

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

1

f

4

t
1

} i

Y

i	 •

Lr	

'`

{	
j

SCIENCE
APPLICATIONS

Incorporated
(NASA-CR-161335) NASA SOFTWARE	 N80-11806
SPECIFICATION AND EVALOATICN SYSM7 DESIGN
Final Report (Science Applications, Inc.,
Huntsville, Ala.) 20 p HC A02/MF A01	 Onclas

CSCL 09B G3/61 46148

> of W

wCj W l4f
O

i 4^iS+ . off.^

SAI-80-743-HU

r_irz

ANOW Aff

•{

NASA SOFTWARE SPECIFICATION

AND EVALUATION SYSTEM DESIGN

FINAL REPORT

Contract No. NAS8-32526

October 31, 1979

Prepared for:

George C. Marshall Space Flight Center

Data Systems Laboratory
Huntsville, Alabama 35812

Attn: Mr. John Capps, EF15

SCIENCE APPLICATIONS, INC.

W. Clinton Avenue, Suite 800
Huntsville, Alabama 35805

(205) 533-5900

AloF's

t^

1. SSES MANAGERS GUIDE

SAI has developed all of the following components of the SSES

System: a software requirements methodology, a software design language,

a structured programming language, a static code analyzer, a dynamic code

analyzer, and a testcase generator. Each of these has self explanatory

technical and user documentation as listed in Table (1). As far as overall

guidelines in managing the personnel of a software project, we refer the

interested reader to SAI Programming Guidelines, April/May 1978 SAI Progress

Report. This report indicates how to structure the responsibilities of the

software implementation and test teams. In terms of overall resources,

implementation and test should account for about 50% of the total development

effort; the other 50% should go to software requirements and design. For

these stages SSES provides a requirements methodology and a design language.

The requirements approach is a modified HIPO-type description of the require-

ment functions and subfunctions. In order to identify these functions, we

recommend the creation of Data Flow Diagrams (c.f. DeMarco, Structured

Analysis and Design, Yourdon Press) which use data as a starting point. Once

all the data flows have been established, the processing points can be

elaborated using the SSES requirements methodology. Another advantage of

using DFD's is that they lea: to a natural high level software design - as

illustrated in Figure (1). Once established, this design can be expressed

in terms of SSL - the SSES design language.

One last point we should make is about the cost and scheduling of

software. The very best reference we can give on that topic is an article

by Alvin L. Kustanowitz, which we include in the appendix of this report.

In retrospect, we think there are a wide variety of reasons why

an integrated system of software development tools should be employed - for

increased reliability, quicker development, better maintainability, etc.,

but one reason which should stand out to all is lower cost. Attesting to

this fact is Table (2) which g i ves productivity figures obtained while

developing the various SSES tools - along with a pilot project - a relational

data base management system. These programs were developed using some or

2

all of the SSES tools. Once the SSES developed programs are categorized as

to type of development, their productivity figures compare favorably with

industry standards. Even the relational DBMS program - which was a highly

theoretical, non-standard development - had favorable results. We believe

that through using the tools of the SSES system, predicting productivity of

10 lines/day for any HOL program will be an entirely safe and certain

estimate.

3 r"

L

1

t7

Boa
.IC+

w L 1
F•«

l

Qf

I

7	 11 «
N
O

I

«m	
O I	 6 ^

rn U 0) — 60) 41 Q d 0 L V	 4A

C
to i

y	 d NG c
V

pOj: w
.,	 f..+

t
t` O	 61 u

^
1

eo
y u	 f.

