issues involved in compensator Implementation, the
filtering results apply directly; thus we can use existing concepts. However, In	 -
many cases, It will prove necessary to adapt these results. Finally, In our Investi-
gation we will uncover several extensions to the results as they apply to digital
filters themselves. All three of these aspects are contributions to the develop-
ment of digital control systems.
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Chapter 1: Introduction

The design of time-invariant discrete-time compensators through the use of

optimal regulators, pole-placement concepts, observer theory, optimal filtering

[1,2,3], and also via classical control methods [4] has received a great deal of

attention In the literature. In principle, these mathematical design procedures

result In a compensator whose parameters are exact, that is, of Infinite precision.

In practice, such parameters are of double precision. Such a (near) Ideal compen-

sator has typically been Implemented on large-scale floating-point computer sys-

tems, where high speed and accuracy are assured. Expense has not really been

an Issue. As a result, low-cost digital controllers have for the most part been

quite simple, usually of the proportional-integral-derivative (PID) type [6].

The recent advances in digital hardware capabilities, such as the develop-

ment of the microprocessor, have opened up many new applications for low-cost,

real-time, small-scale digital control systems [6,6]. Thus the Issues that arise In

Implementing compensators, that Is, In approximating them with small-scale digital

systems, cannot be Ignored. Such Issues Include speed, finite memory limitations

(finite precision), and expense. For its higher speed and lower cost, fixed-point

arithmetic will be much preferred over floating-point (and assumed for this thesis).

However, the effects of finite precision under fixed-point arithmetic are much

worse than under floating-point. Such problems have not been addressed at all In

the idealized mathematical design procedures that have been developed to date

for control systems.

Thes_-i Idealized design procedures will result in Qn essentially infinite-

precision transfer function for the compensator. The term Implementation will

refer to (1), the selection of a structure -- the specification and ordering of the

Chapter 1: Introduction	 9.
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computations that take place In the compensator during each sampling period, and

also to (2), the selection of a hardware architecture and components. In Imple-

mdnting an Ideal compensator, our aim Is to produce a finite-precision digital sys-
El

tem which either performs as close to the ideal as is consistent with the expense

and speed requirements of the application, or which meets a specific level of per-

formance relative to the Ideal as Inexpensively as possible subject to certain

speed (sampling-rate) constraints. It Is Important to note that the mathematical

design procedure which produces the ideal compensator and the Implementation of

this Ideal compensator are not necessarily independent procedures; the initial

design assumes a specific sampling rate, ,yet the implementation is frequently

quite Important In determining the maximum sampling rate.

	

Some effort has been directed towards investigating the issues involved In 	
V

Implementing digital feedback compensators, but it has been somewhat limited.

Knowles and Edwards [7] and Curry [7.6] have each considered a roundoff noise

analysis of certain sampled-data systems. Bertram [9], Slaughter [10], Johnson

[11 ], and Lack [1 2] have developed amplitude bounds on the effects of quantiza-

tion in sampled -data control systems. Sripad [13] has looked in some depth at

the roundoff noise and finite-precision coefficient performance of the discrete-time

Kalman filter and linear-quadratic -Gaussian controller. Rink and Chong [14] have

derived bounds on the effects of quantization errors in floating -point regulators.

Farrar [16] has pointed out In a basic way some of the Issues involved In Imple-

menting continuous-time linear-quadratic-Gaussian controllers as discrete-time

fixed-point microprocessor-based systems.

In his monograph, Wlllsky [18] has discussed a great number of parallels

between the fields of digital signal processing and control and estimation. Many

10.	 Chapter 1: Introduction
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of the basic Issues Involved in implementing 'I^it'l feedback compensators have

been examined in the context of digital signal prai2essing, and a great many

results exist. These digital filtering results are very Important for control applica-

tions, since a digital control system can be viewed as a digital filter (the compen-

sator) embedded in a feedback loop through a continuous-time plant. However,

only In a few special cases do these results apply directly to control. Our task

will be to use, adapt, and extend these results to the implementation of digital

f9e0b4ck compensators. In some cases we will directly use the filtering results.

How?lver, much of the time the control setting adds new twists to the Implementa-

tion Issues, requiring the adaptation of existing results. This effort, bridging two

disciplines, is the most important contribution of the thesis. In addition, some of

our work extends existleli a :methods, or Introduces new approaches, that are also

useful for digital filtering ,applications. This contribution, although limited In scope,

can be valuable to researchers In , digital signal processing:

In this thesis, the steady-state linear-quadratic-Gausslan (LQG) control

problem will be selected to convey our ideas on the Implementation of feedback

compensators. This type of controller has been shown to have desirable perfor-

mance properties in terms of its robustness, multivariate formulation, optimal na-

ture, and so forth. The LQG problem has also received a great deal of attention

In the recent literature, and is being increasingly applied to real systems. Furth-

ermore, the LQG problem has an explicit scalar objective function, which can be

adopted as a performance metric against which the degradation due to finite

wordiength effects can be measured. In fact, this was the degradation measure

used by Srlpad [13]. It Is not necessary to choose this performance metric, or

even use an LQG framework, but such a choice allows us to develop our results In

Chapter 1: Introductlon	 11.
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a concrete setting. 4aing this LQG control framework In the context of a single-

input single-output system, we can bring out all the Issues we wish to raise.

In Chapter 2 the details of the discrete-time LOG problem under considers-

tlon will be presented, Specifically, we will consider a continuous -time plant which

Is driven by additive white Gaussian noise and whose measured output Is also cor-

rupted by Gaussian noise and then sampled at rater . The ideal discrete-time

compensator will minimize- an .equivalent discrete-timed performance index, subject

to a plecewlse-constant control signal u (t ). In presenting the equations for this

Ideal compensator, an Important point will be raised. The finite calculation time Im-

plicit in the arithmetic operations of the compensator Imposes 0, limit on the sam-

piing rate of the ssystew - ,Due -to • this, same finite computation time, a. realistic

compensator must hwie Its output at a given sample time depend only on past

values of the compensator input. The sample-skew approach to this problem,

which Involves sampling the compensator Input and output at different times [1],

will also be presented In Chapter 2.

One of the Important Issues In discussing digital Impiementations is the no-

tion of a structure. Given the system sample rate, the effects of finite precision

li

4	 ^

4

on performance are dependent on the structure chosen, and not on the architec-

ture or components selected. If all compensator computations can be performed

with Infinite precision, then all structures for implementing a given Ideal compensa-

tor will be equivalent in performance. However, under the real constraint of finite

precision, each structure will In , general result In a different performance. Chapter
t

3 will describe solve- different compensator structures. Two important points will	 -

be stressed. First, the state space notation prevalent in control and estimation is
X

not sufficient to represent all possible compensator structures. Second, the can-

12.	 Chapter 1: Introduction
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cppt of a structure for digital filters is not quite the same as the concept of a-

structure for digital compensators. This difference will require us to adapt the no-

tation developed by Chan [17] for the representation of digital filter structures to

the control case. A major implication of this change is that an n th-order LOG com-

pensator (for ai,i n th order system) will have n*1 unit delay elements, and not n

as In the case of n thorder filters. An Important point will also be raised In

Chapter 3 concerning the use of the Ideal compensator equations resulting from

the LOG design procedure as a computational algorithm; we can simply view this

as one possible structure, what we will call the simple structure. We will show

that, although this structure has been frequently used, more or less by default, it

is not usually a good choice due to its large number of coef iclent multiplications.

Architectural issues will be treated In Chapter 4. The Ideas of serisllsm
W

and parallelism, the degrees to which processes run sequentially or concurrently,

will be presented in terms of the tradeoff they embody between compensator cal-

cylation time, which sets the maximum sample rate, and hardware complexity and

expense. These ideas apply directly to digital compensators — no modifications

are necessary. However the same cannot be said for the application of pipelln-

hp to control systems. The use of pipelining, a method for Increasing the max-

imum sampling rate and performance of a system by altering the structure and the

resulting transfer function in a very specific way in order to Increase Its inherent

parallelism, raises an Important Issue -- the interaction between the mathematical

design of the ideal compensator and the finite-precision Implementation of this

Ideal. The application of pipellning produces additional series delay In a compen-

sator. if Ignored, this delay will appear In a control system as extra negative

phase shift, and perhaps cause Instability. The only way to account for this de-

Chapter 1: Introduction	 13.



lay accurately will be to augment the discretixed plant model and redeuign the

Ideal compensator at the new sampling rate. Then if the same pipelining still ap-

piles to the new higher-order ideal compensator, Improved performance can result.
s

In Chapters 6, 8, and T we will consider the effects of the finite memory

limitations of Inexpensive small-scale digital control systems. This restriction on

memory will necessitate finite precision -- the use of compensator coefficients

(multlpliers) of finite wordlength, and the Insertion of quantization or overflow non-

linearltles following the compensator Input A/D converter and all multiplications

(products) and additions. Methods must be found for selecting minimum coefflglent

and signal wordlengths which still result. in acceptable levels of performance do-

gradation, that Is, In small-enough Increases in the performance Index.

Chapter 6 will treat the uncorre/ated effects of product and AID quantiza-

tion on compensator performance. The major effort is spent on roundoff quantiza-

tion, since the use of roundoff as opposed to sign-magnitude quantization results

In lower levels of degradation, and also since roundoff effects can be analyzed In

a tractable way. The main results of Chapter 6 are the adaptations of the scal-

ing and roundoff no lt,:m analysis methods of digital filtering to the compensator

case. There also arises an Important implication concerning set-point LOG

configurations and the scaling issue. Finally, minimum roundoff noise compensator

structures will be adapted from the work of Mullis and Roberts (18] on minimum

roundoff noise filter structures.
r
s A sixth-order LOG control system will be Introduced to test the roundoff

analysts method of Chapter 6, and a number of different structures will be

evaluated on the basis of their roundoff noise performance. We will show a

significant similarity between the results for these structures and the results for
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Alter structures. However, two differences will arise. First, the potential pres-

ence of many real poles in a feedback compensator will complicate the pairing Is-

sue for parallel and cascade structures. Digital filters will typically have at most

one real pole, so the pairing of such poles is of no Interest. Second, although the

default simple structure will perform relatively well, there will be two structures

with, many fewer coefficients that perform even better.

The effect of finite coefficient wordlength on performance I^ basically a

deterministic one. Given any set of finite wordlength coefficients, we can com-

pute exactly the resulting performance degradation,- that is, the increase In the

performance Index. However, given a degradation level, It will be much harder to

Ind the set of coefficients with the shortest wordlength that meets or exceeds

this degradation level. It we make the common assumption that the Ideal values

, of the coefficients will be rounded to finite wordlengths, then the wordlength

determination can be accomplished with repeated evaluations of performance, one

per wordlength tested. This procedure must also be repeated for each structure

considered. Chapter 6 will describe the analytic methods developed for digital

Alters. Our emphasis will be on the use of a statistical measure of coefficient

wordlength. For digital filters, this Involves the use of first-order sensitivities with

respect to the coefficients of the structure. However, for LOG compensators, all

the first-order sensitivities will be zero, due to the optimal nature of the problem.

Thus we will develop two new statistical estimates using second-order sensitivi-

ties. The necessity for second-order terms will exist for any parameter optimiza-

tion problem, such as the sub-optimal reduced-order compensators described in

Levine, Johnson, and Athans [19] and the sub-optimal decentralized controllers of

Looze, Houpt, Sandell, and Athans [20]. In fact, If a digital Alter Is designed to

I
Chapter 1: Introduction	 16.
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minimize some differentiable scalar function, then second-order sensitivities must

be used for any statistical wordlength estimate based on that function. This will

constitute an extension to the results for the Implementation of digital filters.

We will test the same sixth-order control system and structures with the

analytical procedures developed for coefficient wordlength effects. Again, we will

show the similarity between our results and and the filtering results, and demon-

strate that other structures with far frower coefficients perform better than the

simple structure. The statistical estimates of wordlength will be compared to the

exact wordlengths required to meet a specific degradation level. We will show

that the major advantage In using the statistical estimates is not in the computa-

tion time they may save over an Iterative deterministic method, but in the fact

that they are continuous and differentiable in nature. This fact allows us to apply

Iterative gradient minimization techniques to compute minimum coefficient

wordlength structures, as described In Chapter 8. In this procedure, the bulk of

the computations for the statistical estimates need be performed only once.

In Chapter 7, we will review the methods used in dealing with the correlat-

ed effects of the quantization and overflow nonlinearities present in a structure

[21]. Any system Including nonlinearities can exhibit oscillations, known as limit

cycles. In digital filtering, there are three basic approaches to combatting such

effects. First, we can use a structure that can be shown to have no limit cycles,

given a specific type of nonlinearity. Second, the amplitude of any limit cycles

can be upper bounded, allowing us to select a wordlength large enc)ugh to make

this amplitude negligible. Finally, if a limit cycle occurs, we can. Injoct enough

roundoff noise to break up, or quench, the oscillation. Our results In this area for

digital compensators are quite limited; however, several observations will be

Chapter 1: Introduction
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made. First, a control system with an open-loop unstable plant or a plant with an

Integrator pole must of necessity have a low-amplitude limit cycle. Second, the

global feedback loop around the compensator can alter the nature of any limit cy-

cles that would occur In the open-loop compensator, and may even cause limit cy-

cles. This point will be demonstrated for a finite Impulse response compensator.

(A finite impulse response fllter is not recursive; therefore it can exhibit no limit

cycles.) Finaiay, it is not clear that limit cycles will occur at all in LQG systems,

given the system driving noise and measurement noise that is present. However,

Jump phenomena and other correlated noise effects may occur.

Chapter 8 will present a general iterative optimization technique for produc-

Ing minimum roundoff noise and minimum coefficient wordlength structures. This

Procedure has been adapted from the optimization method of Chan for digital

filters [17]. Essentially, this technique allows one to select a structure with a

predetermined number of coefficients and Iteratively vary those coefficients to

minimize some scalar criterion. For LQG compensators, this criterion could be the

Increase In J due to roundoff noise or the increase due to finite wordlength

coefficients, or some combination of these two. For the minimization of roundoff

effects, the modification to ChaWs procedure will be similar to the modification

developed in Chapter 6 for roundoff analysis. However, the minimization of

coefficient wordlength will require major changes since the statistical wordlength

expression will actually be minimized, and this Involves second-order sensitivltiea.

The optimization procedure in Chapter 8 will also bring out two useful extensions

for the digital filtering case. First, In minimizing roundoff noise effects, our pro-

cedure will be more general than that of Chan, accounting for the exact number

of roundoff error sources and the location of each one In the structure. Thla gon-

s

Chapter 1: Introduction	 17.
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eralizatlon can be easily added to Chan's method. Second, we will set forth some	 # .

general approaches to selecting which portion of a given structure to optimize,

that Is, the portion that will provide the greatest Improvement when optimized,

(An unconstrained optimization of the entire structure usually results In too many

coefficient multipliers.) These guidelines also will apply to digital filter structural

optimization.

	

Finally, Chapter 8 will review the contributions of this thesis, being careful 	 ^

to point out where our results are adaptations and applications of digital filtering
n

techniques to the problem of Implementing digital compensators, and where our

results also constitute extensions to the digital Altering techniques.

ti

18.	 Chapter 1: Introduction
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Chapter 2: The LQG Problem

t
A specific problem formulation is necessary to present in a unified manner

the Issues Involved in Implementing digital compensators. Historically, control
t

theory has developed two different approaches -- classical control (primarily a

frequency-domain approach) and modern control (primarily a time-domain approach).

For this thesis effort, we have selected the linear-quadratic-Gaussian (LOG)

modern control problem for several reasons. The design of LOG systems has re-

calved a great deal of attention In recent times [3,22] due to Its advantages for
t

Control (a multivariate nature, certain robustness properties [23], etcetera). As

f	 will be seen, the analysis of LOG compensators brings out all of the issues that

i we wish to discuss. Furthermore, the LOG problem has a very natural scalar ob-

jective criterion for determining its performance --- the cost function J (defined

below). Such an objective function makes it quite simple to measure the degrada-

tion In performance resulting from any given compensator implementation. The

most common criticism of the LOG approach, the difficulty in selecting the parame-

ters of J in some meaningful manner, Is much less of a problem 'in light of the re-

cent developments by Harvey and Stein [24] which relate frequency-domain

design parameters to the selection of the scalar function J. This effort will thus

help make the modern control approach more useful for small-scale low-cost digital

systems. However, in principle the issues, approaches, and results developed

here apply to any control and/or estimation Implementation. This chapter will thus

`b	 present the set of assumptions inherent in the LOG control problem and describe

F	 Its discrete-time solution.

r	 Consider -a continuous-time plant whose performance Is to be improved

through feedback. Assume that the n th order state space equations (2.1) and

Chapter 2: The LOG Problem	 1 A.
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(2.2) accurately model the Input-output behavior of the plant, including any sensor

and actuator dynamics: (Brackets will indicate continuous -time quantities, while

parentheses will indicate discrete-time quantities,)

X[t] - A x[t]+B u[t]+w 1 [t]	 (2.1)

yEt] - C x[t]+w2[tl	 (2.2)

where the time -invariant system matrix A Is nxn, the input gain matrix B Is

nxm,and the output gain vector C Is pxn. The n-vector x[t], m-vector u[t], and

p-vector y[t] represent the system states, Inputs, and outputs respectively. The

n-vector w 1 (t) and p-vector wit) reprf?sent uncorrelated white Gaussian noise

sources of covariances Z1 , and F2, where F 2 > 0. It is further assumed that the

performance of the system co n be expressed as a scalar quantity which Is a qua-

dratic function of the states and controls:

Jc -E Ilm 
2r d ^x, ,t ] Q x [t]  + u' [t ] R u [t ] ) dt	 (2.3)

2-100	 -r

n

m
a

i

i

where E represents the expected value operation and the weighting matrices R

and Q satisfy R > 0 and Q z 0. Because of the time-averaging nature of the per-

formance Index, this LOG problem is called the steady-state LQG problem [1 ].
y

The control objective will be to minimize the Index Jc with a discrete-time

linear compensator as shown In the configuration of figure 2-1, where the Input

u[t] is now piecewise constant. The solution to this problem Involves discretizing 	 b

the plant model and performance Index, and then solving the resulting discrete-

time LQG problem. Discretizing the equations (2.1)-(2.3) for a sampling period of T

20.	 Chapter 2: The LQG Problem



discrete-time
compensator

Figure 2-1: LOG Configuration

seconds produces: [1,26,26]

x(k +1)	 x(A) + r u(k) + w l (k)	 (2.4)

y(k) L x(k)+ w2(k)	 (2.6)

Jd E llim 21 z lx'(k)Q x(k)+2x'(k)M u(k)+u'(k)R u(k)) 	 (2.6)
/	 k--1

i

r
Note the inclusion of the cross-term weighting matrix M in (2.6). Equations (2.4)

and (2.6) describe the behavior of the plant at the sample times, and the index

Jd in (2.6) satisfies:
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I) J - J2.m d c	 ( 7)T-+0

9quatlon (2.7) does not Imply that Jd decreases monotonically towards Jc as T

approaches zero. In fact, for systems that are open-loop oscillatory, Jd will be

near-Infinite if T is an Integer multiple of the period of the oscillation [25].

The discrete-time parameters In (2.4)-(2.8) are defined as follows:

*('r) ° eAr 	 r(t) - f 0(r) 8 dr0

0 - O(T)
r - r(T)
L - C

T	 (2.8)
Q 

T 
1 OTO Q 0(r) dr
0

T
R -R+ T frv)or(,r)dr

01

r
m - d o'(,r) Q r(r) dr

0

The discrete uncorrelated white noise vectors w 1 (k ) and w 2(k) have the follow-

Ing covariance matrices:

T9 1 °f *(r)2 1 O'(r)dr4	 0

1	 1 '	 (2.9)	
JP	 2 - -T 2r

1

	

The factor of 
r 

In the expression for 82 arises from the filter preceding the out- 	 r

put sampler in figure 2-1. Such a lowpass filter (of bandwidth T) will be assumed r

22.	 Chapter 2 , The LOG Problem



to pass the signal Lx unchanged, while filtering the white measurement noise w2.

I Due to the fictitious nature of white noise (its unlimited bandwidth), one cannot

actually sample it unfiltered without obtaining a sample of Infinite variance. (Alias-

I Ing [28,29,30], which Is an overlapping of the spectrum of the sampled signal,

would cause the Infinite variance.)

The solution to the discrete-time LOG problem, given In Sage [27], gives

rise to the following ideal compensator:

j
i 	 x(k+1)•^x(k)+K(y(k+1)-L-6x(k)) +ru(k)
1	 u(k+1) - - Gx(k+1)	 (2.10)

i	 where x represents the state estimate, G Is computed off-line as the solution to1

an optimal regulator problem, and K Is computed off-line as the solution to a Kal-

man filter problem.

Immediately, a problem arises In trying to Implement the compensator

described In (2.10). The system shown In figure 2-1 and equations (2.4)-(2.8) as-

sumes that the output and Input samplers operate simultaneously. However, equa-

tions (2.10) clearly show a dependence of u(k + 1) on y (k+1). Since It takes a

finite amount I of time tc to compute u(k+1) after , y(k+1) Is present at the sampler

output, u(k+1) cannot be generated until some time after the (k+1)th sample time.

This contradiction makes it Impossible to Implement (2.10) as described.

Such a problem is easy to avoid once recognized. One way to get around

the contradiction is simply to delay the clock driving the zerotlrorder hold at the

k
compensator output by 1. seconds. Leaving all else the same, this approach will

`	 give approximately the right result whenever tc (( T. However, a more general

.	 r	 ,ye5.^. .^..rsL^.o.^SLn	 .5u'Tiu.:'Id'^^m .Yaf {ii^^i'̂ `a1^1aR 4^Y^Pi ^^ 	 _^	 •'^^..
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procedure that will work for any T k to is desirable.

Kwakernaak and Sivan [1] have presented such a design method, Including

the possibility of calculation delay in the initial design. This procedure Involves

two steps. First, to ensure that the compensator can be physically Implemented,

we must restrict the control u(k) to depend only on observations up to and Includ-

ing y(A) --- not y(k+l). However, If the calculator time to is much less than the

sample period T, this presents some inefficiency, since the new value u (k+1) is

available (the computations are completed) long before It Is needed as input to

the hold unit. Thus Kwakernaak and Sivan also allow for a delaying of the clock

driving the system output (y) sample-and-hold unit by a time E relative to the

clock driving the system input (u) zeroth-order hold (sample skew, see figure 2-2).

Thus the plant state Is discretized at times kT and the output at times kT+a,

although each of these samples will be referred to with 'k' In the discrete model.

The terms WAY)' and 'y(k )' will no longer represent x and y at the Identical In-

stant. This fact must be reflected In the discrete-time model equations [1, Sec-

tion s.2].

The expression for y(kT + E) can be written using the varlation-of-constants

formula:

v[kT +E]-CeASXtAT]+w2[kT +E] +k  
44 

A(U+E-19 B u[r]+wl[,r]1 d-r
AT

Ceps x[kT] + w 2[kT+E] + 1eA(8-r) d1r B u[kT] + feA(a-T)w [r] d1(2.11)1
0	 0

In Its discrete-time form:
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1	 1	 1
1	 1	 1
1	 1	 1-

1	 1	 1
1	 1

1	 1	 t
T	 1 (k+1)T ;	 1 (k+2)T

-T ----	 Period in which compensator
calculations must be completed

Figure 2-2: From [1], page 623

y(k) - L x(k) + D u(k) + w 2(k)	 (2.12)

where

L - C f(a)
D T(E)e

a
W 2(k) - W 2[kr+d] + f 6(8-r) w 1 [r] dr

0
i

Model equation (2.12) must replace (2.6). Two complications have been In-

troduced: the feedthrough term Du(k), and the nature of the noise w 2(k). The

Chapter 2: The LOS Problem	 26.
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n q

noise vectors w,(A) and 
W2(k) 

have become correlated due to the difference

between the Input and output clock phases.

F

w 1(k)

") W2'(A)l	
11	 1 21]

W2(k) Ewll	
I 

I 12 '822

where:

dk/ (

1 for A .1

0 otherwise

r
I *(,r) *Tr) dr
0

I

22 -F Z2+/O(T)F' l 61(,r) dr
0

01 2 1 OV -,r) 010-0 d 
0

By restricting X(A+I), or equivalently u(k+l), to depend on the observations up to

and Including y(A) only, the optimal compensator equations are also modified- [1]

X(A+l) - X" (k) + r um + x (y(k) - L X'% (A) _0 ti(A))

	

u(k+l) - G X(k+l)	 (2.14)

"p	 %ahere xI +h (stead
aA ^ + +^ 1 ^	 +1 1 4F;I+	 I	 a	 %X 1 Mvw11Y	 op 1pf" 	 =I VUL " 11101-1	 an	 0	 e

optimal regulator gain matrix (mxn). These matrices sak-.` 14Y discrete algebraic Rl-

cattl equations that can be derived from [1] for the discrLtized plant and com-

pensator described In (2.4),(2.6),(2.8), and (2.12) -(2.14): (equation (2.16) Is

also presented In [26].)
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P- (*- rR -1 1W) P ( .P-rG) +Q-Mv i m	 (2.16)

t

where G - (R + r, P r ) -1 r' P (# - r R-1 w) + R -1 Syr

and

Z- (O -K L) 201+011 -KG 12'	 (2.16)

where	 K - (O E L' +012) (022+L ELI) - 1

With this formulation, the compensator (2.14) can be actually implemented

so long as 0S 8:9 T-1c, since the time between the reception of y(k) and the

generation (sampling) of u (k+1) must be long enough (at least tc seconds) to

complete the computations Involved. Whenever the calculation time Is comparable

to the sample period, or the sample rate is much greater than the system

bandwidth, It is advantageous to choose 8=0. Such a choice simplifies (2.16)

since 0112"0, allows for a simpler hardware clocking arrangement for the samplers,

and can also reduce the on-line computation time t c since D-0. For the examples

treated In this thesis, 6 will be assumed to be zero for simplicity. The results

easily extend to the non-zero 6 case.

In this study, only single-input single-output plants will be considered

(m-p-1). With this choice, we can naturally build on the existing digital filtering

results, and still bring out the Issues we wish to discuss. Consideration of the

multiple-Input multiple-output case would raise even more issues, and probably ob-

scure the points we wish to make. Even In digital signal processing, there are

very few multiple-Input multiple-output results. The extension of our results for

r
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control systems to the multiple-Input multiple-output case would be valuable, and

In most cases, Is not too difficult. Topics such as multiple•Input scaling, multiple-

output pipellning, and multHoop limit cycles are d[3cu ed In some detail In the

closing chapter of this thesis.	 t

28.	 Chapter 2: The LQG Problem



ff.
Chapter M Compensator Structures
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53.1 Introduction

Chapter 2 has described the background and basic derivation of the LQG

compensator. The net result was the set of equations (2.14), Since the plant Is

connected to the compensator at only two points, u and y, the Ideal compensator

can be completely described by an Input-output map, or transfer function (rec,pIl

that we are concentrating on the sing'.Anput single-output~ case). In terms of 4he
rr

parameters In (2.14), this transfer function Is written:

N(z)- Y(z) -G (z - +K L +PG)-1 K	 (3.1)

When expressed as a ratio of polynomials, (3.1) would have the form (3.2) where
i	 -

,
r n Is the order of the plant and thus of the LQG compensator. The lack of a term

ao In the numerator follows from the dependence of u(k) only on past values of

y, as explained in Chapter 2.

a, z-1 + a 2z-2+ ... +any-n

N(z) -	 (3.2)
1 +b1Z -1 +b2z-2+ ... +bnz-n

Equation (3.1) or (3.2) represents the /deal discrete-time response of the LOG

compensator. Note that !ff these transfer functions, y represents the compensa-

tor Input and u the nutput, which Is the reverse of the filtering case typically cow

sidered in digital signal processing.

Now consider that (3.1) or (3.2) Is to be Implemented dig/tally (as a digital

network, or filter [31]). Figure 3. 1 presents a simple block diagram of this sys-

`	 tem. The transfer function (3.1) must now be Implemented Infinite precision with

j: Section 3.1: Introduction	 29.
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r

Figure 3-1: Plant And Digital Compensator

as little degradation in some system performance measure as possible, subject to

certain constraints on the speed and cost of the attendant hardware. In the set-

ting of a steady-state LOG problem, It is convenient to select the performance in-

dex J In (2.6) as the measure of performance, since it reflects the weighted

steady-state root-mean-square state and control fluctuations. It would also have

been possible to choose a criterion such as phase margin, output noise power, or

any combination of stability or noise measures. If the problem under consideration

were simply a Kalman filter, then a suitable performance measure would be the

trace of the error covariance matrix. We have chosen J In order to present our

results in a specific context. These results extend In a simple and direct fashion

to the error covarlance trace, and with more difficulty to phase margin and gain
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In this chapter, we will discuss the concept of structures for digital com-

pensators, and examine accurate ways of representing the arithmetic operations

implicit In such structures. Adapting the results of digital signal processing, we

will develop an accurate notation for compensator structures. Several classes of

structures will then be presented using this new notation.

10.2 Structures and Notation
	

I

As explained In Chapter 1, the term Implementation includes the choice of

a Suitable structure to approximate (3.1) (or (3.2)) assuming fixed-point arithmet-

1c, and the specification of the hardware architecture and components. This sec-

tIon will adapt digital filtering concepts to develop structures for digital compensa-

tors and to formulate an accurate notation for these structures. The state space

form common In control applications will be shown to be Inadequate for this pur-
k

pose.

The term structure will be employed to specify the exact finite-precision

mathematical procedure by which the compensator output samples u are generat-

ed from its Input samples y. All structures for implementing a given filter or com-

pensator would perform identically under Infinite-precision arithmetic, but will pro-

duce different quantization noise, coefficient quantization effects, and limit cycles

given the (realistic) finite-precision environment. 	 E

Consider a very simple example. Assume that an Ideal compensator has

been designed, and that Its (inAnite-precision) transfer function Is: 	 s



c'

i

y	 H(z)	 z-1	 (3.3)
1 + 1.112 -1 +0.287z-2

n Figure 3-2a shows a signal flow graph [28,29] of one possible structure, the

a)Direct Form H
it	 1

1

-1	 1.11 (ideal, oo bits)-bt	 z	 bl=11. 109375  (10 bits)

	

(-b2	 u

-1
10.28615625

0.287 (ideal)
bz=

	 (10 bits)

a
b)Cascade Form

Y

	-al	
z-1	 _az	 Z 1	 a

u

P0.41016626
41 (ideal)al- 	 (10 bits)

70 (ideal)
a2s[0.69921875 0 0 bits)

Figure 3-2: Example Structures

direct form II [28], for implementing (3.3). The infinite-precision values for b 1

and b 2 can be read directly from (3.3). Given only 10-bit coefficient registers,
p

these values must be quantized (assume rounding), Reserving one bit for the In-

tegral portion of the coeiffcient word (bits to the left of the binary point), one
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sign bit, and 8 bits for the fractional portion, the rounded coefficient values would

be 1.109376 and 0.28616626.

} Figure 3-2b shows the flow graph of another common structure, the cas-

cade form. Here we realize (3.2) With a cascade of two first-order filter sections.

The coefficients a 1 and a 2 can be found by factoring the denominator of (3.2).

Again, the ideal values must be rounded to ' fit 10-bit words, producing a 1 n

0.69921876 and a 2 0.4106626.

Now let us examine the performance of these two structures given their

respective finite-precision coefficients. The (10-bit) direct form II and the cas-

cade have the transfer functions shown in (3.4) and (3,6) respectively:

H(z) -
	 Z- 1

	(3.4)
1 + 1.109376z -1 + 0.286168262-2

H(z) -	 _1	 Z-1	 (3.6)
1 + 1.1093762 + 0.28678894042968762-2

Clearly these two structures produce slightly different transfer functions under

finite precision, and we have not even considered their respective quantization

A,
nolse and limit cycle behavior. Thus different structures will In general result in

different finite-precision performance, even though their infinite-precision counter-

parts have equivalent performance (that of the ideal design).

In order to discuss or analyze different implementation structures, one must
i have a notation (other than the pictorial signal flow graph) that accurately

F reflects these differences. From -the system theoretic approach, it seems natural

to examine the discrete -time state space representation for a digital filter (with

Input u and output y):
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t ,

y

r
9

vk+1 " V
11

vA
 + *12uk

yk	 "21 vk + "22uk	
(3.8)

In this representation, the states v are defined to be the outputs of the delay

elements in a signal flow graph, and the multiplier coefflclents In * 11' * 12 1 *21,

and *22 are the gains between state or Input nodes and next-state or output

nodes.

Unfortunately, while this form of notation does accurately represent a class

of structures, it is not sufficiently general-to represent the arithmetic operations

associated with any structure. This lack of generality arises in representing

structures whose signal flow graphs must have Intermediate nodes, that Is, nodes

which are not state nodes or the Input or output.node. Figure 3-3 presents such a

V a2

Figure 3-3: Example Structure

I
h structure, a two-pole two-zero direct form 11 structure. Nodes #C and #D are
}

state nodes, node #A Is the Input node, and node #E Is the output node. Howev-

er, the a U branch begins at an Intermediate node, node #B. Thus there would be

34.	 Chapter 3: Compensator Structures
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no way to include the coefficient a 0 as an entry in any of the state space ma-

trices * 11 1 *12 1 *211 or *22. From another viewpoint, the state space

representation lacks any way of expressing the implicit ordering, or precedence,

associated with the operations Involved In certain filter structures. For state

space representations, all multiplications can occur at once (independently), and

then all additions can''occur. For the direct form II structure of figure 3-3, the

multiplications -b 1 , and -b2 must precede the addition at node #B which must

then precede the following multiplication by a Q. This sequence of operations can-

not be adequately expressed by equations of the f07m (3.6). This point is clearly

illustrated by Willsky [16], pages 122-124.

At this point It Is convenient to turn to the field of digital signal processing

for an adequate way to represent filter structures. Crochiere [31,32] has

described matrix equations for correctly computing the node signal values in any

filter structure. Let the signal value at the I th node (of N o nodes) at time k be

yI (k) and the external input to node I be u  (k). Between any two nodes I and J

there can exist one interconnecting branch of constant gain Fc1 J , and/or one

multiply-and-delay branch Fdi J . These branches and their interconnected nodes

form an elementary network. (We have further assumed that all values F
d11 

are

either zero or one, with no loss of generality.) For an elementary network then,

the node value yI (k) may In general depbnd on all node values at time f: -1 and

some of the node values at time k, depending on whatever branches exist:
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yl (k) - ]P Fc Jl yl (k ) + 2C Fd Jl yl (k -1) + ul (k )	 (3.7)
J-1	 J-1

Thus Fc Is an N OxN C matrix of constant-branch coefficients, and Fd Is an

NeN O matrix of delay-branch coefficients. In most networks, a substantial

number of the entries in Fc and Fd are zero, and as stated above, the remaining

entries In Fd are ones. In z-transform notation, the vector quantity Y (z) can be

written:

Y(z)-U(z)+Fo'Y(z)+Fd'Y(z)z-1	 (3.8)

The transfer function matrix H(z) defined by Y (z) - If (z) U (z) can be derived

from (3.$):

- 
H(z) - 1.1 - Fc - Fd z-11'1	 (3.9)

Now lets take a look at computing the node signal values. These calcula-

tions must occur between the time instants k-1 and k. Some of the node up-

dates will Involve the past values at time k-1, and some will involve already-

updated values. Thus the node values must be computed in the proper order. For

example, the first node value to be updated should not depend on any other up-

dated node values, since these would not yet have been computed. Thu g in

terms of the matrix notation above, a correct node precedence, or ordering, would

only depend on the constant-coefficient branches, since all delayed values y(k-1)

are known at time k. Crochiere [32] describes a formal node-ordering technique:

(1) All nodes entered by Inputs or delay branches only are placed in node

class 1.	 -
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(2) Remove from the network all class 1 nodes and any branches connected to

them.

(3) Repeat steps 1 and 2 on the remaining network, for node classes 2, 3,

• . • until all nodes are classified.

(4) Order from 1 to NO all nodes, first using all the class 1 nodes, then class

2 and so on.

This technique will not result in a unique ordering of the nodes, but the ordering

produced will satisfy the above-mentioned computational constraints.

If this ordering procedure can be carried out, the digital network, or struc-

tyre, Is computable, and the resulting Fc' matrix is zero on and above the main di-

µponal. If not, the network had at least one closed loop without delay, and does
a

not represent an Implementable structure. Note that a non-recursive structure

has an ordering whereby Fc' Is also zero on and above the main diagonal.
A

As an example of this matrix signal-flow-graph formulation, consider the
A

Live-node structure of figure 3-3. Using the ordering algorithm presented above,

nodes #C and #D fall Into class 1, node #A falls Into class 2, node #B Into class
{

3, and node #E Into class 4. Thus we can define nodes #1 through #b with the

ordering C,D,A,B,E. The following Ave equations now define the (frequency)

response of the network:

1•
r



Y1	 z-1Y4
Y2	 z-1 Y 1

Y 3 a -b 1 Y 1 -b 2Y 2	 +U 3	 (3.10)

Y4 
W	

Y3
Y 6 , a1Y1 

+a 2Y 2 	 +a ON

The 6x6 matrices F. and Fd can be formed using (3.8) and (3.10), and the

resulting matrix H(z) Is given in (3.11):

	

1	 -z-1 b 1 0 -a, * `1

	

0	 1 b2 0 -a2

H(z)	 0	 0	 1 -1 0	 (3.11)

_Z_ 1	 0	 0 1 -a 4

	

0	 0 0 0 1

For a single-input single -output digital filter such as the one in figure 3-3,

we specify only the scalar Input-output snap H^ J (z). (H 3b(z) in the example

above) The remaining entries of H(z) represent transfer functions from or to

nodes that are internal to the structure.

