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SECTION 1

SUMMARY

i	 A summary of this appendix report on 18/30 GHa rain attenuation is fully
contained withiu subsection 2.3 of the main report. All of this work was
prepared by Future Systems Incorporated for Ford Aerospace & Communi-
cations Corporation under subcontract.

i
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SECTION 2

INTRODUCTION

This study report has been prepared by Future Systems Incorporated

(FSI) for Ford Aerospace do Communications (FACC) in accordance with Purchase

Order Number SP-605387-AP, Task 1. The Statement of Work for this Task is

repeated below.

Future Systems Incorporated shall perform the following tasks in

support of the 18/30 GHz fixed serv, ^e satellite communications

systems study (FACC, Prime Contract NAS 3-21362 to NASA Lewis

Research Center, dated 18 May 1978):

FSI Task 1	 Propagation Study

Prepare summary of available propagation data collected at 18/30 GHz

for use in support of NASA RFP Task 2, Trunking Concepts, and Task 3,

Direct User Concepts. Define link margins required for availabilities

ranging from 0.99 to 0.9999. The use of spatial diversity shall be

evaluated to achieve the higher availabilities. This Study shall apply to

the CONUS area only.

NASA Lewis Research Center commissioned FACC to perform an 18/30

GHz fixed service satellite communications systems study. The purpose of this

study is to establish probable configurations of millimeter wave satellite systems

and the resulting need for technology development. The FACC study includes the

design of a system based on a major terminal trunking concept and a system based

on direct-to-the-user concepts. For both of these systems it is important to

establish the relationships between communications link availability and link power

margin for different climatic zones within the contiguous United States (CONUS).

In addition, it is necessary to establish the availability versus link margin with

space diversity for the major terminal trunking concept. The purpose of the

present FSI study is to develop and present this information.
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The effect of atmospheric precipitation on propagation attenuation has

been studied for years, initially in support of the design of terrestrial microwave

radio relay systems and later also in support of satellite communications systems.

These studies consisted of theoretical analysis, measurement programs and the

comparison of measurements and theory. During recent years the interest in these

phenomena has increased due to the expectation that higher frequencies will be

employed in future communications satellites where the effects of precipitation

are more pronounced. The foliowing major programs have been undertaken, some

of which are still in progress:

ATS-5 Propagation Experiments

ATE-6 Propagation Experiments

CTS Propagation Experiments

COMSTAR Beacon Measurements

In addition there are active programs of pro; 1 gation attenuation

evaluation based on Sirio, the Japanese satellite programs and the European

OTS/ECS Program.

In performing the propagation study, the following subjects were

considered:

1. Survey of Existing Information

We collected and reviewed a large number of articles and reports on the

subject of propagation attenuation. A bibliography is included as an Annex to this

report.

2. Theoretical Models

Section 3 presents an introduction to the phenomenon under study,

namely, precipitation attenuation. The other factors affecting propagation through

the earth's atmosphere at frequencies above 10 GHz are also outlined. The

significant conclusion is that only attenuation caused by hydrometcurs, specifically

rain, is of sufficient magnitude tc cause link outages at these frequencies.

i

WDL-TR8457	 A-3



The various theoretical models for precipitation attenuation were also

examined. The most reliable models to date Include the following items:

a. Laws and Parsons raindrop size distribution as a function of rainfall

rate. This distribution has been tested more completely than

others which are available.

b. Spherical raindrop shape. The primary effect of non-spherical

shape is the difference in attenuation for vertical and horizontal

polarization. The values for spherical raindrops lie between those

produced by oblate raindrops.

The relation between rain rate and specific , attenuation is given by a

semi-empirical formula of the form:

A = aRb

Values of the parameters a and b were computed and are given in a

recent paper by Olsen et. al. (ref. 4).

3.	 Climatological Models and Rainfall Rate Measurements

Section 4 examines the current data on climate, specifically rainfall

amounts and rates in the U.S. Two important sources of data rare available: the

U.S. Weather Bureau and the various experimenters who have taken precipitation

measurements as an adjunct to propagation me surements. Weather Bureau data,

while much more extensive and covering longer periods of time, is not in the

desired form. Some type of transformation is required t, obtain the needed

cumulative time distributions. Several such transformations are available, and we

examined that due to Rice and Holmberg (ref. 12). The resulting distributions

match some experimental data within a reasonable degree.
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4.	 Millimeter Wave Experiments

In Section 5 we review a number of experiments performed at

/•	 millimeter wave frequencies. We have assembled results from several of these in

the following categories:

Terrestrial links
Experiments using radiometers
Experiments using weather radars
Experiments using satellite-borne beacons or transponders

5;	 Comparison of Experiment and Theory

Section 6 provides a brief examination of the comparison between the

various experiments and the theoretical predictions of attenuation. Some of the

possible reasons for discrepancies a_Pe investigated.

6. A Model for Precipitation AttenuF.J,^ for CONUS

Se Lion 7 ties together the results of the previous sections to produce a

model for rain margins in the CONUS area. The climatological model used is that

of Rice and Holmberg. We have used the known geographical distribution of the

parameters for this model to divide CONUS into six zones, based on the expected

rainfall rate distribution with time.

7. Diversity

Section 8 describes the improvement in link availability that can be

`	 obtained from the use of space diversity.

In order to provide the results of the propagation study on a timely "basis

as input to FACC*,s system study, it was necessary to limit consideration to those

data that were available by the beginning of February 1979. It should be

recognized that significant additional information will become available within the

coming year, especially as the result of the COMSTAR beacon experiments. Such

new information may make it desirable to update the attenuation model presented

in this report.
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SECTION 3

PROPAGATION PHENOMENA AND ATTENUATION MODELS

3.1	 Propagation Phenomena

Fading and distortion of electromagnetic waves as the result of

transmission through the atmosphere can be caused by the following phenomena:

a) Atmospheric Absorption

The clear sky atmosphere causes propagation attenuation in excess
of free space attenuation. The attenuation depends on the
elevation angle, relative humidity and on the transmission fre-
quency. There is a general increase of attenuation wit`, frequency,
and in addition there are peaks of attenuation due to molecular
resonance at certain frequencies.

b) Rain Attenuation

Atmospheric attenuation increases with the presence of rain, hail,
snow, fc, and clouds due to absorption and scattering of energy by
water particles. This phenomenon is generally called hydrometeor
absorption. (The word "meteor" is of Greek origin, meaning "object
in the air".) Rain attenuation increases with frequency and is the
main subject of this study.

c) Ionospheric Scintillation

Refractive inhomogeneities in the ionosphere cause variations of
received signal levels with time. This effect is not significant at
frequencies above 10 GHz.

d) Faraday Rotation

The interaction of moving electrons in the ionosphere with the
magnetic field of the Earth causes a rotation of the plane of
polarization for linearly polarized transmissions. This effect is not
significant at frequencies above 10 GHz.

e) Depolarization

Signal scattering due to rain also causes depolarization. This
effect increases with frequency and will be a serious limitation in
the use of dual polarizations abov e 10 GHz in areas with heavy rain
rates.
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a,	 f) Other Effects

Other effects in radio propagation include surface propagation,
ionospheric reflection and scattering as well as ducting. These
effects are preser, • at much lower frequencies and need not be
considered at frequencies above 1 Gliz.

In summary, the only propagation effects that need to be considered for

the 18/30 GHz satellite transmission systems are atmospheric absorption, rain

attenuation and depolarization.

3.2	 Atmospheric Absorption

Atmospheric absorption ,as been well described and quantified in CCIR

Volume V, Propagation in Non -Ionized Media. An extract of the relevant

information is given below.

Figure 3-1 shows the theoretical one-way attenuation for vertical and

horizontal transmission through the atmosphere as a function of transmission

frequency. The clear sky attenuation at the higher frequencies cannot be

neglected, particularly at low elevation angles. Absolute humidity is also a factor

that must be considered.

Water vapor absorption has a resonant peak at a frequency of 22.23

GHz, and oxygen absorption has a reek at 60 GHz and another peak at 120 GHz.

Atmospheric absorption also causes ar, increase in systems noise temperature which

must be considered at low elevation angles. This is shown in Figure 3-2.

3.3	 Attenuation Due to Precipitation

Attenuation due to precipitation arises from the absorption of energy in

the water droplets and to a lesser extent from the scattering of energy out of the

beam of the antenna. Wher, electromagnetic waves pass through an atmosphere

with inhomogeneities such as rain clouds, electric and magnetic dipoles are exited

in each particle of the inhomogeneities. Through this process, energy is extracted

from incident waves and in part converted into heat and in part scattered though

re-radiation. The heat absorption and wave scattering depends on many factors

such as:
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or

a) The chemical processes which produce the particles and determine
their electrical properties.

b) The aerodynamic processes which determine the shapes and sizes of
the particles.

c) The electromagnetic processes which de scribe the interaction of
waves and particles.

d) The meteorological processes which determine the collective
behavior of particles in terms of clouds and precipitation.

However, due to a substantial lack of data concerning Ue characteris-

tics of precipitation, a complete theoretical treatment of actual precipitation

attenuation is not feasible. A practical and commonly used method is to use the

theory, modified by some simplifying assumptions to extend the results of

propagation experiments to cover a broad geographical and frequency range.

Naturally, climatic data is an important component of such a method.

Calculations of attenuation due to rain gene.-ally yield results in units of

d.3/km. Further assumptions, guided by actual propagation experiments where

possible, must be made to produce a value for the total excess Rttenuation in the

earth/space path.

3.4	 Models of Rain-Induced Attenuation

The primary factor which produces excess attenuation and depolariza-

tion phenomena is the presence of rain in the radio path. Several properties of rain

are essential to any model of such phenomena, to wit:

Rainfall Rate

Raindrop Size (volume)

Raindrop Shape

Rain Temperature

The first item is significant in that it determines the density with which

raindrops are present. The rain rate is usually treated differently for convective

rain such as occurs in thundershowers, due to the intense updrafts which can

increase the drop density over that expected from the ground level rainfall rate.

M7DL-TR8457	 A-10
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The other three items are significant in that they determine the

scattering properties of the individual drops. Scattering is an important mechanism

which produces attenuation and depolarization effects. The other contributor

which is dependent on drop parameters is the absorption, which produces

attenuation in a straightforward way.

In a given rainstorm, there will be areas of differing rain rate; likewise,

even at a fixed rain rate not all drops will be of the same size. Raindrop shape is

generally assumed to be spherical, although several authors have reported

calculations based on oblate spheroidal drop shapes.

Given a set of assumptions for drop shape and size distribution, the

attenuation at a given rain rate can be calculated. Such a cL ;culation is given by

Setzer (ref. 1), based on Mie scattering, and using a drop size distribution due to

Laws and Parsons (ref. 2). Spherical raindrops are assumed. Figure 3-3 shows the

Laws and Parsons drop size distribution for a 50 mm/hr rain rate. Figure 3-4

shows the attenuation at 18.5 and 30 GHz calculated as a function of rain rate from

the data given by Setzer.

Another method, assuming oblate spheroidal raindrops, is due to Oguchi

(ref. 3). The attenuation at 19.3 and 34.8 GHz given in this reference is shown in

Figure 3-5. The raindrop volume is related to the drop size distribution of Laws

and Parsons. This model is a closer approximation to reality, since in fact the

drops are distorted by their fall through the air. The primary effect of such

distortion is to produce different attenuation for horizontal and vertical polariza-

tions.

A recent paper by Olsen et. al. (ref. 4) presents a thorough analysis

using several models of raindrop size distribution. A useful empirical relation is

derved of the form:

A=aRb

where
A is attenuation in dB/km

R is rain rate

a,b are parameters dependent on frequency
and the drop size distribution

WDL-TR8457	
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The parameters a and b are given for 41 frequencies between 1 and 1000

GHz. Those for 15, 20 and 30 GHz are shown in Table 3-1. The raindrop size

distributions are as follows:

1) Laws and Parsons (LP) Distribution (ref. 2)

This tabular distribution has been found to be a reasonable choice for a

mean dropsize spectrum in continental temperate rainfall at least at

rainrates below about 35 mm/hr. It is probably the most widely tested

distribution currently available and has been used for many previous

calculations. The LP  distriNtion is for rain rates below 50 mm/hr and

the LP  is for rain rates from 50 mm/hr to 150 mm/hr.

2) Marshall-Palmer (MP) Distribution

This negative exponential distribution is a fairly good fit for the mean

dropsize spectra measured by both Marshall and Palmer and Laws and

Parsons. It has been found to be most applicable to widespread rain in

continental temperate climates, although it has a tendency to overesti-

mate the number of small drops.

3) "Thunderstorm" Distribution (J-T) of Joss et. al.

This negative exponential distribution was fitted by Joss et. al. to the

average dropsize spectrum measured in convective rain. It has not ;et

been widely tested but has been used previously for some specific

attenuaLion calculations.

4) "Drizzle" Distribution (J-D) of Joss et. al.

Again this is a negative exponential distribution obtained by fitting the

average dropsize spectrum of very light widespread rain or drizzle

composed mostly of small drops. Although the calculations for this

distribution are not expected to be used by designers of communications

systems, it was included for comparison purposes since even some heavy

rains can contain mostly small drops.

r
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Table 3-1

Values of a and b in A = aRbdB/km

Values of a

Freq.

