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EFFECTS OF 'THERMALLY INDUCED POROSITY

ON AN AS-111P VOWDER METALLURGY SUPERALLOY

R. L. Dreshfield and R. V. Miner, Jr.*
National Aeronautics and Space Administration

INTRODUCTION

Recent advances in the processing of superalloys from atomized-

prealloyed powder have permitted their commercial use for highly stressed

components such as disks for aircraft gas turbine engines. In the develop-

ment of these components, parts were first made by the hot working of

compacted powdered metal billets, and more recently by hot-isostatically

compacting the prealloyed powders directly to near final shape without

subsequent )lot working. The manufacturing processes to produce hot-

00	 isostatieally-pressed (HIP) parts are described elsewhere.1,2h
w	 Among the concerns for manufacturing a reproducible high quality

product is that of maintaining low levels of thermally induced porosity

(TIP). TIP is caused by entrapped insoluble gases, principally argon (Ar).

which expand during post HIP thermal treatments leaving discontinuous

porosity in the product. Argon may be introduced from at least three

sources. First, if the powder is produced by Ar atomization, some powder

particles may actually be bubbles with Ar inside. Second, if the powder

is not sufficiently outgassed k^efore pressing, it may contain adsorbed

Ar. And finally, if the container holding the powder leaks, Ar, which

is the pressing medium used in high tempolature autoclaves, will be

pumped into the container. The first two types of TIP would be expected

to produce a relatively uniform distribution of pores throughout the body.

*Metallurgists, NASA-Lewis Research Center, Cleveland, OH 44135
,I',
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The third type might be expected to result in the formation of a porosity

gradient, the highest porosity being at the leak site, It is this third

type of TIP which was studied in the work reported here. Manufactureris

specifications for TIP are based on density change, typically a few tenths

of a percent, or metallugraphic evaluation after a high temperature

exposure. 
1,2 

Metallographically acceptable pressings typically have

less than 0.1% spherl ".al porosity and essentially no porosity at grain

boundary triple points. It is generally accepted that the presence of

TIP can be detrimental to a part; however, little information has been

made available on the quantitative effects of TIP on mechanical properties.

This paper reports on an investigation which was initiated to determine

the effects of excessive TIP which occurred as a result of an actual

manufacturing incident. Mechanical properties of a porous HIP superalloy

part are compared with similar parts which met industrial acceptance

criteria.

Material and Experimental Procedures

The alloy studied in this investigation was HIP low carbon Astroloy.

All of the material was taken from full scale pressings for turbine disks

of a commercial aircraft gas turbine engine. The target shape for the

pressings is shown in Fig. 1. The final machined configuration of the

disk is shown by a broken line. The parallel sided shape of the pressing

is designed for ease of ultrasonic inspection. The processing of these

disks is fully described elsewhere  and will only be briefly discussed

here.
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The chemical specification for low carbon Astroloy is shown in Table

1. All disks were produced from -80 mesh powder. The powder was loaded

in mild steel cans, hot outgassed, sealed, and hot isostatically pressed

in argon for 3 hours at 1190 or 1215 O and a pressure of 103 MPa. Following

container removal, the pressings were heat treated as follows: 11150C/

2 hrs/AC+870oC/8 hrs/AC+980oC/4 hrs/AC+650oC/24 hrs/AC+760oC/8 hrs/AC.

One pressing cracked during heat treatment, 1 Examination also

showed that it exceeded the engine manufacturer's specification for TIP.

The manufacturers TIP test consisted of heating a sample at 1205 0C for

4 hours followed by comparative metallographic examination. This porous

pressing was donated by its manufacturer for the present study. All of

the "sound" pressings tested met the specification for TIP and were

shown to be free of rejectable defects by ultrasonic inspection.

Tensile, stress-rupture, and creep tests were performed in accordance

with appropriate ASTM recommended practices. For the stress-rupture test,

a combination smooth-notch bar was used, the notched section having a

stress concentration factor of 3.9. Strain-controlled fully-reversed

low cycle fatigue tests were conducted at 650 0C and 0.33 Hz. Creep-

fatigue tests were identically conducted except for a 900 second

dwell at maximum tensile strain. Loading and unloading rates were

constant and equal and the same for both types of tests. These test

methods are fully described in Ref. 3.

The tensile, stress-rupture, and creep properties for "sound' HIP

Astroloy used here as a reference baseline are those of the seven pressings

described in Reference 1, plus those of an additional pressing, 4 which
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was used for determination of the fatigue and creep--fatigue behavior.3

The mechanical properties for the "sound" HIP Astroloy are the data

reported in those investigations.

RESULTS AND DISCUSSION

The cracked pressing studied in this investigation exhibited ex-

cessive TIP as determined by metallographic examination of a sample

taken from the fill stem which was located on the rim of the pressing.

