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1. Introdiction .
In [ 5] a statistical modé) for LANDSAT agricuituralidataibased on norma¥
mixtures was introduced which admits a specific’kind of dependence amoég‘the'%f
observations, nimely their association into ?ields;eac&nrepreseﬁ£¥pg a single

agricultural class. Necessary conditions were derived for a maximum 1ikeli- )
hood estimate ¢f the parameters of the mod;i and a numerical é;océgure for |
solution of the 11kelihood equations waéﬂsuggested, The question of the
consistency of the maximum nkenhooa'esﬁm;igi,is complicated by the fact

that it is no longer possible to reduce the sémple to a set of 1n§ependent
identically distributed variables. The purpose of this note is to eéfablish

a general theorem on the existence of a consistent maximum 1ikelihood estimate
when the observations are not identically distributed and to show its applica-:

bility to the statistical model described in detail below.

We assume that each pixel is identified by a pair (j,k) of positive
integers, where the first index j, 1 <°j < p, identifies the field containing
the pixel and tﬁe second index k, 1 < k s Nj, distinguishes it from other
pixels in the same field.» We suppose that the field structure is predetermined,
perhaps as part of a spatial clustering algorithm such as AMOEBA. Let
xjk ¢ B be the random vector of spectral measurements from pixel (j,k) and
let 93k e {1,"°",m} be an unobserved random variable indicating its class
index. We assume that the class indices ejl. ejz. e, eij from the jth
field are 211 the same and denote their common value by 0y. We further

assume that, conditioned on es = %, the measurements Xy, *°°, ij are



Findependéntly distributed as ﬁn(-, u:. £2)s the n-variate normal with
0 o . .
unknown mean W, and unknown covariance I, . Let xj (le, K ij) .
- Our final assumptions are that (xl, 91). e, (xp, ep) are independent
and that ‘{ej} are identically distributed with unknown o = Prob[o=2] > 0 .

A
Under these assumptions, the joint density of all the observations is

: N
A - p m J
(1) Plx;, "y x )= T £ o 1 N (x; 10 29
1 §=1 g=1 % =y N k> 727 TR
where xj = (le, Tt xjnj);ciﬁnuj . This joint ﬁensity is parametrized by
. m |
{(az, Mg, zz)lle, ***, m} where a, >0 ;zilaz =1 u € R"; and L, s

a real nxn positive definite symmetric matrix. For cunvenience, we let
V= {az. My zl)lz =1, "**, m} denote an arbitrary member of the parameter
space and ° the true value of the parameter. Thus the Tikelihood function

_corvesponding to the sample Xl’ T, X is

p
(2) Lvs Xy *°°, X)) '5 g zj N (x z,)
H s = a sy Hpo .
o P* =1 aml Pgeg NIRRT TR
- nNj
XJ
my = mylxy) = N oy Nk

and

‘ N
j T
% 7 Sgbgd T ) O mdlegy - my)



be the mean and scatter matrix respectively of the vectors X510 Y xJNJ .
N
J

() kl Yn(Xjks vgs Z,) = (2m)” 71qj(xj, Mgs Iy)

where

-\ -
(4) qj(x : “z* £5) = |z,l 'EJ’exp {-% tr zlltsj +

ZT

Let

(5) qj(XjIW) = zglazdj(xj; Hp» 22) .

By ignoring terms which are independent of the parameters we derive the log
1ikelikood function -

p
(6) £v) = I Tog qj(x;]v)
J=1 °

which leads to the following necessary conditions for a lccal maximum of the

likelihood function. Equatvons (7) - (9) are called the iikelihood equations

for the present model.

asz(%j; uzs zz)
j=1 q; (x5 | v)

| (7) o =-ﬁ}-



sQs(Xss v,y L Qa{Xs3 Hoo
PR L R § SRS
j=1 qj(lew) j=1 qj(lew)
. ° .
(9) Zg . g qi‘*i’ Uga ug) 5. g Nij(xj’ HQ’ 22)1_
L ailxnle) TfOEL gl

™M

quj(xj; ul. 22)

q.(X:5 n,,
. g _HJSJ( 35 Mo Ip)

(m-ug ) (my-ps )T
SR NEATY 3T

j=1 Q;(x;1v)

2. The General Theorem

Let O be an open subset of i? and let ¢° ¢ O . Suppose xl.xz."‘,
is a sequence of independent.random vectors with X. having Nr-variate densjty
function qr(-|w°) with respect to some fixed O-finite measure A, on RNr.
Suppose the densitites qr(-lw) are defined for each Yy ¢ 8 . Given a

positive. integer p , define a maximum 1ikelihood estimate of y° to be an

p
element ¥ ¢ © which locally maximizes Lp(w) = leog a,.(x.|9) . The equation
r=

DwLp(w) = 0 will be called the likelihood equation, where the symbo!l DW

denotes the Frechet derivative with respect to ¢ .

