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ON THE INTERANNUAL VARIABILITY OF THE OCEAN ATMOSPHERE
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ABSTRACT

Several feedback mechanisms between.ocean and atmosphere are discussed, which seem

to have a decisive influence on the interannual variability of the atmosphere and

on climatic fluctuations on a time scale of 10 to 50 years. Satellite requirements

to monitor these feedback processes are outlined briefly.

It has been poi.nte:d out by several authors [1], [2] that large sea-surface tempera-

ture (SST)anomalies in the North Pacific, but also in the North Atlantic can,at

times, influence weather patterns downstream by influencing the behavior of plane-

tary long waves. - So it has been surmised that the excessively cold winter of

1976-77 over, the Eastern'United States was to a considerable part due to a large

negative SST anomaly in the central North Pacific which reached maximum propor-

tions, during summer and fall of 1976.

Our own preliminary research results indicate that SST anomalies can, indeed,

amplify certain planetary, wave patterns (mainly hemispheric. wave numbers 2 and 3)

W `	 if these anomalies are of the right sign and in the right .location to cause

*The research reported in this paper was supported by NASA;, Goddard, Grant
NGR 06-002 = 098, U.S. DOE Grant EY-76.S-02-1340, NSF Grant ATM76-21017 and
NOAA Grant N00228-76-C-3205. 	
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"resonance" with the orographically forced planetary wave modes.

In order to understand some of the interannual variability of regional weather.

patterns caused by the variability of planetary wave modes, we have to come to

grips with the effects of SST anomalies on the atmosphere and, ultimately, with

the causes for SST anomaly generation. Research into both problem areas presently

is severely hampered by insufficient data. To estimate SST anomalies and air-sea

interaction by latent and sensible heat transport we rely mainly on observational

data from ships of opportunity [3], [4],. [5] 3 [6]. These data are sparse and noisy

and have to be subjected to smoothing and inte rpolation routines before the^	 9	 p	 Y can

'	 become useful. Figure 1 gives an example of SST anomalies in the . North Pacific
j

j	 obtained from different data sources in the latitude band 40 - 50 0N. The incom-

patibility of the NOAA data set with later data material is most likely caused

by neglected systematic temperature variations within each "grid box

4

7
#	 2

0

9

.2

3	 -7
^.	

.4

r

f
Fig. 1. Seven-month running mean of sea surface temperature anomalies (°C) in the
latitude band 40-50°N of the North Pacific, calculated with respect to the 1962-
1976 monthly mean temperatures. Dots after 1962, data from Fleet Numerical Weather
Central; solid line between 1949 and 1962, data from Fisheries Research Board of
Canada; dots prior to 1962, data from National Oceanic and Atmospheric Administra-
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I	 With sufficient smoothing and time-averaging even our present data base reveals

considerable systematic and , interannual variability in SST anomalies. Figures .2
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and 3 show the monthly departures from the monthly mean values of SST's averaged

by latitude band.in the Pacific and Atlantic. Of special interest is a long-term

cooling trend in the Pacific between 40 and 50 0N, which seemed to have set in

around 1963 (compare.with Fig. 1). ' At 50 to 60 °N the cooling trend started not

until 1967. Long-term trends in the Atlantic, as well as shorter-term SST anoma-

lied superimposed upon these trends, are not identical to.those in the Pacific.
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Fig. 2., Monthl y SST anomalies in the North Pacific (°C)-averaged over the latitude
bands as indicated. A seven-month running-mean filter has been applied to the
monthly anomaly data. Dashed-dotted lines indicate the least-squares fit of first-
second- or third-order polynomials.
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Fig. 3. Similar to Fig. 2, except for Atlantic.

The origin of.SST anomalies still remains a puzzle, mainly because the eriirs and

lack of time and space resolution in our present data base do not permit accurate

assessment of the various quantities that enter into the heat balance equation of

an oceanic "box". As illustrated in Fig. 4, this.balance can be written as follows

Q -  Q	 Q	 Q"	 Q	 Q	 Q	 Q	 (1)0	 IS + HA	 OL	 SH	 EU	 UW	 D

where Q0 is the heat contained in the oceanic volume that reveals the observed SST

anomaly. Presumably this volume will contain a major part of the mixed layer.above

the thermocline and will not be.confined to just a shallow surface layer, if the

SST anomaly under consideration is significantly long-.lived.

In Figs. 2 and 3 we have removed the seasonal trends, hence we should consider

anomalies in the.budget terms listed in equ. (1). QIS then would be an.anomaly in
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the heat gain by incoming radiation from sun and sky, produced mainly by anomalous

cloudiness conditions. We have not yet had the opportunity to assess the signifi-

canco of this term on SST anomaly generation, but satellite data will have to

figure prominently in such an assessment.

QEV QSFF)IS QOL

C-)U W

Fig. 4. Schematic diagram of the energy budget of an oceanic volume situated in

the mixed layer underneath the (striped) ocean surface.

