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1.0 INTRODUCTION

Two of the more influential factors in the study of numerical integration of a
system of differential equations are mathematical (Lyapunov) stability and numer-
ical stability. Some of the confusion surrounding these concepts seems to re-
sult from certain similarities; specifically, factors such as (1) both types

of stability are related to the behavior of the eigenvalues of the system under
analysis, (2) similar terminology, (3) interrelaticnships between the concepts,
and (4) instability of either type frequently results in an unacceptable loss of
accuracy of numerical approximations.

Lyapunov stability is concerned with the qualitative behavior of the solutions
of a vecvor differential system

7= £t,y)

in some neighborhcod of a specific solution y,(t) of the same system. Appro-
priate behavior on scme infinite interval t, < t <« will result in y,(t)
being classified as stable, unstable, asymptotically stable, or one of several
additional categories. Lyapunov stability is a global property of a particular
solution (determined by the nature of its relationship to solutions in its imme-
diate vicinity).

A useful technique in the study of the stability of a particular solution yo(t)
is to linearize the function f(t,y) about the solution y,(t); i.e., to trans-
late the origin to Xo(t)- If the nonlinear perturbation is admissible in some
sense, then the stabilily nature of the linear system can be transferred to the
solution Xo(t)- The eigenvalues of the linear system are characteristic for
the classification of its solutions {(with regard to Lyapunov stability).

Tnis report provides an outline and a brief introduction to some of the con-
cepts and implications of Lyapunov stability theory. Various aspects of the the-
ory are illustrated by the inclusion of eight examples, including the Cartesian
coordinate equations of the two-bndy problem, linear and nonlinear (Van der

Pol's equation) oscillatory systems, and the linearized Kustaanheimo-Stiefel ele-
ment equations for the unperturbed two-body problem. Lyapunov's direct r:2thod
was not considered, nor was an attempt made to present the most relaxed version
of a particular theorem. For additional information at the introductory level,
see references 1 and 2. At the advanced level, references 3 and 4 provide an
extensive survey of the field.

It is anticipated that this report will provide contrast to a second report on
nunerical stability.
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2.0 LYAPUNOV STABILITY AND ITS GEOMETRY

Consider the concept of Lyapunov stability for arbitrary systems

y = £ (t,y) (1)
where
¥ = (F1{)asees Tult)T
. dy
xE —
dt
and

£(t,y) = (F1(t,9),.eny fu(t,yNT

It is assumed that f is defined and continucs in some tube in t x R? space.

T={(t,y) :to<t<=, ||yl <ag}

where a, is a given positive constant, t, is an initial time, and |i }|

notes the euclidean norm

0 =
Hyll =y/2 32 (2)
=1

or s3ome equivalent norm such as

yll = max {lysl} (3)

120 etee 50

The continuity condition on f ensures the existence cf solutions to initial
value problems associated with equation (1). In many cases, ap = ® for
the tube T.

Let y,(t) = y(t;ty,¥o) denote some solution to the initial value problem

—— ; " MR - T IR g e ———— r
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y=f (t,1))

¥to) = ¥o (4)

then

Definition 1. A solution y,(t) is said to be stable in the sense of Lyapunov
if for every g > 0 there exists a § > 0 such that if yjq is any solution of
equation (1) with yq(ty) = yq, and the number

[ly1 - ol| < 6 (51)
then
[1y1(tito,y1) - ¥oltitos¥od || <€ (S2)

for all t, t> tg. If yo(t) is not stable, then it is unstable. If y,(t)
is stable, and if the additional condition

lm||y1(tito,y1) = Yoltito,yo) || =0 (53)

troo
is valid, then y,(t) is asymptotically stable.
Discussion. In general, stability or asymptotic stability is a property of a
single solution y,(tity,yo) and requires a certain behavior over an infinite
time interval (to,m). In geometric terms, consider a tube about the solu-

tion yo(ti;te,¥o) of radius e > 0 (e arbitrary).

