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ABSTRACT

We have computed a stable, equilibrium solution for convec-

Lion in a self-gravitating s phere of Boussinesq fluid by using a

modal analysis in which the E, 0 dependence of the fluid is expanded
in the set of 168 spherical harmonics, Y Q ' m , with Z i 12. 10 com-

pute the numerical solution of our hierarchy of nonlinearl ,y coupled

equations, we have developed a new relaxation method. For a Rayleigh

number that is v 30 times critical and a Prandtl number of 10,

the flow has two orthogonal planes of reflection symmetry. The

temperature, velocity and convective flux of the fluid as well

as the kinetic and thermal energy spectra as functions of wave-

length are computed. The speczra are found to be in agreement

with both experimental observations and analytic scaling laws.

We examine the dynamics of the energy cascade by computing the

ratio of the amount of energy dissipation at a particular wave-

length to the amount of energy produced at that same wavelength.

We find that there is only a slight cascade of kinetic energy

to smaller wavelengths but a large cascade of thermal energy.

The fraction of the convective flux that is carried by each

wavelength and the degree of anisotropy associated with each

lengthsca le are also determined. The stable, steady-state con-

vecting fluid has a rotation law such that the angular momentum

Ter unit mass as a function of radius is constant.

Subject headings: cc7vecti on - stars: interiors - hydrodynamics
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I. INTRODUCTION

I

	

	 Thermal convection is perhaps the most important unsolved

problem in stellar structure. In 1916 Lord Rayleigh determined

the necessary conditions for convective instability using linear

theory. Since then, people have been trying to calculate stable,

equilibrium solutions to the nonlinear equations of motion. One

of the most successful methods is finite amplitude theory (Malkus

and Veronis, 1958), which can be used to predict the convective

flux and temperature gradient for mildly nonlinear, low Reynolds

number flows. Recently, Busse (1975) has computed time-independent

convective patterns in spheres and spherical shells using this

method. Lorenz (1963) considered the self-interaction of a single

mode whose radial and horizontal structure was fixed for all time

but whose amplitude was allowed to vary. He was able to compute

a seemingly "turbulent" time dependence for the convective flux.

Toomre et al (1977) have also computed nonlinear solutions by

using a single mode whose horizontal structure is fixed but whose

vertical structure is determined by the equations of motion. They

have been able to calculate convective fluxes that have

been applied to the second convection zone of an A star (1976).

Each of these nonlinear methods has produced interesting results,

but they are all, obviously, limited to low Reynolds number flows.

A severe problem inherent in each method is that it

requires a priori knowledge of the horizontal structure of the

flow. It cannot be determined with these methods which, if any,

of the infinite number of possible equilibrium solutions is

stable. It is clearly desirable to compare the results of these
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nonlinear analyses with the solution of a high spatial resolution

numerical computation.

In this paper we numerically determine the convective flow

04T a self-gravitating sphere of Boussinesa fluid for small

Reynolds and ?eclat numbers. We use the 3-dimensional modal

analysis that was developed by this author in a previous paper

(1979, hereafter referred to as Paper I). Although the small

Reynolds and ?eclat numbers are not appropriate for astrophysi-

cal flows, their smallness enables us to numerically resolve

all of the important physical lengthscales. This paper is

necessary as a foil for the following paper in which we cal-

culate convection for large Reynolds and Peclet numbers, but

model the flow at small lengthscales. The decomposition

Of the equations of motion into modes is reviewed in 52 of

this paper and a relaxation method that allows us to compute

solutions to these equations is presented in 53. With this

Galerkin method, we are not restricted to small perturbations.

By using a wide range of initial conditions and showing that

they always evolve to the same steady-state, we determine

the stable equilibrium flow for a Rayleigh number of 10 4 and

a Prandtl number of 10.

In "s3 we derive different measures that can be used to describe

the over-all properties of this flow. The 2 and 3-dimensional

s pectra of the kinetic and thermal energies and the connective

flux as a function of wavelengths are calculated in terms of

modes. We also define a measure cf the anisotropy of the flow

as	 a function of wavelength. In 54 we present the results

of our numerical calculations for our stable convective solution
I
I
	

in terms of these measures. Our discussion is in 560.

mss,
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A. Galerkin Decomposition

The modal equations governing convection in a self-gravitat-

ing sphere of Boussinesq fluid were derived in Paper I. In

these equations the solenoidal velocity is written as a sum of

its poloidal part, v p , and its toroidal part, v T , which are

derived from the scalar fields w and ^.

v  = V 13(rw)/ar1 - (rV 2 w) e r 	(2.1)

vT = rV x ("r )	 (2.2)

Each scalar function, f(r,e,o,t) is written as a sum of its

mean or horizontally averaged part, <f(r)>,and its fluctuating

part, f - f - <f> where

<f(r,t)	 fd.Q> _
	4^r

	 f(r,6,o ,t) //4n(2-3)

The fluctuation, f, is written as a truncated Galerkin expan-

sion using spherical harmonics:

x

,.
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f(r,8 5 O-,t) _

cutoff	
(2.4)

EZ fy,Q,1Ti (r,t) Yy'Z'm(8,^)

Z=1	 m,y

where

2(2Tr)1/2	 Re (Y Z 'm ) mr0

2(Tr) l/2 	Y2,0 m=0

2(2	 ) 1/2 Im (YZ ' m ) m140
Y y ' Z ' m = (2.6)

0 m=0

and where Re(Y Z ' m ) and Im(Y Z ' m ) are the real and imaginary parts

of the s pherical harmonic. The second sum in eq uation (2.4)

is over O^m^Z and y=R and I. The Galerkin truncation is made

by restricting the first sum In e quation (2.4) to Z<Zcutoff ,

We adopt the notation that <<f(r)>> is the stationary value

of <f(r,t)>; that is, if T is a period of time that is long

compared to the timescales over which <f(r,t)> charges, then

I

f
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r
<<f(r)>> = T J <L (r,t)> dt 	 (2. 7)

0

If the value of <<'L>> depends u pon the origin of time used on

the right-hand side of eq.(2.7),ther. <f(r,t)> is not a stationary

function and <<f>> is undefined.

We shall consider

sion coefficient, a, a

cp , a thermal diffusiv

source is	 H(r) and

a Boussinesq fluid rwith a thermal expan-

kinematic viscosity, v, heat capacity

ity,_X, and a mean density p. The heat

the steady-state luminosity,,-4r), is

r

.,(r) = 4n J <H> r r2 dr'	 (2. 6)
0

We nor.-dimensionalize the equations of motion by using the

radius of sphere, R,as the unit of length, pR 3 as the unit of

mass, R`A a ,- the unit of time, and (R)/47pc pRk as the unit

of temperature. In these units the equations that govern the

velocity, temperature, T, pressure, P, and gravitational poten-

tial, ^, are:

awY £ 	 / at =

-r C£(£+1)7
-1
 CR P r T	 + a (P	 + ^	 ) /2r1s r	 Y^^.,m	 Y^£^m	 Y^£^m

+ Pr D£ (wY,£'m)

- £(£+1) -1 {r er • C(v-
o)v7)Y'£'m
	 (2.9)

aVY,£,m
/at	 Pr 

£ ( Y'£,m)

-£(£+1) -1 {r e^r • 0 x Cv-G)v_J)Y'£5m	 (2.10)

D Tvl£'m 	 at = A (TY"£,m)
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R(Q+1) (a<T>/ar) w 	 /r
Y,Qlm

- v	 VTJ Y ^ Zlm

Q
(P 
Y72,m ) 

