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ABSTRACT

A new approach to the eigensystem assignment problem is presented.
The approach utilizes a null-space formulation of the eigenvalue/eigenvector
assignment problem to simultaneously realize arbitrary eigenvalue specifi-
cations, appro:;imate desired modal behavior, and achieve low eigensystem
sensitivity with respect te plant parameter variations. The methods are
applied to the design of regulator and integral plus proportional servo

control systems.
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A SUMMARY OF SPECTRAL SYNTHESIS PROCEDURES

POR MULTIVARIABLE SYSTEMS

By

S.R. Liberty!, R.R. Mielke?, and R.A. Maynard?
DISCUSSION

State space~oriented procedures provide significant design advantages
over classical control design methods for flight control systems. Severzl
procedures involving the synthesis of multivariable systems based on eigen-
value-placement criteria have previously been developed (refs. 1 to 3).
Eigenvalue specifications alone do not characterize the actual variable
response of a system, however. The eigenvector corresponding to a given
eigenvalue determines the influence of that eigenvalue on the state variable
regponse (ref., 4), Thus, satisfying modal matrix specifications is as
important as achieving eigenvalue specifications in designing a feedback

system.

The multivariable design problem can therefore be approached as an
eigenvalue/eigenvector assignment problem (refs. 5, 6). This approach has
led to a null-space formulation of the problem (ref. 7). All possible
modal matrices related to a given eigenvalue specification have been shown
to lie in the null space of a corresponding matrix. A desired modal matrix
is projected onto this null space, yielding the closest approximation to

the desired modal matrix that is actually realizable.

System sensitivity to plant parameter variations is then reduced
local to the modal matrix obtained from this projection (ref. 8). This is

done by performing a gradient search within the null space for a modal

lprofessor and Chairperson, Department of Electrical Engineering, 01d
Dominion University, Norfolk, Virginia 23508

2pssociate Professor, Department of Electrical Engineering, Old Dominion
University, Norfolk, Virginia 23508

3Graduate Research Assistant, Department of Electrical Engineering, 0Old
Dominion University, Norfolk, Virginia 23508
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matrix that minimizes a sensitivity cost function and that lies near the
modal matrix first obtained.

The null-space formulation of the eigenvalue/eigenvector assignment
problem is applicable to the design of regulator and servo control systems
(refs. 9 and 10). Dynamical compensators or observers {ref. ll) are usged
to realize the integral plus proportional feedback law determined under the
assumption of complete state accessibility. The final system is such that
the plant/integrator eigensystem and observer eigensystem are decoupled and

can be independently specified.

Computer programs based on the above procedures have been written and
are currently being evaluated. 1Initial results indicate that control
systems having desirable modal behavior and low eigensystem sensitivity to
changes in plant parameters can be designed using these methods., A diffi-
culty with this procedure, and all other eigensystem assignment procedures,
is the uncertainty of how to translate system performance specifications
into specification of a desired mocdal matrix. Continued research in this
area would appear to be fruiltful. A complete and detailed development of
all procedures mentioned here is currently being prepared for submission

to a refereed journal (ref. 12).
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A NEW SPECTRAL SYNTHESIS PROCEDURE FOR MULTIVARIABLE REGULATORS

R. A. MAYNARD, R, R, MIELKE, S, R. LIBERTY AND S. SRINATHKUMAR
Department of Electrical Engineering

01d Dominion University

Norfolk, Virginia 23508

RESTRACT

A method for selecting a muitivariable state feedback controiier that
simultaneously achieves an a prior{ specification on closed lyop Ef?enVl1u¢$
and good mode mixing is presented. The problem is solved by projetiing a
desired modal matrix onto a constraint set containing the null space of the
closed-loop state matrix, while assuring that the projection i% §n the null
space. The feedback matrix follows immediately in the formulatiom. An
example involving a helicopter hover controller {s presented.

I. INTRODUCTION

This paper is concerned with the design problam of selecting the
stationary feedback matrix K in the control law u = Kx for a contirollable
multivariable system X = Ax + Bu where xcR” and ueR™, The matrix K is to
be selected so that the closed-loop system matrix A + BK has arbitrarily
assigned eigenvalues, Once the eigenvalues are assigned, the remaining
fraeaom available in selecting eigenvectors is utilized to achieve desir-
able modal behavior. Srinathkumar and Rhoten in [1], (2], and [3] have
presented a "spectral synthesis algorithm" for constructing the feedback
gain K which exploits the nonunigueness of the modal matrix of A + BK in an
attempt to achieve & priori design specifications. However, the a priori
specifications are not explicitly incorporated in the procedure and the
inherent design freedom available is not systematically exploiied.

The work reported here relies heavily on insight gained in [1] but is
based upon a different approach to the synthesis problem that allows a
prior{i modal spec:fications, and results in a simple design procedure that
can be parameterized and iterated.

IT. NULL SPACE FORMULATION OF THE PROBLEM

The eigenvalue/eigenvector assignment problem cin be expressed in the
form AU = UA, where A = A + 3K, U is the moda) matrix and A is a diagona)
matrix whose nonzero entiies are the desired eigenvalues of A.

