
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



-2- . 

" _ 

. ' OH THE CONSISTE?<CY OF 
THE MAXIHUM LIKE1:HOOD ESTIMATE' 
OF NORHAL MIXTURE PARAMETERS 

FOs A SAMFLE WITH FZELD STRUCTURE 

BY 
CHBRLES PETERS 

( i~ s&&~s- (  60352) 01 T!iE COESISTEBCI OF 281 
MmEBH &IKELYBOOD. EST33AT.B OP ~ O R ~ A L  
w q q ~ ~  paaaa~esas ~ e i  A SIIPLE U I F B  PIBLD 
slrat#@oa~ (Houston Univ- 1- 18 P 
a c - - r a 2 ~ r  a01 CSCL 12A 63/60 45993 

t -  

PFi'EF'AI$Efi FOR 
EARTH OBSERVATION DIVISION9 ,.jSC 

- .  - 

HOUSTON, TEXAS 77004 



Parameters for  a Sample with Field Structure. 

Charles Peters 

Department o f  Mathematics 

Uni versi t y  o f  Houston 

Houston, Texas 

Report #74 

August, 1979 
, . 





i i - I. I n W U k t i o n  
/ 

. - .-' .- ' r; 
e 

~ * 

* I '" 
c .  

In C 5 I 8 s ta t i s t i ca l  moddl for L&!DSAT apr lcul tura l~data based on nonu? 

mixtures was lntroduccd whichadwdts a $peciflr'kind o f  dependeke among the *. j 
i \* r -  -. 

obsekations. nkrly thejr associathn in to  f ie lds  $,each representhg a single 
, - * I  

rgr icu l  b r a 1  class. bcessary conditioni were derived fo r  ; maxinn 1 i kel i - 
b 

> 

hwd estlmte of the parameters of the mdel  and a numerical procedure for  

solution of the l ikelihood equations was su~gested. The question of the 
-- 1 

consistency o f  the waxinnnn 1ikel ihoob~est i lp te i s  complicated by the fact I 
I 

that it i s  no longer possible to  reduce the sample t o  a set o f  independent I 
1 
I 

ident ical ly distributed variables. The purpose o f  th i s  note i s  t o  establish 

a general theorem on the existence o f  a consistent ~xinwan 1 i kelihood estimate 

when the observations are not ident ical ly distributed and t o  show i t s  applica- 

b i l f  ty t o  the s ta t is t ica l  model described i n  deta i l  below. 

We d s s w  that each pixel i s  ident i f ied by a pai r  ( j ,k )  of positive 

integers, where the f i r s t  index j, 1 s 2 j  s p, ident i f ies the f i e l d  containing , 

the pixel and the second index k, 1 s k s K j .  distinguishes i t  from other i 
I 

pixels i n  the same f ield. We suppose that the f i e l d  structure i s  predetermined, I 
1 

perhaps as part o f  a spatial clustering algorithm such as AMOEBA. Le t  

xJk c R~ be the random vector o f  spectral measurements from pixel (j,k) m d  

l e t  0 c l ; , m  be an unobserved random variable indicating i t s  class 

index. We assum that the class indices Bjl, Bj2, ' * *  O ' N ~  from the j t h  

f i e l d  a n  a l l  the same and denote thei r  connon value by Q We further 
j 

assume that, condi tioned on Q = 8 ,  the neasuremnts Xjl, 
j x J ~ j  are 



indeprndently distr ibuted as Nn(*, u;, $1, the n-variate normal wi th  

unknown man p i  and unknown covariance E: . Let xj = 

our f inal  a s s ~ p t f o n s  a m  that  (xi, el), , (X , O ) are independent 
P P 

