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 ENGLIS1 ABSTRACT

- The formation of primordial black holes (PBH) in the case

- of an expanding Universe was discussed under the assumption

-'that at ‘the early stages the expahSion'is near to quasi—isbépopic{

. -‘The choice ofra quasi-iSotropic solution‘is brought about by the
fact that, even though quasi-isotropy does not exist, the particle

generation near the singularity should inevitably result in a
- quasi-isotropic solution. . ’ g '

: For simpliéit& the spherically symmetrical case will be con--
sidered below. Then the quasi-isotropic solution is character-
ized by one function only.

The problem is solved by means of a computer. The computa-
tions performed allow the following éonclusions to be made:

1. PBH form when there are important deviations from the

Fridmanian model. If the deviaticon from the Fridmanian model

can be imaged as a part of the closed world that is smoothly
matched with the flat world, the degree of the deviation from
the Fridmanian model can be quantitatively characterized by the

Lagrange radius of the mentioned matching. If the Lagrange

radius is assumed to be the unit at which the maximum of the
Euler radius is achieved, our computations show that for the
black hole formation it is necessary that the radius of the

matching R will be 0.85 to C.9.
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2. The hydrodynamical computations made the fact clear that -
the smoothness of the matching is of great importance; this can
be quantitatively characterized by a relative width of the match-

ing A with reference to the Lagrangian radius Rm' The smaller 4,

the greater the pressure gradients preventing contraction.
/




1t 1s necessary to compute several dozens of hydrodynamical -

:ejéotion from the disturbed region due to pressure gradients;
. as a result, the size of a black hole, if it can nevertheless'

L Our computations showuthat the pressureoaobnallyAprevents_m“__-;MAM
PBF formation decreasing the maqs of the hole as compared with |
. that, which should have occurred under the same initial condi- 35
tions but with zero. pressure. S : '

3. To plet the total hydrodynamical plcture of accretion

times. It will be done in another paper. But it is seen even
here that the similarity solution typical for catastrophic ac-
cretion cannot be obtained. It 1s explained by the matter

form, will be much smaller than the hori =n and the formation
moment. 7




-~ HYDRODYNAMICS OF PRIMORDIAL BLACK HOLE FORMATION
D.K. Ngdezhin,ylgb.iNovikov;—A;G._qunarev_ -

. Introduction - - e B L

- .. In 1966, Ya. B. Zel'dovich and I. D. Novikov [1-3], and

- - then in 1971 Hawking [4] pointed out the possibility of the for=-
"mation of black holes at'the’very’beginning of éosmic expansion '
. from primary matter. Later on, meny works discussed the problem
;;of primordial black holes (PBH) (see, for example, [5-71). '

, Interest in PBH increased particularly after Hawking's dis-
',g;coééry [8] of quantﬁm evaporation of small mass black holes be-
ﬂcauSe PBH can have small masses.' The Hawking process is important,
" ‘on ‘the one hand, for the physics of the early stages of expansion

of the Universe1and;ion the other hand, as a possible method of
detecting PBH in today's Universe [9-12].

The following two problems are basic for the theory of PBH:

1) What must the deviations be from the Fridman cosmic
model at the beginning of expansion so that PBH will form?

2) How will accretion of matter on the PBH formed occur?

Both problems'yere posed and considered in the very first

works on PBH [1,2,3]. In these and succeeding works, it was
pointed out that the complete answer to both questions required

a numericel calculation on a computer. Beslides PBH iniliterature,
white holes are considered &3 well. The importance of quantum
processes close to singularity and the process of accretion [1-3]
converting a white hole into a singular black hole was pointed

out [13] for these objects. /6

¥Numbers in the margin indicate pégination in the foreign text.




This article clarifies a description of the method and re-

“sults of calculatlon of the hydrédynamics of the phenomena indi=
cated using an EVM in the simplest hypothesis as to the spherical
symmetry of the processes considered.

2. Posing the Problém

PBH cannot form in the early stage of expansion of the Uni-
verse (with tke equation of state P = ¢/3), if deviation from the
Fridman model was small both in density and in metrics. Actually,
as Lifshits has pointed out [14], perturbations of density which
are small in amplitude e/ increase‘onlv to the values of pertu-
;«u{{ ' batlon of metrics which are dssumed to be small. After this, the
- condition of increase of perturbati“ﬁsfﬁreahs déwn‘(tgsg;lnear\f‘

scale of perturbations becomes smaller than the hi'”"n ahd.’ fhey>

~_return to sonic oscillation.

