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Two of the more influentia facto rs in th~ s tudy of numeri cal integration of a 
sys em of d-fferentia equations are mathematical ( Lyapunov ) stabi ity and numer
ica stab i it. Some of the confusion s urrounding these concepts seems to ~e-
su t from certa i n s i milarities; spec i f i call y, factors such as (1 ) both types 
of stability are re lat~d to the behavior of the eigenva lues of the system under 
ru~a ysi s 2 ) s i mil ar terminology, 3 ) i nt erre lat i enships between the concepts, 
and ) instabi l ity of either type freq ently resu - ts i n an unacceptable l oss of 
accuracy of numerical approx imat ions. 

Lyapunov stability is concerned with the qua lita tive behavior of the solutions 
of a ve~tor differential system 

in some neighborhood of a specific solu t ion lo(t ) of the same system . Appro
priate behavior 0n seme infi nite interval to ~ t < 00 will result i n lott) 
being class i f i ed as stable, unstable, asymptotically stable, or one of several 
additional categories. Lyapunov stability is a global property of a particular 
solution ( dete rmined by the nature of its relationship to soluti ons in its imme
diate vicinity ) . 

A useful t echnique in the study of the stability of a particular solution lo(t) 
i s to linearize the fun c tion Dt ,l ) about the solution .Yo(t)j i.e . , to trans
late the origin to lo(t). If the nonl i near perturbation is admissible in some 
sense , t he n the stability nature of the l inear system can be transferred to the 
solution lo( t ) . The eigenvalues of the linear system are characteristic for 
the classification of its solutions (wi th regard to Lyapunov stability). 

This report provides an ?utline and a brief introduction to some of the con
cepts and implicat i ons of Lyapunov stability theory . Various aspects of the the
ory are ~llustrated by the inclusion of eight examples, including ~he Cartesian 
coordinate equations of the two-b0dy problem, li near and nonlinear (VQn der 
Pol's equation) oscillatory systems, and the linearized Kustaanheimo-Stiefel ele
ment equa tions for the unperturbed two-body problem. Lyapunov' s direc t r ;~thod 

was not considered, nor was an attempt made to present the most relaxed version 
of a particular theorem. For add i tional i nformation at the introductory level, 
see references 1 and 2. At the advanced level, references 3 and 4 provide an 
extensive survey of the field. 

It is antic i pa ted that this report will provide contrast t o a second r eport on 
nu~er ical stability. 
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2.0 LYAPUNOV STABILITY AND ITS GEOMETRY 

Consider the concept of Lyapunov stability for arbitrary systems 

(1) 

where 

~ = (Yl(t) , ... , Yn(t»T 

~= 
dt 

and 

It is assumed that f is defined and continue' s in some tube in t x Rn space. 

where ao is a given positive constant, to is an initial ti~e , and I II II 
notes the euclidean norm 

(2) 

or some equi valent norm such as 

i=l , ... ,n 

ThE. continuity condition on f ensures the existence cf solutions to initial 
value pro blems associated with equation (1). In many cases, ao = 00 for 
the tube T. 

Let Ya( t) = ~( t;to ' ~o) denote some solution to the ni tial value problem 

2 

de-



I 

l 

then 

y.. = f ( t,X)t 

l ( to) = 'Lo , 
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(4) 

Definition 1. A solution ro(t) is said to be stable in the sense of Lyapunov 
if for every E > 0 there exists a 0 > 0 such that if 11 is any solution of 
equation (1) with l,(to) = Z1, and the number 

Illl -;[0 II < 0 (31) 

then 

for all t, t ~ to' If roCt) is not stable, then it is unstable. If lo(t) 
is stable, and if the additional condition 

limIIZ1Ct;to,ll) - Zo(tjto,lo)11 = 0 (33) 
t-+<p 

i s valid, then 10( t) is asymptotic3.11y stable . 

