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TECHNICAL MEMORANDUM

RADIATIVE AND FREE CONVECTIVE HEAT TRANSFER

FROM A CONTA I NERLES S SPHERE

INTRODUCTION

Containerless processing of copper in an electromagnetic levitation
device uses the natural heating of the sample (generated by the induced
eddy currents) and cooling by a helium-argon gas mixture. Such a
system has been in operation in the Space Sciences Laboratory, Marshall
Space Flight Center, and significant undercooling during solidification
has been noted. 'Temperatures on the order of 2000 K were known to be
reached when approximately 20 torr of argon were present in the levita-
Lion chamber, and small amounts of helium (appro)dmately 100 tQrr
pressure) were known to reduce the copper sphere's temperature by
more than 1000 K. As the coolant gases were admitted to the evacuated
chamber through a valve at a large relative distance to the sphere, heat'
transfer could be considered to be accomplished by radiation and free
convection.

In support of this experimentation, a relatively simple mathematical
model for the predi(Alicn of heat transfer from the sphere was derived.
Primary conditions to be considered were the nature of heat lass, the
high temperatures and low pressures involved, and the restrictions on
direct experimental measurements of various parameters (sphere diameter,
emissivity and temperature, and gas temperature and pressure were the
only measurable quantities). Parameters to be varied in the calculation
of temperature were power input to the levitation coil, emissivity and
diameter of the sphere, and gas pressures.

DETERMINATION OF HEAT TRANSFER FORMULA

Power input (PI) to the sphere is equal to total heat loss through
radiation and free convection:

PI	 Qrad + Qconv

The heat transfer clue to radiation (Qrad) is



I

where ,

'T = Stefan-Boltzman constant = 0.56697 x 10. 8 V1/m2-K4

r; - emissivity of sphere

A	 surface area of sphere, em2

TI r sphere temperature, K

T 0 	 ambient gas temperature, K

	

The heat transfer due to free convection 	 conv) is

Q conv	 11cA(TI -- To)

where he - heat transfer ratio for free convection [11 or, putting h e in
terms of thu Nusselt number, Nu,

Rc - A(T1 To) l) Nu

where k - thermal conductivity of coolant gas and. D = sphere diameter.

Yugo [21 empirically determined the Nusselt number for a sphere
in air with heat loss due to free convection to be

Nu = 2 + 0.39 Or 1/4	 for	 1 < Gr < 105

where Gr = Grashof number. For Grashof numbers much less than one,
Yugo recommended Mahony's equation;

Nu = 2 + O (Gr 1/2)

where O = order of magnitude. By fitting a line to the lower portion of
Yuge's data, O was found to equal 0.25. In his work, Mahony dealt

l
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Milinly with Grashof numbers between 10 -3 and 10-0 [3).  Because the
Grosho(' numbers encountered fell between 10-3 and one, both formulas
were tried. No significant differences in results were found. Yuge's
equation was used Lacause of the greater documentation and certainty
in the Grashof coefficient.

The Grashof number was calculated in the same manner as Yuge;

Gr ^ 9D AT
Tovf

where

g = acceleration due to gravity

D = sphere diameter

AT = sphere temperature T 1 - gas temperature To

T o = gas temperature; 1 /T0 = heat transfer coefficient ( (3)
T1 To^-

of	 kinematic viscosity at film temperature 	 2

pf

~ of

where

p f = gas density at film temperature

u f = dynamic viscosity at film temperature.

PROPERTIES OF COOLANT GASES

Because no direct measurement of gas properties (with the excep-
tions of pressure and temperature) was possible, methods for estimating
the thermal conductivity, dynamic viscosity, and density were either
derived or adapted. All properties were found to be highly temperature
dependent, and the temperature difference T 1 - To between the sphere

I
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and the surrounding gas was very large, Therefore, sill properties
were evaluated sit the film temperature T f = (T 1 - T 0)/2, as
recommended by Yugo,

In the low pressure range .found in the experiments, thermal con-
ductivity k is not pressure dependent (4]. A temperature dependency
of Tf /4 was determined empirically from data given in McAdams [11:

T	 0.75
k = ko (0. 013) 273	 W/cm K

where

k  p thermal conductivity of specific gas at 273 K in 13tu/hr •ft -OF

0.0173 = conversion factor from Btu/hr-ft - O F to IV/em K.

