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i. INTRODUCTION

The work reported here for 1978 was a continuation of our previous effort

at Suntech, Inc. under contract NAS3-19758 I. In a corporate decision by Sun

Oil Company, the owners of Suntech, Inc., the project had to be discontinued

there, but much of the apparatus was transferred to me for the new laboratory

at Rensselaer Polytechnic Institute (R.P.I.). The Department of Mechanical

Engineering, Aeronautical Engineering and Mechanics of R.P.I. provided not only

facilities, but some very important new equipment to allow me to continue the

work under NASA Grant NSG 3170.

While these changes will, without question, benefit this work--and have

already--a very substantial portion of the 1978 effort had to be devoted to

the setting up of the new laboratory. Equipment contained in some 200 boxes

had to be installed. New coworkers had to be instructed (my long-time associate,

Mr. M.E. Peterkin, was assigned to non-research work at Sun Oil Company). I

had to become adjusted to the new environment.

The principal new additions to our instrumentation are a vibration-resis-

tant table and a dedicated minicomputer. As so often is the case, a change of

one part requires a change of another and so the table required a superior

method of mounting the motor driving our mockup bearing--in order to make use

of the improvement provided by the table. Similarly, the minicomputer required

changes in the computer programs for processing the data and completely new

interfaces.

Every possible effort was made to make the system--our infrared emission

microinterferometer for obtaining spectra from a sliding elastohydynamic (ehd)

bearing contact,our high-pressure calibration apparatus using diamond anvil

cells, the ruby fluorescence pressure gauge, the Perkin-Elmer attenuated total

reflectance spectrometer and other essential apparatus--operational and to
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collect a reasonable amount of data before the end of 1978. This goal was

achieved and a number of ehd contact emission spectra and attenuated total re-

flection spectra were obtained. The presence of polarization and thus align-

_ent of lubricant molecules was confirmed. Temperature gradients through ehd

films were definitely observed. A beginning was made toward their analytical

treatment. This work formed the basis of a number of presentations and publica-

tions.

As in the past, the Air Force Office of Scientific Research co-sponsored

the more fundamental aspects of this work under Grant No. AFOSR-78-3473. The

cooperation between the two agencies made our work more efficient and thus more

productive for both.



2. THEORY

OF GENERATION, IN EHD CONTACTS, OF INFRARED EMISSION SPECTRA

Because reproducibility of our spectra from operating contacts is now better

than was previously achieved, the evidence of a temperature gradient within an

ehd lubricating film is now sufficiently convincing to make a detailed mathe-

matical analysis worthwhile. A beginning in this direction was made by us some

1
time ago ; the present analysis brings it closer to the goal of determining the

gradient. It could be very important to ehd lubrication, since it could point

toward partial glass formation, for example.

In contrast to the usual conditions of infrared emission spectroscopy where

a thin layer of an organic material is radiating from a highly reflecting support

and the temperature of both layer and support are assumed to be equal, the con-

ditions of an ehd film in an operating contact involve non-uniform temperature

and pressure and a non-uniform flow velocity. Heat is generated in the lubri-

cant by viscous friction while the solid boundaries are heat sinks. Convection

removes most of the heat. However, the following analysis considers only radia-

tion heat transfer under local radiation equilibrium and is a pragmatic approach

for the interpretation of infrared emission spectra. The method was adopted

from Viskanta and coworkers2 and is based on the radiation transfer equation

(RTE) developed by the astrophysicists 3. It provides a general framework,

applicable to a variety of situations, while the more common ray tracing pro-

cedures must be developed separately for every case.

Fig. 1 illustrates the basic model. It can be extended to more realistic

situations quite readily. A film of thickness L is covering an opaque material,

such as a metal surface. The film is "semi-transparent", i.e. transparent at

most infrared frequencies, but absorbing at selected ones. An example of such

a film is oil spread on a polished metal plate. The film/metal interface is



assumed to be smooth, but the model is readily changed to take a rough surface

into account. The model is one-dimensional or cylindrically (azimuthally)

symmetrical about the optic axis of the objective lens collecting the radiation.

The RTE to be solved for such a slab bounded by two parallel surfaces is

(/)
Azimuthal symmetry is assumed; IW {_,_) is the monochromatic intensity

(radiance) at frequency _ and in a direction forming an angle _ with_ , the

distance from the exit surface of the slab; _(_) is the spectral absorp-

tion coefficient, _t_) is the index of refraction in the fi mand )
is the radiance given by the Planck blackbody function corresponding to the

temperature _) , which is assumed to vary with_ in a continuous manner.

Equation i might not be familiar to many spectroscopists. Its derivation

is given in many places2'3; it merely states that the change in radiance with

distance is the difference between the radiation emitted (first term on the

right) and the radiation absorbed (second term on the right).

