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FOREWORD

This study was performed by Beech Aircraft Corporation, Boulder Division, under NASA
Contract NAS 2-10229. The funding of this contract was provided by NASA's Office of

Aeronautics and Space Technology (OAST) through Ames Research Center (ARC). Mr.
John Vorreiter was the ARC Technical Monitor.

Principal Investigator for this study was C. H. Riemer. W. L. Chronic assembled the test
data on the Space Shuttle Power React=nt utorage Assembly Hydrogen Tank. G. L. Mills
assisted in the reduction of the test data for use ih the analytic model correlations.

All data are presented in the International System of Units as the primary system and

English units as the secondary system. All calculations were done in English units and

converted.
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SUMMARY
The PRSA Thermal Acoustic Oscillation Study resulted in a review of existing test
records, reduction of test data for use in the correlation of this data with the analytical
predictions by Rott and Liburdy. The study presents 219 data points which are reduced to
tabular form. Selected data points are compared to the prediction of the stability limit
based on Rott's work. ’

The agreement between the analytical model and the test data was moderate for the
supply line and poor for the fill and vent lines. The study points out some difficulties with
attempting to utilize the idealized analytical model for a production supercritical
hydrogen tank. The properties of supercritical hydrogen present problems in determihing
the appropriate values for the Prandtl number, the ratio of specifi¢ heats and the
exponent for the power law viscosity curve used in the analytical model. Determining hot
and cold fluid line lengths required for comparison with existing analytical models is a
difficult task for a production cryogenic tank due to insufficient data on the line's

temperature profile. The analytical models idealize the temperature profile as two

constant temperature sections joined by a ‘temperature jump where dT/dx is infinite.
However, the relatively low steepness of the temperature jump existing in the PRSA fluid
lines increases the uncertainty in predicting the stability limit. All of the above sources
of difficulties contributed to the scatter in the data c'ofrelation.
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NOMENCLATURE
Acoustic velocity
Kirchoff's constan
Kramer's constant
Stabiiity constant
Tube length; cold end
Total tube length
Pressure
Prandti number
Radial coordinate
Tube radius
Temperature profile steepness
Time
Temperature
Axial velocity component
Radial veloci_ty component
Axial coordinate -

Magnitude of the ratio of tube radius to Stokes' boundary layer thickness j

Greek Letters

E ¢ = 0D H <X DR

a0

Temperature ratio '

Exponent in viscosity-temperature relatior.ship
Ratio of specific heats (Cp/ c,) |
Mach number

Density

Nondimensional frequency (%l-)

Dynamic viscosity

Kinematic viscosity

Frequency

. Subscripts |

Coid end value
Hot end value
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1.0 INTRODUCTION

Thermally driven acoustic oscillations of the Space Shuttle Orbiter Power Reactant
Storage Assembly (PRSA) Hydrogen Tank were first observed on September 27, 1977
during the first End-Item Acceptance Test (EIAT). The Beech Test Stop Notice (TSN)
A02189 was written to document an out-of-tolerance condition involving a tank vent loss
of 4,08 kg (8.99 lbs) for a 24-hour hold time. This loss was a factor of 10 greater than the
allowable maximum of .36 kg (.81 lbs) for the 24~hour hold. The supply line oscillated at a
frequency ¢f 4.2 Hz with a pressure oscillation of 365 KPa (53 psia). The fill line was
observed to oscillate predominately at 22 Hz at a pressure amplitude of 104 KPa (15
psia). The increased weight loss corresponds to an increased heat leak to the hydrogen
tank of approximately 10 times the acceptable value.

This study was undertaken to review and assemble the test data that resulted from the
three-month experimental investigation of the heat leak problem. The data presented in
this study covers a period of time beginning September 29, 1977, when the pressure time
histories were first recorded, through December 12, 1977. The final phase of the study
was to correlate the reduced test data with current analytical models.

The PRSA Hydrogen Tank is a .32 m3 (21.4 ft3 ) spherical tank with one vapor-cooled
shield (VCS) insulated from the outer shell and pressure vessel by multilayer insulation
(MLI). Figure I-1 contains a schematic of the PRSA Hydrogen Tank. A brief description

of the flow paths for the fill, vent and supply lines is necessary for full appreciation of the
thermal oscillation problem.

The supply line begins at the center of the pressure vessel and, upon exiting the pressure
vessel, the supply line enters the line which makes up the VCS. The supply line passes
through the VCS and exits the outer shell at the girth ring. The fill and vent lines are
similar in flow path in that they both exit the top of the pressure vessel and exit the outer
shell at the girth ring. The fill line extends from the top of the pressure vessel to the
bottom while the vent line contains no significant line length internal to the pressure

vessel. The external line configurations were varied throughout the testing and are

discussed in Section 2.0.
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2.0 TEST DATA REVIEW

In the course of determining a solution to the PRSA H2 thermal acoustic oscillation
problem, 17 hardware cr:,igurations have been identified. The configurations were
examined under various operating conditions and tank orientations. All test data
presented in Section 3.0 is related to these 17 configurations. Figures 2-1 through 2-17
contain the external flow diagrams for the 17 different configurations.

The test program covered approximately three months, beginning on September 28, 1977
and ending December 10, 1977. The objective of the test program was to determine a
hardware fix to the thermal acoustic oscillation problem. This approach, which was
proper at the time, creafes several data gaps which represent significant problems in
correlating this data. The data contains no information as to the temperature profile, a
function of distance from the pressure vessel to the outer vacuum shell. In addition, the
operating conditions do not vary sufficiently to allow for the determination of the effect
of varying temperature ratios on the stability limit.

Beech and Rockwell technical advisors were monitoring the test efforts and directing flow
network modifications. During the investigation, Rockwell personnel felt that a signi-
ficant contribution to controlling the pressure oscillations could be made by insulating the
flow lines and tank surfaces. Various insulation systems were tried but no significant,
positive results could be observed. Calculations, at the time, indicated that a significant
improvement in the oscillation problem could be realized by insulating the girth ring flow
line interface. This interface was insulated during December 1977 and the current tank
configuration still includes this insulation, while the fill line was always insulated to allow
for tank loading. The vent and supply lines were not always insulated.