This formula was weighted to provide more precise correlation with
McAdams' data for higher temperatures and helium, the major component
gas.

Since mixtures of helium and argon do not involve rotational and
vibrational degrees of freedom, Brokaw's simple empirical method for
calculation of thermal conductivity [5] could be used. Brokaw utilized
the fact that thermal conductivities for mixtures fall between the values
found by simple mixing of the component conductivities and inverse
mitring of the components:

X 1k 1 4. 1 .21c2 ., km	 1X1 * X2

kl It

where X V X 2 = mole fractions of component gases. Brokaw represented
the mixture conductivity as a combination of simple and inverse mixing:

km ^ 
gkSM + (1 - q) R,

where

kSM _ x1k1 + X 2 k 2

4
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and

11	 X2
kKM	 It 	 k2

Brokaw then fit this curve to experimental data of numerous binary gas
mixtures, including helium-ar,,n, for various molar fractions to deter-
mine the value of q. The value of q was found to vary with the ratios
of the gases [5]:

mole fraction	 0 .1. .2 .3 .4 .5 .6 .7 .8 .9 .95	 1.0

q	 .32 .34 .37 .39 .42 .46 .50 , 55 .61 .69 .74 	 .8

Brokaw's method was found to have approximately the same
accuracy as other methods studied and to be much simpler ,n form,
Therefore, Brokaw's method for gas mixtures was used in combination
with the author's formula for individual gases to estimate thermal con-
ductivities of the coolant gases.

Because the dynamic viscosities and the densities of the gases
were needed in the calculation of the Grashof number, methods to calcu-
late these properties were also needed. For the component gases,
dynamic viscosity u was taken to be

u = P o J-	 Poise

where p  = dynamic viscosity of specific gas at 373 K (P) , again by
fitting a curve to McAdams' data C1]. A pressure dependency was not
incorporated due to the high temperature and low pressure values to be
used.

Brokaw's method for calculation of viscosity of gas mixtures was
used, as recommended by Reid, Prausnitz, and Sherwood. Brokaw's
method is based on Sutherland's approximation

n	 XilliE

]=1 Yil

i
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Li t  
	

SIjAij

d

where

Sij = Sutherland constant

Aij = a complicated function of molecular weights of the component
gases.

Aij can be taken from a chart [6] or a graph [A] and, for mixtures of
nonpolar gases, 

Sid 
can be set equal to one. Thus, for mixtures con-

taining nonpolar gases,

n	 Xi
u M ni--1 XI. iii X

jol

This mixture formula has its best results for mixtures of inert gases;
overall errors for nonpolar gas mixtures ranged from 0.6 percent to
2.5 percent error [6] . Brokaw's method can also be applied at any
temperature, a vital feature for this project.

The densities of the gases were calculated by the formula

_	 M	 273	 P g/cm 3^j

(22.4 x ]0`1	
T f	 (71-6-0

where T f is in K, P is in torn, and M = molecular weight of gas. The
method of simple mixing was used to calculate the mixture density:

P  = X1r'1 " X2P2

6
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THE COMPUTER PROGRAM

A FORTRAN program was designed to simplify calculations and
extend the range of applicability to experimentation. Appendix A pre-
sents the program nomenclature, including a cross-reference to the
nomenclature used in the text of this report; Appendix D presents a
program listing.