A deficiency of the matrix notation above appears when we consider struc-

tural transformations. Such transformations are very useful In generating new

structures with identical Infinite -precision transfer functions as some original struc-

ture, but with different finite-precision performance. For a structure which can be

accurately represented with state space notation, the similarity transform fills this

role. For the Crochlere matrix representation, a transformation technique also ex-

Ists [17]. This technique must be constrained so that the transformed structure

Is computable; In other words, It must have no delay-free loops [17]. However,

even with this restriction, the number of delay branches and the degree of pre-

%	 1

i
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A

cadence inherent in the additions and multiplications of the resulting (infinite-

preaision-equivalent) structure are in general unpredictable.

To combat this difficulty, a notation as convenient and useful for transfor-

mation as the state space form, but with the generality of the Crochiere matrix

representation Is desirable. Such a notation, related to the state space notation,

has been presented by Chan [171. As In a state space, define the outputs of de-

lay elements to be the states v, and let y be the filter or compensator Input and u

be the output. Then the coefficients and the sequence of multiplications and addi-

tions In any Alter structure can be specified with the foVowing representation:

Iu(k)1)I - 
iq 1YQ-1 ... if 

[ V (/() ]
Y 	 (3.12)

where Vql • • • , * 1 are matrices representing the arithmetic and quantization

operations In the structure. Three Important points make (3.12) useful:

(1) Each (rounded) coefficient In the structure occurs once and only once as

an entry In one of the t / matrices. The remainder of the matrix entries

are ones and zeros.

(2) All Intermediate (non-storage) nodes in a structure are represented In the

[vwl
vectors r1(k)-^i1 Y(k) , r2(k )-'Y 2r 1 (k), ,.., rq-1(k)sqtq-1rQ-2(k).

This point is especially important since both the state nodes v and Inter,

mediate nodes r must be scaled to satisfy dynamic range constraints. (See

Chapter 6).

(3) The concept of precedence for the operations (multiplies, adds, and quanti-

zations) Is maintained. The ordering of the V matrices Implies that the
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t	 operations Involved in computing r 1 (k) are completed first, then r2(k)

next, and so forth. Thus the matrix V  contains the operations of lowest

precedence, and the parameter q specifies the number of precedence lev-

cis.

Consider the example of figure 3 -2. Using the procedure outlined in Chan

[17], the direct form II structure In figure 3 -2 has a one -level representation as

shown in (3.13), while the cascade structure of figure 3-2 requires two levels to

describe its operations (3.14).

Iv(k+1)	
-1	

0	 v(k)1
u(k) J 	 1	 lY(k)

I _b2
0	 1 0

v(k+1)	 1 0 0 	 0 1 
lu(k) ,` 1 -a 2 0 

[-a,
 
0 1 0 [v(k)

y(k)]	 (3.14)
0 1 0

It should be noted here that -the representations shown in (3.13) and (3.14) are

not unique. The numbering of the intermediate nodes r (within precedence con-

straints) Is arbitrary. (This nonuniqueness is also true of the Crochlere matrix

representation, since node numbering within a class Is arbitrary,,) Furthermore,

some of the r nodes are trivial, as can be seen by reverNing the ,proc edure and

generating a structure directly from (3.14) -- see figure B-4. 1404eo r l ^(A) and

v 1 (k+1) are equivalent nodes, separated only by a trivial multiplication by one In

IF 2' 'rhe same is true of r 12(k) and v2 (k). Figure 3-2b is simply a ncide-minimal

version of figure 3-4 [17,32]. However, a/l such representations are equivalent In

terms of their finite-precision behavior	 they all effectively represent the same
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Y(k) u(k)

Figure 3-4: Exact Structure of (3.14)

structure [17,32]. It does not matter which Is chosen.

In terms of Its generality, the notation described by Chan Is as useful as

the Crochiere representation. In fact, Chan presents a technique for converting

from any (elemeintery) signal flow graph to his state space-related notation, and

then back ag2!,,t to an equivalent signal flaw graph. Also, in the context of Chaws

notation, we can now see that a state space will represent only a class of struc-

tures, namely those with only one inherent level of precedence.

An Important advantage to the notation introduced by Chan Is the ease

with which transformations [17] can be applied to generate new structures that

are Infinite-precision-equivalent to some original structure. This technique Is an

adaption of the similarity transformation used with a (one -level) state space.

Define:

f1 M PI T I P^ 1	 for J - 1, - - - ,q	 (3.16)

where the PI for I - 1, - • - , q-1 are general nonsingular transformation matrices

of appropriate dimension and
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(3.18)
D

The new (transformed) structure will then have the following representation:

[

N	
1

[y(k)j
lN

u(k) 1) ,	 q q-1 • 
r •1 	 \3x17)

What makes this transformation method so useful is that the original and

transformed structures have the same number of states (delays) and the some

number of precedence levels. It is also possible to restrict the matrices

(P OI P 1, • • • , Pq) to control the number of nowunity, non-zero entries in the

new 41 matrices, as explained in Chapter B.

Now let us try to apply this valuable notation to represent structures for

digital feedback compensators. Unfortunately, the notation described by Chan is

not quite adequate for the control setting. To demonstrate this point let us con-

sider the direct form II structure in figure 3.3 as a compensator structure. In the

notation of Chan, this structure will have the following representation:

_
C	

0 1 0	 1	 0 01 [V(A)
u(1)] 	 0 0 1	 0	 1 0	 Y(k)l	 (3.18)

	

a2 a 1 a 0	 -b2 -b 1 1

According to this set of equations, the next-state vector v(k+1) Is a function of

the present state and Input (no problem). However, (3.18) also describes the

current output to be a function of the current state and input. From the viewpoint

of causality this expression must be in error, since some finite amount of time is

needed for the computation of u(k) after v(k) and y(k) ,are generated. In most
I

digital filtering applications, a short delay in obtaining the output (series delay) Is
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of no concern, and hence the representation in (3.18) is adequate for filters.

However, in control applications, such delay Is critical since the filter Is embedded

In a feedback loop (recall Chapter 2).. Our approach must reflect the true opera-

tion of the compensator, accounting for all necessary computational delays.

One simple approach to solving this problem might be to Include the delay

as', an explicit series delay following the compensator described In Chan's nota-

tion. Unfortunately, this Implies that the delay be Included as part of the control

system plant. Thus every LQG design would involve Initially augmenting the plant,

and then designing an optimal LQG compensator. For an nth-order system, this

procedure creates an (n+1)thorder augmented system, and thus an (n+1)th-order

compensator. Clearly this approach has a disadvantage; It Increases the com-

pensator order.. Furthermore, by not Including the extra delay in some way within

the compensator Itself, we may have restricted the types of structures that are

possible for compensator implementations.

Thus we must search for a better approach. Let us include the extra de-

lay within the compensator structure Itself. The compensator design technique of

Chapter 2 ensures that the output u(k) depends on past Inputs, not present In-

puts. (This seems to force the compensator to Include an entire sample delay

time T Instead of-simply a calculation time delay, which may be considerably short-

er. However, recall the sample-skew issue discussed in Chapter 2.) Thus we can

represent u(k+1) as a function of v(k) and y(k), rather than as a function of

v(k+1) and y(k+1). Then u(k) can be generated by a unit delay following u(k+1).

The node u(k) thus becomes an additional compensator state. In terms of adapt-

1ng the notation of Chan, let us choose u(A) to be the last state (numerically),

and write:
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v(k+1) _	 v(k)

[u(k+'1), ^q ^q-1
	 u (k)	 (9.19)a,	

ryW

where the vector v and also the scalar u are the states of the structure (outputs

of delay elements). Thus we have slightly altered the notion of a structure for

compensators, Unlike filter structures, u(k) Is always both an output and a state.

The notatlare In (3.19) for describing compensator structures will be called Its

modified state space representation.

The major Implication of this adaptation is that n th-order compensators will

now require structures hav!ng n+1 unit delay elements, rather than n as with digi-

tal filters. In addition, certain common digital filter structures (for example, the	 i

direct form II and cascade and parallel structures based on it) will no longer ap-

pear quite the same when used for digital compensators. Each will have an extra j

delay at the output node, as compared to the corresponding filter structure. In

terms of their modified state space representations, the V 1 matrix for such struc-

tures will have an all-zero ^)ext-to-Iast column. This must occur whenever the

node u(k) does not feedback to the rest of the structure. Section 3.3 will show

examples of such structures, and we will still refer to them by their corresponding
I

digital filtering designations — see figures -6, 3.5, and 3-8). For the remainder

of this thesis, the rzodifled state space of (3.19) will be employed to describe

compensator structures, and all signal flow graphs will reflect the delay (state)

k	 necessary for u(k).  
I 	 7

One final Implication of the adapted concept of a structure should be

brought out. In terms of the transformation procedure described in (3.16) and

(3.18), a change Is necessary to accommodate compensator structures. In
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(3.16), due to the inclusion of the output as a state, the transformation matrix PO

P 0 0

must now be written 0 1 0	 The extra row and column In this matrix reflect
0 0 1

the modified state space representation, and the unity diagonal entry Is neces-
	 7

sary since the transformation procedure cannot be permitted to alter the output

node.
	 i

It Is also notationally convenient to define the matrix W... Let the

coefficients In each ^► ^ matrix be replaced by their Infinite-precision counterparts

(their values before rounding). Then 1Y, Is defined to be the inflnite-precision pro-

duct 'Vq 'Vq-1 • • • It 11 This matrix will be used in the derivations of Chapters 6,

6, and 8.
•	 k

S3.3 Classes of Structures
n

Before discussing some of the various classes of structures that exist, It

Is Important to understand the different points of comparison that should be con-

aldered. Beyond the finite wordlength effects of quantization noise, coefficient

rounding, and limit cycles that are treated in Chapters 6, 6, and 7, one must com-

pare the number of delay elements, coefficients (multiplications), additions, and

precedence levels, and also the number of scalers needed to satisfy dynamic

range constraints. We will examine structures that are typically canonic (minimal)

with respect to the number of delay elements, Implying a minimal number of
r

storage registers. In order to present specific examples of structures, let us as-

sume that the plant l.4 sixth order (n=6).

Given the transfer function (3.2), the most straightforward structure to

Section 3.3: Classes of Structures 	 46.



i"

Consider Is the direct form n [28]. As an LQG compensator structure, Its signal

flow graph Is shown in figure 3-6. It Is canonic In delays with 7 (in general, n+1),
t

has 12 coefficients (non-unity multipliers) and requires only one additional scaler.

(Scaling, fully discussed In Chapter 6, Involves a normallzatlon of the structure so 	
q

that roundoff noise effects and overflows can be held to a minimum. In this pro- 1

case, some of a structure's coefficients will be altered, Including certain ran/ty en-	 j

triev, Such unity entries will be called scaling multipliers, or scalers, and indicat-

ad In signal flow graphs and equations with an asterisk.) The modified state

apace representation of the direct form II Is given below with Its two precedence

levels. Note that figure 3-6 Includes a rough Indication of which operations belong

In which precedence level.

	

1	 0	 0	 0	 0	 0

	

0	 1	 0	 0	 0	 0

	

0	 0	 1	 0	 0	 0

	

2 ^ 0	 0	 0	 1	 0	 0

	

0	 0	 0	 0	 1	 0

	

0	 0	 0	 0	 0	 1

a6 a5 a4 a3 a2 a1

(3.20)

	

0	 1	 0	 0	 0	 0	 0	 0

	

0	 0	 1	 0	 0	 0	 0	 0

}

	

	 0	 0	 0	 1	 0	 0	 0	 0
^f

1	 0	 0	 0	 0	 1	 0	 0	 0

	

0	 0	 0	 0	 0	 1	 0	 0
!	 -b8 -b4 -b4 .

b3 -b2 _b1	 0	 1 x
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^	 -1

i
A

Figure 3-6: Direct Form H Structure (sixth order)

The coefficients in this structure (before scaling) are read directly from the

transfer function (3.2).

For higher-order filters, the direct form structure is known to perform poorly

In terms of the degradation resulting from the use of finite wordlengths [33]. The

dynamic range of the coeff icients alone grows with filter order, when the poles

are clustered in the z-plane. (As shown in Chapters 6 and 6, this will be true for
r

the direct form II compensator structure also.) Consequently, factored structures,
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	such as the cascade (of first- and second-order filter sections) are commonly 	 -

	

used. This structure Is obtained from a multiplicative factoring of the transfer	 {
function (3.2):fi

w

	H(z) (dlz-1+d2z-2)(1 +d3z-1+d4z-2)(1+d6z -1+d 6z-2)	
..

 (1 +C 1 z -1 +c 2z-2
)(1+c 3z-1+c 4z-2)(1+c6z_1+c6Z-2)	

(3.21)

If each second-order section Is implemented as a direct form II structure, then

the cascade compensator structure (figure 3-8) also has 12 coefficients and T

dl

u(k)

	

z1	 z-1	 Z1

	

-c d2	 d3	 -c d5

	

1	 1i	 z	 Z1
-C2 	 -C4	 d4	 -C6	 d6

,

Figure 3-8: Cascade Structure (Direct Form II)

delays (canonic), but requires four precedence levels (Rs +1 In general, where n
s

Is the number of sections) and three scalers:

k
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P

i

r

i

I

I

0 1 0 -0 0 0 0
1 0 0 0 0 0 0'

0 0 0 , 1 '.0 0 0
IF4 =	 0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1
0 0 0 0 d8 d6

1*

1 0 0 0 0 0 0

0 1 0 0 0. 0 0
0 0 0 0 0 0 1

*3 s 	 0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 d4 d3 -cg -c6 1
j

a

(3.22)
0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

2 = 	 0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0
d2 -c4 -c3 0 0 d1

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0

1Y 1 ^
0 0 1 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

-c2 -c 1 0 0 0 0 0 1
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Actually, this cascade can be used to represent several different structures since	 -

the poles and zeros In (3.21) must first be grouped together to form second-orderj. 	s

sections, and then the sections must be ordered. Furthermore, the Individual sec-

tions could be structured in any number of ways (other than the direct form II)

[34], [36], each giving rise to a different overall structure.

This variety of second-order sections raises an Interesting point. If a cas-

cade or parallel combination of a certain type of section Is not delay -canonic

when applied to digital filters, It may still be delay-canonic when adapted as a

compensator structure. Consider the case of a cascade of direct form I [28]

second-order sections. Such a filter structure Is not delay-canonic (It requires

more than n delays). However, due to the added delay used In compensator

structures, the direct form I compensator structure Is delay-canonic, requiring n+1

unit delay elements. For a sixth-order LOG compensator, such a structure has 7

delay elements and only three (In general ns ) precedence levels and two scalers:

(See figure 3-7)

.	 E
x

!
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Figure 3-7: Cascade Structure (Direct Form Y)
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0	 0	 0	 0	 0	 1 0 0

1	 0	 0	 0	 0	 0 0 0 i

0	 0	 0	 0	 0	 0 1 0

0	 0	 1	 0	 0	 0 0
0+

0	 0	 0	 0	 0'	 0, 0 1.

0	 0	 0	 0	 1	 0 0 0

0	 de	 d6	-ce	 -c6	 0 0 1
r

0	 1	 0	 0	 0	 0 0 0

0	 0	 1	 0	 0	 0 0 0

0	 0	 0	 1	 0	 0 0 0

0	 0	 0	 0	 1	 0 0 0 (3.23)	 -_
2 0	 0	 0	 0	 0	 1 0 0 t

0	 0	 0	 0	 0	 0 0
'iw

w
0	 0	 0	 0	 0	 0 0 1

r'

d4	d3	
-0

4 	 -c3	0	 0 0 1 
x

 i

0	 1	 0	 0	 0	 0 0 0
G

0	 0	 1	 0	 0	 0 0 0
r

'c
0	 0	 0	 1	 0	 0 0 0

1 n 0	 0	 0	 0	 1	 0 0 0

0	 0	 0	 0	 0	 1 0 0

0	 0	 0	 0	 0	 0 1 0

0	 0	 0	 0	 0	 0 0 1

d2	-c2	-c1	0	 0	 0 0 d1

Another factored form Is the parallel structure.	 This structure Is obtained

e
'	 from a partial-fraction expansion of (3.2):

rr
-
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e 1 Z -1 +e 2Z -2 	e3Z-1+e4Z-2	 e6z-1+e6z-2
H(Z )	 +	 +	 (3.24)

1+c 1z -1 +c2Z -2 1+c 3Z-1+c4z-2 1+c6z-1+c6Z-2

AVain, using the direct form II for each individual section results In the compensa-

tor structure of figure 3-8, which has two precedence levels, 12 coefficients, T

delays (canonic), and three scaling multipliers;

qr2 s

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

e2 e 1 e4 e3 e6 e6

(3.26)

01	 0	 0	 0	 0	 0	 0r 	 ^

-c2 -c1	 0	 0	 0	 0	 0	 1

0	 0	 0	 1	 0	 0	 0	 0

	

00 -c4 -c3 0	 0	 0	 1

0	 0	 0	 0	 0	 1	 0	 0

0	 0	 0	 0	 -c6 -c6	 0	 1 ^` I

The representation in (3.28) can be used to represent several structures since

the real poles, If any, must still be grouped Into sections. (The section-ordering

and zero-pairing Issues of the cascade disappear since all sections are in parallel,

^.

	

	 and the partial-fraction expansion gives no control over the zero locations,) Also,

different types of second-order section structures are possible.
I

A structure that appears on the surface to be more natural for the LQG
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Figure 3-8; Parallel Structure (Direct Form 11)

problem arises when we seek to directly Implement the transfer function (3.11)

with the parameterm (coefficients) of equations (2.14):
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P I K	
8	

10 (3.26)
I	 I	 I
I---------

0	 1

--	 - II

-L	 I 2

where I 8 represents a 8x6 identity matrix. In general this structure (termed the

simple form) has three precedence levels, is canonic In delays, and has up to

n(n+4) coefficients, depending 'on the entries In o, r, L, K, and G. For a sixth-

order LQG system, this structure would have up to 60 coefficients. This number

of multiplies Is quite excessive, compared to any commonly-used filter structure.

However, this compensator structure (or the similar structure based on the V OD of
	

'i

the simple form) Is often used for steady-state LQG control applications, more or

less by default.

Another broad class of structures includes all the structures whose

f 
modified state space representations have Just one precedence level matrix.

These structures could be called state space structures, since the arithmetic and

quantization operations Involved can be described using state space notation.

Some of these can be generated from the direct form II, cascade, parallel, and

simple forms Just by multiplying the various 'P/ matrices together to produce TO,

W and using the result as a structure. The standard observable, standard controll-

able, and Jordan forms [36] well-known to the control and estimation field also

correspond to simple one-level structures [15,30]. One could envision such struc-

tures being useful for two reasons. First, their performance may be superior to

certain multiple-level structures, whether or not they have more coefficients.

Secondly, a one-precedence-level structure allows a faster system sampling rate

Section 3.3: Classes of Structures 	 55.
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than a multiple-level structure (see Chapter 4), and thus potentially better perfor-

mance. An Interesting type of one-level filter structure Is the minimum roundoff

noise structure of Mullis and Roberts [18,37 ,38], and Hwang [39). Given no con-
. ,;

straints on the coefficients of a one -level delay-canonic filter structure, they have

derived a technique for computing the coefficient values producing minimum roun-

doff noise at the filter output. Unfortunately, this filter structure requires (n+1)2

coefficients. To avoid this problem, the authors have also presented block optimal

filter structures, which are cascade or parallel forms composed of minimum noise

second-order sections. (See also Jacks ," Lindgren, and Kim [40]). For a block

optimal structure, only 4n+1 coeiNcients are required. One of _the efforts of

Chapter 6 will be to extend the Ideas of Mullis and Roberts to derive minimum

roundoff noise compensator structures.

Using f 1 , • . • , fm as the coefficients, a sixth-order block optimal parallel

compensator structure would have the following modified state space represents-

tlon:

f i f2 0 0 0 0 0 f3

f4 f6 0 0 0 0 0 f8

0 0 f7 f8 0 0 0 f9

Ti ° 0 0 f10 f11 0 0 0 f12
0 0 0 0 f13 f14 0 f16
0 0 0 0 f ie f17 0 f18

f i g f20 f21 f22 f23 f24 0 f26

(3.27)

Note that the pole-zero pairing issue must still be addressed, as with any parallel

form. No additional scaling multipliers are required In (3.27). As with any cas-

cade, a block optimal cascade compensator structure would have the disadvan-
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tags of having multiple precedence levels; na in this case. (Recall that the

parallel block optimal structure requires only one precedence level.)

	

Besides the direct form and general state space forms, there exist other 	
E

l filter structures not derived from a factorization of the transfer function (3.2).

Gray and Markel [41 ] have presented several ladder and lattice forms that are

delay-canonic. Another set of ladder filters [42], alms delay-canonie, result from

continued- fraction expansions of (3.2). A ladder stV. cture that has received a

great deal of attention In the filtering literature Is the wave digital filter

[43,44,46]. This filter structure Is based on analog LC ladder filters, and directly

results from a consideration of the transmission-line equations of microwave filters.

Line delay and the transmitted and reflected voltage waves become the sample
y

delay T and the signal variables of the wave digital filter. Characteristics of this

structure that derive from the passivity and lossiessness of Its analog counter-

part [46], and lead to the absence of limit cycles under specific sign-magnitude

truncation arithmetic. (See Chapter 6). The coefilclent sensitivity of this struc-

ture has been shown to be comparatively low [44], and under certain additional

constraints [48] It will also be low-noise. Additional Improvements have been in-

i
troduced to reduce the number of multiplies [49] and the number of delays [60].

Meerkbtter and Wegener [61] have developed a second-order wave digital filter

section which can be the building block of a cascade or parallel form. This sec-

tion would have four multiplies and two sign-magnitude truncation quantizers, but

require five additional scalers (as opposed to the one or two scalers of most sec-

r tlons). As with many of the digital filter structures, ladder-type structures could

easily be adapted for compensator structures by adding a series delay to the

filter structure output.
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Finally, a general class of optimal structures exists. Chan [17] has	 i

daacribed a technique for filters where, through the use of the transformations in

(3.16) and (3.18), a scalar function of the structure parameters can be minimized.
d

More Importantly, the method will hold almost any set of T, entries constant, as

desired. Thus we can control the number of coefficients In the structure and their
9

locations while minimizing roundoff noise or coefficient quantization effects, or some

combination of the two. Chapter 8 will adapt this useful technique for the optimi-

zatlon of compensator structures, and an example of the constrained minimization

of compensator roundoff noise effects will be presented.

This discussion of compensator structures was not Intended to present an

exhaustive list of possible structures, but only a representative selection. (For

example, transpose configurations [30,31 ] were not considered.) The analyses in

Chapters 6, 6, and 7 compare some of these compensator structures with respect

to their finite wordlength properties. The overall aim is to provide the reader with

a basic grasp of the various structures and of the different criteria for choosing

among the different classes of structures, given control and estimation applica-

tions.
F	 .

53.4 Summary

Beyond a presentation of the more common types of compensator struc-

tures, the main point of this chapter was the introduction of the modified state

space representation. This representation exactly reflects the computations that

determine the performance of a compensator structure when Implemented with

finite wordlengths, and also the order In which these computations must occur.

	

This representation, unlike the form Introduced by Chan [17] which is adequate	
e
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for digital filters, must include all the Inherent delays necessary to complete the

operations within the compensator structure. Finally, as with the Chan form, It is

possible to apply simple transformations to this representation In order to syn-

thesize a compensator structure with superior finite wordlenpth performance.

I
i

i^
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i
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Chapter 4: Architectural Issues: Serialism, Parallelism, and Pipelining

54.1 Introduction

In this chapter, we will examine the architectural Issues Involved In the Im-

plementation of digital feedback compensators. We will show that the basic con-

cepts of serlallsm and parallelism as they apply to digital filter structures

represented In Chan's notation extend without modification to digital compensator

structures represented In the modified state space notation. However, the same

cannot be said concerning the application of pipelining techniques to compensa-

tors. In fact, we *will show that pipelining In control systems brings out another

Important issue: the interaction between the Ideal design procedure described In

Chapter 2 and the implementation of the resulting compensator.

Perhaps the most basic Issue in any consideration of digital system archi-

tecture Involves the concepts of serlallsm and parallelism [31,62,63]. Essentially,

this notion Involves the degree to which processes, or operations ; In the system

run In sequence (serially) and the degree to which they execute concurrently (in

parallel). At one extreme, any system can be Implemented with a completely serl.

al architecture, executing all its processes one at a time. This procedure re-

quires the minimum number of actual hardware modules and the maximum amount

of processing time for completion of the system task. On the other hand, any

system can also be Implemented with a maximally -parallel architecture, having as

many concurrent processes as possible. Such a design requires the maximal

amount of hardware, but completes the overall system task in minimum time. Thus,

the serlallsm/parallelism tradeoff Is another example of the frequently encoun-

tered space-time tradeoff [52].

s^
h

I

W

It
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„ There Is an Important asymmetry implicit in the exploitation of serialism and

parallelism. It Is always possible to execute processes one at a time (totally

serially). However it is not always possible to execute them all at once (In a to-

1
tally parallel manner). There is a minimum amount of serialism required. Figure 4-1

gives a typical example, consisting of three processes (P1, P2, and P3), and

P3

I	 a	 +I
T'

I

I
I•

I
1
I

Figure 4-1: Three-Process System

data cells [52] for Input and output. Assume that each of the three processes

require t seconds for completion (given specific hardware modules) and that each

process executes as soon as all of Its Inputs are valid. Given a general -purpose

computing module, then clearly a serial architecture that would require at seconds:	 s

to complete the overall task is possible. On the other hand, figure 41 clearly
L

shows that processes P 1 and P 2 must be finished before process P 3 can begin.
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Consequently, only processes P1 and P2 can operate, in parallel. For such an ar-

chitecture, two hardware modules would be required, and the total computation

time would be reduced to 2t seconds. The totally-parallel architecture (total time

t with three hardware modules) is not possible for the system of figure 4-1.

Under certain conditions, this `speed barrier' can be broken through the use

of plpellning [31,62]. If the original objective of the system Is to perform a task

repeatedly (as soon as the present task is completed, a new task begins), then

plpellning could realize an effective throughput rate equal to (or at least closer

to) that of a totally-parallel architecture. Reconsider figure 4-1. Suppose that a

separate hardware module Is reserved for each process, the sampling rate is 1

and the maximally-parallel 2t second architecture is used. The Input and output

data cells now represent registers clocked at rate 2t. Let us examine any 2t-

second interval.. During the first t seconds, module 3 (for executing process P3)

will be Idle, since its inputs are not yet •valid. During the last t seconds, module 3

A	 will be active and modules 1 and 2 will be idle. The total 2t second time from a

task Initiation until Its completion cannot be reduced without faster hardware

modules. However, the idle modules can be put to use by pipellning the

processes. While module 1 is active and .nodules 1 and 2 otherwise idle, the

next task may as well begin and use modules 1 and 2. The net result (in this ex-

ample) Is a doubling of the throughput rate (task completions per' second) from 2t
to	 It must be stressed here that any given task still takes 2t seconds from

f
start to finish; however, successive task completions occur at t second intervals.

In terms of hardware required, the pipeline would be effected by adding two
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(b)

i
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i
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^

1

n

clocked registers to buffer the intermediate results from modules 1 and 2, and of

course by doubling the clock rate. Figure 4-2 shows two ways of viewing the
Y,._

Figure 4-2: Models For Plpelining

p ipelined case for this example. Basically, the pipeline splits a larger task not im-

piementabie in a totally-parallel architecture Into smaller sequential sub-tasks,

each of which can be Implemented In a totally parallel fashion (figure 4-2a). An

equivalent viewpoint (figure 4-2b) considers pipelining to be represented by a

faster-executing task coupled with some serious delay (inherent in the additional

clocked registers).

An Important application of pipelining is in the Implementation of digital filter

structures [31,64]. In such a case, the system task corresponds to the genera-

P	 tion of a filtered output value from an Input sample, and the Individual processes
1	 N

correspond to the hardware digital multiplications and additions that exist In the
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(a) Semple Flitar Structura•

y(k) u(k)

u(k)

particular structure Implemented (ignore A/D and D/A operations for now). Figure

4.3a shows a two-pole digital filter with Input y and output u. As shown, the unit

(b) Plpelined Structure:

y(k)

-1	 -1

(c) Node-Minimal Plpelined Structure: 	 G

y(k) -- --

-b	 al	 z

	

•	 u(k)
.1

Z
_b

ti 

Figure 4-3: Pipellning a Simple Digital Filter	 s
k

delay z -1 represents a clocked storage register. Thus, all the arithmetic and
Ir

quantization operations have one sampling period . in which to be completed. Com-
r
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puting the signal u (k+i) at node A in figure 4-3a requires three multiplications and

an addition. The multiplications involving b 1 and b 2 can operate hi parallel, then

the addition occurs, and finally the multiplication by a l , Using three hardware mul-

tipliers Instead of two, and assuming negligible add time, the multiply operations

can be pipelined and the sampling rate doubled. The new configuration could be

Implemented with Just one additional storage register, represented in figure 4.3b

as an additional unit delay. However, this new signal flow graph Is not node

minimal, since it contains two states that are exactly equivalent. Removal of one

of these states produces the node-minimal signal flow graph shown In figure 4-3c.
1

Thus, the pipelined structure of figure 4-3c has the same number of unit delays

(storage registers) as the original structure in figure 4-3a. For this particular ex-

ample, pipelining did not require the use of more unit delays. This would not be

true In general. Note that each z -1 in figures 4-3b and 4-3c represents only half

the delay time of those in figure 4 .3a If the sampling rate Is doubled, as made

possible by pipelining.

From the example of figure 4.3, it is clear that pipelining ties in closely

with the digital filter notion of precedence. Specifically, let us consider node pre-

cedence, that is, the precedence relations involved in the addition, multiplication,

and quantization operations needed to compute the node signals. In this case,

the modified state space representation (See Chapter 3) is very convenient since
	

r

It explicitly shows the number of precedence levels Involved. If a structure

represented in this notation has only one precedence level, then It can have a

totally-parallel architecture (parallel In terms of the multiply/add computations In-

volved in each precedence level). If more than one such lever is required, no

totally-parallel architecture Is possible, and the number of levels q will equal the
F'
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minimum degree of serlallsm required. Pipellning, If applicable, would actually

&Vmge the structure by Inserting snit delays so that a new structure (one with

fewer levels and thus a faster sample clock rate) Is formed. The pipelined struc-

ture would have the same transfer function as the original non-pipelined structure,

except for some series delay, and would probably have more state nodes. Series

delay Is of little consequence In most digital filtering applications. Thus a two-

level structure can be designed for a sampling period of 
2 

even though the cal-

culations require t seconds, since plpelining (given a two-level structure) will fit

the calculations into a 
2 

slot at the expense only of a series delay of 2

seconds. Equations (4.1) through (4.4) show the modified state space represen-

tations and transfer functions of the non-pipelined (sampling period t) and pipe-

lined (sampling period t filters of figure 4-3a and 4 .3c respectively:	 j
a	 i

1 0	 0	 1 0 0
'02* 1	 0 1	 -b -b 0 1	 (4.1)

0 a1	 2	 1

a z-1
Nnp (Z ) .	 1	 (4.2)

1 +b 1 z -1 +b2z-2

^	 0	 1 0 0

V 1	 -b2 -b1 0 1	 (4.3)

k	
0 a1 0 0
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J

-2
H (z ) -	 a 1 z	 (4.4)

P	 1 +biz -1 +biz-2
4' ..

Note the reduction from two levels to one level (see (4.1) and (4.3)), allowing the

doubled sampling rate, and also the extra z -1 factor in the numerator of (4.4).

The number of states In (4.3) remained at three since no additional storage regis-

ters were actually added to effect the pipeline.

Let us now consider pipellning as it applies just to the multiply operations

In a structure. Such a consideration will be valuable whenever the multiply time

dominates over all the addition and quantization operation times In a structure, a

situation that Is not uncommon In microprocessor-based . digital systems. Since we

are neglecting all calculation times other than the multiply times, If Is sufficient to

know the precedence to the multiply operations alone in order to determine the

architectures that are possible. Thus the node precedence evident from the

different t/ matrices of .a modified state space representation will not be ade-

quate* to describe the multiplier precedence relations. Such relations can be

determined from the signal flow graph or from an examination of the specific loca-

tion of each multiplier coefficient in the W1 matrices. In *either case, the multi-

pliers, can be grouped Into precedence classes. Frequently, the number of multi-

plier precedence classes and node precedence levels will be the same, but the

multiplier coefficients in class 1 (of highest. multiplier precedence) and the multi-

plier coefficients in node precedence level 1 (the matrix % 1 ) need not be identl-

cal. It will be true that all the multiplier coefficients in the matrix %Y 1 will also be

In multiplier precedence class 1. Furthermore, multiple-level structures often have

fewer multiplier classes than node precedence levels.
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As an example, consider the cascade structure of figure 3.8 and Its

modified state space representation (3.22). Assume all scaling multipliers to be

simple shifts (powers of two); thus they are not considered to be true

coefficients requiring hardware multipliers. All the multiplications of coef Iclents by

state node or Input signals can occur Immediately after each Sampling Instant and

therefore fall In multiplier precedence class 1. Thus the c 1, 02, c 3, c 4, c 8, 089

d2, d 3, d 4, d6, and d 8 multiplies can operate In parallel given enough hardware

multiplier modules. Only the d l multiplication lies In class 2; it must await the

completion of the c 1 and c 2 multiplies. Of course, given the two classes and 12

multiplies, an optimal, that is maximal, use of the hardware Is made with only 6

hardware multipliers (assuming no pipelining). Five of the class 1 multiplies (but

not c 1 or c 2) would be computed In the second multiply cycle with the d 1 multi-

ply. Thus the cascade of figure 3-6 has two multiplier precedence classes,

although It has four node precedence levels. Similarly, the cascade structure In

figure 3-7 has only one multiplier precedence class assuming power-of-two

scalers, although its modified state space representation (3.23) shows three node

precedence levels. If in fact general scalers are used in these two cascades,

they will constitute multiplier coefficients, and the number of multiplier precedence

classes and node precedence levels will be the same. No matter what type of

scalers are used, the parallel structure of figure 3 -8 has the same number of mul-

tiplier classes as It has node precedence levels; even so, 'the coefficients of mul-

tiplier class 1 (el l C 21 03, c 4, c 5, c6 , e 2, a 4, and a 6) are not simply the

coefliiclents In IF 1 . The coefficients a 1 , a 3, and a. belong to multiplier class 2

because they must await the completion of the c 1 through c 6 multiplies. This no-

^a
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flao of multiplier precedence is more completely formulated in [31 ], but the basic

conclusion is as follows: although the modified state space representation

correctly describes the operations that must occur in computing the node valu `s

within a structure and has other useful properties (see Chapter 3), the multiplier

precedence relations (more easily seen directly from the signal flow graph) are

more significant for determining the possible hardware architectures when the mul-

tiply time Is dominant.

b

K2 Restrictions on Pipelining

Certain basic restrictions [31 ] must be observed when pipellning a complex

structure. The first limitation in applying pipellning concerns parallel data paths

within the structure. Whenever any portion of a system is plpelined to increase

the sampling rate (which adds effective delay), all parts of the system that feed-

torward In parallel with the plpelined portion must receive equivalent actual delay

In order to maintain the desired transfer function. In other words, the data flow-

Ing through the system must remain synchronized whether or not pipellning Is -

ap-plied. Consider the second-order digital filter of figure 4-4a. A direct pipelining

of this structure by adding a unit delay preceding the r o multiplier, as done with

figure 4-3a, will result in a very different transfer function than the original one.

To preserve the transfer function desired, except for series delay, unit delays

must also be inserted in the parallel feedforward branches r 1 and r 2. This new

(one-level) structure appears in figure 4-4b but is not node-minimal. Figure 4-4c

shows an equivalent node-minlmal structure, requiring only one additional state In-

stead of three. Its modified state space representation Is shown in (4.6):
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Y

;Fa-^ h



(a) Filter Structure

Y(k)

-1

u(k)

(b) Pipellned Structure, Including Feedf ward Paths

Y(k)	 10	 u(k)

(c) Node-Minimal Pipolined Structure

y(k)

xi-
-cl

u(k)

CE ri

r2

Figure 4-4- Pipellning and Feedforward Data Paths
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a

ai

W,

0 1	 0 0 0
0 0	 1 0 0

	*1" 0 -C 2 -c 1 0 1	 (4.6)

r2 r 1 r0 0 0

The second difficulty encountered in applying pipelining techniques involves

feedback. Suppose there exists a series of operations which makes up part of a

closed feedback loop within a structure. Plpelining these operations would result

(as with the previous example) in a very different transfer function. Consider the

filter of figure 2-6. Its transfer function and two-level modified state space

representation are shown in equations (4.8) and (4.7):

-1

HW	
r0 z	

-	 (4.6)
1 + (c 1 -r o) a

.

r

t

W2W 1 ` [r'] L
-c 1 1 1]	 (4.7)

0

If we pipeline by inserting a delay preceding r 0 (or by equivalently moving the r0

branch to state node v 1 ), the modified state representation will indeed show only

one level:

-c1 1 1

^1 c r	 0 0	 (4.8)
0

r^
However, the overall transfer function is now quite different:
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Y(k)

u(k)

v

I
I^

Jl

H(t)-
	 ro Z-2

I + ^'t-1 _ ^OZ-2

__	 -1

(4.8)

Figure 46: Filter with Output Feedback

Although part of the feedback loop has been `sped up' by p ipelinin the	 .troduced prevents the feedback term from being equivalently spedg u	

delay in

Is not synchronized.) Thus, p ipelining within a feedback loop is or 	

P (The data

ordinarily avoided.

54.9 Plpelining Feedback Compensators

In the context of the control problem formulated In Chapter 2, the ideas

	

aerlalism and parallelism apply unchanged to the implementation of digital con of

	
P

er architectures.