Discussion. In general, stability or asymptotic stability is a property of a 
s ingle solution loCtito'Yo) and requires a certain behavior over an infinite 
t ime interval (to'~)' In geometric terms, consider a tube about the solu
t i on lo(t;to,lo) of rad i us £ > 0 (£ arbitrary). 

Fi gure 1 represents a Lyapunov tube about a vector lo(tito ,to) i n t x R2. 

~-~t 
Where 1- :(~~) 

/ 
I 
I 
\ 

Graph of lo (tj to' to) 

Figure 1. ~ A Lyapunov t ube. 
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If y~ C t;to'lo ) is stable, then there exists a smaller neighborhood of radius 
6 of Zo such that any solutions Z1Ct;to,Zl) starting in that smaller 
neighborhood will never s t ray farther than £ distance from loCt;to,Zo) (i.e., 
solutions starting "in t he 0 disk never leave the £ tube). C See figure 2.) 
Asymptotic stability merely ensures that all solutions starting in 
some 0 neighborhood of Zo tend to the solution lo(t;to'Zo) as t + 00. 

Graph of .l., 
(t; to'? 

'£ 

• Disk I --
of radi us 15 \ Yl 

i{) (t; to' YO) 
t 

Figure 2.- A second trajectory within a Lyapunov tube. 

The first example will establish that circular trajectories of the Cartesian co
ordinate system formulation of the two-body problem are unstable. 

Example 1. For the two-body problem with masses m and M subject to the 
k 2ruM 

universal law of gravitation where r = I!:I (all 

functions of time t), the resulting differential equation is 

)J 
= 0 C El. 1) r + - r 

where 

~ = k2 (M + m) = gravitational parameter 

4 
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As a first-order vector system, equation (El.l) can be expressed as 

(:) - () . ~x3 

C) (E1.2J 

= 

where 

03x3 is the 3 by 3 zero matrix, and I3x3 is the 3 by 3 identity matrix. Sys
tem equation (E1.2 ) is clearly nonlinear, and a well-posed initial value problem 
would require initial positions and initial velocit i es; i .e., 

(E1.3) 

where (ra,yo)! are given. Because motion occurs i n a plane, i t can be assumed 
(without loss of generality) t hat Y3 = 0, and the motion is in the (Y1,Y2) 
pl ane. Equation (El.1) impli es 

. , U 
0 Y1 + - Y1 = 

r3 

.. U 
0 (El.4 ) Y2 + - Y2 = 

r3 

where 

r = \"y ,2 + y22 

Next, change to polar coordinates by s ett i ng 

5 



y, = r cos IP 

YZ = r sin IP 

where r,¢ are functions of t. This leads to the well-known and equivalent 
system 

. ~ 
r - rIP2 + - = 0 

r 

r¢ + Zr$ = 0 

For circular orbits, 
fix ed rad ii r 1 and 

r is constant; hence, r = r = O. 
r2, then from equation (El.S) 

or 

~i = 

hence 

q, i = 

liT 

r· 3/Z 
1 

i = 1,2 

(El. 5) 

Consider two orbits of 

Thu s , two solutions of the vector formulation of equation (El.4) are given by 

!:II ' "1 ~o. 
and 

, sin 
r,3/Z 

Iii t) 
r1 3/Z 

I 

6 



s i n 

Place r, in ~" but ~onsi er ~ to vary as a fun~tion of r2. 
show instabili t y of ~" it is required to show that there is some 
that for every 0 > 0 there exist solutions ~ for which 
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In order to 
E: > 0 such 

(E1 .6) 

for arbitrarily large values of t, and Ilr, - r211 < O. That is, every a 
disk about r, contains solutions (starting in that disk) that escape the 
Lyapunov tube for arbitrary large t . An easy colt)uta t i on shows that 

but if r, tr2, then there exists a sequence of t values 

{t}CO with lim to = co 
n n=' n+a> 

such that 

in fact, set 

'TT 
= + n'll, n = 0, 1, 2 , ... 