A positive control observation was made in the positioning of the fill, vent and supply
valves. The valves can be adjusted either ¢losed or open to effect a change in oscillation.
By successive steps of experimental control, a determination was made that some
restriction in the fill or supply line external to the tank would probably reduce the ill
effects of thermal acoustic oscillation. Restrictions in the lines, in the form of washer-
type orifices, were installed in various locations in the system. Some of the orifice:
caused such restriction that filling the tank could not be accomplished through the
simulated Rockwell-insulated lines. A certain amount of control was apparent when
alternate sized restrictions were installed in any one configuration and operating
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condition. The most successful restriction appeared to be a 4.39 mm (0.173 in.) diameter
orifice in the fill line close to the tank interface. However, this has not proved to be a
definite solution. It should be noted that the line with the greatest tendency toward
oscillation was the fill line, even though at times it could be stopped completely. The fill
line oscillated predominately in the range of frequencies from 20 Hz to 30 Hz at a “
pressure amplitude of 20 KPa (3 psia) to 50 KPa (7 psia). The supply line displayed a
different frequency of between 1.6 Hz and 4.6 Hz and amplitude. The vent line raf'ely
displayed any oscillation.

The test data review consisted of collecting pressure trace data records and the \\}
corresponding test data log entries. The data for this study was selected in an attempt to '
collect a number of various tank operating conditions. It must be realized that the tests ke
were conducted to find a solution to the thermal oscillation problem. This results in very
limited tank operating conditions. The ratio of hot to cold temperatures ecnly vary from
7.0 to 12.2, while flow rates varied in general from 0. kg/sec to 1.7 kg/sec. This limited

variance on the critical thermal acoustic oscillation parameters is unfortunate. The test

££ £ ] \ PN | i T vy s mlanime il
a was chosen to show the effec OI vaive Opening and Ciosing. The Opening ot CiOSiNng ==

dat
of a valve generates a change in the fluid velocity from the steady state condition. This
velocity change is accompanied by pressure change proportional to the velocity change. P
This effect is known as "waterhammer.," This pressure transient which travels at the ‘
acoustic velocity of the fluid is damped by fluid viscous forces. This pressure
perturbation was, in most cases, followed by the steady pressure oscillations attributed to

thermal acoustic effects. .
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3.0 TEST DATA REDUCTION

As discussed in Section 2.0, 17 different hardware configurations were identified. The

data collected for these configurations resulted in 219 data points. These data points

represent different flow rates, internal or exteinal temperatures, valve positions and
orifice location and size. The data wiis collected from the pressure traces and Beech
Engineering Test Log data contained in Beech Memorandum Report 14895. The pressuré
traces supplied the oscillation frequency and amplitude. In addition, tank temperature,
environmental temperature, mass flow rate, ¢onfiguration and valve positions were also
determined from test logs. The reduced data is presented in Table 3-1 for all 219 data
points, Table 3-1 contains the test purpose, configuration correlated to Figures 2-1
through 2-17, line (supply, fill or vent), environmental temperature, internal tank
temperatire, and oscillation frequency and amplitude. In addition, the acoustic velocity
(a) and kinematic viscosity (v) for the internal tank temgerature are given. The
thermai acoustic oscillation parameter Y ¢! which is defined as Ty /v )l/ 2 has been
calculated for all data points. The meaning of Y with regard to predwtmg thermal
acoustic oscillations is saved for Secnon 4.2, Table 3-1 also contains notes indicating
valve positions. In general, the valve is closed unless otherwise 1nd1cated. The last
column of Table 3-I was used to indicate secondary modes of osciliation by including the
secondary frequency and amplitude. This table contains the data necessary to correlate
the PRSA Hydrogen Tank data with existing analytical models.

The effect on several critical parameters of thermal acoustic oscillations may be seen
from Table 3-I. The first set of points of interest are points 7 and 8 of Table 3-I. Data

_point 7 indicates that the supply line oscillates at a frequency of 24 Hz for a temperature

ratio of 9.6. This oscillation occurs with valve MV-525 (see Figure 2-2) closed while data
point 8 indicates no oscillations for similar operating conditions, with the exception of
valve MV-525 in the open position. While the oscillation is occurring in the fill line, MV~
525 is located in the vent line. ‘

A similar effect is illustrated by data poiints 11 and 12. In this case, the fill line is stable
when oscillations occur. For thermal acoustic oscillation to begin, some small perturba-
tion is required. In the first example, it is thought that the opening of MV-525 provided
the required perturbation. In the second example, some small change in tank operating
conditions may have initiated the oscillations.
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The initial proposal indicated that a correlation of test data and the analytical model by
Liburdy would be completed. This model allows for a mean fluid flow term and, due to
this term, one goal of this study was to deterrine the effect of flow on the thermal
acousti¢ oscillation stability limit. Test data points 106 and 107 are of particular
interest, Data point 106 indicates that, for a flow rate of .020 kg/tr, the supply line is
stable at a temperature ratio of 10.6, The supply line oscillates for data point 107 at a
freqency of #.3 Hz for a similar temperature ratio with no flow. This is in the direction
as predicted by Liburdy; that is that flow increases stability., However, test data points
87 and 94 contradict this trend. Data point 87 is stable with no flow for a temperature &
ratio of 11, For a flow rate of .042 kg/hr, the supply line oscillates at a frequency of 3.9
Hz at a temperature ratio of 10.8; this condition is described by data point 94, While the !
temperature ratios are not equal, the stable point, data point 87, has the higher
temperature ratio and therefore should be the least stable.

Some observations were made while reducing the test data concerning the onset of
oscillations. In several instances, the fluid line would be stable when, for no apparent

G

reason, oscillations would begin. The opening and closing of valves would in general e
' :
effect the oscillations in both a positive and negative manner. Valve opening in general &j

would initiate oscillation if the line had previously been stable. The steady oscillations
may have been prompted by the transient effect of valve opening. However, if the line
was initially oscillating when the valve was opened, the trend was toward stability. The

PR R TR

effect, of opening the valve, in this case, may be to disrupt the oscillation pattern.