	

	 troll-
However, since a global feedback loop exists around the entire

compensator, that is, through the plant, pipelining seems to be out of the ques-
tion, as shown in the example of figure  4-6. 

Supp
osePPose that we design an L40 cem-

Pensator for a system with a sampling rate of T , the resulting compensator has

two multIr Der precedence levels, and the multip ly time t equalsm q	 2 PlPellning
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would seem to be necessary unless we were willing to drop the sampling rate to

1 Unfortunately, the series delay that would result from pipeilning this compen-
TR

Bator would introduce an unplanned-for pure time delay. The deleterious effects

of pure time delay (linearly-Increasing negative phase shift) on the stability and

phase margin of a feedback system are well known. Even If instability does not
i

result, the performance index J will be larger than expected and the qualitative
^a

dynamic performance will be compromised.

Fortunately, there is an approach to pipeilning that will be effective for

control systems. Consider the i_OG system and compensator design technique

described in Chapter 2. Assume that for some original controller design, the sam-

piing Interval is not long enough to complete all the calculations Involved in the

compensator (which is the situation as described above). In principle, plpellning

techniques could help, but unavoidable delay would be introduced. An effective

i F use of pipeilning simply means that we somehow include this unavoidable delay In

the original design procedure. This aim can be realized through state augmentation

[1]. Suppose that plpellning would allow a factor of two Increase in the sampling

rat,,:, thus adding only a single series delay. If the plant is described at the dou-

bled sampling rate 
T 

by (4.10):

x(k+1) - *x (k)+Tu (k)+w1(k)

y (k)	 t x (k) + w2(k)	 (4.10)

l
(recall that the matrix parameters above depend on T) then, preceding u (k) with

the aeries delay to form 0"(k),  the augmented plant can be modelled as follows

(see figure 4-6):

F
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1

. .
u(k) Y(k)

ow	 f 0 r l	
[11
o	W1(k

x(k+1) • 10 0! x(k)+ 	u(k )+ L 0 J

Y(k)	 _ [L 01 X(k)+w2(k)
	 (4.11)

^,	 x (k+1)
where x (k+1) - u(k+1) I . For this augmented system, than weighting matrices Q

and MW In the expression for the performance Index (2.6) must also be augmented,

adding an all-zero row and column to Q, and a single zero element to .M.. The

weighting parameter R will be the same as for the system (4.10). Now we must

treat (4 .11) as a new system and design an LQG compensator for it. Then that

design can be plpelined, which Introduces the Inherent added delay shown in

figure 4.6.

wi(k)	 w2(k) {	 a

Figure 46: State Augmentation for Control System Plpelining

For this situation, two observations can be made. (First, the Kalman filter

portion of the LQG design for (4 . 11)will have what seems to be a difficulty due to

the added delay -- the numerical routines blow up. Common sense dictates how-

ever that there is no , need to estimate xn+1 (k ) - u (k) since It Is the actual plant

Input, which Is known. Thus we need only estimate x 1 (k) through z (k), namelyn
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the vector x (k ). That estimation problem has already been solved as the nth-

order Kalman filter for (4.10), with gains k 1 through kn . Using these results, the

optimal filtering gains for the augmented system (4.11) can be written:

	

^t	 k1

A2
k '	 (4.12)

kn
f	 0

The (n + 1)th-order optimal regulator problem for (4 . 11) can be solved with no

difficulty at all.

The second observation that we can make for this augmented -system pipe-
A

a lining technique involves the consistency of the design technique. A delay -canonic

structure for the optimal LQG compensator for (4.11) will be of order n+2 since

(4.11) Is of order n + 1, and not of order n + 1 as Is , the canonic compensator struc-

ture for (4.10). Thus thla.approach to controller plpelining gives rise to a compen-

sator of higher dimension (more poles), requiring more states (delay elements) and

more coefficients. Along with this Increase In order comes a more important point

i -- the new higher dimensional compensator structure must allow the same degree

of plpelining as the original -structure, or the whole controller pipellning design pro-

cedure Is invalid, that is, Inconsistent. This point is especially of concern when

using structures whose number of precedence levels is a function of the number

	

i	 of compensator states (for example, the cascade forms). As an example, consid-

er a second-order plant and a direct form II compensator structure, which requires
.t

three delays and two precedence levels. To exploit plpelining, we must augment

the plant and redesign the compensator -- Its direct form II structure now re-
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1

quires four delays (states). There would still be only two (node or multiplier) pre-

cedence levels as before, so pipelining to double the sampling rate will work as

planned. However, If we decide to use a cascade of two direct form sections (as-,"

sume one second-order section, one first-order section, and general non-power-of-

two scaling multipliers), then the result Is three precedence levels. Pipellning to

allow the 
T 

sampling rate will not now result In the effect of a single added unit

delay as assumed, but will involve two series unit delays, making the design pro.

cedure Invalid. In other words, If we Implemented the pipeline as described

above, the system would not perform as expected; more delay would be present

In the loop than had been accounted for In the design. Such problems can be

avoided with a proper choice of structure.

There is one positive note associated with the increased dimensionality of

the compensator, and It Is related to the particular form of (4.12). Usualiy, an in-

crease in dimension (number of states) by one involves at least two additional

coefficient multipliers. (A fifth-order plant requires a compensator with at least 10

coefficients, a sixth-order plant requires one with 12 coefficients, etcetera --

see figure 3-5) However, by virtue of the zero entry in (4.12), the general form

of the compensator transfer function for the augmented system is simpler

a Z -2 + a Z -3 + ... + a	 z-(n+1)
H(z) ^ 2	 3	 n+1

1+ b Z-1	
(4.13)1	 + ... + bR+1 Z-(n+1)

Comparing (4.13) to (3.2) shows a difference of only one coefficient -- not two.

This fact helps make the pipelining approach a bit more attractive, at least with

certain structures ' (for example, any direct form and any cascade or parallel

structure based on a direct form.)

1.

`I
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One last general point should be mentioned. The application of any plpelin-

Ing technique or the use of parallelism to Increase the sampling rate Is desirable

only if it allows a decrease in the performance Index J, or In whatever gauge of

system performance one accepts. However, not all systems have a performance

measure that decreases (Improves) monotonically with decreasing T [26]. Intui-

tively, any system with sharp resonances will lose controllability (Implying a large

J) when the sampling frequency is near a resonance. One must be aware of such

cases. If such a case does not occur, then pipellning will reduce the perfor-

mance Index, although certainly not as much as the (non-Implementable) straight-

forward rate- 
r
 LOG compensator design which adds no delay. Whether this pipe

lining approach Is effective enough to warrant the higher-order compensator

depends on the designees ;pArTicular application.

54.4 Controller I/O Pipellning

One common application of pipellning In a feedback environment Involves

the often time-consuming compensator Input/output (1/0) operations, namely, the

sampling and the A/D and D/A conversion operations. Let us % assume that a struc-

ture with one multiplier precedence level (for example, the block optimal parallel

structure of (3.27)) Is chosen to Implement a compensator, and that a totally-

parallel architecture is used for the multipliers involved. The compensator can

Man be modelled as a three-process task (figure 4-7). With no pipellning the

h	

minimum sampling period T equals t 1 +t2+t3 seconds. Assume that the slowest

}	 process is the multiply time and that t 2 1 3 T! +t	 2 . If we now pipeline these
i

three processes, a factor of two Increase In throughput and sampling rate Is pos-
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P2	
+	
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Multiplies In	 D/A Conversion &
A/D Conversion
	

Structure	 Sample and Hold

(ti sec)
	

02 sec)	 03 sec)

Figure 47: Three-Process Compensator Model

sible. (Throughput rate is limited by the slowest process). At each sample time,

sampling and A /D conversion of a new y sample would begin. Then t, seconds

later the structure multiplications could begin, overlapping the next sampling and

A/D operation: Figure 4.8 diagrams the processes occurring In such an I/O

E------t2 ---j
<— ti --^

kT/2	 (k+1)T/2— (k+2)T/2	 I

Figure 4-8:, Concurrency of Processes in 1/0 Pipelined Compensator

pipellned compensator with Increased sampling rate T . Note that the hardware

multipliers will now be active 100% of the time.) We can represent this pipellned

system as the designed compensator structure followed by a series unit delay

resulting from the pipeline. Since part of this unit delay Is involved In buffering

the Intermediate A/D results and the rest is Involved In buffering the multiplier
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results from the structure, two hardware storage registers will be required for

this example,. However, their clock signals will be staggered, since the three

operations of figure 4-8 take different amounts of time to complete. Basically,

these clock signals (all of period 21T) must be phased so that the results from

each process are stored as soon as they are completed. Thus register 1 Is

clocked by sample pulses delayed by t i seconds, and register 2 is clocked by

sample pulse3 delayed by t i +t 2  seconds. (This phasing Is shown as fractional

delay time In the simple example of figure 4.8.)

If we apply the design technique outlined In section 4.3 to produce a

(pipelineable) compensator for this I/O case, the order of the compensator will of

course be one greater than the non -pipelined design, Implying at least one addl-

tional state and eoef iclent. No matter what the plant dimension may be, a block

optimal parallel structure (or any state -space structure see section 3.3) will

have only one precedence level. Thus, I/O pipeilning with a one-level compensa-

tor structure results in a valid design procedure.
A

54.6 Compensator I/O Pipellning Examples

Four examples have been selected to illustrate what can occur with com-

pensator (I/O) pipelining. Each example consists of four cases. Case 1

represents the plant discretized at a T second sampling period with Its

corresponding LOG compensator (no pipeline). Case 2 represents the plant

^^.	 discretized at a 
2 

second sampling period with Its corresponding LOG compensa-

tor. This case does not Include any pipellning, but Is not physically Implementable

due to the short sampling Interval. The performance Index for this case consti-

Y
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tutes an unreachable lower bound to the performance of the augmented -plant ap-

proach to pipellning (case 3)). Case 4 (blind pipelining) results when the compen-

sator designed for case 2 Is pipelined in order to make It physically implement-

able. Thus the delay due to the pipeline is Ignored In the pipelined design, usual-

ly resulting in a performance level that Is worse than the non- pipellned level (and

perhaps even in a systoci that is unstable). Assuming that J Is a monotonic in-

creasing function of T, we can expect that the different cases will rank, from

highest J to the lowest, as follows: case 4, case 1, case 3, case 2. (It Is possi-

ble but unlikely that case 4 could have a lower J value than case 1.) Remember,

however, that case 2 is not implementable.

The simplest 1/0 pipelining example consists of a single-Input, single-output,

single-Integrator plant:

X[t] -u[t]+wy[t]

At] -X1t1+w21tJ	 (4.14)

where T-6 seconds. Referring to Chapter 2, equations (2.1)-(2.3), the parame-

ters Q and R were both chosen to be 1 and the noise intensities ^, 1 and 22 were

selected to be 0.3 and 0.125. Figure 4-9 illustrates the eAscretized system and

the form of the compensator before pipelining (case 1) and after pipellning

through state augmentation and redesign (case 3). A one -level version of the

direct form II structure (obtained from the T., matrix of the direct form II, as

mentioned in section 3.3) is used for the compensator. Note the Inclusion of the

two fractional delays (registers) In figure 4-9b, as mentioned earlier In this sec-

tion. The form of the system for case 2 would look the same as that in figure 4-

9a • however the gains of all the branches would differ For case 4 we need onl y
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Figure 4-9: Compensator I/O Plpellning for the Single-Integrator plant
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add one series delay to the signal flow graph of case 2.	 4 a7y
{

Three other examples are also considered; a double-Integrator plant, a

	

two-state harmonic oscillator plant, and a sixth -order plant derived from the longl-	 is

tudlnal dynamics of the F8 fighter aircraft (see Chapter 6 and Appendix A). The

continuous-time parameters of the double-Integrator system are shown below:

x[t] _ 0 1 
x[t]	

0
10 01	 + [1]	

n .

y[t]  - 11 01	 (4.16)	 `

For this system, the continuous-time parameter Q was a 2x2 Identity matrix, R

was 1, 
1 

was the diagonal 2x2 matrix diag(0.2, 0.3), and ^, 2 was 0.125. For ,

the harmonic oscillator, all the parameters were the same as for the double-

Integrator system, except ,for the A matrix which is given below: -	 ^	 1

1

}	 A - [0 
1]	

(4.16)	 a E

111 -
	 The performance Indices for all the various cases are shown In figure 4-10.

Key:

Case 1 — rate 1/T system

Case 2 — rate 2/T system (not Impiementable)
Case 3 — rate 2/T p1pelined system designed via state augmentation
Case 4 --- blind pipelining

example plant T Case 4 Case 1 Case 3 Case 2
single integrator 6 (unstable) 2.42 2.05 1.34
double Integrator 5 (unstable) 328 179 63.2
harmonic oscillator 6 (unstable) 32.7 12.9 9.72
6-state F8 plant 1 .0038 .00312 .00282 .00222

Figure 4.10: Compensator I/O Pipel/ning

Under case 4 we see the consequences of pipellning and ignoring the delay in-
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cyrred. Three of the example systems actually became unstable, and with the

fourth, the index J Increased. As expected, all the case 2 Indices were lower

than case 1, with case 3 lying between the two. To judge the effect eness of

the state-augmentation pipelining method of case 3, one must examine the degree

of Improvement in J relative to the possible improvement (the difference between

cases 1 and 2). The best improvement shown was for the harmonic oscillator,

which Is no surprise since the oscillator 's natural frequency of ^ radians/second

k^
Is close to the unpipelined sampling rate T . The remaining three examples also

showed significant improvement. Again, whether or not the pipeilneable compensa-

tor (with one extra state and at least one extra coefficient) Is to be used will

depend on the particular level of performance desired and the penalty Involved in

complicating the hardware.

54.6 Summary

To summarize this chapter briefly; section 4.1 introduced the architectural

notions of serialism, parallelism, and pipelining, and explained the hardware

cost/execution time tradeoff tied to these issues. The issues of serialism and

parallelism were shown to involve the Fume considerations for digital compensa-

tors as for digital filters, Section 4.2 discussed the limitations of pipelining tech-

niques, especially the one concerning pipelining in a closed loop (feedback). The

extra delay Incurred due to the use of pipelining had a deleterious effect on the

performance of the feedback system. This problem made the consideration of

pipelining for feedback compensators very different than in the case of digital

filters. Section 4.3 developed a design technique based on state -augmentation
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for dealing with the problem of control system pipelining. Finally, the last section

treated a typical application of pipelining techniques to microprocessor'based con-
w

trot systems. For this application, the compensator Input/Output operations and

multiply operations could be pipellned to realize a doubling In the system sampling

rate, Four examples were presented to Illustrate the technique.

1

a
a
3
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Chapter 61 Finite Wordlangth Effects: Quantization Noise

56.1 Introduction

One of the major implications of the use of finite wordlengths within a com-

pensator is the necessity of having the nonlinear operations of quantization and

overflow in the structure. First, the Input A/D unit must convert an analog signal

to a fixed-point representation with a specific number of bits nad . (Commercially

available units typically produce 6, 8, 10, 12, or 16 bits). This procedure In-

volves an Implicit quantization of the Input level to one of the set of possible

nad -blt words and constitutes an approximation (a source of error). The

remainder of a structure's quentizers are required by the multiply operations

within the structure. Given nr -bit digital words for the node signal variables, then

any multiplication by nc -bit coefficients produces an (nr+nc }bit product. To store

this result in an ar -bit (state) storage register, or to serve as an n r -bit Input to

another multiplier, requires a quantizing operation. Furthermore, the addition of

two nr -bit fixed-point words could produce an extra significant bit, which requires

another nonlinear operation to keep the wordlength at nr bits. Discussion of such

overflow noniinearities will be deferred to Chapter 7.

The A/D and multiplier quantizations mentioned above Introduce two types

of undesirable effects, classifiable as periodic and random. The periodic effects

(limit cycle oscillations) will be treated in Chapter 7. The random effects, quanti-

zation noise, are the subject of this chapter.

Several distinctions can be made when referring to quantization noise.

1
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First, the storage registers (and quantizers) within a structure may have different,

nonuniform, wordlengths; such a structure will always perform beter In terms of 	 g

roundoff noise effects than the constrained case of uniform wordlengths [Al I].
i

However, by using uniform wordlengths, the hardware expense and complexity will

be greatly reduced. Often, little potential performance is lost by such a restric-

tion. Since the A/D converter Is usually a separate piece of hardware, little

affected by the remaining compensator hardware architecture and design, it need

not be subject to this restriction. Consequently, A/D and internal wordlengths can

and typically do differ. We will assume that the signal variable registers are of

uniform wordlength, and that the A/D wordlength can be different from the Internal

compensator wordlength.

The second distinction is In the placement of the structure's quantizers.

On one hand, they can be Inserted after every multiplication — ensuing adders

would thus have to deal only with or -bit quantities. However, if we are willing to

complicate the adders, quantization can be delayed until after the node additions,

placing them just before each storage register or intermediate node value r(k).

With this method, adders would have to sum n r+nc-bit quantities, but fewer quan-

tizers are needed. This alternative trades off hardware complexity (double-

versus single-precision adders) for quantization noise (fewer quantizers Imp!les

fewer noise sources). Both these options will be considered In this chapter.

The final distinction in discussing quantization noise Is In the type of quan-

tizer used. Commonly, the choice Is between rounding, which selects the finite-

precision word that is closest to the Ideal value, and truncating, which simply

drops the extra bits of precision. Truncation, and specifically sign-magnitude trun-

cation, has the advantage of requiring no extra hardware, and also an advantage

86.	 Chapter 6: finite Wordlength,_Effects: Quantization Noise
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In terms of the resulting (reduced) number of possible limit cycle oscillations.

However, rounding can be shown to have the advantage of reduced quantization

noise effects, and the extra hardware it requires is not very complex. In add!-

tion, roundoff effects are more easily analyzed. Consequently, this chapter will pri-

manly focus on roundoff quantization, In Chapter 7, we will consider other ap-

proaches to quantization which provide advantages In terms of limit cycle

behavior, that Is, fewer limit cycles or limit cycles of smaller amplitude.

This chapter Is organized as follows. Section 6,2 will dl$cuss the major Is-

sue of dynamic range and scaling as applied to digital filters. In section 6.3 we

will adapt these Ideas for digital control compensator scaling. For this adaptation

we will have to consider the entire closed-loop system In determining the appropri-

ate scaling for compensators. Set-point LQG configurations and their implications
t	 ^

as regards the scaling issue will also be discussed. Section 6.4 will describe the

roundoff and sign-magnitude truncation quantization characteristics and present

models for analyzing their effects. Methods of analyzing roundoff noise effects us-

Ing the model developed In section 6.4 will be treated in section 6.6. Using these

procedures, section 6.6 will describe the minimum roundoff noise filter structures

Introduced by Mullis and Roberts 018,37,38] and Hwang [39], and will then adapt

these results to derive minimum roundoff noise compensator structures. Finally,

section 6.7 will demonstrate the procedures developed in Chapter 6 for compen-

sators by applying them to 10 candidate structures for implementing a specific

control system.
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55.2 Dynamic Range Constraints

It Is not meaningful to discuss quantization noise effects (proportional to

the least significant bit of the signal word) without also considering the dynamic

range of the signals within the -structure. Our overall objective is to minimize the

total number of bits necessary for the fixed-point digital words. Choosing a

specific structure based on Its required least significant bit size (quantization

step size) Is of little value unless the fixed-point words can represent the full

dynamic range of the nods signals while keeping overflows to a minimum. Thus,

we must maximize signal-to-noise ratio without incurring overflow. These aims can

be accomplished through scaling. By scaling the coefficients of a structure we

can reduce the overall dynamic range of the signals within the structure and also

normalize the maximum signal size (the overflow level) at each node. Once a

structure Is scaled, we can use the quantization step size as a valid basis for

comparison with other structures which have been scaled using the same scaling

procedure. '(This section will present several of these scaling procedures.) Note

that scaling does not alter the type of structure nor its Ideal transfer function.

Consider the second-order filter of figure 5-1a. This structure has three

states, Implying three storage registers. Clearly, If the v 2 (k+l) node and the

y(k+l) output node do not overflow, then none of the node signals will overflow,

since the other nodes are simply delayed versions of these two. Thus, scaling In-

volves overflow constraints on these two nodes. Such constraints would be Ine-

quality constraints, that Is, the signal magnitude must be less than the overflow

level. Of course, too small a signal magnitude would result in higher quantization

noise levels. Intuitively, we would like to alter the magnitudes of the signals at

these two nodes just enough to prevent the occurrwice of overflow, but Wthout



Y(k)

(b) Scaled

u(k)

vi 

(a) Unscaled

U(k)
an

vt(k)
where do = aok2/ki

di = aik2/ki
dz = a2k2/k,

Figure 5-1: Scaling a Second-Order Section

I	
Y

r
	 changing the filter transfer function. For example, to modify the signal magnitude

at the v 2(k+1) node, the Input unity coefficient must be multiplied by some factor

k 1 , and then to preserve the transfer function of the filter, the three coefficients
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4 0' e 1 , and a 2 must be multiplied by	 Similarly, scaling the y(k+1) node in-
k1

Valves multiplying ao, 0 1 , and a 2 by another factor k 2. The corresponding 1
k2

factor must then be absorbed by the output D /A converter to ensure an uW

changed overall transfer function. The resulting scaled structure is shown in

figure 6. 1 b.

An Important choice must be made In selecting A 1 and k 2 . Let us define

optimal scaling to refer to' that choice of scalers which satisfies the dynamic

range constraints of the scaling procedure (inequality tonstraints) with equality.

Thus, in general, such scalers will not be simple powers of two. For the example

above, optimal scaling would result In a structure with 6 non-aivial multiplications,

Instead of 6. Optimal scaling usually carries the advantage over non-optimal scal-

Ing (which results when the scalers are constrained to be sample powers of two

to simplify the hardware) of reduced quantization noise effects, even with the ex-

tra noise sources caused by the additional scaling coefficients. Thus, scaling in-

troduces another tradeoff between performance and hardware complexity.

Two basic methods exist for choosing the dynamic range constraints. The

first is a deterministic norm-based method introduced by Jackson (56). Deflne the

Lp norm of a digital frequency-domain transform H (z) as follows:

1

11H 11	 f ,H`elwT) Ipdw 
p	

(6.1)p	 ws 
Q.

where cab Is the sampling frequency in radians per second. If F f (z) Is defined to

be the transfer function from the Input to the / th node that must be scaled, then

90.	 Chapter 6: - Finite Wordlength Effects: Quantization Noise
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Jackson has used the fact that:

I rj 
(A) I S II Fj IIII U II	 for	 +	 1 ,	 p,p D k 1 .' `. and for all ,k	 (6.2)

P	 PO	 P POtt^;

where r j (k) Is the signal at the l th node to be scaled, and U (z) is the z-

trnnatorm of the filter input u (k ).	 Note that when this inequality is applied to

u (k ) Itself (rl (k )	 u W, F j (z )	 1) we find that 	 u (k) 5 M D if ju 11p 
0 

:9 M O for	
r

MY P o k 1.

Now let us return to the scalin g, Issue for node 1.	 Assume that the max-
y 

Imum signal magnitude possible in the filter without overflow Is M ®... Further as-

sums that ilU dip 6 :9 M o, and thus a never overflows (its magnitude Is always

t;	 M	 S M 0).	 Then using (6.2), the node signal r j will not overflow If:

II FjII	 5 1	 for all l	 (6.3)
P	 3

j	 This scaling rule, 
L 
	 scaling, must be satisfied at every node In the filter 'struc-

ture.	 Satisfying	 this	 rule	 with	 equality	 corresponds	 to	 optlmW	 scaling	 as

described above.	 For the example of figure 6-4, the scaling multipliers k 1 and A2

must be chosen to satisfy (6.3) for 1 = 1 and 1 -2.

The scaling rule described above still allows some degree of freedom even

 
a

for optimal scaling, namely the choice of p o and p. If all we Know about the input

u is that Its magnitude will be below M O (so that a could be a DC level), then p0

can only be Infinity.	 The only scaling that we can apply Is L 1 scaling.	 However,

assume that u Is also known to have no DC component, and In fact suppose that

-
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NU N2 S M 0. Now we can select p 0 to have any value between 2 and Infinity.

Por example, a po of 2.would correspond to 1.2 scaling, and a po of Infinity would

correspond to L, scaling. In this case, we would select the scaling method that

would result In lower levels of quantization noise, the L 2 scaling method. In gen-

eral, the larger the p (meaning smaller po), the less conservative the scaling rule

will be, Implying lower noise levels. Thus the more we know about the possible

filter Input signals, the better the scaling will be In terms of the resulting noise

levels. For example, If all we know about the input Is that It Is smaller than M0

In magnitude, then It could even be u - No* For this case, p 0 - 9D , and p - 1.

Thus the L i
 norm of F,(z), the area under the F, (z) curve, must be forced to 1.

This type of scaling Is more conservative (results in more quantization noise) than

L 2 or L., scaling.

A related deterministic scaling method has been described by .Hwang [56].

This method Is based on the timo-domain !p
 
norm of the Infinite sequence r, (k) be

defined as:

II r P (A00 0 rl (k) P) P	 (6.4)

The time-domain counterpart of (6.2) can be written as follows: 	 ?

r, (k)	 f l II P U P. for -1 p+ 1, p,po^!l	 (6.5)
P

where f W Is the Impulse response of node I at time A, and u (k) Is the filter In-

put. The following scaling law results: it MO Is the maximum signal magnitude al-
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lowed In the filter and Ilu llp
0 

S M O, then

11 f1 II p 5 1 for all I	 Me)

guarantees no overflow.

In order to compare 
LP 

and 1p scaling methods, we must examine the rela-

tionship between the L  and I p norms [66]:

Il U il 	 II U 11"I !g 	 Iluli 	 U	 s	 u	 (6.7)II	 ii^	 II	 N,
Given the relationship of (6.7), we can determine how conservative any given

scaling rule Is as compared to all the other scaling rules. From (6.7), we know

that If the Input satisfies the constraint Iw o l S M O, then it must also satisfy

IIU 1100 ^9 tw o (but not vice-verse). Thus, as far as the type of Input signal is con-

corned, knowing that the L 1 norm of the input is less than M O is less restrictive

than knowing that Its I OD norm is less than M O. We can generalize this statement

to the entire list In (6.7). Since a less-restricted Input corresponds to a more-

conservative scaling, we can use the relationship (6. 7) to determine how any

scaling method compares to any other. Thus the most conservative scaling-is lam,

scaling, and the least conservative corresponds to 1 1 scaling. The actual scaling

method selected will depend on what information is known about the filter Input

signal and Its transform.

The second method for establishing dynamic range constraints and choosing

scaling multipliers Is a stochastic method [18,37,39]. With a random Input signal,

one considers the probability of overflow at each node rather than trying to
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prevent overflow completely, which Is no longer possible. Scaling will be accom-

pllshed by equalizing the probability of overflow at each node. Let us assume

that the maximum signal level without overflow Is Moo and that the Input Is a

M
zero-mean Gaussian random process of standard deviation 3 The probability of

overflow at the Input A/D Is then 0.003. The variance of the signal at node l will

be equal to 30	 [ f l k) l 2 ^. But this quantity is Just the '2 norm of fl (k )
(k 00	 )

multiplied by the Input variance. Thus., to equalize the probability of overflow at

each node we must set 11f1 1112 - 1 for all 1, which is equivalent to 1 2 or t 2 deter-

ministic (optimal) scaling.

In terms of a state -space structure as discussed In Mullis and Roberts

[18,37], scaling corresponds to a dlagronal similarity transformation of the un-

scaled structure. In the more general context of Chan's notation or the modified

a state space representation as described In Chapter 3, scaling can be described

by a set of diagonal scaling matrices S/ . We will essentially follow the presenta

tlon of scaling for filters made by Chan [17], but In the context of the modified

state space representation. (Thus a delay will be added to the output of the

filter structure, as with a compensator, but the structure Is still a filter -- no

external feedback is involved.) We will extend scaling ideas to the control set-

ting in section 6.3.

A scaled structure has the following modified state space representation:

(input Y, output u)

04.	 Chapter 6: Finite Wordlength Effects: Quantization Noise
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[
v(k +1) 	 v(k)

	

U(k+1)J ^'QF•q ...1Y1 u(k)	 (6.8)
y(k)

where v is a vector, y and u are scalars representing the compensator Input and

output respectively, and the tilde designates scaled quantities as opposed to the

original unscaled values written without a tilde. The matrices f 0 .... * 1 are re-

lated to the matrices 1Yq , ... , 1Y 1 by:

tj * Sj V, (Sj _ 1 ) -1 for 1 =q, • • • ,1	 (6.9)

where

180q0s 0 ' 	 1 1

and all S, are diagonal. Since the u (k) Is scaled, the D/A scale factor must In-

clude an extra multiplicative factor p equal to the reciprocal of the (n+1,n+1)th

entry of Sq to convert u (k ) to a (k ).

In the context of the modified state space representation, we can now exam-

Ine stochastic 12 scaling using (6.9). Let us partition to a Itq • • • t 1 (defined

In section 3.3) as follows:

[* 11 *121 (6.10)
y

k
where	 11 is (n+1)x(n+1) and	 12 Is (n+1)x1. Assuming Infinite-precision

coefficients, the states, Input, and output of the fliter can be related with the fol-

lowing state space of order n+1:
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rv(k+1)1 _	 [V(k) I
U(k + 1) 	 11 a(k) +*12y(k)

)(kv	
(6.11)

u(k) - [0 0 0 ... 0 1] ii1v(k)]

For this system of equations, the state covariance matrix V can be written:

v(k)	 'V	 u(k) j 1v'(k) WWI ®^	 1Y1^^- 1X12^("4_1 "12(6.12),0(
Let us define the matrix Kq to be V/a. A Lyapunov equation equivalent to (6.12)

Is usually easier to evaluate for computing Kq:

90 11 Kqqf 11 1 + k̀12qr12 = Kq	 (6.13)

The diagonal elements of Kq represent the gains from the Input variance to the

state node variances. Now we need the gains from the Input node to the inter-

mediate node variances, assuming that the structure is multi-level. since the In-

termediato nodes are related to the state nodes via the precedence level ma-

trices T i through %Pq _ 1 , we can compute a set of matrices K, whose diagonal

elements are the desired gains from the input variance to the variances of the in-

termediate node vector y

V IKI =*1*1_1	 ^ 1 0 1...	 ... q,	 q,/' for /=1, ... ,q-1 (6.14)

Stochastic scaling (1 2 scaling), which equalizes the probability of overflow at all

the nodes In the s . vuture including the Input, can be realized by forcing all the

diagonal entries of the Kl matrices to unity. Thus all the node variances will be

96.	 Chapter b: Finite Wordlength Effects: Quantization Noise
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the same as the input variance. This scaling is accomplished by applying a diago-

nal transformation to the unsealed structure wheret

[S/ I j j ' 1 [Ki 1 / j }	 for i-1, •	 ,q and all /	 (6.16)

The resulting structure (6.8) would have P'i matrices whose diagonal elements

were all unity . entries, as desired.

56.3 Digital Feedback Compensator Scaling

In this section we will discuss the implications of LOG set-point

configurations to the Issue of compensator scaling, and then adapt the / 2 sto-

chastic scaling method described In the previous section for filters to the digital

feedback. compensator.

The scaling Issue for digital compensators differs in certain respects from

the filtering applications described above. The first of these involves the type of

scaling appropriate to LOG systems. Most of the LOG configurations as described

In Chapter 2 will have set points, in other words, reference Inputs for the regula-

tor portion of the design. These non-zero set-point regulators [1] will have the

same parameter values as described In Chapter 2, Independent of the set point,

but the resulting DC compensator input will affect the scaling. As stated before,

conservative scaling is required whenever we allow the presence of DC Inputs.

Specifically, /2 scaling is not possible, elimEnating the stochastic approach.

Figure 6-2 presents the set-point LOG system described in Kwakernaak and

Slvan [1 ], where ur is the reference Input. If we wish to drive the output y to

y,, then ur must be set to H^ 1 (1) yr , where Hc (z) Is the closed-loop transfer
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Figure 6.2: Set-point Compensator Configuration

function from ur to y:

	

No (z) L (xI - o + rG)° 1 r	 (6.i e)

Unfortunately, this compensator has a DC Input since the steady -state value of y

1s non-zero. Thus • / 2 scaling Is not' possible. However there Is one other

(equivalent) approach to describing the system of =3gure 6-2 and the equations of

Chapter 2. Define 1, v, and y to be the deviations of the states, Input, and out-

put from the steady-state values x D, un, and yo. Thus,	 x-x C , v - u -u b, and

y y,-yo. As in [1], the following relationship must hold:

XO-fxO+ruo

V =LX
o	 0

Now, follow through the LQG design equations of Chapter 2 for the (deviations of
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	 j,

r	 the) states	 Input d, and output y. With the actual state, Input, and output varl- 	
a;

N
rcu

	 ables being represented by x, u, and y, we can then produce figure (6 .3). Thus it

is possible to use an alternate LOG set-point configuration where the

uo	 Yo

— --------------------.-^

I
if 

I +	 u	 actual	 Y	 +	 ( 1'

plant

I
L (^^n^y)p— — - — — — - ----_— — — — — I

Compensator (2.14)
designed for

(t,n,ry ) system

Figure 6-3: Alternate LQG Set-Point Configuration

compensator Input has an average value of zero, thereby allowing us to apply sto-

chastic (/ 2) scaling. The disadvantage to this alternate configuration Is the

necessity of having two reference Inputs which must maintain the precise relation-

ship (6 . 17), typically In the presence :?17 plant parameter uncertainty.

This disadvantage will vanish whenever the plant has a series Integration

(at least one pole at the origin s=0), which Is a very common occurrence in can-

Section 6 .3: Digital Feedback Compensator Scaling	 go.
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trol systems. In fact, frequently an integrator Is added to an actuator (part of 	 ^ ,t

the plant) to provide desensitivity to constant disturbances. To see the effect of x

an Integrator pole on the configuration of figure 6.3, let us write uo as

(La-f)-1r)'1	 1y0. However, since the DC gain L(I -d^)- I' blows up If there are

any open-loop Integrator pd ►es In the plant (poles at z-1), u 0 is forced to zero.

In other words, If the plant has any series Integration, the LOG configuration of

figure 6.3 need have only one reference Input, yo-yr , and not two. Note that the

configuration of figure 6-2 does not change when the plant has Integrator poles;

both compensator Inputs will still have DC components, and the system as a whole'

still requires the reference Input ur . From this point on, the figure 6.3

configuration Is assumed so that 1 2 scaling can be applied.

m.

.L.

The second difference between filter and compensator scaling arises when

we try to apply / 2 scaling as described In (6.12)-(6.16) to a compensator. This

procedure would treat the compensator as a separate entity (functionally a fii`er),

Ignoring the LOG plant and feedback path., Yet a compensator operating open-loop

need not even be stable. The stochastic scaling method requires the variances

of the signal variables at the compensator state nodes so that the matrices Kf

and S, can be computed. Clearly these variances depend on the overall closed-

loop performance. Thus we will have to adept the filter scaling procedure so that

It applies to digital feedback compensator scaling.

We have developed the following scaling procedure to account for the LOG

feedback system In which the compensator Is embedded. The steady -state vari-

ances of the n plarA,states and n+1 compensator states can be found by combin-
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Ing the state and compensator equations into a single augmented state space:
3

1

v(k+1) -A v(k) +
12w 2(k)

(6.18)
u(k +1)

U(k)
a

where

 r
i

7

1 On
A- ----- I ------I

^12L 	X11f

and 0n represents an all-zero nxn matrix and. X11, * 12 represent the unscaled

compensator as partitioned In (6.10). With this state space, let us now follow the {

general scaling procedure outlined In section 6 .2.	 The overall (2n+1)x(2n+1)

state covariance matrix Z can be computed by solving the following discrete-time

Lyapunov equation: [ 16]

Z-A Z A' + C	 (6.19)

where

e1	 0
a

C-
0 f 1202V 12^

We now partition Z to separate the plant and compensator covarlances:

Z 11	 Z12Z
Z 12 	 Z22	

(6.20)

where Z 11 Is nxn.	 As dera:ed in (6.12), Kq will result from dividing Z22 by
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Normalizing by a 2 , we get:Y
...	 .--.	 .	 A

•Y . ThusY

Z22	 (6.21)Kq - 1Z 
11 L'

To compute K, as In (6.14), the compensator states and Input y must be uncorre-

lated. However, feedback Introduces correlation:

"E I [UI [je V yl ]	 Z22 Z 12'Ll

LZ	 LZ V	 (6.22)
y	 12	 II

K	
Zj21L'

q	 LZ 11V

KI 
M 

IFIVI-1	 lei	 LZ 12
	 1'
	 fl-I 

fW 
1 

1	 (5.23)

LZ V

for /-1,

The scaling matrices S now follow directly from (6-15). This scaling technique

has been applied for the optimal / 2 scaling of the compensator structures treated

In this thesis.

The last controller scaling question that arises concerns the A/D and DA con-

verter scale factors. Once a compensator Is scaled via (5.18)-(6.23), the proba-

bility of overflow within the compensator equals the probability of overflow at the
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A/D (for Gaussian A/D inputs). By setting the A/D scale factor (and Inversely ad-

justing the D/A scale factor), we can control this overflow probability. In such a

'	 procedure the compensator scaling procedure is unaffected by the A/D scale fac-
F

! for the scaling multipliers remain Invariant. The dynamic range of the input

and output transients in the system (caused by changing the set point for exam-

ple) and of the set point Itself will also affect the actual A/D scaling choice.

Whatever Is chosen for kad (and kda must include a k-d factor as well as the p

factor resulting from the scaling of the compensator output node) the effect of

quantization noise on the performance index or on line output noise variance will

Increase as k -ad

$6.4 Ouantizer Characteristics and Models

In order to analyze the effects of quantization in some tractable and sys-

tematic fashion it is necessary to model the nonlinear operation of quantization,

This section will present the roundcff and sign-magnitude truncation quantizer

Input-output characteristics and the models commonly used for them. A discussion

of model validity then follows. We will assume throughout that the fixed-point

words representing signal variables have of 
bits to the right of the binary point,

-n
and that A Is defined to be the quantization step size. (A - 2 f )

Figure 6-4 shows the Input-output characteristic of the roundoff quantizer.