This work was supported by the NASA-Langley Research Center under
grant number NSG-1519.




™is can be expressed in the farm .
(1, @A) + (-AT@ 1)) vec U =0, LM

where @ is the Kronecker product (4] and vec U = col (g‘). Thus, {f I} is a
solution to AU = UA, then vec U lies in the null space of S = [{I @A)

+ (-Aquln)]. Moreover, S + vec U = 0 if and only if (A - A,ln] u =0
for al1 { = 1, eevy n,

In the remainder of thir paper it is assumed that the system {s in
rank-reduced form with 8 = [Im | 0]7, If this {s not the case, a coordinate
transformation is applied to the system so that it {is in this form. A
solutfon is obtained according to the procedure to be described, and this
solution is then transformed back to the original system coordinatas, If A

{s partitioned so that
M ’ M2
As ——
A | Az

with All an m x m matrix, then [A - A,In] u = 0 {f and only if the following
two equations hold:

and
(Agy IRz = MIpqd vy = 0 (3)

Equation (3) s a constraint on the vectors that lie in the null space of
(A - A1.); that is, vectors in the null space of (A - 441,] must also e
fn the null space of [A21|A22 - Aixn-m]‘ Equation (2) 1s regarded as a
constraint on K to be satisfied after U has been computed.

The desired modal mix is expressed as a desired modal matrix, P, By
the projection theorem (5], the closest approximation, in a least squares
sense, to P that can be achieved is obtained by projecting vec P onto the
null space of S. This is equivalent to projecting Py onto the null space
of (A - A1 for each 1 = 1, «=o, n to get each of the colums of the
modal matrix, U, that most closely approximates P. This projection pro-
cedure can result in a U that s not a valid modal matrix. This occur-
rence will be indicated by the noninvertibility of U. When this happens,
the entries of P are perturbed and the new P {5 projected. Once an in-
vertible U {s obtained, A is computed as A = uau™! with A partitioned to
conform with A. The feedback matrix K is calculated from
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K hyylg) = Thy Iay] “

Complex eigenvalues are treated in essentially the same way as real
ejgenvalues, after some preliminary manipulation, Using Ay mags Js
and uy = x; & gy Aug w ughg becomes ﬁ(x, £ 3yq) ® (xg ¢ dy)ay £ d8y).
The real and imaginary parts of this equation can be separated and the
resulting equations can be written as

N %84 |
A[leyil . [X1|¥1J , -(5)
. 8419 |

Partitioning

i1t
. . , 6
[X,I.ﬁ] v—{“—; (6)

where 5 and ti reprasent the first m-components of X3 and Yq respective-
1y, we obtain two constraint equations on Uy

Rov Sy ¥ Agg Vi m oy vy - By Wy (7)

Aoy by * Pgp ¥y 8 g vyt ag Wy (&
These can be expressed in the form

A21| Raz = o4t | O PBifaem ||
0 |

= 0, ° (9)
“811pum I A I Aoz = aqlpm] L ¥4

Thus, the constraint on Uy and its conjugate is that the 2-n component vec-
tor (x;'y{)T must 1ie in the null space of

[AZI l Ao - “1In-ml 0 , B4l hem
Si =

0 l 841 nm IA21 I A2z = atlnam
Letting Py and 9y denote the real and imaginary parts, respectively, of the
desired eigenvector conjugate pair associated with ay = i8y, (p? q}')T is
projected onto the null space of S1 to obtain the columns for the real and
imaginary parts of the corresponding eigenvector conjugate pair in the sys-

(10)

‘tem modal matrix.
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111, HELICOPTER HOVER CONTROLLER APPLICATIO~

The design procedure i5 f1lustrated by an application tz & prodlem
considered by Srinathkumar [1), The Sikorsky SH-30 helicopter in & hover
mode 15 modeled as a ninth order inear system having state variablog of
Yongitudinai {(u), lateral (v), and vertical (w) velocities in feet/seconds;
piteh (q), roll (p) and yaw (r) rates in degrees/seconds; and pitch (e),
rol) (¢) and yaw () angles in degrees. The inputs are main »<tor collec-
tive pitch (uc). tail rotor collective pitch (uT). Tongitudinal cyclic
pitch (up) and laters] cyclic piteh (uR). a1l in degrees.

The open-loop dynamics are given by

e,
X A A X B 8 u
‘1], nl 12 1, 8] B2 1
' l"z Ay | A2 I % By | B2} | %
where Xy [uwag e]T and Uy {u chT are the longitudinal varfables and
controls, and Xy ® [vparyl and uy * [uR uT] are the lateral variables
and controls., The normalized ;satem matrices, scaled by a rotor tip speed

of 680 ft/sec, are given in Table I, 2long with the open-laoop eigenvalues.
The decired closed-lo0p efgenvalues are:

Response Variable Eigenvalue
L] ~4.5
w “'0324
Qoe '1.5 : J’
\J "03
p’I/ "1:5 -4 31
Fy -1.5 2

Nith mode decoupling as an objective, & block diagonal P matrix is
specified. The resulting modal matrix U and control law matrix K are given
in Table 1. As a second example, another block diagonal P matrix and the
resulting U and K matrices are given in Table III,

