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ABSTRACT

A. new approach to the eigensystem assignment problem is presented.

The approach utilizes a null-space formulation of the eigenvalue/eigenvector

assignment problem to simultaneously realize arbitrary eigenvalue specifi-

cations, appromimate desired modal behavior, and achieve low eigensystem

sensitivity with respect to plant parameter variations. The methods are

applied to the design of regulator and integral plus proportional servo

control systems.
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A SUMMARY OF SPECTRAL SYNTHESIS PROCEDURES

FOR MULTIVARIABLE SYSTEMS

By

S.R. Liberty l , R.R. Mielke2 , and R.A. Maynard3

DISCUSSION

State space-oriented procedures provide significant design advantages

over classical control design methods for flight control systems. Several

procedures involving the synthesis of multivariable systems based on eigen-

value-placement criteria have previously been developed (refs. 1 to 3).

Eigenvalue specifications alone do not characterize the actual variable

response of a system, however. The eigenvector corresponding to a given

eigenvalue determines the influence of that eigenvalue on the state variable

response (ref. 4). Thus, satisfying modal matrix specifications is as

important as achieving eigenvalue specifications in designing a feedback

system.

The multivariable design problem can therefore be approached as an

eigenvalue/eigenvector assignment problem (refs. 5, 6). This approach has

led to a null-space formulation of the problem (ref. 7). All possible

modal matrices related to a given eigenvalue specification have been shown

to lie in the null space of a corresponding matrix. A desired modal matrix

is projected onto this null space, yielding the closest approximation to

the desired modal matrix that is actually realizable.

System sensitivity to plant parameter variations is then reduced

local to the modal matrix obtained from this projection (ref. 8). This is

done by performing a gradient search within the null space for a modal

1 Professor and Chairperson, Department of Electrical Engineering, Old
Dominion University, Norfolk, Virginia 23508

2Associate Professor, Department of Electrical Engineering, Old Dominion
University, Norfolk, Virginia 23508

3Graduate Research Assistant, Department of Electrical Engineering, Old
Dominion University, Norfolk, Virginia 23508



matrix that minimizes a sensitivity cost function and that lies near the

modal matrix first obtained.

The null-space formulation of the eigenvalue/eigenvector assignment

problem is applicable to the design of regulator and servo control systems

(refs. 9 and 10). Dynamical compensators or observers (ref. 11) are usdd

to realize the integral plus proportional feedback law determined under the

assumption of complete state accessibility. The final system is such that

the plant/integrator eigensystem and observer eigensystem are decoupled and

can be independently specified.

Computer programs based on the above procedures have been written and

are currently being evaluated. Initial results indicate that control

systems having desirable modal behavior and low eigensystem sensitivity to

changes in plant parameters can be designed using these methods. A diffi-

culty with this procedure, and all other eigensystem :assignment procedures,

is the uncertainty of how to translate system performance specifications

into specification of a desired modal matrix. Continued research in this

area would appear to be fruitful. A complete and detailed development of

all procedures mentioned here is currently being prepared for submission

to a refereed journal (ref. 12).
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A NEW SPECTRAL SYNTHESIS PROCEDURE FOR

MULTIVARIABLE REGULATORS

Presented at Allerton Conference on Communication,
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A NEW SPECTRAL SYNTHESIS PROCEDURE FOR MULTIVARIABLE REGULATORS

R. A. MAYNARD, R. R. MIELKE, S. R. LIBERTY AND S. SRINATHKU14AR
Department of Electrical Engineering
Old Dominion University
Norfolk, Virginia 23508

ABSTRACT

A method for selecting a multivariable state feedback co.itroller that
simultaneously achieves an a priori specification on closed loop eigenvalues
and good mode mixing is presented. The problem is solved by projetling a
desired modal matrix onto a constraint set containing the null space of the
closed-loop state matrix, while assuring that the projection ill in the null
space. The feedback matrix follows immediately in the formulation. An
example involving a helicopter hover controller is presented.

I. INTRODUCTION

This paper is concerned with the design problem of selecting the
stationary feedback matrix K in the control law u = Kx for a controllable.
multivariable system x = Ax + Bu where xeR n and ueRm . The matrix K is to
be selected so that the closed-loop system matrix A + BK has arbitrarily

'	 assigned eigenvalues. Once the eigenvalues are assigned, the remaining
freedom available in selecting eigenvectors is utilized to achieve desir-

able modal behavior. Srinathkumar and Rhoten in [1], [2], and [3] hive
presented a "spectral synthesis algo r ithm" for constructing the feedback
gain K which exploits the nonuniqueness of the modal matelx of A + BK in an

attempt to achieve a priori design specifications. However, the a priori
specifications are not explicitly incorporated in the procedure and that
inherent design freedom available is not systematically exploited.

The work reported here relies heavily on insight gained in [l] but is
based upon a different approach to the synthesis problem that allows a
priori modal specifications, and results in a simple design procedure th,1t
can be parameterized and iterated.

II. NULL SPACE FORMULATION OF THE PROBLEM

The eigenvalue/eigenvector assignment problem can be expressed in the
form AU w UA, where A = A + 3K, U is the modal matrix and A is a diagonal
matrix whose nonzero entries are the desired eigenvalues of A.

This work was supported by the NASA-Langley Research Center under
grant number NSG-1519.
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This can be expressed in the form

[(I nc A) + (-AT m id] vec U - 0,	 , (1)

where ® is the Kronecker product [4] and vec U • col (u i ). Thus, if U is a

solution to AU - UA, then vec U lies in the null space of S - [(I n 0 A)
+ ( • '%T ®In )]. Moreover, S • vec U n 0 if and only if [A - X i l n ] u i R 0

for all i - 1, —, n.