.. < Glzua
O co mC«i h M<O0 t< O ¢ ^ .r

^

4c

F16 yi co .^ ^ u ^ z ^+ F Oar

L

^ r V s Y
«Vi

C
v C-•+ Ie L

C ++ V S d .r A+ y ei	 C.+C w .r
m

{„	
c .rt0 7 ..0 rIR.. 7	 C .+ N s ,+

y m u o 6 8	 -^ G u .+
-^ Cy	 ,. , r. 7 C .+ v 0 ea O
a v^•+ G

0•°• 0 v».+c
V) C.;

I V. 'J r+ C

C	 I ^
t	 a — oc

V V ^
wy	 to

vc r+ v C G
CL	C

1!i V C y C 'O .0+ 	 V •fl C m .r
art Ew y .+ m e0 7"' ^

i^ <vaeoe ^ ^
ariav^

uv^c

a o < le -+ ^-•
of

a	 W • 0 0 Ow
IN

av
z s.,.m.+

0 1

v 6 m
F F

'r.. c a S W { w t0
W

00
S c44^

c	 .O,
.Or	 «+

I	 O
O

0 0. ^+	 aD
J ^+.^ b 41 47 4	 tp

.r	 d	 N
00 ^+	 I

t0
U d V t7
7@ ++ Q

1
m

L	 O	 1
^+	 N	 m

!A C C
V	 v	 t`^.^

0 U
co

5 G IO. it V t r. t	 7 •+
0 ^.0C<

9a ..̂ I V	 <
^

U O=
0u < 4x0

^+ v: E+ Z r+ "Mz

C
3

^ I
'7

61

4	 1
1	 01

O 'L'	 1
C6

7
LQ C D

C

7 0	 C

41 C	 +Ci
?

I

47 C C 7
h O a'O N

?
I

4.	 .r w

N O
0

C S (^
< w 1 S

yV= U
m

t

't0.'L C ^+
CD s ^+ F	 O Qs U F.	 V ^+ 	C	 Q' ^+ R ID G

00r tIL a 'n v R	 w tf^ 7 L N 41 ,r +^ co 00 N C
.+ CJ d •^ 1 U 41 .+ `+ I L	 C C

n _C u et7	 ti y C I 11JI L
.. y ..V. z 0— 00.. G 00

h < U7 d^ I G ac	 C v x ee d	
ao00 V le	 w n v	 R^ ` n - Ryin r S

..	 n-+2 ^yG.. CC-+ m ^ E I

'C
c y

C V OTC 6 y 6l i si0	 "^ i Si <
G

{^ C V	 <C 6I
C to e o o^

Gee 0 V7
z	 CL ^. c^ c>z t^ .^ .^ C

I	 r ,
v m ..
1 ^
Q' C

w
a+ 6J7 ^ L
C fU ^ C. u 0
C

I
C: L CO C C	 N ^.

V) C v
fu.	 VW O d v .+ G R Q

V: l.^ L v 	 U ::	 N Cw
!!) ^ R m e u Q O i. ^i N ; „ V 0. f- .+ ^ r. •^

U ..+r .,... 7F 4 R	 :7 ^
w C o..J L GC CU ., C

tr, c G>
to E v v n t+. a

/-^fwf
Aov"

1

4

'^r •.^
S C

7 C mM
N̂

^
L

^ v^ G I Q^ y t0A^ am S Q^ n ^ m L v ^
7

O Q 0^
I

<
U yyy	 _
r G^

O O V

N	 V., r w GGG y G
07 01 4

I U L 0)
> >	 v 00. L
U '^

v<zS
° v 0 « cL.F^a

r« C G tL A	 d L A 4 C
co «Z O.0 .L•+ 2Si^.