1f the modal behavior resulting from the above procedure is unsatis-
factory, then utilization of a weighted norm in the projection procedure
allows the designer to {terate to a more satisfactory solution for the pre-

selected P matrix, For example, if an element of the modal matrix resulting
from a projection is too large, then the norm over which optimization is
carried out (via the projection theorem) should be weighted more heavily in
the corresponding component. This weighted norm idea, which is not exem-
plified here, allows one to carry out an fterated design procedure,

MwW?‘YW' - T
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DESIGN OF ROBUST STATE FEZZZACK CONTROLLERS VIA EIGENVALUE/EIGENVECTOR ASSIGNMENT

4

R. R, Mielke, R. A. Maynard, S. R, Liberty, and S. Srinathkumar

Depa ~tment of Electrical Ergineering
01d Dominjon Unjrrsit.
Norfolk, Virgin., 2330

ABSTRACT

A new method of selecting a multivariable
state feedback controller is presentzd, The
resulting controller simultaneousiy realizes
srbitrary closed-loop «toenvalues, szproximates
specified modal behavior and achieves low
efgensystem sensitivity with respect to plant
pardmeter variations, The method cnaracterizes
s vector space siightly larger than the null
space of the closed-loop system matrix and pro-
jects a desired modal matrix onto this space.
Sensitivity of eigenvalues and eigenvectors is
then minimized local to the desired modal
ratrix using a gradient search technique. A
tutoria) examnle to {llustrate the design pro-
cedure is given,

I. INTRODUCTION

fonsider the controllable multivariable sys-

tem X = Ax + Bu where x ¢ R" and u ¢ R, In this
pdper we are concerned with the eigenvalue/eigen-
vector assignment problem of selecting a station-
dry feedback matrix K in the control law u = Kx
1uch that the eigenvalues of the closed-loap sys-
tem matrix A = A + BK are arbitrarily placed.
Once the eigenvalues are assigned, the remaining
freedom available in selecting the closed-loop
tystem eigenvectors is to be used to approximata
soecified modal behavior and to achieve insensi-
tivity to plant parameter variations.

A “spectral synthesis algorithm" for con-
structing a feedback gain matrix which utilizes
the nonuniqueness of the closed-lgop system matrix
" an attempt to achieve specified mocal behavior
wds presented in (1], [2], and [3]. [t was also
$hown how sensitivities of eigenvalues and eigen-
vectors could be calculated for a given design,

ever, a priori modal and sensitiv:cy specifica-
tions were not explicitly incorporatsd in the pro-
cedure and the inherent design freecom available

e ————————

This work was supported by the NASA-Langley Research Center under grant number NSG-1519.

CH1389-4/79/0000-0287500.75 © 1979 IEEE

was not fully exploited. 1In [47] the total design
freedom available in selecting the eigenvectcrs of
A was used tc globally minimize eigensystem sensi-
tivity. However, the procedure often results in
unsatisfactory system dynamic behaviur since real-
ization of Jow system eigensensitivity and desired
mgda] behavior are sometimes fonflicting objec-
tives.

The work reported here relies heavily on in-
sight gained in [1] but is based upon a different
approach to the synthesis problem, The first step
in the design procedure is the calculation of the
fnitial closed-logp system eigenvector matrix
which most closely approximates the modal matrix
design specification. This is accomplished by
constructing an orthonormal basis of a vector
space slightly larger than the null space of the
closed-Toop system matrix and then projecting the
desired modal matrix onto this space. The sacond
step of the design procedure is to reduce eigen-
system sensitivity to plant parameter variations.
A cost function consisting of a weighted sum of
efgenvalue and eigenvector sensitivities is mini-
mized using a gradient search procedure. The
search is performed local to the initial eigen-
vector selection to retain desired modal char-
acteristics.

11, INITIAL EIGENVECTOR SELECTION

[t is assumed that the system is in rank-
reduced form with B = [Im | 0]T and only the case
of distinct eigenvalues is considered. The eigen-
system equation for the closed-loop system is

Ay = ua (1)

where U = [u1 u, un] is the modal matrix and
A = dia {A1. Ay N An} is a diagonal matrix

of eigenvalues. It has been shown [5] that nece
essary and sufficient conditions for U to be a
modal matrix satisfying {1) are that each eigen-
vector uy be in the null space of the matrix

13
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and, that these eigenvectors be linearly indepen-
dent in R". Let R, be a matrix whose columns are
an orthonormal basis for the null space of S,.

Then the columns of all possible modal matrices
satisfying (1) can be expressed as linear combina-
tions of the columns of all R,'s.

Let P denote the desjred, although not nec-
essarily realizable, modal matrix given as a de-
sign specification, The initial eigenvector
selection is made by projecting P, column by
column, onto the vector space containing all pos-
sible modal matrices. This results in n sets of

constants, a; * [°1i' Apgr *0% °m1]T’
i=1,2, <=+, n such that ug = Ri oy If the

resulting eigenvectors u; are linearly indepen-
dent, then the realizable modal matrix U which {s
closest to the desired modal matrix P in a Eu-
clidean norm sense has been obtained. If the
eigenvectors are not linearly independent or i1f
the resulting U matrix is unsatisfactory, the 8y

parameters are perturbed slightly by weighting the
projection norm. Once an invertible modal matrix
is obtained, the closed-loop system matrix is com=-

puted as A = Uﬁu'l. The initial feedback gain
matrix K is then calculated from

where A is partitioned to conform to A.