Figure 1 represents a Lyapunov tube about a vector y,(t;ty,yo) in t x R2.

b Mhere y =(§1> Graph of Yo (t; tg, y,)
4

Figure 1. ~ A Lyapunov tube.
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If Xo(t;to’lo) is stable, then there exists a smaller neighborhood of radius
§ of y, such that any solutions yq(t;ts,y1) starting in that smaller
neighborhood will never stray farther than ¢ distance from yo(t;tqo,yo) (i.e.,
solutions starting in the o disk never leave the ¢ tube). (See figure 2.)
Asymptotic stability merely ensures that all solutions starting in

some § neighborhood of y, tend to the solution yo(t;to,yo) as t » w.

Graph of ¥y (t; ty ])

‘e tube'
““--______l__

'Disk' g S SR -~

of radius § \

N

s Yn)

¢ to* Yo

\p

Figure 2.- A second trajectory within a Lyapunov tube.

The first example will establish that circular trajectories of the Cartesian co-
ordinate system formulation of the two-body piroblem are unstable.

Example 1. For the two-body problem with masses m and M subject to the
k°uM
rl
functions of time t), the resulting differential equation is

universal law of gravitation where r = (y1,y2,y3)T, r = |r| (all

r=20 (E1.1)

'3|’L'-'
w

where

TR k2 (M + m) = gravitational parameter
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As a first-order vector system, equation (E1.1) can be expressed as

r r v 03x3 I3x3\ /T
v v o e §8 L 13 033/ \v/ E12)
-3 3

where

v=ro= (y108),y2(t),y3(enT

O3x3 is the 3 by 3 zero matrix, and I3x3 is the 3 by 3 identity matrix. Sys-
tem equation (E1.2) is clearly nonlinear, and a well-posed initial value problem
would require initial positions and initial velocities; i.e.,

r A r o
= ’ (to) - ’
v L p v Vo (E1.3)
r3

where (Eov!o)T are given. Because motion occurs in a plane, it can be assumed
(without loss of generality) that y3 = 0, and the motion is in the (yq,y2)
plane. Equation (E1.1) implies

= u

y1+—y1=0
e

. u

yo + — y> =0 (E1.4)
r3

where

r = Vyi2 + yp°

Next, change to polar coordinates by setting

-—M
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r cos ¢

«
1"

y. = r sin ¢

where r,b are functions of t. This leads to the well-known and equivalent
system

r - rg2 +

e N B =
n
o

(E1.5)

rd + 2rd = 0

For circular orbits, r is constant; hence, r o= ; = 0. Consider two orbits of
fixed radii rqy and rp, then from equation (E1.5)

. H
$42 = —
;3
or
. u
¢ =
Pi3/2
hence
it
¢)l: ¢ 1= 1,2
r.,13/2

Thus, two solutions of the vector formulation of equation (E1.4) are given by

i it Vit
N1 = »1 [cos y 8in
r13/2 r13/2
i/

and

-
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( T T

N = P cos Sin

0o =rp ,
rp3/2 r,3/2

Place rqy in 0Ny, but sonsider Ny to vary as a function of rp. In order to
show instability of n4y, it is required to show that there is some € > 0 such
that for every & > 0 there exist sclutions N, for which

[In1(tsto,ry) = Noltst,ra)|]| > € (E1.6)

for arbitrarily large values of t, and ||r1 - r2|I < §. That is, every §
disk about rqy contains solutions (starting in that disk) that escape the
Lyapunov tube for arbitrary large t. An easy computation shows that

IIny -=noll = Y2 | 1= ryrp cos (rq=372 = py-372) /i ¢ |
but if rq #rp, then there exists a sequence of t values

{1:,1}‘1:_1 with lim tn = ©

such that

cos [(r1'3/2 - rp=3/2) Vu tn) =0
in fact, set

(r‘1'3/2 - r2'3/2) n th = T:' + Nl 0= 05702550
Thus

|Inq(ty) = noltn. i = V2, n=1,2,...

and therefore, if € < Y2 is considered, the instability of the circular
trajectories has been established.
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3.0 LINEAR SYSTEMS

Linear systems comprise the most important subset of the differential system
equation (1), especially because the linearization ol eguation (1) about a
particular solution is an important tool in the analysis of the originail
system. Consider the linear system

v = Alt)y (5)

where A(t) 1is a continuous n by n matrix in the interval [to,w). The
characteristic polynomial of equation (5) is the polyrnomial of degree
n in A,

|aCt) - A1 =0 (6)

where | | denotes the determinant of A(t) - AIL.