A number of theorems dealing with the consistency of maximum 1ikelihood
estimates, under the additional assumption that the Xr's are identically
distributed, have been presented in the literature (see for instance Chanda [2].
Cramer [ . ], and Wald [ 81.) Extending any of these results to the case of
nonidentically distributed observations is primarily a matter of finding a
convenient set of conditions which insures that a law of large numbers can be

invoked at several points in the proofs. The following theorem is such an



outgrowth of the proof of strong consistency contained in [6 1.

Theorem 1: Suppose there is a neighborhood 2 of y° and a A. = null sets
¥, in ' such that for all y e a; x ¢ Foo 1.3.k=1,""2, rc (the

2 3
3q,.(x]v) 3%q..(x[v) 3”Tog q.(x]v)
positive integers) r ; r -; and r | exist and
A, awiawj awiawjawk
satisfy:
(1) el PR
T,
(i) Pa (xle) | _ . (x)
1 (% o < ijr X
aw,-awj
23109 q.(x]v) < f.o ix)
(i41) r = TijkrtX
awiawjawk
N

. - r
where fir and fijr are A -integrable on R and

(iv) E[fijkr(xr)2]=/ fijkr(x)zqr(xlwo)dxr(x) s M

R |
for all r ¢ , where M is a constant. Suppose also that
4
alog q.(x,.[v°)
(v) E’[ r.r < M
3wi

and

i) E’ 1 ( oq (x.1v°) )zf .
ap(x,14°)° 3,30



for all 4,§=1,""*,2 and re . Finally suppose that 3 € >0 such that

(vit)  9,(¥°) = €LV Tog q.(x,1¥°)V Tog q (X W)Y = €1

for all r ¢ , where the ordering is the usual one on wxv symmetric matrices.
Then, it is almost surely true that, givén a sufficiently small neighborhood

of w°; for large p there is a unique solution of the likelihood equation
DwLp(w) = 0 in that neighborhood. Furthermore, that solution is a maximum
Tikelihood estimate.

Remark: In the proof we make repeated use of the following simple version
of the strong law of large nymbers (see Chung [ 23 1): Let Zl' 22. "7 be
uncorrelated random variables and suppose the sequence of variances t'ar(Zl)}?;l

is bounded. Then —%~

(Z1 - E(Z.)) >0 a.s. as n+ o,
C : i

n~Mms
fuhry

. p .
Proof of the theo“em: Let £’Jw) = —%—- zl leog qr(XrIW) . By assumption (i)

r
E(tp(w°)) = 0 and by assumption (v) and the strong law, -ip(wo) + 0 a.s. as

p +=. Now consider the vxv matrix D¢Fp(w°) whose i jth element is

p logqnly) 1 p 1 2%, (X, 1v°)
o - z 0
r=1 %330 P rsl q.(x.|v) 90

1
p

L p g 9. (x.1v°)  dlog q.(x.]4°)
P r=1 3(1)1 3¢j

By assumption (ii) the expected value of the first term on the right is zero,



0 0 1 P 0
Hence, by assumptions (v) and (vi) D¢ (V°) + — & J (y°) + 0 a.s. as
€
P+ It follows that with probability 1, for each n in 0 <n < —

2
there is a P, € so that for p » Py
D,£,(v°) = -2nI
Without loss of generality we can assume .Q is convex.
Thus, for ¢ ¢ @ ,
1 p | %l0g q (x |v) 2%10g q (1 |¢°)
_ 7 r'r . rr
p r=l 3¢5?¢j 3,904
1 p v o | [ 108 a.lx.1v + tlv - 4°)
p r=1 k=1 0 3w13wj3wk
1 p v
s— I I [w -] f..(x)
p rel ksl | K K ijkr'®r

With probability 1, for large p

' E foo (x) <1 : ? ELf, . (X )] <14+ M?
. <1 4— 3 < .
p r=] Wkrr p rel  19krr

by assumption (iv).

