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ENGLI`' 3 ABSTRACT

The formation of primordial black holes _(PBH) in the case

of an expanding Universe was discussed under the assumption

that at-the early stages the expansion it near to quasi-isotropic.

The choice of a quasi-isotropic solution is brought about by the -_

fact that, even though quasi-isotropy does not exist, the particle
generation near the singularity should inevitably result in a

quasi-isotropic solution.

For simplicity the spherically symmetrical case will be con-

sidered below.	 Then the quasi-isotropic solution is character-

ized by one function only.

The problem is solved by means of a computer.	 The computa-

tions performed allow the following conclusions 	 to be made: -	 Al

1.	 PBH form when there are important deviations from the

Fridmanian model.	 If the deviation from the Fridmanian model

can be imaged as a part of the closed world that is smoothly

matched with the flat world, the degree of the deviation from

the Fridmanian model can be quantitatively characterized by the

Lagrange radius of the mentioned matching. 	 If the Lagrange

radius is assumed to be the unit at which the maximum of the

Euler radius is achieved, our computations show that for the

- black hole formation it is necessary that the radius of the

k`is matching R	 will be 0.85 to 0.9.m

2. The hydrodynamical computations made the fact, clear that

the smoothness of the matching is of great importance; this can

be quantitatively characterized by a relative width of the match-

ing A with reference to the Lagrangian radius Rm . The smaller A,

the greater the pressure gradlonts preventing contraction.
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Our computations_ showthat the_ pressure_^ctually.--pre-vents--- -	 ,--
FBA? formation decreasing the mass of the hole as compared with

that 	 which - .3hould have occurred under the same initial condi-
tions but with zero pressure.

3.	 To plot the total hydrodynamical picture of accretion

it is necessary to compute several dozens of hydrodynamical

times.	 It will be done in another paper. 	 But it is seen-even

here that the similarity solution typical for catastrophic-ac-

cretion cannot be obtained.	 It is explained by the matter

ejection from - the disturbed region due to pressure gradients;

as a result, the size of a black hole, if it can nevertheless

form, will be much smaller than the horizon and the formation.

moment.

^s
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-- HY"MDYNA-KICS OF PRIMORDIAL BLACK HOLE FORMATION

D.K. Nad­ezh1n j -I#-D. Novikov--A.G. -Po-Inarev -

Introduction	 /5*

--In 196o l Ya. B.	 Zel l dovich and I. D. Novikov 11-31, and

then in 1971 Hawking [41 - pointed out the possibility of the for-
mation of black holes at the very beginning of cosmic expansion

from primary matter.	 Later on, mc-ny works discussed the problem

of primordial black holes (PBH)-(see, for example, [5-71).

Interest in PBH increased particularly after Hawking's dis-

covery [81 of quantum evaporation of small mass black holes be-
cause PBH can have small masses. 	 The Hawking process is important,

on -the one hand, for the physics of the early stages of expansion

of the Universe-and; on the other hand, as a possible method of

detecting PBH in today's Universe [9-121•

The following two problems are basic for the theory of PBH -- iF

1)	 What must the deviations be from the Fridman cosmic

model at the beginning of expansion so that PBH will form?

2)	 How will accretion of matter on the PBH formed occur?

Both problems were posed and considered in the very first

works on PBH [1,2,3].	 In these and succeeding works, it was

pointed out that the complete answer to both questions required

a numerical calculation on a computer. 	 Besides PBH in literature,

white holes are considered L3 well.	 The importance of quantum

processes close to singularity and the process of accretion [1-31

converting a white hole into a singular black hole was pointed

out [133 for these objects. 	 16

*Numbers in the margin indicate pagination in the foreign text.
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This article clarifies a description of the method and re-

cults of calculation of the hydrodynamics of the phenomena Indi-a

sated using an EVM in the simplest hypothesis as to the spherical	 f
symmetry of the processes considered.

2.	 Posing the Problem

PBH cannot form in the early stage of- expansion of the Uni-

verse (with the equation of state P = e /3), if deviation from the	 -

Fridman model was small both in density and in metrics. Actually,

_	 as Lifshits has pointed out [141, perturbations of density which
-	 are small in ampl itude ds/c increase-only to the values of pertu-

Cation of metrics hich axe= assumed to be small. After this, the 	 -

condition of increase of perturb atiorT -;S7`b-re-aLs -:d6VT --(the linear

scale of perturbations becomes smaller than the h	 n-' -and the y
return to sonic oscillation.