Under these assumptions, the j o i n t  density o f  a11 the observations i s  

4 

, xjNj) 4 ~~~j . This j o i n t  density i s  parametrized by 

m 
( a ,  pL, 1 . * *  , ml where oL > 0 ;  C a t z  1; u a s  R ~ ;  and Ze i s  

a=i 
a 1 nxn posi t ive defini;e symetr ic  mi3trix. For c~avenience, we l e t  

@ = {ag, ug, zL)1t = 1, ... , m) denote an arb i t rary  member o f  the parameter 

space and $O the true value of the parameter. Thus the l ikel ihood function 

CorFesponding t o  the sample xi , * 





2. The General Theorem - 
... Let 0 be an open subset o f  i2 and l e t  J,' uo 0 . Suppose X1.x2. , 

i s  a  sequence of independent 9 random vectors wi th  xr having Nr-vari a te  density 

function qr(*  I@) wi th  respect t o  some f ixed 0 - f i n i t e  measure A, on ~ ~ r .  

Suppose the dens i t i i es  q  1 )  are defined f o r  each J, c . Given a 

pos i t i ve  integer p , def ine a  maximum l i ke l ihood  estimate o f  fl t o  be an 

P 
element $ c B which l o c a l l y  maximizes L (I)) = Z log qr(xr(@) . The equation 

P r = l  

D,,,Lp($) = 0 w i l l  be ca l led the l i ke l ihood  equation, where the symbol D 
J, 

denotes the Frechet der ivat ive  w i th  respect t o  9 . 
A number o f  theorems deal i ng  wi th  the consistency of maximum 1 i kel ihood 

estimates, under the addi t ional  assumption tha t  the xr's are i den t i ca l l y  

d ist r ibuted,  have been presented i n  the 1  i te ra tu re  (see f o r  instance Chanda 1 ? 3 . > 

Cramer I 1 4  1, and Wald [ H 1. ) Extending any o f  these resu l t s  t o  the case of , 

nonident ical ly  d is t r ibuted observations i s  p r imar j l y  a  matter of f i nd ing  a  

convenient set o f  conditions which insures tha t  a  law of large numbers can be 

invoked a t  several points i n  the proofs. The fo l lowing theorem i s  such an 



I outgrowth of the p r w f  o f  strong consistency contained i n  1.6 I. 

Theorem 1: Suppose there i s  a neighborhoad 0 o f  and a ar nul l  sets 
gr such that  for  a l l  r . n: w N r 2 ; 1- - - - -  - 

. 'i ana --, 
a$i a$, a$ ah. aa . ~ I I , .  ex is t  and 

satisfy: 

-* .- * 
-arm--- r r r ~ p - ~ p -  . ... -=' - - -7- -- ' - -  --- .--=-* - 

. - --. - - -  - = .lr* I s J s K  = 1, ,Z, r r (the 

aqr(xI*) 
~ o ~ i t i v e  integers) - : . - - A  a310g q,o(l$) 

1 -7J -'-k 

I r (x) 
r a*, I 

( t i )  (XI 

( i i i )  f;;t,..ix) 

2 ('v) 'lfj jkr(xr)2~ = / f i j k r  (XI ( r ( * / ~ ) d ~ r ( i )  r M 

- -  HN 
a l l  r where M i s  a constant. C t ~ n n ~ c a  -la- A L - A  

JI 

(4 El[ :;:xr~#O) 
and 



O r  1 1 ' *  ' 2 a d  r r . Ff rial l y  suppose tha t  3 .. 0 such tha t  

('if) J,($O) = '['*log qr(xr 1 $O)v*log qr(xr r I v i v  

I 

for a1 1 r r . where the ordering i s  the usual one on vxv symmetric matrices. 

Then, i t i s  almost surely t rue that, given a su f f i c ien t l y  small neighborhood 

of (O; for a r e  p there i s  a unique so lu t ion of the l i ke l ihood  equation 

D,,,Lp(r) = 0 i n  tha t  neighborhood. Furthemore, tha t  so lu t ion i s  a maximum 
I 

Hkel ihood estimate. 