^acy «.+ v v r va
w 	 t Lv

.^ L
v ^

'fl V «

C	 I c 61 7 U
r C '^ L L 3
S Z S « ^ «
y 61 U	 pJ
S S i0 .r 7 <r12. -6 I.V)<

i-r U G7 r U 61 c VJ Z<c 0 r Z
O 7 ^+ `• = 91 C 01< « t

C =	 «
O pp m c
U - y r w

^^ L O L

^ «Lipr G	 m
e r.+a

^

n

'^ C	 y
mvv

•.C. vLai C Y 4 L cfJ Q L 4 1. W
J 21.0 J m 1 v 7

DN « ^.^ I .+ L Z
GN«N .^ A) 0 y

AU a.r n s^U Ar n « ►.Z
< ti 7 .•. 7 1 r y

09 r L 11 c V; r M r C "' « C
< c« c A < < Q« C A % 0
Z<07 c Z<^<Z

•

y p
o vU
U

L OVi D S

Nm 0 7 ^ +rn ^

A •+ Vl — Q v 7 r V)
N D p r e a tic O e t: v

, v̂,	 y ^ « O « X	 v c, C Q z ..
E	 G	 ►. O ao c A ao U 4a v G n p L	 p i l i

<
G Ic 0	 -+ Nl

.. p	 —
.,yŷ

f'7	 u7
O O Oe LS D+ ~ C l L L E S« «

f. v QI C C O I	 9 U Z m .+ v S v C n V ^• ", cD ID
C N- y 0-^ m	 C < n U N c	 v n .+ 0 I

E	 y n E t I >. a„ • E I e C ao m
<^^t57 y.. I AF ^ <^GAC

<̂
v rev nnn

IV A« U L> .. C a
>.

< V. R	 « V E L A U ^
<cvCC vv
z -C

<
tq a E m < e0v

Z <« G a
0 A	 e

y to t/^ D<9O ^ y 4
S ^+ @ CJ

'^' r V

I c Z v

v u C
!v C 1

y ^^ y
v r 0

A S .. Ĉ 0

C
cc

w N 0 v
Gr G U

U 0 (A S .^+
E^ L O
m ^.+v
c y c
T « d U
G V.FL ••

ff/.
AW_'

5

i.

` l•

{ J	 QJ	 i

d

^v	 hi
ti}	 Vs

A	
^	 L

4
°b.	 M	 v+

Al	 yi ci

q	 =

c^
a^

,ri

i
6	

AV

x

!'rf J
v y^N N
N O
N Ln

i0
^ 7

cm
.^ C

O r0
^ J
fa

01
a v+
o ^
J Q
W v

4.

f0

^ C
v J

{y

o a^
> dd N
G N
\ Q
Vf

rr
J

W .-• VI
C J G!O O F—V

N ^ N

W C N
J O
°^ ¢ z

sN
N
Ot v

c

N

r ^ Q

•r V
^n	 •n
W O

H	 a
Y
O C N
O O W
L L N
an Q N

N Mv v v

^ eo I

}y

Y
cc

W

Q
CL

z
Q

O
U

$
;	 m

NJ Q

U

V1a UW â •
z a ^ •

a
V

Z
REPROIIUCTBILITI OF TNF:
ORIGINAL, PAGE, fq 4101,11

o

m	 a

s	 ^^A2 V

pp
	 E	 o	 ^N2, M	 ^ ^	 r ^ G J

g r
C

cc

I	 cz •^ ^ z g^' i ^ z^ ^
Y t^	 m r ^	 m `^	 m	 ^

FE 	 E

ch

U

U.

 1
♦/1 & J

U) azN=
Q2

J

ĈN

°

x
W	 LL

Q ^
V ^ V

_J

N

ĉ
 y

E Uc .^

•0 y
Wt"'

-v

^U
cc

lot 0

x

6.

SL

C

An
d 	 a„

W 3^ C Q ^/ w^

t^lUiti O}. NMLLd
S Q

0 ♦ •.
W , LU

eh s

^ CR

U ^'

N
^ Q

Q ^
Q

ca Qc
^ V
++ H

X }'

W E'

g

N

Y

w

cl

x

E E E
d 0

9L CA

S
W
1--
2 4

Y

NY
M

f

• • • • •
S
W

^l

W

•

21

A

^ meS ^

WI • •

w

ci

M

^y

1

T

60
0
CL
a

dome

a

LC ^
^ 3
0 0
U 0)

1
2

ccO

t
pi W

W CC

(7	 Q cc
Z ^m

4Q
LU

V

R

WC

C
00

43 s

W4

0_ ^ 2 Q

UA

N Jus IL

N

U

^2 H

8
aN ^^. N

W Q

Q 0.

i

^a

O ^r

N

W

2. QUANTITATIVE PROGRESS

SOW Task	 Completed	 Action Taken

A. Develop Pilot Software	 100	 We have built a relational Data
Base Management System using
SSES.

[4r

B. Test and Evaluate
SSES Components

C. Modification of
SSES Components

D. Advanced Research

100	 An SSL report, written by an
independent evaluator, was sub-
mitted in our July 1, 1977 Pro-
gress Report. Also, the dynamic
analyzer, static analyzer and
structured preprocessor have
been tested and evaluated at
another NASA computer center at
MSFC as well as the John Hopkins
Applied Physics Lab.