If A(t) is a constant matrix, then the constant coefficient system
y= Ay (1)

has =z stable characteristic polynomial if every eigenvalue A has Re(A) < 0
where Re denotes the real part of the possible complex number A.

A very useful result for arbitrary linear systems is the next theorem, which is
proved in reference 1.

Theorem 1: A necessary and sufficient condition for stability of every suvlution
of the linear sysiem equation (5) is that all solutions of equation (5) be
bounded.

A frequently occurring case for orbital mechanics is where the linear system
equation (5) has multiple, purely imaginary eigenvalues X = +if (usually
occurring an even number of times), or if zero is a multiple eigenvalue. This
case can be either stable or unstable depending on the nature of the solutions.
One procedure is to find a fundamental matrix ¢(t) of equation (5) and apply
lireorem 1. A fundamental matrix is defined as an n by n matrix such that

i(t) = A(t) ¢(t)
and

det $(t) £0, ty < t < =
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(i.e., it contains n 1linearly independent (vector) solutions of equation (5)).

Example 2 (unstable). The system

-

y = Ay, where A = (E2.1)

C OO0 O
(=Nl o]

o il
OO0 o

has the characteristic equation |A - AI| = L and, hence, A = 0 is an
eigenvalue cf multiplicity 4. To determine the fundamental matrix for

this system, eigenvectors § = (c1,c2,C3,cu)T associatad with A = 0 are
sought. In this case, the system of four equations

Ag_:xg

has three linearly independent solutions

gy = (1,0,0,007

£, = (0,1,0,0)T
and

g3 = (0,0,0,NT

Consequently, giekt = §; are three linearly independent solutions of equation
(E2.1). To find a fourth, linearly independent solution of y = Ay, &y, which
satisfies (A - AI)2 £y = 0, but_does not satisfy (A - AI)Ey = 0, is sought.

Such a vector is &y = (0,0,1,0)T, and the corresponding solution is
et (Ey + t(A - AD By) = (-t,t,1,-0)T

(This is easily verified by substitution into the 2quation.) A fundamental
matrix for this syvstem is
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1 0 0 -t
gt) =ert [0 1 0 ¢t
0 0 0 1
0 0 1 -t (E2.2)
where

The fourth column of g¢(t) is a solution of equation (E2.1) and is unbounded
because

1 C=t,t,1,=t)T]| = V3t2 « 1

Thus, Theorem 1 veri{ies the conclusion that equation (E2.1) is unstable. For
further details on the generation of the solutions of linear systems with
multiple eigenvalues, see reference 2, section 3.10.

Example 3 (stable). Consider the two oscillatory systems

il p w12x1

€1 (x] 1 X1 vx2vx2)(

iz # w22X2 = €2 (X1,i1,xz,i2>‘ (E3.1)

where wq and wp are constants. Equation (E3.1) can be expressed as a sys-
tem of first-order equations by the usual substitutions

x|

= p1

P1 = -w1°xy + €1(xq,p1,%X2,p2)

X2 = P2

62 = qu22x2 + €2(x1,p1,Xx2,p2) (E3.2)
10

e« o' " el At
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or in matrix form

X1 0 1 0 0 X 0
P4 w12 0 0 O P €1
X2 ) 0 0 0 1 X2 ’ 0
P2 0 0 <> 0 P2 €2 (E3.3)

Then, if

- ¢ T
X = (X4,Pys%,5,0,)

€ (0,61,0,62)T

and A denotes the matrix in equation (E3.3), then system equation (E3.3) can
be written.

i = AX + € (E3.4)

For the present, € 1is suppressed by setting it equal to zero. The resulting
linear system

X = Ax (E3.5)
has characteristic equation

A4 =AI] = A2 +w12)(A2 +ws2) = 0
and eigenvalues

A = 1iw1

)\::ih)g

If wy # Wy, then it is well kncwn (see Theorem 3) that system equation
(E3.5) is stable; i.e., every solution of equation (E3.5) is stable. Consider
the case where wjy = Wp so that +iwy are eigenvalues of multiplicity 2.