It has become customary to separate I into an outgoing component I_>0)

and an ingoing component I-{_0) . The boundary conditions for (i)
then

become

(3)

L =-2.(M)



where _p(_# is the spectral directional reflectivity of the interface and

_p(_JO)-/_f_Cg_d), is the spectral emittance. Equation (i) is easily

solved by an integrating factor and since Shell's law gives

the solution of Eq. (i) for the spectral intensity emerging outwardly from the

layer can be written as

r' . T .[ -_,/__ - (2_,-_-.,)/__7t .

rq

is the factor accounting for multiple reflections between interfaces 1 and 2,

(_) is the blackbody radiance corresponding to the metal surface and the

optical depth _ and thickness TL_ are defined, respectively, as

_. = f_ _.(_),_ C_)

The radiant flux of wave number _ entering the instrumentation is the spectral

intensity integrated over the solid angle of the objective. The first term in



the curly brackets of Eq. (5) is the radiance of the metal surface attenuated

by passage through the film and partial reflectance at the boundaries. It

could have been derived simply by inspection and application of Beer's law of

absorption. The second term, the integral, takes into account the emission of

radiation by the film itself.

An advantage of the above formalism is the ease with which the spatial

dependence of absorption coefficient, index of refraction, and spectral radiance

can be taken into account. Extension from one dimension to three dimensions

is also quite straightforward.

With the definition of _=_/_, the dropping of the monochromatic fre-

quency subscript and the angular dependence subscript of the reflectivity and

the radiance, the above equation can be rewritten as __L

/_1

This is the basic equation which will now be solved for some of our experi-

mental situations. It will be noted that the temperature distribution through

the layer _(_) can be determined, in principle, from measurements of --Z &

and solving for f_) _ _ (_)being known, _)and _(_) being assumed

known or preferably, constant with respect to temperature. Eq. (9) then be-

comes a non-linear Fredholm integral equation of the first kind for the un-

known function _(_) for which a number of methods of solutions are possible.

Viskanta and co-workers2used such a procedure to determine the temperature in

slabs of cooling glass.



A few solutions of Eq. (9) pertaining to this work will now be discussed.

(i) Uniformly Heated Film between Identical Interfaces

An example of this situation is a semi-transparent fluid (or solid) in a

high-pressure diamond cell.

In this case, _;_; _f_=_ and Z{_] are constants, and the source

term, _{/_4) can be set equal to zero since no external heat sources are con-

sidered. The solution of Eq. 9 is then

where r-_ is the uniform temperature of the slab. Since we can define an

effective emissivity _I as the ratio and _ as the trans-

missivity, we can write (i0) in the form

i -f,

which is McMahon's relation. It shows very clearly that a non-absorbing mater-

ial cannot emit radiation, for _=0 when _-- i .

(ii) Film on a metal surface, both at the same temperature.

This is the usual situation for obtaining emission spectra, e.g. Griffith 4

obtained emission spectra of thin layers of grease in this way, but noted that

thicker layers did not give good spectra, presumably--we believe--because these

layers could not be maintained at uniform temperatures.



By setting I(_) -----I[_)=IEquation (9)

yields

_ _ . _er:

from which an effective emissivity of

can be derived.

The dependence of the effective emissivity on the square of the trans-

missivity should not be surprising since the metallic mirror backing effec-

tively doubles the film thickness. The pairing of reflectivityf_ with the

film transmissivity_ indicates the importance of a high reflectivity--unity,

if possible--for maximum sensitivity of the spectrum to the film transmissivity.

Under these conditions, the metal does not contribute to the spectrum at all.

If the film merely attenuated and reflected the radiation emanating from

the metal surface, the emissivity--corresponding to the first term of Eq. (ii)

or from first principles--would be

_ = #-r_)O-_._._) 03)

The difference between E_ and _3 is the contribution of the film, viz.



Clearly, _ is maximized when_=_ , which establishes a criterion for the

optimum film thickness-under conditions of temperature uniformity.

(iii) Film on a metal surface; uniform temperature different from metal

surface temperature.

Equation (9) now becomes

Or)
This is an approximation to the situation in a bearing; the lubrieant

temperature may be different from the metal surface temperature and, in fact,

there is usually a temperature gradient through the lubricant film itself. It

is now difficult to define an emissivity for the general ease, since two sources

of radiation are at different temperatures.