In the program, nested Do loops are used to allow for variances
of sphere emissivity EP, sphere diameter D, and power input PIN (,het
Experimcnta4 Parameters section) in addition to argon pressure P1. Two
separate DO loops are provided to change gas pressure (Increase
Pressure and Decrease Pressure sections) , simulating the experimental
input and pump down of gas. The Increase Pressure loop uses the
incremented mole fraction to calculate helium pressure P2 for constant
PI while the Decrease Pressure loop steadily decreases the total pressure
PR'1TT,,, holding the molar ratio of the gas mixture constant. Each
pressure loop includes an implied loop within which the gas properties
and sphere temperature are calculated (Iterate to Satisfy Temperature
Equation sections) . The gas properties are determined by solving the
equations presented earlier in this report; the temperature is found
using an iterative technique wherein the basic heat transfer is solved
for sphere temperature T by using an estimated sphere temperature T
T 1 is inititilized at RADT, the sphere temperature should only radia-
tive heat transfer be present. `I.'he T 1 I s are revised as the implied loop
is repeated until the difference IT - T 1 1 is less than an input tolerance
(in this case, 10 K). An iteration check (FLAG, FLAGM) is also pro-
vided to check for bad convergence.

RESULTS AND CONCLUSIONS

As pressure is increased, convection takes on an increasingly
important role in cooling the sphere. Once the helium enters, convec-
tion becomes dominant. Varying the amount of argon initially present
does not significantly change the sphere temperature (Figs. 1 and 2).
The percentage of helium present in the mixture, and not the total
amount of helium, determines the sphere temperature: 90 torr of helium
added to 10 torr of argon changes the sphere temperature from 1577 K
to 637 K, while 360 torr helium added to 40 torr argon effects a change
from 1519 K to 618 K. This phenomenon is due to the fact that the
Grashof number is the only pressure-dependent term in the heat transfer
equation. As expected, emissivity produced the majority of its effect at



low pressure, where Had `,C Is proportional to emissivity (Fig. 3).
Sphere temperature Is directly proportional to power Input (Fig, 4) and
inversely proportional to sphere diameter (Fig. 5). Once convective
cooling dominates, an Increase of i.5 W In power is comparable to a
decrease of 0. 135 cm In diameter. During radiation's dominance, the
power Input change will not be (is effective as the change in diameter.

Small fluctuations In the value of k mix will effect great changes in
the values of Comb T, wl-Alo Had T will rom(An constant. It Is believed
that the major source of error in this program is in the value of % mix'
As temperatures Increase, the estimation for Individual thermal condue-
tivitios will tond to be high. This deviation will decrease the apparent
,pressure effect oil sphere temporaturo Comb T.

Correlation for the bicreaoo Proccure portion or the program with
experimental results was found to be good: tile varlancO between sphere
temperature tit 20 torr argon and 200 torr total wits 2.7 percent, Tile
actual temperature values were approximately 5 percent higher than
expected; however, the error In caletilation of thermal conductivity would
predict it higher power Input (and this temperature) for the Sam(, cooling
effect on the sphere.

Results for the Decreaco Preeaure portion of the program were
discouraging. Tile increase in temperature is only approximately one-
third that found experimentally, This is believed to be due to the
dominance of the conductivity term, wbiela depends upon the ratio of the
gases rather than the total amount of gas present (Fig. 6). The small
temperature, change shown illustrates the temperature dependence oil the
Grashof number.
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lk,)cause total heat; lass aid not Crary significantly with tho
total aimunts of gws proscnt but ratihor with the pereentago, of helium
present (Figs. 1,2), Figiu.'es 2 through 5 are plotted as temperature
versus pu'rcvntagc^ helium. Al7> huta (eXcopt where noted) worn taken
from rtuIS with 70 terr argon initial pressure, 1"he follming is an
a?prf)x1nkLiton of results for Funs beginning with 10 or 40 torr , :argon:

Total Pressure
lie, Pernent

0
10
20
30
40
50
60

70
80
90

10 torr Ar 20 terr Ar 40 Corr Ar

10.0 20.0 40.0
11.1 22.2 44.4
12.5 25.0 50.0
14.3 28.6 57.1
16.7 33.3 66.7
20.0 40.0 80.0
25.0 50.0 100.0
33.3 66.7 133.3
50.0 100.0 200.0

100.0 200.0 400.0
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NOMEN CLATU RE