Thus 

: 122, n : , 2 , , ... 

and there f ore , i f E < 12 is considered , t he i nstabllity of the ~ ircular 
trajectorie ha s been established . 

7 
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3.0 LINEAR SYSTE~$ 

Linear systems comprise the most important subset of the differential system 
equation (1), especially because the linearization 0: e~~at~on ( 1) about a 
particular solution is an important tool in the analysis of the original 
system. Consider the linear system 

r = A(t)r (5) 

where A(t) is a continuous n by n matrix in the interval (to,~). The 
characteristic polynomial of equat~on (5) is the polYfiomial of degree 
n in X, 

lA<t) - XII = 0 (6) 

where I I cp.notes the determinant of A(t ) - XI. 

If A(t) is a constant matrix, then the constant coefficient system 

r = Al 

has ~ stable characteristic polynomial if every eigenvalue X 
where Re denotes the real part of the possible complex number 

has 
A. 

Re(X) < 0 

A very usefu l result for arbitrary linear systeffiS is the next theorem, which is 
proved i n re ference 1. 

Theorem 1: A necessary and sufficient condition for ~ttlbility of every sulution 
of the linear 3ys~em equation (5) is that all solutions of equation (5) be 
bounded. 

A frequently occurring case for orbital mechanics is where the linear system 
equation (5) has multiple, purely imaginary eigenvalues X = +is (usually 
occurring an even number of times), or if zero is a multiple eigenvalue. This 
case can be either stable or unstable depending on the nature of the solutions. 
One procedure is to find a fundamental matrix !(t) of equa~ion (5) and apply 
'l;'eorem 1. A fundamental matr ix is defined as an n by r. matrix such that. 

!(t) = A(t) !(t) 

and 

de t !(t) iO, to ~ t < 00 

8 
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( i.e., i t contains n linearly independent (vector ) soluti ons of equation (5). 

Example 2 ( unstabl e ) . The syste.m 

"i. = Ay", where A -_ (:00 
a -1 

° 1 

a ° a -1 

(E2.1) 

has the characteri stic equation IA - All = X4 = 0 and, hence, A = 0 is an 
eigenvalue cf mul tiplicity 4. To determine the fundamental matrix for 
this system, eigenvectors ~ = ( Cl,C2,c3,c4)T associat3d with A = ° are 
sought. In th is case, the system of four equations 

A~ = A~ 

has t hree linearly independent so l utions 

~1 = ( 1, O,O,O )T 

~ = (O,1,O,O)T 

and 

~3 = (O,O,O,l)T 

Consequent l y, heAt = ~i are three linearly independent sol\lti ons of equation 
( E2. 1) . To find a fourth, li liearly independent solution of 1... = AI! ~4' which 
satisfi es (A - AI)2 ~4 = 0, but does not satisfy (A - AI)~4 = 0, is ~ought. 
Sucr: a 'lee tor is ~L1 -;- (0,0", 1 ,0) T, and the corresponding solu tion is 

( Th i s i s easily verified by SUbstitution in to the aq uation.) A f undamental 
matrix for t his system is 

9 
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!i t ) = eAt (i ! g -;) 
o 0 -t (E2.2) 

where 

eAt _ 

The fourth column of t(t) i~ a solution of equation (E2.1) and is unbounded 
because 

Thus, Theorem 1 verifies the conclusion that equation (E2 . 1) is unstable. For 
further details on the generation of the solutions of linear sy stems with 
multiple eigenvalues, see reference 2, section 3.10. 

