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Introduction

Unitypical photometers were mounted on the descent vehicles of

the automatic interplanetary Venera-9 and Venera-10 stations; these

measure the light flux coming from the entire upper hemisphere, from

the zenith and , from below at an angle ^ = 23° to the nadir in five

spectral	 ranges; in this way, each instrument has 15 independent

measurement channels. The average spectral characteristics S2i(X)

and the beam patterns Fi (6) are shown in Figures 1 and 2. On these
drawings, and in the entire work, the first index i is defined as the

type of be"-in pattern and the second, j--is the spectral range; each

measurement channel has symbols: i, j, where i = 1, ...3; j = 1, ...5.

Preliminary measurement results were published in references [1 0 21

after which the authors conducted full processing of the measurement

results obtained.

In this work that part which applies to the near-surface layer

of the atmosphere is presented, that is, the field where measurements

make it possible to determine the photometric conditions on the

surface and certain properties of the surface itself.



RESULTS AND INTERPRETATION OF MEASUREMENTS
OF THE LIGHT FLUX IN THE NEAR-SURFACE LAYER

OF THE VENUSIAN ATMOSPHERE

Yu. M. Golovin, B.Ye. Moshkin, A. P. E. Ekonomov

1. Intensity of radiation incoming to the surface.	 /4

The intensity of radiation J(a,e) equals the energy of the light

flux normally incident per unit of ar-a at an angle e to the nadir

at a single solid antie and in a single interval of wave length

(1,a+dX). Close to the surface of the planet, the intensity of

radiation does not depend on the azimuth.

The photometers measure intensity of radiation W iJ , averaged

according to the i-beam pattern and the j spectral characteristic:

It	 4

S`.^d^ d	 i(a,

S. (A) d	 F ft

where n=cose. The intensity of infinite radiation 0<.n<l we designate

by J+(a,n), and the intensity of ascending radiation -- 1 <n< 0, by

J+(X,n). With a large optical thickness of the atmosphere, with

conservative scattering and a small albedo of the ground, angular

distribution of radiation incident on the surface hardly depends

on X and the function J+(a,n) can be presented in the form

*Numbers in the margin indicate pagination in the foreign text.
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The function U+(n), according to 13,4), equals

^ 1 (/ ^t 4) + y
	

(3)

where A -- is the albedo of the ground equal, as we will see later on,

to 0.1+P.05.
	 /5

The ratio of intensities averaged according to the beam pattern

of Fij (n) and F2j (n) (see figure 2), is calculated according to the

formula

r.	 E L L'jj (ml w4t) d	 Fzj d
q	 X

f E. 	(40c(s 1'F,•(*1)d'Z
where U+(n) is defined by expression. (3), as equal to 0.85. The

value of this ratio averaged for the entire spectral range of both

instruments (WW2j ) equals 0.80+0.05. The coincidence of both

values within the limits of measurement error supports the possibility

of selecting function U+(n) in the form (3)•

For calculation of J+(a) five values of averaged intensities W^ are

used equal to

1•=O5(wig (0)+	 W ' ► f0)) ae	 d	 Y . ^^	 .1

where Wij (0) and W2j (0) are readings of channels 1j and 23 at the

moment of landing. When constructing the function J+(X) it is a3sumed

that its graph must pass through point (W7j 
j
), where TA  -- is the

effective value of the wavelength, and which fulfills the condition of an

insignificant amount of discrepency:

2
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The values Xi are found by a method of sequential approximations and

as the first approximation the first standardized moments of spectral

characteristics are taken (Tj_ co X " (A)dA	 and the succeeding are
• J Sj(X)da

calculated according to the formula

fo	 (A) A

(7)

to fulfillment of condition (6) within the limits of measurement

error. The results obtained are shown in figure 3.

Irradiance of the surface P and intensity of illumination E are 16

calculated according to the formulas

f

P=.T f Y/^A)dAt	 (8)
.	 Q5

6WIX f zr(A)• .71 (A) dA	 (9)
.4,

where v(a) -- is the spectral sensitivity of the mean eye, and amounts

to:

Venera - 9,	 P=33 W/m2	E = 10,500{{lux

Venera - 10, P=61 W/m2	E = 6900 lux.

One should note that the spectral composition of the light flux incident

on the surface corresponds to an orange color.

2. Coefficient of Scattering of the Atmosphere and Evaluation of the

Surface Relief.