Rd port Pro ram Definition

Al2,A21 Al2,A21 Dimensionless parameter used in calculation of
gas mixture viscosities, function of the molecu-

lar weight ratios (M1 	 , M2
2	 1

^- ARGT The argument of T used in calculation of inter-
mediate values of sphere temperatures T
ARGT1 /4 (1{4)

-- AVDT Absolute value of intermediate sphere tempera-
ture value differcnee IT - T 1 1 (K)

Comb T COMBT Sphere temperature due to combined radiative
and free convective heat . transfer (K)

D D Diameter of sphere (cm)

e FP Emissivity of sphere

FLAG FLAG Iteration counter for temperature calculation

FLAGM FLAGM Maximum number of iterations allowed in calcu-
lation of sphere temperature

Gr GR Grashof number for gas mixture, dimensionless
ratio of buoyant to inertial forces

k K10,K20 Thermal conductivity of gas (1,2) at 273 K
(Btu-hr-ft- OF) , used in calculation of thermal
conductivity of gas (W /cm-K) at film temperature

k 1 ,k2 K1,K2 Thermal conductivity of gas (1,2) (W/cm-K)

km KMIX Thermal conductivity of gas mixture (W/cm-K)

M M1,M2 Molecular weight of gas (1,2)

la MU10,MU20 Dynamic viscosity of gas (1,2) at 373 K (P)
used in calculation of dynamic viscosity of gas
(1,2) at film temperature (P)

R +' RODUCIBMITY OF THE
ORIGINAL PAGE IS POOR
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NOMENCLATURE (Concluded)

Rĉort, i'ẑ aem Definition

MU1,MU2 Dynamic viscosity of gas (1, 2) at film tem-
perature (P)

P m MUMIX Dynamic viscosity of gas mixture at film tem-
perature (P)

PVP2 P1,P2 Amount of pressure of gas (1,2) (torr)

^- PCNTI,,PCNT2 Percentage of gas (1,2) in mixture (percent)

PI PIN Power input to levitation coil (W)

Pttl PTTL 'Total gas pressure during increase of pressure
(torr)

PRTTL PRTTL Total gas pressure during pump down (tors)

q R(I) Dimensionless parameter used in calculation of
thermal conductivity of gas mixture, function
of molar fraction of light was

Rad T RADT Sphere temperature when only radiative cooling
effects are ,onsidered (K)

p 1 , p 2 111101,111102 Density of gas (1,2)

PM RHOMX Density of gas mixture

T T Intermediate sphere temperature value used in
determination of sphere temperature (K)

T O TO Ambient gas temperature (K)

T I T1 Intermediate sphere temperature value used in
determination of sphere temperature (K)

*T l	ToT f -- Film temperature	 2

TOL Tolerance between intermediate and final sphere
temperature values (K)

X 1 'X 2 X1,X2 Mole fraction of gas (1,2)

20
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DO	 300	 IPIH r lO	 40,15
►l ac

♦

; PIN	 n 	 FLOAT(IPINW10
.il li	 f h

aU41=,
,11 6 11 !',	 114CREASE	 PRESSURE

p +

M11 >°.^ VRI TE(6, 45 )
411 73 4T, FDFMAT%"	 INCREASE PRES5URF"/)

VRITE(6,50)
1 i 1r7'I 50 FORMAT^3X,"CP".BX, "PIN", J}l,"0", 10X," p i`Tl,".SX."PRE51 ", 7X, "PRE82",

'k ,,U7„ ►	 7X,"pGNTR" r 7X,"RADT",BX,"COMET",1.0X,"GR",SOX,"KMIX"!)
T1	 r	 ( p lN/ti	 78E-12*D**2*EP)+T0*t4)**	 25
RAPT	 it	 T1
DO	 180	 IX2 % 1, 10 p

or	 I	 -X2
^ .„^ ^c; t	 ^	 I x 2

F2	 #	 X2*(Pi/Xl )
t;,16 4 FLAG n 0

) N rI ,

%'O orG 1,	 I'ERATE TO	 SATISFY	 TEMPERATURE EQUATION
AI Ii Yw ” k..