Example 3 ( stable). Consider the two oscillatory systems 

Xl + W1 2x l 

x2 + Wi X2 

. . 
= £1 (Xl,X1,X2,X2)t 

= £2 ( Xl'~1,X2 '~ 2) j (E3 . 1) 

where w1 and w2 are constants . Equation (E3.1 ) can be expressed as a sys
tem of firs t - order equations by the usual substitutions 

Xl = Pl 

Pl = ~1 2xl + £1(Xl,Pl,X2 ,P2) 

x2 = P2 

P2 = -W2 2x2 + £2(Xl,Pl,x2,P2) (E3. 2) 

10 
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01' in matrix form 

x, 0 

p, 0 
= 

0 0 

0 0 

Then, if 

x = (x"P 1,x2 ,P)T 

E: = (O,E:"O,E:2)T 

0 

0 

0 

-till 

79FM3' 

0 x, 0 

p, E: , 

+ 
x2 0 

P2 (E3.3) 

and A denotes the matrix in equation ( E3.3 ) , then system equat i on (E3.3) can 
be written. 

x=Ax+£ (E3 .4) 

For the present, £ is suppressp.d by set t i ng it equa l to zero. The resulting 
linear system 

x = Ax ( E3 .5) 

has characterist i c equation 

and i genva l ues 

If w, t w2 ' then it is we ll known ( s ee Theorem 3) that sy s tem equa t i on 
(E3.5 ) i s stable; i .e., every soluti on of equa t Lon ( E3 .5) i s s t able . Cons i de r 
the case where w 1 = tU2 so t hat ~iw 1 are eigenval u s of mul tip lic i t y 2 . 

11 
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Proceeding as i n equation (~.1 ) , linearly i ndependent eigenvectors 
~ = (C1.C2.c3.C4)T corresponding to A = iW1 are ~ought, such that 

79FM31 

(E3.6) 

Solving equation (E3.6) for ~, it is found that ~1 = (1 ,iW1,O,O)T and 
~ = (O,O,1,iW1)T are linearly independent solutions of the algebraic system 
eqllation (E3.6), and the corresponding solutions to equation (E3.5) are given by 

iw,t . )T ! 1 = e ( 1 , l.W 1 , ° , 0 

and 

Similarly, with A = -iw1. solve 

to find solu tions 

-100 t 
!3 = e 1 ( 1 • - iw 1 , ° . 0 ) T 

and 

A fundamental matrix is 

Moreover, because each solution !i(t), i = 1,2, 3 ,4 is bounded, it is concluded 
that the linear system equation (E3.5) is stable. 

12 
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Example 4 (unstable). Reference 5 considers the Kustaanheimo-Stiefel (KS) el
ement formulation of the two-body problem without perturbations. The linearized 
equations are 

• 
§I = A§1 (E4.1) 

where 

( 89 x 10 ~'0= d~y A = 3ll o ... 0 - dE 
aw4 

where E is the eccentric anomaly used as the independent variable and 

In this case, IA - All = A10 so that A = 0 is an eigenvalue of multiplicity 
10. Solutions to equation (E4.1) can be generated by first finding eigenvectors 
~ = (cl, c2, ... , c9' c 10 ) T 3uch tha t 

whic~, in this case, reduces to 

(;9 = 0 
8w4 

Thus, cg = 0 (as 

given by ~i = (0, 
zero otherwise for 
can be found using 
~g = ( 0, ..., 0, 1, 
given by 

3~ 
~O) and nine linearly independent eigenvectors are 

aw4 
... ,0, 1,0, ... O)T where is in the ith position, and 
i = 1, ...• j i ~g. The ten th eigenvec tor (denoted ~g) 

the technique of the prev i ous examples, and is 
O)T. The oorresponding solution to equation (E4.1) is 

~g = ~g + E (A - AI) ~9 = (0, ... ,0, 1, _ ~:)T 

13 
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The other nine l i nearly independent solutions to equation (E4.1) are given by 

lli = ~i I i = 1, ... , 10 j i ~9 

Because ~9 is unbounded as a function of E, it is concluded that equation 
(E4.1) is unstable ( in the sense of Lyapunov). 

The conclusions of the preceding examples could have been brought forth much 
faster by discussion of the rank of the matrix (A - AI), which indicates the 
number of l i nearly independent solutions of the linear system 

(A - AI) ~ = 0 

however, the constructive approach seemed more appropriate. Because of the im
portance of the situation encountered in these examples, the following remark is 
stated. 