In the remainder of thin paper it is assumed that the system is in

rank-reduced form with S - El m 10] T, If this is not the case, a coordinate
transformation is applied to the system so that it is in this form. A

solution is obtained according to the procedure to be described, and this

solution is then transformed back to the original system coordinates. If A

1s partitioned so th4t

HA Al 2A- A22
with All an m x m matrix, then [A - a i I n ] u i - 0 if and only if the following

two equations hold.,

([All ' A i im IAl2
1
 + K) ui - 0	 (2)

and

CA21IA22 - Y n-m] u i - 0	 (3)

Equation (3) is a constraint on the vectors that lie in the null space of

CA - a i I n]; that is, vectors in the null space of [A - a i I n] must also lie

In the null space of [A21 1
'22 - aiIn-m]' Equation (2) is regarded as a

constraint on K to be satisfied after U has been computed.

The desired modal mix is expressed as a desired modal matrix, P. By

the projection theorem [5], the closest approximation, in a least squares

sense, to P that can be achieved is obtained by projecting vec P onto the

null space of S. This is equivalent to projecting pi onto the null space

of [A - a i I n ] for each i - 1, ---, n to get each of the columns of the

modal matrix, U, that most closely approximates P. This projection pro-

cedure can result in a U that is not a valid modal matrix. This occur-

rence will be indicated by the noninvertibility of U. When this happens,
the entries of P are perturbed and the new P is projected. Once an in-

vertible U is obtained, P is computed as A - UAU' l with A partitioned to
conform with A. The feedback matrix K is calculated from

5



K -
 C; 11

1Al2 1 - CA11 1Al23
	

(4)

Complex eigenvalues are treated in essentially the same way as real

	

eigenvalues, after some preliminary manipulation. Using x 	 u i t J6i
and u i - X i ; Jyi s Au i - u i a i becomes A(xi = Jyi ) - (xi x Jy i )(ai t J4i).

The real and imaginary parts of this equation can be separated and the

resulting equations can be written as

A Ix il y ia - Ixjlyi]
°i e

#	 —(S)

Partitioning
Iai

d	 [xilyi7 -
Si ti

v i w^
(6)

where s i and t i represent the first m-components of x i and y i respective-

ly, we obtain two constraint equations on ui,

A21 s i ;, A22 v i " °i v i - B i w i -	 (1)

A21 t i + A22 wi `B 1 v i + °i w  '	 (S)

These can be expressed in the form

r4
o"A22 _ a i ln-m 0Biln -m 	 Xi -0.	 (g)

`K i l n -m 	 A21	 A22 " a i l n -m lyil

Thus, the constraint on ui and its conjugate is that the 2-n component vec-

tor (xi yi) T must lie in the null space of

A21	 A22 " a i l n-m	 0	 Biln-m
Si	

0	 ' B i ro-m	 A21	 A22 " ailn -m	

(10)

Letting pi and q i denote the real and imaginary parts, respectively, of the

desired eigenvector conjugate pair associated with of' 
,ja i , (pi q T)T is

projected onto the null space of S i to obtain the columns for the real and

imaginary parts of the corresponding eigenvector conjugate pair in the sys-

-tem modal matrix.

6



III, HELICOPTER HOVER CONTROLLER APPLICAT M-

The design procedure is illustrated by an application tc a problem

considered by Srinathkumar [1), The Sikorsky SH-30 helicopter in a hover

mode is modeled as a ninth order linear system having state variablos of

longitudinal (u), lateral (v), and vertical (w) velocities in feet/seconds;

pitch ( q ) ► roll (p) and yaw (r) rates in degrees/seconds; and pitch (e),

roll (0) and yaw (*) angles in degrees. The inputs are main !tor collec-

tive pitch NO, tail rotor collective p itch (uT ), longitudinal cyclic

pitch (up ) and lateral cyclic pitch (u R), all in degrees.

The open-loop dynamics are given by

x1 a	 A ll	 Al2	 x1	 +	 a ll	 512	 ul

x2	 A21	 A22	 x2	 821	 8221	
u2

where xl - Cu w q 
63T 

and u l	[up uc]T are the longitudinal variables and

controls, and x2 = [. p a r +^]T and u2 • [uR uT
]
T are the lateral variables

and controls. The normalized aj,Zem matrices, scaled by a rotor tip speed

of 680 ft/sac, are given in Table I, along with the open-loop eigenvolues.

The desired closed loop eigenvaluer, are:

R s onse 'Variable Eigenyalue

u -4.5
w •.324

q,e -1.5 t ,il
v -.3

P. -1.5 t J1
r,e -1.5 t 31

With mode decoupling as an objective, a block diagonal P matrix is

specified. The resulting modal matrix U and control law matrix K are given

in Table II. As a second example, another block diagonal P matrix and the

resulting U and K matrices are given in Table 111.

If the modal behavior resulting from the above procedure is unsatis-

factory, then utilization of a weighted norm in the projection procedure

allows the designer to iterate to a more satisfactory solution for the pre-

selected P matrix. For example, if an element of the modal matrix resulting

from a projection is too large, then the norm over which optimization is

carried out (via the projection theorem) should be weighted more heavily in

the corresponding component. This weighted norm idea, which is not exem-

plified here, allows one to carry out an iterated design procedure.