On the other hand, as is well known, deviations from the
Fridman model exist which result in the formation of PBH. Actually,
let us c%nsi&er the nearest singular state of a uniform semiclosed
world [15- 1(],uatched through a narrow orifice with a uniform flat
cosmic model,. During evolution of a semiclosed world the signal-
from the orifice moving with the speed of sound successfully

reaches the internal Sections of the semiclosed world where these -
parts will already be at the stage of qontraction under an intrinsic

gravitational radius and consequently, as is well known, they rorm -
a black hole.

3 The question arises: what must the critical value of de-
viation from the Fridman model be during which a black hole forms
and what is the smallest deviation where the hole does not form,
This problem is solved in our work. It will be formulated more
precisely later on. We are also interested in the hydrodynamic
processes which accompany the formation of PBH. /7




Thus, we will consider some deviations from the Fridman model )
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of close'oinguiarity very large in a general case (see [18,19]).
However, it is important to note that the quantum processes of
-¢lose singularity sharply ‘1limit the possible initial conditions.
As has been pointed out in [20,21], immediately after completion
- of quantum phenoména (that is, after the moment t = tpz = vhG/c®
the solution of the Oleequation must be quasi-isotropic [22,23].

——

R This solution is characterized by the fact that close to singu-

-larity, all of the elements of matter expand according to the same
law ¢ = §§?§§Eyr(fpr P = % €), as 1is true in the Fridman model.

At the same time, the spatial cross section t = const can be a
random distortion method. Assignment of this distorted cross
section 1is é general initial condition for a quasi-isotropic
solution. In the case we considered of spherical symmetry of a
curve Gfxthree dlmen51onal space, it is described by a single
functign of‘the radisl coordinate. - Thus, we will consider the
copd;;ion for PBH occurring depending on assignment of this func-
tiom.

The process of formation of PBH will be considere&a depend-
ing on- the amplitude of deviation from the Fridman model of close
singularity (origin of expansion) and to the profile of this /8
deviation (however, staying within the framework of spherical

~° symmetry). We will prescribe a deviation close to singularity

in the form of a spherical field with the accompanying space
of a constant positive curve -- that 1s, the perturbed field
corresponds to part of a closed Fridman model. The amplitude

1

General theory of relativity.

2The time of formation of a black hole with mass M and the time /7
during which this black hole then vaporizes, involve an order

of magnitude of the relationship tvap/tfrm = tfpm/tpg, where

tpg = 5+107°d -~ the Plaan time. From this it is apparent that
tvap >> trem, 1f M >> 10-5g (that is, the Planck mass). Con-
seguently, in hydrodynamic calculablon, we correctly do not
consider the guantum processes of vavcrization of black holes.




~ of deviation can be described with the,numbendwhichmeharactepizesfég?~w~~M
the part of the closed space of a constant positive curve which
we have taken (see paragraph 4). This part of a closed world
‘through a transition field is matched to the flat Fridman model.
The width of the transition field, as our calculations have shown,
will be the second significant parameter of the problem.

Here it is assumed that within the perturbed field the soiu—
tion is precisely described by the Fridman model. Thus, pertur-
bation is such that the full mass of substance within the perturbed

field is precisely equal to the mass which would occur in this
field in an unperturbed Fridman model:

3. Initial Equations

As has been pointed out above, we will consiuer a spherical
problem. We will write the spherically symmetric metric

d.S C:'ec'df ewdkz a* (d@ + 3in*6 dgﬂ") « (1)

Let us select the accompanying system of calculation. Then the R-
Lagrange radius. Here we willl describe the Einstein system of
equations for the metric (1) (see [24]). We note only that this
system has a first interval found in the work of Podurets [25]

and along with the laws of conservation (Ti kT 0) equivalent to

the following simpler system:

" (2) /9
m = -{c i/G 4+’ 'l"/c _é )
L T (3)
et Pt
i yT (4)
c*éaty
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brhf'Here m -- is mass 1nc1uded within the Lagrange radius R, ¢ = dens-~ V
”‘ifity of energy, P is pressure. - 8 ' '

=-2P ( "‘Gc)

M=-25 /( D+€)- ‘{'z/'z

'Numericél calculation‘of the system of equatiéns (2-6) as
Podurets proposed [25] appears to be ineffective for the problems
which we have selected to solve. The fact is that during forma-
tion of black holes in an expanding Universe, in the central field
of perturbation, expansion of matter is <hanged by compression.
Near to this moment in time (different for different R) r = 0 and
eQuation (2) has a root characteristic. Inasmuch as this moment
~was unknown earlier, it appears more convenient ﬁb increase the
magnitude o the system (2-6) and obtain a new system free of

root characteristics.