Lo . 3-13
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4.0 TEST DATA COMPARISON |

This section presents the test data comparison with current analytical models. In order to ‘ .
understand the development of the current models, a historical background is presented in é}
Section 4.1. Section 4.2 contains the test data correlation and a description of the b
analytical model used.

4.1 Historical Backgrouhd. Thermally driven pressure oscillations are known to
occur spontaneously in tubes subjected to large temperature gradients. Thermal oscilla-
tions were first noticed in glass blowing where audible sound was produced by heating the g
tube end. Thermal acoustic oscillations can occur in cryogenic lines leading from room ] i

temperature to the cryogenic reservoir temperature. These oscillations cause pressure
fluctuations and are genetrally accompanied by large heat inputs to the cryogenic

reservoir.
A qualirative explanation of thermal acoustic oscillations is based upon the physical ‘» i
. .
o]

mechanism that osci'lations are encouraged if heat is added to the air at the point of 7
greatest compression and heat is taken out at the point of greatest expansion. Under A
. these conditions, a small perturbation can grow' and become a self-sustaining oscillation
due to the heating and cooling effects. This heating and cooling results from the large
temperature gradient that exists between the warm and cold ends of the tube. During the
pressure rise portion of an oscillation cycle, there is movement of the gas from the open
cold end toward the closed wa: n end of the tube. As the gas elements travel, their

pressure increases and, from adiabatic compression, their temperature rises. However,

the gas temperature rise due to compression is less than the wall temperature increase
due to the cold-to~warm end temperature gradient. Therefore, there is a temperature
difference which transfers heat from the wall to the adjacent gas elements. As the gas

elements continue moving toward the warm end, pressure increases and heat is trans-

ferred from the wall to the gas. After the pressire in the element has peaked, the

process is reversed. As the gas elements move toward the cold open end, their pressure
o ' drops, they come into contact with colder sections of the tube wall and heat is transferred
from the gas to the wall. It is the net heat flux into the gas that is the driving force for

2 T AT Y
N . o 3 SN

S

the existence of thermal oscillations. The opposing or dissipating forces are the gas
viscosity and the kinetic energy expelled into the cold reservoir. This energy (heat ﬁuk) )
pumped into the cold reservoir is the difference between the heat transferred to the gas
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during the pressure rise portion of a cycle and the heat transferred from the gas during
the pressure drop portion of a cycle. When the net heat flux into the gas exactly balances
the dissipative forces, the criteria for sustained thermal oscillations are met.

The following paragraphs contain a review of the pertinent literature on thermal acoustic
oscillation phenomenon. The following summaries start with the initial observations of
Sondhass in 1850 o heat-generated sound produced by glass blowers to the present where
the emphasis on this phenomenon is almost exclusively confined to the storage of
cryogens. Included in the summaries is a brief elaboration of any pertinent technical
information. This may consist of observational data, design information, methods of
analysis or correlation of experimental data with analyses.

C. Sondhaus (1850) (Reference 1). Sondhaus observed that audible sound was produced

from the tubes used by glass blowers. When a gas flame applied to the bulb end caused
the air in the tube to oscillate producing a sound which was characteristic of the
dimensions of the tube, ‘ '

H. V. Helmho!tz (1863) (Reference 2) and G. Kirchhoff (1868) (Reference 3). The first

* calculation of the: damping of acoustic waves in long tubes due to friction at the side walls

was made by Helmholtz.

‘Lord Rayleigh (1878) (Reference 4). Lord Rayleigh provided an explanation for the

spontaneous occurrence of thermally driven oscillations. He explained that the oscilla-
tions occur if heat is added to the gas at the point of greatest compression and heat is
taken out at the point of greatest expansion. This explanation has become known as the
"Rayleigh criterion." ‘ '

K. W. Taconis (1949) (Reference 5). The first reported observation of thermal acoustic

oscillations in low temperature apparatus was made by Taconis.

H. A. Kramers (1949) (Reference 6). Kramers was the first to develop a theoretical
analysis of the thermal acoustic oscillationi problem and investigate the stability limits
(with limited success) under which the oscillations can exist. He used the framework of
Kirchhoff's theory in explaning that tubes which are room temperature at their closed end
and liquid helium temperature at their open end may experience spontaneous acoustic
oscillations. His investigation of the stability limit was carried out under the assumption
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that the Stokes boundary layer thickness is small compared to the tube radius which would
yield only one branch of the stability curve. He assumed the amplitude of the acoustic
wave was small and therefore could use a linearized first order approximation of the
hydrodynamic equations.

J. R. Clement and J. Gaffney (1954) (Reference 7). Clement and Gaffney experimentally

studied thermal oscillations which occurred in small diameter tubes having one end at
room temperature and the other end in a dewar filled with liquid helium.

They investigated the effects of varying degrees of closure at the hot and cold ends of the
oscillating tubes. A tube completely open at the hot end could not he made to oscillate
unless its inside diameter was less than about one millimeter. Simple tubes completely
closed at the cold end could not be made to oscillate, either filled with gas only or with
some condensed liquid at the cold end. However, only a very small opening at the cold
end was required for osciilations to occur. They also observed oscillations in the annular
space between the double wall of a liquid helium transfer-siphon tube which were damped
by placing a snug fitting brass ring in the. annulus near the cold end to block the gas
motion.

L. Trilling (1955) (Reference &). Trilling conducted an analytical study of heat generated

pressure waves. By linearizing the hydrodynamic equations, he showed that sharp
increases in boundary temperature can cause pressure waves to propagate in the same
manner as pushing a piston through a gas-filled pipe.