On the other hand, as is well known, deviations from the

Fridman model exist which result in the formation of PBH. Actually,

let us come-bier  the nearest singular state of a uniform semiclosed

world [15-1j],_":°tched through a narrow orifice with a uniform-flat

cosmic model. During evolution of a semiclosed world-, the signal

from the orifice moving with the speed of sound successfully

'

	

	 reaches the internal sections of the semiclosed world where these--
parts will already be at the stage of contraction under an intrinsic

gravitational radius and consequently, as is well-know-n-_1 they Form

a black hole.

The question arises: what must the critical value of de-

viation from the Fridman model be during which a black hole forms 	
I

and what is the smallest deviation where the hole does not form.

This problem is solved in our work. It will he formulated more

precisely later on. We are also interested in the hydrodynamic

processes which accompany the formation of PBH. 	 /7
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Thus, we will consider some deviations from the Fridman model

- - -- -- -in- the -initial- stake. -- -Selection was made of` initial conditions

of close singularity very large in a general case (see [18,191).

However, it Is important to note that the quantum processes of-

dose singularity sharply limit the possible initial conditions.

As has been pointed out in [20,21], immediately after completion

of quantum phenomena (that is, after the moment t = tp p 	hG cs

the solution of the OTC equation must be quasi-isotropic [22,231•

This solution is characterized by the fact that close to singu-

larity, all of the elements of matter expand according to the same

law e =
 32 G (for P = 3 e), as is true in the Fridman model.

}
At the same time, the spatial cross section t = const can be a

random distortion method. Assignment of this distorted cross

"- r _	 section is a general initial condition for a quasi-isotropic

solution. In the case we considered of spherical symmetry of a

curvCi.if-_three dimensional space, it is described by a single

functig.n of-the radi-^l coordinate.- Thus, we will consider the

condition for PBH occurring depending on assignment of this func-

tiolI.

The process of formation of PBH will be considerec? depend-

_-	 ing on-the amplitude of deviation from the Fridman model of close

singularity (origin of expansion) and to the profile of this 	 /8

deviation (however, staying within the framework of spherical

symmetry). We will prescribe a deviation close to singularity

in the form of a spherical field with the accompanying space

of a constant positive curve -- that is, the perturbed field

corresponds to part of a closed Fridman model. The amplitude

lGeneral theory of relativity.

2The time of formation of a black hole with mass M and the time /7
during which this black hole then vaporizes, involve an order
of magnitude of the relationship tvap /t frm - t frm/t pZ , where
tpz = 5 . 10- 5 d -- the Planck time. From this it is apparent that
tvap » tfrm, if tT >> 10	 (that(that is, the Planck Klass). Con-
sequently, in hydrodynamic calculation, we correctly do not
consider the quantum processes of va p orization of black: holes.
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of deviation can be described__ with the number- whi-c i-- characterises -1$- ---

the part of the closed space of a constant positive curve which

ate have taken (see paragraph 4). This part of a closed world

through a transition field is matched to the flat Fridman model.

The width of the transition field, as our calculations have shown,

will be the second significant parameter of the problem.

Here it is assumed that within the perturbed field the solu-

tion is precisely described by the Fridman model. Thus, pertur-

bation is such that the full mass of substance within the perturbed

field is precisely equal to the mass which would occur in this

field in an unperturbed Fridman model:

3.	 Initial Equations

As has been pointed out above, we will consi-er a spherical

problem. We will write the spherically symmetric metric

Let us select the accompanying system of calculation. Then the R-

Lagrange radius. Here we will describe the Einstein system of

equations for the metric (1) (see [241). We note only that this

system has a first interval found in the work of Podurets [251

and along with the laws of conservation (Ti ,k = 0) equivalent to

the following simpler system:

{̂ Z —6'-j	 —u;

Ft'
(2)	 /9

m.	
tt
c ^ G 0^ ^ z YC - e 't

q r,
	 (3)

:LP Ft rt

rn

.