GHz	 LP1	 LPh	 NIP	 J-T	 J-D

15 3.21 x 10-2 3.47 x 10-2 3.05 x 10-2 4.37 x 10-2 3.19 x 10-2

20 6.26 x 10 2 7.09 x 10-2 5.95 x 10-2 9.22 x 10-2 6.00 x 10-2

30 0.162 0.226 0.154 0.257 0.145

Values of b

15 1.142 1.119 1.139 1.094 0.973

20 1.119 1.083 1.118 1.03 0.99

30 1.061 0.964 1.054 0.907 1.014

It still has to be decided which distribution values are applicable for

design purposes. The Laws and Parsons values are generally favored (LP I or LP h9

depending on the rain rate). These factors are applicable both for widespread and

for convective rain. In addition, the LP distribution has been widely tested and

compared against experimental results. Agreement is generally good. In the higher

rain rate range which is associated with convective rain and in frequencies above

10 GHz, the LP  values give higher specific attenuations than the J-T values. In

order to perform a worst case design, it is then desirable to use the higher values.

In any regions where the J-T distribution is known to apply, it should be used;

however, it has not yet been tested for all climatic regions.

Figure 3-6 presents values of attenuation in dB/km given by the aRb

relation for Laws and Parsons rain at 18 and 30 GHz.
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3.5	 ::oise Temperature Increase Due to Rain Attenuation

The satellite receiving antenna always points at the hot earth,

representing a mean temperature of about 290 K. Increased path attenuation due
to rain attenuation does not cause a significant variation of this tamperature.
Contrary to this, the earth station antenna normally points at space with a very low
temperature, governed primarily by clear sky atmospheric absorption and to a
lesser extent by cosmic radiation. (In addition, the effect of the hot earth is
introduced through antenna sidelobes.) For a small percentage of the time the
noise temperature as seen by the earth station receive antenna is increased greatly
as the result of pointing at the sun and by a smaller amount as the result of
pointing at the moon. However, during periods of rain the rain attenuation
increases the noise temperature of the receive antenna.

This increase has, in fact, been exploited to provide indirect measure-
ments of precipitation attenuation without the use of an orbiting beacon. The

relationship between the sky noise and the attenuation is given by the following
approximation, valid for antennas with narrow beamwidths:

T= Ll-1 A/10I 
Tr

where

Tr is the physical temperature of the sky seen by the antenna,
generally about 273 K

A is the attenuation in dB

T is the apparent temperature increase of the sky, including
the effects of precipitation.

This increase in noise temperature must be added to the temperature of

the receiving system and the clear-weather sky temperatw e. This produces a

degradation in the receive gain-to-noise temperature ratio or G/T. The decrease is

dependent on the initial system G/T. Systems having a low noise antenna and

amplifier are affected more than those with a higher receive noise temperature..

WDL-TR8457	 A-18
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SECTION 4

MODELS AND MEASUREMENTS

OF RAINFALL PATTERNS IN THE U.S.

4.1	 Introduction

The climatological model for rainfall is the crux of the overall model.

No matter how accurate the relation between rain and attenuation, if a reasonable

approximation to the rain rate (jistribution is not used, the predictions given by the

model will not be reliable.

There are at least two sources of important climate data for the U.S.:

the Weather Bureau and the various experimenters around the country who have

taken data. The Weather Bureau hrz data covering a much longer period of time

but it has not had an interest in correlati;ig this data with space-link attenuation.

The experimenters, on the other hand, have devoted a great deal of effort to the

attempt to relate the observed weather to attenuation (and depolarization) but

have data only for relatively short periods of time.

An additional difficulty with the satellite link is that the length of the

path that extends through the precipitation is not readily determined. This factor

is most imi , rtant, for the results given by theory and the various models of

attenuation arc for specitin attenuation (i.e., dB per km). Thus the path length (or

i	 an "equivalent" path length with constant rain rate) is needed to produce a value

foe total attenuation. Some assumptions must be made for this in a working model.

4.2	 General Considerations

From the standpoint of attempting to describe (in statistical terms) the

future precipitation patterns of a particular locale, there is not much latitude.

Rain storms vary in their individual characteristics (such as drop shape), and we

have seen that these are not very important anyway. We are forced to choose a

WDL-TR8457	 A-19



distribution of drop sizes (as a function of rain rate) and a shape for our models of

the attenuation mechanism. We could not reasonably expect to predict such detail

in any case.

We are left then with several parameters to use. The most important of

these is the distribution of rain rates that we may expect in the future. If we make

the assumption that the local climate is a stationary process (that is, that there are

no shifts in climate) over periods of 20 or 30 years, we can use such data as have

been collected by the Weather Bureau. These cover relatively long periods of time

and have good reliability. The main hazard is the inherent large variability in the

weather from year to year. A conservative approach is indicated.

The data provided by experimenters, while much more applicable than

that of the Weather Bureau, has the drawback that it covers only short periods of

time. The year-to-year variability in the rainfall amounts and rates is such that

periods on the order of a year only provide confidence to the level of many hours in

a year, rather than the 5-minute to 1-hour level required by systems designers.

Furthermore, most of the experiments have been designed to enhance our

knowledge of thc attenuation process, rather than to characterize a locale for long-

term predictions. However, these data are useful in determining the relation of

path length to rain rate.

4.3	 Available Measurements and Experiments

Typical of the data available from the National Weather Service is the

paver entitled "Five-to-60 Minute Precipitation Frequency for the Eastern and

Central United States" (ref. 6). This paper pt asents an analysis of data collected

from over 2,000 rain gauges in the United States. Figure 4-1 shows a presentation

of the 2-year, 60-minute data. The interpretation of the contours is as follows.

The value given for each contour :'.ine is the amount of precipitation (liquid water

equivalent) that will fall in "t" minutes (60 minutes in the Figure) on the average

every N, years (2 years in the Figure). The rain rate implied is merely 60/t times

the precipitation amount. This rate will be equalled or exceeded for "t"

conmecutive minutes on the average every N O years. The 5-minute values are of

particular interest since 0.001 percent tit '. year is about 5.3 minutes.
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A study by the FAA entitled "Rain Attenuation Study for 15 GHz Relay

Design" (ref. 7) is also of interest. The authors of this report have expended

substantial effort on the analysis of storm patterns in the United States. A number

of charts and tables of data that are relevant to more elaborate models are also

represented in the study report. An interesting example is pr%sented in Figures 4-2

and 4-3. The map shows the 5-minute rainfall rate to to expected, on the average,

once in 2 years, or about 2.5 minutes a year. Figure 4-3 then presents approximate

curves to be used with the map giving the precipitation distributions as a function

of rain rate. The proper curve from the family is selected by the 5-minute, 2-year

rainfall rate, as read from the map.

Bell Telephone Laboratories has made provisions for detailed measL!"e-

ments of rainfall within a limited area. In Holmdel, New Jersey, Bell Labs has

erected a rain gauge field consisting of nearly 100 gauges covering an area of about

130 square kilometers. This is described in Reference S. Freeny and Gabbe (ref. 9)

present an analysis of data taken from this rain gauge network during storms. Due

to the detail with which the rain storms could be observed, this data is quite useful

for examining the possibility of diversity operations. The spatial extent and

movement of storms were also examined in some detail. The rainstorm data were

non-stationary, and no attempts to fit a known distribution to the data were

successful.

The data reports for the ATS-6 Millimeter Wave Experiment (ref. 10)

contain some climate data. The report from the University o: Texas, particularly,

has some interesting examinations of thunderstorm data for Central Texas. Table

4-1 shows thunderstorm statistics for Central Texas as presented in the report. A

fairly good correlation between the attenuation and the height of the cloud tops (as

indicated by radar) was also found. This is shown in Figure 4-4.
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Table 4-1

Thunderstorm Statistics for Central Texas

Month
Frequency of
Occurrence

Height of Cloud Tops
meters (ft)

Cell Speed
m/s (knots)

Direction of Movement
degrees

January 1 8.51 (28) 12.8 (25) 240
February 2 9.12 (30) 15.4 (30) 250
March 3 11.55 (38) 17.9 (35) 270

April 5 12.16 (40) 15.4 (30) 250
May 7 12.76 (42) 12.8 (25) 240

June 4 10.64 (35) 10.3 (20) 180

July 4 9.72 (32) 7.7 (15) 170
August 5 9.72 (32) 7.7(15) 150
September 4 2.16 (40) 12.8 (25) 230
October 3 11.55 (38) 12.8 (25) 230
November 2 9.12 (30) 12.8 (25) 240
December 1 8.51 (28) 12.Q (25) 240

The COMSAT Propagation Experiment using ATS-6 (ref. 11) also

produced a considerable amount of rain rate data. The rain gauges used were of

the tipping-bucket type and recorded each 0.01 inch of rain. A single point gauge

was installed at each site in the experiment, as follows:

WDL-TR8457	 A-27

ROL-



Location Location

Andover, ME Boston, MA
COMSAT Earth Station Waltham

Detroit, MI Boston, MA
Selfridge Air Force Base Sudbury

Philadelphia, PA Boston, MA
McGuire Air Force Base Cambridge

Washington, D.C. Boston, MA
Clarksburg, MD Marlboro

Wallops Island, VA Columbus, OH
Burton's Cave Mechanicsburg

Nashville, TN Columbus, OH
Fort Campbell London

Asheville, NC Columbus, OH
F:,rt Bragg Scientific Advances, Inc.

Fayetteville, NC Columbus, OH
Rosmann NASA Station Ohio State University

Atlanta, GA Starkville, MS
Georgia Tech Mathiston

New Orleans, LA Starkville, MS
NASA Michoud Missile Adaton
Test Facility

Tampa, FL Starkville, MS
MacDill Air Force Base Mississippi State University

Miami, FL	 Starkville, MS
Homestead Air Force Base 	 Sessums
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	 Table 4-2 shows a comparison of the total rain amounts collected by the

COMSAT experiment with the average expected amounts taken from Weather

.y Service data. As a first approximation, the Weather Service amounts were sealed

by the fraction of the full year that the COMSAT experiment took data for each

location. A further refinement is possible since the COMSAT data are available on

a seasonal basis, as are the Weather Service data.

From the Table one can see that several of the sites were in marked

disagreement with the average data. There are several possible sources for the

discrepancy:

1) Errors in the rain gauges or the data reduction process

2) Errors in the average rainfall values due to the low density of rain
gauges operated by the Weather Service in a particular locale. It
has been observed that the heavy rains responsible for much of the
rainfall in thunderstorms are highly localized.

3) Errors due to the high variability of the local climate itself from
year to year

The data reduction was done manually, and with such a large quantity of

data the possible errors are many. However, the other reasons noted above are far

from insignificant. In addition, the cumulative distribution curves of some sites

with large total errors look quite reasonable, which would likely not be so had some

large bias been inserted during processing. Figures 4-5 and 4-6 show this quite well

for the Tampa and Boston #2 sites, while in Figure 4-7, the data for the Detroit

location which has a smaller error in total rainfall, clearly has some sort of

problem at the high rain rates.
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Figure 4-6
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On balance, the best approach is to use the Weather Service data as the
primary basis for modeling the frequency of precipitation and its rate. The date
from the various experiments is a useful adjunct and can best be used to enhance
the rrodel of storm cells and path lengths through rainstorms. It should be borne in
mind-, however, that even the Weather Service data, which covers about 25 years, is

not proof against the variability of the local climate. The systems designer should

choose conservative margins whenever possible to guard against this and against
the inaccuracies inherent in the modeling process.

4.4	 Climatological Models for CONUS

Several models have been formulated to approximate the climate in the
contiguous U.S. These are also applicable to other regions due to their general
nature. It is our judgement that the model due to Rice and Holmberg (ref. 12) is
the most accurate one currently available. It has the advantage of modeling well
the mixture of rain types found in the U.S. It is also reasonably accurate at the low
percentages of time that are of interest to satellite systems designers. A detailed
examination of this model will be instructive.

The statistical model by Rice and Holmberg is the sum of two individual
exponential mo(' ,is of rainfall rates, each having a characteristic average rate
rainfall thus described by:

Rainfall = Mode 1 Rain + Mode 2 Rain

The exponential distribution that was chosen to describe mode 1 rain is

based on an analysis of thunderstorms. Mode 2 rain is all other rain. in temperate
climates only convective storms associated with strong updrafts and thunder can
produce the high rainfall rates identified by mode 1. The average annual rainfall
depth M is the sum of the contributions from the two modes:

M = M 1 + M 2
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Source: Rice and Holmberg: Statistics of
Rainfall Rates (ref. 12)
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The ratio of thunderstorm rain to total rain is defined as:

0 =M 1 /M 2

The number of hours of rainy periods for which the surface point

rainfall rate R is exceeded is the sum of contributions from the two modes. These

relationships are shown in Figure 4-8.

'F:i ures 4-9 and 4-10 are maps of M and Q .
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Figure 4-9
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Figure 4-11 shows the average year cumulative distributions for the

annual rainfall rate of 40 inches and thunderstorm rain representing 12.5 percent of

the total rain.

t
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Table 4-3 shows a comparison of the Rice and Holmbt r • prediction for

Starkville, Mississippi with the COMSAT ATS-6 rain rate data for the four sitee at

Starkville. The parameters used in the R-H model were M = 1250 mrn%year and

beta = 0.4e The agreement is rather good, save for the site #24 which also has the

fewest total hours of data and the largest error in cumulative rainfall for the

experiment.
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Table 4-3
Comparison of Rice and Holmberg Model With

COMSAT Data for Starkville, Mississippi

R
mm' °,

R-H
Percent
of Time

Site
#4

Site
#24

Site
#25

Site
#26

10 0.26 0.34 0.52 0.37 0.48
20 0.10 0.15 0.20 0.10 0.17

50 0,"4 0.05 0.06 0.038 0.04
100 0	 35 0.009 0.013 0.007 0.003
150 0.002 0.001 0.001 0.0004 0

Tables 4-4 through 4-8 present similar results for the five other sites in
the COMSAT experiment which had an error in the total rainfall of less than 20
perc ,nt. In several of the cases the agreement with the Rice and Holmberg model
is good.