= P r R s (6T Y,Q,m 
+ r9T 

Y,Z,m 
/ar)

- r 2 a {rCr e
r 	 Y,Q,m

• (v•V)vJ	 }/3r
— — 

- {v • C(v • o)VJ }Y^ZIM

Q 
( ^Y'ZIm ) =	 Pr Rs TY'z'm

< w > = < ^ > = 0

a<T> = r 2 {a(r 2 a<T> /ar)/ar + a^/arat

(2. 11)

(2. 12)

(2.13)

(2.14)

-a C 	 r Z( Z +1) 
T ,Q,,n wYQm J / ar}	 C2. I5)

where U Q is the second-order differential operator defined by

i ts action on f,

13 Q (f) = Ca 2 (r-f)/ar 2 - Vz+1) f/rJ/r
	 (2.16)

The subscript, Y, stands for either 1 or R. The nonlinear terms

{r er 	 Y, Q,m	 Y, ^,,m• Vx C(v•0)vJ} 	,C(v•V)TI	 , Ce r	 Y, 2,mr • (v • V)vJ	 and
— —	 —  

0 • 1(v • 0)v1
Y,X,,m

 are explicitly expressed in terms of wY,2,n ,

Y,2,m, and TY'QIm 
in Paper I. The Prandtl number, Pr-v/;, and

the Rayleigh number, Rs -a GR 34 R)/3; 2 vep (where G is the gravita-

tional constant) are the two constants that appear in equations
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Boundary and Initial Conditions

The boundary conditions are that the surface of the convec-

ting fluid is impermeable and stress-free. This requires that:

W	 (1)	 0	 (2.17)

Wa	 0
2	 2	 (2.18)Y,Q,m / ar r=1 _ 

a(VPY,Z,m / r)/ ar I r=l _ 0	 (2.19)

The surface has no thermal resistivity and is therefore isother-

mal, or

T
Y,Q,m 

(1) = 0	 (2.20)

We are also free to fix <T> to be constant for all time at the

surface. Since the specific value of <T(1)> has no effect on
ti ti

v, T, P, 0, ox- a<T>/ar, we set it equal to zero.

< T(1) > = 0	 (2.21)

We have chosen the heat source so that it has a constant value

for r ^ 0.3 and is zero outside r = 0.3.

In dimensionless units

ti
H = 0	 (2.22)

3 / 47x(.3) 3 	r < 0.3

< H >	 {	 0	 r > 0.3 }

	
(2. 23)

This heat sou-,ce produces a steady state luminosity

+	 (r/.3)3	 r ^ 0.3
1	 r > 0.3 }	 (2.24)

,_	 Y

I^



The total heat flux (per unit area) at the surface is

- 8<T> /8r and is free to vary in time. The thermal and kinetic

energy can be stored in the fluid and released through the sur-

face in a series of bursts rather than in a continuous flow.

However, «8T/ 2r» = -1.

No boundary conditions are imposed at the center of the

sphere,but regularity requires that leading order terms of

wY,Q,m , ^Y,R,m , TY,°,m' PY,Q,m , and ^Y't,m all go as r  at the

origin. The dipole component of the velocity may be nonzero

at r = 0.

III. ARTIFICIAL TIME METHOD OF SOLUTION

A straightforward method of obtaining solutions to aqua-

tions (2.9) - (2.15) is to choose some initial data and inte-

grate the equations forward in time. However we have developed

a relaxation scheme, the method of artificial time, that deter-

mines convective solutions in a more efficient manner.

A. The Initial-Value P_,oblem In Real Time

Consider a fluid with its mean temperature in conductive

equilibrium,

r/(.3) 3	r -< 0.3

l/r	 r > 0.3

and with velocity and temperature fluctuations that are ini-

tially simall . if the Rayleigh nLunber is sufficiently large, w and

'T initially grow almost exponentially. We can understand this

growth by computing the linearized eigenmcdes to equations (2.0)
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- (2.15); wY,.2,m and TY,Q';

than the critical Rayleigh

rates are independent of Y

the velocity always decays

table 3.1.

n grow (decay) if Rs is greater (less)

number, Rscrit(Q). The growth or decay

an3 m. The toroidal component of

initially. Rscrit U) is given in

TABLE 3.1

R 1 2 3 ^+ 5 6 7 8 9 10 11 12

Rs(R) 296 753 1702 33295 869 9583 14759 21715 37792 42353 56809 71.577

if Rs 
<'Rscrit(1) 

then the velocity decays and the mean temper-

ature remains unchanged. ( We have not found a numerical exam-

,

	

	 pie of sub-critical, finite-amplitude convection). The initial

growth rate of each eigenmode increases with increasing Rs as do

the R,-values of the most unstable modes.

G`	 For example, Q=6 is the most unstable eigenmode for
ti

Rs = 10 6 . Although T and, w grow r^^pidly, <T> changes very slowly

and its growth rate is determined by the conductive timescale,
ti

which is ti 10 -5 of the growth rates of T and w for Rs = 10 8 . The

horizontally averaged temperature does not begin to change appre-

ciably until the convective flux, <Tv r > , is of the same order as

the steady-state flux, a-L,/r 2 . The mean temperature gradient

then becomes nearly isothermal (isothermal E adiabatic for a

3oussinesq fluid). At this point, the velocity is large and

chiefly made up of the most unstable eigenmodes (large R,) of
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the conductive temperature gradient. The nearly isothermal tem-

uarature gradient is not in equilibrium with a velocity field

with these characteristics. For steady-state equilibrium with a

nearly isothermal temperature gradient, the velocity must be made

up of the neutrally stable eigenmodes of that same temperature gra-

dient (not the con;'_Lctive gradient). The latter eigenmodes are

characterized by smaller values of X than the unstable eigen-

modes of the conductive gradient. Ther

cycles of decay

and growth, with lower and lower values

city until a statistically steady-state

tion of the velocity forward in time is

efore the velocity begins

of R dominating the velo-

is reached. The integra-

limited by a Courant con-

dition; a large velocity requires a small time-step. Because the

time-step must be small and because the velocity and temperature

must cycle through many stages until they reach a statistically

steady state, finding solutions by integrating equations (2.9) -

(2.15) forward in time is inefficient.

B. The Initial-Value Problem in Artificial Time

Instead of integrating the equations of motion in real time,

we can force the fluid to go through a series of states in which

the mean temperature gradient is always in instantaneous equili-

brium with the velocity field and convective flux. T;:e only modi-

fication to the equations of motion (2. 9) - (2.15) is to set

a<T>/at = 0 or equivalently to rapiace equation (2.15) with

ar

+ Z
Y1 Q I m Y9Q'm cv Y ^ Zlm Q(Q+1) /r
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ti

With this modified set of equations,T, w and a<T>/ar all

initially grow exponentially. Within a few eddy-turnover times

the solution converges to a statistically steady state. Any

solution to the artificial time equations (2.9) - (2.14) and

(3.2) in which a<T>/ar does not change in time is also an exact

equilibrium solution to the real time equations although it is

not necessarily a stable solution. Stability is tested by add-

ina a perturbation to the equilibrium solution, integrating it

for;dLrd in real, time, and testing to see whether the perturba-

tions grow or decay. Regardless of the amplitude of the pertur-

bation,we have never found a time-independent solution generated

fr. om the artificial time e q uations that was unstable i n real time.