1 jj^^ 1,0 FLAG	 a FLAG	 +	 I
c,g E.► RHOI	 b	 (3	 21E-5*M1*Pl)/(T1 +T0 )

RH02	 v	 ( 3.21E-5*M2*P2)/(T1+T0 )
X11 ,̀ ? RHOMX	 a	 XI*RHO1+X2*RHO2
In	 )u ^l MUl	 a	 3 -66E-2*MUl0*(TltT0)**.5

MU2	 a	 3	 66E-2*MU20*(TI+T0)**-5
c,-)94 MUMIX	 a	 ((XitMUI)/(KI+AI2*(MUI/MU2)*$.5 ► 92))+4(X2*MN2)/(X2+A21*
1^I`*r' ,	 (MU2/MUl )**,5*Xi ))
„ r,9+• K1	 a	 1	 53E-4*Ki0*((TI+T0)**	 75)

K2	 1	 53E-4*K20*((Tl+T0)**	 75,
s i,d'.*^i kMiit	 a	 OtI)*(XS*Y,l+X2*K27+(1-G(I>)+<1/((Y,1/Ki)+(X2lK2>))

IF	 tit-	 3)	 65,6 5,9 3
ei'0t 65 ARt#T W PlH-(b	 28*KM1$rD^(Ti-T0))-(<6.$6*KMtX*Dtti.75*RNOMX**.5*

TI-TO)*+l	 25)/(T0**.25*MUM IX**.5))a!(t 	 78E-12*EP*D**2))
+TO•*4

1 1 0'; TF,• APGT,	 70.70,90
IF;FLAGM-FLAG)	 140,140,80

«, e tj TI	 =	 TI	 -	 100

G0	 TO	 6v
a, T	 a	 ARGT**	 25

G O	 TO	 9i,
.' ^? TC' (PIN-ti	 86+KMIX*D**1.75*

r, tt , FHOMr`vo	 5*(T1-T0)**l	 25),l? T0 « +.25+MUMIX*r.5)))/(6	 29*KMIX*D))
+T0

11 ? a^, AVC T	 jr	 CABS( T-T1
! IFtT0L°AVDT)	 1001160,160

I, 1! 4 : 1" 1F	 FLAGM-FLAB,, 1	 140, 140, 110
1, 1 1', !1„ 11	 a	 1, T+TI )1r,
,	 =	 S	 1 TF^ T 1 ^T0 	 124, 1ZO, l30
"'	 1	 '' a ^: 4 T 1	 r=	 TO	 +	 10 0

1 "0 (1(1	 T O 	6(,
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T

C CALCULATE AND WRITE FINAL DATA

4122	 ;40	 WRITE k6.150) T,TI,RAOT
AIZ 3 150	 FORMAT%," BAD CONVERGENCE	 THE LAST TWO VALUES OF T VERE '-F6 0,
0124	 ►	 " AND ",F6 0,' RADT r '-F6.0/)
0i 7d	 GO TO 180
012v 160	 PTTL n PI + P2
01.,	 PCHT2 n X2«100.
OI&O	 GR r (9CO *D+ t3* RIIOMX* 0 2*( T1-T0))/(TO+MUMIX**2)
0124	 VRITE(6,170) (P,PIN, O, PTTL,Pt,P2,PCHT2 ► RADT,T,GReKMIX
0130	 170	 FOANAT(F5.2,FI1.1,F11 3,F13.1,3F12.IoFi3.OPF12.0#El*,31E13.3)

y	 0131	 too	 CONTINUE
1 1 132	 C,

0133 C
0134 C DECREASE PRESSURE
0135 C
0 1'3 u	 C

1113"	 WRITE (60105)
0138	 105	 FORMAT(/,'25X,"*•******+********* ► +**•t«t**^*t***r•***t**t****t*«**
0139+* **+* t+****"!/" DECREASE PRESSURE '/l39r' EP",BX,"PIN",9X, ' D",IOK,
0140	 1"PTTL",SX,'PRES1',7X,'PRES2+,7X4"PCHT2',7X,"RADT"4814,"COMET",10X,
0141	 ^'CR'.10X,"KMIX"/)
0147.	 C