3

(6)
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The relationships of measured intensities Wjj to altitude over

the surface are the initial material for determining the coefficient

of scattering of the atmosphere close to the surface. The measured

r values W1j and W3j are presented in figures 4-7. The time to the

moment of landing and the altitude over the surface in a uniform

atmosphere are applied on the axis of the abscissa in all the drawings.

The clearly expressed periodic components on the curves W33 (Venera-g,

figure 5) are explained by rotation of the descent vehicle with a

period of about 30 s around its axis of symmetry with the condition

that if the surface is horizontal then the axis of rotation of the

vehicle is not vertical or the axis of rotation of the vehicle is

vertical, but the surface has a certain slope.

Naturally there are possible and intermediate variations; however,

the absence of direct data on orientation of the vehicle does not make

it possible to make an unambiguous selection of the descent model.

An equation for intensity of the ascending light flux in the 	 /7

direction arccosn has the form

z^
where ^^f f4Ti o	 _,

(11)

-- is the function of sources, T -- is optical thickness calculated

from the surface vertically, R(X) is brightness of the surface, w-

is the albedo of a single scattering, x(S) -- is the indicatrix of



scattering, and then it was assumed that

a-- is the angle between the incident and scattered beam

COJ ^' _ ^ j`^.t l! - X21 ^ _ ^^'121 coy ^^	 (13 )

where 0- is the azimuthal angle.

The functions J(T y ,n'a) in formula (11) can be presented as the

total of descending and ascending light flux:

where U+(.n') is defined by formula (3) and Ut(n') can be presented

in the form

	

^t2^	 C15)

where b -- is the unknown parameter of angular distribution of ascending

radiation which changes with altitude from 1 to 0. Substituting (14)

	

in (11) we transform (10) to the	 form	 ,4

Afe	 o.

	

- tK.&	 (16)
e 

1711

where a-- is the coefficient of eccentrics, H -- is altitude in a uni-

form atmosphere and the values of K 1 and K2 equal:

5
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f	 xam fi t 	(17) /8

4j7-. d 	 XW	 (18)

Using formulas (12), (13), ( 1 5) and "[- illegible -) , we find that
K1 

= o.46; K2 = 0.53 • 0.0$. Transfering in equation (16)'from intensities

to average intensity Wij according to (1) and using the relationship

resulting from figures 4-7;

and	
/ l

where C^ -- is the angular coefficient, we find:

W.	
N	 ^	 '

1140f[)A dH
_^	 (21)

+	 , 0) a lT^^ H`

where a ---
 is, the average for the J spectral range of the coefficient

of eccentrics;

CJS (A) .7 (A) d	 (22)

g(H,nO)-- is the factor which takes into consideration the effect of
the value of width of the beam pattern P  (n):

6



j O

_ ds^JY^(T, H) :(^, y^ d(H, 4	 .) -
(23)

The value g(H,n 0 ) essentially increases the unit only when ln0j=0.08

and ;<0.5 reaching, for example, when Ir, 0 1-0.65 and T=0, the value

1.25:

no -- is the cosign of the angle of inclination of the axis of the beam

pattern (optical axis) to the vertical.

Fulfilling integration in (21), we find the equation involving

measured intensities W ig with the coefficient of eccentric aj and

inclination of the axis of the vehicle:

f	 -,•!k M . . 

(P	
(24)

The value of n0 involves the angle ^ between the axis of rotation and

normal to the surface

`'' TO COS ^ aw ^ - ^Z4 ^ SZ4 t W.$ f ' -	 (25)

where *-- is the angle of rotation of the vehicle, C-- is the angle

between the axis of the vehicle and the optical axis.

Here, in order to determine the angle c for the Venera-9 space-

craft, we will introduce the monotonic functions WU max(H) and W3jm.In(H),

whose graphs, pass, respectively, through the periodic maximums.