It is easy to see that for equal metal and film temperatures Eq. (15) re-

duces to Eq. (14) as expected. For the metal temperature much lower than the

film temperature, A {_)_ (_)and an effective emissivity

/ - f,f,.

can be evaluated. Comparison of Eq. (16) with Eq. (13) shows that the cold



metal produces an enhanced emissivity of the film for the same temperature, be-

cause the third factor in the numerator, a term containing the metal surface

reflectivity, will, in general, exceed unity. It will be equal to unity for

_=O , i.e. a completely opaque film, say at the frequency of an absorption

peak. In this case Eq. (15) shows that the radiant intensity will then always

be independent of the radiance of the metal, i.e. of the metal temperature, and

the effective emissivity,

= _7 <'77,)=l-f=

is entirely independent of anything behind the front radiating surface; i.e.

the film forms an effective "da_' for the situation behind it.

Let us now suppose that the metal surface is hotter than the uniform film

temperature and the emitted radiation is observed at a frequency significantly

higher or lower than that of the lubricant's absorption peak. This situation

could occur, for example, when direct metal-to-metal contact takes place at

asperities. Now the emissivity at the observed frequency, _; as calculated

from Eq. (15), will reduce to that of Eq. (13), or

r+

The total radiant power is now proportional to the blackbody radiance at the

metal temperature and not at the film temperature. Since the former has been

postulated to be higher than the latter
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the radiance at the peak of an infrared band, where the transmittance of the

fluid is zero, will be less than the radiance at nearby frequencies. A plot of

radiance versus frequency will, for this situation, show an apparent absorption

band.

Is it possible to have an emission band, possibly with a dimple at the

peak (peak inversion), solely by having the metal boundary hotter than the lub-

ricant film temperature in any infrared spectral region? Evidently not, as

long as flz. (Eq.15)is frequency-independent, since we would be requiring I+ to

be a maximum at a frequency other than that where t=O. The reflectivity, and

hence the emissivity, of a metal surface is unlikely to show a strong frequency

dependence centered about an absorption peak of the lubricant.

On the other hand, it is possible to have emission bands with self-absor-

bed peaks, when the radiation emitted by a layer of lubricant traverses a cooler

layer of the same lubricant before reaching the detector. The reason is that

the width of condensed phase emission (or absorption) bands increase with tem-

perature (Rakov5) while the intensities decrease somewhat. Since emission and

absorption bandwidths are essentially equal for equal temperatures, self-absorp-

tion by a cooler layer will appear as a dimple on a wide peak.

For example, a Gaussian emission band of the form

is characterized by the peak frequency and the full-width at half-maximum, which

is generally called the half-width _ . From the above definition
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Thermal movement of molecules in liquids (Brownian movement) consist of irregular

oscillations or rotations about a temporary unstable state of equilibrium.

According to Frenkel's theory of the liquid state and Eyring's theory of vis-

cosity, this movement proceeds in jerks, whose frequency is determined by a

barrier potential, U. At least part of the band width is due to this motion

(rotational or vibrational diffusions), so that

where _ is the "viscosity". Therefore, the higher the temperature, the smaller

the exponent in Eq. (22), the smaller the viscosity and the greater the band-

width. A wide emission band may thus be superimposed by a narrow absorption

band giving rise to the "dimpled" band of Fig. 2. It is characteristic of a

temperature gradient within the same fluid.

The simultaneous occurrence of emission and absorption should be considered

when determining temperatures of lubricants from the strengths of infrared

emission.

These ideas will be expanded when more experimental data become available.

However, the deduction of the existence of a temperature gradient from "dimples"

seems inescapable.

*Several "viscosities" are defined, e.g. shear or dilation. There is consider-

able divergence of opinion as to which is primarily responsible for bandwidth.
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2.1 Significance of Heat Generation

One of the primary functions of a lubricant is the reduction of heat gener-

ated between rubbing surfaces. Nearly all the energy dissipated by friction

appears as heat; the mechanical equivalent of heat has been derived from these

observations. The lubricant separates the rubbing surfaces and removes heat.

Viscous shear resistance leads to the generation of heat within the lubri-

cant in full-fluid lubrication. Under ehd conditions heat is generated as a

result of solid flexing as well and possibly even as a result of asperities

interaction. Our theoretical analysis shows that dimples in infrared emission

bands are definite indication of non-uniform heat generated in the fluid itself_

while apparent absorption bands showing up in infrared emission spectroscopy

would be caused by asperities interaction. Certainly asperities interaction

is likely to produce wear and should be avoided. High temperatures in the fluid

contact region would have the effect of reducing fluid viscosity and thus film

thickness and the load carrying capacity of a bearing. But high temperature in

the contact fluid at given film thicknesses can also be an indication of much

viscous friction, making an analysis of the material influence of the physical

parameters a difficult task.