Sometimes the artificial time equations do not converge

to a steady state but only to a statistically steady state (in

which the mean temperature gradient, heat flux and spectra of

the kinetic energy and thermal fluctuations are stationary). In

these cases the variations in time of 9<T>/3r are small but they

do not have the same time dependence that a<T>/ar has in real

time (see, Marcus 1980). If the statistically steady artifi-

cial time solutions are used as the initial data in integrating

the equations in real time, the solution converges to a new

1	 statistically steady state in only a few eddy-turnover times.

IV. DESCRIPTION OF THE FLOW

In our modal representation of the fluctuating Quantities,

we have chosen Qcutoff = 12,which requires 168 modes,(y,k,m).

By using a radial grid of 128 zones,each scalar is represented
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r

by 21,50 L numbers. It therefore becomes important to decide which

ouantit- e^:, should be calculated to describe the flow in a sensible

manner.

A. The Temperature Gradient and Mean Thermal Energy

The rate of change of the mean thermal energy of the fluid

is determined by integrating equation (2.15) twice over the en-

tire radius of the sphere:

1
31J  <T> dr 3 7 /at = 4n f <H> r` dr + 47r a a > I r = 1	 (4.1)

0

The first term on the right-hand side of equation (4.1) is the

rate at which energy is pumped into the fluid from the heat source;

-che second term is the rate at which energy is conducted away

Zrom the surface of the sphere. If the integration of equation

(2.15) is left as an indefinite integral, we obtain the equation

for the mean thermal h=at flux:

3 <T>/3r + r-1 , E T	 w	 Q(Q+1) + f(r)/r2
Y^Zlm Y ' Q 'm Y'Z'm	 0^-

-r-2 3(	 dr 1 r' 2 <T>)/3t
	

(4.2)

The first term on the left-hand side of equation (4.2)  ; s the cor_-

ductivc heat flux, and it is therefore important for us to com-

pute the mean temperature gradient. The second term on the left-

hand side of equation (4.2) is the convective f=lux icon' teach

mode, (y,Z,m), contributes to the flux with no cross terms be-
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tween modes. We will find it useful to consider the convective

flux carried by all modes with a particular value of k, F 	 (k):
con

Fcon(k) = r
-1 k(k+1)	

wY5k9m T
Y'k5m	 (4.3)

Y 2m
with

F	 = ^ F	 (k)con	 k	 con	
(4.4)

The third term on the left-hand side of e q uation (4.2) is the

heat flux of the steady-state fluid. The right-hand side of

eq uation (4.2) is the rate at which the stored thermal energy

is being released.

B. Energy Spectra in 2 and 3 Dimensions

The kinetic energy per unit mass in a shell of radius r

is (see Paper I):

KE (r) _	 KE (k,r)	 (4.5)
k

with

KE (k,r) = 2 k(k+l) E {wY^k,m k(k+l)
k,m

+ C9(rwY'ZIM )/ar7 2 }/r 2
 + ^2Y3k'm
	 (4.6)

where KE(k,r) is the kinetic energy due to all modes,(Y,k,m)

for,all Y and m. Similiarly we can define a fluctuating thermal

en er gyl .

tin
TE (r) = 1/2 <T ` > =	 TE(.,r)	 (4.7)

k

1TE(r) is usually called the temperature variance, but we reserve
the term "variance" for another quantity.

-.
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with

tit

TE (Q,r) = 1/2	 T	 (4,8)
^,,m	 Y ' ^'m

Traditionall y one calculates the fluctuating thermal

energy and the kinetic energy spectra as functions of a 3-

dimensional wave number, whereas TE(X,r) and KE(Z,r) are func-

tions of radius and the 2-dimensional wave number, Q„

In a bounded spherical geometry it is more

natural to compute these 2-dimensional spectra. Three-dimen-

sional spectra are better suited to an unbounded or periodic

Cartesian geometry. However, to compare our results with

other published work,it is necessary to transform our 2-dimen-

sional spectra into 3-dimensional spectra. Unfortunately,

it is not a unique transformation. We provide an example with

the thermal energy spectrum.

The correlation of the temperature is defined:

f1i^
C(r) = 1/2 
	
T(x) T (x + r) d 3  
	

(4.9)

ti

The integral is over all space, but because T(x) is defined

only for jxj ' l,it is necessary to insert a window function,

W(x,r), into the integral in equation (4.9). The simplest choice

for W(x,r) is

W(x,r) _ { 1 if jxj < 1 and 12+r1 'f 1} 	 (4.10)
0	 otherwise

There are several _problems with this definition of the window
ti

function. If T were independent of position we would expect

[	 the correlation function to be independent of r. Using equation
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(4.10) we find that C(r) decreases with increasing Irl. The

decrease is due to the finite geometry and not due to an inher-
ti

ent property of T. The window function must be chosen to com pen-

sate for this effect. Another consideration in the choice of
ti

W(x,r) is that our integrations are numerical and T is repre-

sented on a radial grid with a truncated expansion in 0 and ^.

W(x,r)	 must be chosen so that C(r) reflects the properties
IV	 ti

of T and not the numerical representation of T.

It is convenient to have W(x,r=0) = 1 so that

1

C(0) = 47r f TE(r) r 2 dr	 (4.11)

0

We define C(k) to be the Fourier tranform of C(r)

C(k) = (270) °	 C(r) exp(-ik-r) d 3r	 (4.12)

Integrating C ) over all directions,we obtain the 3-dimensional

thermal energ, spectrum that is a function of k-iki.

2	 3^ tiTE(k) = (27r) - fdQrdr dx T(x)T(x+r)sin (kr) W(x,r)	 (4.13)

By choosing W(x,r=0) = 1 we find that the integral of TE(k)

over all k is equal to the total fluctuating thermal energy.

f ̂
TE(k)dk = 47

0

1

J TE(r) r 2 dr
0

(4.14)

If W(x,r)-1, then TE(k) reduces to

"J

	

TEW = 1/2 (270 3 r 
Tk T-k k

2 dSZ k	(4.15)
J	

ti

where T  is the Fourier transform of T. One final caution:

since the Spatial resolution is more limited in the horizontal

IL
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than in the .radial direction, and since the hor_zontal res-

olution is ti 27 CZ cutoff cutof(R 	 +1)]-1/2,we should not expect TE(k)_

to be accurate for k > Czcutoffcutoff+1)]1/2' Similiarly TE(k)

will not be accurate for k < 1.

C. 3-Dimensional Energy Spectrum in Terms of Modes

In terms of modes, equation (4.13) becomes

TE(k) = ( 21r ) -1fdOxdS2r drdxx
2 kr sin(kr) W(x,r)

CT	 (x) - iT . 	 (x)1 Y Z 'm (0 ,d) )^ m_1 ET 	 J_,^,,m	 x x

+ CTR,Z,m(x) + i T I'Q'm (x)] (-1) m YZ '_
m 

(Ox 4 x)

+ 21/2 T
R ^ Z,o (x) YZ ' o (0x1ox)

t	 tx 
Qt	

mt,,^ CTR ^ Qt'm r (IX+Z_I) - iTI' z t'mT (lX+rl )7YR 'm (Ox+r ̂x+r)

+ CTR,V pmt (12+r)) + iT _ ,Q t 'n t ( j2+rj)7( -1) mtYQt'mt )(ex+."10X+r)

1/2	 t

+ 2
	 TR,kt,o (lx+rl) YZ ' o (Ox+r5^x+r	 (4.16)

The spherical coordinates of the vector(x + r)are O x+r and 0x+r.