100	 FACES, the structured FORTRAN
preprocessor, and two versions
of the dynamic analyzer have
been converted to the UNIVAC
1108. SSL was modified to
improve error recovery. Extend-
ing the analyzing capabilities
and decreasing the execution
overhgad wa; accomplished for the
dynamic a-a yzer.

100	 Documented in our August 1977
Progress Report was an investi-
gation of the SSES system to-
wards microprocessor software.
Our extensive reseArch into the
data bases was partiall reflect-
ed in our October (1977 Progress
Report. A paper entitled, "Com-
puter Program Development
Analysis" was written which
appears in Appendix A of the
September 1978 report.

100	 Documentation has been completed,

100	 Small comparison program was run,

100	 Documentation is completed and
has been printed.

E. NSSC-II Software Documen-
tation and HAL/S Software/
Assessment

F. HAL/S and FORTRAN Comparison

G. NSSC-II Documentation

10

i

ANW.Aff ff
A-1

SYSTEM LIFE CYCLE ESTIMATION (SLICE):
NEW APPROACH TO ESTIMATING RESOURCES
FOR APPLICATION PROGRAM DEVELOPMENT

Alvin L. Kustanowitz

IBM Corporation
Data Processing Division

White Plains, New York 10604

ABSTRACT

This paper presents a technique for
the accurate estimation of manpower
required to implement programming
applications, from simple batch programs
to complex, on-line systems in both the
conventional and top-down, structured
programming environments.

The history of estimating techniques
is r,viewed in order to show why most of
them have failed to produce accurate and
consistent results, and to demonstrate
the need for a fresh approach to re-
source estimation.

The technique, System Life Cycle
Estimation (SLICE), has greatest val-
idity-when a system design already
exists, but may be used, although with
less accuracy, at earlier stages of
development.

THE HISTORY OF ESTIMATING TECHNIQUES

Ever since the appearance of the first
programmable computer, we have been
trying to predict, forecast and estimate
how long it will take and how much it will
cost to develop programs and programming
systems.	 Almost without exception, these
efforts have failed.	 Certainly, some
well-conceived estimating techniques
have been published because their devel-
opers found them to be useful in a
particular environment.. In most of these
cases, the authors were very careful to
describe the environment for which the
technique was suited, and to advise poten-
tial users of its limitations and restric-
tions.

J. D. Aron, in a paper that has become

a classic in the field l , suggests a
quantitative approach using 20 assembly-
language source statements per day for
"easy" programs, 10 per day for "medium"
programs and S per day for "hard" programs.
While these figures have been widely used
and quoted, applying them to a typical
program or system doesn't always result in

accurate estimates. Careful reading of
the paper shows why--the figures are
applicable only for "large" systems,
where these are defined as requiring:

' More than 25 pro,-ammers
More than 30,00!' eliverable instruc-
ions
More than six months development
time

' More than one level of management

Furthermore, the definitions of "easy",
"medium" and "hard" are themselves re-
vealing.

EASY	 - Very few interactions with other
systems elements.	 The class
includes most problem programs
or "application" programs. Any
program the main function of
which is to solve a mathematical
or logical problem is probably
in this class.	 Easy programs
generally interact only with in-
put/output programs, data
management programs, and monitor
programs.

MEDIUM - Some interactions with other
system elements.	 In this cate-
gory are most utilities, lang-
uage compilers, schedulers, in-
put/output packages and data
management packages. 	 These pro-
grams interact with hardware
functions, with problem programs,
with monitors, and with others
in this class.	 They are further
complicated by being generalized
enough to handle multiple sit-
uations; e.g.,I/O from many
different I/O devices or man-
agement of data files with
variable numbers of indices.