-QOL is the heat loss by the ocear, mainly by long-wave radiation. This term

depends on the oceanic surface temperature, but also on atmospheric transmissivity

modulated by cloudiness and water-vapor anomalies. Again satellite data will have

to figure prominently in an evaluation of the significance of this term.

QHA is the heat gain (or less) by variations in the horizontal advection through

the ocean currents moving in and out of the SST anomaly area under consideration.
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Into the term QHA will enter variations of heat transport along the mean current

streamlines, but also effects of the displacement of the current systems in a

direction perpendicular to the mean streamlines.

-Q
SH covers the heat loss to the atmosphere by sensible heat transfer and -REV

is the heat loss by evaporation (latent-heat transfer). Heat losses or gains by

precipitation of a temperature different than that given by SST have. been

neglected.

QUW covers the effects of upwelling through the mean level of the thermocline,.

produced mainly by Ekman pumping. Recent investigations [7], [8] seem to indicate

that Ekman pumping played, at best, a minor role in the development of the large

negative SST anomaly in the North Pacific during 1976. Q D contains the effects of

sub-grid scale diffusion.

We are not yet in a position to examine each term of the balance equation ;1) in

quantitative detail. We have attempted, however, to explore the possible impact

of some of the terms on SST anomaly formation.

Seigel [6] computed daily values of latent and sensible heat transport from the

ocean to the atmosphere using bulk transfer equations applied to gridded data

of SST, air temperatures, vapor pressures and (geostrophically derived) wind speeds

at ship-deck level received from the U.S. Fleet Numerical Weather Central.

Figure 5 shows examples of daily mean values of sensible and latent heat transfers

from the North Atlantic and Pacific for the period October 1972 - December 1973.

Values comprise averages for the oceanic areas north of 20°N. A considerable
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amount of interdiurnal variability of mean heat fluxes is evident from these

diagrams, whose spectra reveals peaks at periods of approximately 7 days and

22 - 24 days, The.fcrmer period appears to be tied to traveling cyclonic dis-

turbances, the latter to a vacillation in the atmospheric. energy cycle investi-

gated earlier [9]. Table 1 reveals a considerable interannual variability of the

sensible heat flux, especially during winter when flux values are high.
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Fig.	 5. Daily values of sensible and latent heat transfer (cal cm 2 day-1)
averaged over the oceanic areas of the Pacific and Atlantic north of 20°N for the
period	 indicated. (a)	 Sensible heat transfer, Atlantic; 	 (b)	 sensible heat
transfer Pacific:	 (c) latent heat transfer, Atlantic;	 (d)	 latent heat transfer,

Pacific.	 (After [6].)

The short-term variability in the ocean--to-atmosphere heat transfer is strongly

influenced by variations in the wind speed. We suspect that some of the inter

annual variability . in this transfer also depends on the degree of "stormi.ness
4

especially in middle latitudes. This hypothesis will have to be checked further,

however.
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TABLE 5* Mean Fluxes of Sensible and Latent Heat From the Ocean to the Atmosphere,
for Regions North of 20°N

Sensible Heat Flux	 (cal	 cm-2 day-
1)	

Latent Heat Flux (cal	 cm-2da -1

Oct.	 - Mar. Atlantic Pacific Atlantic Pacific

1970-71 47.55 31.45 207.03 274.27
1971-72 48.10 35.13 194.74 2%0.55
1972-73 49.05 36.70 201.37 281.74
1973-74 42.56 33.71 195.26 269.51
1974-75 47.17 36.94 192.10 268.26

Average 46.89 34.79 198.10 272.87

Stand.	 Dev. 2.25 2.04 5.40 4.87

of S.D. 5% 6% 3% 12%

*Data after Seigel, 1977.

Satellite surveillance of atmospheric water vapor content and of water v.a.por flux

divergence over the ocean should be compared against some of the latent heat

transport calculations quoted above, that employed conventional ship data. If

the ir,terannual variability of latent heat transport evident from Table l can be

considered real we should suspect a similar variability to characterize hemispheric

precipitation. This variability, however, is below the threshold value of resolu-

tion of our present precipitation measurement system.

The generation of SST anomalies by horizontal advective processes is also difficult

to assess from our present data base mainly because of the sparsity . of oceanic

current and flow information. Figure 6 shows current velocities in two areas

identified in Fig .. 7. Current Velocity data were obtained from the National

Oceanographic Data Center (NODC), Washington,,.D.C. Monthly values were interpo-

lated. linearly for missing time periods and . then a 7-month running-mean filter was

y



applied to the data. Area 2 is characteristic of the Kuroshio Extension [101,

whereas Area 1 is expected to be subject to some of the Oyashio effects, even

though it lies rather close to Area 2.
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Fig. 6. Current velocities in m/sec, averaged over observations in Area 1 and 2
identified in Fig. 7. Values for missing months were obtained by linear inter-
polation. A seven-month running-mean smoothing filter was applied to the monthly
velocity values.
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Fig. 7. Location map of oceanic areas used for averaging purposes.
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In Fig. 7 we have also indicated the areas A through F used for SST calculations,

The northern tier of areas, indeed, shows temperatures approximately 7 0C lower

than the southern tier, -indicating the involvement of two different current systems.