7
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DESIGN OF ROBUST STATE FE '":ACK CONTROLLERS VIA EIGFNVALUE/EIGENVECTOR ASSIGNMENT

e

R. R. Mielke, R. A. Maynard, S. R. Liberty, and S. Srinathkumar°

Depa rtment of Electrical Ergineering
Old Dominion Un; ­ ;iit^,
Norfolk, Virgin, ?350;

ABSTRACT

A new method of selecting a multivariable
state feedback controller is presented. The
resulting controller simultaneously realizes
arbitrary closed-loop-44genvalues, approximates
specified modal behavior and achieves low
eigensystem sensitivity with respect to plant
parameter variations. The method characterizes
a vector space slightly larger than the null
space of the closed-loop system matrix and pro-
tects a desired modal matrix onto this space.
Sensitivity of eigenvalues and eigenvectors is
then minimized local to the desired modal
natrix using a gradient search techni que. A
tutorial example to illustrate the design pro-
cedure is given.

I. INTRODUCTION

Consider the controllable multivariable sys-

tem x • Ax + Bu where x e Rn and u e R. In this
Gaper we are concerned with the eigenvalue/eigen-
vector assignment problem of selecting a station-
ary feedback matrix K in the control law u = Kx
such that the eigenvalues of the closed-loop sys
Um matrix A = A + SK are arbitrarily placed.
Once the eigenvalues are assigned, the remaining
freedom available in selecting the closed-loop
system eigenvectors is to be used to approximate
s pecified modal behavior and to achieve inse;isi-
tivity to plant parameter variations.

A "spectral synthesis algorithm" for con-
structing a feedback gain matrix which utilizes
the nonuniqueness of the closed-loop system matrix
in an attempt to achieve specified moral behavior
*4%  presented in [1], [2], and [.3]. It was also
shown how sensitivities of eigenvalues and eigen-
vectors could be calculated for a aiNan design.
►bwever, a priori modal and sensitivi: y specifica-
tions were not explicitly incorporates in the pro-
cedure and the inherent design freec," available

was not fully exploited. In [4] the total design
freedom available in selecting the eigenvectcrs of
A was used to globally minimize eigensystem sensi-
tivity. However, the procedure often results in
unsatisfactory system dynamic behav iour since real-
ization of tow system eigensensitivity and desired
modal behavior are sometimes conflicting objec-
tives.

The work reported here relies heavily on in-
sight gained in Cl] but is based u pon a different
approach to the synthesis problem. The first step
in the design procedure is the calculation of the
initial closed-loop system eigenvector matrix
which most closely approximates the modal matrix
design specification. 'ihis is accomplished by
constructing an orthonormal basis of a vector
space slightly larger than the null space of the
closed-loop system matrix and then projecting the
desired modal matrix onto this space. The second
step of the design procedure is to reduce eiaen-
system sensitivity to plant parameter variations.
A cost function consisting of a weighted sum of
eigenvalue and eigenvector sensitivities is mini-
mized using a gradient search procedure. The
search is performed local to the initial eigen-
vector selection to retain desired modal char-
acteristics.

II. INITIAL EIGENVECTOR SELECTION

It is assumed that the system is in rank-

reduced form with B = [Im 10] T and only the case

of distinct eigenvalues is considered. The eigen-
system equation for the closed-loop system is

AU - UA	 (1)

where U - [u l u2 ' ' ' u n ] is the modal matrix and

A = dia {a 1' X 2 0 ' 
.	

an} is a diagonal matrix

of eigenvalues. It has been shown [5] that nec-
essary and sufficient conditions for U to be a
modal matrix satisfying (1) are that each eigen-
vector u i be in the null space of the matrix

This work was supported by the NASA-Langley Research Center under grant number NSA-1519.

CH13OW910000-0287500.75 rJ 1979 IEEE 13



i i ` [121 1 A22 - 'i In-ml where

All Al2

A = --

A21 i

--

A22

ind, that these eigenvectors be linearly indepen-

V.	 i	 nn R. Let R i be a matrix whose columns are

an orthonormal basis for the null space of Si.

Then the columns of all possible modal matrices
satisfying (1) can be expressed as linear combina-
tions of the columns of all Ri's.

Let P denote the desired, although not nec-
essarily realizable, modal matrix given as a de-
sign specification. The initial eigenvector
selection is made by projecting P, column by
column, onto the vector space containing all pos-
sible modal matrices. This results in n sets of

constants, ai ` [a ll , a2i' •••^ ami]T'
i - 1, 2, -•-, n such that u i	Ri a i . If the

resulting eigenvectors u i are linearly indepen-

dent, then the realizable modal matrix U which is
closest to the desired modal matrix P in a Eu-
clidean norm sense has been obtained. If the
eigenvectors are not linearly independent or if
the resulting U matrix is unsatisfactory, the aij

parameters are perturbed sli ghtly by weighting the
projection norm. Once an invertible modal matrix
is obtained, the closed-loop system matrix is com-

puted as A = U,%U -1 . The initial feedback gain
matrix K is then calculated from

K = [ [A11 I Al2 1 - [All I Al21,	 (2)

where A is partitioned to conform to A.

III. EIGENSYSTEM SENSITIVITY REDUCTION

At the completion of the first stage of the
design process an initial feedback gain matrix K
has been calculated such that the resulting
closed-loop system realizes the specified eigen-
values and approximates the desired modal matrix
as closely as possible.	 In addition, the design
freedom available in selecting a modal matrix U
has been parameterized in terms of the constants

a ij . Suppose now that the elements of the plant

matrices A and B are dependent on a scalar para-
meter p. Then the closed-loop system is also
dependent on p and the extent of this dependency,
that is, the sensitivity of the system eigenvalues
and eigenvectors with respect to p, is related to
the choice of modal matrix U. In the second stage
of the design procedure, the initial selection of
U is modified-such that a cost function consisting
of a weighted sum of eigenvalue and eigenvector
sensitivities is reduced.