}I
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and m inimums of curves 1-1U (H) .	 For the function WUmax(111) from

formula (25) we find that Inol=cos(4+^),	 and for

W3Jmin(H) we find that,jn 0 j =cos(4-0. In a case where the axis

of the vehicle is vertical, but the surface is sloped at an angle C

to the horizon, the value of In 0 l in formula (24) must be substituted
rt

for

*1 °^	 CUS	 -OS (- Sin 	 ^ COS
cos ^ -	 col	 •

When H-}0 front 	 with a calculation of (25) it follows:

ma~!31̂ ^ - a'( 0̂ 'v^^ CO3	 (J^'^tl^2R' 0 o	 j	 (27)

where d j =ta i -- is the coefficient of scattering; because k-0=0

p and 9Lc,cos(4-^)]al, then

(28)

, Y/1	 (0)
0' 	 /

H	 R o	 ^

	 (29)  
0'°^ ' Cos(1	 ^d(^ 

Approximation (29) can be used when calculating the slope of the surface

only for an altitude from 0 to approximately 200 m. To determine the /10

`	 angle ^ for the entire range of altitudes shown in figure 5, equation

(24) was used. By using this for calculating the relationship of W3Jmax(H)

W3 ^ max
and W3,jmin(H) the functions of the ratio 13	 were constructed from3^min
altitude H and angle 4 with a given coefficient of eccentrics coinciding



with the Rayleigh. The results of calculation were compared with the

experimental relationship of the ratio to altitude indicated. The

best coincidence corresponds to the an le between the axis of the

vehicle and normal to the surface equal to 25 + 54 . The absence of

separate measurements from the averaged value reaches 10°, which,

besides measurement error, can be explained by the fact that the sur-

face is not ideally flat.

If one assumes that the axis of the vehicle was vertieal, we con-

elude that the Venera-9 space station sat at a steep slope of about

25°. The extent of the slope found according to time during which

the variable component of ascending radiation flux was recorded is

at least 3 km.

The coefficient of scattering ar was defined according to , -the value

of slope of curves W iJ (H) with large thicknesses (H=2.5 km). Then,

it is possible to consider that the ratio of the derivative Cij=dWi3/dH

to the value of Wi j (0), that is, the value of intensity of radiation

which reaches the surface, equals 0.68QC3J. The value found this way

of the coefficient of scattering is presented in the table in column

8.

In the table ' Cillegiblel , column 7, also values of the coefficient

of scattering a  are found fox , a purely gaseous atmosphere of CO2,

calculated according to formula (22) and then a(A) equals

rt4	 "	 «J O

where n  is the Loshmit number, 2.687 . 10 25 m3__ is the index of re

fraction of CO 21 m -- 1=4.5 . 10_1 [53, p 0 -- is density of CO 2 under

. j 9
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normal, conditionz, 1.997 kg/m 3 [53,, P-- iz density at the surface of

Venus, f-- is the factor of depolarization. 	 /11

The densl.ty on the surface of the planet was determined according

to the model of the atmosphere[6] using data on pressure on the sur-

face in the landing areas of the Venera-9 and Venera-10 C71. It

appeared to be oqual to 59.3 kg/m3 and 62.7 kg/m3 for the Venera-9

and Venera-10 spacecraft, respectively. The values of the factor of

depolarization of CO 2 presented by different authors, differ from each

other somewhat, f=1.10? 8 and f =1.17 9 . When calculating at the value

6 p (a
 WOO 

the value f from {91 was used. A certain indeterminancy in

the value of the factor of depolarization, the error of experimental

determination of P and noncalculation of nonideal gas and relationships

of the index,of refraction m to the.wavelength result in the following
eQ

error in calculating the value a^: Qi _+ 0.07.

In the table, column 9, the ratios of theoretical and measured values

of the coefficients of scattering are presented. By analyzing these

results, it is possible to say that the coefficient of scattering in

the near-surface layer of the atmosphere of Venus coincideswith the

Rayleigh for all CO 2 within the limits of 11. The difference be

tween measured and calculated coefficients of scattering can be

explained by errors in calculation and measurement.

3. Albedo of the Surface.

For calculating the albedo of the surface depending on wavelength

A(a) the results of measurements of intensity Wlillegib_4],j extrapolated

at the moment of landing and obtained in the 14st few seconds before

landing of the Venera-10 and Venera-10 spacecraft were used. The

albedo of the ground with a wavelength X i was defined as the ratio

10
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W	
, and the first standardized momcnts of the function 8 W was

W1^ 0
used as T j . The results obtained are presented in figure B.

In the graphs of figure 8 one notes possible deviations of the

values A(Tj ) caused by measurement error which we evaluated as 25 --

30%. Error comes from the following: a) calibration of the instrument,

b) calculation of instability characteristics of the instrument,

c) calculation of the effect of the parts of the spacecraft found in /12

the field of vision of the instrument, d) corrections on resulted

calibration of the instrument during landing, e) processing of results

of measurement, f) those involving the disrsreet nature of telemetry.