Let us convert the system (2-6). Incidentally, we will in-
A"

troduce dimensionless values of %, t, %, ?, connected tor, t,
m and ¢ in the following way
&
[ d ~L- ——2—. - Y ]

_E= iz G g €

~
=
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Here rg is the gravitational radius corresponding to character-
istic mass. Later on we will omlt the symbol "+" remembering
that we are working with dimensionless values.

Let us introduce the value u related to I by the relation-
ship:

6% - W2,




tion of the Lagrange surface R = const.

vmmm'mu"m,‘W'ﬁ’WMﬁ [T G e

From 2-6), differentiating (2) in time, we obtain the fol-
lowing system:

@/a(ze, P r:_,qu_) @)

YR B -+
u=-v¢€ P+ € - (’
’ (9)
q=e"u
(10)
m=- 3P
dm (11)
E:‘. ‘é""s— v
(A

Equation (8) (see also [26]) is a relativistic analogy of
the second law of Newton. On the left 1s acceleration and on
the right -- force. The first member 1s force involving the

gradient of pressure and the two succeeding members describe
gravitational attraction.

We will assume that pressure P depends only on e (this
; hypothesis is not true for a model of stars but 1s completely
suitable for the early stages of expansion of the Universe), and )
then the equation of state can be written 1in the form

P= [X-(g)_i] (12)

o e e
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If y does not depend on ¢, fhén‘A 1/7 £(t) and ¢(R) -- are
random functions of time and radius. :

We will consider the formation or PBH in a cosmic Fridman
model with a flat accompanying space. Let us selectﬁtﬁe function
f(t) in such a way that our accompanying system will have large
values of R (where the solution is Fridmanian) simultaneously
synchronous, that is

g’mea"-.-i . | (16)

R—» o0

It is not difficult to point out that for a uniform spatially
flat Fridman solution with random values of y (not depending for
simpiicity on €) we have:

| 2
E = ( ) with calculation of (7). (17)
33~f

Then from (13) and (15- 17) we find f(t):

f(f) = ) ("/r}(f'i) (18)

Selection of the functlon $(R) will be considered in the
next paragraph.




Later on we will have to determine the portion of matter /12

entering into a black hole. For this it is necessary to find

at each moment of time the boundary of the black hole =- the
“horizon of tne event. As is well known (see [6]), a local

criterion for the position of the horizon of the event does not
exist and to find it,it 1s necessary to integrate zero geodesics
in the future. In our protlem, where the fall of matter into

the black hole is important, the position of the horizon of the
event at this moment essentially depends on the matter which will
fall into the black hole in the future. For an observer who is
near a black hole, it is more significant to determinec the bound-
ary of the black hole as the visibility horizon, that is, to de-
termlne the Lagrange radius corresponding to mass which at a
given moment 1s under its gravitational radius. In this work we
will use this determination of the boundary of a black hole. This
boundary can be defined from calculation of local properties.
Actually (see for example [6]), this boundary corresponds to the
condition % = 1, and moreover, the requirement that the accompany-
ing system be compressed into *his boundary.

Thus, we will form the final criterion of a black hole thus
(using the dimensionless values defined above).

If, for a certain point with a Lagrange radius R, two condi-
tions are simultaneously fulfilled

m
—rz->1 (19)
@ <1 .

then this point lles under the horizon c¢f visibility of the black
hole. The equation of this horizon of visihility is

-7’;}-.-.1 (191)

it
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We note that the horizon of the event a;ways lies within the
““horizon of vicibility and, generally speaking, in direct proxim-
i1ty to 1it.

4, Initial and Boundary Conditions

As was discussed in paregraph 2 we consider that near sin-
gularity,expansion occurs in the quasi-isotr~pic way. In the
case of spherical symmetry thls means that the solu.ion has only
one random function ¢(R) (see (14)). An analytical solution of
the system (8-11, 12, 13, 14) or an equivalent system (2-4, 12~
14) when t + 0 (in singularity) with quasi-isotropic conditions
gives us the following asymptotic solution

- ...é'_
mgt0) [ B [ H:’f

‘ y (20)
*O(f T3y ), v
T T s A T
8"\/'}7—)* 243 V¢ T Tpd ){' I+
(21)

+0(£"§%‘ )

Here two members of expansion are considered. Near singularity
the spherically symmetrical deviation from the Fridman model with
a flat acconpanying space occurs in the field 0 < R < R+. Th:
center of deviation coincides with the origin of the coordinate.