The importance of heat generation to our work lies in the need for an under-

standing of the emission spectra (occurrence of dimples, plateaus, etc.) and of

the nature and origin of traction. Since our traction fluids are generally

running hotter than others and show a temperature gradient, they are likely to

exhibit a unique combination of flow properties and viscosity index. Molecular

alignment would be a manifestation. We believe to be on the verge of identifying

such a combination of properties and of the chemical constitution responsible

for it.
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3. APPARATU S

3.1 Infrared Emission Interferometer

The apparatus is essentially the same as the one described previously I.

The thermal radiation emitted from the contact region of a bearing (ball sliding

over a diamond window) is collected by an all-reflecting microscope objective

(Beck lens) and passed into an interferometer-spectrometer for analysis (Fig. 3).

There are two parts to this radiation: (a) discrete emission bands from the

lubricant and (b) continuous graybody radiation from the solid surfaces. The

latter can exceed the discrete radiation from the lubricating film by orders

of magnitude in overall intensity. If the total radiation were detected and

analyzed simultaneously, the discrete radiation would be lost in the noise

level. Discrete emission bands appear at the absorption frequencies for, in

a simple-minded model, the bali's emittance is higher at these than at other

frequencies, the model being that of a surface painted black in selected spec-

tral regions. Hence, it is necessary to oppose the continuous radiation by a

blackbody source. In our earlier work this was done by a chopper and reference

source above the lens. However, that method proved to be impractical because

(a) of the difficulty of changing lenses and (b) of the limited thermal capacity

of the reference source. The present chopper and reference source are located

below the lens and downstream from the 45° degree mirror which changes the

direction of the incoming radiation from vertical to horizontal in the inter-

ferometer's plane of incidence. Fig. 4 shows the new setup. The disadvantages

of the new setup are the need for cooling the shield of the blackbody reference

source to prevent the shield from radiating and the need for maintaining the

lens at constant temperature since the lens, now located ahead of the chopper,
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can also become an effective source. Both of these difficulties were overcome,

the former by jets of nitrogen directed at the shield and the latter by placing

a double plastic "tent" cover over the entire optical table. The latter problem

turned out to be a major one, since the laboratory is ventilated by a heat pump

system, which is subject to rather large (_5°C) temperature swings.

The dedicated minicomputer, which is now a part of our Michelson inter-

ferometer, is a considerable advance over the time-sharing data processing pre-

viously used. It is entirely under our control, the paper punch could be elim-

inated, and data can now be stored indefinitely on floppy discs. The turn-

around time of the data processor is no longer the rate-determining step in our

gathering of spectra: now it is the detector and the potential certainly exists

to improve it. However, there was a price to be paid: the cost and time spent

with interfacing, both hardware and software. The minicomputer (kindly pro-

vided for us by the Department) is a Texas Instruments Model 990/4 System. It

has a FORTRAN compiler and,with the overlay operating system,just enough memory

capacity to handle our work. In particular, the following work was necessary:

(i) Hardware. A multiwire line had to be laid from the digital voltmeter

to the CPU with an appropriate switch to avoid respective storage of the same

data point. Connections to a microprocessor (SLING) capable of converting an

analog X/Y recorder to a digital recorder and providing hard-wired programs for

the lettering of the output spectra had to be made.

(ii) Software. The following new programs had to be written (our main

Fourier program could be adapted directly to the new processor, with only minor

changes): (a) Conversion from BCD (digital voltmeter) to binar_ (b) Disc stor-

age progra_ (c) Changes of Fourier program subroutines for overlay operation,

15



(d) Program for spectra plotter. Many of these steps encountered difficulties,

which had to be resolved with the help of experts from Texas Instruments.

3.2 Optical Table and Motor for EHD Measurements

The interferometer and the mockup ehd assembly on which the bearing ball

is rotated are now mounted on an optical table consisting of a slab of granite,

weighing more than a ton, supported on a pedestal of four air pistons. Vibra-

tions of the floor and building are thereby minimized. However, vibrations from

the motor driving the ball could still be transferred to the ehd contact region

through the connecting shaft. Indeed, the vibration problem appeared to be very

much aggravated over the previous state of affairs. Originally the motor was

mounted on a separate table straddling the optical table.

This problem was solved by a flexible shaft connecting the motor to the

ball and a means for clamping this shaft at a suitable distance from the ball so

as to remove undesirable frequencies. In other words, tbe shaft is being "tuned"

in the same manner as the string of a cello by the celloist's finger. The pro-

cedure works very well; it may require "retuning" with change of motor speed.

The table supporting the electric motor turned out to be a problem at first.

It would sag and thereby upset the shaft alignment. (At Suntech the motor was

supported almost directly by a steel support beam of the building.) Re-inforce-

ment of the table by heavy steel plates solved this problem, once it was recog-

nized. The new table was strong enough to support the l-hp motor, which had to

be purchased to replace the old i/4-hp motor after one of the traction fluids

helped burn it out.