Table 4-4
Cumulative Time Distributions of Rainfall Rates

For Washington

Ra ;.;lfall Rate Rice-Holmberg ATS-6 COMSAT
(mm/hr.) Model Data

(Percent of Time) (Percent of Time)

10 0.18 0.29
20 0.039 0.088

50 0.011 0.025
100 0.0025 0.005
150 0.0006 0.001
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Table 4-5

Cumulative Time Distributions of Rainfall Rates

for Nashville

Rainfall Rate
(mm/hr.)

10

20

50

100

150

Rice-Holmberg
Model

(Percent of Time)

0.23

0.077

0.027

0.006

0.0013

ATS-6 COMSAT
Data

(Percent of Time)

0.41

0.12

0.039

0.004

0.0008

Table 4-6

Cumulative Time Distributions of Rainfall Rates

for FayetteviLe

Rainfall Rate
(m m/hr.)

10

20

50

100

Rice-Holmberg
Model

(Percent of Time)

0.21

0.061

0.021

0.005

0.001

ATS-6 COMSAT
Data

(Percent of Time)

0.37

0.14

0.037

0.007

0.002150
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Tn ble 4-7

Cumulative Time Distributions of Rainfall Rates

Rainfall
(mm/hr.)

10

20

50

100

150

for New Orleans

Rice-Ho:mberg
Model

(Percent of Time)

0.31

0.14

0.055

0.012

0.0027

ATS-6 COMSAT
Data

(Percent of Time)

0.37

0.15

0.05

0.009

0.003

Table 4-8

Cumulative Time Distributions of Rainfall Rates

for Columbus #21

Rainfall
(mm/hr.)

10

20

50

100

Rice-riulrnberg
Model

(Percent of Time)

0.18

0.045

0.014

0.003

0.0007

18-6 COMSAT
Data

(Percent of Time)

0.25

0.055

0.011

0.0015

0.0003150
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4.5	 Modeling the Effective Path Length

As noted previou:..y, the models for precipitation and attenuation given
so far yield a value for specific attenuation only. In order to find the total
attenuation produced by a given rain rate, it is necessary to have a model for the
length of the path through the precipitation. This is generally held to be a function
of rain rate itself and of the elevation angle to the satellite. The logic of this is as
follows. The dependence on rain rate stems from the fact that the low rain rates
are the product of a storm system that is large in physical extent. The low rain
rates are to be found throughout the storm system. Thus the path will traverse the
area of precipitation through much of its length near the earth. The high rain rates
are the products of much smaller storm cells which have height comparable to their
horizontal extent. The section of the path that lies within the area of precipitation
will thus be shorter.

The dependence on the elevation angle is quite natural. In general,
because of the relative dimensions of low and high rain rate storm cells, the
dependence on elevation angle will decrease as the rain rate increases.

The effective path length can be modeled based on the results of
experiment. Several such models are available in the literature. Two general
procedur( s are used for such models. In one, the statistical distributions of
attenuation as measured at the site and the statistical distributions of rainfall rate
as measured at the same location are assumed to be equivalent. In other words, a
rainfall rate that occurs "p" percent of the time is assumed to cause the
attenuation that also occurs "p" percent of the time. From this equivalence and
the theoretical formula for the specific attenuation, the effective path length as a
function of rain rate can be derived. The main drawbacks of this method are: 1)
the resulting expression for path length generally displays a strong dependence on
frequency, and this is not realistic, and 2) the statistics must be collected over a
substantial period of time (on the order of a year or more) before the distributions
can be considered to be representative. The latter is due to the poor correlation
between point rain gauge data and attenuation at the same location.
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The second method, which displays a substantial degree of frequency

independence, requires simultaneous measurements at two or more frequencies.

The ratio of attenuation at two frequencies in determined for each instant, and the

composite ratio function is determined statistically in the form:

AF1 = xAF2 Y

Since this is the same form that the relationship for specific

attenuation takes, the two can be combined to yieid an expression for the effective

path length that depends only on the rain rate. This procedure is explained in detail

in Reference 13.

Of course refinements can be added to either model, such as a

dependence on the earth station elevation angle or the height of the melting layer,

below which the precipitation is in liquid form, this producing the bulk of the

attenuation.

Several experimenters have determined such functions for the effective

path lengh. This has been d! ne for ATS-5 data by Ippolito and for COMSAT data

from the Comstar beacon by Harris and Hyde (ref. 13). The curve from Ippolito is

shown in Figure 4-12 and that of Harris and Hyde in Figure 4-13. Elevation angles

are about 47 degrees for the ATS-5 data and 20 degrees for the Comstar beacon

data. Effective path lengths for thunderstorm type rain (rain rate about 40 mm/hr.

or higher) range from 5 to less than 2 km. The empirical formulae for these curves

are:

L = 67.6 R-0.7887	 for the ATS-5 data

L = 2.6 R-0.1	 for the Comstar data

The curve marked "A" in Figure 4-12 is computed from data given in

Figure 8 of Reference 33. As can be seen from the Figure, it lies quite close to the

ATS-5 data.
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Table 4-9 shows the composite correlation of 13 and 18 GHz fading for

seven of the ATS-6 transmitting sites in the COMSAT Propagation Experiment.

The relation between 13 GFiz fading and 18 GHz fading from these data (best fit)

is:

A18 :-- 1.889 A13.934

Using the theoretical values from Olsen, et. al. (ref. 4), we derive the

following expression for the path length as a function of rain rate:

L(R) = 2.74 R-0.487
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Table 4-9

Composite Correlation of 13 do 18 GHz Attenuation
Attenuation in d

13 GHz	 Mean of 18 GHz	 Standard Deviation of
Attenuation	 Attenuation	 18 GHz Attenuation

1 2.350 1.757

2 3.336 1.497

3 4.562 1.819

4 6.189 2.109

5 7.713 2.439

6 9.721 2.481

7 12.300 3.200

8 13.709 2.654

9 15.086 2.905

10 16.217 2.602

11 17.082 2.654

12 19.304 3.413

13 20.477 2.935

14 22.209 3.708

15 28.125 1.166

16 26.226 3.118

17 29.667 0.472

18 24.143 0.833

Sites not considered are 5, 7, 8, 9 and 12.

Source: Data Analysis Report on COMSAT ATS-F
Propagation Experiment
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CCII; Document F5/003 presents a method for calculating attenuation

distributions which incorporates most of the possible features described above. An

explicit expression for the path average rain rate as a function of the point rain

rate is also included. The expression for the attenuation is as follows:

A =ice— a(f) -y (D) R lb(f)  -a (D)J
e	 p

where

A = Attenuation in dB

H = Height of the 0.. r C isotherm wigure 4-14)

e = Earth station elevation angle

D =	 HTan e

a(f)	 Factors in the aRb function for specific
b(f)	 attenuation (ref. 14)

(D) = Obtained from Figure 4-15

b (D) = Obtained from Figure 4-16

One of the significant points about the CCIR model, aside from its

completeness, is that it yields generally larger values for the effective path length

than the formulas shown previously. It is apparent that, whatever their other

features or merits, the aforementioned formulas are lacking in some respect.
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SECTION 5

MILLIMETER WAVE PROPAGATION Et= ?ERIMENTS

5.1	 Introduction

L1 spite of the farst that there exists a firm theoretical base for

calculations of propagation effects due to hydrometeors, experiments have

consistanily played a significant role. There are at least two good reasons for this:

first, the well-founded scientific procedure by which theory is tested by

experiment, and secondly, the fact that so many assumptions concerning the

properties of rainfall must be rrade. The validity of such assumptions must be

tested against reality.

The history of propagation experiments dates fro. ^ the 1940's.

Naturally, much of the effort has been devoted to the study of propagation along

terrestrial microwave paths, at least until recently, Bell Laboratories and the U.S.

Bureau of Standards have been significant contributors, with NASA having done a

great deal of work since about 1963.

Propagation experiments can be grouped into four categories as follows:

1) Experiments using an actual point-to-point terrestrial link. Bell

Labs has collected a great deal of data from such facilities.

2) Experiments using radiometers, either with fixed pointing or sun

tracking. While these have been primarily intended to measure

attenuation along an earth-to-satellite path, the low-angle

measurements could also apply to terrestrial links.

3) Experiments using millimeter wave radars. These have had two

directions generally: direct measurement of attenuation and deter-

mination of rain storm and rain cell characteristics.
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4) Experiments using sateJite-borne beacons or transponde^ ,s. These,

of course, are the most useful since the results apply directly to

the problem considered in this report.

All of the above categories include, in most cases, some form of rain

measurement in addition to the attenuation measurements. Some, such as radars,

are primarily aimed at an accurate determination of the characteristics of

rainstorms.

It will be useful to examine the structure and results of some of the

more important experiments. We have limited our interest to those specifically

dealing with millimeter wave propagation.

5.2	 Experiments Using Terrestrial Links

The most significant of these have been performed using the rain gauge

field at Bell Laboratories in Holmdel, New Jersey. The set-up of this field was

described in Section 4.

In 1967, Semplak and Turrin (ref. 14) took 18.5 GHz attenuation

measurements on a 6.4 km path within the Holmdel rain gauge network. The period

of measurement included the Summer of 1967 during which many very heavy

showers occurred. Data were examined separately for individual storms. The

composite results showed that the attenuation per unit length can be calculated as:

A = 0.041 1;	
iiJR1.04i 

In this equation R  is the rainfall rate in millimeters per hour, and di is

the distance in kilometers over which the rain rate R  applies. Pereent of time

distributions are given for the attenuation and the duration of attenuation. It wac

found that the path attenuation exceeds 30 dB for 0.043 percent of the time.

Figures 5-1 and 5-2 show distributions of attenuation and rain rate

resulting from this "experiment.
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5.3	 Experiments Using Radiometers

Wilson (ref. 15) of Bell Labs published in 1969 the results of
measurements using a sun-tracking radiometer to determine attenuation at 16 and
30 GHz. A dynamic range of about 30 dB was available. The sky temperature was
used at night with a dynamic range of 10-12 dB. Figures 5-3 and 5-4 show the
distribution of attenuation for 16 GHz and 30 GHz, respectively. The measure-
ments were taken at Holmdel, New Jeri ,. y.

In 1971-1972, COMSAT Labs (ref. 16) performed propagation attenua-

tion measurements at Utibe, Panama over a period of approximately 1 year using a
15.3 GHz transportable earth station. Attenuation data were determined with the
radiometer method where the output was proportional to the sky noise temper-
ature. The tropical site Utibe was selected because good rain statistics were
available for it. The antenna was pointed at an elevation angle of 55 degrees,
which corresponds with typical synchronous arc use for this location. Attenuation
versus percent time was recorded, and distribution functions were plotted. It was
found that 4 dB attenuation was exceeded 0.4 percent of the time and 10 dB
attenuation was exceeded during 0.1 percent of the time. In addition, rain rate
distribution was plotted from rainfall data obtained on an hourly basis from a
nearby location. Curve fittings procedures were used to determine plots of
instantaneous rain rate versus attenuation at 15.3 GHz. Good correlation was
obtained between hourly rainfall and fade durations.

5.4	 Experiments Using Radars

Direct observation of the specific variations in rain intensity (and hence
attenuation) along a path can only be made by radar. These can also be used to
study the size and behavior of intense rain cells of the sort that cause high
attenuation. Such measurements have been taken by several investigators,
including Crane (ref. 17), Drufuca (ref. 18) and Goldhirsh (ref. 19).
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During the ATS-6 Millimeter Wave Experiment (ref. 10), direct

attenuation measurements were taken in addition to correlation measurements

using rain gauges. Meteorological radars were used at Rosman, North Carolina to

validate attenuation techniques. A dual frequency radar co-located with the

Rosman receiver was directed towards the ATS-6 satellite. A set of ten rain

gauges was employed along the earth station satellite paths out to a distance of 2.5

kilometers. The frequencies of the radar system were 8.75 GHz and 3 GHz. Their

eange was 25 kilometers and the range-gated resolution was 100 meters. The

attenuation measured with the radar system was then related to the 20 and 30 GHz

attenuation through an assumed drop size distribution. Utilizing the following

empirical relationship for continuous rain between rainfall rate and reflectivity

factor Z,

Z = 200 R1.6

ATS-6

ON—BEAM

MU LTI—FREQUENCY RADAR

FREQUENCIES	 8.75GHz 30GHz
PEAK TRANSMIT POWER: 	 16OW
BEAMWIDTH:	 2.00	 2.30
PULSE WIDTH:	 667 NSEC"

PULSE RATE:	 1000 Hz
AVERAGING INTERVAL: 	 1.8 SEC
DYNAMIC RANGE: 	 7U dB	 RESOLUTION INCREMENT

L_	 100 METERS LENGTH

255 RANGE GATES
RANGE: 0.1 TO 25.6 Km

25 mm PER TIP
1 SEC. SAMPLING RATE
ERROR: 3%@ 30 mm/HR RATE

IN
	 RAIN G A UGE NETWORK

(	 I	 f	 I	 I`	 f	 I	 f	 I	 (	 f	 I
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GROUND	 Om	 310m 524m 670m	 937-	 1204m	 1511m	 1766m	 2057m	 2454m
TERMINAL

Radar and rain gauge measurements at Rosman, North Carolina.