Let ROW be the rounded value of x. The error associated with such a quantiz-

or, a - x-RO (x ), satisfies (6.24):
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Figure 5-4: Nonlinear Roundoff Characteristic

-'&< e 5 2	 (6.24)

The model commonly used to represent the roundoff quantization operation is the

additive white noise model [57]. In this case, roundoff Is modelled linearly as a

zero-mean random noise added to the ideal (Infinite-precision) signal value. The

noise a Is assumed to have a uniform density as shown in figure 5-5 and to be un-

correlated with the quantizer input signal. The validity of this model is an

Important consideration, since its use simplifies quantization noise analysis n great

deal. For a continuous-time quantizer input signal, the usually-applied rule of

thumb states that the noise model is valid If the Input to the quantizer crosses
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Figure 6.6: White Noise Error Model Density

`Many' quantization levels between sample times [28] — that Is, the Input magn°r

tude must fluctuate over a range >> In each T second period.

A detailed analysis of the validity of the additive noise roundoff model has

been carried out by Sripad and Snyder [68] and Sripad [13]. These authors have

established necessary and sufficient conditione on the quantizer Input such that

the model is exact. Let #,(s) be the characteristic function of the quantizer In-

put x (the Laplace transform of the probability density p (x )). Then:

(1) The density p (e) matches that of figure 6 .6 If and only IfdtX I Q 1 - 0

for 1 0 0 and J an integer.

(2) The noise samples e(k) and e (k+1) are uncorrelated If and only if the Joint

characteristic function between the two Inputs x(k) and x(k+1) satisfies

( 2W! 2'rj.^x (k )'x (k+1) l	
° 0 for all J, 10.

(3) The quantities e(k) and x (k) are uncorrelated If and only if #x 11 0
I) M

 
0
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and 
dm 

+X M - 0 for.. 1 1 ,and all 1 0. 0.

Unfortunately these conditions are diflflcult to verify since the probability density

function of every quantizer Input must be known! Even so, If a quantizer unput

contains any Gaussian noise (typically assumed In control problems, at least for

the A/D input) then none of the above conditions hold exactly.

This validity restriction is not as serious as It seems. Sripad [13] has In-

vestigated the properties of the quantization error given a Gaussian Input of vari-

ance 02. From these results it is evident that the error e(k) has an approximate-

ly uniform distribution for a 1.7A, a condition that is not particularly .restrictive.

In considering multiple quantizers (which is the usual case), the question of

the Interaction of the quantization errors arises. The above analysis actually ap-

plies to a single quantizer only. When the model is used for all the quantizers

within a complex (recursive) structure, we further assume that all such noise

sources are independent. The question of the validity of this assumption is even

more complex. However, it can be said that as a general technique, the additive

noise model has proven Itself quite useful for the analysis of roundoff noise

effects in digital filters. Furthermore, any analysis techniques aimed at selecting

wordlengths based on the effects of quantization noise need not be exact any-

way — the internal and A/D wordlengths can only be selected in units of whole

bits. When the roundoff noise model breaks down, it tends to do so in a majori

way; limit cycles occur. These oscillations are usually quite evident when they

are present k-see Chapter 7). For our analyses, however, we will assume that

the uncorrelated additive white noise model applies.

Sign-magnitude truncation refers to the quantization operation of simply
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w: dropping the extra bits of precision In the quantizer Input. The advantages to
C

	

	 i
this type of quantization are ItA, simplicity -- no extra hardware Is required to Im-

plement sign-magnitude truncation, unlike the roundoff case, and this T type of

quantization gives rise to fewer limit cycles. Figure 5-6 shows the Input-output

I

quantizer output SMT(x)
3
i

30	 t—

20

`	 -3A	 -2A	
-Q	

quantizer Input
x0	 2A 30

r---^	 -2A
^	 r

I--Z	 -3d

Figure 5.6; Nonlinear Sign-Magnitude Truncation Characteristic

characteristic of this quantizer. The quantization errors are now bounded as fol-

Iowa;

0 5 e < A	 for xk0
k	 (5.26)

x	 -A < e S 0	 for xs0
F

For this type of quantization, the modelling problem is more difficult. From (6.26)
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we can see that a definite correlation exists betwu i the error and the Input

values with sign-magnitude truncation; e(k) is a functio n of the sign of that quan-

tizer input x (k ). Such noise In a d1g.1tal structure Is termed tate-dependent noise.

Although Sripad [13] does present an additive white model for this quantization

operation, the conditions for which the model Is valid at fr too restrictive for gen-

eral application. The additive white noise model is not even approximately valid,

as is the roundoff model. Claasen, Mecklenbri luker, and Peek [69] have proposed

a quasi-Ilnear model for sign-magnitude truncation;

SMr(x) ra x-2 x+ e	 (6.28) .

where a is an uncorrelated w?,Me noise of variancet 3 - ^^ I &2 and the quan-
l	 1

i

titer input x Is assumed to be a Gaussian process. The dependence on rr (the

variance of x) accounts for tho quacl-linearity and also the complexity In using	 r

this model for analysis, since the y variance of each quantizer input must be com-

puted, An efficient technique for evaiue*_ing these variances is given In [69].

Empirically, the noise variance at the output of a digital filter using sign-

magnitude truncation would typically be about 6 to 10 times that of the same

filter using roundoff quantization [60]. Thus one should have an extra two bits

per signal word when- using sign -magnitude truncation in order to produce the

same (or better) noise performance as would result from using roundoff quantiza-

tion. Beyond this qualitative statement, we will not consider the specific analysis

of sign-magnitude quantization noise effects for control compensators.
x
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55.5 Roundoff Noise Analysis

This section will examine several methods for evaluating the effects of

quantization noise In digital filters and compensators. As mentioned before, we

will focus on roundo ► quantization. For filtering applications, we are typically con-

corned with the statistical effects of quantization on the filter output. Although

Jackson [61] examines various norms of the output noise spectrum, the noise

variance (the L 2 norm squared) Is usually taken to be the metric.

There are two basic methods for computing the output variance resulting

from quantization noise effects, one In the -frequency domain and one In the time

domain. The frequency-domain analysis method Is an application of residue theory

[62]. Given the Ith noise source of variance A22 nd the (scaled structure)

transfer function GI W from the noise source to the output node, then the output

variance e 2 due to this noise source can be written:I

2
12(2irj)

W2. A	 G,(z)G,(z-l)z-ldZ	 (6.27)1 

where j represents the square root of -1. The contour Integral (5.27) can be

evaluated by factoring G, WGi (z t )z - t to determine Ka pole locations. If np of

these poles z i lie Inside the unit circle, then

M 
.2 np 

Residue G,(z )GI (z-l )z-1 at 	 (5.28)1 1-2j!j	 J)
OF2 

Since every noise source Is assumed to be uncorrelated with every other, the to-

tal output variance ,,vill simply be the sum of all the 4Y 
2
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W	 if we apply this residue method to the A/D quantization noise source, we

one that W 2 will depend on the filter transfer function N (z ). Since H (z) Is I n-

dependent of the structure chosen, given infinite precision coefficients, the effect

of the A/D roundoff noise on Alter output variance is dependent only on %d and

the A/D wordiength. For a compensator the effect of A/D roundoff noise on J is

also structure-independent, given Infinite-precision coefficients.

The time-domain approach to analyzing roundot , effects Is presented by

Hwang [63] for one-level state space structures and Chan [17] for the general

multi-level case. In the context of the modified state space representation as

presented in (3.19), the derivation proceeds as follows. Assume that the struc-

ture has already been scaled so that the factor p described after equation (6.9)

must be Included to produce u (k) from the scaled u (k ). For a filter of input y,

scaled output u, and scaled states v, the effect of rounduff noise on the filter

states can be described by:

[
v (k+1) j - c	

L ~(k) +	 • •	 a	 (k) + e (k) +	 e (k ) (6.29)u(k+1)	 11 u(k)	
1=2 

q	 / J-1	 q	 12 ad

where 4, (k) represents the noise sources due to the product quantizations ' asso-

elated with the precedence level matrix *,, and ead (k) represents the A/D noise

source. Recall tpvat all such error sources are assumed to be uncorrelated. Thus,

the roundoff noise covarlances can be written:
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r A2
if(l^) ^'f(k)^ 12 ^'..^

(6.30)
s:ad	0a-

>
I

where Ar Is the Internal quantization step size of the structure, Aad is the A/D

quantization step size, and A, Is a diagonal matrix whose (J,J)th entry equals the

I`
rinteger coefficients In the f th row of 	 that is, the number ofnumber of non

roundoff error sources as3ociated with the Jth component of rV	 This expression

assumes that roundoff occurs after every non-trivial product. 	 'it double-precision
a

adders are used as described In section 6.1, . then simply replace all the non-zero

entries of A ! in (6.30) with ones.	 -

To use (6.29) and (6.30) In computing the output variance, we can take ei-

ther of the approaches used in section 6 . 2 for computing variances;	 that is, el-

ther the Infinite series of (6.12) or the Lyapunov equation of (6.13) can be used.

For the infinite-series approach, we would have to approximate the series by com-

puting only a finite number of terms. The closer -to the unit circle any of the poles
1

of the system (6.30) are, the more terms will be required for an acceptable ap-

proximation [63]. Consequently, we will use the Lyapunov equation method.

The steady-state (scaled) state covariance matrix V can be computed by

solving the following Lyapunov equation:

Î
R î 1

1 V11^+^	 {6.31)

where
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The output variance of u will simply be equal to the lower right -hand corner entry

of V. Note that the above equations for roundoff analysis are solved using

Infinite-precision coefficients for simplicity. The insertion of the actual inite-

wordlength coefficients would only change the results In a minor way. (In this

case, there will be also a slight dependence on structure for the A/D noise contri-

bution.) The use of Infinite -precision coefficients Is especially . Justified when one

recalls that the selection of an Internal or A/D wordlength can only be made In

terms of whole bits.

Now let us adapt this approach for the digital feedback compensator.

Again, we need to consider the behavior of the closed-loop system, as done by

Knowles and Edwards [7] and Curry [8] for sampled-data systems and Sripad

[13]. Curry [8] has considered the second moment of the system output error

due to rounding for a specific sampled -data control system with a direct form , II

compensator structure. Knowles and Edwards [7] also used the additive white

noise model for generating a bound on the quantization noise effects of direct

form II, cascade, and parallel compensator structures. Sripad [13] considered

the Increase In the performance Index J due to roundoff, using the additive white

noise model, but did not consider either the scaling Issue or an accurate and gen-

eral notion of a compensator structure. Our results will be more general since we

can consider any type of compensator structure, and they will of course be

E
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	 adapted from the digital filtering approach described above. The factors p and

kad described In section 6.2 must now be now explicitly Included In the analysis

procedure. The scaled, augmented plant/compensator system, Including roundofF

noise sources (but not plant or measurement noises), can be written;

x(k+1) 	 IX-M

I 	0

v(k+1) ^^ VW +	 (6.32)
u(k+1)	 u(k)Q zQ 	

Cr/!/_1(k)+9124ad^k)
L	 1-2

1

where

1	 On	 1 Tkda

^- — — — — — — — — — — - --_-------'- -- and k

	

	 0da --k
1	 ad

12Lkad	 11
f.

The resulting (scaled) state covariance matrix Z (due only to roundoff noise) will

be the solution to the following Lyapunov equation:
a

0 0
Z A' + ^0 A ]	 (6.33)

i
The covariance matrix Z can be related to the performance Index J by using the

trace form of J , equivalent to (2.6):

J - trace(Qxx') + 2 trace(M um') + trace(R xu')	 (6.34)

trace T Z

where

t	 ,
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By solving (6.33) and evaluating (6.34) for the scaled system covariance "matrix

we can compute the Increase W due to roundoff noise -alone. Again, the

infinite-precision coefficient values of the structure are used.

The analysis procedure described above extends easily to multiple-input

multiple-output structures, but as described in Chapter 8, the scaling Issue is

more complex.

56.6 Minimum Roundoff Noise Structures

Now that an analytic technique for treating roundoff noise effects has been

presented, both for digital filters and for digital compensators, we can describe

minimum roundoff noise structures. (See Chapter 3.) First, we will present the

one-level minimum roundoff noise filter structure derived by Mullis and Roberts

[18,37,38] and Hwang [39], and then we will adapt the technique to produce a

one-level minimum roundoff noise compensator structure. Assume that a one-level

filter structure has been 1 2 scaled using (6.8)-(6.16), and that the roundoff noise

could be evaluated with (6.31). (Neglect A/D noise.) For one level, (6.31) can

be rewritten to include scaling:

2
)-Iqr 11',51+ ©2 A l	(6.36)

Recall that A ll 	 a diagonal matrix whose J th diagonal entry equals the number of

roundoff error sources represented in the Jth row of T 1 , and that the scaling ma-	 M !,
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3 Y

trix S 1 Is diagonal. The output variance due to product quantization can be ex-
'	 l

pressed with the following trace:

	

s2 . p2 trace II V	 (6.38)

where

0	 0

0	 0 1

By substituting V for S 1 V(S 	 we can rewrite (6.36) and (6.38): 	 j

02
V-* VIP #+ :L (S

12 1 
)-1 A 1 (S 1 )r1i

Q2

^y 11 V%	 + r A ,S -2	 (6.37)
12 1 1

o2 . p2 trace (II S 1 V S 1)

trace p2 S 1 II S 1 V

trace (II V)	 (6.38)

Using the theory of adjolnt operators [1], computing a2 via (6.37) and (6.38) Is

exactly equivalent to solving the following adjolnt Lyapunov equation and evaluat
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Ing the trace of (6.40): (See Appendix 8)

W 1 1Y	 * + 11	 6.38
1	 11	 1 11	 (	 )

02

s0 • 12 trace (Ai S^ 2 W 1)

A'2 n+1

12 F `AI L, [ /(I ]/,    [Will,   	 (6.40)

This alternate expression for roundoff noise will be Important in the development
i

of ; an Iterative constrained optimization technique for minimizing roundoff noise

effects, both for filter structures (see Chan [17]) and for compensator structures.

(see Chapter 8).

Using the expression In (6.39), and the Lyapunov equation (6.13) for K 1,

Mullis and Roberts [18] and Hwang [39] present a method for determining the

structure that minimizes Q2. The matrix Al Is assumed to be the Identity I (for

double-precision adders) or (n+1)I (for the case of single-precision adders and

n+1 coefficients). Since the I-(n +1 )th-term In the summation expression for W20

I►
 (6.40) is not alterable by a similarity transform, we can Ignore It for now and deal

only with K and W, the upper nxn portions of Kt and Wt . Thus we must minimize

the following sum:
b	 .
a	 nI	 E Kit Wit	 (6.41)
1	 /^1
i

If P Is an nxn (similarity) transformation matrix, then the product KW can be
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shown to transform to P -1
KWP. Thus the n elgenvalues of (P -1 KWP) are Invari-

ant under transformation by P. These elgenvalues are called the second-order

filter modes µ 2. Mullis and Rcberts [37] prove the following Inequality. If K and

W are nxn, symmetric positive-definite matrices, then

1 n	 1 a
2

n	 KliWl/ Z n E Al	 (6.42)
/ a 1	 /-1

An (optimal) transformation exists such that the transformed K t and Wt

(Kt - P -1 K(P')` 1 , Wt - P'WP) satisfy (6.42) with equality. Thus the minimum roun-

doff noise possible, using (n+1)2 coefficients (in general) and quantization after

every non-trivial multiplicatiori can be expressed:

^2	
2

(IFO opt . _ 2 (p+1) (K 11 n+1,n+I rW
 1 l n+1,n+1 + 

nn	
E µl	 (6.43)L	 J	 1	 i_1

assuming we know some K 1 and W 1 and can solve for the elgenvalues of KW.

If In fact we restrict ourselves to the block opt/mal parallel structure [37]

with Its (fewer) 4n+1 coefficients, then we are constraining the transformation P

to be block diagonal and (6.42) cannot In general be satlsfied with equality. How-

ever, (6.42) will be true for each second-order sect/on (n-2). Thus the minimum

block optimal product variance can be written:

l
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(6.44)

y^'	
0 2	

_	
-r(12 (n+1) [K 1, n+1,n

+ 1 [ W 1 1	 + 3
2 (µ 1 +µ ) z + 3 1p +p 2 + .. .

n+1,n+1	 2	 2 3 3

This equation in fact suggests a new result -- a pairing algorithm for real poles.

Once the modes of KW are determined, (6.44) will be minimized by pairing modes

so that each pair of modes sums to approximately the same quantity as every

pther pair. in fact, (6.44) may even be lower than (6.43) due to the reduced

number of coefficients (noise sources).
w

The one-level minimum roundoff noise structure developed above can be ex-

tended to the case of one-level compensators. Again, we can neglect the AID
i

noise contribution, which Is Invariant to structural transformation. Equation (6.33)

can be rewritten In terms of Its unsca/ed compensator paramac:ers1Y 11 and 1i► 12

as follows:	 R

2
2 TAT-1 ZT-1 A'T + ^r

	
(6.46)

0 Oi l

w

12 [0 A 

where

[r. 0T' 0 S1

and
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12Lkad	 11

By recognizing that the unscaled covariance matrix Z Just equals T -IN -1 , we

can write (6.46) In a manner similar to (6.37) to produce:

2	 A
Z-AZA' + 2 0	

0_1

	0 A	 S	
(6.48)

1 1

The expression for the Increase in performance Index due to roundoff noise for

the scaled system, can also be written In terms of the unscaled covarlance matrix

Z: (See (6.34))

	

W -trace {TZ} - trace Tr° 1 ZT-1 }	 (6.47)

trace T-1 TT-1 Z

-trace i Tz

Using an adjoint Lyapunov equation, as In (6.39) and (6.40), we can express

(6.48) and (6.47) as follows:

	

w - #wA + T	 (6.48)
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A 2	 0	 0
W 2 trace	 (6.49)^

0 ^A1S12^ W

If we define W 1 to be the lower right-hand (n+1)x(n + 1) portion of W, then:

A 2	 }

	

W= 12 trace (A 1 S y 2W 1 t	 (6.60)

This expression Is Identical to the expression In (6.40). From this point on, the

derivation of a one-level minimum roundoff noise compensator structure Is exactly

the same as the Mullis and Roberts and Hwang procedure discussed above (see

(6.40)-(6.44)).

Conceptually, the technique described above could be extended to multiple

levels. However, the Iterative structure optimization procedure considered in

Chapter 6 is far more useful for minimizing roundoff noise.

16.7 The F8 Example and Compensator Roundoff Noise

This section will examine the roundoff noise and scaling associated with

some of the structures discussed in Chapter 3 for an actual sixth-order LOG sys-

tem. This system is a simplified version of the longitudinal dynamics of the F8

fighter aircraft at flight condition 12 (an altitude of 20 ,000 feet and a speed of

mach 8) [64]. Longitudinal control of the aircraft is restricted to the elevator

alone and a single measurement formed • these sim ii flc ti	 k th	 I tJr P a ens ma a e p an

model single-Input single -output, so that all our analysis techniques directly apply.

The actual multiple-input multiple-output model could be considered with our tech-

niques, but certain additional issues arise as discussed In Chapter 9.
ti
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First-order actuator dynamics are Included In the plant model,, and and a

aeries Integrator is also added. Thus the configuration of figure 6-3 will only have

one reference Input. Appendix A presents the continuous-time plant model In de-

tail. The sample rate (10 Hertz) is selected to be well above the highest plant

pole frequency (12 radians/second). Thus r equals 0.1 seconds. The resulting

discrete-time model parameters are also shown In Appendix A.

For this plant model, the design equations of Chapter 2 were followed. The

resulting K and 0 vectors are also given In Appendix 1. All calculations were

done in double precision (16 digits, or 64 bits) so that the system parameters and

K and G vectors are effectively Infinite-precision quantities. The resulting perfor-

mance Index J Is 0.00176477. This number is then taken to be the !deal value

of the performance Index, and degradation is measured relativb to It.

To five significant digits, the poles and zeros of the (Ideal) compensator

transfer function are:

Pole Frequencies Zero Frequencies
zp1 0.29179 zz1 =	 0.30119
z =	 0.68904 z =	 0.96728
zp3 =	 0.99614 zz3. 0.98878
zp4 F	 0.99869 zz4,2z6 0.88189 t j 0.26788

zp6,zp6 =	 0.73149 t j 0.40220

Figure 6.7: F8 Compensator Poles and Zeros

Note that, unlike higher-order digital filters, there are many real poles and zeros in

this compensator. This fact complicates the pairing Issue for phrallei and cascade

structures. Note also the presence of poles and zeros very near the unit circle

at z-+1; these singularities can be critical In determining an acceptable structure.
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Before discussing the different structures tested, the structure-

	

independent A/D noise contribution will be considered, If we allow a 6% increase 	 `,

In J due to this single noise source, then the procedure outlined in (6.32)-(6.34)

using only 4,,d results In a 4.98 bit A/D wordiength, (This number does not In-

clude the sign b,'*,) Typically for filtering applications, the AID wordiength need r'

not be as long as the structure's internal wordlength; the same result appears for

this control and estimation application, as will be seen below.

Ten structures were evaluated In terms of their product roundoff noise

effects on J: the direct form II, five parallel forms including a block optimal struc-

ture), three cascade structures, and the simple structure of equation (3.26). The

direct form XI structure (a) has been described In figure 3 -6 and equation (3.20),

and has 13 coefficients, Including a single scaling multiplier. The first parallel

structure (b) Is composed of five direct form 11 sections, one second-order (tor

the complex pole pair) and four first-order. Each section requires its own scaler,

so this structure has a total of 17 coefficients. The next two parallel structures

	

use three second-order sections, and hence the Issue of how we pair the tour	 s;

	

real poles Into two sections must be addressed. (There are three different ways.)	 r,

	

parallel structure (c) pelts z p 1 wF-h z p4 and z p 2 with z p 3 , separating the two	 I`

near-unit-circle poles, while structure (d) pairs these two poles tzp 3 and zp 4), to-

gether (see Appendix A). Each structure will require three scalers, for a total of

16 coefficients.

	

Structures (a) through (d) are all direct form TI-based and thus require two	 l

	

precedence levels. Parallel structure (e) is a one-level structure produced by	 -

com puting It,, - *2* 1 where *2 and * I are from structure (c), and using the

4s
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result as a one-level structure (see section 3.3). This structure will still be a

parallel combination of second-order sections; each section will be a one-level

version of a direct form II section. This structure will have 1.6 coefficients, one =!h';

more than (d) or (e). Parallel structure (f) Is a minimum roundoff noise block, op-

tlmai structure as In equation (3.27) and uses the same pole pairing as parallel

structures (c) and W.

As mentioned In Chapter 3, cascade structures involve the Issues of palr-

Ing and orderIng; In addition to the pairing issues encountered with the parallel

structure, the zeros must be paired, and the sections must be ordered. Jackson

[e1] has described general section ordering and pairing criteria. Consider the Ith

second-order section:

,,.

Hl(z)-
1 + a!1 z-1 , a/2 z-2

(6.61)
1 + bl 1 z-1 

+b12 
z-2

Complex pole pairs and complex zero pairs that are nearest each other are placed

In the same section (paired). Nearness means that we try to pair poles and zeros

so as to minimiza the peak magnitude (L ., norm) of Hl (z) for all I. As for section

ordering, when direct form II sections are used (with 12 scaling), the nc. Qe vari-

ance of the filter output tends to be minimized :4y ,r dering the sections In terms

of Increasing K  where

H
K^

	

	
! 

11"	 (6.62)
1(H! 112

(This is not a precise result.) This guideline must be changed if the L. norm of

the output Is our performance gauge, or if the direct form H section is not used.
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NN 01M'i 00, Jackson does not consider the pairing of real poles, Dehner [66]

MW 11MIW4 j615] develop general sub-optimal algorithms for selecting good pairing

and ordwing, but these methods tend to require significant computer time to figure

out the ordering and pairing for higher-order filters, and they still do not address

the pairing of real poles, Our roundoff analysis will consider Just two different

cascade palrings/orderi rigs. Cascade structure (g) consists of an arbitrarily-

chosen arrangement of poles and Zeros (see Appendix A); section 1 contains the

coMpt*x pole pair (zp6,xp6) and reel zero zz y, section 2 contains the near unit-

magnitude real poles zp3 and zp4 and the complex zero pair (zz4,zz6), and sec-

Vain- 3 contains the near unit-magnitude real zeros z  2 and z  3 with the real

poles zp 1 and zp2. Cascade structure (h) splits the near unit-magnitude poles

and zeros, and puts the complex pole and zero pairs together In the same section

(see Appendix A), Both (g) and (h) require three scalers and a total of 16

coefMclents and four precedence levels (see (3.22) and figure 3-6). Cascade

structure (1) has the same ordering and pairing as (g), but uses direct form Y sec-

tions as described in (3.23) and figure 3-7. Hence It has different scaling than

(g), different scaled coefficients, and fewer scalers.

Finally, the simple structure (J) of (3.26) Is treated since this structure (or

a orW or two-level version of it) has been often used, even though this structure

(scafdd) requires an excessive 60 coefficients for the F8 system example.

Appendix A contains the actual modiffled state space representations of all

ten of these (/ 2-scaled) structures. The Ideal values of these coefficients are

presented in double precision.

Figure 6.8 summarizes the product roundoff noise results (that is, the noise
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n	 f.

stru tore levels N
wordlength

spa	 d a
max/min 12-

scaled coefficient
(a) direct form II 2 13 19.86 18.26 30060/0.12
(b) parallel direct form II 2 17 8.05 7.45 1.6/0.0046
(c) parallel direct form II 2 16 10.18 9.39 10.6/0.073
(d) parallel direct form II 2 16 14.74 13,94 16.7/0.0016
(e) parallel, 1-level version of (c) 1 16 9.78 8.99 8.3/0.073
(f) block optimal parallel 1 25 7.88 7.08 1.1/0.0029
(g) case.ade direct form II 4 16 16.69 14.68 1101 P%00062
(h) cascade direct form II a 16 10.61 9,47 30/0.073
(1) cascade direct form I 3 14 16.62 14.38 320,!0.012

simple 3 50 1	 9.01 7.54 1	 1.6/0.00 X0003

Figure 6.8: Roundofl Noise Results

caused by the rounding of multiplier products, not A/D rounding) for these two

structures, assuming optimal 1 2"scaling and not accounting for the finite

wordlengths of the coefficients themselves. The `levels' column lists the number

of precedence levels, and the 'N' column !Ists the number of coefficients Including

scalers In the structure. The roundoff noise results are presented In terms of the

number of signal (wordlength) bits that are required to hold the Increase In J due

to product roundoff noise to 6% of the Ideal value. Again, these numbers do not

Include the sign bit. Two wordlengths are presented for each structure. The

left-hand column (larger) corresponds to the case of roundoff after every nontrivi-

al multiplication and single-precision adders, while the right -hand column

corresponds to the case of double -precision adders and quantization after addl-

tion. The last column of figure 6 .8 shows the maximum and minimum magnitude of

the scaled coefficients and Is Important In determining the coefficient wordlength.

The wider the range of values, the more fixed -point coefficient bits will probably

be needed to achieve a given level of performance (see Chapter 6).

y	 From figure 6.8 we- can see that the different pole pairings associated with

^I
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parallel struoturea (a) and (d) produced results that differed by 4.6 bits. Placing

the near-unit magnitude poles In different sections was quite effective. Similarly,

of the two cascades (g) and (h), the one with these same two poles In different

sections required 6,2 fewer bits. Clearly the palring/ordering Issue is not a trivial

question.

Structure (b), the combination of first- and second-order parallel sections,

with its 17 coefficients outperformed every other structure except the block op-

tlmal. Even so, the extra 8 coefficients of the block optimal structure with

second-order sections only gained 0.2 bits of performance over this structure.

Thus, when evaluating different structures, It Is Important to know the block op-

timal result (for various pairings) so that we can judge whether a suboptimal

structure like (b) Is effective enough. In this case it clearly Is. If we are con-

strained to one level, then (e) Is probably best given its 9 fewer coefficients than

the optimal and only 1.9 bits poorer performance. Actually, In this case one

should check the performance of a one-level version of W.

As expected from the literature on digital filters, the discrete form II has a

very poor nolse performance. It Is interesting to note also that the simple struc-

ture with Its many coefficients (and hence many noise sources) performed excel-

lently. It Is not clear whether this would be true for the simple structure'in gen-

oral.

The second worriength column In figure 6-8 shows the gain possible when

using double precision adders and fewer quantizers. Depending on the structure

tested, a savings of from 0.6 to 1.47 bits was realized. Whether this small sav-

ings is enough to justify the higher-precision adders will depend on the particular

application.

f
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56.8 Summary

Briefly then, we can summarize the major points brought out in this chapter

concerning the statistical effects of quantization noise in compensators. The pro-

cess of scaling a digital feedback compensator requires the consideration of the

overall closed-loop control system in which the compensator Is embedded. Thus

we had to adapt the methods developed for scaling digital filters to this problem.

Furthermore, when applying the statistical approach to scaling to the set-point

LOG system, we had to consider an alternate configuration for the system. For

the analysis of roundoff noise effects in compensators, we again had to adapt the

techniques used in digital signal processing to consider the effects of the overall

closed-loop system. The development of minimum roundoff noise structures for

compensators required similar adaptations. When these, methods were applied to

a specific control system example, we were able to compare different types of

structures In terms of their roundoff noise performance. The importance of the

pairing and ordering issue involved with the parallel and cascade structures were

shown to be even more complex for compensators, due to the numbers of real

poles that are common in control system compensators. Furthermore, the default

structure for LOG controllers, the simple form, was shown to be a poor choice of

structure in general for the LOG compensator.

.	
9	

.
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Chapter 8: Finite Wordlength Effects: Quantizing the Coefficients

'	 56.1 introduction

The Implementation of a discrete-time system described by an Ideal

Infinite-precision transfer function in finite-precision hardware involves several Im-

portant issues. Chapter 6 has discussed the quantization noise problem, and

Chapter 7 will present the Issue of limit cycle oscillations. This chapter will con-

alder the problem of quantizing the Infinite-precision coefficients of the structure

so that they may be stored In a finite-length fixed-point binary representation. As

with the roundoff noise question, coefficient quantization effects are also heavily

structure-dependent, and thus the analysis of such effects is important when

selecting a good structure and its required coefficient wordlength.

:

	

	 Approximating the coefficients of a structure with a finite number of bits

will cause a degradation in the system's performance as compared to the ideal.

+ Assuming that a given quantitative performance measure is provided, we can

measure the tradeoff In the number of bits versus the degradation. Then, assum-

Ing that we specify an acceptable amount of degradation, one must determine the

minimum number of coefficient bits needed to meet this goal, and the structure

which has the smallest such wordlength.

Whatever the structure, the fewest number of total coefficient bits will be

required if we allow each coefficient to have a different wordlength. We certainly

will not need fewer total bits after adding a constraint such as uniform

wordlength. However, the resulting complication in the digital hardware due to 	 a

non-uniform memory widths and restrictions on the hardware multipliers make this

superior apportionment of coeffic'ent bits very costly. For this reason a uniform
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fixed-point coefficient wordlength is typically assumed. This assumption will be

carried through in the analysis, assuming n. fractional bits, a sign bit, and enough

Integer bits to represent the largest coefficient in the structure. We will also as-

sume that each structure has already been scaled, since the scaling operation

can radically char yge the dynamic range of the coefficients, and hence the re-

quired wordlength.

The remainder of this chapter is organized as follows. In section 6.2 we

will describe different methods for selecting structures that have small required

coefficient wordlengths, and different ways of evaluating the required coefficient

wordlength once a structure is selected. In particular we will discuss a pole-

location-based qualitative method for comparing structures, a direct approach to

wordlength evaluation, and a statistical approach to structural comparison and

wordlength determination. We will show that the statistical method has a very Im-

portant advantage over any other approach it can be used as the objective

function in an iterative structure optimization procedure (see Chapter 8). Sec-

tions 6.3 and 6.4 describe the statistical method in detail for the LOG problem,

while section 6.b presents the direct evaluation _AAA Using the F8 system

presented In Chapter 5, various coefficient wordlength results, and conclusions are

presented in section B.B. Finally, the joint analysis of coefficient wordlength

effects and roundoff noise effects is addressed in section 6.7.

36.2 Methods of Analysis

p 
r Given some measure of performance, there are several methods for calcu-

lating the degradation due to coefficient quantization, so that a good structure

and the wordlength necessary to meet some allowed degradation level may be
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selected. Before discussing these methods, we must address one other important

question -- how are the Ideal coefficients to be quantized? The simplest and

most common procedure Is to round the coefficients to nC fractional bits. Unfor-

tunately, there is no guarantee that this is the best method in terms of some

specific performance metric. In	 fact, the	 optimal set	 of nc-fractional-bit

coefficients is usually not these rounded values. This fact has given rise to

several optimization techniques [67,68,69] for determining the best set of quan-

tized coefficients for a given structure and wordlength. Typically these tech-

niques start near the rounded coefficient set (in discrete coefficient space) and

search for minima. Unfortunately, these methods can be extremely time-

consuming, with the resulting coefficient set not necessarily that much better than

that obtained by rounding. Consequently, we will assume that finite-wordlength

coefficients are produced by rounding the ideal values.

The effect of a quantized coefficient on any performance measure is essen-

tially a sensitivity question. From a frequency-domain viewpoint, having

coefficients of finite wordlength implies that there are only a finite number of pos-

sible pole and zero locations in the z-plane. Thus one approach to the selection

of a structure with minimal coeffi^lent quantization effects could be accomplished

by examining a graph, or grid, of these locations; the coefficient sensitivity in an

area of high grid density would. be small. Thus, the structure which had the den-

sest grid In the area of the desired poles and zeros would be chosen. Several

structures have been described in terms of pole location grids; for example, the
i

coupled form second-order section of Rader and Gold [70] has a uniform square	 -

grid over the entire z-plane, while the direct form II has a non-uniform grid, den-

sest near z =*J. Avenhaus [34],. Abu-El-Haija, Shenoi, and Peterson [71], and 	 -
i
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Agarwal and Burrus [72] have described second -order sections whose grids are

densest near z . +1, thus making them excellent for implementing lowpass filters.

Avenhaus has also presented other sections and their respective pole locationh

grids. Such a genera l approach to filter structure selection at least has an Intul-

tive appeal. Of course, there Is no guarantee that a structure with high grid den-

alty for the desired pole locations will necessarily be the best structure in terms

of any other measure of performance degradation due to coefficient quantization
I

effects, especially when using performance measures such as the trace of the er-

ror covariance (for a Kalman filter), or the performance index J (for LOG systems),

t	 or phase margin (for a classical control system).

Given any set of quantized coefficients, the most direct and accurate way

tO evaluate the effect of finite wordlength on performance would be to recompute

for the quantized coeff3clent values the entire transfer function, performance Index

J, phase margin, or -whatever quantitative measure is appropriate. In fact, this Is

the approach taken by 5ripad [13] for analyzing the effects of finite wordlength

coefficients. While this method has the virtue of being accurate, it tells us only

one point on the performance /wordlength tradeoff curve. The performance meas-

ure would have to be reevaluated for each potential wordlength until the desired

degradation level has been bracketed (bounded above and below) by wordlengths

differing only by one bit. Then the larger of the two wordlengths would be the re-

quired coefficient wordlength for that structure. Such a brute-force approach

could be quite time-consuming, especially when we wish to compute the required

number of bits for several candidate structures.

What would be quite convenient would be to have a procedure where a sin-

gle evaluation established the behavior of the performance /wordlength tradeoff
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curve. The required wordlength could then be estimated easily from knowing the

allowed degradation level., Also, since the wordlength must be integral, some ac-

curacy can be sacrificed to gain simplicity, as long as the required wordlength is

not underestimated. More Importantly, if the coefficient wordlength estimate is

continuous In nature, that Is, not confined to an Integral number of bits, then it is

possible to apply an optimization technique [17] to synthesize better structures.

In this procedure, which we will describe in Chapter 8, continuous transformations

are applied to an Initial structure. These transformations are determined by a gra-

dient search technique based on some continuous, differentiable scalar objective

function of the coefficients of the structure. Certainly, if our required wordlength

Is strictly Integral, It is not differentiable.

The concept of a statistical estimate of wordlength has both the advan-

tages mentioned above. This approach originated in the study of digital filters

with the work of Knowles and Olcayto [73]. Avenhaus [67] applied this idea to

the digital filter power transfer function (as a performance measure), and later

Crochiere [32,74] used the concept with the filter transfer function magnitude

and a wordlength-optimization procedure..

The remainder of this section will review 'the basic development of the sta-

tistical wordlength measure for digital filters [74]. Consider. a general scalar

measure of performance 'S that Is a function of a set of coefficients, and is con-

tinuous and differentiable. For exampie, the error in the transfer function magni-

tude at a specific frequency, the Integrated squared error in the transfer function

magnitude, and tha performance index for an infinite-time-horizon LOG problem are

acceptable measures. With a finite-precision implementation, the resulting f will

depend on the N quantized coefficients (c 1 , C 2, • • • cN) of the structure. The
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value of f associated with any particular finite-precision structure will reflect a

degradation in performance as compared to the Ideal (infinite -precision) value f Go.

Assume that this degradation df can be expanded in a Taylor 's series about the

Ideal value. Keeping only first-order terms,

df(c1, c2, ... cN)x, N 1 8 ,
	

dci 	(6.1)

where c  is the I th coefficient to be rounded, dc, is the error due to rounding,

and a^	 is the first partial derivative of f evaluated at the unrounded
r

coefficient values. Note that coefficients such as 3, 2, 1, and 4 are normally not

affected by rounding and should not be Included in the sum (6.1).