K. T. Feldman (1966) (Reference 9). Feldman conducted extensive experimental and

~ theoretical studies of the Sondhauss oscillation. A physical analysis of the heat exchange

mechanism driving the Sondhauss oscillation was presented treating the Sondhauss
oscillator as a heat engine. In order for the amplitude of the oscillation to grow to a
steady-state condition, heat input had to be properly phased so that a net increase
occurred in the total energy of the gas system after each cycle of oscillation.

J. D. Bannister (1966) (Reference 10). Bannister conducted experiments for measuring
thermal acoustic oscillations in tubes connecting liquid helium reservoirs to room
temperature environments., He measurec'i oscillation pressure amplitudes and frequencies
together with longitudinal temperature profiles and heat pumping rates for different tube

sizes. He found a linear correlation between the pressure amplitude and the slenderness
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ratio (length to diameter) of the tube and that the heat pumping rate is directly
‘ proportional to oscillation intensity (amplitude times frequency), Figures 41 and 4-2. .
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M. T. Norton and R. C. Muhlenhaupt (1967) (Reference 11). Norton and Muhlenhaupt

developed a computer program to determine solutions for thermal acoustic oscilations in
gas-filled pipes. For a specified temperature gradient along the tube iength, the program
calculates frequencies, overpressure amplitudes and the fects of changes in heat
transfer coefficient and friction factor on the oscillation amplitude. The heat transfer is
computed using unmodified heat transfer coefficients from McAdams (1954) and the
friction factor is input as a constant.

To determine the oscillation frequency, the program divides the tube into constant
temperature gas elements such that each element has an equal sonic .raverse time.

With a temperature gradient and an arbitrary initial pressure pulse as inputs, the program
calculates the gas velocity and pressures fcr each of the elements. These calculations
consider not only the sonic velocity in eac >»lement, which is a function of temperature,
but also consider the reflections of the sonic fronts at the interfaces of adjacent elements
of different densities (temperatures). Therefore, the peak pressure at any point is the
summation of multitudinous reflections and advances at something less than sonic
velocity. The program calculates the period between each of the first ten pressure
minimums thereby obtaining nine periods, and nine corresponding frequencies. The
average of these nine frequencies is then considered to be the true frequency.

During the pressure rise portion of an oscillation cycle there is movement of gas from the
open cold end towards the closed warm end. As the gas pressure increases, its
temperature increases from adiabatic compression and heat transfer from the wall to the
gas. After the pressure in the gas ' as peaked the process is reversed, the pressure drops,
and heat is transferred out of the gas. When plotted on a temperature-entropy diagram
this sequence of events traces out a positive work area, see Figure 4-3.

For the amplitude calculatir the assumptions were made of a sinusoidal pressure
variation at the closed end that that all peak pressures tend to occur at the same time.
These assumptions were supported by oscilloscope observations. The gas in the tube was
divided into a large number of equal length elements with additional elements in the
dewar (N elements in the tube and M elements altogether). The period of a cycle was
divided into 360 degrees and the compute time interval was taken as 5 degrees. Initial
approximate temperatures and densities were assumed and . the heat transfer was
calculated for one clomplete cycle per each gas element. Conditions after the first cycle

4-5
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Figure 4-3 SIMPLIFIED TEMPERATURE-ENTROPY DIAGRAM FOR
- THERMAL ACOUSTIC OSCILLATION CYCLE

were different than the initially assumed conditions but, after a number of calculation
cycles, an equilibrium condition was obtained. These calculations were performed for
each of the M elements and the heat transferred, and the infinitesimal work done was
also computed. The program then sums all the heat transferred and work done in one

cycle for all the gas elements in the tube; this summation gives the net heat transferred

into and the net work done by the gas. If there is positive work (net heat greater than net
work), the conditions for the existence of thermal oscillations are present. If the work
summation is negative, any accidental oscillations will quickly damp out. In the case
where the work summation was positive, at equilibrium it must exactly balance the losses
which are friction and kinetic energy ejected into the dewar.

P, Thullén and J. L. Smith, Jr, (1968) (Reference 12). Thullen and Smith developed an
analysis for determining the parameters and stability regions for thermal oscillations

associated with liquid helium. They used a lumped parameter model consisting of the

following components:

L. A lumped isothermal inertial element, representing the inertia of the oscillating
gas column. ' ’

S
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2. Two adiabatic volumes, representing warm and cold void volumes.

3. Two ideal heat exchangers a distance 2 apart, at temperature T, and Ty
representing the hot and cold portions of the tube wall.

»

4. A viscous damper whose force is proportional to the velocity of the inertial.

The equations of motion were linearized and solved in terms of dimensionless parameters.
It was assumed that the system oscillated at the Helmholtz frequency; this was calculated
by assuming that the adiabatic spring volume consisted of the warm portion of the tube and
the warm void voiume, and that the mass is concentrated in the cold portion of the tube.
This equation was a function of the average pressure, the density and the cold length-to-
total length ratio.

J. D. Rogers (1968) (Reference 13). Rogers examined subcritical fluid hydrogen

oscillations during forced convection heating in a vertical test section with various heat
inputs. The stability limit heat rates were correlated to a dimensionless boiling number.
The threshold was identified with the formation of small amounts of vapor during the low
pressure portion of the oscillation cycle.

N. Rott (1969) (Reference l4). Rott presented an analysis of the oscillations of a gas

column in a tube with a nonuniform temperature distribution along its axis in general, and
the stability limits of cryogenic oscillations of helium in particular. His analysis was
based upon the theoretical work done by Kramers (1949). Kramers' results had yielded
very large temperature ratios for the stability limits of helium which was contrary to

experience; consequently, Kramers concluded that his linear stability theory did not lead
to any useful results. Rott pointed out that, "For helium, however, the theory fails due to
a 'quirk of nature's the material constants of helium are such that Kramers® asymptotés
lie at practically infinite temperature ratios." He demonstrated that the linear theory
had failed because of the restrictive assumptions placed upon the extent of the viscous
region of the gas motion. Upon including second order viscous effects in the linear
stability theory, Rott was able to obtain one branch of the stability curve. The entire

stability curve was later worked out by Rott and published in.his 1973 paper.