Using expansion (20-21), the ir :ial conditions are pré-
scribed in the following way:

When R < R_,

™~
-’
P o

0

e :_g“'f‘r_-zi




Q(R) = tink, (22

This corresponds to & space of a constant positive curve (that
is, a closed Fridrur mcdel). For a closed world, R changes from
0 to n. Then the maximum of ¢(R) 1s reached when Rmax = %.

When R > R, = R_+38,

S”(k)=C+(IZ-B’ ), (23)

this corresponds to a spatially flat Fridman solution., C -- is
a certain constant determined by the condi:tions of matching (22)
and (23) in an intermedlate field R_ < R < R,.

When matching (22) and (23) we require continuity of the
third derivatives of function ¢(R), inasmuch as these derivatives
enter into equation (8) (in P' ~ €', see (21) and in r').

As was pointed out in paragraph 2, we will select perturba-
tion in such a way that outside the field of pertubatior. when
R > R+, the solution would be precisely Fridmaniar.. Therefore,
it 1is obvious that in the transitici fleld of matching R_ < R < R,
there must be a certain discharge (field of decreased density)
so that the excess of mass within R +ill be compensated in com-
parison with a spatially flat Fridman zolution.

We will select time to fairly small, as the moment of time
for prescribing the initial conditions so that the discarded
members of expzansior in (20) and in (21) will be small in com-
parison with the remaining. Let us evaluate the value of the
remaining and eliminated members. By selection constant C can
lead to smoothness of function ¢(R), that is,

["P(R+)“P(F'-)]~A, (2u)

10




Thus, with the consideration of évérything presented above,
the initial conditions, and this means the entire solution, are
characterized by two values: '

p. ' 2R .
1) B=R /P T ———— -
-/ Nmax T >
the ratio of the radius of matching to half the radius of a
closed Fridman;

2) A -- is the width of matching.

B characterizes the value of perturbation of geometfy. The
role of the pressure gradient depends on the Value of A. With
small values of A the role of the pressure gradient increases.

The fact that the point is fairly distant (large values of
R) we will use as the first bouhdary condition; the wave of re-
lief did not successfully reach this and expansion occurs ac-
cording to the law (17). The boundary condition on the left
boundary alsc has a very simple form:

e

i3
3
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" A

[ it

;ﬂobtain an asymptotic solution (Kazner type) which in the accom-
ff’panying system of computation with our selection of random func-
_tions has the form C : '

Boundary conditions (28) would remain true at the latest o
stages of collapse after formation of a black hole when at the

e moment of occurrence of singularity is different for dif—

hich it was at first. From equations (2-6) or (8-11) one can 5

"J“(m’ f SR . : (29)
'zzp(ié)[{—i,, (R)]”, B

5 G(k)[{ { (R)]' -3n (31)

-

' e
where ‘ : !,

3 (2-r)
4 ,_

s
n= 1
r\( y/3. (32)

Thus, after singularity has formed, the left‘boundary con-
dition continues to be at a certain Lagrange radius R, different
This radius R is determined from the condition so
that numerical solution 1s close to an asymptotic solution (29-
31). During further collapse, as the new elements of matter drop
to singularity, the position where the left boundary condition re-
mains moves toward a large Lagrange radius.

from zero.

12

rent Legrange radii “that is, singularity is- not quasi-uniform :

' rq.l

:c’nter for a finite time an actual physical singularity occurs. e
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. 5, A Method of Numerical Calculation _ e AT é

For numerical solutibn'of'a'éysﬁem of equations (8-11) the
difference method was used similar to the basic~characteristidsé"
in the methods used eérliér;ror calculating gravitatibnal col-
~ lapse [26-27]. Therefore, we will nbt;présent here the entire =~
~ system of ‘different equations but ﬁili‘limitﬂourselﬁés only to
‘a brief‘description'of'its'bgéié*peculiérities. The entire in-

tegral of change of the Lagrange coordinates 0 < R < Ry was

" broken up into 150 integrals and then the step of the break up
AR was made smaller in £he intérnal part and particularly,close
to the matching location of a elose@rﬁorld with the Fridman and