If A Is the quantization step size 2
-R
 c , the fraction represented by the

least significant bit of the fixed -point coefficient word, then each dc, must lie

between *A.. Given the partial derivatives in (6.1), we could then upper bound

the error df, producing a very pessimistic wordlength estimate:

N
df < 2 g	

8cf	 (6.2)
1=1

The basic Idea behind statistical wordlength is to treat an ensemble of

structures. Over this ensemble, the coefficient errors dc, can be thought of as

uniformly-distributed zero-mean uncorrelated random variables, each of variance

,&22

12
. The error df is therefore also zero-mean with a variance:
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2
(edf )2 02	 8c	 (8.3)

1m1

For large N, the central limit theorem can be applied to justify a Gaussian

distribution for df . Thus with a given probability, say 95%, one can determine

the variance needed for the error df to remain within some prescribed bound. In

other words 95 out of 100 of the structures in the ensemble will result In sys-

tems where Of remains within this bound.

From a table of the Gaussian distribution,

Pr [ I df 152nd f l
 -0.954	 (6.4)

If the quantity of interest f Is constrained to lie within *E 0 (the degradation lev-

E
el) of the ideal f ., then (6.4) Implies that d f equal 2a	 . This result can be

combined with (6.3) to produce an estimate of the parameter O:

-AE 0	 (6.5)
N of 2

Il!i acl

Given O, the statistical wordlength can be defined to be:

SWL = I + log2 
O	

(6.6)

The first term in (8.6) represents the number of bits necessary to

represent the integer portion of the coefficient word (bits to the left of the fixed

binary point) and the second term gives the number of bits no necessary for the
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fractional portion of the coefficient word (bits to the right of the binary point).

The sign bit is not included In this expression.

In the digital filter area, Crochiere [31,32,74] presents a number of results

comparing the statistical wordlength of structures using the transfer function mag-

nitude as the performance measure f. Since this choice of f is frequency-

dependent, the resulting estimate is also frequency-dependent. The final

wordlength can be selected as the maximum of the estimates over the frequency

range of interest. In the examples treated by Crochiere, the statistical

' wordlength estimate was 1 to 3 bits conservative as compared to the actual

minimum number of bits necessary to just meet the transfer function error limit. In

a related work by Chan and Rabiner [75], which considered a large number of

finite impulse response filters and a similar statistical approach to coefficient

wordlength, the resulting 95% confidence level estimates were also observed to

be conservative. Crochiere [32,74] was also able to .tiio;4 statistical wordlength

as the basis for a filter optimization procedure quite different from the technique

we will present in Chapter 8 (but not applicable to LOG compensators).

56.3 Statistical Wordlength and LOG Systems

As mentioned in Chapters 1 and 2, it is natural to use the performance In-

dex J of (2.3) as the measure of performance f for a steady-state LOG system.

Using the approach of the previous section, the change In J would be estimated

i	 by:

k	 N
dJ (c 1 ,c 2 ,...cN ) x E 8c 	 (6.7)w 	 I,dc,
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However, the optimal nature of the LQG control problem forces all the first-order

sensitivities 
t7c 

to be zero. Therefore a higher-order approximation is neces-

sary:

	

1 N N	 82J

	

dJ x1 F 2	 8r. 8c	
dc, dcj	(6.8)

	

1 .1 J u l	 / j

The use of second-order terms (not used in digital filter analysis) is a unique as-

pect of our statistical wordlength formulation. However, the use of these terms

would be Implicit In any statistical estimate based on the error In an optimized

scalar performance measure. If a digital filter was designed by minimizing the in-

tegrated squared error between the desired and actual filter transfer function

magnitude characteristic, then a statistical wordlength estimate based on this per-

formance measure would have to use second-order sensitivities -- all first-order

sensitivities would be zero. Thus our statistical wordlength derivation could be an

extension to the techniques of digital signal processing. However, when the

overall filter statistical estimate Is taken to be the maximum over a set of esti-

mates made at specific frequencies (each based on the transfer function magni-

tude error at that frequency), then of course the first-order sensitivities for each

of those estimates would be non-zero no matter how the original filter was

designed. This was the case considered by Crochiere. Frequently in fact, digital

filters are not designed by minimizing a differentiable scalar criterion. Thus one
r

would have to use the, approach taken by Crochiere for developing a statistical

wordlength estimate.

Proceeding from (6.8), recall that all the errors dc  and dc  are assumed
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to be uncorrelated for 10j. Thus, the mean of dJ will no longer be zero:

E(dJ) = 2E

	

	
a22	

E [(dcI )2 j	 (6.g)
I-1 ac/ 

j,. j

For convenience, define the random variable a to be the square of dc  Its mean

and variance can be shown to be E(e) = e = 2 and E (e 2) = e2 = 1 ti0 . The

second moment and variance of dJ can be written as follows:

2

	

E [(dJ )2 ^ 
= e2 N a2J	 +

4	
^e) 2 N N. a2J	a2J

E	 E E
1-1 ac/ 2	 4 100	 12 J =1 ac/2 	 act

I^j	 1

+ (i) 2 N N	 a2J 	 2
(6.10)

	

2	 ac a^
I =1 j =1	 I j

1 0, 1

I#j

2

	

(a )2 - ^t E a2J	 + ^^ 2 N N	
1,1

a2J 	 2	 6.11di	 q	
2
 

^ E E	 (	 )
I =1 ac/ 00 	

aclacj

I >j

Recall the application of the central llmit theorem In section 6.2. We can

make the same assumption for our higher -order statistical wordlength derivation.

For the usual digital filtering estimate, the coeffic ient quantlzatloo could either de-

crease or increase the error in the transfer function magnitude at any specificl	 5

f frequency. This error was zero-mean. In the control case, the value of J can

only Increase under coefficient quantization. Thus we need only have a

specification on the maximum allowed value of J including the degradation due to

Section 6.3: Statistical Wordlength and LQG Systems 	 137.

l



J

coefficient quantization: J^+E O. Following the general approach of section 8.2,

we must relate this value to the two-sigma point in the distribution for W (See

figure 8.1):

p(dJ)

t A

i

Figure 6- 1: Probability Density of W

JOD +E 0  . J00 + dJ + 2adJ	 (6.12)

This choice of od j gives a 97.6% confidence level in terms of remaining below

the allowed deviation E 0 . Combining (6.11), (6 . 12), and the values of ! and v.,

we can derive an expression for A2:

1 s 1	

E a2J

,&2 24E0 i-1 8ci2
F
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 E	 —	 5 E6E0 1 2W 1 J = 1 [ ac/"CJ
 

oo	 /!1 acj2 «,
.1 >J

Using (6.6), the SWL can be written:

SWL = ! +_11092log2 (^ 2

(6.13)

(6.14)

There are several important distinctions between the statistical wordlength

method as described in section 6 .2 and the expression (6.14). First, the require-

ment of second derivative terms has led to a fairly complex expression for the

SWL — an efficient computational procedure will be critical. Second, since the

performance index J is not frequency dependent, neither is the statistical

wordlength estimate. Only one evaluation will be needed, rather than one per fre-

quency as with the transfer function -based filter wordlength estimate. Another

distinction involves the Gaussian assumption. The analysis in (6.12)- (6.14) ap-

plied the central limit theorem to justify this distribution. Yet we know that the

distribution of dJ must be one-sided (dJ must be positive). Thus the 97.5% proba-

bility figure may not be as accurate as the digital filter probability of 95%. How-

ever, it is not really important whether 95 out of 100 structures have statistical

estimates that are conservative, or 85 out of 100, and so forth.

The final distinction between the usual filtering estimate described in sec-

tion 6 .2 and the LOG controller estimate is the non-zero mean degradation dJ. For

the filtering case, the mean degradation in the transfer function is zero. For the

LOG development, it is possible to form an estimate without taking into account

the standard deviation of the error dJ. If we set the mean degradation value to

Section 6.3: Statistical Wordlength and LOG Systems 	 139.



equal the allowed degradation E 0, then using (6.9):

dJ E • &2 N a2J0E24 1!11 ac/2 1 00

From (6.16), we can write an expression for 42:
a

24E 0
02

N a2_1

!' 1 ac12 o0

(8.16)

(6.16)

A mean statistical wordlength (MSWL) can now be defined, using (6.14) and

.	 4	 1

N a2J

=1  aci2 100

MSWL -I+ 2 1og2 	 24E	 (6.17)
_ 0

The Interpretation of this MSWL estimate is that one half of the structures using

this wordlength will have more aegradation than E 0, and one half will have less.

Whether or not the MSWL is a useful estimate depends on the width of the dJ dis-

tribution in figure 6-1 and on the change in this distribution from structure to

structure. In other words, It will depend on the tightness in the relationship

between the SWL and the MSWL estimates. Consequently, we will compute both

estimates for a selection of structures. The advantage of the MSWL is clear —

reduced complexity and hopefully significantly less time for its evaluation.
i

At this point it is convenient to mention the analysis of sub-optimal compen-
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actors. If the sub-optimal compensator results from a parameter optimization prob- 	
1

lem [19,20], then the first-order sensitivities will all be zero and the statistical

wordlength approach developed in this chapter can be used. If the sub-optimal

design is only an approximation of an optimal .design, then we can still apply this

method. The only difference would be the inclusion of first-derivative 
ac
aj  terms

(first-order sensitivities); these terms would be non-zero since the compensator

Is not optimal, or even locally optimal as in the parameter optimization designs.

Again, it is important to realize that the estimates derived in this section

for LOG compensator coefficient wordlength could also be useful for digital filters,

as long as the filter design optimizes some scaler differentiable objective function.

§6.4 Computing the Statistical Wordlength

As In Chapter 6, the trace form of J will be convenient for computing sta-

tistical wordlength. Recall the following two equations from Chapter 5:

J = trace (T Z)	 (6.18)

Z = AZA' +C	 (6.19)

where T contains the weighting matrices Q, M, and R as in (6.34), and A and C

are defined by:

On	 i rkda
A = ---------------------- __



M.

0

C+
0 	 12e 2* 12').

Assume that the structure has already been scaled, so that X11 and *12 contain

the infinite-precision scaled compensator parameters. If (6.18) is evaluated with

these infinite-precision parameters, the resulting value of the performance index

J. will be Independent of the structure chosen. Hc±*!ever, the partial derivatives

of JOD with respect to the coefficients of the structure, evaluated at the ideal

coefficients values, will of course be structure-dependent. The second-partial

derivative of (6.18) can be written:

2
a-2—J = trace 'r a Z	 (6.20)

aciac!
	aciacf

Thus the partials of Z (each a matrix) must be computed efficiently. Taking the

first derivative with respect to c ! of (6.19) produces-

8Z8c a A 8c A' + Qi + ^i '	 (6.21)
i	 I

where

0	 Q

Sti s ac ZA' +
/	

a`y 12
i	 °	 ac. e2^12^

The second partials of Z can now be written:

i
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8c ac	 A ac ac 
A' + X

i1 
+ Xi f '	 (6.22)

where

X	 aA aZ A  + aA 
8,Z

•—A' + 8A Z a& + 82A ZA'iJ ac` aci 	aci acj 	aci act 8ciacj

0	 0

0 . ' 8t 12 8 	12t + 82^ 12 6,
act 	 2 act 	aciaci 2 12

Rather than solving (6.22) N 2 times (extremely time-consuming) we can apply the
r

adjoint method used In Chapter 6. Equations (6.20) and (6.22) can be replaced
S

by the following two equations: .	 a

82j—

	

trace UX + X ' = 2 trace (UX	 (6.23)aciac^	 it	 /A	 l ^ !} )

U - A'UA +T	 (6.24)

where U, A, and T are all (2n+1)x(2n+1) matrices, and A and T can be found in

(6.19) and (6.34).

i

	

	 Further simplification is possible when evaluating (6.23) once U Is comput-

ed. The matrices A and IY1262* 12' can be expressed In terms of Go:

p;
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0	 1	 On	 1 rkda
1

[In 
0

A	 0 *	 0	 i	 In+1	 (6.26)
40

--------------------------

	

-------	 1

Lkad 	 1	 0

	

In 0	 On 0	 O [In 0

qf12'92*12' - 0 V 1 0 0	 O	 (6.26)
Go,	 n+1	 0

0 0 92

Thus. the expression for XI 
1
. can be grouped into four terms based on derivative

	

quantities; one Involving 
WPM

D and aZ , one involving 
a^ 

and 8Z , a third In-	 1
ecf 	 8cl
	

aci	 act
k

82*^,	 a^^	 a^,
volving 8c 8c and the last Involving 

ac. 
and 

8c	
The first partials of Z are

i	 ,i	 J

known from solving (6.21) N times. Now let us examine the derivatives of

Since a coefficient can occur once in only one */ matrix, the first partial of too

with respect to . ci (assume ci is located at index (k,l) in Vim ) will be:
k

	

aC, ^jiq '*q-1 ... 11
m+l Ekl*m-1 .. %Pi	 (6.27)

	

where Ekl Is defined to be a unit element matrix of the same dimensions as qym .	 }

This matrix is all zero except for a single unity entry at index (k,l). Similarly, if

c^ is located in Vt at index (r,s ), we can write:

144.	 Chapter 6: Finite Wcrdiength Effects: Quantizing the Coefficients

1-^



ern.±x+^r..r.v^w^w.w.cs.-or^t^r`-..F.*f 	 ^.,_..w:..> . ;..^.:., ,,y„ .......-. ^ ,	 s. _. .. ^^	 -.^_;:.. _.• , ,^,:. a	 ^ .x_> _	 -	 .._	 ..	 .:.....	 -

;a

at Go

aciacl .1ji
9 ... i1rm+lEkl*m-1 ... tijrt+lErs'pt-1 ... 1Y 1	(6.28)

We can infer from (6.28) that if ci and c f are in the same matrix T  (thus m=t),

a2^Y^
then

	

	 must be zero. This fact simplifies the ' calculation of 
Xi, 

to some ex-
ac 12

tent (significant for the MSWL estimate, which only requires Xi j for I -J). Appen-i
dix C presents further details regarding the evaluation of (6.23).

i
i Unfortunately, the evaluation of (6.23) still requires the computation of

equation (6.21) for all N coefficients. However, these computations can also be

simplified. The Lyapunov solution method used in this analysis Is that of Barraud

[76], and has several distinct parts. Given an equation like (6.19), this method

will:

(1) Compute an orthogonal transformation matrix . P that converts A to upper

Schur form (upper triangular except for the first sub -diagonal row):

As = PAP

(2) Use P to transform C to C s : Cs = PAP

(3) Solve the transformed equation Zs As Zs As ' + Cs by a back substitution

technique

(4) Transform the result Zs to Z via Z = PZsP'

1	 ^	
.

The number of operations involved In each step is proportional to (2n+1 )3 if Z, A,
y

and C are (2n+1)x (2n+1). However, by far the majority of the computations are

Involved in step 1, which performs an efgenvalue-elgenvector analysis of A. Step

3 requires (approximately) 5% to 10% of the total time, depending on the particu-
i
t
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lar A matrix. The Important point to realize is that step 1 need only be performed

once for all N equations (6.21). In fac c steps 2 and 4 can also be simplified by

Including the P and P' multiplications in the matrices M1 and M2 described above

for the Xtj terms. Using this method, there will still be a proportionality to

N(2n+1 )3 in computing (6.21), but it will be many times smaller than for the full

four-step procedure.

In summary, the computational procedure for statistical wordlength primarily

Involves the second derivatives of J required for (6 . 10). Assuming that. computa-

tion time is dominated by the number of multiplies, the following approximate

dependence of the computation time on the number of coefficients N and the

(augmented) system order 2n+1 exists:

tSWL a N 2(2n + 1)2 + N(2n+1 )3 + (2n+1)3

For the MSWL estimate, this proportionality will be reduced:

11 tMSWL °C N(2n + 1)3 + (2n+1)3

Thus, as N increases, the MSWL estimate becomes computationally more and more

efficient as compared with the SWL estimate.	 I`

§6.5 Direct Wordlength Computation

3	 For comparison, It is important to include the direct method far determining
a.
k the coefficient wordlength required to meet or exceed the degradation level E0.

Basically, this procedure will involve selecting a test wordlength, rounding the

coefficients to that wordlength, and then forming the (finite-precision) matrices *j,

A, and C. Using these finite -precision parameters, the Lyapunov equation (6.19)
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must be solved and the trace (6.18) evaluated. The resulting value of J can be

compared to J OD + E,0, and then a decision made whether to alter the test

wordlength up or down.

If the performance index were strictly monotonic in the coefficient

wordlength, then a binary search algorithm could be designed that would always

succeed in finding the required wordlength. For example, starting at some large

Initial test wordlength, one could decrement the test wordlength 10 bits at a time

until the performance index exceeded the value J00+E09 then Increment the test

wordlength in smaller steps until the performance index was below J 00+E 02 and so

forth. However, J need not be strictly monotonic in wordlength, since the

coefficient rounding operation is so nonlinear. However, J Is roughly monotonic.

Thus, the search procedure must try to account for possible anomalies in the

behavior of J. One other pitfall must be avoided; if the test wordlength is so

small that the resulting feedback system is unstable, then the computed J value

will be meaningless. One simple way to test for this possibility would be to exam-

ine the resulting eigenvalues, which are a by-product of the Lyapunov solution

method of Barraud.

The method we have used is based on the above- discussion. After loosely

bracketing the allowed degradation E 0 with two test wordlengths, the lower of

which is tested to guarantee stability, an exponential curve is fit to these two

points. Using E0 and this curve, a reasonable choice of a new test wordlength

can be made. From this point, the test wordlength is stepped a bit at a time until

the required wordlength is established. The details of the algorithm are shown

below:
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(1) Bracket the wordlength w with the Initial values wmax-48 and wmin-0.

Initialize the increment ! at 10, and set the initial value of w near the

value wmax. Compute the ideal J., using the double-precision coefficient

values, and add an allowed level of degradation to produce the desired

performance J 
01

(2) Decrement the wordlength w by i.

(3) Test for a negative wordlength w. If found, set w to 1.

(4) Round the ideal coefficient values to wordlength w, and compute the result-

Ing test value Jt of the performance Index.

(6) Test for instability by comparing Jt to J.. If Jt is smaller, the system with

coefficients of wordlength w is unstable. Then increment w by i, halve the

Increment size, and return to step (2). Otherwise, if Jt is larger than J,,,

continue.

(6) Test to see if Jt is between J., and J 0. If so, set wmax to the current

value of w and return to step (2). Otherwise, set wmin to the current

value of w and continue. Thus we have bracketed the required 'wordlength

with wmax and wmin, and know the performance levels for each of these

wordlengths.

(7) Using the two wordlength/performance points found in step (6), and also

the ideal performance, value J00 (associated with some very large

wordlength, say 100), fit an exponential curve to describe the perfor-

mance index as a function of the wordlength. Interpolate to find a next

guess at the required wordlength. Round the coefficients to this

wordlength and compute the resulting performance index. 	 -
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(8) If this value is greater than J , increase w a. bit at a time until the result-U	 sa

Ing performance level is below J 0, The corresponding w will be the re-

quired wordlength. If however the performance level from step (7) is

below JO' decrease w a bit at a time until the resulting performance level

Is above J 0. The corresponding wordlength w, plus one, will be the re-

quired wordlength.

r
The direct algorithm may be time-consuming as compares to the statistical

method because It requires repeated solutions of the Lyapunov equation (5.19)

until we bracket the desired performance, and no simplifications are possible from

one solution to the next since each finite-precision A matrix is different. If an a7

average of n  iterations are required to establish the required wordlength, then

the dominant number of multiply operations required to compute this true

v	 wordlength (TWL) is proportional to:

tTWL a nl (2n+1)8

Thus, a comparison between the statistical estimates SWL and MSWL and the TWL

described above will depend upon n, nl , N, and the constants of proportionality.

However, as the number of coefficients increases, the statistical estimates will

become less and less efficient, while the true wordlength computation time

remains essentially constant. Recall though, that the statistical estimate is still

b "	 useful as the basis for a wordlength optimization procedure as discussed In
k

Chapter 8. The true wordlength method could not be used for such a procedure,
A

since it is not continuous and thus not differentiable.
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S8.6 The FS System and the Coefficient Wordlength Issue

The effects of finite coefficient wordlength were evaluated for the F8 sys-

tem example and the ten structures described in Chapter 6. The results are

presented in figure 6-2 using the following format. Column 1 lists the number of

Integer bits required for the coefficient word; this value Is obtained from the larg-

est scaled coefficient value (see figure 5-8). The next three columns list the sta-

tistical estimates SWL and MSWL, and finally the true wordlength as evaluated in

section 6 .6. In each case, the execution time in seconds for each wordlength

determination method is listed in parenthesis following each entry. These times

are subject to some small amount of uncertainty depending on specific run-time

conditions, so they must be regarded as approximate. Again, the wordlengths list-

ed represent the number of coefficient bits (not including the sign) required to

achieve at most a 6% increase In the performance index J. Finally, the last

column of figure 6-2 lists the number of bits by which the SWL estimate exceeds

the actual required wordlength..
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t structure I SWL MSWL TWL SWL-TWL
a)	 direct form II 18 36.99 (0,81) 36,06 (0.70) 32(1.2) 3,99
b)	 parallel M. II 1 6,84 (0.93) 6.16 (0.78) 6(1.08) 0.84
c)	 parallel d,f, II 4 12.38 (0.87) 11.62 (0,78) 11 (1.26) 1.38
d)	 parallel M. II 4 19.02 (0.86) 18:14 (0.77) 13 (1.08) 6.02
e)	 1-level from (c) 3 11.08 (0.90) 10.22 (0.78) 10 (1.19) 1.08
f)	 block optimal 1 7.02(l.26) 6.2 (0.91) 7(1.11) 0.02
g)	 cascade, d.f. 11 11 26.26 (0.83) 25.38 (0.72) 21 (1.21) 5.26
h)	 cascade, M. II 6 14.61 (0.86) 13.81 (0.72) 14 (1.36) 0.61
1)	 cascade, d.f. I 9 24.25 (0.84) 23.38 (0.71) 20(1.1) 4.25

simple 1 1	 9.06 (2.44) 8.26(l.29) 9 (1.71) 0.06

Figure 6 .2: F8 Coefficient Wordlength Results

A great deal of information may be drawn from figure 6-2. First, we can

discuss the performance of the ten structures with regard to coefficient

wdrdlength. Referring to the TWL values, we can see that the parallel structure

(b) using first- and second-order direct form II sections, and the block optimal

parallel structure (f) performed the best, needing only 6 and 7 bits respectively,

Qulte acceptable performance was also achieved with the simple structure (J) (9

i bits), the one-level parallel structure (e) (10 bits), and the parallel structure (c)

(11 bits). As with the roundoff noise results of Chapter 5, the direct form II

structure (a) performed the worst. For the two parallel and two cascade struc-

tures using all second-order sections but with two different pole pairings, the pair-

ing that was better for roundoff noise ((c) and (h)) was also superior for

coefficient sensitivity — 2 bits better for the parallel case, and 7 bits better for

9	 the cascade.

k' In fact, if we rank the structures on the basis of their required coefficient
rt

wordlengths (b, f, j, e, c, d, h, i, g, a) and then also on the basis of their signal

variable wordlengths/roundoff noise performance (f, b, j, e, c, h, d, i, g, a), we can
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see a very strong correlation. The orderings are nearly identical — only the ad-

Jaotint structures b and f are Interchanged, as are h and d. The correlation

between good roundoff noise performance and low coefficient sensitivity has been

well-pubilclzed for digital filter structures [17,40,48,77,78]. Of course, these

results pertain to the sensitivity of the transfer function magnitude to Its

coefficients. From our results, this correlation seems to carry directly over to the

control compensator setting.

One point to be cognizant of is that certain coefficients in a structure,

when rounded to the TWL wordlength, may In fact become zero or unity, thus elim-

Inating them as multipliers. This situation occurs In the simple structure (J), reduc-

ing the number of coefficients from 50 to 40, In the block optimal structure (f),

reducing the number of coefficients from 25 to 24, and in the parallel structure

(b), reducing the number of coefficients from 17 to 16. Such reduction should

factor into the structure selection procedure.

Taking the number of multiplies, number of precedence levels, roundoff

noise performance, and required coefficient wordlength all Into account, parallel

structure (b), which uses first-order sections for real poles and second-order sec-

tions for complex poles, Is probably the best choice. To achieve an overall 3%

maximum increase in J with this structure, we could use an 8-bit A/D converter,

8-bit coefficients, and 10-bit signal variables. (Due to the quadratic nature of J,

each extra bit reduces the increase In J by approximately a factor of four.)

Each of these wordlengths includes the sign bit. If circumstances required a

one-level structure for a short sampling period T, then we would probably use the

block optimal structure and 24 hardware multipliers. Any final decision as to

structure selection is of course application-dependent,
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The above discussion applies to the actual wordlengths found by the direct

method. Now let us examine how useful It would be to make the comparison of

} structures using the SWL statistical estimate. For the ten structures shown, the

SWL estimate ranged from 0 to 6 bits conservative, which is quite a wide range.

However, this situation is easily explained. Structures (d), (g), and (1) had the

poorest estimates. Not coincidentally, all three of these structures have two par-

ticular coefficients In common, -.9938344 and 1.9938281 (see Appendix A), and

these two coefficients dominate in the expression for statistical coefficient

wordlength for these examples. Removal of these two coefficients from the sta-

tistical wordlength analysis produces estimates within one bit of the true

wordlength. Thus these case , represent low probability events (from the left-

hand tall of the distribution In figure 6-1). In any case, these particular two

coefficients resulted from pairing the two real near unit-magnitude poles, which

has already been shown to be a poor choice with respect to finite wordlength per-

formance. Of the ten structures, the SWL estimate is excellent (0 to 1.1 bits

conservative) for the five lowest coefficient wordlength structures and the cas-

cede (h).

As for a comparison between the SWL and MSWL estimates, the MSWL

value was consistently .68-.94 bits below the SWL value. This tight range of

values suggests that the distribution of dJ shown in figure 6-1 is quite narrow.

Thus the MSWL, which is simpler to compute, may well be preferable to the SWL.

-	 One could compute the MSWL and then add some fixed number, say one bit, for an

p	 estimate. The primary advantage to using the MSWL estimate over the SWL,r

given their apparent tight correlation, would be in the constrained optimization pro-

cedure of Chapter 8. In principle, the optimization procedure could use either sta-



Execution
Time
(seconds)

tlstical estimate for its objective function.. Since the MSWL estimate is simpler to

compute, It would be preferable to the SWL for the objective function. In Chapter

6, this estimate will be used as the basis for finding a minimum coefficient

wordleOpth structure.

Figure 8-3 shows a plot of the execution times of the TWL. SWL, and MSWL

sz ^

10	 20	 30	 40	 50
9

Number of Coefficients

i
!	 Figure 5-3: Execution times vs. Number of Coefficients

i

routines, as run on an Amdahl 470 at the Charles Stark Draper Laboratory, versus
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the number of coefficients in the structure. From this figure we can see that the

TWL computation takes between 1.1 and 1.36 seconds (since the routine could be

written more efficiently to reduce the execution time for structure (j)). For ap-

proximately 20 coefficients or less, the SWL estimate is somewhat faster to com-

pute than the TWL value, about 16% to 30%, and the MSWL is at least another

tenth-second faster than this.

One important advantage to either the SWL or MSWL estimates Is the

second-order sensitivities they produce. Once these values are computed, it is

easy to see which coefficients dominate, as far as the required coefficient

wordlength is concerned. The portion of the structure in which these coefficients

occur is then a likely candidate for optimization as described in Chapter 8.

Specifically, the second=order section In which these coefficients occur should be

unconstrained — in other words, it should not have a direct form II structure, but

have a structure with more coefficients and thus more degrees of freedom. The

optimization procedure will then exploit these extra degrees of freedom and pro-

i
	

duce an overall structure with a Lower required coefficient wordiength.

In addition, there is a further advantage to knowing the individual sensitivi-

ties. In figure 6-2 we can see that structures (a), (c), (d), (e), (g), (h), and (i)

have at least one large coefficient that requires the large number of integer bits

(more than 1) in the fixed-point coefficient word. By replacing each of these

coefficients by a smaller -magnitude coefficient followed by a shift, we can reduce

the number of integer bits that are required. The amount of the shift (number of

bits) will be limited by the coefficient sensitivities. For example, structure (d) has

only 2 coefficients larger than two (see Appendix A). Their ideal values are ap-

proximately 16.7 and -16.7. From the SWL. analysis, their sensitivities 
82j 

are
8c1

Section 8.6: The F8 System and the Coefficient Wordlength Issue	 156.

4 ;^



a-r

approximately 0.043. Tha, dominant sensitivities with respect to determining the

actual coefficient wordlength (and for the sake of this discussion we will leave

out the coefficients 1.99383281 and -.9938344 mentioned above) are on the ord-

er of 160. Since each factor of 2 decrease In a coefficient value results in a

factor of 4 increase in Its sensitivity (because we are taking second-order sensi-

tivities), we can decrease these two large coefficients by a factor of 8 (three

bits), while only Increasing their sensitivities to about 2.8. Since this Is still

Insignificant with respect to 160, the statistical (and true) fractional wordiengths 	 k

P
r

will not increase appreciably. The net result Is a savings in total wordlength of

three bits (from 13 to 10 total bits), while adding only two simple three-bit shifts

to the hardware. Note that such a shift operation does not Involve any additional {

hardware, but just a rewiring of the respective multiplier output and the following
P

quantizer or adder input. In structure (d), all we are doing is replacing a multipli-

cation by 15.7173777648272 with a multiplication by 1.9646722206034 and a

three-bit shift (a multiplication by 8) and similarly for the other large coefficient.

	

	 j ,1
S

The table presented in figure 6-4 shows the reduction possible for all ten struc-

tures (where this method applies). Structures ,(c) and (e) now rate so much

better in terms of required wordlength that they are nearly as good as the best

choices (b) or (f).

x
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structure I
TWL

no shifts
possible shift

bits
expected TWL

with shifts
(a)	 direct form II 16 32 11 21
(b)	 parallel direct form II 1 e unnecessary 8
(c)	 parallel direct form I1 4 11 3 8
(d)	 parallel direct form II 4 13 3 10
(e)	 parallel 1-level from (c) 3 10 2 8
(f)	 block optimal parallel 1 7 unnecessary 7
(g) 	 cascade, direct form II 11 21 6 16
(h)	 cascade, direct form II 6 14 3 11
(1)	 cascade, direct form I 9 20 4 16
O	 simple	 I 1 1	 9 unnecesiary 19

Figure 6.4: Shitting to Reduce Coefcient Wordlength

S6.7 Joint Analysis of Roundoff Noise & Coefficient Rounding Effects

Chapters 6 and 6 have presented analyses of roundoff noise effects and

finite coefficient wordlength effects as if the two were completely Independent.

Ideally, one would want to analyze the roundoff effects . on a structure using its

actual finite wordlength coefficients. However, the structure must of course be

scaled before the coefficient wordlength analysis can be carried out. Thus, a

near-ideal structural selection procedure would first scale the structure, then com-

pute its requalred coefficient wordlength, round the infinite-precision coefficient

values to that wordlength, and finally compute the necessary signal variable

wordlength via a roundoff noise analysis using the rounded coefficient values. The

procedure we have followed differs in that the r4undofl : analysis Is performed us-

Ing the Infinite-precision coefficient values, rather than the rounded values. This

simplification was made for two reasons. First, the effect of using infinite-

precision coefficients In the roundoff analysis causes only very minor changes as

compared to using the finite wordlength coefficients (a second -order effect)-
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Second, the nature of the roundoff analysis procedure Is approximate to start

with. We are adding Just one more small approximation. Once the roundoff

analysis procedure of Chapter 6 and the statistical coefficient wordlength determi-

nation methods of Chapter 6 are used to select one from a group of candidate

structures, then it would be advisable to go back and do a more careful analysis

of the finite wordlength effects and required wordlengths for this structure.

A more important observation is the following; we have assumed that the

Increase in J due to roundoff noise (including the A/D contribution) must be limited

to some level, say 5% of the ideal J, and that the increment due to finite

wordlength coefficients must also be limited to some level E O , say 6%. Thus the

total degradation will be approximately the sum of these values, or 10%. There is

no Implicit reason why the overall error budget must be split evenly between

these two effects. In fact, once a structure is selected using the techniques

described in Chapters 6 and 6, the respective required wordlengths can be

modified, perhaps to convenient or more nearly equal values by apportioning the

two error limitations differently. Such a degree of freedom should be exploited to

help simplify the hardware by conforming to more standard wordlengths and thus

less expensive and more available Hardware components.

^f
38.8 Summary

In this chapter, we have examined the coefficient wordlength issue for digs-

tal feedback compensators. The use of a statistical approach to the determina-

tion of an acceptable wordlength was stressed. The common digital filtering esti-

mate was shown to be inadequate for LQG compensators due to the optimal na-

ture of an LQG design. Through the inclusion of second-order sensitivities in the
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statistical formulation, we derived a statistical Estimate that is appropriate to the

LOG problem, and in fact any design problem involving the optimization of its per-

formance criterion. As a comparison, a direct method for determining the required

coefficient wordlength was presented, and 10 example structures were compared.

Based on the results presented in section 6.6, we can conclude that the

SW,_ or MSWL estimates are not simple enough to overwhelmingly justify their use

(instead of the TWL calculation) on a calculation-time basis alone. However, there

are two excellent advantages for which we highly recommend their use. First,

the resulting second-order sensitivities are an excellent guide for (1) reducing

the required wordlength of certain structures with large coefficients (greater than

two), and (2) discovering which sections of a structure dominate in determining

the required wordlength (this information could be used to select which portion of

a structure to optimize, as discussed in Chapter 8). Secondly, through the use of

the MSWL as an objective function, we can effectively determine a constrained

minimum coefficient wordlength structure by applying transformations as described

In Chapter 8: Once a set of candidate structures has been compared with regard

to their roundoff noise, coefficient wordlength effects (using the statistical esti-

mates), precedence levels, and so forth, and a structure selected, we should

analyze it In more detail. Specifice!.1y, it would then definitely be worthwhile to

evaluate the TWL as a final step in determining the required coefficient

wordlength.

i

r



Chapter 7; Finite Wordlength Effects: Limit Cycles

,. 1

57.1 Introduction

The roundoff noise analysis of Chapter 5 depends on the validity of the ad-

ditive white noise model for roundoff quantization. However, this model Is not al-

ways valid. In particular, a digital structure can exhibit oscillations known as llm-

It cycles. Any linear system including one or more nonlinearities can exhibit auto-

nomous oscillations due to those nonlinearities. For digital filters or compensators,

quantization nonlinearities exist after each multiplication product or sum of pro-

ducts, and overflow nonlinearities exist after each adder. In addition, both non-

linearities operate on the Ideal A/D converter output. We can classify the result-

ing oscillations as quantizer limit cycles or overflow limit cycles, depending on the

type of nonlinearity that causes them. Of "these two types, the overflow limit cy-

cle tends to be more disastrous in its deleterious effect on performance

when It occurs, it has an amplitude equal to the maximum representable digital

signal.

In the digital signal processing literature, there are a great number of

results concerning limit cycles. An excellent review of this literature on limit cy-

cles can be found In Kaiser [21], or In the finite wordlength survey articles by

Ciassen, Meckienbr»uker, and Peek [60] and Oppenheim and Weinstein [57]. Will-

sky [16] presents a comparison of these results 'to the nonlinear system stability

results known to the control and estimation field. lather , than cataloguing all the

different results and techniques used for dealing with limit cycles In digital filters,

our effort will be confined to only the more general approaches, since they are

more likely to extend to the control environment.



Several points concerning the digital signal processing limit cycle results

should be mentioned. First, most of these results concern zero-Input limit cycles,

oscillations that occur when there is no input driving the filter. When a non-zero

Input Is present, It is unclear just what limit cycle behavior means, since the

response of the filter to the input can be superimposed on an oscillation, or It can

actually eliminate the oscillation [79]. Second, most of the digital filtering limit

cycle results are specific to a single structure, usually the second-order direct

form II structure. Since limit cycles can only be caused by nonlinearities in the

recursive part of a filter, these results are further specific to the pole section of

the direct form II structure. Two general conclusions follow from the digital. filter-

ing results. First, for avoiding quantizer limit cycles, sign-magnitude truncation is

to be preferred over roundoff. Recall that the reverse is true when quantization

noise minimization is considered. Second, for avoiding overflow limit cycles, the

saturation characteristic Is to be preferred over the two 's complement overflow

characteristic. For overflow, it is Important to keep in mind that the two 's comple-

ment characteristic requires no additional hardware — it is implicit in any addition

using two's complement arithmetic. Additional hardware is required to Implement

the saturation characteristic.

As a whole, our results concerning limit cycles in digital feedback compen-

sators are limited. However, in this chapter we will make four observations. First,

we will point out that zero-input limit cycles always occur for control systems with

open-loop unstable plants. Second, we will stress just how the feedback loop of a

control system can alter -the limit cycle performance of a digital compensator. In

fact, even If the compensator alone has no limit cycles, the feedback system of

plant and compensator together can exhibit limit cycles. Third, for a variety of
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reasons, we will show that the limit cycle results in digital signal processing do

not generally apply to the control setting. Finally, we will discuss the significant

question of whether limit cycles themselves are an issue at all for LQG Systems.

At even the simplest level, no LQG system could even be thought of as zero-input, -

given the system driving and measurement noises.

The remainder of this chapter is organized as follows. Sections 7.2 and

7.3 will present the more general digital signal processing approaches for dealing

with quantizer limit cycles and overflow limit cycles, respectively. Finally, section

7.4 will consider the various aspects of the limit cycle issues as they concern di-

gital feedback compensators. Specifically, the observations mentioned above will

be dealt with in greater depth.;

37.2 Quantizer Limit Cycles

There are three basic approaches for dealing with the limit cycles caused

by the quantization noniinearities in a digital structure. The first of these is sim-

ply to apply general nonexistence results, which guarantee that limit cycles do not

occur. Many of these are so general as to apply to the overflow case as well.