3.3 Diamond Cells. Fluorescence Spectrometer. Infrared Grating Spectrophotometer
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These instruments, useful for calibration of our spectra from operating

ehd contacts, have been described in our earlier reports. Considerable amounts

of time had to be expended to set them up again.

Two attachments to the Perkin-Elmer grating spectrophotometer should be

mentioned. One is the beam condenser enabling us to obtain spectra from the

high-pressure diamond cell and the other allows for the determination of in-

frared spectra of surfaces by attenuated total reflection (ATR). The latter

instrumentation was used to characterize gamma-irradiated ultrahigh molecular

weight polyethylene wear specimens (a small special project). This "Harrick

Reflection Attachment" was updated by the addition of a "Variable Angle Attach-

ment", consisting of a germanium hemicylinder and coupled mirrors allowing for

precise measurements of angles of incidence and reflection in ATR. Although

only one reflection is possible with this addition, in contrast to 5-to-10 by

the normal ATR-plate, the ability of varying the incidence angle on the test

surface can do more than make up for this. Furthermore, it is now possible for

us to measure in the infrared, both the real and imaginary part (n and k) of

a complex index of refraction of a surface, especially a metal surface, using

polarized and non-polarized infrared, and thus to find changes associated with

scuffing, wear and fatigue. We expect to make significant use of this new

device in 1979.

3.4 Emission Spectra

The procedure developed for obtaining emission spectra from ehd contacts--

still using the Golay detector, which has a slow response time but very high

sensitivity--is the following: First, the apparatus is stabilized, i.e. the

reference temperature is adjusted to obtain essentially no averase (d.c.)
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reading for a particular set of conditions. The purpose of this rather time-

consuming procedure is the maximizing of the signal from the lubricating film.

The data are recorded on a disc in the form of a scan of Michelson mirror motion

against detector signal, which takes about one-half to three-quarters of an

hour. (This time could be considerably--as much as 200-fold--reduced with our

new Hg-Cd-Te detector, for which we already built new amplifiers, etc. How-

ever, the installation of this detector could take several months and, for this

reason, had to be postponed.) The i000 or so 16-bit BCD points collected are

converted to binary numbers and convoluted by a numerical filter to obtain an

interferogram for the desired frequency range. Fig. 5 shows a typical inter-

ferogram before filtering and Fig. 6 after filtering, which reduced the original

i000 points to ii0 points. The Fourier transformation then yields a rather

noisy spectrum, e.g. Fig. 7, which is then smoothed by the Savitzky-Golay method

(Fig. 8). The spectra so obtained are very reproducible and have a resolution

-i
of about 2.5 cm

An aspect of the Fourier emission interferometer is the need for making

separate runs for different spectral regions. Optical filters with limited

passbands must be inserted for various regions of the infrared spectrum to

reduce the dynamic range. Our present Ge-on-salt beamsplitter covers the

2-15_ region, but a Mylar beamsplitter must be inserted for the far infra-

red. The reasons for these multiple experiments lie in the very nature of

emission spectroscopy. Since most of our work with bearings involves source

temperatures, which are near ambient, the peak of the Planck radiation curve

-i
is near lO00 cm and the emitted radiant powers at both lower and higher

(especially higher) frequencies are quite low. In principle, the reference

would compensate for this, being equally low, but a balance of very low signals

can be quite unstable. Figs. 9a, 9b, and 9c, covering the entire infrared

18



region for an ehd emission spectrum of 5P4E at an average temperature of 40°C,

therefore represents an achievement. Comparison of these figures with the

grating absorption spectrum of Fig. I0 shows the equivalence of our emission

spectra to the absorption spectra--except for changes caused by the operating

conditions of the bearing.
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4. RESULTS

4.1 Ehd Emission Spectra of 5P4E Polyphenyl Ether

We started our work at R.P.I. with this fluid for several reasons: (i) We

had obtained emission spectra of this fluid from ehd bearing contacts previously,

but over a much narrower wavelength region than now possible. It seemed to make

sense to try to duplicate this work under our present conditions and to expand

the wavelength region. (ii) This fluid has very strong and sharp infrared bands.

Figures ii and 12 show a series of spectra. In the top row (Fig. ii)

(a) the non-polarized spectrum,(b) the spectrum polarized in the conjunction

plane, and (c) the spectrum polarized in a plane perpendicular to the conjunc-

tion plane are shown. The fluid reservoir temperature was essentially ambient,

the average pressure in the contact was 500 MPa and the linear sliding speed

of the ball over the diamond window 0.7 m/sec. The corresponding spectra in

the bottom row are for the same conditions except that the speed was doubled.