We have chosen the z-axis of the ( 0r1 or ) coordinate system to be

the Ox axis. Using the identity

f YQ'm(a	 x ) 
Y Qt '

-mt 
(0	 ^^x+r x+r	 x) dO dO

.^	 r

	

27r P R [cos (Ox+r )] 6ZZ,	 a mm t	(4.17)

and assuming tnat W depends only on Ix^, (r 	 and the angle be-

tween x and (x + r) we find that the fluctuating thermal energy

..._, ..... t...wa.s^ r2st.'.̂S?Illlai+$RPfL9^^.^"^°	 ^^°"°•-......
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s pectrum is

TE(k) = 2 f d(cosOr ) dr dx x 2 kr sin (kr)

x W (x,r,6r+x)

x E ET	 (x) T	 ( x+r ) P c	 (4.18)
Y, z ,m	 Y, Q ,m	 YP"r,	 z( osO x+r)

In equations (4.17) and (4.18), P Q (cosOx+r ) is a Legendre poly-

nomial, and

cos ( Ox+r ) _ ( x2 + jx+r1 2 - r 2 ) / (2x1r+xj)	 (4.19)

f x+r l _ (x` + r2 + 2r x cos 0 r ) 1 2	 (4.20)

Not suprisingly, equation (4.18) shows that TE(k) depends upon

the product of TY"Q,m (1xj)and TY'Z ^ m (1x+r D , but contains no

cross terms between different modes.

When the flow is isotropic the 3-dimensional spectrum can be

directly related to the 2-dimensional spectrum. If the correla-
ti	 ti

tion C(r) between T(x) and T(x+r) depends only on (rl and if W

depends only on jxj and Iri then equation (4.18) reduces to

T'-:'(k) _ (2/7r) J dr dx x2 kr sin (kr)

x W(x,r)

7x CT	 (x)12	 P (1 - 1/2 r 2 /x 2 )	 (4.21)
Y3•Q ' m Y,Q,m	 Q

Defining

s
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r2xk
d z (kx) =- ( 14
	

y sin (y) P z (1 - 1/2 y 2 /k 2 x 2 )dy	 (4.22)f0

we find that

TE(k) = k-IT r 2 TE U ,r) d
Q 

(kr) dr	 (4.23)
Q 

D. Total Energy Budgets

Multiplying the Boussinesq Navier-Stokes equation by

the velocity and integrating over the volume we obtain the

kinetic energy budget:

1
a [1/2 J dr 3v 2 ]/at = 47rPrRs J <vrT> r3dr

	

a y .	 ay.
0

Pr j dr3 ( axl ) ( axl )	 (4.24)

	

7	 7

where the first term on the right-hazed side of equation (4.24)

is KEin , the total rate at which kinetic energy is pumped into

the fluid from buoyancy forces, and the second terns on the

right-hand side is KEout' a negative-definite quantity that is

the rate at which viscosity dissipates the kinetic energy. If

the convective flux is much greater than the conductive flux

and if the time variation of <T> is slow enough such that

<TV > Z I /r 2	 (4.25)
r

then

r
,Cr) >> (a(	 dr'r,2<T>)/at(	 (4.26)

0

and

f
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1
KEin Z 47PrRs r	 (r)r dr = 1.892 TrPrRs 	(4.27)

0

In dimensionless units the rate at which mean thermal energy is

generated is unity. From equation (4.27) it is apparent that

in Boussinesq fluids the rate at which kinetic energy is cre-

ated is much greater than the rate at which the mean thermal

energy is created. This conclusion is quite different from the

one derived from mixing-length arguments in a compressible fluid.

In a compressible fluid these two energy input rates are nearly the

same. It is because a Boussinesq fluid is incompressible (and

can perform no mechanical work) that the mean thermal energy generation

rate and kinetic

It is often

enters the fluid

and Lbig are the

est convective

energy generation rate are not equi-partitioned.

assumed that the rate at which kinetic energy

is approximately equal to V3 /L	 where where 
Vbi 0̂

characteristic velocity and length of the larg-

ddies. Equating this expression for KE in with

equation (4.27) we obtain

Vbig Z (PrRs)1/3
	

04.28)

This provides a scaling law for Vbig that can be numeri-

cally verified. Furthermore, if most of the convective flux

is transported by the largest convective eddy (with characteris-

tic temperature fluctuation ^, T big ), then 	 S

V

<T 
a- `'big>
	 /r2	 1

and

(4.29)
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Tbig Z (PrRs)-1/3	
(4.30)

Equation (4.28) can also be verified numerically.
ti

By multiplying the thermal diffusion equation by T and inte-

grating over the volume,we obtain the fluctuating thermal energy

budget

a C1/2 r <T 2 > dr 3 = - 47r 1 l<Tvr' a 8r' r2drJ
0

1 ti	 ti
- 4 T J <pT • VT> r2dr

0
(4.31)

The first term on the right-hand side of equation (4.31) is TEin'

the rate at which fluctuating thermal energy is created from

the interaction of the mean temperature gradient with the con-

vective flux. The second term on the right-hand side of equa-

tion (4.29) is TEout' a :negative definite quantity that is the

rate of diffusion of the thermal energy.

E. Detailed Energy Budgets for Each Q-Value

Each shell of modes with the same horizontal wavelength [i.e.,

all modes (y,Q,m) with the same value of 23 has an inflow and out-

flow of kinetic and fluctuating thermal energy. It is useful to

determine the rate at which energy is dissipated and created in

each particular Z-shell. The rate of change of the kinetic energy

in the 2 `h shell is

('I
a (4TrJ	 KE(r,2)r 2 dr)/at = KEin (Q) - x'out(Q)0

- 47rf 1 <v(r,Z) • C(v-0) v ]> r 2 dr	 (4.32)

0

C`



The rate of fluctuating thermal energy input, TEin(Q),is
i
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where KE in (Z) is ecual to the rate at which kinetic energy is

directly fed into the k th shell

	

f
KE in (Z) = 47r PrRS Z Z(Q+1) 	 wY'Z ^ MTY2Q'mr 2 dr 	 (4.33)

Y,m	 o

and where KE out (2) is the rate at which the Rth shell directly

loses kinetic energy through viscous dissipation

1

KE 
out (Q) _ - 47r Pr
	E-192[UrKE,r)/art	 (4.34)

O

+^ {-CQ(1C +1)]2 r-
2 

w 	 (w	 )
L.	 Y)Q,m	 Q	 Y,^,m

Y,m

-Q(k+1) r-2 a(rwY5Z'm )/ar aCr .VQ (wY'P"m)]/ar

Q(^+l)	 >m °uR 	 Q )}
	 r2dr

Y> Q	 Y> m>

In equation (4.32), v(r,Q,) is the velocity associated with the

Zth shell at radius r. If the flow is stationary the left hand

side of equation (4.32)  is zero, but <<KE
in

 M>> 9 <<KEout (Z)>>
r

because -47	 <v(r,k)•t(v•D)v] > r 2dr, which is the rate at which

kinetic energy cascades in or out of the Rth shell from other shells,

is not necessarily zero. By comparing the relative values of

KEin U), KE out M, and -47r 
f 

<v(r,Q) • C(v • D)v] >r 2 dr, we can deter-

mine whether an Q-shell is part of the production, dissipation,

or equilibrium range of the spectrum.