111, EIGENSYSTEM SENSITIVITY REDUCTION

At the completion of the first stage of the
design process an initial feedback gain matrix K
has been calculated such that the resulting
closed-loop system realizes the specified eigen-
values and approximates the desired modal matrix
as closely as possible. In addition, the design
freedom available in selecting a modal matrix U
has been parameterized in terms of the constants
a4 Suppose now that the elements of the plant

matrices A and B are dependent on a scalar para-
meter p. Then the closed-loop system is also
dependent on p and the extent of this dependency,
that is, the sensitivity of the system eigenvalues
and eigenvectors with respect to p, is related to
the choice of modal matrix U. In the second stage
of the design procedure, the initial selection of
U is modified- such that a cost function consisting
of a weighted sum of eigenvalue and eigenvector
sensitivities is reduced. o

Let g% and g% denote the sensitivities of the
plant parameters with respect to p, Then

dA _dA, d8

P HrHk (3)
and the eigenvalue sensitivities are given by (¢)

F " (G (4)

and the ejgenvector sensitivities are

LI N YT
du, Ty T(Qﬁ)u
i: i ‘dp’™1

where V = [v] Vp e vn] is a normalized recipro-

cal basis for A, The sensitivity cost function {s
defined by

! dx1 2 dui 2
3= iyl mlig (6)
i=)

where zi. My i=1,2, «=+, n are positive we1gh£-

ing constants, Modifications to the initial modal
matrix are calculated using a gradient search pro-
cedure in which the sensitivity cost function J is
reduced by choice of the constants ay g Thus, at

the k+1 iteration, a gradient

w00 = rdfefr o = g0 - [ 52w
()

is calculated and used to generate new constant
values, “ij(k+])’ from the current values, a1j(k).

according to

m“m’%ﬁ”'d%%%d (8)

where d is the gradient search step size.

Calculation of required derivatives of the
cost function proceeds as follows. Defining two
auxiliary sensitivity matrices § = [s1j] where

wuﬂ%u (9)

and H = [h1 hy o+ hn] = [hij] where
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the cost function {s expressed as

1

n

J ; gtk(skk)z + mk(Uhk)T(Uhk)E. (1)

Straightforward differentiation with respect to a
single oij coefficient then yields

35‘3 ZZ {k kk(aaﬁ)

k=)

+ m (uh )T [(QZ?J) n + U ( :::3 )]E

(12)

where -
dh,, 0 q=k (13)
ERETE R
and . .
ay dA dBy 3l
e e = TR =
‘“"(33)”1“” 1(33::) (14)

P

The sensitivity reduction stage of the design
process is highly designer interactive. At the
completion of each iteration, a decision to con-
tinue or to terminate the sensitivity reduction
must be made. This decisicn often involves a

* compromise between achieving low eigensystem

‘sensitivity and retaining desired modal behavior.
Once the decision to terminate has been made, the

“final controller design is calculated using equa-

tion (2).

A computer program based on this design pro-
cedure has been written and is currently being
evaluated. Initial results indjcate that con-
trollers with significantly lower eigensystem
sensitivity and satisfactory moda)l behavior are
obtajnable with this procedure, A tutorial ex-
ample {s presented in the next section to illus-
trate the new design procedure.

IV, A _BESIGN EXAMPLE

Consider the system x = Ax + Bu with x ¢ R?
and u ¢ R2 where

[-2,0000  0,0000 1.0000 ]
[ 1.0000  1,0000 -z.oooo J

C1.0000  0.0000 |

|

8« | 0.0000 (1.0000)/DJ
| 0.0000  £.0000

and p is a plant parameter with nominal value

1 0000. It {5 desired to calculate a feedback
gain matrix K such that the closed-loop system has
eigenvalues

X1 b "100,00“' Az = '102000' Aa s '300000

and modal matrix as close as possible to

3.7500 -0.6700  1.0000 |
Ps |32.2600 0.7500 -1,0000 .
7.0000  0.0000 0,100 ;

The first step in the design procedure js
the selection of an initial set of closed-loop
eigenvectors., The eigenvectors are selected
such that the initial modal matrix U is as close
to P as possible without regard for eigensystem
sensitivity, The vector space containing all
possible modal matrices is characterized by the
matrices

o—

-0.7071  0.4082] [-0.7071  0.3482)
Ry = | 0.7071 0. sos2! , 0.7071 o.3432§
0.0000 0,8765 ] [_0.0000 0.8704]

and
e -
i'°’7°71 -0:4082 |
R3 -i 0.7071 -0.4082;
{_0.0000 0.8165 |

Projecting P into this space yields the set'of
a cvefficients

r-o.ssas 1.0041  -1.4142
a(0) = ’

i

. 8.5732 0.0279 0.0816

the corresponding modal matrix

T3.7500  -0.7003  0.5667
Us 3.2500 0.7197 -1.0333
L7.oooo 0.0242  0.0667

15
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and the inftial feedback gain matrix
) 13,2526  12.534)  ~13.3833
-13,1593  -12.4526  12.2955 | '