4
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Cil = at,

Numerical calculation of the system of equations (2-6) as

Podurets proposed [251 appears to be ineffective for the problems

which we have selected to solve. The fact is that during forma-

tion of black holes in an expanding Universe, in the cent-al field

of perturbation, expansion of matter is .;hanged by compression.

Near to this moment in time (different for different R) r = 0 and

equation (2) has a root characteristic. Inasmuch as this moment

was unknown earlier, it appears more convenient to increase the

magnitude rf the system (2-6) and obtain a new system free of

root characteristics.

Let us convert the system (2-6). Incidentally, we will in-

troduce dimensionless values of r, t, m, e, connected to r, t,

m and e in the following way

3

C

••^G ett2

,--- m
(7)

Here rg is the gravitational radius corresponding to character- /10

istic mass. Later on we will omit the symbol "%" remembering

that we are working with dimensionless values.

Let us introduce the value u related to i- by the relation-

ship:

5



(9)

(10)

(11)

u -- Y as___a_^oncep f -physical-v-e3ocity of expansion or contrac-

tion of the Lagrange surface R const.

From 2-6), differentiating (2) in time, we obtain the fol-

lowing system:

in
P-t f

i=e

rn — 3 PK Ic

7m
_ az3

Equation (8) (see also [26]) is a relativistic analogy of

the second law of Newton. On the left is acceleration and on

the right -- force. The first member is force involving the

gradient of pressure and the two succeeding members describe

gravitational attraction.

`

	

	 We will assume that pressure P depends only on e (this

hypothesis is not true for a model of stars but is completely

suitable for the early stages of expansion of the Universe), and

then the equation of state can be written in the form

P	 (12)CSC }	 .^ .

i
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1

-Integrating'{} and (6), we haver

( 14)

d

t }

- Al

Here
n

_ jex (15)
d

a

If`Y does not depend on e, ,hen A = s 1JY, f(t) and`O(R) -- are

random functions of time and radius.

We will consider the formation of ?BH in a cosmic Fridman

model with a flat accompanying space. Let us select=the function

f(t) in such a way that our accompanying system will have large

values of R (where the solution is Fridmanian) simultaneously

synchronous, that is

&rnEG =1 	 (16)
R --s ao

It is not difficult to point out that for a uniform spatially

flat Fridman solution with random values of y (not depending for

simplicity on e) we have:

6 = =2	with calculation of (7).	 (17)
3
0 i /

Then from (13) and (15-17) we find f(t):

lf) =	 .__ (S/rn-s)	 (18)
ar t	 •

Selection of the function ^(R) will be considered in the

next paragraph.
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Later on we will have to determine the portion of matter	 112

entering into a black hole. For this it is necessary to find

at each moment of time the boundary of the black hole -- the

horizon of the event. As is well known ( see [61), a local

criterion for the position of the horizon of the event does not

exist and to find it,it is necessary to integrate zero geodesics

in the future. In our problem, where the fall of matter into

the black hole is important, the position of the horizon of the

event at this moment essentially depends on the matter which will 	 -

fall into the black hole in the future. For an observer who is

near a black hole, it is more significant to determine the bound-

ary of the black hole as the visibility horizon, that is, to de-

termine the Lagrange radius corresponding to mass which at a

given moment is under its gravitational radius. In this work we

will use this determination of the boundary of a black hole. This

boundary can be defined from calculation of local properties.

Actually (see for example [6]), this boundary corresponds to the

condition r = 1, and moreover, the requirement that the accompany-

ing system be compressed into this boundary. 	 3

Thus, we will form the final criterion of a black hole thus

(using the dimensionless values defined above).

If, for a certain potent with a Lagrange radius R, two condi-

tions are simultaneously fulfilled

M
>	 (19)

w <^
then this point lies under the horizon of visibility of the black

hole. The equation of this horizon of visibility is

r 	
= ^	 (19' )t

u< 0 R

s



As was discussed in paragraph 2 we consider that near sin-

gularity,expansion occurs in the quasi-isotr opic way. In the

case of spherical symmetry this means that the solution has only

one random function O(R) (see (14)). An analytical solution of

the system (8-11, 12 2 13, 14) or an equivalent system (2-4, 12-

14) when t -* 0 (in singularity) with quasi-isotropic conditions

gives us the following asymptotic solution

3
(20)^/— 3

. f . 	r ft 3 t	 1+ 3
(21)

f 0 (1 r
Here two members of expansion are considered. Near sin6ularity

the spherically symmetrical deviation from the Fridman model with

a flat accompanying space occurs in the field 0 < R < R + . Th-

center of deviation coincides with the origin of the coordinate.