N. Rott (1973) (Reference 15). This analysis, an extension of Rott's previous work,

B Ly presented theory and numerical calculations which determined the entire stability curve

T for helium. A reprint of one of these stability curves is given in Figure 4-4.
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Figure 4-4 STABILITY CURVE FOR HELIUM (Reference 15)-

it

|

a = Hot-to-cold temperature ratio
§ = Hot-to-cold length ratio
Y. =t (w/v C)Vz = tube radius-to-Stokes boundary layer thickness ratio
s = Tube radius
w = Angular frequency
Ve = Kinematic viscosity » |

In his first paper, Rott assumed that the viscous boundary layer was' small compared to : ‘ ','
the tube radius; thus, yielding the lower branch of the stability curve. The second branch :1 |
was found to exist for the case where the viscous region fills the whole tube in the hot ;‘
part, but is small compared to the tube radius in the cold part. ‘

T. Von Hoffmann, V. Lienert and H. Quack (1973) (Reference 16). Von Hoffm‘a.nn, Lienert
and Quack presented results of an experimental study to verify the stability limit of Rott.

Tubes of various sizes were inserted into a double glass dewar containing helium. A brass

vessel filled with liquid nitrogen was used to control the temperature of the warm end of
the tube in order to vary the hot-to-cold temperature ratio. A piezoelectric pressure
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sensor at the closed upper end of the tube was connected to an oscilloscope so that the
oscillations could be observed. A plot of the results, compared to the theory of Rott, is
given in Figure 4-5. '
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Figure 4-5 DATA OF VON-HOFFMAN; et al.; -
COMPARED WITH ROTT'S STABILITY THEORY

This figure demonstrated some qualitative agreement with Rott's theory; however, the
stability curve of Rott should lie somewhat more to the left than indicated in Figure 4-5.

This discrepancy was attributed to inaccuracies in the experimental setup and difficulty in

obtaining reproducible results for the pressure amplitude.

L. W. Spradley (1974) (Reference 17). Spradley developed a numerical method for the

solution of a nonsteady, viscous, heat conducting, compressible flow program using a
nonlinear formulation. In his model, helium gas, initially at a uniform temperature, To’
was confined between two parallel boundaries. At time t = 0, the temperature of the
lower plate is suddenly raised to TW =2 ‘TO, while the upper plate is kept a) the constant
value T, Because of heat transfer and compressibility effects, thermal acoustic waves

are set up in the System which greatly increase the heat transfer rate into the system.

Typical results of this solution, obtained from the computer program, are shown in Figure
4-6. '
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Figure 4-6 VELOCITY AND PRESSURE PROFILES OF
THERMAL ACOUSTIC OSCILLATIONS (SPRADLEY)

This figure shows the calculated dimensionless velocity and pressure profiles as a function

of time at the center between the two plates. This figure also shows the oscillatory
nature of the wave motion. The period of the calculated wave is 1.55 units of ;
dimensionless time which corresponds to the acoustic wave period in this system (which is RS
2/YY or 1.55); thus, the calculated waves are acoustical. This analysis also shows that
thermally induced wave motion can greatly increase the heat transfer over the pure

G

conduction mode. A general numerical technique and computer program was developed
for solving the nonlinear conservation equations governing the thermally induced waves. .
Complete profiles of temperature, pressure, gas velocity and heating rate can be

T et g

obtained. This work formed the basis for the following Lockheed study of thermal
acoustic oscillation in tubes connected to low temperature apparatus.

L. W. Spradley, W. H. Sims and C. Fan (1975) (Reference 18). This study was conducted by
J.ockheed-Huntsville Research and Engineering Center for NASA/MSFC.

A thermal acoustic oscillation program (TAQ) based upon the numerical solution of the Mt

Navier-Stokes equations was developed as the principal analytical tool for this study.

An experimental verification program was conducted in conjunction with the analytical
model development. A liquid helium research dewar was used for the experimentation. A
Stainless steel and aluminum tubes having length-to-diameter ratios from 100 to 1,000

were used as the test penetrations. Measurements were made for oscillation frequency,
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amplitude and boil-off rate for a matrix of tube sizes, materials and distances of the tube
in the dewar. The data were reduced and compared with results of the anaiytical
predictions.

The oscillating system modeled consisted of a cylindrical tube closed at the warm end and
open at the cold end. The tube was filled with helium gas whose cold end was at liquid
helium temperatures.

A stability diagram for helium was constructed by processing many cases with the TAO
Program in which the “l‘h/”!'C ratio and the A parameter were varied (Figure 4-7). The A
parameter is based upon the acoustic Reynolds number which was evaluated at the cold
end temperature, and may be correlated with dimensionless parameters used in Rott's
stability analysis. For comparative purposes, the stability curve gene~ated from Rott's
analysis is superimposed on Figure 4-7 (solid line).

Other theoretical correlations derived from the TAO Computer Program were:

l. Pressure amplitude versus L/D and Th/T c

2. Oscillation frequency versus L/D.

3. Oscillation intensity versus L/D.

4. Heat leak ratio versus L/D and pressure amplitude.

Figure 4-8 is the plot of peak-to-peak pressure amplitude versus L/D for parametric
values of | C/L. The pressure amplitude is shown to increase linearly with increasing L/D
for all values of | C/L. The effect of temperature ratio (Th/’l'c) on the pressure amplitude
is illustrated in Figure 4-9. This shows that the amplitude decreases with decreasing
Th/’I'c for all values of L/D, going to zero at the critical Th/T c

The oscillation frequency is shown in Figure 4-10 for the parametric variations of L/D and
1 c:/L. The frequency decreases with L/D as would be expected since the longer tubes
produce lower frequency oscillation than the shorter ones. The frequency was found to be
nearly independent of the temperature ratio, Th/T‘c.

The oscillation intensity (defined as the product of the frequency and the amplitude) is
shown as a function of L/D and | c/L in Figure 4-11. The pressure amplitude always
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increases with increasing L/D and the frequency decreases with increasing L/D. The
product will then either increase or decrease, depending on the slope of the frequency and
amplitude variations. [If the pressure amplitude increases faster than the frequency
decreases, the intensity will increase (and vice versa).