The values obtained of the albedo A characterize sections of the

surface with dimensions 10-30 m. The values found of A are closer

to a flat albedo, that is, to the ratio of radiation flux from the lower

hemisphere to flux from the upper hemisphere. With an orthotropic

indicatrix of reflection of the ground, these two values coincide.

Photometric processing of the panorama of the surface [101

indicated that the indicatrix of reflection actually is close to the

orthotropic. At the maximum, completely improbable case, reflecting

indicatrices or indicatrices with a strong back scattering (lunar

type), the value of A is smaller than the flat albedo by 30%.'

Independently, evaluations of the albedo of the surface were

made with photometric processing of the panorama [10]. A method of

comparison of brightness of characteristic sections of the surface
y

with brightness of the calibrated standard was used. The calibrated

standard was the indicator of coloration of the landing platform with

a known coefficient of reflection. In as much as in [10^ there are no

indications which could prove the shading of the standard of the surface

11
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1

by the vehicle, in the value of the albedo presented in [10] we intro-

duced a correction equal to 0.5. The correction was obtained according

to the data presented in figures 9 and 10. The values of the albedo

of characteristic sections of the surface obtained when processing the

panorama,taking into account the correct-ions,are presented in figure 8.

The wavelength in which we.incorporated the value of the albedo from

[10], is the first standardized moment of spectral characteristics

of the telephotometer presented in'['11]. As is seen from figure 8,

the data of work [10] agrees with the results of our measurements.

We note that the telephot.ometer and the broadband photometer are

located on diametrically opposite sides of the spacecraft.

4

	

	 The studies 12-15 showed that data on the value and spectral 	 /1?

distribution of the albedo of the ground, in principle, make it

possible to qualitatively evaluate the composition and characteristic,

dimensions of the particles of soil. The authors of'[12-15] studied

a large number of samples of different rocks for which a relationship

of the spectral albedo to the dimensions of..the. particles, their

shape, type of packing and conditions of illumination were obtained.

The authors of [15] studied 22 samples of volcanic rock and minerals

in order to present a full range of their characteristics (composition,

mineral content, origin and dimension of particles). In reference

1141 approximately 50 samples of rocks and minerals were studied.

We compared the relationships which we obtained of A(X) with the

spectra of Earth igneous rock presented in works ' ['12-171. The

petrographic description of the rocks studiedis presented in'[.14).

The relief of the surface has a strong effect on the value of the

albedo. Any depressions result in a decrease in the albedo.;, This



effect, apparently, basIcally is responsible fo1 , the smaller value

of the albedo of the ground in the landing area of the Venera-9

spacecraft in comparison with the albedo according; to the data of the

Venera-10. ?wring a comparison with the spectra of reflection of

,Barth rock, we used data on the albedo of the ground f"11 the land.tng

area of the Venera-10 spacecraft where the effect of relief on thb

value of the albedo apparently is insignificant.

We will in-troduce the index of light D1 =A(0.87)/A(0.5 10, that is,

the ratio of the albedo of the graph with wavelengths 0.87 and 0.54

microns, The value of M according; to the concept is close to the

parameter R/B presented in , [7. 11,] equal to A(0.7)/A(0. 4) . In the

work ' [1 11 1 it was pointed out that with identified rocks and an

evaluation of the degree of its dispersion by certain characteristics,

they are: parameter R/B, the value of the albedo and the — —iltion of

the absorption band, and then these characteristics essentially differ

for three groups of silicate rock. These are volcanic Blass (obsidian /14

pumice), oxidized rock (tufa, rhyolite, granite), basic and ultrabasic

rock (basalt, gabbro) . The albedio of a.l l identified rocks, after

certain critical dimension dk begins to increase with an increase in

the dimensions of the particles.

Taking into account the measurement error, parameter M for the

ground of Venus = 2--7. A comparison of the parameter M with the

data of ' [14 ] indicates the following. Volcanic glass and acid

rocks can, apparently, be excluded from consideration: fox , the

t' rl t RAS < 1.3;	 for the second, ltb.ougli 1.2 '< 1 /B

< 2.11,	 but A(0.55) >0.2. From the base roofs, basalt (Risg;ah)

I
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k
i

satisfies our measurement according; to the value of A and M for small
i

particles d 53 micro m. For this,'jillegible3 less than R/B 2.5;

0.044A 
0.55' 

0.15. It satisfies measurement ` [illegible] basalt
R

(Red Cinder). The spectral albedo of` certain rocks and minerals.,

which do not contradict the results of measurement are presented in

figure 11.