11
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Proceeding as in equation (EZ.1), linearly independent eigenvectors
£ = (c1,02,03,cu)T corresponding to A = iwy are sought, such that
A€ = iw4€ (E3.6)

Solving equation (E3.6) for &, it is found that §&; = (1,iw1,0,0)T and
Sz = (0,0,1,ﬂ01)T are linearly independent solutions of the algebraic system
equation (E3.6), and the corresponding solutions to equation (E3.5) are given by

Xy = eim1t (1,iw, ,0,0)T
and
Xo = eiwzt (0,0,1,iw-,)T
Similarly, with A = -iwy, solve
S = -iwgf
to find solutions
x3 = ¢ 1% (1,_40y,0,0)T
and
xy = e 1% (6,0,1,-iwp) T
A fundamental matrix is

B(t) = (x1(t), xa(t), x3(t), xy(t))

Moreover, because each solution xji(t), i = 1,2,3,4 is bounded, it is concluded
that the linear system equation (E3.5) is stable.

12
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Example 4 (unstable). Reference 5 considers the Kustaanheimo-Stiefel (KS) el-
ement formulation of the two-body problem without perturbations. The linearized
equations are

#*
Sy = ASy (E4.1)
where
9 x 10 * ddy
A= 3u ’ éy T e—
0 ', e JE
gl

where E is the eccentric anomaly used as the independent variable and
8y = (8aj, Sap, Saz, Say, 6Bq, 8B, B3, 8By, Sw, 6T)T

In this case, |A - AI] =A10 so that A = 0 is an eigenvalue of multiplicity
10. Solutions to equation (E4.1) can be generated by first finding eigenvectors
E = (e1, 2y <.ty Cgy 010)T such that

AE = AE

which, in this case, reduces to

3u
- —c¢g =0
8wl
3u ) )
Thus, cq =0 (as = —_H #0) and nine linearly independent eigenvectors are
8w
given by & = (0, ..., 0, 1, O, ...0)T where 1 is in the ith position, and
zero otherwise for i =1, ..., 10; i #9. The tenth eigenvector (denoted Eg)
can be found using the technique of the previous examples, and is
&g =(0, ..., 0, 1, 0)T. The corresponding solution to equation (EU4.1) is
given by
3UE
8yg = £g + E (A - AI) Eg = (o, N ___)T
8wl
13

s Bl - - . s =k - A TN W D st oy e —— 3 R
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The other nine linearly independent solutions to equation (E4.1) are given by
Oyi = &4y £ =1, ..., 10; 1 £9
Because §19 is unbounded as a function of E, it is concluded that equation
(E4.1) is unstable (in the sense of Lyapunov).
The conclusions of the preceding examples could have been brought forth much

faster by discussion of the rank of the matrix (A - AI), which indicates the
number of linearly independent solutions of the linear system

(A-AD) E =0

however, the constructive approach seemed more appropriate. Because of the im-
portance of the situation encountered in these examples, the following remark is
stated.

Remark. Suppose that in a real, linear system i = Ay, for every eigenvalue 2\

such that Rel = 0 and A has multiplicity m, the equation

Ag: kg_

has m linearly independent solutions {£j}j-1 then y = Ay will be stable
or unstable in accordance with whether the remaining solutions (associated with
the other eigenvalues) are bounded or unbounded. This is a consequence of the
fact that the sclutions yj = ethi, i=1, ..., m are bounded.