The appearance of the porous microstructure is compared with an accept-

able structure in Fig. 2. The density of a sample of heat treated rim

material decreased 6.7% when it was heated at 1205 0C for 4 hours.

Material from the pressing itself has less, though still appreciable,

porosity because the maximum temperature it experienced was the 11150C

solution treatment compared to 12050C for the TIP test. Unetched photo-

micrographs of the rim are shown in Fig. 3 and of the bore in Fig. 4.

The porosity appears to outline the prior particle boundaries and suggest

that poor bonding between powder particle has occurred during the con-

solidation treatment. Comparison of the micrographs shows that there is

considerably greater porosity at the bore. Quantitative evaluation of

photomicrographs of test bars showed the bore of the pressing to contain

about 2.6o porosity compared to 1.4% near the rim. This is in agreement

with water displacement density measurements made on a sample of bore

and of rim material which showed 1.60 lower density at the bore. It is

presumed that a defect in the can at the bore allowed Ar to leak in

during pressing.
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The properties of all sound pressings are very consistent; however,

within each pressing there are small but significant difference', depend-

ing on location. Mechanical properties of alloys such as Astroloy are

known to be a function of cooling rate from the y l solution treatment

temperature and, therefore, a function of section thickness. Fig, 1

shows that the section 'thickness of the pressing studied varies con-

siderably, however, data obtained in Reference 1 shows that the mechan-

ical property may for simplicity be divided by location into just two

groups.. One group is for locations near the rim of the disk. The

second group in for thicker sections at the web and bore of the disk.

In this paper, data from the bore and web regions shown in Fig, 1 are

grouped and called bore data, and data from the integral ring, seal band,

'	 and rim are grouped and called rim data.

The ultimate tensile strengths at room temperature and 538 0 C of

the porous pressing and ,ound pressings are compared in Fig. S. The

average strength at room temperature in the rim of sound pressings was

1375 MPa. For the porous pressing, the average strength in the rim at

room temperature was only 50 lower, being 1305 MPa. The average strength

of the sound pressing in the bore was 1360 MPa, only slightly less than

in the rim. However, for the porous pressing, the average strength in

the bore was only 1127 MPa, 140 less than at the rim, and 170 less than

in the bore of the sound pressings. At 538 0C, the strength at the rim

averaged 1277 MPa for the sound pressings and was only 40 less for the

porous disk, 1223 MPa. But, as at room temperature, the strength of

the bore was considerably less, 110, for the porous pressing, 1123 MPa

rather than 1262 MPa.
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All tests performed on material from the rim of both the sound

pressings and the porous one at both room temperature and 538
0
C met

the minimum values of ultimate tensile strength for acceptance of the

part. Also, for tho sound pressings, all the ultimate strengths measured

on bore material were acceptable, However, of the four tests performed

on bore material from the porous pressing, only one test, at 5380C,

exceeded the specified minimum value. It should be noted that for the

porous pressing, the average strength at both rim and bore at both test

temperatures fell below the minimum strength values measured for sound

pressings,

The 0.2% yield strengths of the sound and porous pressings at room

temperature and 538
0
 C are shown in Fig. 6. The data show the same

trends as noted for the ultimate strength; the porous pressings having

lower yield strength than the sound pressings, particularly at the bore.

As was noted for the ultimate strengths, the yield strengths for both

the sound and porous pressings at both temperatures in the rim region

exceeded the minimum specified values. Also, bore yield strengths

were acceptable for the sound pressings, but 3 of the 4 bore test values

for the porous pressing were below the minimum specified.

The tensile ductilitic-s of the porous and sound pressings at room

temperature and S38oi, are compared in Fig. 7. Unlike the yield or

ultimate tensile strengths, the ductilities of the porous pressing were

considerably lower at both rim and bore than for the sound pressingz.

The maximum ductility measured for the porous pressing were below the

minimum ductility for the sound pressings for all cases except in the
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rim at 53800 where the maximum value for the porous pressing was about

equal to the average of the sound pressings. Of the 12 tensile tests

conducted on the Porous disk, results of 2 tests at the bore and 3 tests in

the rim regions were below the minimum specified for reduction in area,

while only 2 tests of the bore were below the minimum specified

for elongation. For the sound pressings, the ductility at the bore

appears to be slightly greater than at the rim which is consistent with

the reduced strength level at the bore caused by slower cooling.1,2

For the porous pressing, the bores ductility is clearly lower than

the rims ductility which is attributed to the bore having a greater

level of porosity.