In work'L163 the reflective properties of basalt were studied

depending on the degree of their oxidation. It appears that the

higher the degree of oxidation the smaller is the coefficient of te-

Election in the short wave field of the spectrum and the better than

relationship A(a) for it coincides with our measurements (figure 12).

We note that CO 2 oxidizes basalt'C181 	 Only basalt of the Earth

Igneous rocks can satisfy the albedo of the ground of Venus measured;

this agrees with the data of ' X19, 20 ] .

Although the values of A and M for the ground of Venus and certain

types of basalts coincide, the character of the relationship of A(a)

in them is different (figures 11, 12). When evaluating the composition

of Martian rock according to the spectrum of their reflection, it was

established that the albedo of the ground of Mars satisfies well a

mixture of different rocks, for example, basalt plus geothite; basalt

plus limonite 116,213. Apparently, the albedo of the ground of Venus

can agree only with the coefficient of reflection of a mixture of

different rocks. In our opinion, mixtures of basalts wits) a different 415

degree of oxidation with the addition of geothite or limonite are

promising.

Z4
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4. Dust on the Surface. 	 a

Immediately after landing of both spacecraft, a sharp decrease in

radiation from below was established and a certain much smaller decrease

in radiation from above. This phenomenon can be explained by the

shading off' the ground by the spacecraft components because after a few

seconds radiation again increases and goes to a certain stationary
a

level. This level is below that which was obtained by extrapolation

at the moment of landing in data obtained during descent; this is

explained by the shading mentioned above. In figures 9 and 10, the

ratio of readings of the instrument to readings at the moment of

landing depending on time are shown and calculation of time is done

from the moment of landing. In this way, at the moment of landing

at a certain time, a factor occurs which decreases radiation from

below. Then this factor disappears. This is all usually explained

if one assumes that the instrument fixes the dust cloud at the moment

of landing.

In motion, the spacecraft vehicle every second transmits in the

atmosphere of Venus the quantity of motion m9B where m is the mass

of the spacecraft, g B -- is the acceleration of the force of gravity

on Venus.

As a result, a turbulent path of the spacecraft is formed, that

is a column of gas entrapped by the vehicle. The diameter of the

path B increases as one gets farther from the spacecraft and the

velocity of the gas U in the path directed downward disappears,

tending toward 0 for an infinite distance X from the spacecraft.

Assuming an idealized point for the spacecraft; in which the quantity

of motion in the atmosphere is transmitted, we find an evaluation

15
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i
E24 for B and U depending on the distance X:

 X) 56s X,
T

:VSc	 2• / ?,
	 (32) 116

where 3 is a constant which characterizes turbulent exchange (a=0.2),

USC -- is the rate of descent of the spacecraft, C  -- is the coefficient

of resistance of the spacecraft (approximately 0.91), S -- is the area

[illegible] of the spacecraft. Estimates (31) and (32) are true for

an adequate distance from the spacecraft when (X /WS—) >50. Figure 13

shows the results of calculations of B and V	 according to formulas
Use

(31) and (32)•

It is apparent that even at a distance of 100 m from the spacecraft,

a significant velocity directed downward of the gas in the path is

retained. At the landing moment the spacecraft is stopped but the

gas in the path continues to move downward coming in on the spacecraft

and the surface of the planet (figure IP.a,b). With this flow of gas,

it is capable of raising a cloud of dust. It is characteristic that

at first the dust over the vehicle cannot appear because it is blown

away by the track (figure 14 c). At this moment under the 6hield of

the vehicle a zone of eddy flow occurs in which the dust is raised and

maintained gradually settling. In the graph of figure 10 (curves W3J(t))

a sharp drop at the moment t-0 is visible. Then, on the graphs, a

smooth rise in the curve is visible involving settling and'd:;ifting

of the particles from the wind,	 Figure 15 shows the

calculation velocities of settling of spherical particles on the

(31)



surface of Venus depending on their diameter. It is apparent that

with the characteristic velocity of gas in the cloud of approximately

1 m/s, particles are found in it with a diameter d<l mm. The process

of attenuation of the track (all of the more distant parts of the track

move toward the spacecraft at ever decreasing velocity) is accompanied by

drift of the track in the wind. For iO seconds the track as a:whole is

shifted by the wind for 5-10 m from the spacecraft and actually interacts

with it. As the track moves it becomes possible for the cloud of

dust to drift under the spacecraft (figure 14, d,e). This results in

failure in the readings of the 2j and 13 channels. For evaluating

the time of this shift, the data [231 on wind velbeity at an altitude /17

of H=1 m were extrapolated for the layers lying; above (H<10 m). It

was assumed that the profile of wind velocity U b (H) has, like the

ground layer, a logarithmic character.