Using expansion (20-21), the iz ,i.ial conditions are pre-

scribed in the following way:

When R < R- ,	 /14

9



When R> R+=R,+d,

1?0) = Cf ^JQ-^Qf	 (23)

this corresponds to a spatially flat Fridman solution. C -- js

a certain constant determined by the conditions of matching (22)

and (23) in an intermediate field R- < R < R+.

When matching (22) and (23) we require contiNuity of the

third derivatives of function O(R), inasmuch as these derivatives

enter into equation (8) (in P' ti E', see (21) and in r').

As was pointed out in paragraph 2, we will select perturba-

tion in such a way that outside the field of pertubatior. when

R > R+ , the solution would be precisely Fridmanian. Therefore,

it is obvious that in the transitioi, field of matching R - < R : R+

there must be a certain discharge (field of decreased density)

so that the excess of mass within R -gill be compensated in com-

parison with a spatially flat Fridman zolution.

We will select time t o fairly small, as the moment of time

for prescribing the initial conditions so that the discarded

members of exp4nsion in (20) and in (21) will be small in com-

parison with the remaining. Let us evaluate the value of the

remaining ana eliminated members. By selection constant C can

lead to smoothness of function O(R), that is,

(P(R^)-(p(F^_)j - Q.	 (24)

10



the ratio of the radius of matching to half the radius of a

closed Fridman;

2 1) 	 A -- is the width of matching.

B characterizes the value of perturbation of geometry. The

role of the pressure gradient depends on the value of A. With

small values of A the role of the pressure gradient increases.

The fact that the point is fairly distant (large values of

R) we will use as the first boundary condition; the wave of re-

lief did not successfully reach this and expansion occurs ac-

cording to the law (17). The boundary condition on the left

boundary also has a very simple form:

11



z00  -- ^ 	
-_

_

F

Boundary conditions (28) would remain true at the latest

stages of?'eollapse after formation of a black hole when at 	 he

center for a finite time an actual physical_ singularity occurs.

The moment of occurrence of singularity is different for dif-

r ferent Legrangs radii, that is, singularity is-n0t quasi-uniform_=

_which it was -at first-. 	 From equations(2'-6) or (8-11) one can
3

obtain an asymptotic solution (Kazner type) which in the accom-

panying system of computation with our selection of random func-

tions has the form:-

(29)

3 n	 -
_ J	 •

where
y

(32)

.	 I
Thus, after singularity has formed, the left boundary con-

dition continues to be at a certain Lagrange radius R, different

from zero. This radius R is determined from the condition so

that numerical solution is close to an asymptotic solution (29-

31). During further collapse, as the new elements of matter drop

to singularity, the position where the left boundary condition re-

mains moves toward a large Lagrange radius.

12



5.	 A . N,ethod of Numerical Calculation

For numerical solution of a sy:;tem of equations (8-11) the

difference method was used similar to the basic characteristics

in the methods used earlier for calculating gravitational col-

lapse [26-27].	 Therefore, we will not present here the entire

system of different equations but will limit ourselves only to

s a brief description of its basic peculiarities.	 The entire in-

tegral of change of the Lagrange coordinates 0-< R <`R 1 was

a broken up into 150-integrals and then the step of the break up

AR was made smaller in the internal -part and particularly close

to the matching location of a closed world with the Fridman and

-	 = was smoothly increased in the external part of the integral of

change of R considered.	 In the difference equations, a method

= was used of "whole" and "semiwhole" calculation units according

to space and time [28].	 In the whole units, according to space,

u, r, m were calculated and in the semiwhole -- P,e and depending

on them ea and A; moreover, u was calculated in semiwhole units

according to time, and all of the remaining values -- in whole

units according to time.