HARD	 - Many interactions with other
system elements.	 All monitors
and operati.-,g systems fall in
this class because they interact
with everything. Special pur-
pose programs, such as a con-
versational message processor,
may be in this class if they
modify the master operating system.

A-2

It becomes apparent that most applica-
tions which a company is likely to under-
take, such as payroll, personnel, inven-
tory, sales analysis, accounts
*eceivable and payable and even on-line
systems developed with the aid of tele-
processing dontrol systems and data
base management systems, fall into the
"easy" category.	 Only if the effort is
one of developing a package like a data
base management system does the degree of
difficulty move up into the "medium"
category.

Clearly, while this approach ma/ have
been useful in its context, which is the
development of such systems as the SABRE
airline reservation system and the
Operating System (OS) for IBM's family
of 360 and 370 computers, it is not
directly applicable to the wide range of
programs which a typical company is
likely to design and implement.

In "Management Planning Guide for a
Manual of Data Processing Standards"Z
there is a section called "Technique for
Estimating Project Duration."	 In it, the
user is led through an elaborate scheme
of applying weighting points for program
complexity, input/output characteristics,
major processing functions, programming
know-how and programmer job knowledge.

Program development time is computed by
multiplying the sum of the first three sets
of weights by the sum of the last two sets.
After calculating this to two decimal pla-
ces, we are told to add an additional 70
to 110% for "other system time."

The use of decimal places in these cal-
culations is particularly subject to
misinterpretation because precision
usually implies accuracy, which is clearly
not the case here.

If these published techniques don't
work for typical business applications, how
then, do we estimate the resources re-
quired?

SYSTEM LIFE CYCLE ESTIMATION (SLICE)

The Basic Method

All programming projects have one thing
in common: A Life Cycle. They begin, and
sooner or later, they end. Between the
starting and ending points, the develop-
ment effort proceeds through a succession
of distinct phases. The number and com-
position of these phases will vary, de-
pending on the size and complexity of the
project, and the installation standards
and procedures for such activities as
project management, program and system
testing and documentation.

Most attempts to produce "standard"
estimating techniques have failed because
of the impossibility of imposing one
organization's standards on others.
Another point of difference is to what
part of the development cycle we are
applying an estimating technique.

The point here is that, unless all
those trying to estimate the development
cost of a project agree on the system life
cycle or profile for this project and to
which portion of the cycle they are ap-
plying productivity factors, the only
result is confusion.

Of course, it must be understood that
any estimates will be virtually useless
unless an organization has implemented
and is committed to project control
standards. Without such standards,
changes are likely to occur during the
development cycle which will distort or
even totally invalidate the original
estimates.

Ask any programmer of programming
manager to describe the stages of develop-
ment of a programming system. The most
likely answers will be:

	

DESIGN--CODE--TEST	 DESIGN--CODE--TEST
OR

	

30%----40%----SO%	 1/3----1/3----1/3

These classic distributions, although
universally used, are actually meaningless
when applied to one particular project.
If the project consists of a single program
to do a simple summation of numbers and
print out the result, the distribution is
more likely to be 10-80-10 than 30-40-30
because design and testing are trivial

A-3

while most of the work will be in coding
and compiling. At the other extreme, if
the project is an on-line real-time
airlines reservation system or all the
programming required for a manned
landing on Mars, the distribution might
be 45-10-45, with the coding a relatively
small part of the total effort compared
to the years of design and extensive
multiple levels of unit, integration,
system and regression testing.

This continuous range of distributions
for projects of different size is shown
graphically in Figure 1.

TEST TEST TEST
10-20% 20-308 30-458

CODE CODE CODE
6D-80% 40-60% 10-40%

DESIGN DESIGN DESIGN
10-208 20-308 30-458

SMALL	 INTERMEDIATE LARGE

PROJECT SIZE

FIGURE 1. SYSTEM LIFE CYCLE VARIES WITH
PROJECT SIZE

The essence of System Life Cycle
Estimation is the realization that no
two system development efforts are the
same, especially when they are implemented
in different organizations; however, if
multiple systems are develored in the same
environment, they will sham many charac-
teristics and the experience gained in the
first, if quantified through accurate
record-keeping techniques, will serve as
a sound basis for estimation of its
successors.