l ( ^^^
	

(33)

NJ

Hl and H2 are certain altitudes and the value Z  at a Reynolds number

Re>> 10 4 involves only the height of roughness of the surface and

approximately can be assumed as 0.1 d k where d ot=0.3m --• the average

diameter of rocks visible on the panorama. Figure 16 shows the results

of extrapolation of velocity U  at an altitude of H-1 m for layer

Z O<H<10 m according to formula (33). An insignificant change in wind

velocity in the 10 meter layer over, the spacecraft and rapid attenuation

of wind velocity when H<l m, that is, under the spacecraft, is common

!	 17
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•,1

for all profiles. (during calculation, the effect of the spacecraft

itself on distribution was not considered). In this way, the mean
a

wind velocities in the 10-meter layer directly over the vehicle must

be 0.5 and 0.l m/s for the Venera-9 and Venera-10, respectively, and

the time of drift of the 10-meteri cloud of dust is 10s which corresponds

to experimental data for the Venera-10 spacecraft.

We will use the data on change of W 
3 

for evaluating the quantity

of dust raised per unit of volume under the shield of the spacecraft.

From the very beginning it is clear that very rough evaluations can

be presented here because the configuration of the dust cloud is not

known, nor the distribution of particles according to dimensions as

well as many other factors. In view of this, the problem was simplified

as much as possible and the following hypotheses were introduced.

1. In the field of vision of the instrument (channels 3J) which

is a cone, suspended particles of dust were found. The radiation per-

ceived by the instrument consists of radiation scattered by these

particles and radiation scattered by the particles of the ground
	

/1.8

in the field of vision.

2. The particles are spheres of uniform diameter d.

3. The particles are large in comparison with the wavelength of

radiation.

4. Their surface is scattered according to-the Lambert law and

in this way the indicatrix of scattering of particles is:

x(Y)-siny+(w-Y)cosy.

5. The coefficient of reflection of the surface of the particles

is less than 0.2, that is, it can be limited only to consideration of

a single scattering.

18



6. The cloud of dust has the shape of a truncated cone and from
t'

above is limited by the shield; the angle at the apex of the cone is

40°.

Hypothesis 5 can be supported In the following way. With velocities

of flow approximately lm/s, particles with dimensions

< 10- 3m	 can be lifted. These large particles are opaque, and

the coefficient of their reflection is close to the coefficient of

reflection of monolithic rock. For example, for basalt, the character-

istic value of the albedo is 0.1 and the coefficient of absorption

lies in the range from 2,10 4  to 10 5 1/m. Thus, when d > 10 =

the basalt particles are not transparent. The presence of finer

particles on the surface would be shown by the presence of local

light sections on the panoramas because these particles must fill

the small irregularities of the surface and then form fairly smooth

sections. Thus, the hypothesis is proven that d>10 um and the

coefficient of reflection of the surface of the particles is close

to the coefficient of reflection of the lighter sections of the surface,

that is, approximately 0.1. Let us consider the spherical layer with

thickness dy obtained by intersection of the cone (beam pattern of

the instrument) by two spherical surfaces with the center at the

apex of the cone and radii y and y+dy (figure 17). The quantity of

particles in this layer equals Nny2dy, where n is the solid angle

limited by the beam pattern, N --- is the quantity )f particles per unit,

of volume. The flow of the dy layer of radiation scattered into

particles received by the instrument amounts to:

-14/211^

F

/1.9

(34)

L.
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where a -- is the coefficient of reflection of the surface of the

particle, E -- is irradiance, y-- is the multiplier involved with the

indicatrix of scatterin 	
2

g of the particles, 
a-N^ 

y is the multiplier

taking into account ?bsorption of dust of the scattered radiation.
2

a	 Designating =N*-Z--, we find

i ŷo _ 09

r	

f	

- 64

f	 'e	 the flux recorded by

the instrument of radiation scattered by particles. (y o -- is the

distance from the receiving end of the light guide to the ground).