T was smoothly iﬁcreésed in the exterhal part of the integral of

éhange of R considered. In the differehce'equations, a method

was used of "whéle"‘and "semiwhole" calculation units according
to space and time [28]. In the whole units, according to space,

u, r, m were calculated and in the semiwhole -- P,e and depending

on them e’ and Aj mdreover, u was calculated in semiwhole units

according to time, and all of the remaining values -- in whole
units according to time,

Each alternating step in time began with a calculation of ﬁ
from the difference analog of equation (8), then from equation
(9) and (10) sequentially distributions were calculated acco:i iing
to space of r and m, and finally, the density of energy was found
from the difference equation:

Eﬂri I7ij’ -~ }'n‘?*:
g R A }.. LI
Y (Jr et ’{,2’ 'f')]fi)',

which corresponds to (1); here j -- is the number of the spatial
calculation interval, and n -- is the number of the time calcula-
tion interval; J1 = 4150 -- the whole number of space calculated

13
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e :interyals. ‘The values of density of energy in the flatter semi- /18
,»1; whole unit 5&1+1/2 is defined from,theeboundary -when-R-=: Rl' __iiil_idl?i,

f'calculations of gravitational collapse close to free fall, in
';calculations of’Fridman expansion and Fridman expansion with i
ism&ll perturbations in the form . of sonic waves.f Then it was- clear

ji{of perturbation rapidiy attenuate as the central density increases. -'7
We note here than in the work of May and White [26] and Schwarts - . -

’?T[ZT] only gravitational collapse was studied numerically. However,

»'iéthe series of calculations of the Fridman expansion (including the

o 'perturbed) showed that this numerical reproduction requires a '_

more accurate approach Anasmuch as the absolute value of calcu-

The difference system considered hereuwas tested An. sample '

that the process of gravitational collapse is reproduced very- E,,}g4f
well by a numeriﬂal method, that is, .the different calculations .

-lated perturbations of denSity decrease- somewhat more slowly

than the density 1tself and therefore relative errors gradually.
increase. So that one can calculate the stage of expansion
fairly far, it is desirable to significantly decrease the step
of integration in time in comparison with its maximum allowable
value determined by the conditioniof numerical stability of
Kurant.

We used the following requirement as the criterion of

selection of a variable step of integration according to time

At: the ratio Ae/e does not exceed the prescribed fixed value

£ << 1 in all calculated spatial integrals (Ae -- 1is change of

e for one step in time). If, after completion of the alternating

step of integration ,Ae/e > y appeared,although for one spatial

interval, then At decreased and the subsequent step was recalcu-

lated. It 1s convenient to use the integral of equations (8-11) /19

for control of precision:
frf-eite Moo 6D

(see equation (2)). The difference of this expression from zero

by several percentage points 1In relation to the component making




_____ the maximum contribution to the left part (33) can be cgns;@ered%i R
fully'exemplary. ~it was appareht that forrthe claSS Q: problémgf:"f— }g
considered in this work this condition 1is fulfilled when & < 2+ = = - = §

1073, The results presented here of calcuiatibns were obtained - B

" using the values £ = 10=% - 10-3, " ) ’

- 6. A Description of Results of Calculation

-  The results of calculation of the process of formation of -

o - PBH depend on two parameters -- amplitude of deviation from a

flat Fridman model characterized by R_, and the width of matching‘

A. ' o v

o As has already been discussed, in the field of matching

- there is a certain rarefaction. In the opposite case, outside
there would not be a flat Fridman solution and one would have a

perturbation of the %g’ type where AM -- is the excess mass (see
in more detail [6]). Therefore, it is obvious that relative per-
turbation of density when R_ < R < R, is larger than the matched.

As calculation showed, in the case of a very narrow matching,
sometimes shock waves occur and solution of the problem in the

end requires the introduction of viscosity. PFigure 1 shows the

evolution of this perturbation in the case where the width of
matching A = 0.1R_, R_ = 1. Later on we will concentrate our
attention on those cases where shock waves do rot occur. Let us ,
first select a certain fixed ratio of the width of matching to !
the radius of matching;‘let us say %_ = 0.5 and we will study E
the following question: at what values of R_ does the black hole
- form and at what values does 1t not form. It is clear that the
smaller the values of R_, the smaller the perturbation metric is /20
and with a falrly small R_, the black hole, as is well known,
cannot form and perturbation must be transformed to sonic oscil-
lation.