Once the estimator accepts this line of
reasoning, he can proceed to define a
realistic model of the proposed system in
its real environment, apply known percent-
ages and productivity factors and
translate the raw number of technical man-
days so derived into a time-phased project

plan.

How To Use Slice: A Step-by-Step Approach

Describe Your Project Life Cycle

In the preceding section, we discussed
the relative proportions of design, code
and test in different projects. 	 Usually,
these three phases are further broken
into smaller components such as:

Planning
Feasibility Study
Requirements Definition
Conceptual Design
Program Design
Data Base Design
Program Specifications
Program Flowcharting
Coding
Compilation
Data Base Creation
File Conversion
Unit Test
Integration Test
System Test
Documentation

The first setp in using System Life
Cycle Estimation is to construct, from
the categories listed above, and any
others you may add, a project profile
describing system development as you see
it based on actual operation of your
company, division, group or department,
and based on previous projects completed
in the same environment. 	 Project size
should have little bearing on this step.
Here are some examples:

PROFILE A

Functional Requirements Study
Conceptual System Design
General System Design
Program Specifications
Coding
Compilation and Unit Test
System Test

PROFILE d

Planning
Program Design

100

c,
E-
^ a
^ a
a pF
F

A-4

3. Data Base /File Design
4. Programming
S.	 Data Base Creation
6.	 Testing

Would you select either of these project
profiles as your own? Probably not exactly
--you'll want to make some adjustments,
but you'll end up with between 6 and 10
distinct phases of a system development
cycle--and the best part of it is that
you are not being forced to accept
anyone else's idea of what phases make
up a total project plan--this is your
plan for your project in your company.

Assign Percentages to Each of the
Phases of Your System Life Cycle

This is a bit harder to do.	 It all
depends on how accuratel y you have kept
records on previous projects.	 Also,
unless you have a very specialized group,
you are likely to have more than one
type of system life cycle, e.g. small
batch systems, intermediate batch systems,
large batch systems, small on-line s,y s-
ems, intermediate on-line systems, large
on-line systems, etc.

What do you do if you haven't ac-
cumulated enough historical data to assign
percentages to each phase? You start
right now and collect as much data as you
can for future estimates.	 In the mean-
time, you have to work with what you have.
This may well bt only rough "guesstimates"
--maybe not the most accurate information,
but if you apply These to a profile in
which you have confidence, you're already
far ahead of the old way of pulling
numbers out of the air:

Remember, once the model is built, it's
easy enough to change and refine the
percentages as you learn more about your
project life cycle.

At this point, your life cycle profile
might look something like Figure 2 for a
small batch system or Figure 3 for a large
on-line system.

START	 ND
FUN CON DES SPC COD UNI SYS

	

.11	 .05	 .11	 .23	 .11	 .23	 .16

FIGURE 2. Typical Small Batch System
Life Cycle

START FUN CON DES SPC COD UNI SYS END

	

.18	 .09	 .18	 .10	 .06	 .09	 .30

FIGURE 3. Typical Large On-Line System
Life Cycle

where FUN n Functional Requirements
Definition

CON - Conceptual System Design
DES n System Design
SPC n Program Specifications
COD - Coding
UNI - Unit Test
SYS • S y stem Test

Select Productivity Factors

How many instructions per day can you
expect your programmers to produce? You
will probably have more than one number
here--the programming language used will

	

be a factor.	 The key point here is: Only
you know your environment. Since you have
probably implemented projects before, all
that needs to be done is to add the lines
of code (source or delivered instructions-
-it doesn't matter which you use--as long
as you are consistent) and divide by the
number of man-days reported on the project.

The strongest objections are likely to
be raised here in the form of:

"But what if I don't have data from
previous projects?"

The only	 answer I can give is:	 You
should have kept detailed records, but if
you haven't there is no better time than
now to begin.

"Why instructions per day? How can I
expect my programmers to turn out a
fixed number of lines of code every
day? How can they sustain such a
daily rate of production?"