Source:	 20 and 30 GHz Millimeter Wave Experiments
With the ATS-6 Satellite (ref. 10)
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and the attenuation relationship for 20 and 30 GHz, the attenuation at 20 and 30

GHz can be developed. The resulting expressions for the 20 and 30 GHz

attenuation are:

A20(dB) =2 0.1799 x 10-3 210.6875

i=2

256	
-3 0.6469A30 (dB)_ 2:0.5355 x 10 Z.

i-2

where Z  is the measured reflectivity factor of the i th range increment in mm6/m3.

Figures 5-5 and 5-6 are examples of results of direct attenuation measurements

compared with predictions from the 8.75 and 3 GHz radars.

Figure 5-5
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Figure 30. Prediction of 20-GHz attenuation from on-beam radar measurements for
September 27, 1974.

Source: 2C and 30 GHz Millimeter Wave Experiments
With the ATS-6 Satellite (ref. 10)

t

WDL-TR8457	 A-5,7



Figure 5-6
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September 27, 1974.

Source: 20 and 30 GHz Millimeter Wave Experiments
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Since the reflectivity factor Z is empirically related to the rainrate R,

it is possible tc also use the radar to predict the rainfall rate along the path

directly. This computed value can then be compared to the rainfall rate measurea

by the rain gauge directly under that point in the path. As expected, the results

show that the correlation, for the nearer rain gauge is good but degrades as the

distance along the path increases.

A
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5.5	 Experiments Using Satellites

ATS-V

As reported by Ippolito (ref. 19), a millimeter wave propagation

experiment was included on ATS-V. It was the first experiment for the earth-

satellite link at 15.3 and 31.65 GHz. Seven stations participated in these

experiments in 1969 providing amplitude and phase measurements on the two

independent test links during defined weather conditions. The satellite did not

achieve proper three-axis stabilization and remained in a spinning condition in

geosynchronous orbit. For this reason the data analysis program was modified so as

to permit meaningful propagation measurements even though the received data was

spin modulated.

The propagation characteristics were determined from analysis of

signals transmitted through the satellite at both frequency bards. Tile 15.3 GHz

link consisted of a transmitter in the spacecraft and corresponding receivers at

several ground stations. The 31.65 GHz link consisted of ground t ► ansmitters at

two locations and a receiver on the spacecraft.

In addition to five NASA-funded sites operating with ATS-V, COMSAT

Labs, Bell Labs, the Communications Research Center of Ottawa and several other

entities used the 15.36 GHz down-link for measurements.

The experimental arrangements at the NASA site at Rosman, North

Carolina were most ambitious. The measurement system included the following:

15.3 GHz down-link measurement

31.65 GHz up-link measurement.

Weather radar

10 rain gauges along the short path

16 and 35 GHz radiometers
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llE. -)ite the problems caused by the undesired satellite spin, useful data

were colle%ted.

ATS-6
Of particular interest to this reoort are the COMSAT propagation

experiments at 13 and 18 GHz and the millimeter wave experiment at 20 and 30
GHz.

COMSAT Propagation Experiment (CPE) (ref. 11)

The CPE was designed to sample the effects of climate on earth-

satellite links (13 and 18 GHz) at 15 widespread locations throughout the Eastern
U.S. with minimum spacing of at least 160 km. These locations were near Miami,
FL., Atlanta, GA., Starkville, MS., New Orleans, LA., Nashville, TN., Asheville,
NC., Fayetteville, NC., Wallops Island, VA., Clarksburg, MD., Philadelphia, PA.,
Columbus, OH., Detroit, MI., Boston, MA. and Andover, ME. Three of these
locales, Starkville, Columbus and Boston, were also equipped with appropriately
spaced 18 GHz space diversity terminals, thus providing the CPE with the
capability of measuring the effectiveness of diversity as a function of spacing.
About 50,000 hours of processed 13 GHz transmit path data and about 51,000 hours
of processed 18 GHz transmit path data were collected in the 10 months of the
experiment. Additionally, about 113,000 hours of processed point rain data at these
sites were collected.

Two of the authors of the present report were heavily involved in the

set-up of and data processing for this experiment. We have the following
judgements about the results:

1) The results are best for the moderate level: of fading, from about

1.5 dB to 12-15 dB.

2) The rain data are useful and compare favorably with the long-term

i	 statistics for the areas covered. This is reassuring because several
E	 previous investigators have commented on the rather wide year-to-

year variability in the rainfall rates and distributions.

Figures 5-7 through 5-10 show some of the cumulative distributions of
attenuation and rainfall rate produced from the COMSAT experiment.
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ATS-6 Millimeter Wave Experiment (MWE)

The ATS-6 millimeter wave propagation experiment provide) the first

direct attenuation measurements at 20 and 30 GHz from an orbiting satellite.

Studies were performed at eleven locations within CONUS to determine rain

attenuation effects, scintillations, depolarization, site diversity, coherent band-

width and transmiss;,on`.echniques. In addition, indirect methods of attenuation

prediction were used using radars, rain gauges and radiometers for comparison with

directly measured attenuation. The locations of the ATS-6 ground terminals are

shown below.

ATS-6 MWE Participating Terminals

Location	 Major Areas of Investigation
Organization

Rosman, NC
NASA GSFC	 Prime facility 20 and 30 GHz - Attenuation,

coherence bandwidth, differential phase
effects, scintillation, communications links,
radars, radiometers, rain gauge network

Greenbelt, MD
NASA GSFC	 20 and 30 GHz - Attenuation, site diversity,

radiometers

Austin, TX
Univ. of Texas (2)	 30 GHz - Attenuation, 2-terminal site diversity,

radiometer

Blacksburg, VA
VPI be SU	 20 GHz - Attenuation, depolarization

Clarksburg, MD
COMSAT (2)	 20 and 30 GHz - Attenuation, site diversity,

radiometers

Columbus, OH
Ohio State Univ. (3)	 20 and 30 GHz - Attenuation, 3-terminal site

diversity, scintillation, radars, radiometers
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ATS-6 MWE Participating Terminals, Continued

Location	 Major Areas of Investigation
Organization

Holmdel, NJ
Bell Laboratories	 20 GHz - Depolarization

Baltimore, MD
Westinghouse	 20 GHz - Attenuation, site diversity

Waldorf, MD
NRL	 20 and 30 L." - Attenuation, site diversity,

radiometers

Richland, WA
Battelle Northwest
Laboratories	 20 GHz - Attenuation, radiometer

Ft. Monmouth, NJ
USASCA	 30 GHz - Attenuation

All terminals measured rain attenuation at 20 or 30 GHz or at both

frequencies, and most had rain gauge measurements as well. The Washington area

diversity experiments used four terminals which jointly observed 20 GHz

attenuation events from which it was possible to develop site diversity statistics.

COMSTAR

The COMSTAR satellites owned by COMSAT General and leased to

AT&T carry transmit beacons at 19 and 28.5 GHz. These are currently being used

for attenuation measurements by Bell Labs and COMSAT Labs, among others.

The Bell Labs experiments are set-up to measure a number of sigzlal

parameters, including the following:
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1) Co-polarized vertical signal amplitude (TVRV)

2) Cross-polarized signal amplitude coupled from vertical to hori-
zontal (TVRH)

3) Co-polarized horizontal signal amplitude (THRH)

4) Cross-polarized signal amplitude coupled from horizontal to
vertical (THRV)

5) Phase difference between vertical and horizontal signals (TVRV and
THRH)

5) Phase difference between vertical signal (TVRV) and its cross-
polarized component (TVRH)

7) 7hasc difference between horizontal signal (THRH) and its crass-
polarized component (THRV)

There are also two sites devoted to a space diversity experiment. One

site is near Atlanta, Georgia and the other near Chicago, Illinois. Preliminary

results from this segment of the project have been published. Figures 5-11 and 5-

12 show some of these data (ref. 20 and 21).

Q
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Figure 5-I1

Source: The Bell System
Technical Journal (ref. 20)
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Fig. 12—Grant Park fading.
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Preliminary results from the COMSAT Labs experiment using

COMSTAR have also been p^ ^blished (ref. 13). This was a single-site experiment at

Clarksburg, Maryland. Rain gauge data were also collected here. Figures 5-13 and

5-14 show some of the preliminary results from these observations.

A total of 4,200 hours of data were collected out of which the dynamic

attenuation range of 30 dB was exceeded for about 100 minutes or 0.04 percent of

the time at 19 GHz. At 28.56 GHz, the same range was exceeded twice as long;

that is, for 0.08 percent of the time. The fade level was referenced to a nominal

clear sky condition.
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The cumulative rain rate statistics for the same site and periods of time

are given in Figure 5-14. Measurable rain occurred for about 1.5 percent of the

time, but measurable attenuation occurred for more than 10 percent of the time.

This higher percentage of the time was explained through the presence of clouds

and fog.

Most of the deep fades with attenuations of 15 dB or more at 18 GHz

occurred during the late summer months. Lesser fades, however, were more evenly

distributed throughout the periou of measurements.
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SECTION 6

COMPARISON OF THEORY AND EXPERIMENT

6.1	 Introduction

An important indication that a theory includes all significant contribu-

tors to a phenomenon is the verification of the theory by experiment. In the area

of precipitation attenuation, most of the theories proposed before the advent of the

digital computer contained some substantial shortcomings due to the approxima-

ticns needed. Often th ,3 values of constants given were in error. Medhurst (ref. 27)

published in 1965 a survey comparison of the current theory and the experiments

performed to date. These were all concerned with terrestrial links. The general

agreement between theory and measurement was not particularly good. The

experiments tended to produce a substantial number of attenuation values in excess

of the maximum attenuation predicted by theory. This tendency was not

satisfactorily explainable.

More recent experiments have shown a somewhat improved correspond-

ence with the predictions of theory. In part this is due to a better understanding of

the behavior of rainstorms. However, a fairly elaborate field of rain gauges with

fast response time and good data analysis techniques is needed to assure good

agreement between theory and measurement. Single point rain gauges generally

give rather poor correlation between the rain rate and the attenuation, even on a

statistical basis. As the period of measurement increases, the point rain gauge

statistics will show more agreement with the attenuation statistics. This is due to

the fact that in the absence of any strong influences due to local geography, the

rain from a large number of storms will be sampled more or less at random by the

point rain gauge. The distribution of rainfall rates sampled will then approach the

actual distribution over a long period of time. A similar experience will hold for

the attenuation statistics. However, in general the path of the antenna beam and

the point rain gauge will sample at different points in space, and thus a long

measurement period will be needed before the measurement statistics will

converge.
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6.2	 Specific Experiments

Of the specific experiments we have considered in this paper, the
agreement of measurement with theory has been a function of the elaborateness of

the experimental set-up and the completeness of the data taken.

Terrestrial Link

The experiment described in Reference 14 involved a 6.4 km link within

the Bell Labs rain gauge field at Holmdel, New Jersey. The results show a large
degree of scatter when plotted against the path average rain rate, as shown in

Figure 6-1. The cumulative time distributions, shown previously in Section 5, can

be used to derive an effective path length of about 3 to 4 km, depending on the rain
rate. The values are quite consistent for rain rates above about 90 mm/hr. This
seems to indicate that the average rainfall values produced by the rain gauge field

are conservative.

ATS-6

The experimental set-Lip at Rosman, North Carolina using the ATS-6

satellite (ref. 10) showed good agreement between the attenuation calculated from
weather radar measurements and measured space-link attenuation. The weather
radar was also reasonably good ai detecting the rain rate Qlong the path as

measured by rain gauges.

In the data analysis from the COMSAT propagation experiment using

ATS-6, the rain gauge data were used to extrapolate the attenuatior, data to cover
periods of time when the millimeter wave link was not collecting data. The
resulting distributions do not show radical differences from the original data ta ►:!^.n.

This seems to indicate that the weather conditions and the attenuation were both

sampled for a long enough period that the statistics bega,: io converge. Analysis of

the statistical distributions for several sites produ,_:^d vdiues of mean effective

path length ranging from 1.5 to 3.8 km at 5% mm /hr. l cwev(^r, 'ehavior of the

effective path length was not consistent from site to si t e as s<<own in Tabs: 6-1.
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Figure 6-1
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1 Tabie 6-1i
Mean Effective Path Length

Computed From COMSAT ATS-6 Data
(L in km)

0

R	 Starkville	 Washington	 Columbus	 Boston
mm/hr	 L13	 L18	 L13	 L13	 Lis	 L13	 L18

10 6.8 3.5 4.9 3.6 1.5 4.4 2.4
5.0 3.6 2.9 3.4 2.6 4.9 3.0

40 3.8 2.6 1.6 2.4 2.9 4.3 4.0

50 3.8 2.5 1.5 1.5 2.8 4.2 3.6
70 4.2 2.1 1.4 3.1 -- 5.6 2.9

100 4.2 1.7 1.9 -- -- 4.6 --
120 3.8 1.5 2.0 -- -- -- --
150 -- 1.3 1.8 -- -- -- --
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SECTION 7

A PRAC'.ICAL RAIN ATTENUATION MODEL FOR CONUS

40 +r44 4,b, 0 The specific elements that make up the model for CONUS presented in

this report have all been discussed previously; it remains but to explicitly draw

them together and explain the relationships involved.