Stress rupture tests were performed at 732 0 F with applied stresses

of 552 and 621 MPa and at 7600  with an applied stress of 552 MPa. As

indicated earlier, the tests were performed using a combination notch/

smooth bar. All fractures occurred in the smooth section. Figure 8

compares the geometric average, maximum and minimum lives for sound and

porous pressings. At the bore, the lives of the porous pressing were

much lower than the lives of the sound pressings, while at the rim, the

degradation of life for the porous pressing was not as severe. At

the specification test condition, 73200 with a stress of 552 MPa, the

rims of both porous and sound pressings had indistinguishable lives

which exceeded the specified minimum of 23 hours,

Fig. 9 compares the stress rupture elongation of sound and porous

pressings. It can be seen that the elongation at the bore was always'

much lower for the porous pressing than for the sound pressings. At
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the specified test condition of 732 00 and 552 MPa, the test results at

the rim were essentially the same for both porous and sound material and

the specified minimum of 8% was exceeded in the rim. However, in

both of the tests performed on samples from the bore of the porous

pressing, the elongations were below 8%. For the sound pressings, the bore

tended to have elongations equal to or perhaps evon greater than the

rim.

The specification for material acceptance also requires that at

70400 and a stress of 510 MPa, the time to exceed 0.1% creep be equal

or greater than 100 hours, In six tests from the rim of sound pressings,

the time for 0.1% creep varied from 162 to 256 hours with an average of

207 hours. In four tests of rim of the porous pressing, two were be-
.

low the minimum of 100 hours; that time ranged from 65 to 117 hours,

and averaged 81 hours. No creep tests were performed at the bore.

The low cycle fatigue behavior at 650 0 0 of material from the rim of

a porous and sound pressing are compared in Fig. 10 for .:33 Hz testing and

in Fig. 11 for creep-fatigue testing; with a 900 second dwell at the maxi-

mum tensile load. At the lives to which commercial aircraft engine disks

are designed (104 cycles), the strain range capability of the porous

pressing was only slightly reduced compared to the sound pressing. in the

lower life-higher strain range, the porous material appears to be inferior

to the good material. It should be noted that the low cycle fatigue and

0	 creep fatigue tests were performed on material from the rim region of the

pressings. This is the lower porosity region of the porous pressing.
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CONCLUDING REMARKS

It is apparent that the porous pressing examined had a porosity

gradient with the bore region having considerably greater porosity than
A

t

the rim and that some mechanical properties were degraded by the porosity.

For the pressing studied, the integral test ring (the portion used for

acceptance testing) is located near the rim and except for slightly

low ductility on a few tests and somewhat excessive creep rate, the

test ring material met the minimum mechanical property requirements for

acceptance. At the bore, however, one tensile test was slightly below

the minimum specified ultimate strength for 538 O and another was 17%

below the minimum ultimate strength for room temperature. Th y; tests

at the bore having low strengths also had low ductility, It therefore
.

appears plausible that in a part such as the one studied that an integral

test ring may have acceptable strength levels while other regions remote

to the test ring may not. Thus, it would appear prudent to examine

several sections of such a part at ,several radial and circumferential

locations with TIP tests for porosity characteristics prior to accepting

it for use.

SUMMARY

An investigation was performed to determine the effect of thermally

induced porosity on the mechanical properties of an as-hot-iso statically

pressed and heat treated pressing made from low carbon Astroloy. It is

` believed that the mild steel can crack during the HIP cycle allowing the

Ar pressing medium to be pumped into partially consolidated metal powder

thereby causing excessive TIP. Tensile, stress-rupture, creep, and low

cycle fatigue tests results are summarized below:
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1. A porosity gradient existed from the rim to the t- to of the pressing

with the bore having about lh% greater porosity.

2. The porous pressing which had excessive TIP would have boon rejected

on the basis of the acceptance criteria established for the mechanical

properties of the integral test ring. Mechanical properties of the

test ring below acceptance levels were tensile reduction in area at

room temperature and 5380C and time for 0.1% creep

at 70400.

3. The strength, ductility, and rupture life of the rim of the porous

pressing were slightly inferior to the rim of the sound pressings.

4. The strength, duct,'.ty, and rupture life of the bore of the porous

pressing viere significantly degraded when compared to sound pressings,

and were generally below acceptable specification levels.

S. At strain ranges typical or commercial aircraft engine designs, the

rim of the porous pressing had :slightly inferior low cycle fatigue life

than the sound pressings, however, ti,e low cycle fatigue tests were per-

formed at the lower porosity region of the porous pressing.
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TABLE 1.	 CHEMICAL SPECIFICATION FOR
LOW CARBON ASTROLOY

min max

Carbon 0.02 0.O4
Manganese ------° .15
Silicon ^-....._- .20
Phosphorous ------ .015
Sulfur ------ .015
Chromium 14.00 16.00
CA)bult 16.00 18.00
Molybdenum 4.50 5150
Titanium 3.35 3.65
Aluminum 3.85 4.15
Boron .015 .025
zirconium ---- -- .06
Tungsten ------ .05
Iron ------ .50
Copper ------- .10
Lead ------ .0010 (10 ppm)
Bismuth --y---- .00005 (0.5 ppm)
Oxygen ------ .010 (100 ppm)
Nitrogen ------- .0050 (50 ppm)
Nickel remainder
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