The rate of change of fluctuating thermal energy in the'tth

shell is given by

,W

I

(' 1
aC47rJ TE(r,Q) r 2 dr]/at = TEin(Z)	

TEout W
0

- 47rJ <T(2,,r) C(v • 0) T] > 7r2dr
0

(4.35)
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TE	
o	 Y,m

(Q) = -4Tr (1 a<T> r 7, 7.' 	w	 Q (Q+1) dr	 (4.36)
in	 J	 ar	 Y12-Im Y>Z,m

and the rate of fluctuating thermal energy dissipation is

TEy	
f

	

(Z) = - 4Tr .E COT,	 /ar)2 +Q(Q +l)r-2T2	 r2 dr(4.37)ou6.	 Y,m	 ,z,m	 Y,Q,m.

The rate at which fluctuating thermal energy cascades in or out

of the Qth shell from neighboring shells is

- 4Tr1 1'?'(Q,r)C(v•D)T] r 2 dr, where T(k,r) is the thermal fluctua-
o	 (_ h

tion of the 2 ` shell at radius r.

F. Vorticity, Isotropy, and Angular Momentum

The vorticity, s, is solenoidal and can be expressed in terms

of modes as

rZ = DCa(rip) /ar l - (rv 2 ^) er - rD C(D w) ê r 1	 (4.38)

One possible test for the isotropy of the velocity is to com-

pute th'e helicity, <f2 • v>, which is zero for an isotropic field.

In terms of modes, the helicity is given by

<v-P->	 r 	 2Q(k+1) w	
m	 Q m

Y2Z^m	
Y>	 Y> >

+ a(rw	 )/ar a(r^	 )/ar.
N Y ' t 'm	 y 2 Z m

- 
rq)Y^Z'm 

a 9 (rwY'Q'm )/ar 2
	

(4.39)

From eq uation (4.39) it is clear that the helicity is made up

o- terms that are proportional to ^ Y9Q'mwY ^z 5m and its derivatives.

We normally expect that the poloidal part of the velocity is domi-
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nated by the low k modes, whereas the toroidal component of the

velocity (as well as the vorticity itself) is dominated by the

high £ modes. Therefore the helicity is less a test of isotropy

than	 a measure of the correlation between the large scale

and small structure of the velocity. In a calculation where

the large scale communicates with the small scale by a series

of cascades (each of which introduces its own phase shifts) the

helicity is not a useful measure of isotropy. Instead, we shall

use a less rigorous but more straightforward and revealing

method to determine the anisotropy of the velocity. We define an

isotropy function, I(k,r) as a function of r for each £-shell to be

I(k,r) 2 1/2 KEH (k,r)/KER(k,r)	 (4.40)

where KER (k,r) and KEH (k,r) are the contributions to the kinetic

energy, KE U,, r) that are due respectively to the radial and horizontal

components of the velocity. If I(k,r)=1,the flow is defined as iso-

tropic. There are several advantages in defining a measure of

isotropy as a-function of both £ and r. First of all, convection

is not by nature isotropic; the buoyancy force is in the radial

direction, so we expect the radial component of the

velocity to dominate. We expect that I{£,r) will r•e less than l

when k is part of the production range. For larger k-shells we

expect that the velocity field will no longer feel the direct effect

of the radial buoyancy; as the energy cascades downward

the velocity should lose its memory of the radial direction and

become more isotropic. This return to isotropy can be tested

by determining whether I(k,r) increases :. pith increasing Z. We
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also expect I(Z,r) to vary with the radius. At the outer boun dary of

the sphere, the radial component of the velocity goes to zero.

The outer boundary-layer should be characterized by large values

of I(Z,r). We determine the behavior of I(Z,r) by expressing it

in terms of modes:

1) w	 /
YI' m 	Y^^m

	

fca(rwY'Q'm ) /2r7 2 
+ r2YQ,m}	

(4.41)
Y,m

By using the regularity conditions at the origin, equation (4.41)

shows that

Lim	 I(Q,r) -► 1	 for all Z	 (4.42)
r -)- 0

Equation (4.42) is due to the singularity of the coordin.at4e sys-

tem at the origin (i.e. there is no distinction between radial and

horizontal), so I(k,r) is not a useful measure of isotropy at the

origin. (however, at the origin I(Z,r) is the ratio of two

small, numerically computed quantities.By comparing it to its

known analytic behavior at the origin,it provides us with a use-

ful test of the accuracy of our numerical code.) .

One more useful quantity to compute is the distribution of

angular momentum in the fluid. All of the angular momentum re-

sides in the Q = 1 toroidal modes. Defining j(r) to be the

angular momentum per unit mass at radius r we find (Paper I):
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^(r) = 2(3)-1./2r
	

R,l,o eZ _ ^R51'0 e  _ ^I'1'l e ) (4.42)
Y

V. RESULTS OF NUMERICAL CALCULATIONS FOR RAYLEIGH NUMBER = 104
AND PRANDTL NUMBER = 10

A. Convergence to a Unique Stable, Equilibrium Solution

We have integrated the artificial and real time equations for

Rs'= 10 4 (ti 33.8 Rscrit) and Pr = 10, using a code that is second-

order accurate in both space and time. The solution to the arti-

ficial time eauationswas found to be time-independent. This solu-

tion,plus a perturbation,was used as the initial data in the real

time equations. The perturbation decayed,and the solution recon-

verged to the steady-state solution of the artificial time equa-

tions. We performed the integration several times: we used a racial

grid that varied between 64 and 128 :;ones, an Qcutoff in the

Galerkin truncation that varied between 6 and 12, several different

time-steps, and a large number of different initial conditions to

the artificial and real time equations. (All of the initial con-

ditions had total angular momentum equal to zero.) In each case

the integrations converged to the same time-independent solution.

(When Qcutoff was less than 12 we found that the small Q modes

did not change,but there was some change in the modes with Q near

Qcutoff' (See §5c.)

The final, stable solution has two orthogonal planes of re-

flection symmetry. Despite our attempts to introduce pertur-

bations without this symmetry,the solution stubbornly remained

reflection symmetric. Modes with other symmetries, such as

dodecahedral modes,were found to be unstable.

^s

A .^1

...	 ._.^a	 =.^.^;,,.-J,^.sa........: dycw:.^rtd1P	 •-.^y.ai_,^:`•^a'n^Y^+IMtISBâdL L2111ti^^i^^	 I ^ I	 •.i
	 .- _^A
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A solution that is reflection s ymmetric with respect to both

tree x=o plane and c=o Diane can be written so that w and T are

made up only of (R,t=even,m=even) and (I,t=odd,m=odd) modes and

1D made up only of (R,_C=even,m=odd) and (I,t=odd,m=even) modes.

However, in no case did the planes of symmetry coincide with

the x=o, y=o, or z=o planes; therefore, all modes are present

in our final solutions. In fact, different initial conditions

always lead to different final values of wy,t,m , ^y,t,m , Ty,.2,m'

?Y,tm and 1^ Y ^ t ^ m because the planes of symmetry always lie in

different directions. We consider it an excellent test of our

numerical code (especially the cumbersome nonlinear terms) that

all of the different initial conditions lead to solutions with

different planes of symmetry and that the solutions are identi-

cal when they are rotated such that their planes of symmetry

coincided with the x=o and y=o planes.

Notice that a solution with 2 orthogonal planes of reflec-

tion symmetry has its angular momentum identically equal to zero

in all of its radial shells; if the solution is oriented such

that the planes of reflection lie in the x=o planes, then

^R,t=1,m=1	 ^R,1= cD,m=0 = ^I,t=l,m=1=o, therefore j(r)=o for all

r. Conservation of angular momentum requires only the integral1	 ,,
constraint 1 (r)r` dr=0. The system was not constrained to have

0
j(r)=0 for all r. We also note that although the t=1 component

of the toroidal component of the velocity vanishes identically,

the zOro?dal velocity is about One-tenth the poloidal velocity

for ),=2.
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Temperature Gradient and Heat Flux

The mean temperature gradient of the steady-state convec-

tive solution is shown in Figure 1 (solid line) along with the

temperature gradient of the conductive solution (dotted line).