For purposes of comparison with other modal
matrices, U is normalized so that

0.4369 ~0.6972 0.6324
UN = 0. 3789 007165 “'00 7295 .
0.8158 0.0242 0.04N

For this initia) modal matrix selection, the
eigenvalue sensitivities are

day 2 d, dig

laa—l = 0,11, |36“' s 65,14, |35—| » 492,69,

and the efgenvector sensitivities are

du’ 2 duZ 2
"Ei'll = 18524.98, llaa"' = 39.75,

du, 2
I la-p-'H - 263,73,

With unity weighting coefficients for all eigen-
value and eigenvector sensitivities, the total
system sensitivity cost function is

J = 19386.4,

If the plant parameter p is perturbed 10% above
nominal, then the closed-loop eigenvalues become

21 * -0.9915, i, = -1.4473 - §1.0981,

-

Ay ® -1,4473 + 31,0981
and the normalized modal} matrix is

0.6601 + J0,0000  0.0000 + j0.7262
GN = | 0.0918 + j0,0000  0.0515 - jO.6834
0.7456 + j0.0000 -0.0123 + j0.053

0.7262 + j0.0000
-0.6834 + j0.0815 § .
0.0531 - §0.0125

These results indicate high eigensystem sensi-
tivity to changes in the parameter p for the
{fnitial eigenvector selection.

The second stage of the design process con-
sists of reducing the eigensystem sensitivity
using a gradient search procedure. The gradient
at the first iteration is

0,0172  0.0040 ~0.0578
(1) = .
0,0094 -0,1372 -0,9887
Using a step size d = 0.9000 results in a new set
of a coefficients

-0,3690 1,0005 -1,3622
5(1) . ’
8.5647 0.1514  0.9714

3 new modal matrix

[

0,4383 -0.647) 0.3387
UN L 003774 057512 ‘008127 ’
-] 0.8187 0.1302 0.4741

and the corresponding feedback gain matrix

]p4904 006961 '105856
-1.4195 -0.6904  0.5448 |

For this selection of modal matrix, the eigen-
value sensitiyities are

dy 2 da, 2
Igg1 = 0.06, |5=|

dag 2
= 0,01, IHE'I = 6,57,

du; 2 du, 2 dug 2
lggll = 1.66. |Ig=1 = 9.26, gl = 1.66,
and the system sensitivity cost function is

J = 19.2.

If the plant parameter p is agafn perturbed 10%
above nominal, the closed-loop efgenvalues are

M = -0.9767, iz = -1.2104, 3y = -2.7683,

and the normalized modal matrix is

1 0.4479  -0.7404 0.3717
Uy = | 0.3802 0.6654 ~0.7701 | .
0.8092 -0.0949 0.5184

The new results indicate significantly reduced
eigensystem sensitivity has been achieved with
relatively small changes in the initial modal
matrix selection. Continued iteration results

in a final cost function value of approximately -
J = 8,65 with 2 correspondingly larger distance
between the resulting modal matrix and the
specified matrix P,

16
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FIJATHER ALTERNATIVES FOR LINEAR MULTIVARIABLE CONTROLS

DESIGN OF A TURBOJET ENGINE LONTROLLER VIA
EIGENVALUE/EIGENVECTOR ASSIGNMENT: A NEW SENSITIVITY FORMULATION

S. R, Liberty, R.A,

Department of Electrical Engineering

Maynard, and R. R. Miclke

014 Dominion University, Norfolk, Virginia 23508

Abstract

this brief paper summarizes the approach the authors will take in designing a feed-

pack controller for the F~100 turbofan

engine, The technique to be utilized simul~

taneously realizes dominant closed-loop eigenvalues, approximates specified modal
pehavior, and achieaves low eigensystem sensitivity with respect to certain plant

parameter variations.

SUMMARY

our approach to the design of a feed-
back controller for the F=100 turbo-
fan engine [1] is essentially a pole-
zero assignment technique. The actual
controllers that we will design are in
the multivariable proportional~plus-
integral class, The matrix gains in
these structures will be determined

by manipulations on the eigensystem

Au = UA

where U is the modal matrix of A and
A is the corresponding quasi-diagonal
matrix of complex eigenvalues., The
matrix A is a composite of feedback
gains and original plant-model para-
meters. G(onsequently, we call our
technique a "spectral synthesis pro-
cedure” or an "elgenvalue-eigenvector
assignment technique”,

To date, this technique has only been
applied in state feedback contexts
where all closed-~loop eigenvalues
could be acbitrarily assigned. This,
of course, is not the case in the
F~100 turbofan engine. There are two
ways to handle this without modifying
the existing state feedback technique.
(Modification to the output feedback
case is nontrivial and a subject of
Current research.)

First, design could be carried out as
if all states were available for mea-
surement, and the resulting controller
then coupled to an observer. Second,
if the plant measurement, explicitly
includes all dominant mode behavior of
the system and nondominant modes are
stable, then application of our tech-
fique to the reduced order system where
order equals the number of measurements
is straightforward.