7.1	 U. S. Climatological Data

A large amount of rain data is available for the United States, primarily

from the U.S. Department of Commerce, Environmental Science Services Adminis-

tration, National Climatic Center, Asheville, North Carolina. Of pfrticular

interest are the Climatic Atlas of the United States and Selected Climatic Maps of

the United States.

For the design of the actual system, it will be desirable to use detailed

data for individual earth station locations, which are also available from the

National Climatic Center. Shown in Tables 7-1 and 7-2, as an example, are

extracts of precipitation information for Orlando, Florida which are available on a

monthly and on an annual basis. Also available are mean annual number of days

with thunderstorms as shown in Figure 7-1, normal annual total precipitation as

shown in Figure 7-2 and total monthly precipitation as shown in Figures 7-3 and 7-

4. From this and similar information it is possible to develop attenuation versus

time statistics for each specific site.

The importance of considering precipitation data for each specific earth

station site separately is illustrated in Figur6s 7-5 and 7-6, which show that

significant variations in annual rainfal rates occur for locations which are in close

proximity to each other. This is especially true for mountainous areas and for

coastal zones. For example, Seattle has about 40 inches of rain annually, but

locations 5G miles to the west of Seattle have 150 inches per year; locations 50

miles to the east have 112 inches per year, but locations only 100 miles Southeast

of Seattle have only 8 inches of rain per year.
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Table 7-1

Rain Data for Orlando

Month of July

C	 OCCURRENCES OF PRECIPITATION AMOUNTS:

IWOUENCY OF OCCUPCENCI FOR EACH HOUR OF THE DAY
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Rain Data for Orlando

Annual Information
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1 -"	 1! 1 10 9 10 1 10 ll^ • 12 16' le 11 29,)	 -11 25 20 1 	1 13 52
2	 -	 )	 ) I	 )^, 1, 1	 ]	 2	 )	 2 1 ), •, a S b	 S I, 7	 ! 11 	 &S
}	 m u •	 b^ ! 1 ♦ b 6 6^ 6 b, 6 7 9 10 13 12 171 1•^ 14,111 1 61• O	 T ]l
a M m ...	 ] I	 21 21 1	 Y 1	 1^ 1	 2	 )' !	 6	 S i !	 l I Ti 6 S	 S	 S'2i 3 ] 2 26

1 11	 11	 •	
r	

11	 ^1	 lj	 1'	 1^ Y 	1	 1	 a^	 ]	 )I	

2
•^ 	 22il 	

11	 1 1

1 1	 1 
6	 .o	 I	 .	 1	 1	 •'1	 ^j	 1'	 «	 2,	 l i	 2	 .	 1

26121 2O' 19, 2^0 II I 	Il; 20. 2)^ )J )9 at, S6- 6}, 71 6̀9iS^ 5 7y 50 34 i71 3711

REPROI)UCIBiI,ITy OF 4y, ;
ORIGINAL PAGE IS FWJJ

A-77
WDL-TR8457



\ s	 1	 ^!
^ 	 \	 ^^	

11	
ij^	 j •^

	

_	 o

	

1	
_	 "^	 O Igo	

0^I

1	
1r s^. __	 i	 {I E	 '	 t	 a 7

	

4	

'1	 ti t	
t	

^1 c•	
ri'	

^
" - ^	 -	 1	 i,	 ^^.	

/	 .111,	
a	

t

+ 

w" —	 C	 1	 -'tea	 -	 (	

Ij•	

i	 `	 ' 1^	
t	

o

cn

!-1	 ,Fl	 Y	 !	 t.	

--	 o	
t	 ^oiGLi	 i	 _

is	 [	 .J-'1 ^^ !	
r	

^_.I--	 z
0

E-4	 i
a	

^	 •• i^
	

f	 I	 ^	 !	 le•	 ^	 o	 ti

^d+ 	I 	 I	 o	 ^i.

A	 of	 l	 ^' I	 j	 -	 ^	 o	 ^	 _ i^o 	^^

.

M	 I	 ^i

^	 I	 I	 I	 I	 I	 (	 +	 _	 _	 _	 tI -

_ _

QI
	 __ -_	 -. ---L __ __ -	 _ ;_•I	 1 _l.0 o O	 I	 r.	

/mac 
_—__ ___. __i

I	 •	 ^	 i	 i , ^•	 /	 ,̂^*t^	 i
f	 i	 3e9 •^ —

W ^
W, 0

._T	

i•	 n: ^R• 11	 •r	 ^:^^

I`• ; 
	 i	 1	 --rte	 --.

r	 r	 ^'

Figure 7-1

WDL-TR8457
	

A-78



. v

ui

N W
U-0 z

^ti~	 J
W

C)

1

L-- i-z

tn
Q)

C) 

z0
El

I	
t	

I I

^ OZ

FIF u v e	 2

h7RODUCIBMITY 4-)T'

WD L -TH 8 1 F) 7	 A-79

	 10RIGLINAL PAGE IS



fir w'pom

'.^ I

NORMAL MONTHLY TOTAL PRECIPITATION (Inches) EASTERN UNITED STATES
For Selected Stations

W

2:: —T—	 3-

S S
INTERNATIONAL FALLS	

47:

C"'IT40

0 j	 j 5	 r	 S

	

S AII.T STE. 
btAR-	

':	
S

" ROS6TO

4

a-
INSEAPOL 

I 
S	
-p3-5-

27	 S N^ 3-	 .r	
00510^

4_-	 DETROIT- --

	

2	

itSYORK	 4.•o

4-

CHICAGO	 3-j
	

i

2-	
p,TTSBVR'511'	 S	 I zl-

i V 4 1
A

KANSAS ;ITY

LEXI NGTON

57:
4

"m' Car	
13	 5--	 ^nRFOLV

^1	 r J ` J S N
XEMPHIS

J
OLIME ROCK	

COL'-	 A,
J

^7::

	

kTL-%	
0

14

7-

J
5-

Oz	
5::

HOLSTON	
4:

y J 5	 )A	
6-

-,'EV ORLEANS

0 F	 F X
G L F

0 j

	

j	 j S	 III AYI
TAMPA

F es .	 •=[• r	 .e•L+%	 5. tl. .•e^ •• •..1 .1 ]•	 ^. •SM	 •I.^ u
	

p

S

Based OD 30-year Period, 1931-60

Figure 7-3

WDL-TR84Z,7	 A-80



NORMAL MONTHLY TOTAL PRFIrIPITATiON (Inr;hes) WESTERN UNIT IED STATES
For Selected Stations

^__^

l/ 1-J
^	 ^	 / 1 	 j-	 ._ -	 f1	

Al

_
1 	 /	 J y. `. 	 1	

,'IrI
1__..... £^KAi£ S A \	 J +1A f Ate A	 • L4 J 3 A	 ' 0111!/	 4

'/	 s^^^ S x r̂  1_ ^n	 !	 i-'	 J c u J s A

-_	 ^I NA	 A	 J	 ;^ ^ J

	

^	 _ ^^i	

I2_•	 R Y J	 - R C J S	 I
i

_	 J	 LA^L•EA '^	 )_1D1D C1 T7	 ^ ,

1 =	 ^ 1 ^	 1 	 J Y C J S%
II1J,, ,^  M''RDx

^ 	
_ 

II SA-I r	 _ ,	 1-	 _

	

A	 G11A ^'

- 1 — !	 DCxYEt	 V-`
ys

1	 is 	 '_	
xncc cln —	 ^^^

' n	 rZA-	
f

	

)1	 •	 ^^	 I	 2 
	

--

	

/	 / 1

' ]:	 1,	 r111
/
r
^I	 J1

= 1' J S143 A+Gc^CS , Pl/1t .s,.	 1EG^i l..f	 A-'c, F(T•E' 

	 .4
	 11 'L1--MA -: TY

!	 ^	 °'1pt^ j A ' !	 _	 J l' ^ J s S	 J_	
I '

	

AfASI ♦ 	 c..-_+.VIII.. r
%"'^_ 	 -	 1	 D	 ^^

	

L >•.¢^o	 I	 _	

! li	

}	 FT. .ORTl

-I	 fit
, I ^^	 s^ ^ _	 ^	 _	

\lo	 I '\ J r u J S S I _
^r•,I^^it,, A	 1	 " n1a Rto	

J

I	 Fart..► .	 i .1	 y c

I

lj	 -1
J

Sys l ..11

^ —_—	 ^{p ^^ 

77I^Ill^i hill	 fJY,^, ^^' FII.'-/	 1	 ^`'^ \\ \\1	

f 
^

r
^s	 ^	 1	 I.^

I ^
- - - - ;^^^^t,^^► II^ t ^- _^	 ^-- - 	 --	 1,, ^	 Lih--	 = 1 1 1 •' i1I^^^ ,	

;	 ^i

ti ° F ^'rf _ _-` °^^ ^ nArAii Hilo;^

Based on 30-year Period, 1931-60 ---	—	 --

Figure 7-4

.'.•DL-T118457	 A-81	 Rj-',PRnhi1G1Bi1,M OF` 'fTHF,

ORIONAL PAGE U PO0B

1



T,,-t
Nm

'^ a

/̂l3
`_
^ Is6F

41l

i

`	 rA /prt►o'!

^^ 2a
3 	 ;n rnauonal Falls

a eu , v...,•

DulythI 

Figure 7-5

MEAN ANNUAL PRECIPI•.ATION

Su. NSarie

P4^	 152

^ ^ J	 ^^e	 ^	 ^ ^ -', alo	 C

J --	 -- \ -,	 I	

^2e 

a ^	

NJ	

xe

	

(	 ze	 rsin ¢• 	 ze	 la^ ^'	
J

	

r36	 1 ll etroit fL	 111

	

Dunu4ueA-	 ------"-{	 j l !	 i' 32' • /	 l ;

f Chicago' 36 
r	 Des ti inn	 ^x r^^a^o1^ \	 (t`r^	 urlr a t arrisb Ci

'1	
Gu	 U

Columbus «

1	 r36_	 I	 , n^1a^•3j 0151 	 r /^	 !"Jf'.:	 J1,D Z f

	

_ 1, j^	 ^ $ nng : ield . a	 •	 % ^ ( 

l 
\ / rl,^^J

-i	 \	 f	 raa , _.\^^\ :.	 ^, l
{52^^ r'ti	 '1; L;4

J	 iv``Kansas t v	 1	 ^, J ^!,/t_ CFa r, sV Ic 

/
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For comparison, it may be of interest to note that the world record

rainfall for a 40-year mean of 460 inches 38 feet per year occurs on Mt.

Waialeale on the island of Kauai, Hawaii.

7.1- 	 U. S. Climatological Model Zones

For the purpose of a general satellite system trade-off study it is not

practical to select and consider all individual earth station sites. Instead, it is

desirable to divide the coverage area into general rain model zones. The model for

the cumulative time distribution of rainfall rates that we are using is that due to

Rice and Holmberg (Ref. 12). Consistent with this model, we have used the

geographical variations of the parameter Beta and the parameter M, the total

annual average rainfall, to determine the rain model zones. The division of the

United States into these zones is shown in Figure 7-7, and the parameters Beta and

M for the zones are given in Table 7-3. The variation of Beta over the United

States is shown in Figure 7-8.

Table 7-3

Average Rain Statistics for U. S. Rain Model Zones

Rain Zone Number	 Average Annual Rainfall 	 Thunderstorm
Inches	 Rain to Total

Rain Ratio

1	 10 0.20

2	 24 0.20

3	 40 0.25

4	 56 0.40

5	 64 0.50

6	 100 0.07

r
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Please note that Rain Zone 1 has mountain areas with pockets of much

higher precipitation than the average of 10 inches per year. This will have to be

considered when individual earth station sites are selected. Also noteworthy is the

fact that the high rain rates in the Northwest produce a different attenuation

distribution from the equally high annual rates in the Southeast, since the

thunderstorm to total rainfall ratio in the Northwest is much lower than in the

Southeast

The resulting cumulative time distributions of rainfall rates are shown

in Figures 7-9 and 7-10.

The relation between rain rate and specific attenuation is that given by

Olsen, et. al. (ref. 4). The values used are given in Table 7-4.

Table 7-4

Values of a and b in -R b

(Laws and Parsons P_ein)

Frequency	 LYE	 LPP

GHz	 a	 b	 a	 b

18 0.0474 1.129 01.0545 1.095

30 0.152 1.061. 0.225 0.964
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The final factor in converting from a distribution of rainfall rates to a

distribution of attenuation is a function yielding values for the mean effective path

length through rain. -his poses a rather difficult choice, due primarily to the large

var i ations between the results of different experimenters. We have chosen for this

report to use the method disclosed in CCIR Document F5/003. This method

involves several components, among them the height of the zero -degree isotherm,

the elevation angle at the earth station and the rainfall rate.

The complete model produces cumulative time distributions of attenua-

tion. 'These are shown in Figures 7-11 through 7-22 for the six climate zones.

These climate zones do not coincide with those in CCIR F5/003; we have combined

our division into climate zones with the CCIR method for estimating attenuation

from rainfall rate. An elevation angle of 35 degrees was assum • ''"'is is a fairly

pessimistic value for the Southern U.S. Somewhat pessimistic values were also

chosen for the melting-layer altitude.