Figures 4-12 and 4-13 relate the increased heat transfer due to thermal oscillations with
the L/D ratio and the pressure amplitude. The quantity Q is the total heat pumped by the
oscillations plus the conduction in the tube wall. The Qi is simply the conduction heat
leak down the tube wall.

Figure 4-12 shows that no additional heat leak was present for L/D less than about 75. If

oscillations exist at an L/D of 75, the amplitude is so small that the additional heat
transfer is negligible. However, the Q/Qt ratio rises rapidly when tube L/D's exceed 100
with as much as an order of magnitude increase for L/D = 200 and over 2 orders of

magnitude above L/D = 450.

Figure 4-13 is a cross plot of the Q/Qt‘ ratio versus pressure amplitude for | c/L = 0.1, The
curve was typical for all parametric values of | C/L. The increase in Q/Q_t with increasing
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amplitude is due to the larger amount of mass pumped out of the tube by the larger
amplitude pressure waves.

N. Rott (1975) (Reference 19). Rott presented a paper in which he calculated the second-
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order heat flux (thermo-acoustic streaming) for thermally driven acoustic oscillations. By

using a generalization of his basic theory of thermal acoustic oscillations to the case of .

variable wall temperature, he was able to obtain the secbnd-order energy equation
without the restriction to thin boundary layers. From this theory, Rott was able to
calculate the maximum heat flow carried by the oscillations into the dewar. Calculation
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HEAT LEAK VERSUS PRESSURE AMPLITUDE

of the thermo-acoustic streaming appeared to be satisfactory when conducted up to the
second order of the temperature gradients used; it was doubtful whether the theory would
converge in the limit of very sharp temperature gradients.

Yu. P. Dmitreoskiy and Yu. M. Melnik (1976) (Reference 20). The authors presented
experimental data on the dependence of the thermal acoustic oscillation frequency upon

the height of a liquid column in tubes dipped into nitrogen, oxygen, argon and hydrogen.
The conditions under which these oscillations occur were found and the oscillation
amplitudes were measured. They made attempts to observe thermal-acoustic oscillations

with a gas column of nitrogen and oxygen with the help of sensitive equipment.

N. Rott (1976) (Reference 21). In his initial publications, Rott derived the stability
limit for thermally driven acoustic oscillations in tubes of constant cross-section.
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The applications were restricted to the case of tubes filled with helium ‘gas. It was
found that for "optimal" conditions, excited oscillations of He in a tube of constant

- cross-section need a minimum ratio of the absolute temperatures between the hot and the

cold end of about 5.5. In this paper, Rott investigated the problem of thermally driiven
acoustic oscillations fcr tubes with variable cross-section, with particular emphasis on the

possible reduction of the necessary temperature ratio for excitation. Tubes with optimal
conditions in the vicinity of the temperature jurnp, and with large cross-sections inx’parts
with constant temperature are found to give the best performance in this respect.
Included in the family of devices which were treated is the classical Sondhauss tube.

. Experiments which give a striking confirmation of the theor@l were reported. The

treatment of the different gases in tubes of constant cross-section as a special case was a
by-product of this work. '

D. E. Daney, P. R. Ludtke and M. C. Jones (1977) (Reference 22). This study was
undertaken as an exploratory study for the design of leads for superconducting power

transition line terminations. These current leads were cooled with supercritiéal helium.

Four distinct lead designs were studied encompassing a wide variation in flow characte

istics. The effects of the thermodynamic state of the helium and the hydraulic diameter
of each lead were in agreement with the theoretical predictions of Rott for simple tubes.

T. Yazaki, A. Tominaga and Y. Narahara (1979) (Reference 23). In this paper, the authors

determined experimentally the stabmty limit for thermally driven acoustic osculatlons
for helium gas. Instead of a half open tube, two stainless steel U—shaped tubes of
different lengths and diameters closed at their top ends were used. The warm end
reservoir was controlled with heaters at either 77.3%K or 300°K temp‘eratures at the cold
end could be varied from #.2°K to 45°K The Stokes boundary thickness could be varied
by changmg the desnsity (pressure) in the closed tubes. The theoretical stability curves
predicted by N. Rott are shown in Figures 4-14 and 4-15 by the solid lines. Superimposed

o upon these ﬁgures are the experimentally determined stability limits determined by the

authors ‘confirming the existence of the two branches of Rott's stability curve. The solid

' ‘and open circles represent warm end temperatures of 77. 3°K and room temperPture,

respecnvely

J. A. leurdy (1979) (References 24, 25 and 26). leurdv presented an analysis for the

‘occurrence of thermal acoustic oscillations in gaseous helium, laminar tube flow. The

analysis is based upon Rott's first two papers to which the author added a net flow term.

- 4-17
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His results are shown by Figure 4-16 where the parameter T'  is the ratio of the mean flow
velocity to the cold end acoustic velocity. These results indicate that even a substantial
flow rate has no eifect on the stability curve, except in the region of the uppér branch in
which the temperature ratios are not normally experienced.