The spectral range of 630 to 1230 cm-I is double of what was possible for us

earlier so that more essential features can be shown.

Let us look at the unpolarized spectra of Fig. lla first. No major spec-

tral changes occurred as the speed was increased. The spectra are very similar

to the standard emission or absorption spectra of 5P4E (Fig. 10a) except for

relative peak intensities. Other authors6 have observed similar differences

and given various general reasons for them, (e.g. the intensity of a funda-

mental absorption line increases with decrease of temperature, but of an

emission line with increase of temperature; absorption line intensities de-

pend on the first power of the wavenumber, but emission line intensities on

the fourth power) but detailed analyses for liquids are still lacking. The
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most interesting spectral change with speed in Fig. lla is the appearance of

the 750/780 cm-I structure, which is a doublet at low speed and a single band

with shoulders on each side at high speed. The standard absorption spectrum

of Fig. 10b shows this structure as a doublet which, moreover, is more intense

than either of its neighbors, while it is much weaker in the contact emission

spectra.

Why the change? We repeated some of these runs and found the same behavior

all the time. Our experimental reproducibility, thanks largely to the new vi-

bration-resistant optical table, is now very much better than previously. It

should also be mentioned that the doublet is caused by two separate vibrational

modes, one (750 cm-I) being the out-of-plane C-H ring deformation of a mono-

substituted benzene ring, the other (780 cm-I) that of a meta-disubstituted

benzene ring. These--and all the other bands--are consistent with a structure

of 5P4E, consisting of five phenyl rings linked by oxygen bridges, which are

attached "meta" to one another. A simple way of accounting for the change of

appearance with increased speed is by increased broadening of both the 750 and

the 780 cm-I bands. The broadening need not be equal for both components. The

region most strongly overlapped by both bands becomes the peak. The broadening

could be the result of increased film thickness, film temperature, or both. This

change is an illustration that bands consisting of overlapping components are

not well suited for temperature determinations from their intensity.

The polarized spectra of Figs. llb and c are much more different from one

another than the unpolarized ones of Figs. lla. If we compare the major features

only, the change of relative intensities of the band structures around 980 and

-i
1150 cm with direction of the polarization plane is most outstanding. In the

spectra of Fig. lib the latter band is more intense, in Fig. llc the former.

There are also some changes with speed, but they are more difficult to identify.
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The spectra of Fig. 12 are analogous to those of Fig. ii except for twice

the load or contact pressure. The unpolarized spectra are little affected by

speed. Again a change takes place in the 750/780 cm-I doublet, but this time

the process of band widening and overlap has progressed only to the stage where

the dip between the peaks has become less pronounced; it has not yet grown

into a peak. However, in either of the unpolarized spectra the 1150 cm-I band

-i
structure is more intense than that around 980 cm , which is opposite to the

behavior at low pressure (Figs. 12a vs. Figs. lla). Of the polarized spectra_

the low speed spectra of Figs. 12b and c still show a 1150 cm-I band more intense

than the 990 cm-I band for one direction of polarization and the opposite for

the other direction of polarization, as can be seen for the low load spectra

of Fig. llb and c, but the ratio of these two band intensities is not affected

by polarization at high speed and high load.

Polarization effects must be due to preferred alignment of the lubricant

molecules since the instrumentation is cylindrically symmetrical about the

optical axis (except for the beam splitter and the flat mirrors_ but that

effect is quite small). Shear rate, adsorption, a temperature gradient, solidi-

fication, could provide such a preferred direction. Variation of the operating

parameters in a precise manner and study of the corresponding changes in different

emission bands will permit an identification of the most important factors in-

volved.

It might seem strange that the difference between spectra obtained at the

two orthogonal polarization planes was less at high pressure than at low pressure.

Since polarization differences are indicative of molecular alignment, high

pressures should favor directional alignment. Pictorially, chain-like molecules

can be considered as resembling spaghetti. As they pass through the ehd contact,

they become "aligned", i.e. neighboring noodles are oriented parallel to one

another. Since infrared spectral bands are caused by vibrations between atoms
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or groups of atoms in a molecule, molecular alignment is reflected by spectral

polarization. If the molecules were randomly oriented, changing of the plane

of polarization in the spectrometer would not influence the spectrum. Since

increased pressure reduces polarization, it must promote random molecular orien-

tation. Conceptually, this could happen by "curling up" of the molecular chains.

The molecular chains become "kinked" and form balls. Now the molecules are

randomly oriented with respectto any direction of view.

This picture is not very different from the one derived for some of the

7
n-alkanes by Schnur's group at the Naval Research Laboratory. Raman spectros-

copy was used on samples maintained at high pressures in a diamond anvil cell.