Let dP and dP denote the sensitivities of the
plant parameters with respect to P. Then

d
A . dA + d8 K	

^^)P p NP

and the eigenvalue sensitivities are given by (`)

i^p ` v1T(up) U 1 	 (4)

and the eigenvector sensitivities are

n
du i	r v T(dA)ui

Jul

joi

where Y - [v l v2 ••• vn] is a normalized recipro-

cal basis for A. The sensitivity cost function is
defined by

n
2	 2

J =	 i i dp	 dpi I	 + mi I I i I (	 (e)

i=1

where t i , m i , i = 1, 2, •••, n are positive weight-

ing constants. Modifications to the initial modal
matrix are calculated using a gradient search pro-

cedure in which the sensitivity cost function J is
reduced by choice of the constants a ij . Thus, at

the k+l iteration, a gradient

v(k) =	 Q k	 Q(k) _ [ g ij (k)] _ [ 
	 k)^

(7)

is calculated and used to generate new constant
values, a ij (k+l), from the current values, oij(k),

according to

a ij (k+l) - a ij (k) - d 
C 

q  kk) J
	 (8)

where d is the gradient search step size.

Calculation of regi.iired derivatives of the
cost function proceeds as follows. Defining two
auxiliary sensitivity matrices S = [s ij ] where

S = U
-, 
(FP)

 
U	 (9)

and H - [ hl h 2 ••• h n ] _ [h ij ] where

14



O	 i nj IV.	 A DESIGN EXAMPLE

hij	 s'	 ^
^,i	 i0i

(10) .
Consider the system x n Ax + Bu with x c R3

xrx i and u c R2 where

the cost function is expressed as 2.0000	 010000	 1.0000	 1

n A n 0.0000	 -(2.0000)/p	 (1.0000)/pi

[1.0000
J ' 

1:
tk (skk )2 + mk (Uhk ) T (Uhk )^

1

(11)  110000	 -2.0000'	 .j

ka
1.0000	 0.0000	

7

Straightforward differentiation with respect to a B n 010000	 (110000)/p f

[0.0000
single a ij coefficient then yields

0.0000	 J

n
aJ	 '"(^	 askk

' 2 1r J 4k skk(aaij 	aa ij ,
and p is a plant parameter with nominal value
1.0000.	 It is desired to calculate a feedback

kn l
(12) gain matrix K such that the closed-loop system has

eigenvalues

+ mk(Uhk)T
j(aauj hk + U {aaij

 al	 ! -1.0000, X2 n -1.2000, a 3 n -3.0000

and modal matrix as close as possible to
where	 -

-0.6700	 1.0000 ?

ahgk 	0	 qn k (13) P n

r.7500

.2500	 0.7500	 -1.0000 1.

1	 asgk 1	 q#k .0000	 0.0000	 0.1000

Xk Aq	
a°ii J

The first step in the design procedure is

and
the selection of an initial	 set of closed-loop
eigenvectors.	 The eigenvectors are selected

aSaU	 dA	 d8	 aU

'	 n -U-1 (2a	 )U +	 ) Aas	 / 4	 d aal

such that the initial modal matrix U is as close
to P as possible without regard for eigensystem

1j 	 p	 p	 ij sensitivity.	 The vector space containing all
possible modal matrices is characterized by the

1(d81	 -ij aU 1
-U	 dp U T AU ) (14)

matrices

as
ij -0.7071	 0.4082	 0.7071	 0.3482

+ U l( di I W
R1 n 0.7071	 0.40821	 , R2 - i	 0.7071	 0.3482

ij 0.0000	 0.8165,E	LO.0000	 0.8704]

The sensitivity reduction stage of the design
process is highly designer interactive. At the
completion of each iteration, a decision to con-
tinue or to terminate the sensitivity reduction
must be made. This decision often involves a
compromise between achieving low eigensystem
sensitivity and retaining desired modal behavior.
Once the decision to terminate has been made, the
final controller design is calculated using equa-
tion (2).

A computer program based on this design pro-
cedure has been written and is currently being
evaluated. Initial results indicate that con-
trollers with significantly lower eigensystem
sensitivity and satisfactory modal behavior are
obtainable with this procedure. A tutorial ex-
ample is presented in the next section to illus-
trate the new design procedure.

and

	

^-0.7071	 -0:4082

	

R3 n ' 0.7071	 -0.4082'

	

1.0.0000	 0.816)

Projecting P into this space yields the set'of
a coefficients

	

r-0.3536	 1.0041	 -1.4142
a(0) n I

	8.5732	 0.0279	 0.0816

the corresponding modal matrix

	

3.7500	 -0.7003	 0.9667

U n 	 3.2500	 0.7197	 -1.0333

	

L7.0000	 0.0242	 0.0667_

is

Ion



and the initial feedback gain matrix

	

 12.5341	 •13.3833
K n

[13.2526

	

13.1593	 12.4526	 12.2955

For purposes of comparison with other modal
matrices, U is normalized so that

	

 -0.6972	 0.6824

UN

[0.4369

	

0.3789	 0.7165	 -0.7295

	

0.8158	 0.0242	 0.0471

For this initial modal matrix selection, the
eigenvalue sensitivities are

dAl 2	 dA2 
2	

dA3 2

I^-1 n 0.11, I dp 1 = 65.14, I dp I n 492.69,

and the eigenvector sensitivities are

2	 2

ilapl ll = 18524.98, 1l dp2 il - 39.75,

dui 2

U-11 - 263.73.