A second point to be aware of is that it suffices to study only the trivial, or
zero, solution of linear systems, because by linearity

Y1(titoy1) = Yoltitos¥o) = nltitosy1 = Yol
is a solution, and conditions (S2) and (S1) reduce to
|In(tite,x1 = ¥o) || <& t 2ty

whenever

|ly1 - ¥ol| < 8

14
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Another implication of this second point is that constant coefficient linear sys-
tems can be classified as stable, asymptotically stable, or unstable because
whatever is true for the zero solution is true for all solutions. This is in
contrast to nonlinear systems where specific solutions must be concentrated on;
i.e., boundedness and stability are independent concepts, in general.

Theorem 2: If the characteristic polynomial (eq. (6)) of the linear system (eq.
(7)) is stable, then every solution of the linear system (eq. (7)) is asymptot-
ically stable. (See reference 1 for verification.)

The word stable is unfortunately assoniated with the characteristic polynomial,
because it implies more than that for the solutions. A final result in this di-
rection is as follows:

Theorem 3: If the roots of the characteristic polynomial (eq. (6)) of the linear
n

system (eq. (7)) are {Xi}i_1 (not necessarily distinct), then every solution of

the linear system is stable if (1) Re(Aj) < 0 for all eigenvalues Aj with

Re( i) #0, and (2) if there exist roots Aj with Re(Aj) =0, then A; 1is a

simple root (i.e., has multiplicity 1).

Remark. Consider the constant coefficient system i = Ay. Suppose A 1is unsta-

ble because of the existence of an eigenvalue A with Rel > 0. If there exists
a nonsingular matrix M that diagonalizes A; i.e.,

M-1AM = D = diag (A1, ..., Ap)
then it is well known that
|A = AI| = |D - AT|

and consequently the transformed system x = Dx 1is unstable where x = M'1x.
This implies that if instability due to Rek > 0 in a system i = Ay is
eliminated, it will be necessary to use a change of independent variables or
some transformation other tha:i a similarity transform.

3.1 PERTURBED LINEAR SYSTEMS

Several of the preceding theorems were applicable to the constant coefficient
linear system i = Ay, with the exception of the general nonautonoumous linear
system y = A(t) y. Perturbations of asymptotically stable (or stable) con-
stant coefficient linear systems can inherit stability provided the perturba-
tions are small in some normal sense. Specifically, the linear systems under
consideration are

15
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y = (A +C(t))y (8)

where C(t) = (Cij(t))?'3=1 is a continuous n by n matrix on (to,w). In what
follows,

e || = (,??ij(t))vz

or some other finite dimensional norm such as

[lce) || = tf?)j (‘gglcij(t)l)

provided such maximum exists.

Theorem 4: If the characteristic polynomial of y = Ay 1is stable (i.e., i = Ay
is asymptotically stable) and

[ lewlae < = (9)

to
(i.e., the integral exists), then all solutions of equation (8) are asymptotically

stable. (See reference 1 for verification.)

Corollary 1 (to the proof of Theorem 4). If there exists a sufficiently small
constant £ > 0 such that

|lc(ty]| < €, t included in the interval (to,m) (10)

then the conclusion of Theorem 4 is valid. The exact nature of & is discussed
in reference 1. Observe that inequality (eq. (10)) does not imply inequality
(eq. (9)).

Corollary 2. 1If all the solutions of i = Ay are stable and condition
(eq. (9)) holds, then all the solutions of the perturbed system (eq. (8))
are stable. (See reference 1 for verification.)
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4.0 PERTURBED NONLINEAR SYSTEMS

Analysis of the stability properties of solutions of nonlinear systems can often
be achieved by considering the nonlinear system

y = £ty
as a nonlinear perturbation of a linear system; i.e.,
y = Ay + P(t,y) (11)

This situation occurs when attempting to analyze a particular solution of sys-
tem equation (1) by linearizing that system about the particular solution.
Because of the importaace of chis process, details are provided below.