It follows that for any particular norms on R and on the wxv symmetric
matrices there is a constant M such that with probability 1 there is a
Py e such that for al1 p2pj, and Y e Q,



HDys,0) - 0,8 ()11 s My - v

Thus, there is a convex neighborhood £° of w° such that
0,2p(v) < -nl

forall peq®, p2 Py - It now follows as in[ & ] that for p 2 p,

£, is one to one on 0° and that the image under L,

at ¢° of small radius & contains the sphere Qns(sp(wo)) at .sp(wo) of

of the sphere na(w°)

radius r8 . Since 0 is eventually in nnG(np(w’)), there is a unique
solution of .zp(w) =0 in 96(¢°). Since Dwsp(w) is negative definite,

this solution is a ma.imum likelihood estimate. This concludes the proof.

Theorem 1 shows that by restricting attention to a fixed neighborhood

of °

it is possible to speak unambiguously of the unique consistent
solution of the 1ikelihood equations or, equivalently, of the unique

consistent MLE of y°  This terminology will be adopted in the next theorem.

3. Application to Cxponential Mixtures

In this section we apply Theorem 1 to a class of mixture models which
contains the normal mixture model of Section 1. Referring to the notation of
that section, we assume that conditioned on ej = £, the random n-vectors
le,...,xij are independent with a common density of exponential type

(1) flx]v,) = Cr,) exp <1 |F(x)>
with respect to a dominating o-finite measure A where the pafameter Ty

is an arbitrary member of an open subset U of a finite dimensional vector

T T S e



space V with inner product <e|<>. We assume aiso that C 1% one to one
and that the support of the measure induced on U by :F and A contains

an open set. These conditions imply that the parameter t, is fdentifiable
L 1], and any parametrization of the form (1) satisfying them will be called

a canonical representation of the given family of distributions.

The joint denswtyf given ej = ¢, of Xy * (le,.:..xjuj) is also of

exponential type; 1.e., for x, = (X.ypee-oXiy )
h| b} .?Nj |
(2) o Pj(xjhz) - Yj(T!’) exp <12|GJ(XJ)>
where. ' ’
vyfrg) = Clrg)

| ?
Gj(xJ) -kglF(Xjk)

and the representation (2) is also canonical.
Some useful facts about exponential families are collected in the

following Temma. For proofs see Barndorff-Nielsen [1 1.

Lewma 1: Let (i) be a canonical representation of an exponential family.

For each 1 ¢ U let k(1) =- InC(t) = In S nexp <t|F(x)> dA(x). Then
R

(1) for each 1 ¢ U, F(x) has moments of all orders with respect
to f(x|t);

(11) «(x) has derivatives of all orders with respect to 1, which
may ve obtained by differentiating under the integral sign. In-
deed D: x(t) can be represented as a symmetric k-linear foim
on V which is a polynomial in the first k moments of F. 1In

particular,
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:(1i1) Dyk(t) = <€ (F)|+> = £aF () [+> #(x]} di(x)
.ﬂd AV | | : -
() 0e(x) = cov (F) = 7 <5 - E(F)]>% #(x[x) dh(x) , which s

positive definite.
(v) x(t) fis strictly convex on V.
(Expressions <a|->k Tike that in (iv) are meant to derote k-linear forms;
e.g. <ol-»2 denotes the bilinear form b(n,v) = <s|n><a]vs,)
We are nw ready to apply Theorem 1 to the mixture model
(3) a(x]y) = j?lqj(lew)

where v ='(al....,am_l,rl.....rm)

m
(4) Qj(lew) & ‘Q‘fl(’-gpj(xj,'rz)

m-1
= pylxglr,) + zflal[pj(leTl) - PyxglTe)1

and’ Pj(lerl) has the canonical exponential representation given in (2).

Theorem 2: If the numbers {Nj} in the mixture mode] (3) are bounded, then

with probability 1 there is a unique consistent MLE of the parameter y°,

Proof: Using Lemma 1 and writing “J(Tz) = E,r (GJ) the nonzero derivatives
')
of qj(xJIW) up to order 2 are:

(5) DGEQJ(XJ,W) b pj(letz) - Pj(lefm) - 2=1,...m-1
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(6) thqj(xj'*) = aﬂ.pj(xjh!.) <Gj(xj) - uj(12)|'> s 2= 1,....m
(7) D‘l‘zo(lij(xjw) = Pj(le'f!‘) <Gj - "j(TzH" s 2=1,...m-1
(8) Dtmqmlqj(lew) = -pj(letm) <Gj - uj(rm)|-> s 2=1,...m-1