The unique aspects of our eigenvalue-
eigenvector assignment technique are
the explicit incorporation of a padord
"*mode mixing" specifications, and the
systematic achievement of low eigen=
system sensltivity within the mode mix~
ing conatraints,

Low aigensystem sensitivity and desir-
able mede mixing are often, but not
always, competing objectives, The
spectral synthesis technigue, includ=-
ing these unigue aspects, is documen-
ted in [2] and [3], where it appears
in the regulator context.

Our oral presentation will illustrate
eigensystem sensitivity for several
designs and will contain full~-scale
simulations of these designs. Per-
formance comparisons will be made and
the design procedure will be demon=-
strated.
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APPENDIX D

DESIGN OF A ROBUST MULTIVARIABLE PROPORTIONAL PLUS

INTEGRAL CONTROLLER VIA SPECTRAL ASSIGNMENT
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DESIGH OF A ROBUST MULTIVARIAGIE PROMORTIONAL PLUS
INTEGRAL CONTROLLER VIA SPECTPAL ASSIGHMENT

Roland R, Mielke, Robert A, !Maynard, and Stanley R. Liberty

Department of Electrical Epgingering
01d Dominfon University
Horfolk, Virginia 23508

ABSTRACT

A new design procedure for a class of multis
variable integral plus proportional servo control sys-
tems 1s presented, The procedure utilizes a null space
formulation of the eigensystem astigu®ent problem
assuming complete state feedback, Reduced order obser-
vers are used to estimate unavailable states, The
resulting system realizes arbitrary closad-loop oigene
values, approximates specified modal behavior and
achieves low efgensystem sensitivity with respect to
plant parameter variations, A tutorfal example to
iYlustrate the design procedure 15 included,

*

1. INTRODUCTION

A new design procedure for a ¢lass of multi-
variable integral plus proportional servo control sys-
tems s presented, The design procedure consists of
three steps. In the first step, intagral and propor-
tional feedback gain matrices are calculated assuming
complete state accessibility using an eigenvalue/efgen-
vector technique, The technique utilizes a null space
formulation of the eigensystem assignment problem which
simultaneously realizes arbitrary closed~loop eigen
values, approximates specified modal behavior and
achieves low eigensystem sensitivity with respect to
plant parameter variations, The second step in the
design procedure is the construction of a reduced order
observer to estimate those states which are not acces~
sible at the output of the plant, [t is shown that the
nutl space formulation of the efgensystem assignment
problem s also applicable in the design of reduced
order observers, The final step in the servo problem
design procedure is the caleulation of system gain
matrices to realize an overait eigensystem in which the
planflgntegrator dynamics amd observer dynamics are de-
coupled,

The null space formulation of the eigensystem
assignment problem is outlined in Section [I, A more
detafled presentation of the eigenvalue/eigenvactor
assignment technique is given in [1] and the method of
reducing eigensystem sensitivity with respect to plant
parameter varfations is described in [&]. In Section
111, the new design procedure for multivariable integral
plus proporticnal servo control systems is presented.
This is followed by a tutorial erample in Sectfon IV to
§1lustrate the design procedure., The intercsted reader
{5 referred to (3] for a more detailed development of
a1l procedures outlined here.

I1, THE EIGENSYSTEM ASSIGHMENT PRODLEM

Consider the multivariable system described by

% = Ax + Bu where x ¢ R", u ¢ R™, B has full column
rank, and the pair {A,B) is controllable, The efgen-
system assignment problem consists of selecting 2
real-valued mxn matrix K such that the closed-loop sys-
tom matrix

AsA+BK o ()

has arbitrarily specified eigenvalues and eigenvectors
that are close in some sense to a desired efgenvector
assignment, In additfen, 1t is highly desirable that
the eigensystem of A be {nsensitive to changes in ele-
ments of A and B, [n general it is not possible to
achieve arbitrary ejgenvector assigrment so that it is
necessary to seek an approximation to a desired assign-
ment, The controllability assumptions on the pafr
{A,B) are sufficient to guarantee arbitrary eigenvalue
assignmert.

For clarity of presentation {n this sectfon it is
assumed that a change of coordinates has been made such
that B is in rank reduced form, 8 = [Im 0], where b

denotes the mxm fdentity matrix. The eigensystem equaw
tion for R is
A

AU = UA (2)

where U = Cu], Upy *%y unJ is a matrix of efgenvectors
of A and A = diag(k,. Agr **%) An} is the diagonal

matrix of eigenvalues of A, Only the case of distinct
eigenvalues s treated here, If A and K are parti-
tioned compatibly with that of 8,

‘
‘e {:n:n] ke ]
211 22
then equation (2) is equivalent to
(A - Ay T4 Kli Ag t KpJ uy =0 (3)
and
(Agyi Agp = Ay 1D uy = 0. (4)

This work was supported by the NASA-Langley Research Center under grant number NSG-1519.
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For 3 given efgenvalue assignment, it 15 thus necessary
that each Yy Yie 10 the null space of

Ny x Dhgy i hgp = 2y 1) (5

for §{ = 1, 2, +++, n as shown by eaquation (4), Equa-
tfon (3) is then regarded as 3 constraint on K once uy
has been deterwined, f an independent set of u.'s
satisfying equation (4) is found, thop U = !