Weakening or radiation K on the path from the boundary of the

dust cloud to the axis of the field of vision taking into account its-

geometric dimension equals:

, ^_ 1 ___._, r ^
--0,  956 ^g 0, 56

0, 5'6	
.e	 1) 0, 3	 (36)

With the absence of dust recorded before landing, the radiation

flax below F r is defined as scattering on the section of ground in

the field of vision of the instrument:

F =A - Er
(A and E i -- is the coefficient of reflection of the ground and

s

irradiance of the;,,ground). Fr corresponds to extrapolation of results

with flying up at the moment of landing.

Calculation of the effect of the spacecraft after landing on the

readings of the instrument leads to definition of the factor of

shading - K3 of the section of ground by parts of the spacecraft visible
s

t

20

e	
.
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by the instrument. K 3 =0.5. Moreover, before reaching the ground,

the light passes through the dust cloud which is taken into account

by the multiplier K . Similarly to (36):

h y,r^, --fl, 956 0, 56-	 (37 )

	

s ^	 a ^- 1)-K3
  

Moreover, weakening of the flux of radiation reflected.'from the ground 120

occurs in the cloud of dust before it reaches the instrument. Thus,

after landing:	 i	 -6U

A ^E^•X.e e

The ratio of the total flux scattered from the dust particles and

ground F  to F r , shows with calculation that ax = A and yo	1 m:

FP

Taking into account that in the experiment FE /Fr =0.15 and 0.2 (for the

Venera-9 and Venera-10, respectively) we find:

The volume content of dust in the cloud with a density of dust particles

2.8 . 10 3kg/m3 is shown to equal 10 -1 -- 10-2 kg/m3 for diameters of

the dust particles 0,1 -- 0.01 mm, respectively. If one considers

that the cloud has a hemispheric shape with a radius of 1 m, and

the dust in the cloud is raised from the area of a surface limited

to this hemisphere, then [illegible] thickness of the layer of dust

on the surface amounts to 10 -1	10-2 mm for diameters of the dust

1
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particles 10 -1 -- 10 -2 mm,. The specific mass of the dust amounts to

10-1 -- 10-2 kg/m2.

Generally one should note that recorded velocities of wind of

0.5 -- 1 m/s at an altitude of 1 m are adequate to judge all the

dust with d dimension less than 1 mm. One can assume that the dust

is accumulated in depressions between rocks where it is protected

from the direct effect of horizontal wind. However, these depressions

cannot be an effective protection from strong vertical perturbation

in the atmosphere caused by landing of the spacecraft.

Conclusions

Characteristics of the field of radiation in the near-surface

layer of the atmosphere and on the surface of Venus are determined
	

/21

experimentally. Interpretations of these data make it possible to

obtain a good deal of information on the characteristics of the

surface of the planet: It is found that the section of the surface

with dimensions in tens of meters has practically the same optical

characteristics as the surface of the landing point. This makes it

Possible to condlude that local characteristics of the ground obtained

after landing by other instruments can be distributed on a broader

section than that considered above.

The presence of free dust on the surface was detected experimentally

for the first time which makes it possible to look again at the process

of interaction of the atmosphere wish the surface of the planet.

Independently the instrument detected rotation of the vehicle

during descent and determined at high altitudes the presence of a

slope of a signifiant section of the surface.

a^

a;j

j

; Ay..

,y
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x

The relationship of the albedo of the ground of Venus to wave-

length was obtained for the first time; this made it possible to

compare the surface rocks of Venus with those on Earth.

All of this indicates large possibilities for an optical method

of studying the atmosphere and surface of planets using spacecraft.

The authors wish to thank V."M. Pokras, L. V. Yabrova, E.B.

5hesterkova,;, 2. V. Ivanova, S. T. Lukovinkova and many others who

have given considerable help in completion of this work.
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Table

Initial Data and Results of Calculation
of the Coefficient of Scattering

.  s F.	 «r.. ^...o -

to f ,
Jimm

!,1^
raI

MA

^3d .,.^
lu

r_
 r

` P
I

XM

l7P
-^I

ld

Gms-I
IN

p
/-may-/--

V m s

0,61 0,63 I,07 ,925 I,I6 30

2
t

0,65

O y 6
-	 .^.