This procedure can be quite restrictive as to the types of structures and quantiz-

ers (roundoff or sign-magnitude truncation) that apply. The second approach is

quite different; If we can bound the magnitude of the quantization effects (this

bound would include limit cycle and noise effects) to some level dependent on the
9

r
wordlength, then we need only use wordlengths long enough to make these

effects negligible. Such analysis techniques are frequently based on LyapunoV

theory [16]. Finally, the last procedure involves random rounding; basically this

refers to the technique of adding randomness at selected points in a structure to
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break up potentlo,,;j limit cycles. Of course this technique tends to . add noise to
4 

the system, requiring longer wordlengths to restore performance to desired levels.

All three of these methods will be reviewed In this section, and their extensions

to the LQG control problem considered.

57.2.1 General Nonexistence Results

We will discuss three general nonexistence results described in the digital

signal processing literature. The first of these is a frequency-domain criterion in-

troduced by Claasen, MecklenbrAuker, and Peek [80] and based on the sector na-

ture of the quantizer and/or overflow nonlinearities. Let us divide the digital filter

under consideration into Its Ilneae and nonlinear portions a:ii In figure 7-1. In

Figure 7-1: System Divided into Linear and Nonlinear Portions

1
general, multiple nonlinearities must be considered. The signals 4,(k) and v, (k )

v will represent the input and output of the !th noniinearity. The linear portion of

the system in figure 7. 1 can be described by the transfer response matrix W(z),

i
i
4

9

a

i
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where

M)- W(z)V(z)	 (7.1)

and r(z) and V (z) are the z-transforms of e(k) and v (z) respectively. Now let us

assume that the I th nonlinearity is a ;hector nonlinearity; that is, it lies entirely

within the shaded sector of figure 7-2, where rn1 is the sector slope. (For

NL O

Figure 7-2: Sector Nonlinearity

roundoff quantization, m1 = 2, and for sign-magnitude truncation or overflow non-

linearities, m1 = 1.) The result derived in [80] states the following: given A0
r
r	 noniineo-rities as described above, and •a W (z) that is finite for z = 1, zero-input

limit cycles of period N are absent if:
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for h - 0, 1, • • • Integer [N/2]

Furthermore, It the nonlinearities are also time-invariant, with a symmetric nonde-

creasing characteristic, then limit cycles of period N are absent if the real part of

E 1
0

Ik + diag	 (a 	 -4) + 01/ 0 +z j)) W (zh) _ ding mi l	 (7.3)
l = 1	 (	 i

Is negative definite (< 0), for all a
l 
j and 0 Ji greater than or equal to zero and

xh =el2wh/N

r
t

Equation (7.3) is more difficult to apply than (7.2) since linear programming tech-

niques must be used to take advantage of the a and P parameters. However,

(7.3) is a more useful condition, since it may prove nonexistence when (7.2) does

not. (Note that for a = = 0, conditions (7.2) and (7.3) are identical.) Unfor-

tunately, both these relations require multiple evaluations (one per N), not to men-

tion the task of proving negative definiteness. We can simplify the application of

(7.2) and (7.3) somewhat by expressing these conditions differently. Siijak [81]

has found an efficient technique for proving the positive realness of a function

G(z),  which he has extended to the matrix G(z) case. (A real rational function

G(z) Is strictly circle positive real if it has no poles outside the unit circle, and

the real part of G(z) is strictly positive on and outside the unit circle.) Thus, for

one nonlinearlty, we could replace the repeated evaluation of (7.2) with a test for
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(a)One Quantizer: (after Adder)
Inpu

(b)Two Quantizers: (before Adder)
Input = 0a

I

the positive realness ofl m - 
WW)^. Still, this procedure Is not terribly simple,

l f

especially in the matrix case. Application of (7.2) and (7.3) to the 'L or 2 quan-

tizer two-pole direct form II sections of figure 7-3, for both roundoff and sign-

Figure 7-3: Direct Form-II (no zeros); . 1 and 2 Quantizers
P

F

magnitude truncation nonlinearities, shows the advantage in using sign-magnitude



9

if
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truncation over roundoff; the range of possible a and b values for which a quan-

tizer limit cycle cannot occur is much greater under sign-magnitude truncation

quantization [21,60].

A different limit cycle nonexistence result for digital filters can be related

to the norm of the transition matrix of one-level state space structures

[82,83 ,84,86,86]. This procedure can be applied to either the quantizer or

overflow limit cycle. Suppose we have a one level state space digital filter struc-

ture:

v(k+1) s f ( Av(k)) +B Y(k)

u(k) = C v(k)	 (7.4)

where f represents all the nonlinear operations of the compensator. Note that the

type of nonlinearity implied by (7,4) can act only on the ideal values A v(k). Thus

quantization must occur after addition, implying double -precision adders, and Simi-

larly for the overflow nonlinearity. For two's complement overflow (see section

7.3), this requirement presents no difficulty; if we define Q( ) to represent the

two's complement nonlinearity, the following relationship is true: [82]

Q('* 1 + n2 + n3)°Q(t) 1 +Q(t)2+'V3))	 (7.6)

where t) 1 Is the result of a multiplication. The same cannot be said of the satura-

tion overflow characteristic, and one or two extra odder bits are required to accu-

mulate the true sum before applying saturation.

Let us consider the zero-input case (y(k) = 0) for (7.4). For quantizer and

overflow nonlinearities, we can show that:



r

i

,, i

ill

Of (L')112:5 y 11 x 112 	 for all L,	 (7.6)

where 1142 refers to the Euclidean norm (v' v)4. For sign-magnitude truncation

and all common overflow characteristics, y would be 1, while for roundoff y would

be 2.

If we define the matrix norm of A as follows: [83]

MA 112 - max II
AV^ Q2	

(7.7)
x*o	 II 112

then we can write: [83]

IIA x 112 :g 11 A 11 2  11 V 112	(7.P)

Combining (7.4), (7.6), and (7.8) produces:

Ilvl%k+1 )112 5 711A 112 11v11;?-	 (7.9)

Thus we can ensure the nonexistenbe of zero input limit cycles by,tha condition

y I1A 112--51
	 (7.10)

since this implies a continuously -decreasing state norm. Mills, Mullis, and Roberts

[82] have expressed this result in a different manner for the more general case

of 11v 11 = (v' D v)16 where D is a positive definite diagonal matrix, and the case of

an overflow nonlinearity (y = 1): overflow (and hence sign-magnitude truncation

with double-precision adders) limit cycles will not occur if and only if D -A' D A is

positive-definite. (This result is based in Lyapur:ov theory.)

Based on these results, It is natural to consider structures for which the

norm of A is small (and of course less than 1). It can be shown that a minimum

4
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norm filter would be one for which:

IJA II2 s ma x (l1 i	(7.11)

This quantity is always less than 1 for (stable) digital filters; thus such filter

structures have no overflow oscillations, and no quantizer oscillations under sign-

magnitude truncation.
t 

Barnes [84] discusses minimum norm filters composed from minimum norm

sections of arbitrary order. However, we will restrict our attention to the more

useful case of second-order sections. In fact, a minimum norm second-order sec-

tion Is identical to the Rader and Gold coupled form section mentioned in Chapter

6. The matrix A for a coupled form section with poles at (a t jw) would appear as

follows: [85] (See figure 7-4.)

	

A - [- w o	 ( 7.12)

The lack of limit cycles under overflow and sign-magnitude truncation for the this

structure will not be affected by scaling [82].

For roundoff quantization, these norm -based results cannot be used to

prove the nonexistence of limit cycles for the minimum norm structure unless the

maximum filter eigenvalue is less than one half. In fact, Jackson has shown that

roundoff limit cycles will occur for the coupled-form structure [86]. Fam and

Barnes [85] have introduced a method for taking a filter structure whose A norm

Is greater than one half, and computing an equivalent form whose norm is less

than one half. This technique combines recursive and nonrecursive filter sections

but greatly increases the number of multipliers and delays over the original struc-
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Y(k) u(k)

W

v

Figure 7-4: Coupled Form (Normal) Second-Order Section

ture.

It should be mentioned here that these results tie directly into the results

for wave digital filters. Fettweis and Meerk6tter [47] have shown through the

use of a state -norm called pseudopower that overflow limit cycles and gUantlzer

limit cycles will not occur in wave digital filters using sign-magnitude truncation

quantization and any common overflow characteristic, such as two's complement or

satura :on.

37.2.2 Limit Cycle Amplitude Bounds

One common method for dealing with quantizer limit cycles is to bound their

amplitude, and then to choose a wordlength long enough to make , this bound small.

^.

	

	 Many methods exist for formulating amplitude bounds on the effects of quantiza-

tion, which of course must include limit cycle effects. A good review of these

methods, many of which have been presented in the context of sampled -data con-

trol systems, can be found in [60] and [87]. In the results pertaining to digital

i
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filters [87,88,89], the direct form II second-order section is usually considered, or

specifically the recursive portion of this section. Recall that only the nonlineari-

w ties in the recursive portion of a structure can give rise to limit cycles. Of

course this simplification is not possible for a control system, since the entire

compensator structure is involved in the feedback loop.

We will discuss one of the more general approaches to limit cycle amplitude

bounding. This approach involves the use of Lyapunov theory, and is considered

for digital filters in [87] and for sampled -data control systems in [11] and [12].

Consider a system with the following state equation:

x(k+1) = A x(k) +B u(k)	 (7.13)

where x represents the state, and u the inputs. Following Parker and Hess [87],

the system (7.13) is bounded-input bounded-output stable If the (zero-input) sys-

tem

x(k+1) = A x. (k)	 (7.14)

Is asymptotically stable in the large. If so, a Lyapunov function x' P x exists

where P is the symmetric positive-definite solution to the equation: 	 C$

P = A'PA+C	 (7.15)

	

for any symmetric positive-definite matrix C. If the input to the system (7.16) is
	 3

upper bounded by some constant K, then an upper bound on the norm of the state

vector x can be derived [11,12]. This hotrod, which again will include all the

1	 effects of quantization, is famMy complex to compute, is a function of A, B, P, and

r (	 the eigenvalues of tha C and P matrices, and will be directly proportional to F. 	 }

The procedure outlined above can be easily applied to digital fllters [87]

with one or more precedence levels.. For the roundoff nonlinearity, we know that
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every roundoff quantization error is bounded by 	 {4 for sign-magnitude trunca-

tion), We can simply define these quantizer errors as inputs to the filter system,

1

`V14

and then compute an upper bound on. the filter state norm that is proportional to

A. The difficulty that arises In using this bound Is in selecting a Lyapunov func-

tion, or equivalently, in selecting C [87]. Consequently, this bound can be quite

loose, especially for certain combinations of filter parameters [87].

	

Other methods of computing limit cycle amplitude bounds either are even 	
i^

less tight then the Lyapunov-based bound ([9,10]), or are not easily extendible to

	

the control system setting (such as the effective value method of Jackson [88]), 	 :a

or are even more difficult to' compute (such as the matrix method of Parker and q
Hess [87]).

'i

37.2.3 Random-Rounding Techniques For Limit Cycle Quenching

The previous two sections have described two different ways for dealing

with limit cycles. The first involved using structures for which limit cycles could

be proven not to exist. The second involved the use of sufficient signal bits to

bound the limit cycle amplitude to a negligible level. A third method exists - elim-

Inating limit cycles when they do occur (presumably determined by simulating the

structure). The idea behind this procedure is that limit cycles (which represent a

correlated quariti er error effect), can be broken up, or decorrelated by introduc-

Ing some randomness into the quantization procedure. This procedure results in

the replacement of a periodic limit cycle by an aperiodic sequence of reduced

	

power [90]. Justification for this method can be found in Kieburtz [79], who. re-	 M

ported limit cycle breakup as the level of a random input signal was raised. Furth-,j.

	

er intuition for the technique can be presumed from the success enjoyed by dlth-	
,.

i
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er techniques for the stabilization of unstable nonlinear systems. [91,92]

Specific results concerning the use of randomized quantization methods ex-

Ist only for the case of the direct form II second-order section. The first method

Involves randomly switching between roundoff quantization and sign-magnitude

truncation. By utilizing roundoff most of the time, Its low-noise advantages can still

be maintained, while the occasional use of sign-magnitude truncation will give us

the reduced number of limit cycles common to this type of quantizer. Kieburtz,

Lawrence and Mina [90] outline this method and present specific examples of its

use. Unfortunately, such a technique cannot be guaranteed to eliminate all DC

end half-rate limit cycles (limit cycles with a two-sample period). However,

Lawrence and Mina [93] do describe some additional constraints that can be Ad-

ded to prevent such limit cycles.

Bgttner [94] has taken a different approach to implementing random quanti-

zation. In his approach, a random signal is Injected at one point in the direct form

II structure to break up any possible limit cycle. One obvious difference with this

approach is that, with no input to the filter, there will still be a noise output. In a

control system, already driven by noise, this additional noise would probably be

Insignificant. Specifically, Buttner describes two possible approaches; first, in the

direct form II section with only one quantizer (after a double-precision addition),

simply replace the least significant bit of the quantized sum with a random bit.

j	 This procedure produces 4 times the output noise power as compared to rounding,

l

	

	 since the error introduced can be anywhere between ±A, but has the advantage

of eliminating all possible limit cycles. The second approach introduces a random

r
	 least significant bit In one of the products input to the double-precision adder.

i	
Although this generates approximately half the noise generated by the first
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method, It will not prevent the occurrence of limit cycles unless the input to the

second-order section is aperlodic and non -constant. BQttner then recommends us-

Ing a cascade of second-order sections, with the first approach used to suppress

all limit cycles in the first section, and the second lower-noise approach used in

all remaining sections. Since the Input to these sections must contain the random

output component generated by the first section, the second method will be

sufficient to suppress all limit cycles in these sections. Examples were presented

comparing this random rounding approach to the use of sign-magnitude truncation

to eliminate limit cycles, and also to the use of roundoff quantization with longer

wordlengths to reduce limit cycle amplitude. Again, all these results were generat-

ed only for structures composed of direct form II second-order sections.

57.3 Overflow Limit Cycles

In this section, we will examine the results specific to overflow limit cycles.

Overflow limit cycles are particularly Important because they have maximal ampli-

tude — thus, of course, bounding techniques do not apply. In general, there are

two overflow characteristics of particular interest, saturation (figure 7-5a) and

two's complement (figure 7-5b). A two's complement overflow characteristic is the

natural overflow characteristic resulting when using two 's complement addition.

a

	

	 No additional hardware is necessary to realize this overflow nonlinearity. The sa-

turation overflow nonlinearity, which does require some hardware, Is less prone to

fcausing overflow limit cycles than the two's complement characteristic.

r^ Two separate issues concerning overflow have been discussed in the digi-

tal signal processing literature, the prevention of zero-Input overflow limit cycles,

and forced-response stability. Stability of the forced response means that the



(b) Two's Complement:
r

O(x)

It	 I	 ,

x

(a) Saturation:
O(x)
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Figure 7-5: Common Overflow Characteristics

filter must recover from an overflow, that is, return asymptotically to the state

values that would have occured if no overflow nonlinearity had been present.

General results concerning zero-input overflow limit cycles can be Inferr04

Section 7.3: Overflow Limit Cycles	 17b.
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from the discussion in section 7,2.1 oii the frequency-domain criterion of Ciaasen,

MeckienbrAuker, and Peek for the saturation nonlinearity (using rnj a 1). Using the

norm-based method of Barnes and Fam, or Mullis and Roberts, we can generate

nonexistence results that would apply to any common overflow characteristic.

More speciflc results exist for the second-order direct form II section

Figure 7-6: Direct Form II with Overflow Nonlinearity

._ shown in figure 7-6 and for structures composed of such sections, Willson [95]

and Ebert, Mazo, and Taylor [96] have found regions In the a, b parameter plane

where overflow limit cycles will not occur with two's complement overflow, and

have shown that no limit cycle can occur when using the saturation overflow

characteristic for any (stable) values a, b. In general the saturation characteristic r

Is to be preferred over the two's complement characteristic so far as overflow

limit cycles are concerned. However, it does require extra hardware componentsP r
to implement the saturation overflow characteristic. Thus we would test the gen-

eral conditions in section 7.2.1 to see whether or not the use of two's comple-
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ment overflow could cause oscillations. The use of the saturation overflow

characteristic, with its additional hardware, would be advised whenever the gen-

eral criteria of section 7.2.1 did not succeed in guaranteeing the absence of limit

cycles for the two's complement characteristic.

Recovery from overflow can be determined by the following general result

also derived by Claasen, Mecklenbriluker, and Peek [97]: if a system has no

zero-input overflow limit cycles for all time-varying nonlinearities satisfying:

-m1 S O(X k) S 1 for xAO, and mi >0 for all k	 (7.16)

where O O is the overflow nonlinearity, and this condition could possibly be tested

using the general criteria described in section 7.2.1, then the forced response
s

Will be stable for ail overflow nonlinearities satisfying (see the shaded portion of 9

figure 7-7):

1+mj-m,x<O(x)51 forx>1

-1 -m,  m1 x > O (x) z -1 for x < -1 '	 (7.17)	
1

	This result means that a system with no zero-input overflow limit cycles for all 	 {

overflow characteristics satisfying (7.16) for m 1 = 1 (such as the wave digital

filter) will be forced-response stable for characteristics satisfying (7.1'7). Satura-

tion satisfies (7.17), but two's complement overflow does: not. Again, this result

demonstrates the general advantage of saturation.over two's complement overflow

so far as limit cycles are concerned.

Beyond the general result of (7.16) and (7.17), there also exist specific

results concerning forced-response stability for the direct form IT second-order

section of figure 7-6 [98,99].
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Figure 7-7: Forced-Response Stable Overflow Characteristic

$7.4 Digital Feedback Compensator Limit Cycles

In this section we will consider the limit cycle issue as it relates to digital

feedback compensators. Several important observations can be made. First, any

digital control system with an open-loop unstable plant must exhibit quantizer limit

cycles. Recall that the plant output is sampled, digitized, and quantized at the

compensator input. This means that any output magnitude below the smallest

quantization level Is effectively Ignored by the compensator. If the open-loop

" plant is unstable, the output will tend to increase in magnitude until it reaches the

lowest quantization level, and some control action can occur to drive it back to-

wards zero. However the process will then repeat. The net result is a form of

low-amplitude limit cycle in the output of the system. Such a limit cycle will occur

no matter what the transfer functions of the plant and compensator are, as long

as a right-half plane pole exists, although these parameters will certainly affect

the amplitude and frequency of the limit cycle. A proper choice of A/D wordlength
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would keep this amplitude at the system noise level, so that it could essentially

be ignored. One other implication of the presence of this limit cycle is that no

- general digital filtering limit cycle nonexistence result can succeed In proving limit

cycle nonexistence for digital control systems with unstable open-loop plants.

Furthermore, even systems with open-loop plants that have poles at s-0 can exhi-

bit low-amplitude limit cycles if any DC offset exists in the output of the D/A con-

verter.

One of the key points relating to compensator limit cycles is the overall

effect of the closed loop on the limit cycle behavior of the compensator. For ex-

ample, consider the digital compensator as a stand-alone digital network. Any limit

cycles that this open-loop compensator may exhibit are strictly dependent on the

nonlinearities in the recursive sections of the compensator. However, when the

compensator is embedded in the feedback loop, all the nonlinearitles are part of a

recursive portion of the control system, and thus are all Involved In determining

U  limit cycle behavior. Thus, compensator limit cycles that would occur for the

open-loop situation will be altered when the loop is closed. By the same reason-

ing, even If the open-loop compensator would not exhibit limit cycles, the overall

feedback system of plant and compensator together may exhibit limit cycles. As

an example, consider the simple control system In figure 7-8. Any finite impulse

response open-loop compensator or filter is non-recursive. Therefore it can have

no limit cycles. However, when we embed such a filter in a closed-loop stable

I control system as in figure 7-8, limit cycles may occur. For the example above,

let us measure signal amplitude in units of A, the quantization step size, defined In

Chapter S. With either roundoff or sign-magnitude truncation quantization, the out-

put y can exhibit the following half-rate limit cycle:
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Figure 7-8: Control System with Finite Impulse Response Compensator

+10, -10, +10, -10, ...

A related limit cycle result specific to feedback systems has been reported

by Fettweis and MeerkOtter [100]. Motivated by the presence of digital filters in

looped telegraph systems, they have shown the following. For a finite impulse

response or wave digital filter embedded in a feedback loop, no quantizer limit cy-

cles can occur If sign -magnitude truncation Is used for all quantization operations

Including the A/D and:

max I H 1 (z) l rnax I H 2(j w) i < 1	 C7.1 l3)	 .
i z 131	 w

where Hi(z) is the transfer function of the digital network embedded In the loop,

i

180.	 Chapter 7: Finite Wordlength Effects: Limit Cycles



-	 and H 2(jw) is the transfer function of the open-loop plant. This result is quite

similar to the small loop-gain theorem known to control theorists [60]. As with the

digital filtering results, the above condition points out the advantage of sign=

magnitude truncation over roundoff quantization so far as limit cycles are con-

cerned. Unfortunately, for control systems in ,general, the condition %7'.18) is very

restrictive in terms of the types of plants one could consider. Certainly any sys-

tem whose plant had an integrator pole or even a strong resonance would not

satisfy (7.18). However, this is the only real result in the literature for quantizer

limit cycles in feedback systems.

Another Important observation is that the techniques for dealing with limit

cycles in digital filters do not tend to work for control compensators. As shown

above, none of the nonexistence techniques can be extended to consider open

loop unstable plants. Now let us consider control systems whose plants have in-

tegrator poles. As a simple example, consider a double-integrator plant-

01
X[t] = 10 0] X[t] * [1] u[t]

(7.19)
YCr ]^ 1 1 0] X[t]

If we discretize this system at a sampling rate of 1 Hertz, and design a first-order

compensator, the three -quantizer configuration of figure 7 -9 results. To apply the

results of Claasen, MecklenbrAuker, and Peek discussed in section 7 .2.1, we must

first compute the matrix W (z ). Defining a and v as shown in figure 7-9, W (z) will

be:

i
j	 •

i
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r	
f	

0	 a1	 a4

" W(Z) 	 z-1(.6+Z-l)	 0	 0	 (7.20)
(1-Z-1 )2

0	
la2Z

-11 (a.z-1),

Unfortunately, the (2,1) entry of W (z) is not finite on the entire unit circle, and

thus the results of (7.2) and (7.3) cannot be applied. This will be true for any

system whose plant has an integrator pole. One possible method for handling this

problem would be to replace the z = 1 poles In the W(z) matrix with poles at

z = 1-e where 00. Then we could evaluate (7.2) or ( 7.3) In the limit as e-+0. How-

ever this evaluation, or the application of the positive real test of Siljak, will be

even more complex to compute. Note that if a. discretized plant has all its poles

entirely within the unit circle, then the Claosen, Mecklenbrauker, and Peek results

may be used directly.

Now let us attempt to apply the general norm-based results of section

7.2.1. To account for the behavior of the entire closed-loop system the vector

v(k) in (7 .4) would have to include both the plant and compensator states. Fol-

lowing the analysis of (7.6) through (7.10), this would involve the evaluation of

the norm of the closed -loop system matrix analogous to the matrix A in (7 .4), and

the assumption that the nonlinearity f operates on the entire vector Av. For the

compensator case this would be a very restrictive assumption, since in fact the

nonlinearity only operates on the compensator states, Furthermore, the norm-

based analysis applies only to one -level structures. Also, the main advantage to

the norm-based technique, namely the derivation of minimum norm structures, can-

not be applied to compensator structures; it would involve transforming the
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closed-loop system matrix A. However, this matrix is highly constrained given the

control system configuration of plant and compensator. Thus A can not be subject

to drbltrary transformations.

The Lyapunov-based bound discussed in section 7,2.2 has been actually

used for control applications [11,12], and could even he used for open-loop un-

stable plants. 'In the analysis of section. 7.2.2, let us consider the performance of

the entire closed-loop system. The vector x in (7.13) and (7.14) would have to

be replaced by a vector including all the plant and compensator states as men-

tioned above. Of course, in the LQG case, we are not interested in bounding the

norm of x, but the more general performance index-related norm JJx'TxJJ, where T

Is defined in (5,34). However, since T is a symmetric positive-definite matrix, it

can be factored into the product T = T IT. Thus we can define a new x to be Tx,

similarity transform A and 8, and proceed as outlined in (7.13)-(7.16). The result-

ing bound will be just as loose as for the filtering case; the difficulty will still be

In selecting the Lyapunov function.

The final point we would like to make concerns the general question of limit,

cycles In control systems. No LOG control system is actually zero-input in nature;

there is always system noise present. According to the results of B pttner dis-

cussed in section 7.2.3, it is likely that this noise will quench autonomous oscilla-

tions if the noise level is large enough. Thus limit cycle oscillations themselves

may not be an Issue In most control systems. However, there are 'other effects

i	 caused by the nonlinear quantization operations in a compensator. First, jump

kdiscontinuities may occur. In such a case, small changes in the input signal lead

to IF at jumps in the output [16]. Furthermore, we have not even considered the

effects of he correlated noise that results from the presence of quantization non-

v
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linearities. Even if limit cycles do not occur, the presence of correlated noise in

control systems can significantly deteriorate performance. Recall that LQG sys-

tems are designed with the assumption that the system noises are white. This

whole area Is largely unexplored for digital control systems.
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Chapter 8: The Optimization of Structures

58.1 Introduction

Techniques for the optimization of structures with respect to some scalar

objective function are very Important for the synthesis of compensator structures.

Typically this objective function would involve either the increase in the perfor-

mance Index due to roundoff noise, or some measure of coefficient sensitivity such

as the SWL or MSWL, or perhaps a weighted combination of the two. In such a

technique, It is important to have control over the number of multipliers and delay

elements In the optimized structure, since these parameters are critical in deter-

mining the complexity of the hardware.

As shown In Chapter 3, any structure can be transformed to a new

(Infinite-precision equivalent) structure through the use of a set of transformation

matrices. In the context of the modified state space appropriate to controllers, If

we have some scaled structure with parameters * 1 , 2, • • *q , then we can

transform this structure to one with parameters V 1 , *2, • • • q by:

J Pi Vi (PJ-1)-1	 for t =1, ...,q	 (8.1)

where the PJ for J = 1, • • • , q-1 are general non-singular transformation ma-

I	 trices, and

P O	
P 0 0	 _ fP 01 0 1 0	 Pq o 10 0 1

The presence of unity entries in the matrices P O and P  are necessary so that	
r



t

the actual input and output nodes of the original structure are not altered by the

transformation process. One consequence of this restriction Is that the output
h

node scaling parameter p described in section 6.2 will be invariant to such

transformations.

Once we have computed (8.1), the new structure will have to be resealed

so that it satisfies the same dynamic range constraints as the original un-

transformed structure. This overall technique will result in a new structure with

the same number of delay elements as the original. However, if the matrices P 

are completely general, the number of coefficient multiplies (non-unity acid non-zero

entries in the matrices T d will be very large. Thus it s necessary to constrain

the P  matrices in order to gain control over the resulting number of coefficient

multiplies.

Chan [17,101] has presented such a constrained optimization technique for

digital filters, using a notation appropriate for describing digital filter structures.

In section 8.2 we will present the steps involved in this constrained optimization

technique for a general objective function, but in the context of the modified

state space representation appropriate to digital feedback compensators (see

Chapter 3). In section 8.3 we will adapt the technique of Chan for the minimiza-

tion of roundoff noise effects in compensators, and apply the technique to a

specific example. In section 8.4, we will use the MSWL estimate presented in

Chapter 6 to adapt Chan's general technique to the minimization of coefficient

rounding effects in compensator. No specific example will be presented. finally,

in section 8.6 wa will discuss methods for selecting which entries in the original

1Y l matrices are to be constrained (held constant), and which are to be varied,
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presumably becoming non-zero and non-unity. This last section represents an Im-

portant extension to the work of Chan, since it applies equally well to digital com-	 K

pensators and to digital filters.

3

58.2 The General Constrained Optimization Technique of Chan

The optimization technique of Chan is based on the following observation

[17,101] (here considered in the context of the modified state space representa-

tion). Consider the differential equation (8.2):

dTi(t)

dt	 *2 
0  (t ) ^Y i (t ) - i (t) G i _ 1 (t) for 15i 5q	 (8.2)

	

where the matrices Gi are of appropriate dimension.	 Any . solution

{l 1 (t ), • • • , Wq (t)) at any t will represent a structure (infinite-precision)

equivalent to	 1 (0). • • • ..Vq (0)) if:

	

GO) 0 0	 a  0
G 0(t) =	 0 1 0'	 Gq(t) _ [ 0 1

0 0 1

where G (t) is arbitrary. The solution to (8.2) has the form:

*1 4) = Pi (t ). (0) (Pi - 1 / -1 (t)	 (8.3)

i

I
where

dPi (t)

dt =GI (t) Pi (t) for OSiSq	 (8.4)

and the initial condition P1 (0) matrices are identities. Starting with an initial

structure which we will assume to be scaled, the technique basically integrates
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(8.4) to obtain new transformed structures. The G, matrices are selected to

cause an overall reduction in some objective function. Constraining any particular

coefficient in a *I matrix to be constant can be easily accomplished by holding

Its derivative in (8.2) to zero, which implies constraints on G/ and PI.

Now let us present this procedure in detail. Define v to be the operation

that forms a vector from a matrix by stacking its columns:

column 1
column 2

	

PR I ) _	 (8.6)

last column

Using this operator, let us define 4i(t) and g (t) to be vectors composed of all the
{

elements of	 1 (t ),• • • , Q (t)) and {G (t ),G 1 (t ),	 • , Gq (t)):

PR 1 (t))	 v(G 1(t ))

	

g(t ) °	 (8.6)

POP (t))	 v(Gq(t))

We can now express d d(t) as a linear function of si(t) and g (t) .using (8.2) and

dip(t)

	

dt	
F (t) g (t)	 (8.7)

where the large matrix F(t) is a function of the elements of 0(t). If wo wish to

hold the I th component of ok(t) fixed, then we must simply set the I th component
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of d dtt) to zero. Thus the dot product of the I th row of F (t) and the vector

g (t)' equals zero. If several components of ti(t) are constrained, then let us

stack up all the corresponding rows of F (t) to form a matrix R o(t).  Since the ma-

trix product of R 0(t) and g (t) is a zero vector, we can say that g (t) lies in the

null space of R O(t ). Thus during the optimization procedure, the vector g (t) must

be constrained to lie in this null space, which is a function of the elements of

#-(t). Chan points out that a nontrivial g (t) satisfying this constraint condition will

exist if the number of 0 entries held constant is less than the dimension of g (t ).

The next step in the optimization procedure is to express the derivative of

the objective function f (t) in terms of g (t ). Using the chain rule, and (8.4):

df 
q 

df dPi
dt 

l=1 
dPj dt

(8.8)
a 9 df G

j (t) P^(t)	
i

11 dP j

i
Now, by stacking the elements of the Gi matrices as in (8 .6), we can define the

gradient vector as a linear function of g (t ):

dtf	 '(t) 
9 (t)	 (8.9)

i
`i

We would like to select the vector S(t) in the negative t(t) direction, so that dt
will be as negative as possible. However, keep in mind that g (t) must also satis-

	

fy the null space constraint described above. Thus, if we choose g (t) to be a 	 ' y

unit magnitude vector Indicating the direction in which the optimization should

proceed while satisfying the constraint, then:
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g (t) = IR (t )^^	
(8.10)

where tR (t) is the projection of W) onto the null space of R 0. As explained in

Chan [17], ER (t) can be found by computing:

ER (t) = X (X' X)-1 X' E(t)	 (8.1 1)

where X is a matrix formed from a set of column vectors which form a basis for
{

the null space of R 01

In order to create an algorithm that will implement the optimization pro-.

cedure as described above, we must divide the continuous parameter t (call it
i

`time') into discrete steps of length h. Thus the optimization algorithm will involve
a

a series of computations that produces a new transformed structure at time t4-h

i from the transformed structure at time t. This process can be repeated until the

j	 value f (t+h) of the objective function for the new structure is as small as wei

like, or until no further significant improvement seems likely.

So for a given structure at time t, we can perform all the computations in-

j valved . in (8.6)48 . 11). The resulting vector g (t) is used to update the transfor-

mation matrices by integrating (8.4). Chan uses the simple 8uler Integration for-

mula to form a tentative Pi for the next time instant t+h:

Pi (t+h) = Pi (t) + h G  (t) P 1 (t) for 0--V :9q	 (8.12)

r
'	 where h is the integration step size. The reason that this choice is only tentative

A
f	 is that the new structure formed with the transformations Pi (t+h) would not in

general satisfy the scaling constraints of the original structure. We must Include

r

t

x;
„	 a

,i
1
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Iil

some scaling operation in order that the structure resulting from the transforma-

i`

is

tions P1 (t+h) is also scaled as desired. 	 Recall from sections 6.2 and 6 .3 that 12

scaling involves the diagonal transformation matrices S, whose elements are the

reciprocal square roots of the diagonal elements of a set of matrices KI . In fact, j

the matrices KI (t+h) for the new transformed structure can be related to the ma-

trices KI (0) of the original scaled structure by:

KI (t+h) = PI (t +h) K i (0) PI '(t+h)	 for 1 Si Sq	 (8.13)

Note that the diagonal elements of KI (0) are all unity since we have assumed our k

original structure	 to be scaled.	 Using	 (8.13), we can	 describe the iscaling

transformations (6.9) that would have to be applied to the structure resulting from
f,

the transformations PI In order to scale It.	 In particular,, the j th diagonal element
Y

of S'1 would be the reciprocal square root of the j th diagonal element of Kf .	 The

Y

4

diagonal transformation matrices Sl can be combined with the tentative transfor-

mation matrices PI to form the scaled transformation matrices P1(t+h):

PI (t+h) = SI (t+h) PI (t +h)	 (8.14)

Thus the structure formed by transforming- with the matrices PI above will have

corresponding K I matrices whose diagonal elements are all unity.
k.

Using the transformations in (8.14), we can compute the new modified !.^

state space matrices ^i (t+h) with (8 . 3).	 Note that the ^I matrices of the new

structure are always computed using by applying the updated transformations of

t
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(8.14) to the * i matrices of the original structure. In other words, the structure

Is not formed by updating the ^^ matrices of the previous time step. This method

was used to keep the effects of numerical inaccuracy to a minimum. Even with 	 ;i
:a

the method currently in use, we must consider the fact that the Euler integration

of (8.12) is only an approximation to (8.4). Thus, after computing the new >^' i ma-

trices, we must check that the constrained entries in each matrix have not

changed, that is, we must check to determine whether the errors in the con-

strained entries are less than some preset tolerance. If these errors were too

large, then one approach would be to halve the step size h and repeat the pro-

cedure starting with the computation of the tentative transformation updates P i In

(8.12). If in fact the errors are small enough, then we should reevaluate the ob-

jective function f (t+h ). If the resulting value is not smaller than at time t, and it

need not be due to numerical errors, then we should again use the approach of

reducing the step size h and repeating the computations starting with the same

updates in (8.12). If the objective function did turn out to be smaller than the

value at time t, then the optimization procedure can continue for the next time

t +2h, starting with the original formation of the vector qk(t) in (8.6).

The overall algorithm can be summarized as follows:

(1) Initialize the procedure with q' 1 , *2, • • • , T  as IV 1 (0), *2(0), • • • ,

q(0) and compute Kf (0) as described in Chapter 5. Evaluate the ob jec-

tive function, and set all Pi (0) to be Identity matrices. Initialize h to 1.

(2) Determine the matrix F and the constraint submatrix R 0 as defined in (8.5)
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(3) Find a set of basis (column) vectors X j for the null space of R O and form

them Into the matrix X:

X ' [X I X2 X3	 (8,16)

(4) Express the derivative of the objective function as a function of g (t), that

Is, find J(t) as defined In (8.9). Find Its projection onto the range space of

X using (8.11

(6) Evaluate g(t) using (8.10).

(6) Compute a tentative set of matrices P
t 
(t+h) by Euler Integration (8.12),

and evaluate the corresponding Ki matrices in (8.13).

(7) Scale the P 
I 
(t+h) matrices using (8.14) and evaluate the new (scaied)

modified state space matrices IP 
I 
(t +h

(8) Check for errors In the constrained coefficients of- 	 (t). If any, halve h

and return to step 6.

(9) Recompute the objective function f. If it has Increased, halve h and re-

turn to step 6. Otherwise, return to step 2 unless no further Improvement

Is desired.

58.3 The Minimization of Roundoff Noise Effects in Compensators

Chan [17,101 ] applied the general procedure outlined in section 8.2 to the

constrained optimization of filter structures for minimimum output roundoff noise

variance. In this section we will adapt this technique to the constrained optimiza-

tion of compensator structures for minimum roundoff noise effects. In particular,

we will minimize the Increase In the performance Index J due to roundoff quantiza-
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tion noise. In fact, part of our adaptation can also be applied to generalize the

technique of Chan for digital filters.

To apply the general technique described in section 8.2 we must specify

an objective function f, and also exprsss Cive derivative of f(t) in (8.9) as a

function of 9(t),  or in other words, compute V a Chan has used an approach

similar to that described in section 5.6 to form an objective function. Titus the

output noise variance was expressed as a function of the matrices K j , W^; and

A,, which were discussed In section 5.6 for one-level structures. Recall that the

these matrices can be found by solving two Lyapunov equations of the same ord-

er as the number of unit delays in the filter structure. Thus Chan essentially ex-

tended the roundoff noise expression derived by Mullis and Roberts and Hwang to

! apply to multiple-level filter structures. Chan was then able to define an objec-

tivp function, and derive an expression for its derivative as necessary (rl ($.P),

In this section we will adapt Chan 's roundoff noise expression for the digi-

tal compensator case. Specifically, we will use the context of the modified state

space representation, account for the performance of the entire closed -loop sys-

tem, and also specify the objective function to reflect the increase in the perfor-

mance index J. Thus we will be extending the expression we derived in section

6.6 to the case of multiple-level compensator structures (see (6.44)-X5.49)). We

will also show that the expression derived by Chan for the derivative of f applies

almost unchanged to the compensator case.