Also shown in the Figures are curves of attenuation distribution

produces; by other expressions for mean effective path length. The curves marked

"B" are based on the expression cited previously from Reference 13. This

expression was derived from data taken at Clarksburg, Maryland using the Comstar

beacon. The curves marked "A" are based on data presented in Reference 33. The

latter is very close to a function derived by Ippolito from data taken using ATS-5.

In the latter two cases, the elevation angle at the earth station is not explicitly

taken into account.

Several points of measured data are also shown in the Figures for

climate zones where measurements were tU-;:cn. Particularly in Zones 4 and 5, but

also in Zone 3, the measurements tend to lie below the curve computed vising the

CCIR formula. It is likely that the CCIR formula for mean effective path length

tends to overestimate the path length or the path average rain rate at the higher

rainfall rates that are significant in Zones 4 and 5. We are of the opinion that

further careful investigation will show that the CCIR estimate is too conservative

for high rain rates, and that the best estimate for the attenuation distribution will

lie between the CCIR values, and those of the other curves. 1 -.0wever, in order to

be conservative we have used the estimate from the CCIR paper in thi report to

specify the link margins.

^r;
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An additional source of degradation on the downlink at 18 GHz is the

use in sky noise during periods of attenuation due to rain. This degradation is

dent on the clear sky system noise ;em-•erature and is added directly to the

ed system margin, since t lowe-- the G/T ratio of the earth station. The

[se in system noise temperature is computeo as follows:

M = A + 10 log r Tsys + Tsky
Tsys

NI	 = —he total downlink degradation in dB

A	 = The downlink i,'.tenuation in dB

Tsys = The clear weather system noise temperature
in degrees Kelvin

Tsky is computed as follows:

Tskv = 1 - 10-A/10 T-	 r

Tr is the physical temperature of the clouds and
rain, generally about 273 K.
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SECTION 8

SPACE DIVERSITY

8.1	 Introduction

Space diversity has been used for a number of years in terrestrinl

microwave systems. In such systems it is generally used to combat degradations

due to ducting, rnultipath and other phenomena characteristic of paths near and

parallel to the earth's surface. The use of space (or "separation") diversity with

satellite links is primarily intended to combat high attenuation due to intense

precipitation. The basis on which the method rests is the observation that regions

of in°case rainfall are generally limited in geographic extent. This is true for

t(. mpernte climates. The physical separation of the satellite earth stations then

serves to reduce the correlation of such heavy : iinfidl at the sites. Some simple

means of choosing the better of the sites at any instant then completes the

diversity system.

8.2	 Background

A useful tool in the study of diversity systems is the concept of

"diversity gain", as developed by D. Hodge of Ohio State University (ref. 23). The

derivation of diversity gain is best illustrated by a figure. In Figure 8-1 the two

curves to the right arc the individual cumulative time distri!)utions of fittenuation

for the two sites operating individually. The single curve to the left is the

cumulative time distribution for diversity operation; that is, the better of the two

stations at anv instant. A.; shown, the distance between the curves for the same

percentage time is the diversity gain in decibels. Figure 8-2 shows some plots of

actual diversity gain as measured using ATS-6 (ref. 24).
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The diversity gain or advantage will depend to some extent on the

physical separation between the stations. At small distances, about 0.5 kin, the

degree of correlation of rain intensity between the sites will be too high for

diversity to be of help. Beyond a certain maximurn distance, the correlation will be

nearly zero, and the cost of interconnecting the sites for diversity operation will

become prohibitive.

Some experimenters have examined these aspects of space diversity and

have derived empirical expressions for the relationships.

8.3	 Diversity Experiments

A number of experiments have been performed to gain further

information about diversity operation at frequencies above 10 GHz. One of the

early attempts to quantify the benefits from diversity was that of Hogg (ref. 25).

The method used was indirect, in that instead of attenuation measurements, a set

of extensive point rainfall measurerne its were taken and transformed to attenua-

'ion figures. The more important data is that which characte r izes the rainstorms

themselves. The correlation between Faths at right angles was found to be low at

the higher (above 20 mm/hr) rainfall rates. The size of rain cells varied from about

0.5 km diameter at 100 mm/hr to 1.5 - 2.0 km diameter at 60 mm/hr, thus tending

to confirm the hypothesis about regions of intense rainfall.

Freeny and Gabbe (ref. 9) also found that the regions of high rainfall

were physically limited. Reference 9 includes several isometric time plots of

rainstorms passing through the Bell Labs rain gauge field. These show that

although correlation of rainfall at right angles to the stoiT' ,̂ direction is relatively

high, the correlation along the direction of the storm's travel is very low. This

would seem to Indicate that the diversity stations should be located along a line in

the direction of the prevailing winds. A more important consideration is that the

stations be located along a line nearly et a right angle to the peth toward the

satellite. This provides that the paths from the earth stations to the satellite will

traverse physically separate regions of the atmosphere. If the two corsiderat ions

can be coribined, so much the better.
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A 16 GHz, 3-radiometer diversity experiment (ref. 16) found that a

separation of 2 miles was not sufficient to give a worthwhile diversity gain at this

frequency. However, separations of 7 and 9 miles gave good results on the order of

5 dB at a single-site fade depth of 8 dB. See Figure 8-3.

Hodge of Ohio State University has determined an empirical relation-

ship between the separation distance, fade depth and diversity gain based on

measurements made using ATS-V. These measurements were taken at 15.3 GHz

(ref. 23) and are shown in Figure 8-4. This relation is as follows:

G = a(l-e-bD)

where

G	 =	 Diversity gain in dB

D =	 The site separation distance in km

a	 =	 A-3.6(1-e-0.24A)

A	 =	 The single site attenuation in dB

b	 =	 0.46(1-_-_0.26A)

Data taken using ATS-6 indicated that the diversit y gain was not

strongly dependent on frequency. The optimum separation for the diversity sites

seems to be about 8 to 10 km. This is consistent with the rainfall data recorded by

Freeny and Gabbe. In their analysis they found that the empirical probability of

simultaneous rainfall at a given rate at two stations reached a minimum at about 8

to 12 km separation. In particular, the minimum was lowest and most pronounced

at the higher rainfall rates. See Figure 8-5.

Data taken at the University of Texas (ref. 10) using ATS-6 are shown in

Figure 8-7. These were measured at 30 GHz. The diversity gain is

calculated in the manner already presented. The results are fairly consistent with

those of Hodge.
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Figure 8-7
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Figure 17 Diversity gain as a function of single
site attenuation.

Source: (ref. 10)

8.4	 Diversity 'V1odel

Judging from the time distributions of attenuation at ;8 and 30 cliz, it

is apparent that space diversiiv will be needed in order to use these frequency

bands. There is still a lack of experimental data; however, that which has been

taken tends to he quite consistent. The rointion derived by Hodge is probabl y the

hest working formula currently available. A family of curves for diversity gain as a

function of single-site fade depth is shown in Figure 8-8. The separation distance is

the parameter varied.
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8.5	 Discussion of Diversity Model

The diversity model presented in Section 8.4 should be used with caution

for the reasons stated below:

Firstly, the data from which the model is developed does not include (as

far as we are aware) any extensive measurements from regions which experience

primarily the "widespread" type of rain. The Pacific Northwest is one such area.

Little or no work has been done in such regions, insofar as actual measurements are

concerned. Generally speaking, this may mean that the model is net appropriate

for such a region; we have no firm indication. However, a comparison of the values

given by the Hodge model with those given b y the "squaring of probabilities", or

completely uncorrelated rainfall analysis, shows that for such a region, the ]lodge

model is somewhat optimistic at 30 GFlz. Tables 5 and 6 show this comparison for

the six rain model z3nes. Zone 6 is the region of interest.

Secondly, the model ,yields rather low values for diversity attenuation

even for quite high values of single-site attenuation. Typically, values of single-

site fading of more than 100 dB are reduced to less than 10 dB. While it is quite

likely that the area of precipitation that produces a 100 dB fade is very small

(much less than 1 kilometer in diameter), it seems somewhat less likely that the

storm producing such precipitation would have a range of significant heavy rain

that is much less than 10 to 15 km in diameter. However, this is somewhat

conjectural, since no 100 dB fades have been measured that we are aware of.

Additionally, the plots of diversity gain made from actual diversity experiments,

where the data is known to be free from artifacts, do show the unbounded increase

of diversity gain as the single-site fading increases. Several studies of

thunderstorm size have found the sizes to be quite small. One study concluded that

84 percent were less than 7 miles in diameter and that the largest observed was

only 9 to 10 miles across. The existence of large "general rain" storms consisting

of a large number of intense cells were discovered in a study of New England

storms.	 This effect would likely limit the possible diversity well below the

theoretical maximum.

\\ DL-TRs 157	 A- 1 1'1



Our conclusion is that the Hodge model is usable for single -site

attenuations of 20 to 25 dR or less, with some precautions in areas such as the

Pacific Northwest. The values given for single-site fades above this level are not

confirmed; however, no model exists which has any more validity.

It will be necessary to obtain additional diversity measurements over

longer periods of time, before transmission margins with site diversity operation

can be determined with certainty. Of particular interest is the question of

diversity gain under conditions of widespread rain in various rain zones. Until

additional diversity data is obtained, it is recommended to increase propagation

margins in satellite systems design by several dB relative to the calculated

margins.
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KCTION 9

VALUES OF ATTENUATION FOR SELECTED U.S. CITIES

V., have computed the attenuation value.; for a list of selected U.S.

cities. A computer program was written for this purpose; the values are printed in

the format illustrated in Figure 9-1. The acturil values predicted by the model are

shown in Table 9-1 for a satellite position of 100 degrees West longitude, and in

Table 9-2 for it satellite position of 80 degrees West.

The predicted vlrlues of attenuation using space diversity operation

were also computed for the sarne locations. These are presented in Tahles E-3 and

9-4 for satellite positions of 100 degrees and 80 degrees, respectively. As >inted

out in Section 8.5, it is recommended to add an additional transmission Iii rgin of

several dR, in order to allow for present uncertainties in the diversity model in a

conservative manner.

The calculations are base —d on the CCIR model, with the relevant

parameters properly adjusted for each city. The diversity values are computed

using the model of Section 8, with 1.9 assumed separation of 8 kill between diversity

locations.
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Table 9-1

Attentintion Vnlues. for Satellite nt 100 Degrees West
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.9 !J r4 r4	 - :4 :1

lrvr. 1. 5 "Y. 1% "I.	 !_15 0%

NEW J

4. 13. 2 3. 1 j 7 .

L 3=	 F L E t 7.3 10. c I_.7
3. 4 4.6 7 .

6 10 . "I 13:1 J.'5

1 .?. 3 1?..	 -I
7 .5 J4. 1

F , H I LHDE LPH I H 7 13. 2, 1 7 ^J

I . 5 Iz 4.

T PO I T
7.

4

4'1 1

4. 15
1 7

4 1 N ,-7 T 311 D

2

7

1:3	 T 3'1

I 1	 7

.4 7'-1	 T D'i

FT.	 ' -13F-'7H D

\VIj	 m457	 A-.2()



Table 9-1, Continued

Attenuation V q lues for Satellite at NO Degrees West
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Table 9-1, Continued

Attenuation Values for Satellite pit 100 Degrees West
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I'v,ble 9-2

Attentintion Values for Satellite at 80 Devrees West
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Table 9-2, Continued

Attenuation Values for Satellite at 80 DeLrrees West
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Table 9-2, Continued

Attenuation Values for Satellite at 80 Degrees West
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Table 9-3

AttefILIRtion Vnlues Using Diversity for Satellite tit 100 Degrees West
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Table 9-3, Continued

Attenuation Values Using Diversity for Satellite at 100 Degrees West
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Table 9-3, Continued

Attenuation Values Using Diversity for Satellite at 100 Degrees West
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Table 9-4

Attentintion Values Using Diversity for Satellite nt 80 Degrees West
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Tnble 9- 4, Continued

Attenuation %'.g ltje ,, Using Diversit y for Stitellite of 80 Derrees West
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I'tible 9-•, Continued

Attentintion Values U s inff Di v ersity for Satellite at 80 Degrees West
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SECTION 10

ADDITIONAL CONSIDERATIONS

10.1	 Distribution of Earth Stations Among the Rain Zores

The approximate distribution of potential earth stations among the six

rain zones is assumed to be based on the percentage of the U.S. population residing

in the various zones. This data is presented in Trible 10-1. A more detailed

examination could investigate other factors affecting the locatior, of earth

stations; such as GNP/Capita and existing terrestrial fa( ilities, however, due to the

relatively large size of rain zones, variations in such faetors will average out to

sonic degree. Thus, as a first approximation the distribution of earth stations is

assumed to be identical to the population distribution.

Table 10-1

lation and F.arth Station Distribution

10ain	 Perecnt
"Lone	 of Population

nnc: Earth Stations

l	 9.9
2	 21.5
3	 47.5
4	 16.0
5	 3.5
6	 2.0

10.2	 Comparison of Methods Used for Attenuation Calcul%ilions

In Section 7, we presented curv y-- showing the cumul++tive time

distributions of attenuation. These curves w ► calculated using three different

methods which were labeled "A". "13" and CCIR. In addition, measured data points

were shown on the graphs. There is it great deal of variation among the three

methods, and it discussion of the reasons for these differences is given below.