With unity weighting coefficients for all eigen-
value and eigenvector sensitivities, the total
system sensitivity cost function is

J n 19386.4.,

If the-plant parameter p is perturbed 10" above
nominal, then the closed-loop eigenvalues become

al 
n -0.9915, A2 n -1.4473 - ,i1.0981,

A3 n -1.4473 + ,i1.0981

and the normalized modal matrix is

	

[0.6601 + ,i0.0000	 0,0000 + ,10.7262

UN	0.0918 + ,10.0000	 0.0515 - d0.6834

	

0.7456 + 30.0000	 -0.0123 + ,10.0531

0.7262 + ,10.0000

-0.6834 + ,10.0515

0.0531 - ,10.012:

These results indicate high eigensystem sensi-
tivity to changes in the parameter p for the
initial eigenvector selection.

The second stage of the design process con-
sists of reducing the eigensystem sensitivity
using a gradient search procedure. The gradient
At the first iteration is

v(1) •
10.0094

.0172	 0,0040 -0.0578
,

	

 -0.1372	 -0.98877

Using a step size d n 0.9000 results in a new set
of a coefficients

	

-0.3690	 1.0005	 -1.3622
CIO	

8.5647	 0.1514	 0.9714

a new modal matrix

0.4383	 -0.6471	 0.3381

UN =	 0.3774	 0.7512	 -0.8127

0.8157	 0.1302	 0.4741

and the corresponding feedback gain matrix

	

 0.6961	 -1.5856
K n

[1.4904

1.4195	 -0.6904	 0.5448

For this selection of modal matrix, the eigen-
value sensitivities are

2	 2	 2

I dp 	-0 .06, I dyl = 0.01, I Up n 6.57,

the eigenvector sensitivities are

2	 2	 2

TP -11 - 1.66, I I dp2 f i - 9.26, I I dpi 11 - 1.66,

and the system sensitivity cost function is

J n 19.2.

If the plant parameter p is again perturbed 101
above nominal, the closed-loop eigenvalues are

A l - -0.9767, a2 - -1.2104, A3 - -2.7683,

and the normalized modal matrix is

0.4479	 -0.7404	 0.3717

UN -	 0.3802	 0,6654	 -0.7701

0.8092	 -0.0949	 0.5184

The new results indicate si gnificantly reduced
eigensystem sensitivity has been achieved with
relatively small changes in the initial modal
matrix selection. Continued iteration results
in a final cost function value of approximately
J - 8.65 with a correspondingly larger distance
between the resulting modal matrix and the
specified matrix P.

16



REFERENCES

[1] S. Srinathkumar, "Spectral Characterization
of Multi-Input Dynamic Systems", Ph.D. dis-
sertation, Oklahoma State University, Still-
water, Oklahoma, May 1976,

[2] S. Srinathkumar, "Eigenvalue/Eigenvector
Assignment Using Output Feedback", IEEE
Trans, Automatic Control, Vol, AC-23,
pp. 79-81, February 1978.

[3] S. Srinathkumar and R, P. Rhoten, "Linear
Multivariable Synthesis By Eigenvalue/Eigen-
vector Assignment", Proc., International
Forum on Alternatives for Multivariable Con-
trol, pp. 164-174, October 1977.

[4] S. Pohjolainen and H. Koivo, "On Robust
Eigenvalue/Eigenvector Assigoment", Allerton
Conference on Communication, Control and Com-
puting, Vol. 16, October 1978.

[5] R. A. Maynard, R. R. Mielke, S. R. Liberty,
and S. Srinathkumar, "A New Spectral Syn-
thesis Procedure for Multivariable Regula-
tors", Allerton Conference on Communication,
Control and Computing, Vol. 16, October 1978..

[6] J. H, Wilkinson, The Algebraic Eigenvalue
Problem, London: "oxford University Press,
965.

17



_ m

APPENDIX C

DESIGN OF A TURBOJET ENGINE CONTROLLER VIA

EIGENVALUE/EIGENVECTOR ASSIGNMENT: A NEW SENSITIVITY FORMULATION

Presented at Joint Automatic Control

Conference, June 1979

f

'f
i

^	 s

18



ram•	 — "-_

FURTHER ALTERNATIVES FAR LINEAR MULTIVARIAOLE CONTROLS

DESIGN OF A TURBOJET ENGINE :.'ONTROLLER VIA

EIGENVALUE /EIGENV£CTOR ASSIGNMENTt A NEW SENSITIVITY FORMULATION

S. R. Liberty, R.A.,Maynard, and R. R. Mielke

Department of Electrical Engineering
Old Dominion University, Norfolk, Virginia 23508

Abstract

This brief paper summarizes the approach the authors will take in designing a feed-
back controller for the F-100 turbofan engine. The technique to be utilized simul-
taneously realizes dominant closed-loop eigenvalues, approximates specified modal
behavior, and achieves low eigensystem sensitivity with respect to certain plant
parameter variations,

SUMMARY

our approach to the design of a feed-
back controller for the F-100 turbo-
fan engine [1] is essentially a pole-
zero assignment technique. The actual
controllers that we will design are in
the multivariable proportional-plus-
integral class. The matrix gains in
these structures will be determined
by manipulations on the eigensystem

AU u UA

where U is the modal matrix of A and
A is the corresponding quasi-diagonal
matrix of complex eigenvalues. The
matrix A is a composite of feedback
gains and original plant-model para-
meters. Consequently, we call our
technique a "spectral synthesis pro-
cedure" oran "eigenvalue-eigenvector
assignment technique".