We can extend (5.50) to include multiple precedence levels as follows.

Excluding ' A/© noise, we can rewrite equation (5.33) as: (Tildes represent the

quantities of the scaled system.)
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2 [ 

0
Z A Z A' + 12

[0 n	 (8.1 B)

where A Is defined In (5.32) and

Q • Aq +*g Aq _ 1 fq ' +*gfg _.l Aq _ 2*q _ 1 ' i9q'

+ ... + f  ... *2A1f2 ... fq'^

Recall that Ai is a diagonal matrix whose j th diagonal element represents the

number of roundoff noise sources associated with the j th row of *, /' Ar is the

quantization step size of the quantizers in the structure, A contains the parame-

ters of the closed-loop system, and Z Is the steady -state covariance matrix of

the plant and compensator states. Also note that the parameter kad will have no

effect on the optimization procedure described below, or on the procedure to be

described in section 8.4. Thus it can be set to 1 if desired.

If we replace Z with T Z T r1 as in (6.46), where T is the scaling transfor-

mation matrix that relates the original unscaled system of plant and compensator

to the scaled system:

11" 0

then (8.16) can be rewritten:

	

O2 p O	 {
Z=AZA'* 72 10^	 (8.18)

i`

where A is given In (5.45) and is given below: 	 a

196.	 Chapter 8: The Optimization of Structures

L..

P



7

' Ag S -2 +*q  	 gAq-1Sg1 ^q' +>Yq q-1 q-22Sq 2 1Yq-1 ' 1Yq'

+q ... 1Y 2A S -2*2 ... q+

The expression for W, the increase in the performance index due to roundoff

noise, is given in (6.48), and shown below:.

dJ a trace 
^r 

Z^	 (8.19)

Using the ad joint Ly 7apunov equation as described in Appendix B, and as ap-

plied in (5.47)-(5.50), we can express dJ as:

dr 	 ( 0
dJ	 12 trace (W ! 0

0 
no j	 (8.20)

where W is given in (5.48). Defining the lower right-hand (n+1)x(n+ 1) portion of
7

W to be Wq , we can rewrite (8,20):

V

r

2ArdJ = 12 trace (Ag Sg2Wq

+ A S -2 ^Y 'W V + A S-2	 tqr 'Wq-1 q-1 q q q	 q-2 q-2 q-1 g q q q-1

+ ... + A 1 S 12 qr2+ ... nYq 'Wqqlq ... * )	 (8.21)

Once we have gotten to this point, the remainder of the development is very simi-

lar to the development of Chan [17]. As Chan has done, we can now define the

matrices W,. Using a recursive definition,
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" t 

1+1 1 W/+1 #i+1 for 1-1, ... q-1	 (8.22)

These matrices are called noise gain matrices by Chan, since their diagonal ele-

ments reflect the gain from each roundoff noise source variance to the variance

of the filter outp A, For our development, they will represent the gain from each

roundoff noise source variance to the increase dJ In the performance index. Ap-

plying (8.22), equation (8.21) can be further simplified:

Q	 }.

	

W
r2

 !,tracet	 A • S	 •	 (8.23)<!	 12 ^	 { r f W 

or equivalently,

^? q	 1
d,l c 12 E	 LAj	 [S-2

j 
] Jj  

[W j ] J J	 (8.24)	 M

t= 1 J

i

Thus only the diagonal elements ofW, appear in (8.24). Since the diagonal ele-

ments of K j equal the diagonal elements of S f-2, and in fact all equal one for a

scaled structure, we can eliminate this term, at least so far as the evaluation of

d2
(8.24) is concerned. Since the scale factor ^ 2 will not affect the minimization

process in any way, we can formulate the following objective criterion for the

i	 effects of roundoff noise:

s,

	

f c E E [Ai JI [w, jj	 (8.26)
/ 1 ^l 

Now we must turn to the task of expressing the derivative of f as a func-

tion of g (t). Chan [17] has shown that the digital filtering K, and W, matrices
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d

have the following derivatives:

dKt (t)

.	 dt A G
t (t) Ki (t) + Ki (t) GiV

dWt(t:)	 (8,26)
--

d
t	 -Gt ►(t) Wt (t) - Wt (t) G., (t)

These will apply equally well to the compensator case with its analogous K t and

Wt matrices. Using (8.24)-(8 .26) and following the method used In Chan we can

i^

j
write the derivative of the objective function f:

a

	

di .s	 [At J JJ l ( d [Kt IJ 
l 

[wt ]	 i ]	 d [W,
	 }

	

1	 1	 IJ + [K fJ (	 JJ	
(8.27)

!J

i	 After substituting for the derivatives in (8.27) with the expressions In (8.26) and 	 3
i

-	 some manipulation as in Chan [17], we arrive at the following compact expression:

-	 df = q

dt	
trace CM '(t) Gt (t))	 (8.28)

t+1

where

[Mt (t) I jk = 2 ^ [Ki W Jk [W i (t) JJ [Ai j
J - [Ai kk [ 

W
i 
(t) 

J
k (8.2. 9)}

The quantity E needed in the optimization procedure can easily be obtained from

(8.28) and (8.29).

Clearly, the Kr and W, matrices in (8.29) are dwfined differently from those

derived for digital filters. Other than this, there are two external differences

between our expression in (8,29) and the original expression derived by Chan.

First, the lack of the factor [Kt l kk in the second term of (8.29) Is due to the
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fact that all the diagonal elements of K  are unity; recall that we assumed that

our original structure was scaled. This is largely a procedural difference between

ChaWs derivation and our own - it terms of the optimization, It makes no

difference. The second difference in this expression is the presence of the A/

term. Recall that the j th diagonal entry of A i represents thq exact number of

roundoff noise sources associated with the j th row of * j . During the optimization

procedure, any unconstrained unity or zero entries in these * matrices will in gen-

eral bscome nonzero and non-unity. Thus these new sources must also be includ-

ed in the A j matrices at the beginning of the optimization procedure. Inclusion of

the A, terms allows us to consider all possible structures. The assumption made

by Chan, that the A, matrices can be taken to be Identities or proportional to

Identities, can often be in error, especially for sVtctures with multiple pro-

cedence levels and few coefficients. The result will be only an approximate op-

timized structure. Our inclusion of the A, terms can be easily be incorporated

Into the digital filtering optimization results of Chan. This is one example where

our results can be applied for digital filters.

With the optimization procedure derived by Chan and the correct initial con-

ditions, a structure identical to the minimum roundoff noise filter structure derived

In closed form by Mullis and Roberts can be found. Similarly, using the adapted

optimization procedure described above and the correct initial conditions, we can

also duplicate the minimum roundoff noise compensator structure that we derived

In section 6.6. To achieve this result for compensator structures, we must allow

all the coefficients (except the next-to-last column of *,) of a one-level Initial

3

,1.
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scaled structure to vary. Thus all the diagonal entries of the matrices At must

be set to n+1. Similarly, by allowing c.nly 2 by 2 diagonal blocks of coefficients,

p lus the last row and column (input and output coefficients) of * 1 to vary, we can

optimize and produce a block optimal structure. In fact this procedure was used

to generate the (one-level) block i^,!O mal F8 compensator structure studied in

Chapters 6 and 6.

Tc4n optimization procedure was also applied to the (scaled) two-level paral-

lel F8 compens4tor structure composed of direct form II sections designated as

(c) In Chaptern 5 and 6. Its modified state space (before optimization) is shown

below:

	

1	 0	 0	 0	 0	 0

	

O	 1	 0	 0	 0	 0

	

0	 0	 1	 0	 0	 0

	

qf2 = 0	 0	 0	 1	 0	 0

	

0	 0	 0	 0	 1	 0

	

0	 0	 0	 0	 O	 1

	

C	 c	 c	 c	 c	 c

(8.30)

0 1	 0	 0 0	 0 0	 0

C c	 0	 0 0	 0 0	 0

0 0	 0	 1 0	 0 O	 0

0 0	 c	 c 0	 0 0	 c

0 0	 0	 0 0	 1 0	 0

0 0	 0	 0 C	 C 0	 c
4

where each entry c represents a coefficient. Two extra coefficients were added
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by allowing two other entries in * 1 to vary, the (6,6) and (6,6) entries. Thus

there will be 17 coefficients total in the optimized structure. For this example,

the matrices A 1 and A2 will be:

A l diagonal [0 3 0 3 2 3]

A2 = diagonal [0 0 0 0 ' 0 0 6]	 (8.31)

Before optimization, the scaled coefficients values ranged from 10.48 to 0.073.

Figure 8-1 shows the range of coefficlents values and the resulting number of sig-

nal bits necessary to hold the value of dJ due to roundoff to 6% (as in Chapter 6)

after each iteration of the optimization process:

Iteratlon Number Number Of Bits Coefficient Range
'0 10.46 10.48 - 0.073
1 8.746 3.2 -0.108
2 8.067 1.46-0.108
3 8.2
4 8.086
6 8.06
6 8.066
7 8.057
8 8.056
9 8.065

Figure 8-1: Roundoff No/se Optimization Results

Without including the 2 extra coefficients, which alters A 1 and increases_

the apparent required wordlength of the initial structure to 10.46, the number of

bits needed (see figure 6-8) was 10.18. Thus the true improvement resulting

from the optimization was 2.12 bits, This is quite Impressive, since it was at-

tained basically in only two iterations and is quite close to the block optimal value

of 7.88 bits, which requires 26 coefficients. In fact, it is identical to the perfor-

mance or the 17 coefficient parallel structure (b). We note that iterations 3, 4,
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rt 6, and 7 involved halving the integration step size due to increases in dJ over

the current least value, and that the value after iteration 9 was actually lower

than the value after iteration 2, but not appreciably. In the digital filter examples

treated by Chan in [17,101], typically only 6 to 8 iterations were required to

achieve the full benefits of the optimization procedure. The block optimal compen-

sator structure computed via this optimization procedure took 6 iterations to

reach the approximate minimum wordlength.

A byproduct of the optimization procedure for the figure 8-1 example was a

reduction in the maximum coefficient value. Instead of needing 4 integer bits to

represent the largest coefficient (see Chapter C), the optimized structure required.

only one, again an impressive savings In wordlength. Intuitively, this savings may

exist for any increase in the number of coefficients in a structure. This point

needs more Investigation.

X8.4 The Minimization of Coefficient Wordlength in Compensators

In this section we will develop an objective function for the minimization of

coefficient rounding effects on the performance index J. Basically, we. will use

the MSWL expression as presented in Chapter 6. The optimization could just as

well be carried out for the SWL estimate, but the MSWL is simpler to compute and

still tightly related to the more accurate SWL value. This objective function is

quite different from the one developed In Chan [17], since it is based on J, and

hence involves second-order sensitivities. Again, as with the SWL and MSWL

derivations, this development will be useful in digital filtering for filters that are

designed by optimizing some scalar differentiable criterion.

Instead of minimizing the actual MSWL value, we will copy the approach of
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the previous section; rather than minimizing the actual required wordlength, we

will minimize the expected value of dJ. Of course, for the analysis of finite

wordlength coefficient effects, this expected value is over an ensemble of struc-

tures -- It is not a time-average as in the roundoff noise case, Reviewing the

results of Chapter 6, E (dJ) can be written:

E(dJ) ` 24 E 
82J	 (8.32)

M=1 ac 2 ao

where. N is the number of non-zero, non-unity, and non-power-of-two coefficients in

the structure. Thus we can drop the scale factor as we did with the roundoff

noise objective function to form a new f:

t '	
82J

E 
	 (8^^Z3)

M-1  8cm

where

2~82 
J = trace T if Z

8cm	 acm

(8.34)

6 1	 0
Z = A Z A' +	 (8.35)

0	 122 12T)

and T contains the performance index weighting matrices as shown in (6.34).

The tilde again refers to the parameters of the scaled system. We can also write

the expressions (8.34) and (8.36) for the compensator before it is scaled, result-

ing In:
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a22 trace r 
8

22	
(8,36)

am 	am

e1	 0

	

Z-AZA' +	 (8.37)
0 (*12e2 # 12^}

where am represents a coefficient of the unscaled structure. As with the ap-

proach for roundoff noise minimization discussed in section 8 .3, we would like to

express t as a function of the unscaled parameters and the scaling matrices S^ .

This is P.-acessary for the computation of the derivative of f; even though the ori-

ginal structure selected for the optimization will be scaled, and Its S, matrices will

be identities, they do affect th).,+;Ierivative of f.

2,,
The terms a J	 2

can be related to the terms 8 J as follows. Since
acs	 aam

i ^Si ^Y i S -1 , a scaled coefficient 
^^m at index (J,k) in the matrix f can be

related to Its unscaled counterpart by:

lfi 1 Jk a [ sl J J j [W i l jk [(Si-1)-1j, (8,38)

Since cm Is thus a multiple of am , we can write:

a2J a2J	 [Si-111,k 
2

^,	 C	 (8.39)	 ,
8c	

aa
m	

in	
S^ 

JJ

We can express this relationship compactly for all the coefficients in level i aS;
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y2(fi ) . S! 2 w2(qfi) S2 1	 (8.40)

where Y 2(M) Is a matrix function whose dimensions match those of its argument

matrix M and whose (J,k)th element Is 82j only If the (J,k)th location In M
a[M]2

corresponds to a multiplier coefficient in the transformed structure, and zero oth-

erwise. Recall that all entries In the precedence level matrices of a structure

whose ideal values cannot be represented exactly with a finite number of bits are

multiplier coefficients. Thus all zero, unity, and power-of-two entries would not be

considered to be multiplier coefficients.

To compute the derivative of f with respect to t, we will need to determine

the relationship of the second-order sensitivities of J with respect to the

coefficients of the transformed structure to the second-order sensitivities of J

with respect to the untransformed coefficients. The general transformation ma-

trices P, In (8.1) and (8.2) are not diagonal, so the simple expression in (8.40)

cannot be used, In fact, for the coefficient cm in the i th level of the transformed

structure, the term 82 J will now be related to all the second partials of J with

acm

respect to the entries In ^ i that correspond to multiplier coefficients in the

transformed structure, including the mixed second partials. To demonstrate this,

the following matrix chain rule can ,be applied [102]; 'if x and y are scalars, and

M a matrix, then:

l

k
Y

r	 (`

t
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atrace 1 8M a_" )	 (8.41)

For this expression, the derivative of a scalar with respect to a matrix M is

defined to be the matrix whose U,k) th element is the derivative of the scalar

with respect the (j,kP element of M. Now let the precedence level matrices as-

soclated with the transformed structure be designated with the tilde symbol. By

applying the matrix chain rule with J as y, the coefficient rat index (j,k) in f, as

x, and W, as M, then we get:

aJ	 trace aJ	 at
(8.42)

	

a [! ] lk	 a 
i.f i Ilk

Recall from (8.1) that the relationship between the transformed and un-

transformed precedence level matrices can be written ! = P! Wi (P! _,l )-1 . Thus

the second term in the trace of (8.42) can be written:

r

	

agr!	
= P	 r C 	 (PI ' -1	 (8.43)

J

Note that equation (8.42) seems to imply that the derivative a a J	 is a func-
L ^lJk

aj
tion of the matrix a -, which involves derivatives with respect to all the entries

!

of *,, not just the few coefficient entries. This would imply a tremendous compu-

tational load, especially when second derivatives were considered -- for a

seventh-order compensator with two precedence levels and 7 Intermediate nodes,
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we would have to compute ,mixed second partials with respect to all the entries in

eeoh level, or 48 2+4g2 second derivatives. This number would be independent of

the number of actual multipliers in the structure. Even though this computation

need only be performed once at the start of the optimization process, it would In-

volve far too much computation time. Fortunately, it is not necessary to compute

all the derivatives above. In fact, since the matrices P j are constrained not to

vary certain fixed entries in the 41 f matrices, the matrix in equation (8,45) will

have a tijecial property; it will have zero entries in exactly those locations

which will eliminate the dependence of (8.42) on derivatives with respect to 1Y j

entries which are not in the same locations as the multiplier coefficients of the

transformed structure. In other words, the derivatives of J with respect to the

multiplier coefficlu.nts in the transformed structure will be functions only of the

derivatives of J with respect to the ^Y^ entries which are in the same exact loca-

tions as those multiplier coefficients. To reflect this fact, the term 8	 In (8.42)
f

should be replaced by Y(*,), where Y(M) is a matrix function whose dimensions

match those of Its aig4wnent matrix M and whose (j,k )th element is	 8J	 only8[M^^k

If the (j,k )th location in M corresponds to a multiplier coefficient (non-zero, non-

unity, etcetera) in the transformed structure, and zero otherwise. Note that this

definition of Y(M) is analogous the the definition of Y 2(M) in (8.42). Thus we

can rewrite (8.42):
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M^	 trace (YMI) 
Rlyt, 

Ek f {P') 4t 	 (8.44)
/J
1

ak

To relate the second derivatives of J with respect to the coefficlents of

the transformed and untransformed structures, let us take the derivative of
Y

, z	 (8.44):

a^J	 - trace P,- ., 'E,,   (Pit) t ( 
8	

Y (1Y 1 )	 (6.45)
0 [fil28I l^ k,lk	 J

Inside the trace expression above, 'the matrix chain rule (8.41) can be applied to

each nonzero element of the derivative of Y OP ). for example, If the (r,$) entry

of 1i^^ Is also a multiplier coefficient, then:

	

a	 rr
S	 `LY(*1)1rJ^e1] lk

;t

trace 1P,OEki 
(f„,1-1 

	

	 8J	 (8,46)
8^ 1,i rs

We will define this trace to be 181 l rs, interchanging the order of differentiation,

}	 and applying the same reasoning that eliminated the extra derivative terms In

(8.42), we can express (8,46) as follows:

CBI , rs	 trace P1 -- 1 'Eki 1P1' ! _1	 1	 (Y M1 j,	 (8.47)l	 8 ^ 1 1 rs

K

c	 Note the presence of the mixed second partial derivatives of J In (8.47), I.et ya
k	 I

i
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x

r,

define the matrix B, to have non-zero entries [Bi,
rs 

as described in (8.47)

Whore (r,$) Is the location of a multiplier coefficient In the transformed structure,

and zero otherwise. With this definition, (8.45) can be rewritten:

821	
= trace i P f _ 1 ' EkI (Pt 	 1 BJ }	 (8.48)

Ik	
1	 J

Thus with (8.47) and (8.48), we have now fully described the relationship

between the second partial derivatives of J with respect to the coefficients of

the transformed structure and the mixed second partials of J with respect to the

corresponding coefficients in the untransformed structure.

We can include scaling in this formulation by applying the results derived in

(8.313)-(8.40) to the transformed structure. Thus, the complete expression for

the objective function f (t) will be

f =	 Si'-2 Y 24d Si2 1	 (8.49)
=1

where
4

	

[Y 2(*i ), 
Jk 

= trace 
(

Pi-1 1  BkJ (P/ -1 B1	 (8.50)

e
and 	 now represents the coefficient parameters after transformation but before	 u

a	 scaling, and Bi is a function of all the mixed second partials of J with respect to

P'	 the entries in ^ i that correspond to coefficients in the transformed scaled struc-

	

ture. G!ven that the transformed scaled structure will have N coefficients, the	 -

advantage to the above formulation of f is that the N 2 mixed second-order
W
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coefficient sensitivites need only be computed once, at the start of the optimiza-

tion procedure. The N 2 1-yapunov equations that will have to be solved for these

sensitivities cannot be simplified through any application of the adjoint Lyapunov

operator described in Appendix B. However, the entire set of equations will have

the form (6.21) as described in section 6 .4, and can be simplified in the same

manner as the computations involved in (6.21). Specifically, the first step of the

Lyapunov solution method can be bypassed for all N 2 equations. As before, this

saves at least 76% of the total computation time involved In such solutions.

Now that we have formulated an expression for f (t), we can examine its

derivative with respect to the transformation parameter t. Following the procedure

of (8.8), we must first evaluate the derivatives of f with respect to the matrices

Pi , and then multiply the resulting ith term by the matrices Gi Pi for all i. From

(8.49), df will Involve the derivative of S^ 2, which is a matrix composed of the
i

diagonal elements of Ki , and the derivative of its inverse. These can be found

by applying (8.26) and a simple matrix identity for the derivative of a matrix In-

 dY 2(^ i )verse [102]. The derivative-9—f will also Involve the derivative 	
dP	

This
i

term can be computed easily since the expression for Y 2(fi ) In (8 .50) and in-

volving a  in (8.47) is a direct function of the */ matrices. All the other terms in

(8.47) and (6.50) are not dependent on the NVi matrices. The actual formation of

t(t) in (8.9) from the resulting derivative expressions will be quite tedious, but

really Is only a matter of bookkeeping. As a whole, the method we have

described above is computationally quite efficient. We have not tested the optlml=
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zation procedure of section 8.2 in the context of the statistical wordlength-based

objective function (8.49) for an actual example. w

58.5 Criteria For Selecting Unconstrained Coefficients

As stated by Chan [101], one of the major open issues concerning this op-

timization procedure relates to selecting which entries in the T i matrices will be

constrained. For the optimization of parallel or cascade compensator structures 	 " 1

composed of :9econd -order sections, we have formulated some general guidelines 	 I

that seem appropriate. As will be shown, these guidelines can be applied equally

well to 'the digital filtering case. 	 C

	

For the optimization of roundoff noise effects, the block optimal form of	 E 4

Mullis and Roberts, and Hwang still tends to have too many coefficients, as com-

pared with structures of nearly the same performance. However, it is possible to

use block optimal sections combined with direct form II sections, thereby saving

several coefficients. In order to select Vie section that should be converted to a

block optimal section, we must examine the objective function f In (8.25). Recall

that f depends only on the diagonal elements of the matrices A j and WJ . The

matrices AI reflect the number of roundoff sources that are associated with the

rows of the matrices qf,, and the diagonal elements of the matrices W, contain

the gains from the variances of the Intermediate nodes r, to the performance in-

dex J. For a parallel direct form II structure (see (3.25) and figure 3-8), which

has two levels, the diagonal elements of W 1 will be pairwise associated with the

specific second-order sections. Since we know the weights [A i 	 , the relative
!1
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I
	 , diagonal values of W j will indicate which sections in the structure contribute the

most to the objective function f. The matrix IN for a parallel direct form II

structure will not be Important to this consideration, since *2 contains multiplier

	coefficients and hence roundoff sources that only affect the output node. Recall	 . 1

from (8 .1) that this node cannot be altered by the optimization procedure.

Let us consider the example treated In section 8.3. For this structure, the

parallel structure (c), the diagonal values of W 1 were as follows:

^W 
1 11 

for 1Q:96 = i 1.71, 7.32, .092, .264, 342, 465	 (8.61)

Since the diagonal values of W 1 are pairwise associated with the three second

order sections of this example, we can easily identify the third section as the
s	

trouble spot — the third pair of values (342,466) is clearly the largest, given

the weights A 1 In (8.31). This fact justifies the specific location of the two ex-

tra coefficients chosen to be varied, In fact, if we had allowed the section to be
f 
A truly a block optimal section, it would have required three extra coefficients and

not two. However; in this example there are indications that the performance

with two could be quite excellent — hence one should not automatically go to a

block optimal section. Certainly, this point requires further investigation.

When optimizing only a portion of a structure as discussed here, it is

I
	 necessary to know the performance level that would result for the block optimal

case, so that one can judge the effectiveness of using fewer coefficients. This

value can be found using this same optimization procedure, but with more uncon-

strained * entries (more multiplier coefficients). Note that this approach to dater-

mining which section of a structure to optimize can also be adapted to include
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cascade structures. We should also mention that the above guidelines will of

course not be too effective if the diagonal elements of W 1 tend to be similar in

magnitude.

A similar guideline may be used when minimizing coefficient wordlength. As

mentioned in Chapter 6, by computing the MSWL or SWL, we have already comput-

ed the second partials of J with respect to the coefficients in the structure.

Furthermore, the SWL computation will also produce the mixed second partials of

J. It is precisely these sensitivities that we need to produce f in (8.49). We

would simply have to compute the SWL of the original structure (*,(0)), and save

2j	

'

the sensitivities. If any of the second-order sensitivities 8
	

of the original
aam

structure are particularly large as compared to any others, then the second -order

section In which those coefficients reside would be a likely candidate for optimiza-

tion. In particular, any zero or unity entries In the portion of the q'i matrix
i

corresponding to that section should be unconstrained in the optimization pro-

cedure. Such a section, when optimized, will have the same form of modified

state space representation as a block optimal section, but it will be optimal with

respect to a different criterion.

Although the criteria presented above by no means fully answer the ques-

tion of which DIY , entries to constrain, they do provide an important guide in situa-

tions where performance and minimal numbers of coefficient multiplies are impor-

tant.	 {

	

In one sense, the constraint issue is part of a larger topic; the selection 	 9

of an Initial structure from which to optimize. One property of the iterative con-
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strained optimization procedure described in this chapter Is that the number of

precedence levels is fixed during the optimization. Therefore, optimizing a two-

level structure for some objective function does not tell us whether an extra lev-

el will significantly improve performance, or if one less level can be used without

degrading performance. In general more ievels provide more degrees of freedom 	 ` a

for the optimization, but of course this will depend on the number of constrained

coefficients and their locations in the ^^ matrices. For now, these questions must

.be dealt with by trying different initial structures, with different numbers of levels.

Further work is needed in this area, both for the synthesis of digital filter struc-

tures, and for the synthesis of digital compensator structures.

a
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Chapter 8: Summary, Conclusions, and Future Efforts

59.1 Summary and Conclusions

In this section we will outline the basic points developed in this thesis.

We will especially stress the difference between the issues as they relate to di-

gital compensators as opposed to digital filters.

Many elegant mathematical solutions exist for control problems. Often, the

resulting compensators are directly Implemented on large-scale computer systems,

where speed and accuracy are assured, and cost not critical. The Issues in-

volved In the implementation of such compensators on small-scale digital systems

have not received the attention they deserve. For these applications, the finite

memory, relatively slow speeds, and the expense of the hardware must be con-

slderer in the overall design process. Fortunately, these very issues have been

examined in the context of digital signal processing, and a great many useful

results exist. Our approach was to use, adapt, and extend these results to digital

feedback compensators. This development Is essentially the contribution of the

thesis. In several situations, however, we have extended these results to the

point where they also constitute a useful extension for digital filtering applica-

tions. These extensions will also be pointed out in this summary.

The steady-state LQG control and estimation' problem was selected as a

basic framework for several reasons. First, this type of controller has been

shown to have desirable performance properties in terms of its robustness, mul-

tivariate formulation, optimal nature, and so forth. Second, the LQG problem has

received a great deal of attention in the recent literature, and is being Increas-

Ingly applied to real systems. Third, the LQG problem has an explicit scalar objec-
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_ tive function, which can be adopted as a performance metric against which the

degradation due to finite wordlength effects can be measured. It Is not neces-

sary, to choose such a performance measure or even the LQG problem at all. How-

ever, this choice allows us to develop results in a concrete setting. Finally, using

the LQG control framework, we can bring out all the issues we wish to raise, and

this can In fact be done using single-input single-output systems.. As we will dis-

cuss, extensions to -the multiple-Input multiple-output case are straightforward,

although the issue of multiple-input multiple-output structures remains largely unex-

plored.

In Chapter 2 we presented the assumptions, problem statement, and solu-

tion method Involved in an LQG system, and raised a key point. The calculations

Involved In producing the compensator output and state values require a finite

-	 amount of time tc . This time must be accounted for in the LQG design procedure.

Two implications arise: 1) the sampling period must be greater than tc , and 2)

the compensator output at a given sample time can only depend on past compen-

sator state and Input values. However, if T >> t c , we must not constrain the sys-

tem to wait a full T seconds for its control update. It should only have to wait tc

seconds. Hence, we presented the LQG solution method and sample-skew Idea

given in Kwakernaak and Sivan [1].

Once such an ideal compensator is designed, it must be Implemented In

finite-precision hardware. In Chapter 3 we presented the concept of a structure

as defined for digital filters, and the notation introduced by Chan for representing

such structures. The concept of an accurate notation for reflecting the arithmetic

and quantization operations in a structure and the Inherent precedence of these
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operations is critical; although ail structures have the same transfer function and

some performance as the ideal compensator under infinite precision, they will in

fact all dlfXer, in general, under finite-precision arithmetic. For control applications,

two points were stressed. First, a state space Is insufficient to represent all pos-

sible structures. In fact, it can represent only that class of structures possess-

Ing one precedence level. Second, and more important, the notation developed by

Chan for filter structures is not quite suitable for representing compensator struc-

tures -- in fact, the concept of a structure Is slightly different in control applica-

tions. In digital filtering, the calculation time necessary to compute the next filter

output from the current filter states is ignored, since it only represents series de-

lay time. Whether the filtered data emerges 0.1 seconds after its input, or 0.16

seconds, is really of no concern, as long as the data rate is high enough. Howev-

er, this delay must be included in any compensator structure, since this structure

is embedded in a feedback loop. If one considers this delay as part of the plant

(that Is, as a series delay following the compensator), then this effectively raises

the dimension of the plant and of any compensator designer' via the LQG ap-

proach. On the other hand, Including the delay as part of the compensator accu-

rately describes the operation of the compensator since every unit delay

corresponds to a storage register, and allows us to consider more general struc-

tures in which the added delay does not appear as a series delay following the

compensator. Thus we adapted Chan's notation for compensator structures, andx
celled it the modified state space representation. It has all the advantages of

t `
Chores notation for digital filters, and furthermore include- all the calculation de-

lays that exist In the compensator. A major implication of this definition of com-

pensator structures Is that a delay-canonic structure (one that has a minimal
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number of delays) for an n th-order plant and n th-order compensator has n+1 unit

delay elementr., Instead of n as In digital filtering. Thus a cascade of direct form

I second-order sections, not canonic for digital filters, Is canonic for digital com-

pensators. In the context of this definition of structures, we presented several

classes of structures and pointed out that a straightforward implementation of the

Ideal compensator equations (called a `simple' structure) is not usually a good

choice for steady-state LQQ compensators, since it has many more coefficients

than nearly every other structure used in digital filtering. Of course, for situations

where it was not convenient to compute the parameters of any structures other

than the simple structure, such as in adaptive control systems or in any system

y where the appropriate Ricatti equations must be computed online, the simple

structure or a one- or two-level version of =ials structure (still with many

coefficients) must be used.

In Chapter 4 we presented several digital computer architecture concepts

as they relate to digital filters and to digital compensators. The basic idea of

seriallsm and parallelism, the degree to which processes run sequentially or con-

currently, extends without modification to digital compensators. The Intuition that

can be gained concerning precedence and maximally-parallel architectures from

the Chan air: t,at on for digital filters is identical to that gained from the modified

state space representation for digital compensators. However, the same cannot

be said concerning the application of pipelining to compensators. In fact, the ap-

plication of pipelining to compensators brings out another point — the Interaction

between the ideal design process discussed in Chapter 2 and the Implementation

of the resulting compensator. Basically, the use of pipelining alters a structure so

that the number of precedence levels in the structure is reduced, while still pro-
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ducing nearly the same transfer function. The only difference is the addition of

one or more series delay units. Fewer precedence levels means a smaller

minimum calculation time and a faster possible sampling rate. For digital filters,

the extra series delay encountered is of no Importance, as discussed above.

What Is significant is the potential Increase in the data rate. However, for com-

pensators, this delay must be considered in the design process. If Ignored, this

delay results in extra negative phase shift and the performance of the control

system may deteriorate — it may even become unstable, as demonstrated in

Chapter 4. To include the effects of the delay, we can simply increase the order

of the plant (with one additional state per unit delay added) and redesign the op-

timal LOG compensator for the higher sampling rate. The resulting higher-order

compensator structure must be able to be pipelined In the same manner as was

the original structure. Depending on the application, the pipelined control system

with Its Increased sample rate can have superior performance as compared to the

original, slower, non'-pipelined system.

W, the next three chapters, the effects of finite wordlength in digital com-

pensators were investigated. These effects were divided Into three areas: the

uncorrele ted effects resulting from quantization of the multiplier products (quanti-

zation noise, Chapter 5), the correlated effects of these san ►4,^:antization opera-

tions and the overflow noniinearities in the compensator (limit cycles, Chapter 7),

and the effects of quantizing the infinite -precision coefficients of a structure

(coefficient quantization, Chapter 6).

The analysis of quantization noise includes an important sub-issue - seal-

Ing. Scaling Is necessary to match the dynamic range of tho sipals in the struc-

ture to the dynamic range representable with the fixetl-point words. Various

Mt
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types of scaling were described for digital filters, depending on the known charac-

teristics of the compensator Input signal; some are more conservative than oth-

ers (because they assume less is known about the input), thereby resulting in

higher noise levels. For digital feedback compensators, two issues were brought

out. First, the common LQG set-point configuration makes use of a compensator

with two inputs, either or both of which can have DC components. This fact would

require that the most conservative type of scaling be used (/ 1 scaling), and

would in fact require the use of techniques for scaling multiple-input struc0res.

However, we show that the use of an alternate but equivalent set-point

configuration can avoid this problem. With the alternate configuration, the compen-

sator has only one input, and this input has no DC component. Thus a less con-

servative scaling procedure (/ 2 scaling) can be employed. The stochastic scaling

method applied equalizes the probability of overflow at every node in the Struc-

ture. However, this probability depends on the behavior of the entire closed-loop

" system, not the compensator alone (which could be unstable). Thus we have

adapted this digital signal processing scaling procedure for use with digital com-

pensators.

Once a structure is scaled, we can compute the effect of quantization

noise on some objective criterion. For digital filters, we presented the modelling

associated with roundoff and sign-magnitude truncation quantization, and restrict-

ed the analysis to the more tractable (and lower noise) case of roundoff. To com-

pute the noise power due to roundoff errors at the output of a digital filter, a

Lyapunov equation of order n can be solved, where n is the number of unit delays

In the filter. For digital compensators, again, the effect of roundoff errors on the

performance index Is a closed-loop phenomenon. Thus we have adapted the

7"-w-
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analysis method to include the entire plant and compensator .System, as we did

for compensator scaling. In addition, for digital signal processing applications,

WIN and Roberts have derived a one-level minimum roundoff noise filter structure.

It proved possible to adapt this method to produce a minimum roundoff noise com-

pensator structure. As before, the entire closed-loop system had to be con-

sidered.

To test the roundoff effects of different structures for implementing a

higher-order compensator, the F8 example was introduced. The results from a

roundoff analysis of these structures brought out several points. First, as In digs-

tal filtering, the direct form II structure had poorer performance In terms of the In-

crease In J due to roundoff noise than factored forms like the cascade or parallel

structures, and as In digital filtering, the pairing and ordering issues associated

with cascade structures were significant In determining their performance. As ex-

pected, the block optimal minimum ro►indoff noise compensator structure was

better than any of the other structures tested. However, two points were raised

that were different for digital compensators as compared to digital filters. First,

the pairing issue is further complicated in control compensators due to the pres-

ence of many real poles. Most digital filters have at most one real pole. Howev-

er, controllers can frequently have more than one real pole. Thus these poles

must be paired if second-order sections are to be used. The same applies to real

zeros. Thus even a parallel compensator structure brings out the pairing issue,

where parallel fl/ter structures have no such consideration. Secondly, the default

`simple' structure for digital compensators, not used for filter structures, did per-

form comparatively well. However, there were two structures with many fewer

coefficients that did even better.
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The effect of coe>ficlent rounding on performance Is basically a determinis-

tic one. Given a set of coefficients, we can compute exactly the resulting perfor-

mance degradation. However, In digital filtering, a statistical approach based on

first-order sensitivities has been developed for estimating the coefficient

wordlength required to meet some degradation level. Thus It Is not necessary to

directly evaluate the performance repeatedly until a suitable wordlength is found.

We have extended the statistical approach to the LOG compensator, and In so do-

Ing, have raised an Important point. Because the LQG compensator minimizes the

performance Index J, all first-order sensitivities with respect to the compensatorr

coefficients are zero. Thus second-order sensitivities are necessary to estimate

the increase In J due to coefficient rounding, and in fact J can only increase with

such rounding. The necessity for second-order terms will be true of any parame-

ter optimization problem, for example, sub-optimal control problems like reduced-

order compensators. In fact, if a digital filter Is designed to minimize some

differentiable scalar objective function, then a statistical wordlength estimate for

this filter using this same objective function must also use second-order sensitivi-

ties, This constitutes an extension to the results for the implementation of digital

filters.

Other issues concerning coefficient wordlength are raised when we apply

the statistical methods developed to the F8 system. First, we have evaluated

the structures according to the wordlength required to achieve a specific degra-

dation level. As in digital filters, there was a strong correlation between the low

noise and low coefficient sensitivity structures. Again, for digital compensators,

r	 we can state that the simple structure performed well, but was still out-

performed by the same two structures as In the roundoff analysis, The SWL sta,-
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tistical estimate developed using second-order sensitivities, a new concept,

proved to be conservative as is its filtering counterpart based on first-order sensi-

tivities. However, for the five structures requiring the least bits, it was very ac-

curate (0 to 1.4 bits conservative). The SWL value was much more conservative

for the poorer structures: the direct form II, and the cascade and parallel struc-

tures using identical inadvisable pole pairings. Unlike the usual digital filter sta-

tistical estimate, a second slmpler-to-compute estimate was possible, based only

on the mean degradation in performance. (This value would be zero for arty esti-

mate based on first-order sensitivities.) This MSWL estimate was very tightly re-

lated to the SWL value, from .68 to .94 bits lower in ail 10 cases, and can thus

easily be used for a relative wordlength comparison between several candidate 4.

structures or In an optimization algorithm. The major advantage of these two sta-

tistical estimates over a deterministic determination of wordlength was not in the

computation time saved, which was minimal (15% 30%) for under 20 coefficients

and nonexistent for over 20, but in one very important area. Since the estimates

were continuous in nature and differentiable, they could be used as the scalar ob-

jective function for a structural optimization procedure. In such a procedure

based on the statistical estimate, we had to compute all the (mixed) second par-

tial derivatives of J with respect to the N coefficients — but this needed to be

done only once for the entire iterative procedure. This point was further

.1
developed in Chapter 8.