Ypo Uy, tery upd will be a modal matrix satisfying

equation (2).

Lot R‘ be 3 matrix whose colums form an ortho=
normal basis for the null space of o Then the

columns of all possible moda) matrices satisfying
equatfon {2) can be expressed as linear combinations
of the columns of all Ri's. Let P denote the desired,

although not nacessarily realizable, modal matrix given
as a design specification, The eigenvector selection
15 made by projecting P, column by ¢olumn, onto the
vector space contafning all possible mocal matrices,
This results in n sets of constants, oy

[0]{, 521| eeyr, QMJT, { " ‘p 2; te0, N1 Such that
ug R1 Ay If the resulting afgenvectors uy are

linearly independent, then the realizable modal matrix
U which is closest to P in a Euclidean norm sense has

been obtained. If the resulting efgenvectors are not

1inearly {ndependent or 1f the resuiting modal matrix

{s unsatisfactory, the ayy parameters are perturbed

slightly by weighting the projection norm, Once an
invertible modal matrix is obtained, the c¢losed-loop

system matrix is computed as A« UAU'}. The feedback
gaip matrix K is then calculated from

K= (At Al - (g AppD) (6)
where A s partitioned to conform to A,

Suppose now that the elements of the plant
matrices A and B are dependent on 2 scalar parameter
p. Then the ¢losed-loop system s also dependent on p
and the extent of this dependency, that is the sensi-
tivity of the system eigenvalues and eigenvectors with
respect to p, is related to the choice of modal matrix
U. The second stage of the efgensystem assignment
problem consists of reducing the eigensystem sensi-
tivity by appropriate modification of the initial

modal matrix, Let %% and %% denote the sensitivities
of the plant parameters with respect to p. Then

and the eigenvalue sensitivities are given by [4]
;%l =y (%%) Yy (8)
while the efgenvector sensitivities are
n T cA '
w3 {ES o
JH

where ¥ = [v], Vor *0%y vn] is a normalized reciprocal
basis for A, A sensitivity ¢ost function is defined by

[}

T TN R e e

n i

2
d\ du
J ; glgh + myligthl (10)

where C,. m { =1, 2, »os, n are positive veighting

constants, Modif{cations to the finitial modal matrix
are calculated using a gradient search procedyry in
which the sensitivity cost function J {5 reduced by
choice of the constants Gy The sensitivity reduction

stage of the design process is highly designer inter-
active, At the completion of each itaration a decis
sfon to continue or termifnate the sensitivity reducs
tion must be made, This decisfon often fnvolves a
compromise between achieving low efgensystem sensi-
tivity and retaining desired moda) behavior,

111, THE SERVO PROBLEM

The procedure outlined above for the eigensystem
assignment problem {s applicable to output feedback
and servo problems if observers are utilized to
realize the foedback law obtained under the assumption
of complete state accessibility., The design procedure
for the servo problem 1s developed here, Let the
plant be describad by & = Ax + Bu, y = Cx where

xec R ueR™ yeR'. Inaddition, the plant is
assumed to be completely state controllable and ob-
seryable. For clarity of presentation in this section
it 1s assumed that a change of ccordinates has been
made such that C 15 in rank reduced form, C = (I i 0],

The block diagram in Figure 1 {1lustrates the
integral plus proportional feedback control structure
to be considerad. The dotted line in this figure in-
dicates what the feedback structure would be if all
plant states were available for measurement. The first
step in the servo problem design procedure {s to select
gain matrices Kl and Kz to achieve desirable system

performance. The state dynamics of the system in Figure
1 are given by

i ~
X A+ BK,! BK X 0 {(ul.
S RN [ ook} I Qi Y e ()
X -C ; 0 Xe 1

It {s easiiy seen that the state matrix of this plant/in-
tegrator system can be written as

. AL B (K | Kyl
" [:E's'a] ' [a] he)

Since this matrix has the form of equation (1), the pro-
cedures of the efgensystem assignment problem are appli-
cable to the determination of K1 and K2 {f the rank of
the matrix

| [
BAB 1A%} <ee) AMT-Tp

t ]

i 1)
0'CBlcAB} +oe ) cAMYT-2g

is n+r. If this rank condition is not met, adjustment
of the number of inputs and/or cutputs may correct the
sftuation, Therefore, given a designer specified
eigenvalue matrix Ap and desired moda) matrix P_, the

eigensystem assignment procedure yields gain matrices
K] and Kz which realize the specified eigenvalue matrix

22
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Ap and 3 modal matrix up. As noted In Section [I, Up

usually represents 3 designar selected corpromise
batween iv realizable meda) matrix nedrest P, and the

reslizable modal matrix resulting in minfmum eigens
system sensitivity local to Pp.