XDL-TRK-1 ;7	 A- 1:32



The primary difference rimong the three methods is in the computation

of lire effective path length. In the case of "A" and "R", a simple curve fit of data

taken h+. a single elevation angle was taken, which produces a path length inversely

proportional to the rain rate. The coefficients of the equations are quite different

in the two cases, however, resulting in substantially different path lengths. Since

the total attenuation along a path is directly proportional to the path length, it is

obvious that this will result in considerable differences in the attenuation level.

The difference., are due to different basic data reported in References 33 and 13.

The curves labeled CCIR, however, were prepared according to the method outlined

in CCIR Document F5/003. This method takes into account riot only the elevation

angle but the height of the cloud tops at which rain occurs, which generally

coincides with the height of the zero degree isotherm or freezing level. In addition

there are several other experimentally determined factors which generally result in

an increase in path length. The CCIR curves produce larger values of attenuation

in almost every case than the values produced by the formula based on Reference

13. In evaluating .he CCIR method, several assumptions that were hppropr-iate to

the contiguous United States were made, rind so the values given for the various

rain zones do riot coincide precisely with the values given for specific cities, even

when those cities ma y lie w;thin the rain zone. This is due to the effects of

differing latitude and elevation angles to the satellite on the parameters of the

CCIR method. In summary, the differences can be as-ribed to differences in the

datfj leading to the calcrili+tion of effective path length.

In several of the rain zone-,, the CCIR model produces rather 'sigh

values of 30 Gllz attenuation for sub! tantial percentages of the time. In tLe case

of Zone 5, for instance, the 30 GlIz attenuation is around 50 dI3 at one-tenth of one

percent of the time. It may justifiably be argued that figures like this do riot F,ave

much meaning because it is not realistic to provide a 50 dB margin, for instance, in

order to make a system that is available for 99.' percent of the !-me. in fact,

since the measurements taken by various experimenters do not extend to values of

50 dB and above, it could equally well be argued that the CCIR method is not

particulnrly valid at these high levels of attenuation. In either case, the values

serve primarily as an indicator that some means of providing additional availability

will have to be found other than merely increasing the system margin, sinee in the

case of such ltrrge attenuations this is not practical.

%D1.-TRS1.,7	 A- I:ta



10.3	 Variation of Attenuation During the Dny, Month and Year

.t be expected that the attenuntion experienced due to

precipitation would show a cyclical variation depending on the time of day. This is

in fact the case; however, the ovele changes from season to season as the

predominant type of precipitation changes. In the summer months, the worst tirn!e

is from mid-afternoon to ev^_ning (local time). 	 This is due to the frequent

occurances of thunderstorms (with their associated high rain ;rates) during this time

of dRV.

Figure 10-1 shows the vnrintion of attenuation during some measure-

ments made at Clarksburg, Nlfirvinnd using the Cornstar beacon. 'fhe -1-hiiracteristic

shows two peaks, one centered at about S a.m. local tirne and the other at about 4

p.m. The author's explanation notes that the morning peak was due primnrily to the

fall and winter months, while the afternoon one was due to the summe r months, as

expected.

The U.S. Weather Bureau has published data on the frequencies and

intensities of precipitrtion for each hour of the day and each month of the ;year.

"These are availahle for 138 weather stations in the U.S. It is possible to estimiVe

from thern the approximate worst times fir precipitation attenuation outages.

As it further step, we have constructed a simulation of precipitation

attenuation based on some of the data available to us. The essence of the

simulation is as follows. For a given hour of a typical day in it given month, the

probability of rainfall is obtained from the aforementioned heather Rurenu data.

A random number generator is used to determine whether i t. is "raining". The

probability distribution for rainfall amounts in 1 hour for that hour is also sampled

to determine the nmount of "rain" that "falls". A simplified "storm profile" is

constructed from this sampling. The attenuation is then computed from this profile

of rain rates. The "time" in the simulation then advances to the next hour and the

process is repeated. The parameters used are adjusted for the particular month

under consideration so that the prevailing "weather" conditions will chhnge in a

realistic manner throughout the year.
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Source: Harris, J.M. and G. Hyde. "Preliminary Results of Comstnr 19/29 GHz
Beacon Measurements at Clarksburg, Maryland," COMSAT Technical
Review, Volume 7, No. 2, Fall 1977, pp. 599-624.

The simple "storm profiles" used are shown in Figures 10-2 and 10-3.

We did not attempt zu use a realistic model for this first approximation. However,

models which more closely approach reality are available, And actual data could be

used to construct others.
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Typical time series plots of the simulation results for Chicago, Illinois are

presented in Figures 10-4 and 10-5. Figure 10-4 is for the month of January -71

Figure 10-5 is for July. The values of maximum attenuation at 18 GHz in each ho

of the day are plotted versus time. While it is more likely to rain in Chicago in

January, it is more likely to rain heavily in July. This tendency can be seen in the

Figures.

This data can be summarized in the form of outages if we select a rain

margin, say 5 dB at 18 GHz. In this case our Chicago simulation results are shown

in Table 10-2.

The percentage of time figures are rather high, but this can be

attributed to the very simple storm models used. Of more significance is the

number of occurances. A large dumber of low level rain events are also indicated,

and the attenuation from these is generally less than 3 dB.

A more elaborate storm model is required in order to provide simulation

results with more detail. Such a storm model would require considerable study and

simulation work.

18 GHz
Margin

(dB)

2.5

5

10

Table 10-2

Storm Simulation Results for Chicago

Month	 Number of	 Total
Outages	 ;Minutes

Outage

Percent of
Month

Availability

January 2 70 99.8
July 18 595 98.7

January 1 30 99.93
July 10 275 99.4

January 0 0 100.0
July 3 65 99.8
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APPENDIX( B

PROGRAM COSTING AND COSTING METHODOLOGY

1.0 INTRODUCTION

The cost, gcncratcd during the study and presented herein :ire based on parametric models

developed by FACC. When intcgi%iled these models )rovldc:

• Spacecraft and spacecraft subsystem wcirht

• Spacecraft F.01 and BOO po%%cr

• Spacecraft on-orbit weight

• Spacecraft launch \%eight

• Spacecraft nonrecurring and recurring costs

• Transfer orbit s%stcni and its costs

• Space Transportation Svstem (STS) (Shuttic) costs

• TT&C system costs

• Terminal subs ystem and unit costs

• Terminal quantity discount costs

• Total program costs for it 	 base year

• Total program costs spread over program life

2.0 GENERAL COSTING APPROACH

The general costing approach objective was to provide s ystem costs and cost sensitivities

as in input to overall program costing for providin g defined communications services. The re-

fore, costs generated by the systems contractors \%crc defined for a given hale year and formed

a basis for determining cash flows and revenues required to provide the different slated

categories of' user demand.

The general costing approach used by FACC for both the trunk'ng and direct-to-user

DTI 1) systems was to define a baseline s ystem and its costs and then generate cost deltas

for the various alternatives considered in order to establish it least a l'irst order cost optimiza-

tion fur a given service. Basicall y , the steps in this process were to
u. Dcfine baseline systems:

1. 1 runking - FDMA/FI)MA, TDMA

2. Direct-to-User - TDMA: I DMA/ FDM
h. Use I= ACC par..nlciric estimating models:

1. Generate spacecraft and terminal paranictcrs.

2. Use modified SAMSO model for spacecralt custini

Z. Use FACC terminal costing model.
Make basic parametric changes and identif y cost deltas:
1. R f power

2. Number of spacecraft heams

3. Number of rf' channels
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WDI 1H8457	 B 1	 Communications Corporation



-t. I; II ra tes

A siniil,ir approach was followed for the earth Ici-min:lls. The basic costing ground rules

used Included:
a. No year dollars; base year 1979

h. Trunking - toi.il program costs only

c. Direct-to-user:
I . I otal program casts

?. F.stiniatcd cnd-to-crid costs

d. Spacecraft:
I. Three 11011 models plus refurbished prototype

'. Three launches

1. Tcn-scar operating period

-l. Space I ransportation system launch

5. Three-\cm, progrlm to first L• runt h

c'. Terminals:
I. Iif'tcen- year 111'c, III- year operating period

?. Land, utilities, roads, f'criccs, auxiliary ;na y%cr, radonies/wIndscrecns not Included

3. Mamnium production discount qu: , my ol' 1110 utiiis for DTli system

4. Thrcc- year program fur first production quantity

Although cstint;Itcd cnd-to-cnd costs fur the OTU s ystem were examin•.d, the results were

suspect and no detail is provided.

2.1 Spacecraft Cost Model

The spacccialt Cstrfil ' iting model predicts spacecraft weights and costs based on derived

factors and the use of :I modified version of the same spacecraft - ost model. The progrn+m has

been designed to estimate spacccralt si/cs :Ind costs and the effect of increasing or decreasing

communications capabiht}' on spacecraft suc :Ind cost. The niodcl use is hinitcd ro communi-

cations pa\loads (or p:n load ,, that ;Irc equivalent) for c.tiniming sire and costs Athough tilc

spacccrafl parametric estimates can be used fur si/ing an t\pc of spacecraft. Iurtl cr the

model is hinted to three-axis spacecraft and the use of the `;pace Transpwtation tisst^m as

a launch vehicle. Cost estimates generated are defined as rird-of-provr!»t sh,,uld costs and

have a 95' conl'iticnce interval of' approximatck 	 to +14'; of the predicted rusts.

2.1.1 General Model Description

I : igurc 11-1 depicts the general pro.v rant IIou of' the nwdcl, \%hich consists of four major

routines.

2.1.2 Orbital Parameter Generator

Through the use of simple hcplarimi formulas. AV ' s are estimated fur the dcf'incd space-

craft orbits. An STS launch ^chlcic is assumed starting Front a parking, orbit of 160 nrti

e,.Iwudc ;It :I _'X 5° inclination ! I :astern Test l0rive) or ^5' inclination (\% c.tcrn Test Mange).

2.1.3 Spacecraft Parameter Generator

1'sing the pa\1o.Id "right ;Intl p m.:r :Is inputs, the model genci-mcs estimates for:
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Figure B-1 Spacecraft Cost Model Flow

a. Structure W elpht
h. 'T"1- &(' Weight and Po\^cr
c. Atti:ndc Control \\ eight :tnd Po\%cr
d. Propulsion Weight
e. Flectrical/Mccimnical hiic^ration Wclght
f. Thcrinal Welpht
R . I-Icctrical Po%%cr Weight
h. Nunibcr of cells in the :irr,t\
i. FOI. & BIII Pot kcr icyuinl,\)
j. On-Orbit Fuel Weight
k. Bus/Spacccr,dt On-Orbit I)r y and \\ct W'eipht,
1. Spacecraft I ;lunch W CiP-ht

In addition. the Iran,fer orbit ,\ icin is predicted

2.1.4 Spacecraft Cost Generator

The c,tinimcd spacecraft %%ciyht, and pov-cr are rearranged to fit the SAMSO
Cost FstimatinL, Relationship ((TR ) parameters, and Basic Cost ktimates at the ,ubN\,tcni

Icvel are generated u,lnv the SAMSO L'ITN. (omplc\ity factors and ucightcd complcxil\

factors are r`• • n gcncrotcd and applied to th e Basic 1 • ,tifnates to arrive At the cost estimates

for the deriveo shacccrah. Both nonrecurring costs (prlltotpe snd R&M and recurring costs

(first unit costs) are generated, including Management :End Suppoit, protot^pc rcfurhi.h-

nrcnt, and total sl:ace sepnWrIt cots Inciudini profit and on-orbit Inccnii%cs, trandcr orbit

s^,tcnT co,IS, and "'S cost,.
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II' tilt- user has ;tit of the spacecraft par.micicrs. the model cmi be used to pCncratc costs

onl\',

2.1.5 Trade Generator

Tradeoffs can be accompltshcd using dtll'crcnt ra\lo: ► d \\eights ; ► n ► i po%%cr. The nlodcl

rct:tins the initial computations as it baseline; checks to se: II the nC\\ pa\load can be

accon ► flit dated \cilhtn the cap.tbil"Ics of the haselinc bus; :old either computes \\ciglit!cost

(Icltas or recompute. :III spacecraft par.tnlcicrs and costs B.ised on the results of the trades,

the user can ^cimn or rcplacc IhC .torcd basclinr.

2.1.6 Technology Base

\\ Ith IhC C\CCptton of 111C cicctric;ll po\kcr suhs\stcm. the tc:hnolop\ base for estinlaling
spacecralt \ ► clghls is esseniMll\ Ihat which \\oukl he;ivailahlc fora spacecraft lauched in the
190-97 tin ► c period. Although sonic increases in the tcchnolog: b;tse can be anticipatcd

post-I')KS-X7, the\ %ould h,t\c to be rndtcal in nature for :t signilicmit difft-rence to f ► c scat.

I or the electrical po\\Cr suhs\stcm. t\\o Icchnolo g \ bases arc 1n:ludcd in the nlodcl' one for

1985-h7latlnch (up to 19,4) and one for I` KS+ launch I INh^). SignifiCant increase in po\\cr

pcnerating capabilit y ncr pound of po\\cr subs\stCnl \\eight is anlicipatcd to the post- I9X"

peri ► x1 \\ here an apogee motor capabiltt\ is included in the spacccr: ► ft, use of ;I hipropcll;int

s\stcn ► is factored into the nlodcl.

2.1.7 Cost Base

I he cos; h: . sc pr,n idcd in the nlodcl has been set in tcrttls of 197X dollars. ;\II computations

arc presented for that basC y ear. To Cstahli.h a cost Csimi.itC for base \c:trs bc\ond N78. the

generated cost rstin ► atr. must he spread and appropriate infl.own factors applied.