15
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in'Figure 2, R_ 1;, that 1s, it amounts to 75% of Bmai S

7“;_;/wuzeﬂwlt,is-appareHE-from*the drawing that the process occurs in
— .7 - the following way. At first, a general cosmic. expansion oceurs: fa
'“?iQThe internal field“expands more slowly that the external., From.
:,ithe field of matching to the center of perturbation and’ out3¢de ;ﬁf
1% ‘there are waves of rarefaction. At a certain moment in. time,-lse,e
' <fin the internal fi‘ld, a shift in expansion to contraction occursi'i;
;Durlng contraction, the pressure - gradient increases so much that - i
'ifhe central core is eJected and-a wave of compression oceurs out—

_ side. In this case the perturbation of the metric or, in other

wérds, the gravitational {leld, was fairly large and'the formation
of ‘a black hole did not take place. Perturbation was changed to =

PN

_Rfsonic osclllations.

In Pigure 3 also a case is shown where a blacfhﬁole does
not form. Here R_ = 0. SRmax But perturbation of the metric is
larver in this case and therefore the large and maximally allow-

able density of energy occurs in the center of perturbation. The

ratio of density of energy at the center of perturbation to dens-

ity of energy outside perturbation reaches a maximum of 102, that

is, the problem is essentially nonlinear. Later on, perturbation
is converted more and more to sonic waves.

A qualitatively different picture is shown in Figure 4
(R_ = O.85Rmax). We see here unlimited compression of the core.
: The central densit; of energy tends toward the infinite. In
£ order to be sure in this case a black hole actually forms, let

us turn to Figure 5. In this drawing the ratio % i{s shown. 1In

7 those fields where expansion occurs, r is increased and m, due

4 ‘ to the forces of pressure, decreases. Therefore, the value %

drops with expansion. When expansion changes to compression,

then obviously the ratilo % increases. If the pressure gradient /21
does not successfully become compression at the moment when %
reaches 1 (dashed line uii figure 4) then a black hole unavoidably
occurs inasmuch as, in this case, both of the conditions for the

SRR R TN TR
R i
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©(19)). The moment of formation of a black hole in our dimen=~
sionless units equals t = 2.39. The ratio of the mass of the

~ black hole at the moment of formation to the mass of the entire
_perturbed field at this moment equals 20%. - ' '

Thus, we can conclude that when o/R_ = 0.5, the black hole
-1is formed only in the case where mass of a perturbed field is
comparable to half the mass of a closed world, that is, R_ 1s
L

close to Rmax = 3. The quantitative result of this is

08<R. /Rpay <085 (34)

. When = 0.5.

| o>

In Figures 6 and 7, similar relationships are presented

for a case when RR' 0.9. At this time, gravitational forces

max
even with a certain reserve exceed the forces of the pressure

gradient. Therefore, the formation of a black hole occurs much
earlier: t 1.87. And the ratio of the mass of a black hole

to the mass of a perturhed field is larger at this moment than in
the preceding case and equals approximately 30%. The latter in-
dicates the fact that the force of pressure increased from the

central field with a smaller mass than the preceding case.

Now we will go on to study the question of how significant
the matching width 1s for formation of a black hole. Let us

take z=— = 0.85, that is, the minimum R_ at which a black hole
max

forms and a decreased wldth in matching to 4 = 0.3R_. Then the

role of the pressure gradient increases and as is shown in Figure

8, the black holes do not form. The pressure gradient success- /22
fully leads to dissipation of the core earlier than a black hole

is successfully formed.
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However, when R_ = 0.9R and A = 0. 33m¥and,Aﬂ_mD 2R_, the___A_m;‘

max:

~ black hole is formed as when A = 0. 5R_, but the momeént of forma-'}'
- tion of theé black hole ensues later than when 4= 0.5R.; the ratio of

7 Lthe mass of the hole formed to the- mass of the perturbed rezion is smal‘er
j”than in the cases indicated above. (When ﬁ5=—f* 0. 9, the black = -

max

 hole does not form even when 4 = 0.13_,)~

Allvof the calculated Variations are presented!together in
Figure 9. The radius of matching is applied along the axis of.
the abecissa and the width of matching along the axis of the ordin-
ate; the "+" corresponds to the formation of a black hole, and "O"
to the occurrence of sonic‘oscillatibn. The dashed curve indi-
cates the approximate boundary of the field of the parameters
indicated where black holes occur. _

The Table presents the most important quantitative results
for certain variations of calculation when a black hole formed.

Thus, the calculations made make it possible to draw the
following conclusions.