To date, this technique has only been
applied in state feedback contexts
where all closed-loop eigenvalues
could be arbitrarily assigned. This,
of course, is not the case in tho
P-100 turbofan engine. There are two
ways to handle this without modifying
the existing state feedback technique.
(Modification to the output feedback
case is nontrivial and a subject of
current research.)

First, design could be carried out as
if all states were available for mea-
surement, and the resulting controller
then coupled to an observer. Second,
if the plant measurement, explicitly
includes all dominant mode behavior of
the system and nondominant modes are
stable, then application of our tech-
nique to the reduced order system where
order equals the number of measurements
is straightforward.

The unique aspects of our eigenvalue-
eigenvector assignment technique are
tine explicit incorporation of a pA40k.4
"mode mixing" specifications, and the
systematic achievement of low eigen-
system sensitivity within the mode mix-
ing constraints.

Low eigensystem sensitivity and desir-
able mode mixing are often, but not
always, competing objectives. The
spectral synthesis techni que, includ-
ing these unique aspects, is documen-
ted in [2] and [3], where it appears
in the regulator context.

Our oral presentation will illustrate
eigensystem sensitivity for several
designs and will contain full-scale
simulations of these designs. Per-
formance comparisons will be made and
the design procedure will be demon-
strated.
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DESIGii OF A ROBUST 11ULT1VARIA01 E PROPORTIONIAL PLUS

INTEGRAL CONTROLLER VIA SPLCTP,AL ASSIGIPMENT

Roland R. Hiaika, Robert A. Maynard, and Stanley R. Liberty

Department of Electrical Epgineering
Old Dominion University
Norfolk, Virginia 23508

ABSTRACT

A new design procedure for a class of multi-
variable integral plus proportional servo control sys-
tems is presented. The procedure utilizes a null space
formulation of the eigensystem as^;igha°went problem
assuming complete state feedback, Reduced order obser-
vers are used to estimate unavailable states, The
resulting system realizes arbitrary closed-loo p eigen-
values, approximates specified modal behavior and
achieves low eigensystem sensitivity with respect to
plant parameter variations. A tutorial example to
illustrate the design procedure is included.

.

I. INTRODUCTION

A new design procedure for a class of multi-
variable integral plus proportional servo control sys-
tems is presented. The design procedure consists of
three steps. In the first step, integral and propor-
tional feedback gain matrices are calculated assuming
complete state accessibility using an eigenvalue/eigen-
vector technique. The technique utilizes a null space
formulation of the eigensystem assignment problem which
simultaneously realizes arbitrary closed-loop eigen-
values,approximates specified modal behavior and
achieves tow eigensystem sensitivity with respect to
plant parameter variations. The second step in the
design procedure is the construction of a reduced order
observer to estimate those states which are not acces-
sible at the output of the plant, It is shown that the
nutl space formulation of the eigensystem assignment
problem is also applicable in the design of reduced
order observers, The final step in the servo problem
design procedure is the calrr.,lation of system gain
matrices to realize an ov(, ,̂M "+ eigensystem in which the
plant/integrator dynamics and observer dynamics are de-
coupled,

The null space formulation of the eigensystem
assignment problem is outlined in Section 1I, A more
detailed presentation of the eigenvalue/eigen%actor
assignment technique is given in (1) and the method of
reducing eigensystem sensitivity with respect to plant
parameter variations is described in ['41.].	 In Section
LII, the new design procedure for multivariable integral

plus proportional servo control system!r is presented,
This is followed by a tutorial example, in Section IV to
illustrate the design procedure. The interested reader
is referred to [3] for a more detailed development of
all procedures outlined here.

II. THE EIG NSYSTEM ASSIGNMENT PROQ, L E14

Consider the multivariable system described by

x • Ax + Bu where x c Rn , u c R
m
, B has full column

rank, and the pair (A,B) is controllable. The eigen-
system assignment problem consists of selecting a
real-valued mxn matrix K such that the closed-loop sys-

tem matrix

A n A+SK	 (1)

has arbitrarily specified eigenvalues and eigenvectors
that are close in some sense to a desired eigenvector
assignment. In addition, it is highly desirable that
the eigensystem of A Fo insensitive to changes in ele-
ments of A and B. In general it is not possible to
achieve arbitrary eigenvector assignment so that it is
necessary to seek an approximation to a desired assign-
ment. The controllability assumptions on the pair
(A,B) are sufficient to guarantee arbitrary eigenvalue
assignment,

For clarity of presentation in this section it is
assumed that a change of coordinates has been made such
that B is in rank reduced form, B n El

m
 D], where Im

denotes the mxm identity matrix. The eigensystem equa.
tion for A is

AU • UA	 (2)

where U = [u l , u2 , " " un ] is a matrix of eigenvectors

of A and A . diag(al' 
X
2 'an) is the diagonal

matrix of eigenvalues of A. Only the case of distinct
eigenvalues is treated here, If A and K are parti-

tioned compatibly with that of B,

A
[A, I ! .

Al2	 K x [K1; K23

A21 i A22

then equation (2) is equivalent to

[All - Xi I + K 1 .1 Al2 + K23 u i ° 0	 (3)

and

[A21; A22 ' X i
 I] ui - 0.	 (4)

This work was supported by the NASA-Langley Research Center under grant number NSG-1519.
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for a given eigenvalue assignment, it is thus necessary
that each u i IIo in the null space of

N i - [121 122 - 1, 
13	 (g)

 [ti,dXi,2 + m i ^^^,1 2 tlo^2
for i - i, 29 , ► ,, n as shown by equation (4). Equa-
tion (3) is then regarded as a constraint on K once ui
has been deten:►ined, If an inde pendent sot of u,'s

	

satisfying equation (4) Is found, that± U - 	 '
[u l , uz, —, un] will be a nodal matrix satisfying

equation (2).