Each alternating step in time began with a calculation of u

from the difference analog of equation (8), then from equation

(9) and (10) sequentially distributions were calculated according

to space of r and m, and finally, the density of energy was found

from the difference equation:

nr!	 n^^!

r -s l	 ^ r

^^^^	 ry3nfd. 3 n^	 y

which corresponds to (1^; here ,j -- is the number of the spatial

calculation interval, and n -- is the number of the time calcula-

tion interval; J1 = 0 150 -- the whole number of space calculated

13



a	 =t	 =

I

intervals.-.The values of density of 'energy in the flatter semi-` /18 .

whole unit E +lf	 3s defined _from- the--boundary when R--=- R-1-.-- -	 -

The difference system considered here--was tested in sample

calculations of gravitational collapse close to free fall, in

calculations of-Fridman expansion and Fridman expansion-with

_ smell perturbations -in - the form-of sonic waves .	 Then it was- clear..	 _	 _

that the process of gravitational collapse-is reproduced very

well by a numerical method, that is,_the -differentcalculations

of perturbation rapidly attenuate as the -central'densi'ty increases.

We note here than i n the work of May and White [26;] and S_chwarts --

[271-only gravitational _collapse was studied.-numerically.-	 However,

the  series of calculations of the Fridman expansion (including the

perturbed) showed that this numerical reproduction requires a

more accurate approach-=inasmuch as the absolute value of calcu-

laced perturbations of density decrease somewhat more slowly

than the density itself and therefore relative errors gradually_

Increase.	 So that one can calculate the stage of expansion

fairly far, it is desirable to significantly decrease the step

of integration in time in comparison with its maximum allowable 	 -

-	 value determined by the condition of numerical stability of

Kurant.

We used the following requirement as the criterion of

selection of a variable step of integration according to time

At:	 the ratio We does not exceed the prescribed fixed value

<< 1 in all calculated spatial integrals (AE -- is change of

e for one step in time).	 If, after completion of the alternating

step of integration,oe /e > y appeared,although for one spatial
t

interval, then At decreased and the subsequent step was recalcu-

lated. It is convenient to use the integral of equations (8-11) /19

for control of precision:
F

u^, .,L 
_ e 

w	 ._ ►rL (33)  
`^ f

(see equation (2)). The difference of this expression from zero

by several p ercentage points in relation to the component making



_

the maximum_ contribution to the left part -(33) -ran -be- consi-derma=	 - -

fully exemplary.	 It was apparent that for the class of problems` 	 -

considered in this work this condition is fulfilled when --t < 2•

-10- 3 .	 The results presented here of calculations were obtained

-using the values t =-10- 4 - 10-3.

A Description of Results of Calculation

The results of calculation of the process of formation of

PBH depend on two parameters -- amplitude of deviation from a

flat Fridman model characterized by R , and the width of matching,_

~	 - A.

As has already been discussed, in the field of matching

there is a certain rarefaction. 	 In the opposite case, outside

there would not be a flat Fridman solution and one would have a

perturbation of the ^r	 type where AM -- is the excess mass (see

in more detail [61). 	 Therefore, it is obvious that relative per-

turbation of density when R_ < R < R+ is larger than the matched.
f,

As calculation showed, in the case of a very narrow matching,

s
sometimes shock waves occur and solution of the problem in the

end requires the introduction of viscosity.	 Figure 1 shows the

evolution of this perturbation in the case where the width of
L

matching A = O.lR	 R	 = 1.	 Later on we will concentrate our

attention on those cases where shock waves do not occur. 	 Let us

first select a certain fixed ratio of the width of matching to

the radius of matching; let us say R- = 0.5 and we will study

the following question: 	 at what values of R	 does the black hole

- form and at what values does it not form. 	 It is clear that the

smaller the values of R- , the smaller the perturbation metric is 120

and with a fairly small R- , the black hole, as is well known,

cannot form and perturbation must be transformed to sonic oscil-

lation.

15



7n Figure 2, R- _ 1^, that 'is, it amounts to 75% of

It---Js -apparent --from the drawing - t-hat the process occurs in

the following way.	 At first, a general cosmic expansion occurs.

- The internal field expands more slowly that the external.- From

-	 - the-field of matching to the center of perturbation and outside

it there are waves of rarefaction. 	 At a certain moment in time

=	 - in the internal fi. ,ld, A shift in expansion to contraction occurs.

During contraction, the pressure gradient increases so much that

the central core is ejected and a wave of compression occurs out-

side.	 In this case the perturbation of the metric, ter, in other

words, the gravitational "ield, was fairly large and the formation
=

of a black hole did not take plac e. 	 Perturbation was _c:hange-d`to -_

sonic oscillations.