This is not an easy question to answer.
Until recently, no better unit of measure-
ment has been found.

d,

A-5

Lately, there has been increasing dis-
cussion of an alternate measure, person-
months (or days) per unit (e.g. 1000 lines)
of code. This measure seems to have great
merit, especially when applied to large
systems, particularly where there is a
high degree of scaffolding and much non-
coding activity must be factored into
overall costs.	 The typical computer user,
however, tends to feel more comfortable
with the traditional lines per day and
this is still a very useful measure at
the low and intermediate part of the
scale.

For these applications, where the
great majority of project personnel are
analysts and programmers, it is still the
easiest to relate to.

After all, when a system is delivered,
the source code is there for all to see
and it is preserved as part of the
documentation. The only other data that
has to be kept is an accurate report of
hours or days spent in programming develop-
ment.	 This data is vital if you ever want
to control your projects rather than have
your projects control you.

Establish Estimating Basis

Let's say you have concluded that rea-
sonable productivity factors for your
installation are 18 lines of code per day
for COBOL (which m ^ y generate from 40 to
60 actual deliverable instructions) and
25 lines per day for Assembler.	 These
numbers are meaningless without one more
piece of information--over what part of
your system life cycle do these factors
apply?

Take a 1000 line program as an example.
If you mean 18 lines per day for the entire
project from start to finish, the estimate
is 1000/18 or 56 man-days.	 However, if you
are measuring 18 lines per day from the
start of the program specifications
through the end of unit test, for the large
on-line system profiled in Figure 3, the
56 man-days accounts for only the middle
portion, or 251 of the system life cycle.
The total technical man-days would be
56/.25, or 224.

Again, let me emphasize that you can
estimate either way, as long as you apply
the factors consistently.

Estimate the Total Number of
Instructions in the Finished System

This is not as difficult as it may
seem.	 Of course, if you don't have the
slightest idea of where to begin, you
shouldn't be estimating yet. 	 A good deal
of design work needs to be done. The
earliest point at which an estimated
instruction count can be made is at the
completion of a conceptual design. 	 A
re-estimate should be made at the end of
detailed program design and after program
specifications and/or flowcharts are done.
You will then be able to refine the ac-
curacy of your earlier project estimates.

Any experienced programmer should be
able to guess the approximate number of
lines of code from a combination of his
previous experience, knowledge of other
programs of various sizes, and a look at
the specifications or flowchart or
narrative of a proposed new program. 	 It
may not be a guarantee of actual final
program size, but it's the best, most
consistently accurate, self-correcting
measurement criteria available.

Calculate Technical Man-Days

Divide the total number of estimated
instructions by the productivity factor,
e.g.

1000 instructions - 56 man-days, or
18 instr/day	 person-days, if you

are so inclined

If the 18 instructions/day factor was
developed to apply over your entire system
life cycle, stop here.	 You have the total
technical man-days.	 If the instructions
per day factor applies only to a percent-
age of your total system life cycle, divide
the man-day figure by the percentage.	 For
example, if it applies over 501 of the
cycle, divide 56 by .50 to get 112 man-
days; if it applies to 631 of the cycle,
divide 56 by .63 to get 89 man-days.

This technique works well in a steady-

v

A-6

r

f •

^ r

state environment, where the project being
estimated represents no great changes in
approach or technology such as the first
data base system or the first use of
structured programming in the organization

Caution must be taken when the develop-
ment environment is in a state of trans-
ition.	 If, for example, we have found a
way to double the productivity of coding
and unit test without affecting the
duration of the other project phases, we
must reassess the life cycle profile.	 It
must be modified to reflect a lower
percentage for the phases in which pro-
ductivity has increased and a higher
percentage for the others. Otherwise,
the casual application of ratios could
inadvertently reduce the time allotted
for all phases, not just those which
benefited from a productivity increase.

Translate into Time-Phased Project Plan

Still with me'.	 Good!	 We're almost
finished.	 The last step is to go from a
raw figure of technical man-days to a time
-phased project plan. Users of this tech-
nique have found that it works best for a
"square-root" manpower vs. time distri-
bution.	 For example, if your total
technical man-days comes out to be 720,
which divided by 20 days per month yields
36 man-months, the project should take 6
people 6 months to complete.	 If you try
to complete the project in one month using
36 people or in 36 months with one person,
you're not likely to make it within the
36 man-month estimate.