Lot R
I
 be a matrix whose colu;m► s form an ortho.

normal basis for the null space of H 4 . Then the

columns of all possible modal matrices satisfying
equation (2) can be ex pressed as linear combinations
of the columns of all R i 's. Lot P denote the desired,

although not necessarily realizable, modal matrix given
as a design specification. The eiaenvcctor selection
is made by projecting P, column by coluM,n, onto the
vector space containing all possible r. +.octal matrices.
This results in n sets of constants, *I ,

[all' ,21 . ••,. o
mi )T ' i - 1, 2, —, n such that

u  - R i a i , If the resulting eigenvectors u i are

linearly independent, then the realizable modal matrix
U which is closest to P in a Euclidean noun sense has
been obtained. If the resulting eigenvectors are not
linearly independent or if the resulting modal matrix
is unsatisfactory, the ail parameters are perturbed

slightly by weighting the projection norm. Once an
invertible modal matrix is obtained, the closed-loop

system matrix is computed as A a UAU' l , The feedback
gain matrix K is then calculated from

K " {[A	 [A11tl i Al2 ]	 I Al2J)	 (6)
"

where A is partitioned to gonform to A.

Suppose now that the elements of the plant
matrices A and B are dependent on a scalar parameter
p. Then the closed-loop system is also dependent on p
and the extent of this dependency, that is the sensi-
tivity of the system eigenvaiues and eigenvectors with
respect to p, is related to the choice of modal matrix
U. The second stage of the eigensystom assignment
problem consists of reducing the eigensystem sensi-
tivity by appropriate modification of the initial

modal matrix. Let dp and dB denote the sensitivities
of the plant parameters with respect to p. Then

dA , dA + dB K	 (T)
dp dp dp

and the eigenvalue sensitivities are given by [47

dA w

	

ap = 
'IT 

(up) u i	 ($)

while the eigenvector sensitivities are

du i 	 n	 v T (d r 
)ui7

ap ; . ^^ 	 u ^ 	 cgs

Vi

where V - [v i , v2 , ..., vn ] is a normalized reciprocal

basis for A. A sensitivity cost function is defined by

where C i s m i , i ; 1 1 2, •,,, n are positive weighting

constants. Modifications to the initial modal matrix
are calculated using a gradient search proced'aru in
which the sensitivity cost function J is reduced by
choice of the constants o ij , The sensitivity reduction

stage of the design process is highly designer inter-
active. At the completion of each iteration a deci-
sion to continue or terminate the sensitivity reduc-
tion must be made, Thi y decision often involves a
compromise between achieving low eigensystem sensi-
tivity and retaining desired modal behavior,

III, THE SERVO PROBLEM

The procedure outlined above for the eigensystem
assignment problem is applicable to output feedback
and servo problems if observers are utilized to
realize the feedback law obtained under the assumption
of complete state accessibility. The design procedure
for the servo problem is develo ped here. Let the
plant be described by A = Ax + 9u, y s Cx where

x e Rn , u e Rm , y c Rr . In addition,the plant is
assumed to be completely state control lable and ob-
servable, For clarity of presentation in this section
it is assumed that a change of coordinates has been
made such that C is in rank reduced form, C - (Jr-*03,

The block diagram in Figure 1 illustrates the
integral plus proportional feedback control structure
to be considered, The dotted line in this figure in-
dicates what the feedback structure would be if all
plant states were available for measurement. The first
step in the servo problem design procedure is to select
gain matrices K 1 and K2 to achieve desirable system

performance. The state dynamics of the system in Figure
1 are given by

%	 A + BK 1 I BK2  [x.]	 0 [u].

zc	 - 4	 0	 xc	 I

It is easily seen that the state matrix of this plant/in-
tegrator system can be written as

ADO	 [ B ] [K.^K].
Ap	

-C ;^0	 0

Since this matrix has the form of equation (1), the pro-
cedures of the eigensystem assignment problem are appli-
cable to the determination of K 1 and K2 if the rank of
the matrix

B AS A28 ... ^ An+r-1B

0 CB i CAB w , • i CAn+r-2B

is n+r. If this rank condition is not met, adjustment
of the number of inputs and/or outputs may correct the
situation. Therefore, given a designer specified
eigenvalue matrix A  and desired modal matrix P p , the

eigensystem assignment procedure yields gain matrices
Ki and K2 which realize the specified eigenvalue matrix

22
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A  and a modal matrix Up . As noted In Section II ► Up

usually reuresents a designor selected corpro+nise

between ,i;a realizable m44al Matrix nearest Pp and the

rumlizable modal matrix resulting in mininium cigcn-
systomsensitivity local to Pp.

The second stop in the servo preble;n design pro-
cedure is the construction of a reduced order observer
to estimate those States which are not acct;oblo at
the out put of the plant. A block diagram of a reduced
order observer is shorn within dotted lines in Figure
2. The observer system is described by [53

	

z = Fz + Gy + TBu	 (13)

where

	

F x A22 - LAl2 ,	 (14)

	

T-C-L'1 11,	 (15)

	G _ (A22 - L Al2)L + 
(A21 - L A

1l )	 (1,6)

.^t. A fi .i ^ plant matrix partitioned to conform with
as

Alt j Al2A=

A21 A221

Furthermore, the transpose of equation (14),

	

FT ' A22 - Al2 L
T 	(17)

has the form of equation (10) so that the eigensystem
assignment procedure may be utilized to determine L
given desired eigenvaiue and eigenvector matrices,
Ao and P'o.