In the discussion on limit cycles in Chapter 7, we reviewed the methods

used In digital filtering for dealing with limit cycles. Although our results in this

k	 area were limited, four observations relating to digital compensators were brought

out. First, a control system with an open-loop unstable plant, or a plant with an
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Integrator pole, must of necessity have some sort of low-amplitude limit cycle.

The system output will increase from zero until it reaches the lowest quantization

level of the output A/D. Only then can control action seek to restore the system

to the zero level — but then the process will repeat. This situation is unavoid-

able since the system is essentially open-loop when the magnitude of the output

level is less than one A/D quantization level. Second, the global feedback loop

around the compensator will change the nature of the limit cycles in the compen-

sator, and can even cause limit cycles. For 'example, a finite Impulse response

filter will not exhibit limit cycles, yet a feedback system using a finite impulse

response compensator may exhibit limit cycles. Third, the techniques used in

filtering for dealing with limit cycles do not often extend to compensators, espe-

cially when the plant has an Integrator or right-half plane pole. Finally, based on

	

1	 the random rounding and experimental results in the digital signal processing

A literature, it is not clear whether any limit cycles will exist In LQG systems. The

noise driving the system and the noise in the output will tend to quench any limit

cycle that may occur. This of course will depend on the intensity of the noise.

However, even though limit cycles themselves may be suppressed, other nonlinear

effects such as jump discontinuities may occur. Furthermore, the quantization

noise in the system is not white, and the very presence of correlated noise in the

system may cause difficulties. There are few techniques for handling these

effects, even for digital filters.

	

"	 The final topic we treated in the thesis is the iterative constrained optimi-

	

zation of structures. The basis for this technique lies in the work of Chan for 	 a

filters. However, we can again adapt the algorithm to handle digital compensators.

For minimizing roundoff effects, the adaptation was quite similar to that required to
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compute the closed-form block optimal one-level minimum roundoff noise structure

of Chapter 6. However, for minimizing coefficient roundoff effects, our extension Is

quite different from the Chan approach, since our statistical estimate Is based on

second-order sensitivities. We demonstrated the optimization technique for roun-

doff noise effects for several structures, but did not test the changes required to

produce a minimum coefficient wordlength structure. Our effort in optimization did

bring out two points which extend the optimization technique of Chan for dlgltal

filters also. First, our technique for the constrained minimization of roundoff noise

was more general than that of Chan. We accounted for the exact number and lo-

cation of roundoff error sources In the structure; Chan uses an approximation to

simplify his analysis. This change can easily be incorporated Into Chan's filter

structure optimization algorithm. Secondly, we pointed out some general ap-

proaches to selecting which portion of a compensator structure should be optim-

ized, that is, the portion that will produce the greatest Improvement when optim-

n .	
ized. These guidelines also apply to the optimization of filter structures.

19.2 Future Efforts

Based on our results, there are several extensions that should be men-

tioned, and also several new issues that we did not address. Let us first consid-

er some of the extensions, both to other performance criteria and to other control

or estimation problems.

In principle, our results extend to the consideration of other performance

measures, such as gain margin, phase margin, and so forth. However, the details

of the derivations and the actual equations will be quite different. For example,

the statistical wordlength estimate may be dominated by first-order sensitivities.



a	 However, for the steady -state Kalman filter problem (considered at length by Sri-

pad [131), our results would be more directly applicable. As In the LOG case, this

- problem has a simple minimized scalar objective function, the trace of the error

covariance matrix. However, since this is not a control problem, but an estimation

problem, it will have many of the characteristics of a digital filter. Thus, while a

statistical wordlength procedure for the Kalman filter will require the use of

second-order sensitivities (like the LOG case), the scaling and roundoff analysis

procedures will not depend on any closed-loop system behavior (unlike the LOG

case). Still, the adaptation of our results and techniques to digital Kalman filter

Implementations will be fairly straightforward. Of course, the Kalman filter would

have to be considered to be a multiple-output compensator (see the discussion

below on multiple-input multiple-output systems).

Our efforts can also be easily extended to certain sub-optimal parameter

optil111gation control problems. Both the optimal nature and the closed -loop aspects

of the LOG problem are found in these controllers. In fact, if the same J Is taken

to be the performance measure, all our results apply. The equations will differ

only In the fact that, in general, the compensator dimension will be smaller than

the plant dimension.

s

P -

As mentioned above, there are several issues which we did not consider in

our work. The first of these involves the nature of the LOG problem. By express-

ing all the desired performance characteristics of a control system in a single all-

encompassing scalar function J, there can be some quest ion as to the relevance

between the minimizatian of J and the satisfying of the initial performance objec-

tives. The work of Harvey and Stein [24] mentioned In Chapter 2 is an Important

step towards solving this problem. What we can state is the following: to the
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1extent that the Index J is relevant to the desired control system performance,

our analyses based on Increases In J will be relevant to the relative performance

of all Implementation.

Another important issue is the application of our results to multiple-input

multiple-output compensators, since there are a great many real -world systems

that are multiple-input multiple -output In nature. Given some multiple-input

multiple-output structure, our results apply with only a few minor changes. Howev-

er, the whole question of how one designs multiple-input multiple-output structures

Is basically unexplored. The modified state space notation is sufficiently flexible

to cover the multiple-input multiple -output case, if we simply have input and output

vectors, instead of scalars. Multiple-output scaling is no problem, since the

present technique already scales all the nodes. However, some modifications will

be required to implement scaling procedures for multiple-input LOG compensators.

Certainly we can still compute the variances of all the nodes of the compensator,

accounting for the closed-loop nature of the control system, and Its driving and

measurement noises. Recall that the aim of the stochastic scaling procedure was

to equalize the probability of overflow at all the compensator nodes and the com-

pensator Input (plant output). However, for multiple -output plants (multiple-input

compensators), there is a problem. Figure 9-1 shows a simple double-input com-

pensator. The variances of the two system outputs y 1 and y 2 will not in general

be the some. Thus we cannot equalize the probabilities of overflow at every

node and every compensator input. One possible solution is to select only one of

the compensator inputs to have the same probability of overflow (after scaling) ' as

all the nodes, and to allow the remaining compensator inputs to have a lower pro-

bability of overflow. This can be accomplished by choosing the compensator input
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Figure 9-1: Double-Input Compensator Control System

y  with the largest variance for use in the scaling procedure of Chapter 6. In-

stead of normalizing Kq in (5.21) and K j In (5.23) by dividing by the variance of

y, we will use the variance of y,- However, in equation (6.22), the symbol y must

refer to the vector y, not y,. Other than these changes, the rest of the compen-

sator scaling procedure basically remains the same. (In the full multiple-input

multiple-output scaling procedure, recall that u must also be a vector.) One other

point involving scaling should be mentioned. Since each A/D unit has its own

scale factor, we must also consider this scaling issue in the multiple-input sense.

However, to preserve the overall ideal system performance, all these scale fac-

tors must be the same. Again, their choice will depend on the plant output whose

combined variance/system transients are the largest.

The question of multl-loop limit cycles does not really further complicate the



limit cycle question. If any effective limit cycle analysis method is found for deal-

Ing with single loop control systems, it should directly extend to the multi-loop 	 a

case.

Limit cycles themselves may not be an issue for LOG control systems.

However, there is a middle ground between white additive quantization noise and

a limit cycle oscillation. Jump phenomena and the presence of correlated noise

can be very detrimental to control applications. The work of Sripad [13,66] and

Parker and Girard [103] on the correlated nature of quantization errors should

serve as a foundation for studying such effects.

Another important issue is involved in the constrained optimization of struc-

tures presented in Chapter 8. At one level, more work needs to be done In test-

Ing and evaluating the minimization of coefficient wordlength. However, on a more

fundamental level we have the question of how to select the Initial structure.

(Recall that the iterative optimization procedure must begin with a specific struc-

ture and then apply transformations to it.) The choice of initial structure is Impor-

tant because the iteration procedure cannot change the number of precedence

levels in the initial structure. The question of how many precedence levels to

use is a very complex one. It is dependent on the number of (unconstrained)

coefficients desired, the speed requirements of the application, and the accept-

able level of performance degradation. Furthermore, given an initial structure, we

do not always know the best way to choose which coefficients to constrain.

Such considerations are of importance to the optimization of both digital compen-

sator structures and digital 'filter structures.

Finally, we wish to mention a longer term effort that may become of Impor-

tance to control engineers. This thesis effort has assumed right from the start
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that a fixed-point numerical representaition is being used. This implies minimal ex-

pense and minimal computation time as compared to floating -point arithmetic com-

putation. However, as the hardware evolves, new systems of arithmetic arise

that may be competitive with fixed -point. Particularly, a system called FOCUS

[104] has beeii reported In the literature. The main motivation for FOCUS has

been the problems encountered in control and certain other signal processing ap-

plications. Specifically, control systems require the most accurate control signals

when the system output is close to the desired level (to reduce steady-state er-

ror) and less accurate control levels when far from the desired set point. The

FOCUS system of numerical representation and arithmetic combines the accuracy

advantages of floating point with the hardware simplicity and higher speed of

fixed point. Applications of our work on compensator implementation to the FOCUS

number system may become quite useful for control systems.

The purpose of this thesis was to expose the fundamental Issues involved

In the digital implementation of control compensators, and to use, adapt, and ex-

tend thr techniques of digital signal processing in order to develop methods appli-

cable to control. We believe that our efforts have provided the foundation for an

overall methodology for the implementation of compensators.

.w
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Appendix A: F8 Data

This appendix will present the continuous-time F8 model discussed In

Chapters 5 and 6, and Its discrete-time equivalent, The G and K matrices comput-

ed by the procedures mentioned In Chapter 2 are also given. Finally, data

defining all 10 candidate structures analyzed in Chapters 5 and 6 and also the

optimized structure discussed in Chapter 8 will be presented.

The parameters of the sixth-order single-input single-output continuous-time

F8 system are given below, following the notation of Chapter 2:

The A matrix for the continuous-time sixth-order F8 system:

-6.696d-01	 6.7000d-04
0.000d+00 -1.3467d-02
1.000d+00 -1.2000d-04
1.000d+00 0.0000d+00
0.000d+00 0.0000d+00
0.000d+00 0.0000d+00

-9.010d+00
-1,411 d+01
1.214d+00
O.000d+00
O.000d+00
O.000d+00

0.000d+00
-3.220d+01
o.000a+00
O.000d+00
O.000d+00
O.000d+00

-1.677d+01 0.00d+00
-4.330d-01 0.00d+00
-1.394d-01 0.00d+00
0.000d+0 0.00d+00

-1.200d+01 11.2Od+01
0.000d+00 0.00d+00

The B matrix:

O.000d+00
O.000d+00
O.000d+00
O.000d+00
O.000d+00
1.000d+00

The C matrix:

1.000d+00 3.091 d-03 3.128d+01	 1.000d+00 3.692d+00 0.000d+00

232.	 Appendix A: F8 Data
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The Q matrix for the state norm:

8.637d+00
O.000d+00
0.000d+00
O.000d+00
0.000d+00
O.000d+00

O.000Od+00
2.6554d-07
2.6860d-03
O.000Od+00
3.0850d-04
O.000Od+00

O.000Od+00
2.6860d-03
2.7174d+01
O.000Od+00
3.121 Od+00
O.000Od+00

O.000Od+00
0.000Od•r00
0.0000d+00
2.7174d+01
O.000Od+00
0.00004+00

0,000d+00
3.085d-04
3.121d+00
O.000d+00
3.686d-01
O.000d+00

O.000d+00
O.000d+00
0.000d+00
0.000d+00
O.000d+00
O.000d+00

The R matrix for the control norm:

6.2620d+00

The driving noise covarian

0.000d+00 0.0000d+00
0.000d+00 0.0000d+00
0.000d+00 0.0000d+00
0.000d+00 0.0000d+00
0.000d+00 0.0000d+00
0.000000 0.0000d+00

ce 7.11: 

O.000Od+00
O.000Od+00
O.000Od+00
O.000Od+00
O.000Od+00
O.000Od+00

O.000Od+00
O.000Od+00
O.000Od+00
O.000Od+00
O.000Od+00
0.0000d+00

0.000d+00 0.000d+00
0.000d+00 0.000d+00
0.000d+00 0.000d+00
0.000d+00 0.000d+00
1.000d-06 0.000d+00
0.000d+00 1.000d-06

The measurement noise covariance matrix 22:

1.8441 d-03

The discrete-time parameters for the above system sampled at 10 Hertz

were computed according to the equations in Chapter 2:
r^



Discrete -time Transition matrix 0: (Every two rows shown below is actually only
one row of the matrix 0)

,,

8,94168899876840d-01
-9.48729891346440d-06
-2.22006964581917d-01
-3.21783948076657d+00
8.96632406763084d-02
1.66118776302647d-06
9.63226781519899d-02
9.99996886444939d-01
0.00000000000000d+00
0.00000000000000d+00
0.00000000000000d+00
0.00000000000000d+00

Input matrix r:
-2.33843803649613d-02
1.22296689664696d-05
-8.09744421678703d-04
-6.19868380965549d-04
4.17661813028933d-02
9.99999966738716d-02

State weighting matrix 0:

6.19891064286165d+00
1.31875722331738d+00
3.01609191680769d-04
2.604889811532.73d-05
-1.49463104023977d+00
-3.91315114446321 d-01
1.31876722331738d+00
2.71739588981900d+01
3.31370870618672d+00
-6.29472742893936d-01
-1.39174639302283d+00
-1.68559768886560d-01

6.93365418621274d-06
-8.61683445782787d-01
9.98868866653035d-01
7.07041304940429d-02
-8,47007233273550d-06
-5,82376346184306d-02
2,93704936200758d-06

-6.29748911536677d-02
0.00000000000000d+00
3.:1194227548261 d-01
0.00000000000000d+00
0.00000000000000d+00

3.01 6091 91 58fy769d-04
-3.31370870518672d+00
2.47848377796048d-07

-1.83146682461534d-05
2.26275446201938d-03
3.00983380027126d+00
2.60488981153273d-05
-6.29472742893936d-01
-1.83146582461534d-05
2.37776667424236d+00
3.31476135012857d-05
1.15440114387846d+00

-8,07897769474215d -01
-6.35698693844013d-01
-1,28236417743289d+00
1.33003346781691d-02
8.45367360609777d-01
-2.82235677782270d-02
-4.20099682385268d-02
-2.33843803649613d-02
0.00000000000000000
6.98805772451740d-01
0.00000000000000d+00
1.00000000000000d+00

-1.49453104023977d+00
-1.39174639302283d+00
2.26275446201938d-03
3.31476136012857d-06
2.49886408602715d+01
1.93 7260812.8886 7d+00

-3-913161144 , 4632 1 d-01
-1.68660,76,388656Od-01
3.000833600271 ^'6d+00
1.16440114 387 848000
11.93726081288867000
6.651 228630+60226d-01
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1

Crass-weighting matrix M:

-3.6329637'1817073d-02
1,98100368396956d-06
6.49143026809668d-02

-3.60993906626930d-03
3.18190737871274d-02
2.03591671664107d-02	 `{

Control weighting matrix R:

6.?6266793029727d+00

Output matrix L:

1.00000000000000d+00 3.09100000000000d-03 3.128000000000004+01
1.00000000000000d+00 3.69200000000000d+00 0.00000000000000d+00

State driving noise covariance matrix 01:

4,33676915174706d-08 -1.04991 1 6 764951,3d-09 2.00314796017624d-09
1,87668416889601 d-09 -3.93401117854579d-08 -2.338438036503050-08

-1,04199 1167649513d-09 6.13454985323672d-11 - 6.40159236641700d-11
-6.69997525494007d-1 1 	 3.46061668931629d-1 0 1.22296689879342d-1 1
2.00314796017624d-09 -6.40159235541700d-11	 9.941 91 35995761 9d-11
8.472004061016264-11 -1.61814214531290d-09 -8.097444216729494-10
1.67658416889601 d-09 -5.69997526494007d-1 1	 8.,r-17200406101625d-1 1
7.25020464385916d-11 -1.20680507935366d-09 -6.19868380959793d-10

-3.93401117854579d-08 3.46061668931529d-10 -1.51814214531290d-09
-1.20680607935356d-09 6.93058700394746d-08 4.17661813028401d-08
-2.33843803650306d-Cd 1.22296689879342d-11 -8.09744421672949d-10
-6.19868380959793d-10 4.17661813028401d-08 9.99999956738716d-08

Measurement noise covariance matrix 02:

i	 1.84412510991842d-01

r	 i

i
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Regulator gains G: (Also as computed in Chapter 2)

-7.54869368896862d-01 -3.38674676832647d-04 2.46637909062670d+00
-1.60166608607296d+00 1.04707683664762d+00 5.10491114597091d+00

Filter gains K:

6.30001213606086d-03
-2.06416833643128d-01
4.01197820069173d-03
7.472326086408084-03

-2.179489499242 78d-03
-2.17948949924279d-03

The following tables present the data defining the 10 scaled structures

analyzed in Chapters 6 and 6, and the optimized structure discussed in Chapter

B. Note that only the non-zero entries of the individual T matrices are shown.

For all the structures the output node scaling parameter p evl,!als

0.02199717628337.



s..
Structure (a)

Direct Form II
Number of Precedence Levels: 2
Number of Coefficients in Scaled Structure: 13

(non-zero, non-unity entries in the modified state space matrices)

Non-zero entries in 1Y 21 *1

V (711) -2316.696730196619
112 (7,2) 17216.30907463747
" (7,3) -46638.88776849179

(7,4) 60049.21464042769
(7,6) -37783.02361099942
(7,6) 9373.006832979322
(1 1 1) 1.0

" (2,2) 1.0
(3 13) 1.0

if 1.0
01 1.0
It

(6,6) 1.0
lY 1 (611) -0.11903082227744

(6,2) 1.09870649812723
(6,3) -3.98894899287426

If 7.49694995996606
09 -7.82430422984936

(6 16) 4.33762716269116
" (6,8) 0.000 1 01 286261 29
If 1.0
11 1.0
It

(3,4) 1.0
if

(4,6) 1.0
10 66) 1.0



Structure (b)

Pdrallel Direct Porm II, 4 first-order and 1 second-order sections
Number of Precedence Levels. 2
Number of Coefficients in Scaled Structure; 17

(non-zero, non-unity entries In the modified state space matrices)

.
Non-zero entries in *21 *1

Matrix Index Value
w (7,6) 0.03890 1 0441 2969

' (7,6) 1.1528362863.1438
is 0.13876077276467
Is

(7,3) -0.00460663493139
(7,2) 0.52228239126602

to -1.37949754700868
to 1.0
of 1.0
" (3,3) 1.0
" (4,4) 1.0.

(6,6) 1.0
(6,6) 1.0
(2,2) 1.46297047489118
(2,1) -0.69683507326690

" (618) 0.87673782068497
" (3,3) 0.998687 11 1357767 
Is

(6,8) 0.614232606309622
11 0.99514095413.908
to (4,8) 0.1 736401 7081 71 2

(6,6) 0.68903698597208
(3,8) 0.15261498391194
(6,6) 0.29179162411121

" (2,8) 0.28980851506818
" (1,2) 1.0

A



110

Structure (c)
	 J'

Parallel Direct Form II, 3 second-order sections
Number of Precedence Levels. 2
Number of Coefficients in Scaled Structure: 15

(non-zero, non-unity entries in the modified state space matrices)
Pole Pairing: (Refer to figure 6-7)

YP 1 and zp 4

zp2 and zp3

zp 5 and zp 6 (These are the complex poles)

Non-zero entries in T2, *1

Matrix Index Value
T (7,6) 10.48075527883454

(7,5) -10.29571120349337
(7,3) -0.31185194361843
(7,4) 0.30767918685885
(7,2) 0.52228239126501

" (7,1) -1.37949754700866
" (111) 1.0

(2,2) 1.0

" (3,3) 1.0
^i (4,4) 1.0
" (5,5) 1.0

(6,0) 1.0
(2,2) 1.46297047489119
(2,1) -0.69683607325690
(4,3) -0.29140863484973
(4,4) 1.29047873768878
(6,5) -0.68617482824346
(6,6) 1.68417794011116
(6,8) 0.07295197592120

" (4,8) 0.10856479467707
" (2,8) 0.28980851506819
ii (1,2) 1.0
^i (3,4) 1.0

(6,6) 1.0

1
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Structure (d)

Parallel Direct Form II, 3 second-order sections
Number of Precedence Levels: 2
Number of Coefficients in Scaled Structures: 15

(non-zero, non-unity entries In the modified state space matrices)
Pole Pairing: (Refer to figure 6-7)

2p 1 and zp2
zp3 and zp4
zp5 and zp 6 (These are the complex poles)

Non-zero entries in *2 1 %F1

Matrix Index Value
^Y (7,6) 1.59834173340604

112 (7,6) -0.48730146270494 11
(7,4) 15.71737776482720

If
(7,3) -15.69841756881241

" (7,2) 0.52228239126470
of

(7,1) -1.37949754700784
" (111) 1.0
IN

(2,2) 1.0
If (3,3) 1.0

(4,4) 1.0
" (6,6) 1.0
" (616) 1.0

(2,2) 1.46297047489118
(2,1) -0.69683607325690

" (4,3) -0.99383444709201
" (4,4) 1.99382806771667
" (6,5) -0.17187605879836

(616) 0.88082861008328
(6,8) 0.48463047627064
(4,8) 0.00148815020744

" (2,8) 0.28980861506826
(1,2) 1.0
(3,4) 1.0
(6 16) 1.0



,1

Structure (e)

Parallel, One-level Version of (c)
Number of Precedence Levels: 1
Number of Coefficients in Scaled Structure: 16

(non-zero, non-unity entries in the modified state space matrices)
Pole Pairing: same as (c)

Non-zero entries in *1

Matrix. Index Value
(2,1) -0.696835073257
(2,2) 1.462970474891
(2,8) 0.289808515068
(7,3) -0.089660341046u
(4,3) -0.291408534850
(4,4) 1.290478737689
(4,8) 0.108564794677
(7,4) 0.085201505052
(6,5) -0.586174828243
(7,2) -0.615413829047

" (6,6) 1.584177940111
(6,8) 0.072951975921
(7,1) -0.363944688371

" (7,5) -6.143554925433
" (7,6) 6.307670104940

(7,81 ) 0.949356818741
(1,2) 1.0
(3,4) 1.0

" (5,6) 1.0



.

Structure (f)

Block Optimal Parallel
Number of Precedence Levels: 1
Number of Coefficients in Scaled Structure: 25

(non-zero, non-unity entries In the modified state spike matrices)
Pale Pairing: same as (c) and (e) '

Non-zero entries in T 1

Matrix Index Value
1Y^ (2,1) -0.33647827003132

' (2,2) 0.68249200666952
(2,8) 0.65061562691033
(7,3) -0.08038901173236

It
,

(4,3) -0.20036428295682
It (4,4) 1.19946355533120
" (4,8) X0.11870639047793
if (7,4) 0.07597348041937
go (6,6) 0.19085044755223
is (7,2) -0.43070856 1 51277
" (6,6) 0.73170686139682
"	 ` (6,8) 0.45237970547959
" (7,1) -0.73947570074840

(7,6) -0.54742490834686
" (7,6) 0,94099544414976
" (7,8) 0.94935681874100
to (1,1) 0.78047846822148
is (1,2) 0.48789111196657
" (3,3) 0.091 01 51 8235780

(3,4) 0.90953905526798
" (5,5) 0.852471 08871 41 8
" (6,6) 0.19692962981701
" (1,8) -0.13770626781352

(3,8) -0.00287783447672
" (6,8) -0.06296709412667

z:

3

-	 r
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Structure (g)

Cascade Direct f=orm II, 3 second-order sections
Number of Precedence Levels: 4
Number of Coefficients in Scaled Structure: 16

(non-zero, non-unity entries in the modified state space matrices)
Pole and Zero Pairing: (Refer to figure 6-7)

Section 1 • z	 and z	 zP5	 p6' z1
Section 2: zp 3 and zp 4, z  4 and zz 6

Section 3: zP 1 and zp 21 zz 2 and zz 3

.1

r
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Non-zero entries in W4' W3' *2' w1

Matrix Index Value
V (7,6) -1101.642292912427,,4

(7,6) 541.2874849022007
(7,7) 660.2771331108011

u (1,2) 1.0
" (2,1) 1.0
" (3,4) 1.0
" (4,3) 1.0
" (6,6) `.	 1.0
it

(6,7) 1.0
l3 (7,6) 0.88082861008329

(7,6) -0..17187605879836
" (7,4) -6.00228882670692
if

(7,3) 2.890486 76941 1 79
it

(7,7) 3.40307267702863
'+ (1,1) 1.0
If

(2,2) 1.0
(3,7) 1.0
(4,4) 1.0

" (6,6) 1.0
(616) 1.0

1Y (7,3) 1.99382806771666
(7,2) -0.99383444709200

" (711) -0.00051747678098
if

(7,6) 0.00171808332848
" (1,6) 1.0
" (2,1) 1.0
of

(3,2) 1.0
to (4,3) 1.0
of

(5,4) 1.0
" (615) 1.0

(6,2) 1.46297047489119
(61 1) -0.69683607325690

" (6,8) 0.28980861498215
(1,2) 1.0

" (2,3) 1.0
(3,4) 1.0

It
(4,6) 1.0

go (6,6) 1.0

z
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Structure (h)	 '

Cascade Direct Form II, 3 second -order sections	 {
Number of Precedence Levels: 4
Number of Coefficients in Scaled Structure: 16

(non-zero, non-unity entries in the modified state space matrices)
Pole and Zero Pairing: (Refer to figure 6-7)

Section 1: z^ 2 and zP 3 , zz 2

Section 2: zp 6 and zp 6, zz 4 and zz 6
Section 3: zp 1 and zp 4, zz 1 and zz 3

i
r

i



Non-zero entries in 94' *3' *2' *1

Matrix Index Value

!.4
-35,08378898367869

"4 (7,6) 8.11873624443843
If

(7,7) 26.98802315299709
" (1,2) 1.0
" (2,1) 1.0
" (3,4) 1.0

(4,3) 1.0
" (6,6) 1.0
If

(6,7) 1.0
1>i (7,6) 1.29047873768878

(7,5) -0.29140853484973
If -0.46738885908277

(7,3) 0.22026204990314
(7,7) 0.25932232326397

" (1,1) 1.0
(2,2) 1.0

if
(3,7) 1.0

" (4,4) 1.0
(6,5) 1.0
(6,6) 1.0

!.2 (7,3) 1.46297047489118
(7,2) -0.69683607326690
(7,1) -1.79860605553554

" (7,6) 1.85943686039663
If

(1,6) 1.0

(2,1)
1.0

(3,2_) 1.0
(4,3) 1.0

" (6,4) 1.0
(6,6) 1.0

lY (6,2) 1.58417794011116
(6 1 1) -0.68617482824346

" (6,8) 0.07295197611457
" (1,2) 1.0
" (2,3) 1.0
If

(3,4) 1.0
of

(4,6) 1.0
of

(6,6) 1.0

I
M

X

i

1

ir

j

i
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Non-zero entries In Wa, qF2, *1

Matrix Index Value
1Y3 (7,3) -320.6463446770277

" (7,2) 157.5620966439277
It 0.88082861008329

(7,4) -0.17187605879836
" (7,8) 163.0897474939010

(1 16) 1.0
(2,1) 1.0

" (317) 1.0
(4,3) 1.0
(6,8) 1.0
(6,6) 1.0

1Y (8',2) -0.02695431628362
(81 1) 0.01249866671420

" (8,4) 1.99382806771669
10 (813) -0.99383444709202

(8,8) 0.01 471 61 2360540
" (1,2) 1.0

(2,3) 1.0

" (3,4) 1.0

(4,5) 1.0
" (6,6) 1.0

" (6,7) 1.0
It 1.0

11! 1 (811) -0.11914766720871
(8,8) 0.39568416566143
(8,3) 1.46207047489118
(8,2) -0.89683507326690

" (1,2) 1.0
it

(2,3) 1.0

1

i
1

J

i

1

1
1

1
.•	 Structure (i)	 ani

Cascade Direct Form I, 3 second-order sections
Number of Precedence Levels: 3



s.
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tl

Structurt (j)

Simple
NUmbbe of Precedence Levels: 3
Number of Coefficients in Scaled Structure: 50

(non-zero, non-unity entries in the modified state space matrices)

Non-zero entries in T3' *2' q'1

Matrix Index Value

!3 (7,1) 0,79382319292953
" (7,2) 0,1 3324583 1 04339

(7,3) -1,28.133934418640
(704) 1.63323383965448

If
(7,6) -0.22364700928633

" (7,6) -107427890614435
(1,1) 1.0

" (2,2) 1.0

" (3,3) 1.0
If

(4,4) 1.0
" (5,6) 1.0
If

(6,6). 1.0
!,2 (1,1) 0.89415889987584

(1,2) 0.02219872745941
If -0.40090758959435
if

(1,4) -0.00008683035986
" (1,5) -0.17493645514226
If (1,6) -0.12721o34794726
It -0.00059340804849
" (2,2) 0.99865886665303
" (2,3) -0.00167440057433
" (2,4) -0.00789688283429
If (25) 0.00003836756094

(2,6) 0.0000071 141 091 0
" (3,1) 0.18068685658836
" (3,2) -0.006385757421,11

(3,3) 0.84535736060977
If 0.00002869993983
11 -.0.02382581059578
to 6) -0.01138138229376
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66
25
45
53
03
96
84
19
56
66
49
08
31
11
86

51
68
09
25
15 4
01 I

I

F

Matrix	 Index	 Value
lY^ (4,1) 0,10382245621832

' (4,2) 0.00119679543943
(4,3) -0.02270574399998

" (4,4) 0.99999686644492
(4,5) -0.01171380969156

of	
(4,8) -0.006096740274

of (5,5) 0.301194227548
If 0.688803004681
" (1,8) 0.253412372377
If

(2,8) -0.022086497077
" (3,8) 0.325204932734
" (4,8) 0.327369112737
" (5,8) -0.431825850765

(6,8) -0.438096807298
(1,7) -0.022236586846

If 0.000000031084
of (3,;7) -0.00155168+0693
of (4,7) -0.000642003298

(5,7) 0.195629550728
(6,7) 0.475194188020
(6,6) 1.0

1Y 1 (8,2) -0.028749198692
(8,1) -0.024860712605
(8,3) --0.386894140849

" (8,4) -0.022825382098
" (8,6) -0.018129359943

(8,8) 1.074704077827
(1,1) 1.0

It
(2,2) 1.0

if 1.0
of (4,4) 1.0
If 1.0
If (616) 1.0

(7.7) 1.0

..
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Optimized Structure Considered In Chapter 8
(Based on Structure (c))

NUmber of Precedence Levels: 2
Number of Coefficient In Scaled Structure: 17

(non-zero, non-unity entries In thn modified state space matrices)

Non-zero entries In T2, *1

Matrix Index Value
(7,6) 1.341436168286127
(7,6) -7.60777452620114
(7,3) -0.31186194361846

" (7,4) 0.30767918685888
" (7,2) 0.62228239126601
" (7,1) -1.37949754700866
" (111) 110

(2,2) 1.0
" (3,3) 1.0
" (4,4) 1.0

(6,6) 1.0
(8,6) 1.0

lY 1 (2,2) 1.46297047489118
(2,1) -0.69683507325689
(4,3) -0.29140853484973
(4,4) 1.29047873768877

to (6,6) 0.1 6466 1 06298259
it

(6,6) 0.65028 1 821 28291
to (6,8) 0.66874389081747
" (4,8) 0.10856479467706
It

(2,8) 0.28980851506819
of

(6,6) 0.93389611882824
" (6,6) 0.12826868819766
of 1.0
" (3,4) 1.0



t i1Appendix B: The Adjoint Lyapunov Operator

If we take the trace of the product of two matrices to be an inner product

on the space of matrices, and it to be a matrix operator, then:

trace WX) U) trace (X it *(U))	 (6.1)

where ir * is the adjoint operator of ir. For 1r(X) = X-AXA', the operator r* can

be derived from (0.1):

trace ( (X AXA') U) trace (XU) - trace (AXA'U)

trace (XU) -trace (XA'UA )

trace (X(U-A'UA))	 (6.2)

Thus r*(U) - U-A'UA.

As used In section 5,6, the Lyapunov equation (6.37) and the trace (6.38)

were replaced by the equivalent equations (6.39) and (6.40). Relating this to

the derivation above:

X=V
A -*11

U = W 1
	

(8.3)

it (U) =11
2

*(X) _ ^r A1Si2
12

9

1	 is
;t
f;

}t

F
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Appendix C: A Simplified Evaluation of (6-23)

In this appendix we will derive the expression used In the SWL and MSWL

aIQOr1.thM3 for computing the second partial derivatives of J. Evaluating this ex-

Pre3slon will be simpler than directly computing (6.22) and (6.26). Using (6.22)

and the expressions In (8.25) and (6.26), and defining the following matrices:

	

I	 I

	

1	 On
	

I rkda

	

I	 I
– – – – – – – – – – – – – – – – – – – – – – – – –

I

D	 0	 1	 (C.1)

– – – – – – – – – – – – – – – – – – – – – – – 

_– J
I

	

'Aad	 1	
0

it

On 0 0

	

D2	 0 On+1 
0	 (C.2)

	

0	 0 e2.

we can rewrite 
X/j

	

j	 0 0	 '01 8z + 0 0	 '0
^—A

	

8110.	
C,

	

X	 8qr	 ac 
A

0	 0
	ac

i	 ac;

	

+ 10 0 1	 '0 01+10

0 a*Co 
(
O l zo l	 2) 

0 

aqf 
00

8C	 ac

	

I	 i
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1

w

	

J"n0Q	 (1 

+
82W	

(01zD1I+D2) 0 to,	 (C.3;

	

0	
w

aciacj

Thus Xi J will be a. matrix whose lower right-hand (n+1)x(n±2) portion is non-zero,

and the rest zero. Thus the trace expression in (6.23) can be simplified:

2	
a*00
	 a1Ya J . 2 trace	 (M 1) az (M 2) +	 (M 1) aZ (M 2)

acjacJ	 acJ	 acf	 act
	

acJ

	

aw	 a*	 ; a2*
+ 2 trace ac

ao
 (M 3) ac W (M 4) + ac ac (M 6)	 (C.4)

	

f	 1	 ^ J

where M1, M2, M3, and M4 are precomputed matrices (computed only once for

all i and J) the fixed matrices D: 1 , Z, A, D 2, U, and T... As it Is shown in (C.4), a

maximum three matrix multiplications and a trace operation are required for each

term In (C.4), for each i and J. Thus in terms of operation counts, the calculation

of (6.23) would be roughly proportional to (N 2) (2n+1)3

In fact, this expression can be further simplified to reduce the computation-

8#00 at 
al load. By substituting (6.27) and (6.28) into ehe partial derivatives acj ' 8c J

a2Go
and 8c ac , applying simple trace identities, and combining the matrices W,, 20

f ^

1Y3 • 1YQ with M 1, M 2, M 3, M 4, and M 6, we can produce:

Appendix C: A Simplified Evaluation of (6.23) 	 263.

i



2
8c 8 .2trace C(M8)Ek1 (M7)

8 1I	
c

1 	 1J

+ 2 trace ((M 8)Ers (M 9) a
`	 i

+ 2 trace (EA, (M 10)Ers (M 11))

+ 2 trace (EAS (M 12)) if I b r
	

(C.6)

where the precomputable matrices M7, MO, M g, M10, M11, and M12 will

depend on which specific precedence-level matrices contain coefficients C  and

cJ . As the number of precedence levels goes up, so does the number of such

matrices	 but they can still all be precomputed. Equation (C.6) can be

simplified by taking advantage of the special form of Eke and Ers (described in

section 6.4). For the first trace term of (C-6), we can write:

(M 6) Ek, (M7) - (1/1) (1/2)	 (C-6)

where V1 is a column (2n+1)-vector equal to the kth column of M6 and V2 is a

rove (2n+1)-vector equal to the I th row of M7.  Thus the first term of (C.6) can

be written as:

2 trace (V 1) (V 2) 
O = 2 trace (V 2) ac V _2z

2( 1) = 2 (V 2) 	 (1/1) 	 (C.7)
!	 1	

i

Now, only one vector-matrix multiplication and one vector dot product are required

per 1 and j. In terms of operation counts, this simplification reduces the calcula=

.w..d..,.¢u.^etwY.:..rs6.!LN^.(^N.^1^¢.•+i^s"' ^.rm.aw^r..'^
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a

a	 tion of (6.23) (given the first partial derivatives of Z) from being roughly propor-

tional to N 2(2n+1)3 to being proportional to N 2(2n+1)2 , a large savings.

The second term of (C.6) can be simplified in exactly the same manner as

term 1. The third term, since there is no dependence on c^ or ci other than in

E and E^	 is, we can reduce to:

2 trace Ekj (M 10)Ers (M 11) = 2 M 10U,r )M 11(s,k)	 (C.8)
r
l

I This Involves even less computation then the first two terms. Finally, the fourth

term reduces to the simplest form of all:

2 trace Eks (M 12)^ = 2 M 12(s,k) 	 (C.8)	 ; {

Thus overall, the number of operations Involved In computing this simplified expres-
7

alon will be proportional to N 2(2r,+1)2 where N Is the number of rounded s

coefficients In the structure, and n is the plant order.

L
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