Remark. Suppose that in a real, linear system r = AZ, for every e i genvalue 
such that ReA = 0 and A has multiplicity m, the equation 

has m l i nearly independent solutions {~i}i=l then r = AZ will be stable 
or unstab l e in accordance with whether the rema i ning solutions (associated with 
the other eigenvalues) are bounded or unbounded. This is a consequence of the 
fact that the solutions 11 = eAt~i ' i ~ 1, . . . , m are bounded. 

A second poi nt to be aware of is that it suffi ces to study only the trivial, or 
zero, solution of linear systems, because by linearity 

is a solution, and cond i t i ons (S2 ) and (Sl) reduce to 

whenever 

Illl - .loll < <5 

14 



79FM31 

Another implication of this second point is that constant coefficient linear sys
te~ can be classified as stable, asymptotically stable, or unstable because 
whatever 1s true for the zero solution is true for all solutions. This is in 
contrast to nonlinear systems where specific solutions must be concentrated on; 
i.e., boundedness and stability are independent concepts, in general. 

Theorem 2: If the characteristic polynomial (eq. (6)) of the linear system (eq. 
(7)) is stable, then every solution of the linear system (eq. (7)) is asymptot
ically stable. (See reference 1 for verification.) 

The word stable is unfortunately asso~iated with the characteristic polynomial, 
because it implies more than that for the solutions. A final result in this di
rection is as follows: 

Theorem 3: If the roots of the characteristic polynomial (eq. (6)) of the linear 
n 

system (eq. (7)) are {Ai}i:1 (not necessarily distinct), then every solution of 

the linear system is stable if (1) Re(Ai) < a for all eigenvalues Ai with 
Re(Ai) to, and (2) if there exist roots Ai with Re(Ai) : 0, then Ai is a 
simple root (i.e., has multiplicity 1). 

Remark. Consider the constant coefficient system z: 
ble because of the existence of an eigenvalue A with 
a nonsingular matrix M that diagonalizes A; i.e., 

M- 1 AM : D : d i ag (A 1, ..., An) 

then it is we 11 known tha t 

I A - All : I D - All 

AZ. Suppose A is unsta
ReA> O. If there exists 

and consequently the transformed system x: Dx is unstable where ~ = M- 1r. 
This implies that if instability due to ReA >-0 in a system i = AZ is 
eliminated, it will be necess~ry to use a change of independent variables or 
some transformation other th? '. a similar ity transform. 

3.1 PERTURBED LINEAR SYST~ 

Several of the preceding theorems were applicable to the constant coeffici~nt 
linear system i: Ar, with the exception of the general nonautonllm\.Ius linear 
system i = A(t) Z. Perturbations of asymptotical l y stable (or stable) con
stant coefficient linear systems can inherit stability provi ded the perturba
tions are small in some normal sense. SpeCifica ll y, the linear systems under 
consideration are 

15 
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'i = (A + C(t»'i 

where c( t) = 
follows, 

n 
( C ij ( t) ) i , j = 1 i s a continuous n by n matrix on (to'~)' 

or some other finite dimensional norm such as 

IIC(t)11 = max 
i,j 

provided such maximum exists. 

(8) 

In what 

Theorem 4: If the characteristic polynomial of 'i = Ar is stable (i.e., 'i = A'i 
is asymptotically stable) and 

~ J II C( t) II dt < ~ 
to 

(9) 

(i.e., the integral exists), then all solutions of equation (8) are asym~totically 
stable. (See reference 1 for verification.) 

Corollary 1 (to the proof of Theorem 4). If there existe a sufficiently small 
constant ~ > 0 such that 

IIC(t ) 11 < ~, t i ncl uded i n the interval (to'~) (1 0) 

then the conclusion of Theorem 4 is valid. The exact nature of ~ is discussed 
in reference 1. Observe that i nequality (eq. (10» does not imply inequality 
(eq. (9». 