The current velocities in Fig. 6 do not directly reveal the water transport varia-

tions in Areas 1 and 2. To arrive at the latter the would have to know the velocity

distribution and depth, and the width of the currents. Nevertheless, a few

qualitative comparisons shall be attempted.

Figure 8 shows the 7-month smoothed SST anomalies averaged over areas A through F

defined in Fig. 7. Area A experienced a pronounced cooling trend between 1964 and

1970, interrupted by a warm period in 1967. The lone;-term trend -- but not its

interruption -- agrees with the increase of cold water transport in Area 1 (Fig. 6)

during the same time period. Area 2, on the other hand, appeared to contain in-

creasing current velocities between 1962 and 1967 and a decline thereafter. The

general trends of SST in area D -- ignoring shorter-term fluctuations for :he time

being -- indicate warming between 1962 and 1967, and cooling thereafter.

The SST anomalies in Area C, which also contains Area 1, shows strong cooling

between 1962 and 1965 and considerable warming thereafter. It appears as if this

area as well as the downstream areas Q and A between 1966 and 1970 experienced

temperature surges similar to area D.' Thereafter the similarity between D and C

ceases again.

Possible advective properties of SST anomalies are somewhat masked in Fig. 8 by

the smoothing filter that has been applied to the data. Nevertheless, some of the

positive anomaly peaks indicate a time . delay between areas D, E and F of ,2 to 3

months between each area. The original, unsmoothed values reveal such a delay
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somewhat better. The same is the case for negative anomaly peaks in areas C, B

and A	 We are presently in , the process of quantifying these lag-correlations

between SST anomalies of adjacent areas.
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Fig. 8. Monthly SST anomalies (with 7.-month running-mean filter applied),in areas
defined in Fig. 7. The distance between horizontal dashed-dotted lines conforms
to a temperature anomaly of 0.8°C. Dotted lines are reference lines of zero
anomalies for areas labelled on the left . side of the diagram.
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In a previous paper [4] we leave formulated -the hypothesis that SST anomalies in

the North Pacific are tied to surges in the trade wind systems by a number of feed-

back mechanisms which are shown schematically in Fig. 9. In Fig. 10 we have

plotted the u-component anomalies in the trade-wind regions between 5°N and 19°N,

and 1°S to 15°S, and over the longitudinal extent of the Pacific in that latitude

belt. Positive anomalies indicate stronger-than-normal easterlies. Positive SST

anomalies in Areas D and E observed in 1964, 1966/67, 1969, 1970/71 and 1973 seem

to be linked to surges in the trade-wind u-component approximately one year

earlier (Fig. 11).

30-50°N,Neg.	 ASST	 ^T (Troposphere)
jE	 SST Anomaly 20-50'N	 20-50°tJ

Curl of Vorticrty	 !1850-mb Heigh
Z i Wind Stress of Sfc.Winds	 20-50°N

Water Transport in Hadley Cell u-Anomaly
Pacific Current Systems 	 Intensity N.H. Trades

I
Cr v- Anomaly Curl of Zonal

N.H, Trades Wind Stress

li

Moisture Trans, ort into, N E	 Cold's"Dater
Latent Heat Release in, ITCZ Upwelling

a^? Pressure Change in

l;
Equatorial Trough

V-Anomaly
S.H.Trades

Fig. 9. Schematic diagram of feedback mechanisms involving oceanic and atmospheric
anomalies in the Pacific region. Positive feedbacks are indicated by solid lines
with arrows between "boxes", negative feedbacks by dotted lines and "NF".
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Fig, 10. Monthly anomalies of theu-component of the trade winds to the latitude
belts indicated, averaged over the longitudinal extent of the Pacific. A 7-111onth
running-mean filter was applied to the monthly data.
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'	 _Fig. 11. SST anomalies ofAreas E and - D in °C (taken from Fig'. 8), compared with
trade-wind u-component anomalies in the.North Pacific in m/sec (taken from Fig. 10).
Dotted lines indicate possible time-lagged connections between maximum and minimum
values in both sets of.curves.
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From the foregoing discussion it appears that SST anomalies in the North Pacific

are, at least in part, caused by advective processes in the subtropical 	 anticyclonic

gyre and in the North Pacific cyclonic gyre. 	 Strong negative temperature anomalies

in areas A and F appear to have a particularly pronounced effect on planetary wave

patterns [1].	 These two regions are affected by water transport in the Kuroshio

as well as in the Oyashio.	 Therefore, feedback mechanisms between ocean and

atmosphere have to be considered in low as well 	 as high latitudes.
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