In Figure 3 also a case is shown where a black hole does

not form.	 Here R	 0.8	 But perturbation of the metric is
^na 'x ^

larger in this case and therefore the large and maximally allow.- N

able density of energy occurs in the center of perturbation. The

ratio of density of energy at the center of perturbation to dens- #£

it	 of energygy outside perturbation reaches a maximum of 10 2 , that

is, the problem is essentially nonlinear. 	 Later on, perturbation

is converted more and more to sonic waves.

A qualitatively different picture is shown in Figure 4

(R-	 0'85Rmax)'	 We see here unlimited compression of the core.

The central densilk; of energy tends toward the infinite. 	 In

order to be sure in this case a black hole actually forms, let

us turn to Figure 5.	 In this drawing the ratio 	 I s shown.	 Inr
those fields where expansion occurs, r is increased and m, due

to the forces of pressure, decreases. 	 Therefore, the value r

drops with expansion. 	 When expansion changes to compression,

then obviously the ratio r increases.	 If the pressure gradient	 121
does not successfully become compression at the moment when r

reaches 1	 (dashed line u,i''Figure u) then a black hole unavoidably

occurs inasmuch as, in this case, both of the conditions for the

16
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C

criteria of a black hole are present (see_ paragraph_ Ix-formula,
(19)).	 The moment of formation of a black hole in our dimen-

sionless units equals t = 2.39.	 The ratio of the mass of the

black hole at the moment 	 formation to the mass of the entire_

perturbed field at this moment equals 20%.

Thus, we can conclude that when A/R - = 0.5, the black hole

is formed only in the case where mass of a perturbed field is

comparable to half the mass of a closed world, that is, R_ is

close to Rmax = 2.	 The quantitative result of this is

(34)o g < R.. /^e max	 < 0.26
=	 whenR	 = 0.5.

In Figures 6 and 7, similar relationships are presented

for a case when RR- = 0.9. At this time, gravitational forces
max

even with a certain reserve exceed the forces of the pressure

gradient. Therefore, the formation of a black hole occurs much

earlier: t = 1.87. And the ratio of the mass of a black hole

to the mass of a perturbed field is larger at this moment than in

the preceding case and equals approximately 30%. The latter in-

dicates the fact that the force of pressure increased from the

central field with a smaller mass than the preceding case.

Now we will go on to study the question of how significant

the matching width is for formation of a black hole. Let us

take RR- = 0.85, that is, the minimum R - at which a black hole
max

forms and a decreased width in matching to A = 0.3R 	 Then the

role of the pressure gradient increases and as is shown in Figure

8, the black holes do not form. The pressure gradient success- 122

fully leads to dissipation of the come earlier than a black hole

is successfully formed.

17



the abcissa and the width of matching along the axis of the ordin-

ate; the "+" corresponds to the formation of a black hole, and 110"

to the occurrence of sonic oscillation. The dashed curve indi-

cates the approximate boundary of the field of the parameters

indicated where black holes occur.

The Table presents the most important quantitative results

for certain variations of calculation when a black hole formed.

Thus, the calculations made make it possible to draw the

following conclusions.

PBH form only

model correspondin

tion A affects the

significant is the

for PBH to form.

with very large deviations in the Fridman

g to RR- = 0.85-0.9. The width of the transi-
max

formation of PBH. The smaller o, the more

role of pressure gradients, making it difficult

Before making numerical calculations, the role of pressure

in forming PBH should be evaluated by constructing stationary

[31 or selfmodeling [6] solutions. The hypothesis was presented
that pressure can facilitate accretion of gas by the by the

occurrence of PBH and result in a significant increase in their

mass. Carr and Hawking [6] pointed out that a selfmodeling

solution does not exist which leads to catastrophic accretion

y
18
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PBH---mat ter -durirr g -wYri ch dirrrerrsf ores ^f` tyre RAH -ta^rea^ nt
like the cosmic horizon.	 Our calculations indicate that pres-