Corollary 2. If all the 30lutions of 1.. = A1.. are stable and condition 
(eq. (9» holds, t hen all the solutions of the per turbed system (eq. (8» 
are stable. (See reference 1 for verification.) 

b 



79FM31 

4.0 PERTURBED NONLINEAR SYSTEMS 

Analysis of the stability properties of solutions of nonlinear syste~ can often 
be achieved by considering the nonlinear system 

as a nonlinear perturbation of a linear system; i.e., 

This situation occurs when attempting to analyze a particular solution of sys
ten equation (1) by linearizing that system about the particular solution. 
Because of the importa~ce of chis process, details are provided below. 

Linearization. Let lo(t) be a given particular solution of th~ nonlinear sys
tem equation (1). Study the stability of lo(t). Let y = yet) be any other 
solution of equation ('), then using a vector valued Taylor series expansion of 
f (expanded aboutlo(t», the result i s 

is perfor med and then raised algebra ica lly to the mt h power. 
is applied to the components of f and evaluated at (t ,lo(t» . 
that 

17 

( 12) 

At th is point, it 
Next, observe 
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which implies that equation (12) can be written as 

·(t 
Set 

~ = I ( t) - Io ( t) ( 14) 

in the last equation to obtain 

(15) 

or, 

u = A~ + £(t,u) ( 16) 

where 

A = [:~ (t ,lCo( t»] = the Jacobian of f at lCo( t) 

and 

( 18 ) 

The linear part of equation (16), which is obtained by suppressing £( t ,l!.) , 
is called the linearized system associated with equation ( l), and is often 
written 

18 
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( 19) 

In some instances, a linearization about initial conditions (to,lo) is useful, 
and in this case the result is 

(20) 

Some of the most important cases of linearization occur for autonomous systems 

r = i (r ) (21) 

The preceding formulas are modified accordingly. The following examples will 
illustrate most of the ideas of this section. 

Example. Consider the nonlinear equation from reference 3. 

(E5.1) 

The real solutions of equation (E5.1) are given by 

y = t~nh (t - to + k) 

where 

k = arc tanh (Yo) , -1 < Yo < 1 (E5. 2) 

It i s easy to show di rectly tha t the so u i on Yo = -1 is unstab le as t" 00, 

whereas Y1 = 1 is s tab l e. The ob j ec t i ve i s to rela te equat i ons ( i ) , (16 ) , and 
(19) for this example. Here, 

f ( t,y ) = 1 _ y 2 

af 
- ( t,y ) = - 2 
Oy 

19 



and if an expansion occurs about Yo: -1, 

Moreover, regarding p(t,u), the following occurs. 

i(l.o(t» = l-u
2 , if 

0, if 

Consequently, equat ',on (16) equals 

~ = 2u - u2 

where 

u = y - yo(t) = y + 1 

The linearized equation (19) is 

m = 2 

m > 3 

79FM31 

(E5. 3) 

(E5.4) 

(E5.5) 

(E5 . 6) 

(E5.7) 

Assuming 0 < u < 2 (for convenience), then equation (E5.5) can be solved, and 

2ce2t 
u(t) = , C > 0 

+ ce2t 
(E5.8) 

As noted by l'Hopital's rule that u(t) + 2 as t + ~, thus becau u = y + 1, 
this i mp lies that yet) + 1 as t + m. Thus, every solution starting near 
yo(t) : -1, but greater than -1, approac~es asymptotically Y1 : 1. Hence, 
Yo = -1 is unstable. Clearly, the linearized system equation (E5.7) has 
solutions 

( E5 .9) 

20 
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Figures 3, li, and 5 illustrate various olutions of systems equations (E5. 1), 
(E5.5), and (E5.7), respectively. Figure 4 is the same as figure 3 but 
translated one unit upwards (in the y direction). Figure 5 (illustrating 
the linearized system) only fits the nonl i ne~r system initially. In this 
case, the nonlinear part _u2 results in the solutions being asymptotic to 2. 