4.2 Analytical Model Discussion. The work presented by Liburdy (References -

24, 25 and 26) is essentially the analytical method developed by Rott (References 14 and
15) with the inclusion of a mean flow term. Figure 417 is the stability limit, developed

by Liburdy, for §=1 for various nondimensional flow velocities. T is defined as the ratio

m_
2
21rrO acp

calculation of the nondimensional velocity for this study reveals that I' ranges from 0 (no

of the mean flow velocity to the cold end acoustic velocity ( ). A quick

flow) to approximately 28. For the relatively low values of a ranging from 7 to 12, and
values of YC of 38 to 254 indicate that the effect of Liburdy's mean flow term 1s
negligible. These curves were developed for subcritical helium; however, discussions with
Dr. Liburdy indicate that the same negligible effect of low flow rates should exist for
hydrogen. Based upon these observations, a decision was made to use the analysis
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developed by Rott. Inasmuch as the mean flow term has negligible effect, any correlation

of the data with Rott's analysis should also apply to Liburdy's model. The following
paragraphs contain a discussion of Rott's method as it applies to this study. 'j‘}i

As mentioned in Section 4.1, Rott examined thermally driven oscillations and presented an a

analysis which makes use of linear nature of the governing equations with the inclusion of
second order viscous effects. Previous works were based on boundary layer assﬁmptions
for flow in a pipe, whereas Rott based his ahalysis on the long tube constraint which,
simply stated, requires the tube length to be much larger than the tube radius. The long
tube assumption is met with considerable ease for the PRSA Hydrogen Tank lines with

~ effective length-to-diameter (L/D) ratios of approximately 50, 130 and 150 for the vent,

fill and supply lines, respectively. The models presented by Rott and Liburdy consist of

f_'j“; piecewise approximate solutions of the governing equations for two constant temperature
- “ - ~ tube sections. The tube sections are assumed to exist at the cold or hot temperature.
5‘ The solutions are then matched by requiring the hot and cold pressures and pressure 4
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Figure 4-17 TEMPERATURE RATIOS VERSUS Y AT THE
STABILITY LIMIT FOR LOW VELOCITY FLOW

'gradient to be equal at the temperature jump. Figure 4-18 illustrates the "idealized
temperature jump" for the PRSA Hydrogen Tank conditions. This figure also ¢ontains
sketches of the temperature profile for the fill and supply lines. Note the supply line
forms the VCS which explains the long sloping section to its temperature profile. The
cold tube length of | and the hot tube length of L-I are also shown in Figure 4-18.

While the supply and {ill line temperature profiles are not similar to the idealized profile,
Rott (Reference 15) examined the application of his analysis to nonideal temperature
profiles. He defined the steepness which is given in Equation 4-1.

2T | e
S‘—,T-r-]—:—fr—c- (H;)x-l' | Equation 4-1

He indicates that the effect of steepness on the temperature ratio of stability limit is not
very large. He based his conclusion on calculations made for steepness values ranging
from 5 to «, Where the effect on the temperature ratio was from 24 to 21.
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Figure %-18 FLOW LINE REPRESENTATIVE TEMPERATURE PROFILES

The work by Rott and Liburdy makes use of a power-law kinematic viscosity curve given
by Equation 4-2.

V= % = Equation 4-2

~ For helium, the work conducted by Rott, this relationship fits very well; however, for

hydrogen and, in particular hydrogen at the PRSA operating conditions, some difficulty is
involved in determining the appropriate value of B. In addition to B, tiie analysis utilizes
a constant ratio of specific heat (Y) and Praridt! number (Pr). Again for hydrogen at the
PRSA tank operating conditions, the appropriate value is difficult to determine. This
problem is best shown by examining Figure 4-19, which contains plots of the kinematic
viscosity, ratio of specific heats, acoustic velocity and Pr number for 1.9 M Pa (280 psia),

r
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Figure 4-19 HYDROGEN PROPERTIES FOR 1,9 MPa (280 psia)

the PRSA tank operatiné pressure. This figure also indicates the PRSA Hydrogen Tank
operating temperathre range. Note the behavior of properties in this range; in particular
the viscosity curve as it applies to the power-law equation. For this study, the following
values of B =.823, Y = l.42 and Pr = .71 were used for hydrogen at 1.9 M Pa.

With the use of the power-law viscosity curve and the linearized governing equations,

Rott proceeded to solve for the stability limit. Figures 4-20 and 4-21 represent the
~stability curves developed by Rott {Reference 15). The curves are plotted for the
jtemperature ratio versus the dimensionless parameter Y o Figure 4-20 contains the

stability limit for small values of § = (L - 1)/, ratio of hot-to-cold length ranging from .1

to 1. The stability curves for larger values of § are contained in Figure 4-21, where §
‘ranges from 2 to 50. The dotted lines in Figures 4-20 and 4-21 represent the asymptotic

curves. The agreement for moderate values of § is quite good, while for larger values of
§, the agreement is poor. The asymptotic values were determined by Rott (Reference 15)
for the lower or right-hand branch of Figure 4-20. Equation 4-3 produces the lower
branch asymptotic curves. ’
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Y. =2D (1+5°} +)‘c2: &’x)"lm(l +B) | - Equation 4-3

where: .

D =d*/2/C

c =120+ XL o

v Pr

¢  =2¢®-c+1/2d-dD)+d

d' =g (Y- 1-og)
The significance of the earlier discussion on hydrogen properties becomes more apparent | t

as the stability criteria is dependent on Y, 8 and Pr. The dotted lines on the lower branch
of Figures 4-20 and 4-21 were determined by the use of Equation 4-3 with the values for i
helium of 647, 5/3 and 2/3 used for B, Y and Pr, respectively. For this study, the lower 1
branch is the section of the stability curve of interest since it corresponds to the lower
values of Y c and a which the PRSA Hydrogen Tank exhibits. The asymptotic stability
limit was determined for hydrogen by use of Equation 4-3 by evaluating it with the values
of B, Y and Pr, as previously mentioned in this section, of .823, 1.42 and .71, respectively. S
In order to evaluate Equation 4-3, a relationship between A c and § must be known for the 5
stability limit. Rott (Reference 15) presents just such a relationship in Equation 16 of
Reference 15 which is given in Equation 4-4.

§ A c tan >‘c =1 : Equation 4-4

The solution to this transcendental equation is determined numerically and the results are

given in Figure 4-22, This figure represents the relationship between A and § for the o
v ’ lower branch when Y is large. Rott (Reference 15) presentéd the more complete
b frequency relationship by plottmgk versus a new dimensionless parameter Y A C'I/ 2
which is defined by rj (a /\) l) 1/2 . Thxs parameter has the advantage of not requiring
previous knowledge of frequency, this plot is reproduced in Figure 4-23. It should be ok
noted that Equation 4-4 and its resulting solution, Figure #4-22, determine the lower

branches of Figure 4-23, while the upper branch has a limit on A of #/2. The lower branch

, v “of Figure 4-23 corresponds to the right-hand branch of Figures 4-20 and 4-2]. |
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The asymptotic stability curves for hydrogen at 1.9 M Pa, the operating condition of the
PRSA tank, are given in Figure 4-24 for values of § ranging from .5 to 10. By combining

Equations 4-4 and 43, it is possible to create a stability criteria independent of
frequency. The result of just such a combination is shown in Figure 4-25.