Linearization. Let y,(t) be a given particular solution of the nonlinear sys-
tem equation (1). Study the stability of yo(t). Let y = y(t) be any other
solution of equation (1), then using a vector valued Taylor series expansion of
f (expanded about y,(t)), the result is

df
flt,y(t)) = flt,yo(t)) + [—- (t,xo(t)ﬂ (1 - lo(t)) +
dy
©
Z((x - ¥o)°V)®
£(t,yolt)) (12)
m=2 m!
(2 3 \f
where V = l—, ..., — |, f(t,yo) = (£1(t,y0)y -++, fu(t,yo))T and
\?Y1 Ay,

((y - ¥0)'V)M  is a symbolic operator in which
(y ~ 2o)°Y (13)

is performed and then raised algebraically to the mth power. At this point, it
is applied to the components of f and evaluated at (t,y,(t)). Next, observe
that

£lt,yit)) = y(t), flt,yo(t)) = yo(t)

i
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which implies that equation (12) can be written as

w
d df y z: ((y ~ya)'H) ™
- (y = ¥) = |— (t,yo)| 'y - xo) + £(t,yo)
dt dy m=2 m!

Set
us=y(t) - yo(t) (14)

in the last equation to obtain

. [er Z (uy)m
u= |[=— (t,yo(t))| u + — f(t,yo(t)) (15)
al m=2 m!
or,
é = Au + p(t,u) (16)
where
2
A= o (t,yo(t))| = the Jacobian of f at y,(t) (17)
) A
and
P
p(t,u) = —) £(t,yo(t) (18)
m=2 m!

The linear part of equation (16), which is obtained by suppressing p(t,u),
is called the linearized system associated with equation (1), and is often
written

18
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o ar
8y = [._] 8y (19)
3y (t,yo(t)

In some instances, a linearization about initial conditions (t,,y,) is useful,
and in this case the result is

: ar
8y = | — Sy (20)
dy J (toyolt))

Some of the most important cases of linearization occur for autonomous systems
Y=Ly (21)

The preceding formulas are modified accordingly. The following examples will

illustrate most of the ideas of this section.

Example. Consider the nonlinear equation from reference 3.

).' =1 - yzn y(to) = Yo (E5.1)

The real solutions of equation (E5.1) are given by

y = tanh (t - to + k)
where

k = arc tanh (yg,), =1 < ygo <1 (E5.2)
It is easy to show directly that the solution y, = -1 is unstable as t *+ =,

whereas yq = 1 1is stable. The objective is to relate equations (i), (16), and
(19) for this example. Here,

fit,y) =1 = y2

d
-— ’ = -2
5 (t,¥) y

19
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and if an expansion occurs about y, = -1,

of
A = -— s 2 (E5.3)
dy. Yo
Moreover, regarding p(t,u), the following occurs.
(u-)m -u2, if m= 2
— f(yo(t)) = (E5.4)
m! I 0, if m> 3
Consequently, equat 'on (16) equals
u=z2u - ul (E5.5)
where
Uu=y-yolt) =y +1 (E5.6)
The linearized equation (19) is
Sy = 28y (E5.7)

Assuming 0 < u < 2 (for convenience), then equation (E5.5) can be solved, and

2ce?t
u(t) = e=———— , ¢ >0 (E5.8)

1 + ceft

As noted by l'Hopital's rule that u(t) * 2 as t * ©, thus because u =y + 1,
this implies that y(t) * 1 as t * ®. Thus, every solution starting near
Yo(t) = =1, but greater than -1, approac':s asymptotically yj = 1. Hence,

Yo = -1 is unstable. Clearly, the linearized system equation (E5.7) has
solutions

Sy = kelt (E5.9)

20
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Figures 3, 4, and 5 illustrate various solutions of systems equations (E5.1),
(E5.5), and (E5.7), respectively. Figure 4 is the same as figure 3 but
translated one unit upwards (in the y direction). Figure 5 (illustrating
the linearized system) only fits the nonlinear system initially. In this
case, the nonlinear part -u? pesults in the solutions being asymptotic to 2.