The convective gradient is, of course, more isothermal

than	 the conductive solution, but it still shows a cusp

at r = 0.3, which is the boundary of the internal heat source.

Apparently the convective velocity and temperature fluctuations

are sufficiently local that the convective flux cannot

completely smooth out the cusp at r = 0.3. Because the convec-

tive solution is steady state, 1/r a<T>/ar must be equal to -1

at the outer boundary. 	 The slope of 1/r a<T>/ar must be equal

to zero at the origin. The temperature gradient is positive be-

tween r = 0.55 and r = 0.86, which means that the convective flux

is so large that the conductive flux is negative in this region.

A negative conductive flux Ls a familiar property of convection

in plane-parallel geometries (Herring, 1963). Figure 2 shows

the ratio--,,( F con /FTotal' where FTotal is the total flux and is

equal to L (r)/r 2 in steady-state convection. The ratio

F con /FTotal i s the ratio of heat flux that is carried by con-

vection to the total heat flux. The ratio is near unity over

most of the radius of the sphere except in the outer boundary

layer where it must go to zero. In §4 it was shown that the

slope of i con /FTotal goes to zero at the origin (unless the
f'

A
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ti

leading order terms of wY,Z=1,m or TY'Z=1,m vanish at the origin).

The mean temperature as a function of radius (Figure 3) prominently

shows a "footprint" of the r = 0.3 boundary. Boundary conditions

necessitate that <T(1)> is zero for both the convective and con-

ductive solution, but the value of <T> at the origin can change.

In conductive equilibrium <T(0)> = 4.0, whereas in convective

equilibrium <T(0)> = 0.68.

C. Energy Spectra

- The 2-dimensional spectra of the kinetic and fluctuating ther-

mal energies evaluated at r = 0.5 are shown in figures 4 and S.

Both curves clearly exhibit the exponential decay that is charac-

teristic of a dissipation spectrum. The total rate at which kine-

tic energy is dissipated from the fluid, KEout is determined from

equation (4.22) and is found to be 4.96x10 5 . The Kolmagorov length-

scale, n, is defined (Tennekes and Lumley, 1972)

n = ( Pr 3 / <<KE out" )1/4	 (5.1)

and is equal to 0.212 in dimensionless units.

The equivalent thermal length-scale, n e , for which thermal

diffusion becomes overwhelming is defined as

T1 9	 P 
r -1/2 n	

(5.2)
	 7

and is equal to .067. With 128 grid points and 
Qcutoff - 12

both of these scales should be numerically resolvable. Because

n is greater than n 5 , we expect the dissipation part of the kine-

tic energv spectrum to extend to lower values of Q than
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in	 the fluctuating temperature spectrum. Nearly the entire

kinetic energy spectrum is exponential while 	 TE(Q, r=0.5) is

fairly flat for Q f 3. This flatness is

due to the combined effects of production, cascade and dissipa-

tion. Because all of the effects are squeezed into a short range

of the spectrum, there is no clearly identificable production or con-

vective-viscous subrange. For Q > 3,TE(Q,r) is dominated by dis-

sipation.

Both TE(Q,r) and KE(Q,r) curl upward at the high Q end of

the spectrum. This is a typical phenomena of a Galerkin trunca-

tion and is due to the fact that energy can cascade down the spec-

Crum until it reaches Qcutoff' At 
Qcutoff the energy can cascade

no further, so the velocity at Qcutoff is forced to increase until

KE out (,Z 
cutoff ) is large enough to dissipate all of the

accumulated energy. 	 The fact that TE(Q,r) curls up more

than KE(Q,r) is due to the fact that Pr > 1. Most of the kinetic

energy can dissipate before cascading into Qcutoff. However, the

fluctuating thermal energy is not dissipated as efficiently, so more

cascades down to Qcutoff before being dissipated, resulting in a

greater curl. We have shown that the upward

curl	 at Qcutoff is a truncation effect by repeating the cal-

culation with Qcutoff = 10. In the latter calculation the spec-

tra curl at Q = 10 while with Qcutoff	 12 there was no curl

at k = 10. If the integration is perfopmed with a Prandtl

number of 0.1, KE(Q,r) curls up more than TE(Q,r).

It is because TE(Q,r) and KE(Q,r) both decay exponentially

at large Q that our modal truncation is valid. If we found that

KE(Q,r) or TE(Q,r) decayed slowly as a function of £, the modal

^.^. „^ ^= ^ gar► 	^	 ^ca:^	 ^ _ , _,^;	 ...a
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truncation would not have been a good approximation.

We have computed the kinetic energy spectrum as a function of

the 3-dimensional wave number, k. According to Corrsin (1964)

the 3-dimensional dissipative kinetic energy spectrum should be

of the form

KE(k) = ae 2/3 k-5/3 exp C- 3a(kn) 4/3 1/21
	

(5.3)

where a is a constant on the order of unity. Figure 6 shows our

computed spectrum with ( kn) 4/3 as the independent variable. Fit-

ting the slope of the curve in figure 6 to equation ( 5. 3) between k=4 and

k=8, we have determined a to be 3.07. While we should be some-

what cautious in our interpretation of our deconvolved 3-dimensional

spectrum (see 94b), it is interesting to note that our computed

values of log CKE(k)] are proportional to k 4/3 and not k.

Since both TE(Z,r) and KE(Q,r) decay exponentially with R,

it is not surprising that the convective flux, ti F con (Z),carried

by the Qth shell of modes,decreases with Q. Figure 7 shows the

Zraction of the convective faux carried by the 
Qth shell at

r = 0.5. Nearly 90% of the convective flux is carried by the

L=1 modes. We conclude that the amount of flux we have neglected

by truncating at R=12 is negligible.

D. Energy Balance

In figure 8 we have plotted TEin (Z)/TE in and KEin(Z)/KEin

which are, respectively, the fractions of thermal and kinetic

energy that each Q-shell contributes to the fluid. These ratios

both decrease rapidly as Q increases 	 with ti 930 of KE in and
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ti 730 of TE in produced by the Z=1 modes. Because the Prandtl

number is greater than 1, KE in (k=l)/KE in is greater than

TE in (Z=1)/Tl in* Furthermore, KE in (Q)/KE in decreases faster than

TE in (Z)/TIE.in'

We have plotted the ratios KE out 
(Z)/min M and TEoU"L-U)/

TEin(2) i n figure 9. The ratio KE out (k)/KE in (k) is equal to the

rate at which kinetic energy is directly dissipated (not leaked

through a cascade) from the Zth shell divided by the rate at

which kinetic energy directly enters the Zth shell. We would

e:rpect this ratio to be small if Z were in a production range

and large in the dissipative range. The fact that 
KE out (Z)/

KE in () is approximately 1 for all Q can be interpreted in the

following way: there is no (or very little) kinetic energy cas-

cade, so the amount of kinetic energy that is generated in the Zth

shell is directly dissipated by the 2 t shell and not transferred

to neighboring shells. This interpretation is supported by the

fact that the computed nonlinear terms in the model Navier-Stokes

equation (2.7) are much smaller than the viscous, pressure and buov-

ancv terms. The lack of nonlinear interaction is also shown by

the fact that the poloidal velocity (which is directly fed by

buoyancy)is much larger than the toroidal velocity,which is fed

energy only through the nonlinear cascade. The values of

TE out (Q)/TE in (2) plotted in figure 9 show that there is a ther-

mal cascade. TE out (1)/TE in (1) is less than 1 which means some

of the fluctuating thermal energy in the Z=1 shell must be cas-

cading to higher values of Z. For R. _̂ ' 2, TEout (£) /TE in U) is

larger than 1 which means these :nodes are dissipating more energ%

than they produce. The extra energy that these shells dissi-

L

;f

:w
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i

pate is provided by their neighbors. The thermal cascade is

plausible because the nonlinea._r terms of the thermal diffusion

equation (2.9) are of the same order as the dissipative terms.