0143 C SET CONSTANTS AND INITIALIZE VARIABLES
.) 14 01	 C
0!45	 X! *	 t
0146	 X2	 9
0147	 PCHT2 n X2 + 100
0140	 PRTTL - PTTL
0t49	 T1 = RADT
o 1.50	 DO 280 H* 1, 13
of"l	 PRESI * X1*PRTTL
01"v2	 PRES2 „ 92*PRTTL
0153	 FLAG n 0
01$4	 C
01555 C ITERATE TO SATISFY TEMPERATURE EQUATION
01$6 C
0157	 190	 FLAG r FLAG + I.
0158	 RNO1 = (3.21E-5+M1*PRESI) /(TI+TO)

i1159	 RH02 n (3,21E-5*M2*PRES2)/(TI+T0)
0160	 RHOMX n Xl*RHOl+X2*RHO2
0161	 MUt * 3.66E-2*MU10*(TI+TO)**.5
0162	 IPU2 m 3.66E-2*MU20* (T1 +T0)**.5
0163	 MUMIX n ((XI*MUt)/( Xt+ AI2*(MU1/ MU2) **.5*82))+^(92*MU2) !4X2 +A21*
0164	 1	 (MU2/MUI)**.5*Xl))
6165	 91 . 1,53E-4*Kl0*((Tt +T0) **.75)
0166	 K2 r 1.53E--1*K20*((TI+TO)**.75)
0167	 KMIX r 0(I)*(XI*Kt+X2*K2)+(I. Q(I))*(t. /((X1 /Kt) +(X2/K2)))
0168	 T * ((PIH-(1.78E-12*EP*D*t2 *(T1 * *4 -Tb+*4))-((6,136*KMIX*Dt*1,73+

'	 0169	 1	 RHOMX*« 5*(T1-T0>**t.2S>/<TO*.23*MUMIX•+.5)>)/<6.28*KM1X*D>)
01;`0	 1	 +10
0111	 AYD1 r DARS(T-TI)

=	 OlY1	 lH 101 -AVU1) 200,260, 260
0173	 X00	 1F?FLAGM-FIAC) 240,240,210
0174	 210	 11 r (1+11?/1
0175	 IF( TI-10O 210,220,230
0176	 220	 11 r 10 + 100.
0177 2 110	 GO 10 I5o
0178	 C

RITRODUMILI'lT ©b , THE	
25

ORIGINAL PAGE IS POOR

J



01 ''4	 v (AL@tit ATE AND WRITE Ft11At DATA
oleo c
0101	 240	 MRIT}{41200) Till
0107 'H10	 F1► kMA lt s" DA0 CON4 ! ER4ENCE	 01}
01 03 	 C{1 TO 21430
0104	 2E0	 'R n ( 960 ^0r + RNOMxrrRr { T1*t03} /{ tO+ttUMllSrt2T
0105	 Y ►̀ iTtlGt274} 1P.4'IN ► lO+PRT3t,PRES1rPREg2 ► PGHTeRF► OTIFGR ► kMtR
0104	 2^0	 F011HAI(F5 2sFII-IiFII.3rF13 1 3F12.1+F13 0 ► F12	 E15 1 E13,3}
01C^:`	 r
0108 C CNECA IF PUMP DOWN 16 COMPLETED
0109 C
0190	 PIT 1L s PRTTL-30,
01 1))	 1Ft PRY IL LE.,0.7	 CO TO 205
019P 2VO	 CONTINUE
0193	 2118'21	 t1tt1TEl^.F 901
0194	 290	 FiIhMATd,^kOK ► 'rrrrrrrr^rr^rrrrrr ► }♦ r^rrr^rrr+rrrr++rrr+rrrrrrrr
0195	 trrtwrr^irrrrr'/I}
0196 300	 CONTINUE
010" 310	 GOVT1NUE
0190 3z0	 CONTINUE
0199	 URIILlb,330}
0200 330	 FORhAT{1N1}
0201	 340	 C0ItT 111UE
0202	 S70P
'203	 END

- ► ;1 04	 END$
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