PBH form only with very large deviations in the Fridman

model corresponding to RR- = 0.85-0.9. The width of the transi-
max
tion A affects the formation of PBH. The smaller A, the more

significant is the role of pressure gradients, making it difficult
for PBH to form.

Before meking numerical calculations, the role of pressure
in forming PBH should be evaluated by constructing stationary
[3] or selfmodeling [6] solutions. The hypothesis was presented
that pressure can facilitate accretion of gas by the by the
occurrence of PBH and result in a significant increase in their
mass. Carr and Hawking [6] pointed out that a selfmodeling
solutlon does not exist which leads to catastrophic accretion

18
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~*—thsthe’PBH~matter“during‘which”dimensions'Uf‘the PBH increase

“1ike the cosmic horizon. Our calculations indicate that pres-
::sure actually interferes strongly with-the formation of PBH
5mdecreasing the mass of PBH in comparison with the mass - which -

7 ;texisted in the PBH under the’ initial perturbation but with the
"?}fabsence of pressure P =0. Actually, on the spatial section:
f;:ft .const near singularity, density of energy in the perturbed

"field R < R_ 1s larger than away from the Fridman model and

the gradient of pressure force on R_ directed outward attempts
to eject the mass. 1In the transition field R_ < R_ < R,

' ,density is minimum and on its external boundary R pressure gradi-

ent 1s directed inward causing accretion. However, this phenome-
non is less significant during the formation of PBH than the
gradients described above for R_ which leads to "efflux" of the
mass from the field of pertuvbation. For constructing a complete
hydrodynamic picture of accretion on PBH (without being limited
by the hypothesis of selfmodeling as in [6]), it is necessary to

- calculate the process fairly far in time on the order of 10rg/s.

This = we will do in a separate work. But right now one can say
during the formaticn of PBH its dimension i1s much smaller than
the cosmic horizon (the mass of the black hole at the moment of
formation amounts to a total of only a few percentage points of
the mass included within the cosmic horizon (see Table). There-
fore, as was pointed out already in [1,2], catastrophic accretion
does not occur and this conclusion coincides with the analysis of
[5], made for selfmodeling solutions.

The authors wish to thank Ya. B. Zel'dovich for his interest

in our work and his critical comment and also V. N. Lukash for
his many comments.
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PHYSIC
| 0 0,0l 2,3 6,19 0,02 0,00
- 1 1 o,62 0,48 I0I I,I2
0,85 o, | o oo T e AT
3 3,17 0,42 0,74 6,30 0,32
0 0,0I 2,42 6,45 0,02 0,00
05| I 0,62 0,51 1,09 I,I6 0,00,
? 2 1,86 0,48 0,88 3,7 0,2
3 2,7% 0,49 0,84 5,55 0,46
¢ 0,0I 2,42 4,74 0,02 0,00
0,0 o3| I 062 0,52 0,8 I,I6 0,00
2 2,42 0,45 0,67 30 0,I4
3 3,12 0,44 0,65 .,29 0,28
0 0,0I 2,42 4,06 0,02 0,00
0zl J 0,62 0,5¢ 0,7 1I,I6 0,00
1 2 3,31 0,42 0,5 6,59 0,09
3 3,80 0,41 0,55 8,26 0,I5

TABLE

AL CHARACTERISTICS OF THE PROCESS OF FORMATION OF - PBH --——

OjOb’i;ff'«

[Commas in the tabulated material are equivalent to decimals. ]

Symbols:
ml-

My

My

Mp.h.
i=20

20

mass within the Lagrange radius R_ (mass of part of a
closed Fridman world);
mass within R (mass of total perturbation);

mass included within the cosmic horizon;
mass of a black hole (mass included within the visibility

horizon);

initial moment; 1 = 1 -- beginning of compression; 1 = 2
-- moment of formation of a3 black hole; I = 3 -- end of
calculation.
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Figure 1. The occurrence of a shock wave. The Lagrange radius
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Dif-

ferent curves correspond to different moments of time.
= 0.1,

[Commas in this figure and in the following figures are equivalent
to decimal points.)

Here R. = 1, &
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Figure 9. Conditions for the occurrence of PBH. R_/R

05 o9¢  OF o8 0,9

max Is applied
along the axis of the abcissa and A/R_ on the ordinate
axis. All of the calculated variations are presented 1in
the drawing,. "O" -- means the PBH does not form, "+" --
PBH do form. The dashed curve shows the approximate
boundary of the field of parameters during which PBH

occur,

29




 REFERENGES -~~~ —

|

1. Zel'do?ich, Ya.B. and I.D. Novikov, Azh, 43,758 (1966).

. - -2+ Zel'dovich, Ya.B. and I.D. Novikoﬁ,'Nestatsionarnyze yavleniya
v galaktikakh [Nonstationary phenomena 1in the galaxiesI
~ Nauka Press, Yerevan, 1968, pp. 280.