A similar expansion could be made about yq = 1. For this example, the instabil-
ity of the linearized system correctly predicted the instability of the solution
Yo = =1 c¢f the nonlinear system. Two important remarks are in order.

Remark 1. The linearized system equation (19) will not always correctly predict
the stability behavior of the nonlinear system equation (1). It is possible

for equation (19) to be stable but for the nonlinear system equation (1) to

have a solution yo(t), which is stable or unstable depending on the nature

of p(t,u) in equation (16). Essentially, a stable situation in which there
are multiple eigenvalues of linearized systems of the form A = +iB can become
stable or unstable depending on the original nonlinear system. This situation
is illustrated with a classic example in reference 2. (See equation (E6.1)).

8y

}"-‘1-)’2 L'1=2u-u2 6y:26y
where superimposed over
solutions of equation
Uusz=y=y,=y+1 (E5.5)
Figure 3.- Solutions Figure 4.- Solutions Figure 5.- Solutions
5 .
of § =1 =y of d = 2u - u of & = 28y
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Remark 2. When studying autonomous nonlinear systems and the stability of ce.-

tain solutions, many times a change of dependent variables is made that essen-
tially translates the system to the origin. This same result is achieved by
linearization.

For example, the nonlinear system

y=1-y?

becomes

ﬁ = 2u - u2

under the change of variables u =y + 1.
Example 6. Consider the nonlinear system
Y1 y2 - y1(y12 + y22)

. (E6.1)
y2 -y1 - yaly12 + y22)

which has y(t) = (y1(t),y2(t))T = 0 as a solution. The linecrized system is

i > (™ (36.2)

Syo -1 0 (Syz'

which has eigenvalues A = +i. Thus, the linearized system is stable. Next,
observe that

d
7 (y12 + Y22) = =2 (Y12 + y22)2 (E6.3)

where equation (E6.1) is used to evaluate on the left 2(yqyq + y2§2). Setting
r(t) = y12 + y22

equation (E6.3) equals
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r(t) = -2ré(t)

which integra.:s tc give
— =2t + ¢ (E6.4)
This last equation implies

5 c
2(t) + y22(t) = ——— -
y1<(t) + ya=(t) g (E6.5)

where
e = y12(0) + yo2(0) > 0

(provided the iritial value problem is nontrivial). Recalling that

Hyll = 'V@lz(t) + yo2(t), equation (E6.5) implies that

1im |lyll =0
t—m

where y = y(t;to,yo) and yo = (v1(0),v2(0))T. Thus, the result is that
0 is an asymptotically stable solution of equation (E6.1). Because, in
addition,

Hyto !l < Hyall, £> 0.
Example 7. On the other hand, consider the system

¥i y2 + y1(y12 + y22)
2 . X (ET.1)
y2 -y1 - y2(y1© + y2°)

/
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The linearized system associated with equatiecn (E7.1) is exactly the same as
equation (E6.2), which, in turn, is stable. In this case

d )
= (y12 + ¥22) = 2 (y12 + y22)2 (E7.2)

which implies

Cc

1 - 2ct

(E7.3)

2 4 ol &

where

c = y12(o) + y22(0)

1
The right side of equation (E7.3) has a vertical asymptote at ¢t = = > 0;
{0

i.e., the solution has finite escape time. Thus,

lim Hy(t’;toylo)“ = ®

t*1/2c
regardless of c¢. This implies that equation (E7.1) is unstable at the origin.
The examples presented above indicate that stability of the linearized system

will not necessarily be inherited by the nonlinear system. The following theo-
rems indicate more positive results for

y = Ay + p(t,y)

The following hypothesis regarding the system equation (11) is required:

a. p(t,y) 1is continuous in T, and

Hele,p ||

b. lim
tglso [l

= 0, uniform in t.

Condition (b) implies that p(t,0) = o so y = o is a solution of equation

(1%,
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Theorem 5. Suppose |A - XIl is stable (i.e., the linear system is

; asymptotically stable) and p(t,y) satisfies (a) and (b), then the solution
). Yy = o of system equation (11) is also asymptotically stable. (See reference
r 1 for verification.)