Remark: I n  the proof we make repeated use of the f o l  lowing simple version 

of the strong law of large nymbers (see Chung [i I): Let zl, 4, - * *  be 

uncorrelated random variables and suppose the sequence o f  variances t tar(Z ) 
1 i-1 

1 i s  bounded. Then - C (Z1 - E(Zi)) + 0 a.s. as n -. = . 
i i = l  

Pmof of the theo-en: Let p($) = C P D,,,log qr'(Xr19) . By assumptfon (i) 
P r = l  

E ( ~ ~ ( $ J ~ ) )  = 0 and by assumption (v) and the strong law, sp( rO)  4 0 a.s. as 

p + =. Now consider the vxv matr ix D 2 ($') whose 1 j t h  element i s  
9 P 

I I 

1 
t 

BY assmption (ii) the expected value o f  the f i r s t  term on the r i g h t  i s  zero. < .  

, 

- -I_- -r 
---- ---- > - - A= - u 



1 P 
Hence, by assuptfons (v) and (vi'! D s (@) + - C J,($') - 0 a.s. as 

'4 P p r=l 
d 

p + rn. It follows that wf t h  pmbab i l i t y  1. f o r  each n i n  0 < g< - 
2 

t h e n  i s  a p, c so that f o r  p 2 p, 

. 
LJithout loss of generality we can assume .Q i s  conve*~. 

Thus, fo r  b c n , 

, . t h  probabi 1 i t y  1, fo r  large p 

A Y - P 
C f... ( X  \ < 1 + Y FrC ( X  ).I e 1 + i 5  . 
- . 'J&r'-.r ' - . p r.1 " " ' i j k r  r p r=l 

by assumption ( d v ) .  

I t  follows that f o r  any part icular norms on R' and on the vxv svnnetrlc 



--- - - - A - &-, 

I l o p  - at,(& i l s 111 111 - I 

Thus, there I s  a convex neighborhood no o f  6' such that  

Oqtp(9) s -01 

for a l l  $ E 0' , p 2 pl . I t  now follows as i n  C o I that fo r  p 2 p, 

a t  @ of small radius 6 contains the sphere Q b (9)) a t  c,($') of 
n6 P k' 

radius r 6 . Since 0 i s  eventually i n  Q (x (I$)), there i s  a unique 
n6 Y 

solution of ~ ~ ( 9 )  = 0 i n  f i6(+O).  Since D,fp($) i s  negative def ini te,  

th is  solution i s  a ma~imum l ikel ihood estimate. This concludes the proof. 

Theorem 1 shows that by res t r i c t ing  at tent ion t o  a f ixed neighborhood 

of a0 i t  i s  possible t o  speak unambiguously o f  the unique consistent 

solution of the l ikel ihood equations w, equivalently, of the unique 

consistent MLE o f  yo This tenninologywi l l  beadopted i n  thenext  theorem. 

3. Application t o  Exponential Uixtures 

I n  t h i s  secLion we apply Theorem 1 t o  a class o f  mixturae models which 

contains the normal mixture model o f  section 1. Referryng t o  the notation of 

that section. we assume that conditioned on Oj = L, the random n-vectors 

f!xl~,) = i('rL) exp <rLJF(x)> 

with respect to  a dominating o - f i n i t e  measure A where the parameter rL 

i s  an arb1 t rary  member o f  an open subset U o f  a f i n i t e  dimensional vector 



splce V with Inner pmduct <*I*>. b ass- also that C 4% o y  t o  on 

and that the support o f  the measure induced on U by F and A contalns 

m open set. These conditions imply that the parameter rl i s  Ident i f iable 

t 1 I ,  and any paramtr l tat ion o f  the form (1) satisfying them w i l l  be called 

a canonlca!, representation o f  the given family of distributions a 

The j o i n t  density, 

exponential type; i . e. , 
given O j = ~ . o f  xj=(xjl. .... ) I s a l s o o f  

, X j ~ j  

for XI = ( x ~ ~ , " *  *.x,jHJ) 

where 

and the representation (2) i s  also canonical. 