7 3. ,Zel'dovich Ya.B. and I.D. Novikov, Relyativistskaya astro-
fizika [Relativistic astrophysics] Nauka Press, Moscow,
1967.

L, Hawking, S.W., Mon. Not. Roy. Astr. Soc., 152/75, (1971)

5. Carr, B.J., Astroph. J., 201/1, (1975).

6. Carr, B.J. and S.W. Hawking, Mon. Not. Roy. Astr. Soc. 168, :
399 (1974). :

7. Zel'dovich Ya.B. and A.A. Starobinskiy, Letter to ZhETF, 24,
616 (1976)

8. Hawking, S.W., Nature, 248, 30 (1974).

9. Chapline, G.F., Nature, 261, 550 (1976).

10. Carr, B.J., Astroph. J., 206/8 (1976).

11. Page. D.N. and S.W. Hawking, Astroph. J., 206/1 (1976).

Porter, N.A. and T.C. Weekes, Astrop. J., 212, 224 (1977).

O L AL O
[
n

13. Zel'dovich, Ya.B, I.D. Novikov and A.A. Starobinskly, ZhETF,
~ 66, 1897 (1974). -

AR ETH I

14. Ye.M. Lifshits, ZhETF, 16, 587 (1946).

15. Klein, 0., Werner Heisenberg und die Physik unserer Zeit
[{Werner Heisenberg and the Physics of our Time], Keweg,

Pratnschweig, 58, 1961.
16. Zel'dovich, Ya.B., ZhETF, 43, 1037 (1962).

TR

o

17. Novikov, I.D., Vestnik MGU, 6, 61 (1962).

18. Lifshits, Ye.M. and I.M. Khalatnikov, ZhETF, 39, 149 (1960).

19. Belinskiy, V. A , Ye.M. Lifshits and I.M. Khalatnikov, ZhETF,
62, 1606 (13972).

= 20. Zel'dovich, Ya.B. Letter to ZhETF, 12, 433 (1970). /26

30




21'

23.

24,

25.
26.

27.
28.

WO RSN

g e

-

Lukash, V.N. and A.A. Starobinskly, ZhETF, 12, 4t3'(1970),
Lifshits, Ye.M. and I.M. Khalatnikov, UFN, 66, 1515 (1974).
Zel'dovich, Ya.B. and I.D. Novikov, Stroyeniye i evolyutsiya

Veelennoy [Structure and evolution of the Universe] Nauka
press, Moscow, 1975. ,

Landau, L.D. and Ye.M. Lifshits, Teoriya;polya [Theory of
a field] Nauka Press, Moscow, 1967.

Podurets, M.A., Astron. zh., 41, 1091 (1964).

May, M.M. and R.H. White, Methods in computational physics;
B. Alder, S. Ferbach and M. Rotenberg, eds. vol. 7,
Astrophysics, pp. 219-258, Academic Press, New York and
London, 1967.

Schwarts, R.A., Annals of Physics, 43, 42 (1967).

Richtmyer, R.D., Difference Methods for Initial Value Prob-
lems, Wiley (Interscience), New York, 1957.

31

e i Gz RS eel T eem oo



	1980002737.pdf
	0012A02.TIF
	0012A03.TIF
	0012A04.TIF
	0012A05.TIF
	0012A06.TIF
	0012A07.TIF
	0012A08.TIF
	0012A09.TIF
	0012A10.TIF
	0012A11.TIF
	0012A12.TIF
	0012A13.TIF
	0012A14.TIF
	0012B01.TIF
	0012B02.TIF
	0012B03.TIF
	0012B04.TIF
	0012B05.TIF
	0012B06.TIF
	0012B07.TIF
	0012B08.TIF
	0012B09.TIF
	0012B10.TIF
	0012B11.TIF
	0012B12.TIF
	0012B13.TIF
	0012B14.TIF
	0012C01.TIF
	0012C02.TIF
	0012C03.TIF
	0012C04.TIF
	0012C05.TIF
	0012C06.TIF
	0012C07.TIF
	0012C14.TIF
	0012D14.TIF
	0012E14.TIF
	0012F14.TIF
	0012G14.TIF