sure actually interferes strongly with the formation of PBH,

decreasing the mass of PBH in comparison with the mass -which

existed in the ` PBH under the - initial perturbation but with the

absence of pressure P = -O.	 Actually, on the ,spatial section

t = const near singularity ., density of energy in the perturbed

field R_< R_ is larger than-away from the Fridman model and f

the gradient of pressure force on R_ directed outward attempts

to ej ect the mass.	 In the transition field R	 < R_ < R

density is minimum and onits external boundary R+ pressure gradi-

ent is directed inward causingaccretion.	 However, this phenome-

non is less significant during the formation of PBH than the

gradients described above for R 	 which leads to "efflux" of the

mass from the field of pertu.-bation. 	 For constructing a complete

hydrodynamic picture of accretion on PBH (without being limited

by the hypothesis of selfmodeling as i:n [61), it is necessary to

calculate the process fairly far in time on the order of lOrg/s.

This. we will do in a separate work. 	 But right now one can say

during the formation of PBH its dimension is much smaller than

the cosmic horizon (the mass of the black hole at the moment of

formation amounts to a total of only a few percentage points of

the mass included within the cosmic horizon (see Table). 	 There-

fore, as was pointed out already in [1,2], catastrophic accretion

does not occur and this conclusion coincides with the analysis of

[5], made for selfmodeling solutions.

The authors wish to thank Ya. B. Zel'dovich for his interest

in our work and his critical comment and also V. N. Lukash for

his many comments.
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TABLE
/23

PHYSICAL CHARACTERISTICS OF THE_ PROC SS.S -FORMATION OF

dM
/R 

M-0

rn- ►

#0

Mr

0 0 9 02 2,31 6 IS 0 302 0,00

I 0 9 62 0 ,1 48
.

1 101 1 1 12 0,80
0,85 0,5

2 ;t;39 0 933 0,77 -4,9I OI6

3 3,I7 0 142 0,74 6,30 0,32-

0 0 1 01 2;42 6,45 0 0 02 0,04

I 0 9 62 0,5I I 109 I-,I6 0100-
0,5

2 I,86 0,48 0,88 3,79 0026

3 2,76 0,49 0 984 5 3 55 0946

= 0 0 9 0I 2 1 42 4,74 0 302 0,00

0 9 9 013 I 0 3 62 0 9 52 03 86 I 9 I6 0,00
2 2,42 0245 0 1 67 30 O,I4

a 3 3 1 I2 0 3 44 01 65 •. 3 29 0,28

0	 0 9 01 2 9 42 4 1 05 0,02 0,00

I	 0,62 0 $ 4 0 1 78 I S M 0,100
012

2	 3 1 3I 0,42 01 56 6 .9 59 0109

3	 3 0 80 0 9 41 0 9 55 8 9 26 01I5

[Commas in the tabulated material are equivalent to decimals..)

Symbols:

M	 -- mass within the Lagrange radius R (mass of part of a-	
closed Fridman world);

m+	 -- mass within R+ (mass of total perturbation);

m 	 -- mass included within the cosmic horizon;

mb.h. -- mass of a black hole (mass included within the visibility

horizon);

1 = 0 -- initial moment; i = 1 -- beginning of compression; i = 2

-- moment of formation of 3 black hole; i = 3 -- end of

calculation.
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Figure 1. The occurrence of a shock wave. The Lagrange radius
R is applied along the axis of the abcissa, the
logarithm of density along the ordinate axis. Dif-
ferent curves correspond to different moments of time.
Here R_ = 1, A = 0.1.

[Commas in this figure and in the following figures are equivalent
to decimal points.]
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Figure	 -0,,,currehael o f -Li* sonic wave, coming from the center.
0.75-Rl

l.,ax	 -5-R-. PBH do not form.

I
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Figure 3. The same as in Figure 2 for R - = 0.8 Rmaxl	 0.5•R-.
PBH do not fo,n.
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Figure 7. The same as in Figure 5, for R_ = 0.9-R max, A = 0.5•R_.
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Figure 8. The same as for Figure 2 for R_ = 0.85-R max' A = 0.3•R_.
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Figure 9. Conditions for the occurrence of PBH. R-/Rmax is applied

along the axis of the abcissa and A/R - on the ordinate

axis. All of the calculated variations are presented in

the drawinE- "0" -- means the PBH does not form, "+" --

PBH do form. The dashed curve shows the approximate

boundary of the field of parameters during which PBH

occur.
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