A test of the accuracy of our code is that it conserves

energy; the computed values of KEout and KE in are 4.96x105

and 4.94x10 5 respectively. The computed values of TEout and

TEin are 4.09 and 4.08.

E. Structure of the X=1 Modes

Because the k=1 modes dominate the flow, we illustrate the

Z=1 radial component of the velocity, Q(Z+l) r-1 WI,1,1 in figure

ti

10 and the temperature,TI'l?l ,in figure 11. The Q=1 component

of the toroidal velocity, ^, is equal to zero for all r. For

these two figures, we have rotated the planes of symmetry to

coincide with the x=o and z=o plane. Figure 10 is normalized

by the maximum value of the X=1 radial component of the velocity,

max vr ^ -1 =33.8. Notice that the velocity is a smoothfunction

of radius and shows no cusp at r = 0.3. On the other hand,
ti

TI'1'1 does show a strong peak at r = 0.3. Figure 11 is normal-

ized by its maximum value, max TI,l,l = 0.0226. It is interest-

ing to compare the maximum value of vX=l with its estimatedr

value of 46 derived from the scaling law (equation 4.28). The

scaling law for the velocity is therefore

fairly accurate for this flow. The Peclet number, in

dimensionless units, is just equal to the velocity, so the

Reynolds number is approximately equal to max vr-1/PrzthV.

t
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F. The 2-Dimensional Spectra and Boundary Layer Thickness

In figures 12 and 13 we*have plotted KE(R,r)/r 2 and

TE(R,r)/r 2 as functions of radius for all Z. 	 All of the 24

graphs have been normalized by their maximum values. Except for

Z=1, KE(Q,r)/r 2 is zero at the origin. As r increases, the curves

remain near zero until they reach a critical value of radius

and steeply rise to a peak. The critical value of r at which the

curves begin to rise and the radius of the peak itself both

increase with increasing values of Z. This behavior is con-

sistent with the fact that KE(Q,r) ti r 2 near the origin (Paper

I). For Q ^ 2, KE(Q,r)/r 2 decreases after its peak to a local

minimum and then sharply increases at r = 1.0. This is

because most of the kinetic energy in the first peak is due to

radial motions. As v  goes to zero at r = 1, KE(Z,r)/r 2 decreases.

Very close to the outer boundary, the horizontal components of

the velocity increase rapidly in order to conserve mass flux,

and KE(Q,r)/r 2 increases accordingly.

We define X(Q) to be the distance between r = 1.0 and the

radius of the local minimum of KE(Q,r)/r 2 and we use it as a

measure of the boundary-layer thickness for each Z. Figure 12

shows that for Z < 6, X(Z) slowly decreases with increasing Q,

and remains at a nearly constant value for Q	 7. The values of

X M were found to be insensitive to changes in the number of

radial grid points or to stretching the grid near the boundary.

We can understand the behavior of X(Q) by examining the energet-

ics of the boundary-layer. The rate at which kinetic energy

is dissipated from the boundary-layer associated with the Q`h

shell is;

a	 a
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l'
I

I
4zr Pr J	 v(Q,r) • 02 v(Z ' r) r 2 dr	 41rPr v(L,r=1) 2 / X	(5.4)

1-X

What is the rate at which kinetic energy enters the boundary-

layer? For large values of lZ,the amount of kinetic energy that

enters the boundary-layer directly from the buoyancy forces is

small compared to the rate at which kinetic energy is advected

in. The rate of advection is proportional to the density of

kinetic energy in the Zth-shell multiplied by the surface area

of the boundary layer (ti 47r) multiplied by the largest character-

istic velocity, V big'

27 Cv(Z, r=1)l 2 Vbig	 (5.5)

Setting expressions (5.4) and (5.5) equal to each other, we see

that v(Z, r=1) cancels and that X W becomes indt--pendernt of

v(k,r) and Z for large Z.

The thermal energy spectra,TE(k,r),display some of the same

properties that the kinetic energy spectra have. As R increases,

the radius at which the spectra rise and peak also increases.

This is not surprising since both TE(Z,r) and KE(Q,r) behaves as

r 
2 near the origin. Unlike the kinetic energy spectra,though,

TE(Z,r)/r 2 shows several peaks,. For TE(Z=l,r)/r2

(the square of the function plotted in figure 11) a large peak

occurs at the boundary of the heat source, r = 0.3,and a smaller

peak occurs at ti r = 0.88, the radius at which the con-

vective flux (figure 2` drops to zero. These two peaks can be

seen in TE(k,r)/r 2 for Q < 6. At Z = 6 the two peaks merge.

Comparing figures 12 and 1-2 it is strikingly apparent that
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TF,(Q,r)/r 2 has a more small scale structure than KE(Q,r)/r 2 . At

first this structure was thought to be numerical. Testing shows

that it is reproducible and independent of radial grid changes.

One reason that the kinetic energy is smoother than the thermal

energy spectrum is that the Prandtl number is greater than 1.

Viscosity if better at smoothing the velocity than thermal diffu-

sivity is at smoothing the temperature. As further evidence of

the viscosity's smoothing effect, we have seen (figure 10) that

the Q=1 component of the velocity shows no evidence of the heat

source, while the temperature shows a marked peak. The small scale

radial structure in T
Y,Z,m 

is due to the temperature and momentum

advection terms, (v • OT) Y,Z,m and (v•7v)Y19"m in the Boussinesq

equations. Both of these nonlinear terms are a sum of many

products of Ty,,Zr,mr, wY rr , prr ,m rr and, Qrrr	 rrr	 SinceY ` 	,m
TY ► ,Z 1 ,m t1 WY rr ,Z rr ,m ► r and Y rrr , Zrrr , mrrr each peak at different

radii the advection terms and TYlQlm can have small scale radial

structure.

G. Isotropy

Our measure of isotropy, I(R,r),is plotted in figures 14

and 15 for Z=1 and Q=2. Both curves have several grid points

near r=0 and as r goes to zero, I(Z,r) smoothly approaches 1 which

shows the numerical code is accurate near the origin (see §4f).

Figure 14 shows that the horizontal component of the Q=1 velocity

s

	

	 goes to zero at r=0.67 and then rapidly increases in the out

boundary layer. The obvious conclusion to be drawn from I(Z=1,r)

is that the large scale structure of the convective velocity is
I:
I
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markedly anisotropic.

We have illustrated I(Z=2,r) because it is very similar to

all of the I(Z,r) curves with Q>l. For Z>l, I(Q,r) diminishes

with increasing radius (although it never goes to zero) and then

increases in the boundary-layer. Because I(Z>l,r) never goes to

zero, we might ar gue that the velocity for modes with Q>l is more

isotropic than the velocity when Z=1. However, there is certainly

fno evidence for a "return t- isotropy" in the small-scale modes.

The lack of isotropy in the small scales is not surprising since

there is not much of an energy cascade and the velocity

(Reynolds number Z 3) is far from being turbulent.