The high pressure Raman spectrum of heptane showed a drop in the intensities of

acoustic bands between 300 and 600 cm-1 indicating a decrease in the molecular

population with all trans conformers and one gauche bond in favor of more highly

kinked conformers. Furthermore, the high-frequency spectrum of heptane lacked

-i
a sharp peak at near 2800 cm , which showed a reduction in lateral chain order.

The primary conclusion of this work has been summarized in a recent theoretical

paper by these authors 8. It states "that for relatively short chains, at least

as long as hexadecane, an increase in pressure causes an increase in the number

of gauche bonds, i.e. the molecules become more globular in character".

Polyphenyl ether is a chain, not of methylene, but of phenyl groups. How-

ever, similar reasoning should also apply. This theory, if found applicable to

our situation, could be extended to includeviscosities and tractions for various

molecular structures. A preliminary theoretical effort is planned for the near

future.

Table I gives the assignments of the principal infrared bands of 5P4E poly-

phenyl ether according to Randle and Whiffen9. Only the monosubstituted and meta-

disubstituted assignments are in line with observations, so that our fluid consists

primarily of meta-connected benzene rings.
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4.2 Some Experiments with Monsanto Traction Fluid Sanotrac P-40

This fluid is one of the commercial fluids of the Monsanto Company. Its

grating absorption spectrum is shown in Fig. 13.

In our ehd apparatus some peculiar behavior was noticed. At low sliding

speed the interferogram showed periodic ups and do'_ns (period: about four

minutes). At the same time, changes of fluid flow pattern were observed on the

ball. At the ball circumference in contact with the diamond, more and more

fluid would accumulate forming a ridge or a dromedary-like hump. Then the hump

would collapse. After a while it would start growing again. The changes of

the level in the interferogram correspond to temperature changes of perhaps

0.1°C. When the pressure on the ball was increased, the periodicity would

remain the same but the amplitudes would reduce. The contact could not have

been starved at any time, for the temperature swings were too small for that.

Spectra calculated from these interferograms are shown in Figs. 14 and

-i
15. The band near 690 cm was not present in the low load spectrum, which

had the more pronounced cyclic behavior.

The phenomenon resembled a winding up process, followed by collapse. After

a few days of experimenting with this fluid, our motor burnt out. The traction

was too much for itl It has since been replaced.

4.3 Infrared Analysis of Polyethylene Wear Specimens Using Attenuated Total

Reflection Spectroscopy

4.3.1 Results

Three samples of ultrahigh molecular weight polyethylene wear specimens,
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all in the form of a short cylinder of about 10mm diameter with a hemispherical

end by Mr. Jones and sent to us for surface analysis. The rubbed flats at the

hemispherical end were only about 3mm in diameter.

Our task was to look for possible oxidation or unsaturation at the rubbed

surface by comparing its ATR spectra with those of other parts of the specimens.

ATR infrared spectroscopy is not a simple technique, at best (surface areas of

2
about 6 cm , allowing more than i0 reflection on either side of the crystal

plate) so that the small rubbed area (about 0.i cm2) required the utmost care.

The procedure chosen was the following: One i00_ thick slice was cut

from the worn end (3mm diameter) _nd three i0_ thick slices from the opposite

end (discarding the extreme end, except for one of the samples) with a pre-

cision biological microtome. The cutting was done very slowly. The slices

were cleaned with water and detergent, then rinsed with distilled water, then

with alcohol, and then with pentane and dried. Then the slices -- or slice

from the worn surface -- were placed on a well-cleaned germanium ATR plate in

such a way that the outer surfaces faced the plate. The slice with the worn

face was put alone on the plate but -- except for one run with the other end

surface alone -- three full-diameter slices were placed on one side of the

plate together, like pancakes on a griddle. For this reason the absorption

bands of the references were always stronger than those of the rubbed surfaces.

The infrared spectrum for the unworn end of the 5mRad irradiated specimen

appears in figure 16a. The surface facing the germanium plate was the flat,

unworn end of the rider specimen. The procedure for removal of moisture and

carbon dioxide was effective as evidenced by the lack of fine structure in the

-i -i
1400 to 1800 cm region. The most intense bands are at 2851 and 2919 cm

(C-H stretching), 1460 cm-I (C-H deformation), and at 827 and 741 cm-I (CH2

rocking). These are bands that would be expected for a polyethylene surfaceI0.
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-i
There is a slight indication of a band at 1743 cm , which would indicate

the presence of carbonyl, but it is very weak. The spectrum of the wear scar

surface for the 5mRad specimen is shown in Fig. 16b. This spectrum is identical

to the one for the unworn surface (Fig.16a) with two exceptions. There is no

-i
indication of a band at 1743 cm and a weak broad band is present from 3100 to

-i
3300 cm . This weak band probably is due to a small amount of moisture adsorbed

on the surface.