The total effort expended will
inevitably be somewhat greater, in the
first case because of the increased
interaction between 36 people and the
sharing of other limited resources such as
computer time.	 In the second case, three
years is a long time and you can be sure
that design changes and personnel changes
will lengthen the project.

After a while, you'll be able to adjust
the basic technical man-days based on
these types of time frame or manpower
constraints without too much trouble.
Other "extras" you may want to consider in

arriving at a realistic total cost for the
project are project management and doc-
umentation, if these are not already part
of your system profile. How many man-days
you allocate for these functions is
highly subjective and varies considerably
from one installation to another.

The Im act of Data Base Data
o ram ro ucts and Interactiv P rogram

eve opment

The use of these system development
tools can easily be taken into account
with System Life Cycle Estimation. They
are likely to impact project development
in two ways:

' Reducing the number of lines of code
required to be written, because
Data Base/Data Communications systems
provide many of the data management
functions which would otherwise have
to be designed and programmed each
time.

° Increasing the number of lines of
code per day which a programmer can
be expected to produce because of
the reduced testing and debugging
turnaround time provided by inter-
active development.

With System Life Cycle Estimation, just
know which of these tools you will be using
and take them into account in setting up
your productivity factors and in estimating
the total lines of code to be produced.

Estimating in a Structured, Top Down
Environment

If your project is being developed
using one or more of the Improved Pro-
gramming Technologies (Structured Pro-
gramming, Top-Down Development, HIPO, Chief
Programmer Team Operations, Development
Support Libraries and Structured Walk-
Throughs) System Life Cycle Estimation is
just as valid as it is in the conventional
environment. The top-down approach usually
alters the shape and composition of a
typical project profile. The major dif-
ferences are:

A-7

' Detailed design, coding, unit test,
integration test and documentation
tend to overlap and should be con-
sidered as a single phase in system
development.	 Therefore, these types
of projects will have fewer develop-
ment phases, e.g.

1. Feasibility Study
2. System Design
3. Top-Down Development
4. System Test

The percentage of total effort
devoted to system test will be re-
duced, because the top-down approach
brings a more fully checked-out
system into the system test phase.

The productivity factors (instruc-
tions per day) are likely to be
substantially higher.

The System Design phase is typically
longer in this environment.

CONCLUSION

Now you're an expert in System Life
Cycle Estimation.	 It's easy to use, and
it works.	 You can do the calculations
manually, or if you're skilled in pro-
gramming in any interactive language (e.g.
APL or BASIC), you can write a simple
program to accept input values for project
profile, language type, number of instruc-
tions and productivity factors, and print
out the estimates automatically.

The only condition of use which I ask
you to accept is:	 If you are not satis-
fied with SLICE's predictive accuracy the
first time you use it, don't reject the
technique yet--try it a second time.

After you have properly applied the
technique at least twice, I estimate that
it will become a permanent part of your
own life cycle.

REFERENCES

Aron, J.D.	 In Estimating Systems
Costs, Fourth Annual Regional Seminar

of Tennessee State Chapter of Associa-
tion for Systems Management, February
13, 1971.

2. Mena ment Plannin Guide for a Manual
o	 eeta rocessin g Standards, Form C20-
1670-2.	 hits Plains, New York.	 IBM
Corporation, February 1971.

A-8

	1980003557.pdf
	0015A02.JPG
	0015A03.JPG
	0015A04.JPG
	0015A05.JPG
	0015A06.JPG
	0015A07.JPG
	0015A08.JPG
	0015A09.JPG
	0015A10.JPG
	0015A11.JPG
	0015A12.JPG
	0015A13.JPG
	0015A14.JPG
	0015B01.JPG
	0015B02.JPG
	0015B03.JPG
	0015B04.JPG
	0015B05.JPG
	0015B06.JPG
	0015B07.JPG