V

DISCUSSION

We have computed the convective flow with a Prandtl number

of 10 and with a Rayleigh number that is ti 30 times the criti-

cal value. Despite a variety of initial 3-dimensional configura-

-ions of the flow, the fluid always evolves to the same steady-

state with two orthogonal planes of reflection symmetry. This

computation differs from previous studies of convection because

the equations of motion have been used to determine the horizontal

structure of the flow; an a priori horizontal structure was not

imposed as a constraint to the equations of motion. We emphasize

that to determine the stability of a convective solution,

an examination of only the large scale modes is not adequate and

it is necessary to include small scale modes. One large scale

ecuilibrium solution may be unstable with respect to another

large scale ecuilibrium solution due to small wavelenc-th pertur-
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If the expansion of the equations of motion does not

include these small modes, both equilibrium solutions will appear

to be stable when in fact one is unstable. In our computations,

we have included enough modes so that the largest of the pertur-

bations has a viscous dissipation timescale that is ti 10 4 times

smaller than the dynamic timescale. It is tr.:!refore unlikely

that the steady-state solution that we have computed is unstable

with respect to any of the neglected small modes. The only other

study of convection that has a spatial resolution equivalent to

ours was	 done by Gilman (1978,and references cited therein)'.

Unfortunately, it is impossible to make direct comparisons to

Gilman I s work because his calculation is for a rapidly

rotating shell fluid in which the coriolisis force is roughly

the same strength as the convective buoyancy. His solutions

favor no spatial symmetry and are time-dependent.

Perhaps the most interesting result presented in this

paper is that for the first time we have been able to calculate

the kinetic and thermal energy spectra as functions of wavelength

by solving the equations of motion alone. (For a somewhat similar

derivation of a kinetic spectrum by use of an eddy viscosity,

see Siggia and Patterson, 1978.)
	

We have seen that the kinetic

i,
I" i

energy is so quickly dissipated by viscosity that

have time to cascade from the large modes dawn to

Since the thermal dissi pation rate is slower than

dissipation rate, it is reassuring that our calcula

the thermal energy does have time to cascade down

length before it is dissipated.

it does not

smaller modes.

the viscous

tions show that

to smaller wave-
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FIGURE CAPTIONS

Figure 1 - The mean temperature gradients for conductive equili-

brium (dotted line) and convective equilibrium (solid line)

as a function of radius. The derivatives of both gradients

are discontinuous at r = 0.3, the outer boundary

of the heat source. The convective gradient is nearly iso-

thermal outside of r = 0.3 and is positive for 0.55 < r

< 0.86.

Figure 2 - The ratio of the convective heat flux to the total

(convective and conductive) flux. For 0.55 < r < 8.6,

the ratio is greater than 1, which means that conduction

carries energy downward in this region.

Figure 3 - The mean temperature of the convecting fluid as a

function of radius. The temperature of r = 1 is zero due

to boundary conditions. The central temperature is free

to vary and the convective flux has reduced it from its

value of 4.0 in conductive equilibrium to 0.68 in convec-

tive equilibrium. The boundary layer at r ^ 0.88  and the

boundary of the heat source at r = 0.3 are apparent.

Figure 4 - The kinetic

number Z 3 as a f

exponential decay

brium range. The

cation

energy spectrum at

unction of Z. The

with no trace of a

slight curl upward

r	 0.5 for Reynolds

spectra shows a nearly

production or equili-

at R=12 is due to trun-

_^	 ^^ ^. 	
_.	

•sue_._
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Figure 5 - The thermal energy s pectrum at r = 0.5 as a function

o' Q .=or a Peclet number of Z 34. The thermal spectrum

falls off less steeply than the corresponding kinetic

energy spectrum. The flatness of the spectrum at Q ^ 3

is due to a combination of production and cascade of ther-

mal energy. The upward curl at Z=12 due to truncation is

more severe ^n this figure than it is in figure 4 for the

kinetic energy.

Figure o - The kinetic energy spectrum as a function of (kn)
4/3

where k is the 3-dimensional wave number and n is the

Kolmogorov length. By fitting the slope of this calculated

curve for 4.0 ^ r ^ 8.0 to the theoretical dissipation spec-

Crum K_E (k) a expC-3a(kn)
4/3 /2],we have computed the dimen-

sionless constant a to be 3.07.

Figure 7 - The fraction of the convective flux at r = 0.5 carried

by all modes with horizontal wave number Q is p lotted as a

function of Z. Nearly 90% of the convection flux is carried

by the k = 1 mode. Like the thermal and kinetic energy spec-

tra, the convective flux decreases exponentially with

increasing Q.

Figure 8	 The fraction of the total amount of kinetic (thermal)

energy that is produced in the Z' shell of modes is shown

by the solid (open) circles. while 93a

ener gy is produced by the Q = l mode, o

al enerzv is produced by that-mode. The

the orodue Lion of thermal' energy i s more

of the kinetic

my 73 00  of the ther-

L =" shows that

important than the

production of kinetic energy in high Q-shells.
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Figure 9 - The ratio of the kinetic (thermal) energy that is vis-

cously dissipated by the Rth shell of modes divided by the

amount of kinetic (thermal) energy that is produced in the

Zth_
shell is plotted as solid (open) 	 circles. The ratio

for the kinetic energy is near unity for all Z and is indica-

tive of no kinetic energy cascade; all of the kinetic energy

produced in the Qth shell is dissipated there before it has

a chance to cascade to a different Z shell. For Q = 1 the

ratio for the thermal energy shows that more energy is pro-

duced there than dissipated; this indicates that thermal

energy escapes from the £ = 1 shell by cascading into higher

Q shells. For Q ? 2 the thermal ratio is greater than 1

and increases exponentially indicating that the Zth shell

dissipates more thermal energy than it produces. The extra

energy that is dissipated is provided by the energy cascade.

Figure 10 - The radial component of the k = 1 velocity as a func-

tion of radius. The velocity has been normalized by its

maximum value of	 33.8. The velocity shows no trace

of the boundary of the heat source at r = 0.3.

Figure 11 - The Q = 1 component of the temperature as aunction

of radius. The temperature is normalized by its maximum value

of .0226. The temperature has an obvious peak at the boundary

of the heat source.

I

Y

"&-A
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Figure 12 - The kinetic energy spectra KE(lZ,r)/r 2 as functions

of radius for k=1,12. As Q increases the spectra peak at

increasing values of the radius. The edge of the outer boun-

dary layer is approximately equal to the radius of the

local minimum of KE(Z,r)/r 2 near r = 1.0. For 1 < Q i 6 the

thickness of the layer decreases slowly with increasing Q.

For Q > 6 the thickness is nearly constant.

Figure 13 - The thermal energy spectra TE(Q,r)/r 2 as a function

of radius. As Z increases,the radii of the maximum values

or these spectra increase. For Q < 6 there is

a secondary peak near the edge of the boundary layer. At

Q = 6 the two peaks merge and for higher 2 only one peak

can be seen. There is more radial structure in the thermal

than in the kinetic energy spectra because the thermal fluc-

tuation are less easily dissipated when the Prandtl number

is greater than 1.

Figure 14 - The ratio of the horizontal to the radial component

of the kinetic energy for Q = 1. The ratio is a measure of

the large scale anisotropy of the flow.

Figure 15 - Same as figure 15 except that this figure is for the 2 = 2

component of the velocity. The anisotropy for Z = 2 is quali-

tatively the same for Q > 2 and there is no apparent isotro-

pization of the velocity at small wavelengths.
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