A similar expansion could be made about y 1 = 1. For' this example, the instabil
i ty of th l inearized sy s tem correctly pred i cted the instability of the solution 
Yo = -1 Gf the nonlinear system. Two important rem?rks are in order. 

Remark 1. The linearized system equat i on (19) will not. always correctly predict 
the stability behavior of the nonlinear system E>quation (1). It is possible 
for equation (19) to be stable but for the nonlinear system equation (1) to 
have a so l ution Yo( t), "'Thich is stable or l!nstab:e depending on the nature 
of £(t,~) in equation ( 16). Essentially, a stable situation in which there 
are multiple eigenvalues of line~rlzed systems of the form A = ~16 can become 
stable or unstabl~ depending on the original nonlinear system. This situation 
is illustrated with a classic example in reference 2. (See equation (E6.1». 

6y 
Y u 

Y, • 1 u EO 2 
t t 
YO • 1 t 

y = 1 _ y2 u = 2u _ u2 Oy = 20y 

whe re super i mposed over 
sol u tions of equation 

u = y , - Yo = Y + 1 ( E5 , 5) 

Figure 3 .- Sol~tions Figure 4.- Solution Fi gure 5 .- Solutions 

of 1 
2 of U 2u - u 2 of cy - 26y Y - - y -

21 
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Remark 2. When studying autonomous nonlinear systems and the stability of cel'
taln solutions, many times a change of dependent variables is made that essen
tially translates the system to the origin. This same result is achieved by 
lineariza tion. 

F'or example, the nonlinear system 

becomes 

U : 2u - u2 

under the change of variables u = y + 1. 

Example 6. Consider the nonlinear system 

(E6.1) 

which has let) = (Y1Ct ) ,Y2Ct)T = 0 as a solution. The line?rized system is 

(86.2) 

which has eigenvalues ~ = +1. Thus, the linearized system is stabl~. Next, 
observe that 

(E6.3) 

where equation (E6.1) is used to evaluate on the left 2(Y1Yl + Y2Y2)' Setting 

equation ( E6 ,3) equals 

22 



which integra~~s tc give 

= 2t + C 
r( t) 

This last equation implies 

c 

+ 2ct 

where 

( pro', ;.ded the icitial v3lue problem is nontrivial). Recalling that 

I ! ~ II = Vy1 2( t ) + ylCt), equation ( E6.5) implies that 

lim Il t ll = 0 
t;-+co 

79FM31 

(E6.4 ) 

(E6.5) 

where r = ~(t ;to,ro) and lo = (Yl( O),Y2 (O»T. Thus, the result is that 
Q is an asymptotica l "y stabl e solution of equation ( E6.1). Because, in 
addition, 

Exam?" e 

Il r(t-)11 < Il r (o)II , t > 0 

On the other hand, consider the system 

+ y (y , 2 + Y22 ») 

- Y2 (Y 2 + yi), 

23 
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The linearized system associated with equaticn (E7.1) is exactly the same as 
equation ( E6.2), which, in turn, is stable. In this case 

(E7.2) 

which implies 

c 

- 2ct 
(E7.3) 

where 

The right side of equation (E7.3) has a vertical asymptote at t = > 0; 

i.e., the solution has finite escape time. Thus, 

lim Ily(t;to,lo)11 = 00 

t+l12c 

2c 

regardless of c. This implies that equation (E7.1) is unstable at the origin. 

The examples presented above indicate that stability of the linear ized system 
will not necessarily be inherited by the nonlinear system. The following theo
rems indicate more positive results for 

The following hypothesis regarding the system equation ( 11) is requ ired : 

a. E(t ,i:) is continuous in T, and 

I IE(t,i:) II 
b. lim = 0, uniform in t. 

II rll+o IIIII 

Condition (b) i mplies that E(t ,,2) = 0 so 1. = 0 i s a solution of equation 
( 11) . 

24 
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Theorem 5. Suppose IA - All is stable (i.e., the linear system is 
asymptotically stable) and £(t,I) satisfies (a) and (b), then the solution 
I : £ of system equati on (11) is also asymptotically s table. (See reference 
1 for verification.) 