0o3B
-

0,37 0,375 0,67 0,55 I,23 20

3 0,67 3I0, 0,22 4,265 0,43 0 ,39 I,I2 23

4 0y72 O,IS O,IS O,I8 0,325 0,265 I,22 I8

5 0,775 O,I3 O,I45 0,24 0,2I3 I,I4 23

^ I OD535 H0977 0,74 0,755 I,13 I,II I,02 15

2 0,6 0,44 0 1 43 0,435 0,7I 0 9 64 1,11 23

cr 3 0,67 0,38 0,28 0 9 33 0 9 46 1 0,485 0,95 23

4 0,72 0,25 0 9 26 0 9 255 O s 345 0,375 0,92 27

5 0,775 0,2 O,I8 O,I9 0,257 0,28 0,92 I5

Symbols:

j -- Number of the spectral range.

a ef.-- The effective wavelength, which according to (30) corresponds

to the value a(aef)=acal'

q  and CU -- Angular coefficients of the relationships of

Wi i (H)/W 
11 

(0) and W 3 (H)1W 
il 

(0) .

6cal -- Coefficient of Rayleigh scattering, calculated according

to formulas (22) and (30).

ems -- Coefficient of scattering found from experimental data.

The angle between the axis of the vehicle and the optical,

axis.
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Subscript s for the Figures

Fig. 1. Spectral characteristics of a photometer.

Fig. 2. Beam patterns of a photometer.	 -- the angle of slope of

the optical axis of channels 3j. For comparison a cosinusoidal

j	 beam pattern is constructed.

Fig. 3. The intensity of radiation incident on the surface averaged

for the upper hemisphere.

Fig. 4. Th4e relationship of average intensity of Incident radiation

W1j to altitude in the uniform atmosphere A and to time before

landing t; Venera-9.

Fig. 5. The relationship of average intensities of ascending

radiation W  to altitude in a uniform atmosphere H and

to time before landing t; Venera-9.

Fig. 6 The relationship of avera,Ee intensity of incident radiation

W1j to altitude in a uniform atmosphere H and to time before

landing t; Venera-10.

Fig. 7 The relationship of average intensities of ascending radiation

W 3 
to altitude in a uniform atmosphere H and to time before

landing t; Venera-10.

Fig. 8 Relationship of the albedo of the ground to wavelength. The

albedo of characteristic sections on the panorama 10

1	 rock 12, Venera-10; 2 --plate 4, Venera-10; 3 --

sections 10, Venera-10"; 4 -- rock 3, Venera-9; 5 -- crushed

rock 9, Venera-9.

Fig.'a9 Results of measurement of radiation from above in the landing

process.

Fig. 10 Results of measurement of radiation from below in the landing

process.

Fig. 11 A comparison of the measured spectral albedo of the ground

of Venus with coefficients of reflection of the Earth igneous

rock: 1,2 -- albedo of the ground in landing areas of the

Venera-9 and Venera-10 spacecraft; 3 -- hornblende,"d=420

50Q jim C15 J ; 4 -- biotite 1, d=420-500 um	 1151 ; 5 --

nonpolarized limonite F17 ] • 6 . -- basalt (Red Cinder) [14

l	
^5

Y, i •'

3

i ....	 :....F-m -+v . -,.A..<..,... 	 +. .•	 ^..r.obr..- R!N IF".".".-` ^̂ 'ui"^18^^	
^	

,may	 .. ...	 ..	
^	

_..a



x

r	 ^

Fig. 12. A comparison of the measured spectral albedo of the Venus

ground with a coefficient of reflection of Earth igneous

rock: I -- albedo of the ground in the landing area of the

Venera-10; 2 -- basalt (Little Lake), d =74-104 um

depending on the degree of oxidation [161; 3 -- oxidized

basalt (Little Lake), =147-246 um 	 [161; 4 -- powder

d^74-104 pm:	 98% basalt (Little Lake) +2% geothite

[161; 5 -- powder d=74-104 pm; 	 94 % basalt (Little

Lake) +6% geothite [16 1.
Fig. 13 An evaluation of the parameters of the turbulent layer

behind the spacecraft.

Fig. 14. Phases of formation of a dust cloud.

Fig. 15. Rate of settling of spherical particles on the surface of

Venus.

Fig. 16. Calculated profiles of wind velocity in the near-surface

layer.

Fig. 17. Scattering and attentuation of light in a dust cloud.
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