Sprne useful facts about exponential fwil les are collected i n  the 

following l a ~ w .  For proofs see Barndorff-Nielsen ! 1 I. 

L m  1: Let (1) be a canonlcal representation o f  an exponential family. 

For each r c U l e t  K(T) = - I n  C(r) = I n  j exp <TJF(x)> dA(x). Then 
nrn 

( 4 )  for each r E U. F(x) has moments o f  a l l  orders with respect 

f (~1T);  

(11) r(r) has derivatives of a l l  orders with respect to  T, which 

my be obtained by di f ferent iat ing under the integral sign. In- 
k d d  DT r(r) can be represented as r synnetric k-linear form 

on V which i s  a polynmlal i n  the f i r s t  k moments of F. I n  

part1 cular ,. 





(7) DTtOqj(xjI$) = <Gj - u- ( t  )I@> . t = l,..;.m - l 
J a 

(8) DTmDa?j(xjI$) =-pj(xjI?,,,) aj - ~ j (~ , , , ) l~>  , t =  l , * - = , m -  1 

= 1,. ..,IN . 
Instead of ver i fy ing conditions ( i )  and ( i i )  o f  Theorem 1, it i s  easier 

t o  recal l  that they were needed only i n  order t o  conclude that the integrals 

of the f i r s t  a d  second order derivatives o f  q.(x-10) are z e k  a t  $ = $O. J J 
This i s  obvious form (5) - ( 9 ) .  Similarly, using Lema 1 and the boundedness 

of the ver i f icat ion of conditions ( i i i )  - ( v i )  presents no problem 

more serious than tedium. It remains t o  ve r i f y  condition ( v i i ) .  We may 

wri te J,($) i n  matrix form as 

!L,k=l,. .. ,In-1 

---- - LA -. -*I>- 



P 

* - - 0 and A1 ... - A = 0. ~t i s  ~ s i l y  saen that i f  m 

Jr(#) f a i l s  t o b c  m l t i v e  def in i te  then there i s  a nontr iv ia l  l inear  

for each r. Condition ( v i i )  w i l l  be established once i t  i s  shawn that 

the smallest eigenvalue of Jr($) i s  bounded away from zero as N, + a. 

Let u(A) denote the smallest eigenvalue of a posi t ive def in i te  

operator A. Clearly, 

I 

. . 

If Xr I s  a sample from f ( x l r k ) .  then the expression i n  square brackets 
4 
$ 1 
i 
I 

i 
i 
1 

- - -  - d i 



which i s  > 0 by the s t r i c t  convexity o f  K. Hence, 

Given that  Xr i s  from f (x l rk ) ,  N ; ~  (6, - ur(rk)) converges i n  distr ibut ion 

Let A be any element of V and considcr 

7 

After expanding and taking expectation with respect to  rt ,  i t  w i l l  be 



~f tm arc Nr + (r) = 0 (6. T ~ S  

i s  bounded as Nr * -. I t  f o l l a rs  froa a standard theorem an m a c e  

of  moments C 3 .p. 951 that  

Thus E@(B,) + 0. Simi!ar reasoning shows tha t  

Ey(Cr) + COY (F)) 
=k 

as Nr + Therefore o(J,!$)) i s  bounded away fm 0 and t h i s  concludes 

the proof. 

4. Concluding Remarks. 

Clearly the assumption i n  Theoren 2 that N r  i s  bounded can be 

weakened. Infact,Theor- 1 could be modified i n  such a way as t o  show that 

the MLE of exponential mixture parameters i s  strongly consistent when 

Redner 1 7 I has shown that when each Nr = 1, a certain numerical 

procedure for obtaining the MLE o f  exponential mixture parameters i s  con- 

vergent. The generalization t o  bounded { should not be d i f f i cu l t .  and 

w i l l  be addressed i n  a future report. 
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