The infrared spectra of the wear scar surface and the polymer interior for

the 2.5mRad specimen appear in Figs. 18a and b, respectively. Again, these

-i
spectra appear identical. Both have the broad weak band centered at 3100 cm

and the other bands associated with polyethylene.

Fig.19 contains the corresponding spectra for the unirradiated polymer.

The spectrum for the wear scar surface appears in Fig. 19a and the spectrum

for the polymer interior in Fig. 19b. Both spectra are essentially the same

and very similar to the spectra for the two irradiated specimens.

4.3.2 Interpretation

The ATR spectrum is of the nature of a surface absorption spectrum. The

intensity of the bands is a function of the "effective optical path" and is

strongly dependent on the angle of incidence on the plate and sample. Multiple

reflections build up the band intensities. However, as previously mentioned,

only one reflection could be used for the wear surface and three for the bulk

polymer because of size limitations. Accordingly, the intensities of the

spectral bands are necessarily weak.

Taking this into account, there does not appear to be any significant

polymer surface degradation (oxidation or unsaturation) resulting from either
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the irradiation procedure or the friction and wear process. It would follow

that the surface adsorption characteristics of the irradiated polyethylene

should not be grossly different from those for the virgin polymer.

Since the boundary lubricating characteristics are highly dependent on

the adsorption of polar molecules onto the polymer surface, one would not expect

gross differences in these characteristics either.

4.3.3 Summary of results

Attenuated total reflection infrared spectroscopy was used to analyze

ultrahigh molecular weight polyethylene wear test specimens. The following

results were obtained:

i) Neither gamma sterilization irradiation (to 5.0mRad) nor the friction and

wear process itself produced any substantial amount of polymer surface

degradation.

2) The only spectral band detected on most of the polymer surfaces and not

related to the polyethylene itself was a broad weak band centered at

-i
3100 cm . This was probably the result of a small amount of adsorbed

moisture.

3) Therefore, it was concluded that the sterilization process should not

alter the boundary lubricating properties of the polyethylene.
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APPENDIX II

MATHEMATICAL SYMBOLS

O- Gaussian band parameter

SC_ Gaussian emission band contour function

l_D_ monochromatic intensity at frequency and anglef_ J _ with y

_6 _M_ radiance of metal surface

_b_ C_ _ blackbody radiance at temperature T(y)

_ radiance in the outgoing direction from the film

_- radiance in the ingoing direction from film

_=#_./_ absorption coefficient

_- thermal energy

film thickness

_ index of refraction of film

transmissivity

absolute film temperature

viscosity barrier potential

distance from e_it surface of fluid film

reflection coefficient defined by Eq. 6

half-width of Gaussian emission band

_V_ spectral emittance in the_ -direction from fluid

CL__ film at boundary i or 2 absorption coefficient

_ viscosity of fluidray angle with optic axis

_) absorption coefficient
-i

infrared frequency in cm

_I_ f_ spectral reflectivity at film boundary i or 2
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b-_ Gaussian band parameter

_ optical path length through fluid film thickness y

O__ optical path length through fluid film thickness y
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Table I

INFRARED BANDS OF 5P4E

Observed Frequency Monosubstituted Benzene Meta-Disubstituted

CM-I Type (Randle and Whiffen) Benzene (Ibid.)

690 _C-C 697+__11(very strong) 690+--15(very strong)

750 _ C-H 751+-15 (extremelystrong)

780 _C-H 782+--9(very strong)

865 _C-H 876+10 (very strong)

990 _ C-H 982_+6 (very weak) 999+--5(variable)

ii00 _ C-H 1081+-10 (medium strong)

1170 _ C-H 1177 (medium strong)

i

Note: _ C-C out-of-plane ring deformation

C-H out-of-plane C-H deformation

C-H in-plane C-H deformation
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I.

MEDIUM 0 __'

MEDIUM2 (METAL)

Fig. i Schematic diagram of a semi-transparent film on a plate,
emitting infrared radiation.
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Fig. 2 Infrared emission band showing peak reversal.
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MIRROR POSITION

Fig. 5 Interferogram of an emission spectrum from an ehd contact (5P4E, i lb. load,
250 RPM) - unfiltered.



MIRROR POSITION

Fig. 6 Interferogram of an emission spectrum from an ehd contact (5P4E, i ibo load, 250 RPM) -

filtered to include the 630-1230 cm-I spectral region.
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Fig. 13 Absorption spectrum of Monsanto Traction Fluid, Santotrac
P-40, run on a grating spectrometer.
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