2.2 Terminal Cost Model

The Terminal ( ost Moklcl used for this stud\ consists of a .cries of algoriihms Cn)piric:lll\

dcrived b\ I \( C I licNe :ilportthms arc used to generate cstinmicki cost of the major terminal

harrl\\arc such as the antennas. 111' \ti, I \ \s, up, do\\n comcricrs, and n.odcn ► s. Inputs arc

gencr:tll\ the prcdon ► tncnt ticsigrt factors such IN antcnn:t dimucicr, I IPA po\\cr . I \ \ noise

tcntper:tturc, ctc. Oncc thC.e hard\\:Ire costs h: -x been gcncratcd using :t block diagrmll to

► ICterminc the number of each con ► poncnl, olhcr Icrnunal costs hest translator. Ircyucnc\

source, p1 mer suplics, racks, cic) are I *actorcd And summed a ith the hard\\arc  costs. 1 hi ,, cost
I

,, then aclorcd for insuill: ► tton, checkout, and site prepar,itton costs. 1 his latter cuss is

sun ► nlcd \%Ith tilt- prc\Ious rust. and a Ic:lrnin: cur\C factor is ,ippIlcd based on ilic number

Of terminal, to be m.inul';tcturcd

The costs generated h\ this, nlodcl arc presented in P)78 dollars and do not inclu(Ic peculiar

...lent costs such :ts dr\erstt\. Such costs plus India and oneoing spares costs, operation and

n ► :tintenance culls. utiiilics rusts, roads, buildtnvN. and I:tnd rusts 11111.1 bC added• based ot ►
the .\stem cyuil,mcnt 'capahilitics
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3.0 COSTING CONSIDERATIONS
The system configurations (as defined frorn it spacecraft standpoint) ex ,:ecded 20 in

number and included:
a. Trunking

I. FDMA
(a) Baseline - FDMA/FDb1A, 10 beams, I W power amplifiers
(b) Alternatives

( 1) 4 PA levels, 20 beams
(2) FDMA] FDM (3 carriers/power amplifier)
(3) t DMA/TDM

2. TDMA
(a) Baseline - TDMA, 10 beams, 10 W power amphl"iers
(b) Alternatves - 3 PA leve!s; 20 beams

b. Direct-to-User
1. TDMA

(a) Baseline - TDMA, 25 beams, 25 W power amplifiers, no frequency reuse:
(b) Alternatives - 2 PA levels, i and 3 times frequency reuse

2. FDMA
(a) Baseline - FDMA/FDMA	 i
(b) Alternatives - FDMA/FDM (25 beams, 80 W power amplifiers, 1 frequency

reuse)

From an earth terminal standpoint. configurations examined included:
a. Trunking

1. With diversity
2. \Vithout diversity

,h. Direct-to-User
1. Uniform/nonuniform distribution per beam
2. Total i;umber of terminals

A significant cost element in all system configurations associated with the spacecraft was
the transfer orbit systen1 required and th,- STS launch costs. The transfer orbit system
presented some difficulties in systems costing due to the limitation presented b y existing/
planned systems (SSUS-D, SSUS-A, (US), which severel y limits the spacecraft design in
optimizing spacecraft s ystems from an STS cost standpoint as well as the basic spacecraft
design. FACC has been working on a transfer-orbit s ystem design to overcome these limita-
tions.

The FACC approach is a bipropellant satellite propulsion module (SPM) that allows suing
transfer orbit propellants to a given spacecraft design. The basic design ( Figure B-2) has eight
tanks which accommodate 25,000 lb of fuel, and has inert and cradle weights of 2500 lb and
550 lb, respectivel y . The design allows far reducing or increasing 0c number of tanks
employed kkhen fuel requirements drop or increase. Thcrcf'orc, the other basic SPM configu-
rations have 4, 0, iO. 20, etc, tanks depending upon the total amount of' fuel required. Thesc
configurations are al,o shown in Figure B-3. The basic capabilities of' the various transfer
orbit systems are:
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TOTAL WEIGHT 28,050 lb

INERT WEIGHT 2,500 lb

CRADLE WEIGHT 550 lb

FUEL WEIGH! 25,000 Ib

NOMINAL I S	310s

M:th

Figure B-2. Satellite Propulsion Module Basic Consideration

Spacecraft On-Orbit

Weight (lb)

Transfer Orbit System (to sync equatorial) Cost (78 $)

SSUS-D Up to 1565 $ 2 5M each

SSUS-A Up to 2475 $ 5M each

SPM i4 tank) Up to 2930 $ 5M each

SPM (6 tank) Up to 4390 S 6M each

SPM (8 tank) Up to 5850 $ 7M each

IUS 000 to 5000 $131\4 each

It is noted that program costini ,_ doe ,, not include the technology development costs for the

SPM. STS costs M,W') were pcncrated on the basis of the late.t NASA STS cost allocation

formulas:

STS(' = I'/,F x 1.33 x S 19.? M x//-_

Where

PLF iti partial-load factor (spacecraft length in feet divided by 60 or spacecraft 	 in
rounds divided by 65,000, %%hichcver is great, ).
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4-TANK 1-STAGE MODULE

6-TANK 1-STAGE MODULE

TWO STAGE MODULE

THREE-STAGE MODULE

Figure Q-3. Off-Loaded and Staged SPM Configuration

IF is the inflation factor (8.5`7, used froin a 1975 base year).

Mother major system cost generated was the O&M cost associated with various c..rth
terminal configurations. Historicalh, terminal O&M costs, particularly whcre a large num-
ber of terminals are involved, have tended to exceed (sometimes grossly) init ;• l investment
costs. In this area, initial and replacement spares and on/off equipment maintenance costs
have proven to be the major cost drivers. Although there are several logistics support cost
models in existence (MIL DEPS and RCA PRICE for example), the reduction and applica-
tion of these models to the program was beyond the intended scope of the SOW. It is
important to point out, however, particularly in the DTI,' .s%,tern, that there is a nutjor tradeoff
involved between terminal MTBF and terminal O&M to minimize overall total program
costs. This trade may well indicate a significant increase in unit investment costs in :ichicv ing
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a high M'TBF to ofi'set ongoing O&M costs. For the purposes of this program, terminal O&M
costs were empirically derived and are summari/.cd below:

a. Trunk ing

I. Initial spares - 8`Ir, of total hardware
2. OEM/year

(a) Spares - 0.017`7 of total site costs

(b) Operation and maintenance - 0.068"; of total site costs

h. Direct- to-User
1. Initial spares - 8% of total hardware
2. OEM/year

(a) Spares - 0.024"; of total site costs
(b) Operation and maintenance - 0.048'7. of total site costs

Considerably more effort will be required in this area before valid total system costs can
be defined.

4.0 COSTING RESULTS
p resented in this subsection are the results of the costing efforts on this prograni. Some

general conclusions reached on the basis of the costing effort are:
a. Ignoring technology de^cloprncnt costs, TDMA configur,rtions tended to be lower in

cost than FDMA s ystenjs simpl y due to the number of rf'channels required bx FDMA
systems.

h. higher rf power in the spacecraft generally tended to reduce overall program costs.
c. A direct FDMA analogy to the TDMA baselnc DTU configuration exceeded STS

launch capabilities.
d. Although TDM in the spacecraft downlink was less costly than FDMA/FDM or

FDMA/FDMA for trunking, processing to individual signal bascband did not appear
to be a significant. driving program requirement.

e. Most spacecraft configurations fall outside of stand;rrd transfer orbit systems capa-
bilities.
In general, spacecraft Icngth tended to dominme STS costs, which tended to allow
increases in spacecraft rf power „ith a net decrease in total program costs.

g. Major cost drivers in both systems tended to be:
1. Number of spacecraft beams

2. Number of rf channels per beam

3. Spacecraft rf power

4. Earth terminal I I PA power
5. Number of earth terminals (primary effort was O&M costs)

4.1 Baseline Configurations

The follo^king paragraphs present the baseline spacecraft and Bart` tcrni l m l costing
parameter; and costs for the trunking and DTU systems. Costs presented are +or nonrecurring
and first unit costs. Included for the spacecraft are prototype refurnishmcnt costs.

4.2 Spacecraft

Tables B-1 and B-2 present the estimated spacecraft parameters and costs for baseline
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trunking FDMA and TDMA spacecraft. Results of basic spacecraft trades for the trunking
system are presented in Tables B-3 and B-4. Estimated spacecraft parameters and costs for
the baseline DTU system TDMA and FDMA spacecraft are presented in Tables B-5 and B-6.
Basic spacecraft DTU trades are shown in Table 13-7.

4.3 Terminals
Trunking terminal estimates and trades are shown in Table B-8 Hith DTU terminal

estimates and trades shown in Table B-9.

4.4 Notes
u. Cost and cost deltas shown provided the basis for trade results shown in the main body

of this report.
b. FDMA/FDMA estimated spacecraft configuration for DTU exceeded STS weight

capability so an FDMA/FDM configuration was baselined instead Reference -fah;.-
B-5.

c. Reference Tables B-2 and B-6. Costs shown indicate constituent parts of total space-
craft program, eg, for three spacecraft and refurbished prototype, baseline trunking
system.

1978 $

Nonrecurring Recurring X 1000
Prototype	 33,447.6 Prototype Refurbishment 09,851.6
Red	 38,836.1 3 flight models 80.274.3

Total	 72.283.7 3 SPM-4s 15,000.0
3 STSs 46.403.0

Total Recurring 151.529.0
Total Nonrecurring 72.283.7

223.812.7
Profit & OOls 32,481.9
Total Spacecraft Program 256,294.6

d.	 Reference Tables B-3, B-4, and B-7 Costs shown are deltas to baseline s ystem costs,
eg, for 2 W power amplifiers to baseline f'DMA/FDMA trunking systems.

Baseline Trade Results Total
Prototype Refurbish 09.851.6	 +0,209.4 10.061.0
3 flight models 80,274.3	 3,141.0 83.415.3
3 SPM-4s 15,000.3	 - 15,000.0
3 STSs 46,403.1	 - 46,403 1
Total Nonrecurring 72,283.7	 1,599.8 73,8835

223,812.7	 4.950.2 228,762.9
Profit & OOIs 32,481.9	 0.990.0 33,471.9
Total Spacecraft Program 256.294E	 5.940.2 262,234.8
v.	 For terminal trades, the same general approach is follo^ked as used for the spacecraft.

Nate: O&M is ratiocd on a per terminal basis as indicated in section 3.0 above.

6ii^'rl—^ Ford Aerospace &
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Table B-1 Trunking System Baseline Spacecraft Parameters
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Table B-2. Trunking System Spacecraft Cost Estimates
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Table B-4. TDMA Trunking System Spacecraft Trades
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fable B-6. Direct-to-User System Spacecraft Cost Estimates
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Table R-7. Direct-to-User System Spacecraft Trades
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Table B-R Trunking System Terminal Estimates

N1 q J	 G
0	

^-	 a0 t	 L v n r. ^,	 Q	 v^ Q'

)1	 ^ ♦ ^ ^^	 n	
M^	 h	 h	 r

^	 N

y ti ^^	 ^ O M `. M J^	 0 ^ a. >^ M'
N M. V	

M A	 T pI n \	 n M ,+
` ^
Cj a	 "'1 r	 '	 '^	

1 n

J	 J	 .'

N M p	 J S a	 c. O	 v	 y r	 1'1 ^1 o h	 v 0 tt^ !^

M r^

:s o 	 r

r r	 J	 c, o a, 4	 w	 o w	 c< r o1 ?
^^ n	 ^ T	 a^^

^ I ^ - r

r

I w .nl -v

E
r

0 -	 -
LL

co f lc

^ ^ r_	 y	 ^+ I ,. ti	 ao ,. N	 o r
E ,. v J ^I o	 n
Q7

^

T 'd M	 G

 

00 O c L. .,	 r^ Y C ^-	 ,^	 ?	 h

a r N	 Q' ^	 c	 .^ N n	 a .•	 -	 r
'Y

Y

-a

C6
m
6 14 C OC a	 v f'	 c ¢ bi a r	 ,	 F aG nIc	 d T^

N" o	 J	 y
_	 .,^	 J	 n^ v^l7j

!
^'a ^ ^ V'	 n

n v
rn	 J

--	 -
^	 J •.	 ^I T

C	 7	 "'

b

` •• P	 ^	 t	 ^	 ^	 ^	 1I

^
c

i

C	 r}	 o ^	d	 a	 j^a

t̂jr
i

a	 a	 x •
`^	 rr	 a
C

'	
I

[	 ^	 rr	 ++
L

^

t	 s	 6	 ^,

f^^	 C ,	 '
G

i	 O	 y n	 t

i-

Ford Aerospace &
0 17	 Communications CorporationWl)t TR8457

RF.YRODU('LBU,ra UP T1il:
nItl(JNAI, PAGE IS P'l w 1Ft



Table 6-9. Trunkinq System Terminal Estimates (Continued)
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Table B-9. Direct-to-User System Terminal Estimates

)s

^ o
a ^

yJ

if y

9

u ^

4

A
a	 D^

N

E	 L

Ul	
O 7

w u

cE

Fa-
E
°'	

u
(n	 S

T ^ d

4)

o^
aoJ wo
V

of	 a

n	 r

^o^ 7
co	 -D
f

T G	 ^
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