A similar version for autonomous systems 

appears in reference 2, where the norm 

is used. 

11111 = max IYil 
i 

Theorem 6. Suppose the vector valued function 

(22) 

(23) 

is a continuous function of t ( i .e., the components Yi of I are continuous) 
and vanishes for I = O. Then 

a. The solution I: 0 of equation (22) is asymptotically stable if the 

linearized system ~: A~ is asymptotically stable. 

b. The solution I = 0 of equation (22) is unstable if there exists at least 
one eigenvalue A of the character i sti c polynomi2l IA - All such 
that ReA> O. 

c. There is no conclusion regarding the stability of I = Q if every 
eigenvalue A o~ the characteristic polynomial IA - All has ReA ~ 0, 
and there is at least one eigenvalue wi t h ReA = OJ i .e., there exists a 
purely i maginary eigenvalue of A. 

Example 8. For the final example, consider the one-dimensional perturbed 
harmonic oscillator, 

( E8.1) 

25 
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where € is a small, positive parameter. This equation is equivalent to the 
system 

(E8.2) 

where y, = y, Y2 = y. The linearized system is 

(E8.3) 

which has eigenvalues (distinct for ° < € < 2) 

A = 

Because ReA < 0, the linearized system is asymptotically stable to (O,O)T. 
Moreover, 

E(X) 
lim - = ° (EB.4) 
rQ IIIII 

where E(l) = (O,€y,2y2 )T. Thus, by either of the preceding theorems, (O,O)T 
is an asymptotically stable solution of equation (E8.2). 

With regard to equation (E8.4), it should be noted that it suffices to consider 

lim 

IIIII+o Vy,2 + yi 

26 



but 

and 

£')'2 Vy1 2 + yl 

1 + (Yl/Y2)2 

EY2 VY1 2 + yi 
= 

1·GS 

The inequality (eq. (E8.5)) implies the conclusion (eq. (E8.4)). 

5.0 CONCLUSIONS 

19FM31 

(E8. 5) 

The study of the qualitative havior of solutions of linear and nonlinear sys
tems of differential equations is of major importance and has implications for 
the accuracy of numerical solutions. It is important for scientists and engi
neers involved in the analysis (numerical and analytical) and the solution of 
large scale sy~tems to clearly understand the concept of stability both from the 
numeri cal and mathematical viewpoi nt. For various reasons, most publications 
emphasizing the mathematical and numerical stability theory of linear systems 
tend to focus on small sy~terosj i.e., one or two first-order differential equa
tions. This does not necessarily enhance understanding of the larger systems. 
In orbital mechanics, systerM of 6 to 10 equations are more prevalent, and they 
frequently have high multiplicity eigenvalues, which are either zero or purely 
imaginary. In this report, the emphasis is on mathematical (Lyapunov) stability 
analyses f c,r these higher dimension systems with eigenvalues of the form i8 
where i 2 = -1 and 8 are real, nonnegati ve numbers. Eight examples are 
presented from orbital mechanics , mechanical , and electrical systems, etc ., 
which illustrate the tec~~iques and theory of Lyapunov stability. 

A basic tool in the gtudy of nonli near systems of equations is to linearize the 
system and analyze the resulting linear system. Unfortunately, '.:. he stability 
properties of the linear system are not necessar i ly inherited by the original 
nonlinear system, and this is il lustrated by ex mple. Of more concern is that 
if the linearized system is only (marginally) sta ble (i . e., it is s table but has 
repeated eigenva lues of the form i8) , or marginally) uns table, then the 
nonlinear system may go eithe r way. This is precisely the situation often 
encountered in orbital mechan ics . Thi~ report attempts to emphasize understand
ing of Lyapunov stabDity by illustrating tec hn ique~ and giving examples that 
occur i n practice, and to stress the type of system for wi li ~ h analysis is more 
difficul t . 
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