Figures 4-24 and 4-25 will fnake up the essential stability curves required for the PRSA

data correlation.
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4.3 Data Correlation. This section presents the comparison of PRSA super-
critical Hydrogen Tank test data with the analytical models by Rott and Liburdy. As
mentioned in Section 4.2, the work by Rott will be used due to the lack of effect of flow

on the stability limit predicted by Liburdy. The data presented :n Table 3-I and the

stability curve presented in Fiéure 4-24 will be used for the test data and model
comparison. '

Figure 4-26 contains a plot of the stability curve produced in Figure 4-24 and selected

oscillating data points from the PRSA test data. Only selected data points were included
due to the number of points clustered on-a small section of the plot. While, in_'general,

the agreement with the predictions based on the work by Rott is poor, by far the most

successful correlation appears for the supply line. = -

- b-26

TR g e y T Tt

# ']
Rt

LB M{‘L i

P T e
¥

R ST

P T



o 4 T A

e B A L SANCORAETR o

]m - T T T T 1T ™ 7 TTTTT
‘L : » ]
o : § - '5 =
Lnin) P \ -
3] R o R
tc Oscillation
[-‘ 1
n 7
K]
e |
b
o L o
% l Z ; No Oscillation 3
b - -y
g N -
: 0 7 :
5 i “ ]
= e .
// 1
L /. .

lm L I T R A | O NN Lottty I A

7 - z E .
I I |z i) 2

Yo=r @ /yc)l/2

Figure 4-24 RIGHT-HAND BRANCH ASYMPTOTIC STABILITY CURVES
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The selection of which curve (value of §) the coirelation should be made on warrants some
discussion. Since 8§ represents the hot-to-cold length ratio of the fluid line in question, it
becomes necessary to attempt to determine these lengths. No test data is available to
supply the temperature profile of the liquid lines; however, some limiting values are
possible. If the fluid line interface with the outer shell is assurned to be a thermal short,
a reasonable assumption, then the maximum cold length, which is the length of line to the
mid point of the temperature gradient, is one-half the effective line length from the
pressure vessel to the outer shell. For the fill and vent lines, this is 1.9 m and .9 m,
respectively. The supply line presents a more interesting case. Figure 4-18 illustrates

conceptually the temperature profile for the supply line. The temperatures shown are

4-27

e




i i,
F A et

o
3t R

R R :
l T T T TTTT T T T T T AT
 F e ]
b / o
¥ § 25— .
" - Oscillation - T~5=10 -
s ~

B
l//
!
[
.
o
-

)

e |

b £ :
20 - ]
o N N
2 - .
5 - No Oscillation ’
Q.

g 3 -
[\

= L -

= /

W k vv‘/ﬂlAl‘ll‘Jn |H|~L1|’|1n ) ‘| 1 1 l-ln/n’- .VLV ) ;tliALVl“
I l : ] )
: . ' AT}

-2 1/2
Yo Al _ro(ac/vcl)

" Figure 4-25 RIGHT-HAND BRANCH OF STABILITY CURVE
FOR HYDROGEN, INDEPENDENT OF FREQUENCY

typical operating conditions for the PRSA Hydrogen Tank. Based upon these tempera-
tures, a temperature ratio of approximately three exists for both temperature jumps.
This presents a difficulty in déterminingwhether one jump is dominant or the effect is
compounded. The determination was made that the effect was one of a net temperature
ratio of six; i.e., treat the double jump as a single temperature jump. This decision is
verified by the prediction that, for helium, a temperature ratio of at least 3.5 was

required to sustain oscillations. A similar value of approximately five is required for

~ hydrogen as well. With this, the supply line cold length can be approximated as one-half

the line length of the VCS, plus the line length internal to the pressure vessel. ' This
results in an approximate cold length of 8.0 m for the supply line. '
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| With the cold lengths presented here and the external line lengths presented in Figures
2-1 through 2-17, the values of §between 1 and 10 are reasonable.
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5.0 CONCLUSIONS AND RECOMMENDATIONS
3 The correlation betweer: the PRSA Hydrogen Tank test data and the analytical model by &
g Rott must be examined in light of the following comments:
1. Supercritical hydrogen properties result in poor agreement with constant Pr
& number, and a power-law kinematic viscosity law.
2. Determination of actual cold fluid line lengths was prevented by a lack of
‘ instrumentation. This presents uncertainties in evaluating the proper stability
e : curve. ;
3 A { 3. The relatively small steepness ratio raises the question as to the validity of the !
s discontinuous temperature jump where the temperatures are assurned constant on j
e both sides of the jump. As the length of the ternperature gradient increases, 3
B .
}‘ validity of this assumption decreases. : §
| E
j The small variation in temperature ratios ard other critical oscillation parameters makes ‘
e . e e . L o pe k
] © any conclusions as to the verification of the analytical models impossible. The difficulty ;
g in applying the model by Rott or Liburdy to an existing production PRSA Hydrogen Tank
suggests more intensive study of the thermal acoustic oscillation phenomena is warranted. 5
i ) :
. : :
o
- Future work must include not only work dealing with subcritical hydrogen, but also
supercritical hydrogen. It is suggested that work be initiated in a test dewar instrumented
for the study of thermal acoustic oscillations. This should result in sufficient data to
_ initiate a study of oscillations in production cryogenic tanks. Where the effect of
AN - \ u L . 7
. f “ nonidealized conditions may be studied, this would provide useful design information for .
§ future cryogenic storage facilities. o
ok
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