A similar version for autonomous systems

y = Ay + p(y) (22)
appears in reference 2, where the norm

: [gil = max [y
&

is used.

Theorem 6. Suppose the vector valued function

p(y)

peir (23)
[yl

is a continuous function of y (i.e., the components y; of y are continuous)
and vanishes for y = 0. Then

a. The solution y = 0 of equation (22) is asymptotically stable if the

linearized system Oy = ASy is asymptotically stable.

b. The solution y = 0 of equation (22) is unstable if there exists at least
one eigenvalue A of the characteristic polynomial IA - XI] such
that Rel > 0.

c. There is no conclusion regarding the stability of y = 0 if every
eigenvalue A of the characteristic polynomial |A - AI| has Rel < 0,
and there is at least one eigenvalue with ReX = 0; i.e., there exists a
purely imaginary eigenvalue of A.

Example 8. For the final example, consider the one-dimensional perturbed
harmonic oscillator,

y+e(1 -y2)y +y=0 (E8.1)
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where € 1is a small, positive parameter. This equation is equivalent to the
system

0 1 ¥ 0
] . (E8.2)
y2 -1 -/ \y» € y12y2

N

—_—

where yq =y, yp = &. The linearized system is

(E8.3)

which has eigenvalues (distinct for 0 < € < 2)

<€ * Ve » §

2

A=

Because ReX < 0, the linearized system is asymptotically stable to (O,O)T.
Moreover,

p(Y)
lim

yo |yl

= 8 (E8.4)

where p(y) = (0,€y12y2)T. Thus, by either of the preceding theorems, (0,0)T
is an asymptotically stable solution of equation (E8.2).

With regard to equation (E8.4), it should be noted that it suffices to consider

€y1€y2

li.m e ———
I[xl|+o VY12 + y22
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but
ey19y2 ey12yoa V2 + yo2  eya Vil + ya2
¥12 + y2° y12 + y1° y1\°
1 + | —
y2
and

ey2 Vy12 + yo?

= < ¢ |yz| ‘/Y12 + yp°@ (E8.5)
1+ (y1/y2)°

The inequality (eq. (E8.5)) implies the conclusion (eq. (E8.4)).

5.0 CONCLUSIONS

The study of the qualitative behavior of solutions of linear and nonlinear sys-
tems of differential equations is of major importance and has implications for
the accuracy of numerical solutions. It is important for scientists and engi-
neers involved in the analysis (numerical and analytical) and the solution of
large scale sy:tems to clearly understand the concept of stability both from the
numerical and mathematical viewpoint. For various reasons, most publications
emphasizing the mathematical and numerical stability thecry of linear systems
tend to focus on small systems; i.e., one or two first-order differential equa-
tions. This does not necessarily enhance understanding of the larger systems.
In orbital mechanics, systems of 6 to 10 equations are more prevalent, and they
frequently have high multiplicity eigenvalues, which are either zero or purely
imaginary. In this report, the emphasis is on mathematical (Lyapunov) stability
analyses fcr these higher dimension systems with eigenvalues of the form iB
where i2 = -1 and B are real, nonnegative numbers. Eight examples are
presented from orbital mechanics, mechanical, and electrical systems, etc.,
which illustrate the techniques and theory of Lyapunov stability.

A basic tool in the study of nonlinear systems of equations is to linearize the
system and analyze the resulting linear system. Unfortunately, :-he stability
properties of the linear system are not necessarily inherited by the original
nonlinear system, and this is illustrated by example. Of more concern is that
if the linearized system is only (marginally) stable (i.e., it is stable but has
repeated eigenvalues of the form 1iB), or (marginally) unstable, then the
nonlinear system may go either way. This is precisely the situation often
encountered in orbital mechanics. This report attempts to emphasize understand-
ing of Lyapunov stability by illustrating techniques and giving examples that
occur in practice, and to stress the type of system for winich analysis is more
difficult.
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