The final step in the servo p roblem design pro-
cedure is the determination of the feedback gain
matrices R and K8 in the complete integral plus pro-

portional servo control system of Figure 2. This
system is described by the equation

I	 I

x	 A+BRC j BK2 i SK 	 x	 0
--r ----f

x	 C- I	 0 1 0 	x	 +	 I [u] .
c _ ----r- . -r ..-	 c

i J	 GC+TBRC ^T09 2 'F+TBK3	z	 0

(18)

Making the coordinate transformation

x	 I 0 0	 x

xc	 =	 0 I 0	 xc	 ,	 (19)

w	 [.T 0 I	 z

equation (18) becomes

^s	 A+B(RC+K3T) 1 SK2 . BK3 X	 0
x	 ---C ... . ........

i 0 	 0	 x	 +	 I [u].
c----- -------- ---- -	 c

w	 0	 1 0	 1 F	 w	 0

(20)

Therefore, choosing

K1 . RC + K3T ,	 (21)

the state matrix of equation (20) becomes
h

	

[A

p AF	
(22)A.	 •Gins	 , 

0 ,F
It follows that the etgenvalues of A are given by

A 2 ne. ,	 (23)10 EA0

and, assuming that the observer aigenvalues are chosen
distinctly from the eigenvalues of the plant/integrator
system, the eigenvectors are given by

U (^ 1 QU
U .	 rG:rsrSS	 (24)

0 1 Uo

In the original coordinates, the s stem modal matrix is

pp Q
•	 U n 	 r^G w^wnw^+  	

( 25)
RUp 

1 
SU0

where Q, R, S are linear transformation matrices. Thus,
the servo system of Figure 2 realizes an eigensystem in
which the p lant/integrator dynamics and observer dynamics
are decoupled and can be independently specified. Par-
titioning K 1 of equation (12) as

K1 = I'll'- K12 1 ,
	

04)

where K11 consists of the first m columns of K1 , the

solution for K3 and R from equation (19) is given by

	

K3 = K12
	

(27)

and

R n K11 + K12 L	 (28)

A computer program based on this design procedure,
has been written and is currently being evaluated.
Initial results indicate that servo control systems
having satisfactory modal behavior and low eigensystem
sensitivity to changes in plant parameters can be ef-
fectively designed by this procedure. A difficulty of
this procedure, and a subject of future research, is
the uncertainty of how to translate system performance
specifications into specification of a desired modal
matrix. A tutorial example is presented in the next
section to illustrate the new design procedure.

I4. A DESIGN EXAMPLE

Consider the system z = Ax + Bu, y = Cx with

x c R 3 , u e R2 and y c R2 where

	

-2.0	 0.0	 1.0

A =	 0.0	 -(2.0)/p	 (1.0)/p

	

1.0	 1.0	 -2.0

	1.0 	 0.0

	

B =	 0.0	 (1.0)/p

	

[0.0	 0.0	 L	 .
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a

,

1,0	 0,0	 0.0

G*

0.0	 110	 0.0

and p is a plant parar:eter with nominal value 1.0, It
is desired to design a servo control system so that

y 
a 
(y) 

Y21  
tracks step reference input signals with

zero steady-state error. In addition, the outputs yl

and y2 should be decoupled, have little or no over-

shoot, and have dominant time constants of approxi-
mately 1 second and 1/2 second, respectively.

In order to meet the desired tracking requirements
for step reference inputs, it is decided to use a servo
control system incorporating integral error feedback as
shown in Figure 2. A reducea order observer of order
one is incorporated to estimate state x 3 which is not

available at the output of the plant. To meet the re-
sponse time constant specifications, the closed loop
eigenvalues are assigned as

k1 n -1.0	 a2 a -2.0,	 a3 a -8.0

X4 a -9.0	 X5 • -10.0, a0B= -7,0

Finally, a diagonally dominant modal matrix specifica-
tion is made to provide decoupling between the out-
puts.

The design procedure consists of first calcula-
ting the feedback matrices K l and K2 of Figure 1

assuming complete state feedback. A reduced order
observer is then constructed to estimate those states
not actually available at the output. Finally, feed-
back gain matrices K 3 and R are computed. The outcome

of this design procedure is given below,

F - [ -7.01

TB n [ -5.0 0.03

G - [-24.0 1.03

R a 152.0 -5.4
-8.8]33.2

KZ -
39.1

C
20.9

-4.8 15.9

K
r	 27.4
L- 6.33

X.

The complete system is described by the equation z i
AA	 AA
Ax + Bu where

-154.0 -5.4 1.0 3911 20.9 -27.4
33.2 -10.8 1.0 -4.8 15.9 6.3

A a 1.0 1.0 -2.0 010 010 0.0
-1,0 0.0 0.0 010 0.0 0.0
0.0 -1.0 0.0 0.0 0.0 0.0

736,0 28,1 0.0 -195.5 -104.5 129,9

and

0.0 0.0
0,0 0.0

8 010 010
1.0 0,0
0,0 1.0
0.0 0.0

The system response for input reference signals

u n

[0, 1
and u

C,
are shown in Figures 3a and 3b, respectively.
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FIGURE 1

SERVO CONTROL SYSTEM WITH COMPLETE STATE FEEDBACK
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FIGURE 3

RESPONSE OF EXAMPLE SERVO CONTROL SYSTEM
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