(9) szqj(lew) = agpy(xslty) <6y - uj(rz)l->2 - covTi(Gj)} ,
L=1,....,m.
Instead of verifying conditions (i) and (ii) of Theorem 1, it is easier
to recall that they were needed only in order to conclude that the integrals
of the first and second order derivatives of qj(leW) are zero at y = y°.
This is obvious form (5) - (9). Similarly, using Lemma 1 and the boundedness

of {Nj} the verification of conditions (iii) - (vi) presents no problem

more serious than tedium. It remains to verify condition (vii). We may

I l 0 [A B -I 1 [ 0 -l
I (p) = [ 1 E r r 1
) w | Ve 5
0 [ NI, I_Br ch 0 [ NE 2_|
where I1 and 12 are, respective]y.‘the identity operators on ”im°l
and V™ and

write Jr(w) in matrix form as

[P (X l7y) = P (X T 00 (X7, ) - p(x, 7))
2
a,(x.|v)

2,k=1,...,m-1

5 N2 <6, = u ()
a,.(x.lv)

2=1,...,m-1
k=1,...,m
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i A AN U AN
- qx,l¥)

N (s, - (7)) = uplry) >

k”n‘l.- .s .ﬂ.

We remark that if Tpee- ooy are distinct then as functions of F ¢ U,
o“‘|F>.....e<’ﬂlF>.e<“|F>F....,e<‘“'F>F are linearly independent; i.e.,
1 Aeeeealy are scalars, Ay, A eV and xle<“|F> ot xmp<‘“|F>

<T) lF)

+e S LYC +'e<‘“|F><FIAn> =0 for all Fe U, then

I . 0. and A = .= l\"I = 0. It is egsily seen that if

J(¥) fails to be positive definite then there is a nontrivial linear
combination of these fungtiohs which is zero almost surely witﬁ respect
to the distribution of F:' It follows that Jr(w) is positive‘definite
for each r. Condition (vii) will be established once it is shown that

the smallest eigenvalue of Jr(w) is bounded away from zero as N, -+ w;

Let o(A) denote the smallest eigenvalue of a positive definite

operator A. (learly,

A B
o(d.(v)) > o {E r r
v AN * |
Br Cr Q
Observe that
pr(xrltz) 1
pr(xrl.rk'y QXP{'Nr[K(TR) - K(Tk) - <'[2 - TkI-Nr—GrP]}

If xr is a sample from f(xltk). then the expression in square brackets

converges to
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K(Tz) - K(Tk) - <1y - TR'ETK(F?> = x(rz) - K(Tk) - x'(rk)_- (12 - rk)

which is > 0 by tha strict convexity of k. Hence,

Bffxr‘Tl) +0 as N -+,
pa(x.11,) r
Therefore, ) »
c Pt dp (xdr,) - .p,.(xrhz)
A ERTAL S W a.(x.1v)

converges to 0 if £ # k and ?%:- if 2=k as Nr + o, Thus,

E[A]+T+ %’E as N+ .
%

Given that X, is from f(x!rk), N;% (Gr - ur(tk)) converges in Jistribution

to a normal random variable 2 with mean zero and covariance cov_ (F). Hence,

P ’(X |T ) - '
X rt NZ (6, - u(r,))
q, (£,.1v)
r

converges in distribution to 0 if ¢ # k and 7}—-2 if 2= k.

k

Let A be any element of V and considnr
INE <6, - u () lo1h = W2 ¥ <F(x,5) - E, E. (F)a1*
Jj=1 k

After expanding and taking expectation with respect to Tys it will be

seen that the only nonvanishing terms are those of the form

« 2 2
ETk[.F(xrj) - ETk(F)|A> <Flx.,) - Etk(F)|A> ]
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N\
of which there are. N, +\, ) = o(uf,). Thus
F.Tktu;’* &, - ulr )0t

is bounded as Nr + o, It follows from a standard theorem on comvergence
of moments [ 3,p. 95] that

PelXplty)
— N.* (6, -uft))] +0 as N_ -+ =
T qr(xr“) r r r''k r
Thus Ew(Br) + 0. Similar reasoning shows that
Ew(cr) + (8, coka(F))

as N+« Therefore o(Jr(w)) is bounded away from 0 and this concludes
A ]
the proof.

a. Concludijg Remarks.

Clearly the assumption in Theorem 2 that {N.} 1is bounded can be
weakened. In fact,Theorem 1 could be modified in such a way as to show that
the MLE of exponential mixture parameters is strongly consistent when
s %p2

Redner [ 7 ] has shown that when each N.=1, 2 certain numerical
procedure for obtaining the MLE of exponential mixture parameters is con-

vergent. The generalization to bounded {“r} should not be difficult, and

will be addressed in a future report.
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