The second step in tha servo preblem desien proe
cedurs {s the construction of a reduced arder odserver
to estimate thosg statos which arg not acgessible at
the output of the plant. A block diagram of 3 roduced
order observer is shown within Jotted Vines in Figure
2. The observer system §s described by (5]

z=Fz+Gy+Tou (13)
where
T=(-Lil1), (15)

s A s oi» plant matrix partitioned to conform with
tpl"“o »" C as . Y

Furthermore, the transpose of equation (14),
FTx Ay = Mg LT, (17)

has the form of equation (10) so that the eigensystem
assignment procedure may be utilized to determine L
given desired eigenvalue and eigenvector matrices,
A and Po.

The final step in the servo problem design pro-
cedure {s the determination of the feedback gain
matrices R and K3 in the complete integral plus pro-

portional servo control system of Figure 2. This
system {s described by the equation
]

i
X A*BRC }rsxz :r BK, x—l 0
O T DA AN T S O I B 13
: GCHTBRC | TBK, (F4TBK, | |2 0
| !
(18)
Making the coordinate transformation
1 00 X
X | =l 0 L Of x| (19)
T 01
equation (18) becomes
. r
| e i |
. S -
Xol * ____;g_____%__g_{__g_ Xt {ul.
W 0 1o F 0
" (20)

Thergforg, choosing
Ky # RC + KaT s (21)

the state matrix of eauat!gn {20} becomes
. A AT
' A E 8 [ugu;ung 3 (22)
0 ,F .
It follows that the eigenvalues of A are given by
I
A » [- -;--- (23)
¢ Ao.
and, assuming that the observer eigenvalues are chosen

distinctly from the eigenvalues of the plant/integrator
system, the eigenvectors are given by

o [y tau,]
U ] [n -;o--g N (24)
0 1 Uy
In the original coordinates, fhe system modal matrix 1s
o U1 QU
Us |=-Bha2t (25)
RUp :SUO~

where Q, R, S are }inear transformation matrices. Thus,
the servo system of Figure 2 realizes an eigensystem in
which the plant/integrator dynamics and observer dynamics
are decoupled and can be independently specified, Pars
titioning K, of equatfon (12) as

K) " [K”f. Kn] ' (25)

where K]] consists of the first m columns of K,, the
solutfon for Ky and R from :quation (19) is given by

K3 = K5 (27)
and
RuKyyt Kl (28)

A computer program based on this design procedure
has been written and is currently being evaluated,
Inftial results indicate that servo control systems
having satisfactory modal behavior and low efgensystem
sensitivity to changes in plant parameters can be ef-
fectively designed by this procedure. A difficulty of
this procedure, and a subject of future research, is
the uncertainty of how to translate system performance
specifications into specification of a desired moda)
matrix. A tutorfal example is presented in the next
section to {1lustrate the new design procedure.

IV. A DESIGN EXAMPLE

Consider the system X = Ax + Bu, v = Cx with
Xc Rs. ue R2 and ¥ € R2 where

-2.0 0.0 1.0
A= | 0.0 =~(2.0)/p (1.0)/p| ,
1.0 ],0 ‘2-0

1,0 0.0
B=10.0 (1.0)/p| .
000 0.0 - .
' ! 23
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1.0 0.0 0.0 )
C=

6.¢ 1.0 0.0
and p {s a plant parameter with pominal value 1,0, [t
s desired to design a servo control systen so that
ys [y] yz]T tracks step reference input signals with
zero steady~state error, In addition, the outputs Y
and ¥y should be decoupled, have little or no over-
shoot, and have dominant time constants of approxi-
mately 1 second and 1/2 second, respectively,

In order to neet the desired tracking requirements
for step reference inputs, it is decided to use a servo
contro] system incorporating integral error feedback as
shown in Figure 2, A reduceu order observer of order
one {s fncorporated to estimate state Xq which is not

available at the output of the plant. To meet the re-
sponse time constant specifications, the closed loop
eigenvalues are assigned as

A] L ']-0

A4 = =9,0

Az - '2.0, As bl '800
As = ']q-0| AOB= '7.0

Finally, a diagonally dominant modal matrix specifica-~

"tion {s made to provide decoupling between the out-

puts,

The design procedure consists of first calcula-
ting the feedback matrices K, and K, of Figure }

assuming complete state feedback. A reduced order

observer is then constructed to estimate those states
not actually available at the output. Finally, feed-
back gain matrices K3 and R are computed. The outcome

of this design procedure 1s given below.

F=[-7.0]

T8 =[ -5.0 0.0]
. G = [-24.0 1.0]

g

[ 390 2009
K2 [ -4.8 15.9]

. [-27.4
K3 [ 5.3]'

~

Xe

’

S {7Huler

The complete system s described by the equation X =
3; + B0 where

-154,0 5,4 1.0 39,1 20,9 -27.4
3302 "0.8 ]Ao *¢.3 1519 603
R B ]ro ].0 '2w0 000 0.0 0-0
"o-1,0 0.0 0.0 0.0 0.0 0.0
6,0 -1,0 0.0 0.0 0.0 0.0
736.0  28,) 0.0 ~-195,5 -104,5 129.9
and
0.0 0.0
0.0 0.0
5.1 00 00
1.0 0.0
0.0 1.0
0.0 0.0

The system response fer input reference signals

U= and u =
0 ]

are shown in Figures 3a and 3b3 respectively,
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